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Abstract
The objective of this thesis is to realize the modeling, trajectory planning, and control of
an unmanned helicopter robot for monitoring large areas, especially in precision agriculture
applications. Several tasks in precision agriculture are addressed. In pest surveillance mis-
sions, drones will be equipped with specialized cameras. A trajectory will be researched
and created to enable unmanned aircraft to capture images of entire crop areas and avoid
obstacles during flight. Infected areas will be then identified by analyzing taken images. In
insecticides spraying, the aircraft must be controlled to fly in a pre-programmed trajectory
and spray the insecticide over all the infected crop areas.

In the first part, we present a new complete coverage path planning algorithm by proposing a
new cellular decomposition which is based on a generalization of the Boustrophedon variant,
using Morse functions, with an extension of the representation of the critical points. This
extension leads to a reduced number of cells after decomposition. Genetic Algorithm (GA)
and Travelling Salesman Problem (TSP) algorithm are then applied to obtain the shortest
path for complete coverage. Next, from the information on the map regarding the coordi-
nates of the obstacles, non-infected areas, and infected areas, the infected areas are divided
into several non-overlapping regions by using a clustering technique. Then an algorithm is
proposed for generating the best path for a Unmanned Aerial Vehicle (UAV) to distribute
medicine to all the infected areas of an agriculture environment which contains non-convex
obstacles, pest-free areas, and pests-ridden areas.

In the second part, we study the design of a robust control system that allows the vehicle to
track the predefined trajectory for a dynamic model-changing helicopter due to the changes
of dynamic coefficients such as the mass and moments of inertia. Therefore, the robust ob-
server and control laws are required to adapt the changes in dynamic parameters as well as
the impact of external forces. The proposed approach is to explore the modeling techniques,
planning, and control by the Linear Parameter Varying (LPV) type technique. To have
easily implantable algorithms and adaptable to changes in parameters and conditions of use,
we favor the synthesis of Linear Parameter Varying (LPV) Unknown Input Observer (UIO),
LPV state feedback, robust state feedback, and static output feedback controllers. The
observer and controllers are designed by solving a set of Linear Matrix Inequality (LMI)
obtained from the Bounded Real Lemma and LMI regions characterization.

Finally, to highlight the performances of the path planning algorithms and generated control
laws, we perform a series of simulations in MATLAB Simulink. Simulation results are quite
promising. The coverage path planning algorithm suggests that the generated trajectory
shortens the flight distance of the aircraft but still avoids obstacles and covers the entire area
of interest. Simulations for the LPV UIO and LPV controllers are conducted with the cases
that the mass and moments of inertias change abruptly and slowly. The LPV UIO is able
to estimate state variables and the unknown disturbances and the estimated values converge
to the true values of the state variables and the unknown disturbances asymptotically. The
LPV controllers work well for various reference signals (impulse, random, constant, and sine)
and several types of disturbances (impulse, random, constant, and sine).
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1 Introduction

This chapter briefly introduces the needs of using robots, especially Unmanned Aerial
Vehicle (UAV) in Precision Agriculture (PA) for increasing crop yields. Firstly, sustain-
able food production challenges are given in section 1.1. Then, the definition of PA is
introduced in section 1.2. The uses of the mobile robot and UAV in PA are studied
respectively in subsections 1.3 and 1.4. Our motivations and the objectives of the thesis
are highlighted in section 1.5 and 1.6 respectively. The main contributions are listed in
sections 1.7. Finally, the structure of the thesis document is outlined in section 1.8.
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1.1 Sustainable food production
According to the Food and Agriculture Organization (FAO, 2009a), it is estimated that by
2050 the world’s population will reach 9 billion and this population change mainly occurs in
developing countries [68]. Consequently, ensuring a sustainable supply of food for the world’s
fast-growing population is a major challenge. Added to the challenge is that sustainable food
products need to be nutrient-dense to allow people to have a diverse diet that contains a
balanced and adequate combination of energy and nutrients to support good health [240].

Sustainable food production is "a method of production using processes and systems that
are non-polluting, conserve non-renewable energy and natural resources, are economically
efficient, are safe for workers, communities and consumers, and do not compromise the needs
of future generations"[76].

Although the area of land for agriculture is declining, water resources for cultivation are in-
creasingly scarce, climate change [169], global warming [178], more pests appear, more food
still have to be produced. These negative effects on agriculture can be offset to some degree
by improving pest control technologies, implementing crop rotations, soil and water conser-
vation, altering crop varieties, employing other sound ecological technologies for resource use
in agriculture, and machinery applications in agricultural production.

1.2 Precision Agriculture (PA)
Precision Agriculture (PA) can be defined as "the application of modern information tech-
nologies to provide, process and analyze multi source data of high spatial and temporal
resolution for decision making and operations in the management of crop production"[47].
The main goal of PA is the process of gathering, processing, and analyzing temporal, spa-
tial, and individual data to support management decision making. This decision greatly
affects improved resource use efficiency, productivity, quality, profitability and sustainability
of agricultural production

Autonomous robots can be applied in a variety of field operations of PA. The use of Au-
tonomous robots facilitate the processes of capturing and processing high quantities of data.
They also provide the required capabilities for operating not only at the individual plant
level but also at the complete field level. In [26], authors propose autonomous platforms
which can be used for cultivation and seeding, weeding, scouting, application of fertilizers,
irrigation, and harvesting.

For the reason that economic benefits should be easily achieved without requiring the in-
tegration of additional components or decision support systems, several advanced robotic
technologies have been widely applied in PA such as autonomous guidance, autosteer, re-
mote sensing, and controls.

The most important abilities of automatic agricultural robots can be categorized into four
categories [40]:

• Guidance: the robot has to self-locate its position in the agricultural environment.

• Detection: the robot should have the ability to detect the biological features from the
environment.
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• Action: Based on the information on the first two categories, the robot should execute
the task for which the vehicle was designed, such as spraying, monitoring, or harvesting.

• Mapping: the robot could construct the map of the agricultural field.

For accomplishing all the previously mentioned activities, the devices (sensors) such as Real-
Time Kinetics Global Positioning System (RTK-GPS), camera, and Light Detection and
Ranging (LiDAR) have to retrieve information from the environment and send them to
the processing unit of the robot. This information can be the states of the robot(location,
velocity,...) or the information related to the agriculture area. Then, a decision will be made
based on the gathered information to accomplish the predefined tasks.

There are several types of agriculture robots. However, they can be defined as two main
groups: mobile robot and aerial robot. In the next two subsections, the use of mobile robot
and aerial robot in PA will be considered.

1.3 The use of mobile robot in PA
Mobile robots (Fig. 1.1) have been widely used in precision agriculture to reduce human labor
and increase productivity. Farmers can use the tractors, harvesters, and they are self-guided
by GPS, Robots can automate operations like pruning, thinning, mowing, spraying, and weed
removal, Sensor technology is used to manage the pests and diseases that affect crops. Some

(a) Hortibot robot[105]
source: www.technologyreview.com

(b) Kongskilde Robotti robot[88]
source: conpleks.com

Figure 1.1: Examples of mobile robots in PA

examples of the application of mobile robot are autonomous targeted spraying for pest control
in commercial greenhouses [176], to optimum manipulator design for autonomous de-leafing
process of cucumber plants [95], simultaneous localization and mapping techniques for plant
trimming [34], automated harvesting of valuable fruits (for example on sweet pepper[184][94],
oil palm [206], mango [209], cucumber [229], almond [227], apple [161][101], strawberry [91],
cherry fruit [215], citrus [147], vineyard [246], and tomato [182][181][233]).

Besides mobile robots, flying robots are also widely used in PA. The applications of UAVs
will be introduced in the next subsection.

www.technologyreview.com
conpleks.com
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1.4 The use of UAV in PA
The combination of modern technologies such as the Internet of Things (IoT), Information
and Communication Technology (ICT), control theory, image processing, and especially the
accelerated development of the UAV technology provides a promising solution to PA [212] to
deal with the challenges of food sustenation problem. UAVs have been widely used in many
applications of PA such as monitoring, weed mapping and management, crop spraying, etc.
The specific applications of UAV in PA will be covered in this subsection.

1.4.1 Monitoring
A very common application of PA is to determine the crop health situation by using Remote
Sensing (RS) techniques and image analysis. Images can be captured by satellites [22][156]or
UAVs [18][144]. However, satellite images are not good choice due to the low spatial resolu-
tion of acquired images, restrictions of the temporal resolutions as satellites are not always
available to capture the necessary images, the quality of the images depends on the weather
condition and camera costs. Another method that gives better quality of the images is using
the manned aircraft. Though, this method is still costly.

Crops health is a very important factor that determines the quality and quantity of the crop.
Therefore, the crops health and diseases detection must be monitored [51][185][155][116]
continuously to detect disease promptly and avoid spreading problems. Normally, crop health
is often monitored by agricultural experts. Nevertheless, this is a very time-consuming task,
as it requires several weeks or even months for inspecting an entire crop and preventing the
potentials of “continuous” disease spreading. Another method that can be applied to prevent
crop disease is to spray pesticides at fixed times during the plant’s growth. This method
has been applied and is relatively popular in developed countries, however, it is high cost
and also increases the likelihood of groundwater contamination as pesticide residues in the
products and soil.

The applicable of UAV in PA for monitoring the crop’s health conditions provide excellent
possibilities to obtain field data in an easy, fast, efficient, and cost-effective way compared to
the aforementioned methods. UAVs equipped with specialized cameras are used for gathering
photos of the entire plant area. The changes in plant biomass and their health can be
determined by using special algorithms for analyzing the crop imaging information. Thus,
diseases can be determined in their early stages enabling farmers to intervene in order to
reduce losses. For this purpose,UAVs can be used in the two different stages of disease control
as: (i) UAVs are used to collect crop images. Analyze the gathered images for detecting a
possible infection before visual indications appear. Map infected areas for treatment; and
(ii) during the treatment of infection, the UAV is used to spray insecticides to precisely the
locations of the infected plants that were mapped in the previous period.

1.4.2 Weed mapping and management
Another application of UAV in PA is weed mapping [99][174][98][200][19]. Weeds are non-
desirable crops, they grow simultaneously with the crop in agricultural areas and cause a
number of serious problems. They use the same resources such as soil, water, nutrients,
and space on agricultural land as crops and affect crop growth. Traditionally, herbicides
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are used for controlling the weeds. The same amounts of herbicides are sprayed over the
entire field, even within the weed-free areas. Such a strategy incurs a waste of herbicides,
potentially contaminating soil resources. Moreover, overuse of herbicides can lead to the
evolution of herbicide-resistant weeds and it can affect crop growth and productivity. To
overcome the above problems the agriculture area is divided into zones that each one receives
customized management because as usual weeds spread through only a few spots of the field.
Consequently, it is necessary to generate an accurate weed cover map for precise spraying of
herbicide. UAVs are used to gathering images. Then, the gathered images are analyzed to
generate a precise weed cover map depicting the spots where the chemicals are needed and
the needed amount of herbicide for each spot.

1.4.3 Crop spraying
The traditional spraying equipment used in conventional farming is the manual air-pressure
or battery-powered knapsack sprayers. However, this traditional spraying equipment causes
a non-minor loss of pesticides due to the mechanical structure of the injector and the spraying
is done manually. Furthermore, the operators have to be present when spraying, resulting
in contact with operators and possibly affecting human health.

Therefore, the use of UAVs to spray pesticides [217][235][69][81][244] can reduce the opera-
tor’s exposure to chemicals, reduce pesticide losses, and save time. An uncrewed helicopter,
which is equipped with small pesticide tanks, was developed and introduced in Japan in the
1980s [212] for crop spraying. By analyzing image data, we can determine exactly and pest
status of the crop on the whole area of agriculture. Because the level of plant pests and
diseases varies from region to region, the amount of insecticide to be sprayed must also be
different to ensure uniform plant growth. Path planning algorithms based on crop data not
only create the optimal motion trajectory for the UAV, but also optimize the amount of
needed agrochemical products.

1.4.4 Irrigation management
Currently, the process of irrigation for crops consumes about 70% of the water in the world.
[38][196], while water resources are increasingly exhausted. Therefore, crop irrigation man-
agement [190][12][168][183] is a very important task in PA. Precision irrigation techniques
must be improved and monitored more strictly to lead to the more efficient use of water: (i)
in the right place; (ii) at the right time; and (iii) in correct quantities.

Typically, water is evenly irrigated over the entire crop area, although the amount of water
actually needed for different areas varies. Therefore, determining the appropriate amount of
water to irrigate in different areas can help farmers save time and water resources. Moreover,
such precise farming techniques can lead to increased yields and crop quality. Dividing
agricultural land into different irrigation areas, for precise management of resources, can be
done easily by using UAV. Special sensors equipped on the UAVs give them the ability to
classify and identify areas where plants need more water. Besides, based on data collected
from UAV, we can create specialized maps that illustrate the morphology of the soil for more
efficient irrigation, suitable for each type of crop and each specific area.
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Table 1.1: The use of autonomous robot in PA

Publication Robot type Operation Technique
[180] Aerial robot Monitoring Process

- Monitoring vege-
tation state

Multispectral camera, GPS sys-
tem, FlightCTRL, NaviCtTRL,
First person view platform, GSM
modem, Magnetic compass

[13] Aerial robot Monitoring Process
-Detecting drainage
pipes

VIS Camera, NIR Camera, Ther-
mal Camera

[110] Aerial robot Monitoring Pro-
cess -Evaluating
water stress and
vegetation state

Thermal camera, Multispectral
camera, Single-board computer,
GPS system, Stabilization mech-
anism

[249] Aerial robot Monitoring Process
- Estimating nitro-
gen state

Hyperspectral camera

[49] Aerial robot Spraying Process -
Spraying fruits and
trees

Spraying Device, Multispectral
camera, IMU, Magnetometer.
Barometer, Servos

[193] Aerial robot Investigating com-
putational
resources during a
monitoring process

IMU, GPS system

[198] Aerial robot Evaluating water
stress

FlightCtrl, NaviCtrl, 3-axis ac-
celerometer, Thermal Camera,
Storing device, Pressure sensor,
Digital compass, GPS system

[228] Mobile
robot

Coverage path plan-
ning

Harmony Search (HS) algorithm
for finding complex coverage tra-
jectories

[192] Mobile
robot

Field mapping 3D terrain maps, stereo camera,
location sensor, IMU

[199] Mobile
robot

Weed and pest con-
trol

Image processing, decision control
algorithms

[217] Mobile
robot

Weeding Automatic computer vision, dif-
ferential spraying to control the
weeds.

1.4.5 Vegetation growth monitoring and yield estimation
UAVs are also often applied in monitoring vegetation growth and providing estimates of
productivity [250][230][106][92]. One of the main major difficulties of increasing agricultural
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productivity and quality is the lack of means to systematically monitor the process of cul-
tivation. Therefore, collecting and analyzing information related to crop growth regularly
using the UAV provide an increased opportunity to track crop growth and observe changes
in some parameters of the field.

Many works have been focusing on observing the biomass and nitrogen status of crops
besides the yield estimation. Biomass of crops and nitrogen content status are the main
parameters to determine the need for additional fertilizer or other actions. Furthermore,
various parameters, such as crop height, the distance between rows or between plants, and
the index Leaf Area Index (LAI) can be estimated by using the three-dimensional digital
maps of the crop which is created by the gathered images by the UAVs. By analyzing
the information gathered about crops by UAVs, farmers can make plans to control crop
management, decide when to irrigate, spray pesticides, or harvest.

Table 1.1 provides examples of the developments of autonomous mobile and aerial robots in
PA.

1.5 Motivations
We are motivated, in this thesis, by the coverage path planning scenario and control of Un-
manned Aerial Vehicle (UAV) in Precision Agriculture (PA) for the two tasks, crop inspection
and crop spraying.

Although the application of Unmanned Aerial Vehicle (UAV) in Precision Agriculture (PA)
has been being studied intensively, however, many challenges are still open with respect to
the coverage path planning scenarios as the requirements to visit all the predefined points
while avoiding obstacles and minimize some objective functions.

In the control aspect, the UAV has to follow as most accurately as possible according to
the given trajectory under the influence of disturbances such as wind or changes of dynamic
parameters such as mass or moments of inertia during flying time.

1.6 Objectives
The objective of this thesis is to realize the modeling, planning, and control of an unmanned
helicopter robot for monitoring large areas, especially in PA applications. Several tasks in
PA are addressed such as monitoring, insecticides spraying.

• Path planning objective: In pest surveillance missions, drones will be equipped
with specialized cameras. In order to monitor the whole agriculture area, we need to
capture images by specialized cameras. A trajectory will be researched and generated
to enable the UAV to capture images of entire crop areas and avoid obstacles during
flight. Infected areas will be then identified by analyzing gathered images.

• Control objective: In insecticides spraying, the UAV must be controlled to fly in
a pre-programmed trajectory, which has been generated in the path planing task,
and spray the insecticide over all the infected crop areas. The UAV is equipped with
pesticide tank and a mechanical or hydraulic system for pesticide spraying. During the
spraying of insecticides, the mass of UAV will decrease over time, resulting in changes
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in the dynamic parameters of UAV such as the moments of inertia. In addition,
during the mission, UAV is affected by disturbances such as wind gusts. The changes
in the kinetic parameters and the external disturbances cause instability of the UAV.
Consequently, a robust controller has to be designed to stabilize the UAV and to follow
exactly the predefined trajectory while keep stabilizing the UAV under the changes in
the kinetic parameters and the external disturbances.

1.7 Contribution of the thesis
The objective of this thesis is to realize the modeling, planning, and control of an unmanned
UAV robot for monitoring large areas, especially in PA1 applications. Several tasks in PA are
addressed. In pest surveillance missions, drones will be equipped with specialized cameras.
A trajectory will be researched and created to enable unmanned aircraft to capture images
of entire crop areas and avoid obstacles during flight. Infected areas will be then identified
by analyzing taken images. In insecticides spraying, the aircraft must be controlled to fly in
a pre-programmed trajectory and spray the insecticide over all the infected crop areas.

In the first part, we present a new complete coverage path planning algorithm by proposing a
new cellular decomposition which is based on a generalization of the Boustrophedon variant,
using Morse functions, with an extension of the representation of the critical points. This
extension leads to a decrease in the number of cells after decomposition. GA2 and TSP3

algorithm are then applied to obtain the shortest path for complete coverage. Next, from
the information on the map regarding the coordinates of the obstacles, non-infected areas,
and infected areas, the infected areas are divided into several non-overlapping regions by
using a clustering technique. Then an algorithm is proposed for generating the best path for
a UAV to distribute medicine to all the infected areas of an agriculture environment which
contains non-convex obstacles, pest-free areas, and pests-ridden areas.

In the second part, we study the design of a robust control system that allows the vehicle
to track the predefined trajectory for a dynamic model-changing UAV due to the changes of
dynamic coefficients such as the mass and moments of inertia. Therefore, the robust observer
and control laws are required to adopt the changes in dynamic parameters as well as the
impact of external forces. The proposed approach is to explore the modeling techniques,
planning, and control by the LPV type technique. To have easily implantable algorithms
and adaptable to changes in parameters and conditions of use, we favor the synthesis of LPV4

UIO5, LPV quadratic state feedback, dynamic ouptut feedback, and static output feedback
controllers. The observers and controllers are designed by solving a set of Linear Matrix
Inequality (LMI) obtained from the Bounded Real Lemma and LMI region characterization.

Finally, to highlight the performance of the path planning algorithms and generated control
laws, we perform a series of simulations in MATLAB Simulink environment. Simulation re-
sults are quite promising. The coverage path planning algorithm suggests that the generated
trajectory shortens the flight distance of the aircraft but still avoids obstacles and covers the

1Precision Agriculture (PA)
2Genetic Algorithm (GA)
3Travelling Salesman Problem (TSP)
4Linear Parameter Varying (LPV)
5Unknown Input Observer (UIO)
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entire area of interest. Simulations for the LPV UIO and LPV controllers are conducted
with the cases that the mass and moments of inertia change abruptly and slowly. The LPV
UIO is able to estimate state variables and the unknown disturbances and the estimated
values converge to the true values of the state variables and the unknown disturbances in a
short time. The LPV controllers work well for various reference signals (impulse, random,
constant, and sine) and several types of disturbances (impulse, random, constant, and sine).

1.8 Structure of the thesis
The manuscript of the thesis is divided into 7 chapters:

• Chapter 1 - Introduction: Introduces the applications and necessity of robots,
especially UAVs in PA. Moreover, it highlights our motivations, the specific challenges,
objectives, and the main contributions of the thesis.

• Chapter 2 - State of the art: offers a short state of the art for UAVs and more par-
ticularly the multirotors as typical vehicle for coverage path planning mission. Then,
it also reviews the state of the art of the coverage path planning algorithms and control
laws for quadcopters.

• Chapter 3 - System modeling: introduces the mathematical differential equations
of quadcopter dynamics.

• Chapter 4 - Robust path planning: proposes a new approach for maximizing
the coverage path planning while minimizing the path length of an aerial robot in
agriculture environment with concave obstacles. For resolving this problem, we propose
a new cellular decomposition which is based on a generalization of the Boustrophedon
variant, using Morse functions, with an extension of the representation of the critical
points. This extension leads to a decrease of the number of cells after decomposition.
The results show that this new cellular decomposition works well even with several
concave obstacles inside the environment. Furthermore, for path planning, the cells
are divided again into two classes, leading to have a cell set better suited for use of
the TSP to get complete coverage. GA and TSP algorithm are applied to obtain the
shortest path. Then, an approach is also proposed to maximize the scanned area on the
working area with obstacles. Then, we focus on generating the best path for an UAV
to distribute medicine to all the infected areas of an agriculture environment which
contains non-convex obstacles, pest-free areas and pests-ridden areas. The algorithm
for generating this trajectory can save the working time and the amount of medicine
to be distributed to the whole agriculture infected areas.

From the information on the map regarding the coordinates of the obstacles, non-
infected areas, and infected areas, the infected areas are divided into several non-
overlapping regions by using a clustering technique. There is a trade-off between the
number of classes generated and the area of all the pests-ridden areas. After that,
a polygon will be found to cover each of these infected regions. However, obstacles
may occupy part of the area of these polygons that have been created previously.
Each polygon that is occupied in part by obstacles can be further divided into a
minimum number of obstacle-free convex polygons. Then, an optimal path length
of boustrophedon trajectory will be created for each convex polygon that has been
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created for the UAV to follow. Finally, this chapter deals with the process of creating
a minimal path for the UAV to move between all the constructed convex polygons
and generation of the final trajectory for the UAV which ensures that all the infected
agriculture areas will be covered by the medicine.

• Chapter 5 - Control: During the spraying of insecticides, the mass of UAV will
decrease over time, resulting in changes in the dynamic parameters of UAV such as the
moments of inertia. In addition, during the mission, UAV is affected by disturbances
such as wind. The changes in the kinetic parameters and the external disturbances
cause instability of the UAV. Therefore, several robust control laws for quadcopter
under disturbances and changes of the dynamic parameters have been developed such
as LPV dynamic output feedback controller, LPV static output feedback controller,
and LPV state feedback controller. We also design a Linear Parameter Varying (LPV)
Unknown Input Observer (UIO) for quadcopters.

• Chapter 6 - Simulation and experiments: The simulations are conducted for
both path planning and control tasks. This chapter also gives some comments on the
simulation results and will discuss the advantages and performances of the proposed
approaches.

• Chapter 7 - Conclusion and perspectives: Gives some concluding remarks as well
as perspectives.
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2 State of the art

This chapter offers a brief state of the art of Unmanned Aerial Vehicle (UAV). Firstly,
a short review of UAV such as UAV classification, applications, advantages, and dis-
advantages of UAV will be given in Section 2.1.1. Due to their special characteristics,
which allow their use in a wide range of applications, we focus on particular Vertical
Take-Off and Landing (VTOL) types of UAVs and especially the quadrotor configura-
tion in Section 2.2. Then the state of the arts of complete coverage of UAV and control
of quadrotors are given in Section 2.3 and 2.4 respectively.
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2.1 Unmanned Aerial Vehicles

2.1.1 Overview of unmanned aerial vehicles
An Unmanned Aerial Vehicle (UAV) or drone is an aircraft without passenger or pilot on-
board which can fly autonomously based on pre-programmed flight plans, through the help
of complex dynamic automation systems, or be controlled remotely by a pilot at a ground
control station. Depending on its mission, endurance, and size, each UAV can carry different
payloads.

UAVs are equipped with multiple sensors (such as Global Positioning System (GPS), Inertial
Measurement Unit (IMU), Differential Global Positioning System (DGPS), accelerometer,
magnetometer, pito tube, etc) and are connected in real time to many other systems at the
ground control station. This allows the UAV to gain important information such as speed,
position, heading, altitude, movement direction, temperature, speed and wind direction, the
amount of fuel or remaining energy to perform the task, etc. UAV can perform a variety of
tasks in military, civilian, and entertainment applications. Moreover, since they are free of
screw on board, they can be designed to be smaller, can perform tasks that require greater
flexibility, and can carry more payloads.

2.1.2 UAVs classification
There are many characteristics for classifying UAVs [107][138] based on their variety intended
use.

Classification according to size

• Very small UAVs: are the unmanned aircraft with dimensions ranging from the size of
a large insect to 30 [cm]−50 [cm] long. The very small UAVs can be sub-divided into

– Micro or nano UAVs: insect size is up to 15 [cm].

– Mini UAVs: insect size is between 15 [cm] and 50 [cm].

The representative of very small UAVs is insect-like UAVs. Their popular micro design
always has flapping or rotary wings. They are extremely small in size, very lightweight,
and can be used for spying and biological warfare. Some of nano UAVs are shown in
Fig. 2.12 Examples of mini UAVs are Xbird 250 quadro, Parrot bebop, Parrot Disco,

(a) Black Hornet (b) Hummingbird (c) Hummingbird (d) Dragonfly robot

Figure 2.1: Nano UAV robots

and Eagle VTOL Mapping in Fig. 2.10.
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(a)
Xbird 250 quadro

(b)
Parrot bebop

(c)
Parrot Disco

(d)
Eagle VTOL Mapping

Figure 2.2: Mini UAV robots

• Small UAVs: are the UAVs class that have at least one dimension greater than 50 cm
and no larger than 2 meters. Most of them are hand-launched by throwing in the air
while some other are of fixed-wing model. Examples of small UAVs are RQ 11 Raven
with a wingspan of 1.4 m, RQ 7 Shadow, RS 16 is a crossover UAV between a small
and a medium sized system, and Turkish Bayraktar which weight is 5 kg and has a
range of 20 km in Fig. 2.3.

(a) RQ 11 Raven (b) RQ 7 Shadow (c) RS 16 (d) Turkish Bayraktar

Figure 2.3: Small UAV robots

• Medium UAVs: are the class of UAVs that are too heavy to be carried by one person
but are still smaller than a light aircraft. They usually have a wingspan of about 5-10
m and can carry payloads of 100 to 200 kg. Some medium fixed-wing UAVs are shown
in Fig. 2.4. There are also numbers of medium sized UAVs in the form of rotary-based.

(a) UK Watchkeeper (b) RQ 2 Pioneer (c) RS 20 (d) Eagle Eye

Figure 2.4: Medium UAV robots
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• Large UAVs: applies to the large UAVs and used mainly by the military. Some of large
UAVs such as Atomics MQ-1 Predator, Global Hawk, Harfang, and MQ 1C Warrior
are shown in Fig. 2.5.

(a)
Atomics MQ-1 Predator

(b)
Global Hawk

(c)
Harfang

(d)
MQ 1C Warrior

Figure 2.5: Laege UAV robots

Classification of UAVs according to its range of action

• High-altitude long-endurance (HALE): this types of UAVs can flight over 15000 [m]
altitude and more than 24 [hr] of endurance. These UAVs are usually used for surveil-
lance mission. Two example of HALE UAVs are Northrop Grummans Global Hawk
and Agilis HALE UAV in Fig. 2.6.

(a) Northrop Grummans Global Hawk (b) Agilis HALE UAV

Figure 2.6: High-attitude long-endurance (HALE) UAV robots

• Medium-altitude long-endurance (MALE): the altitude for this types of UAVs is about
5000 [m] to 15000 [m] with 24 [hr] maximum of endurance. These UAVs are also used
for surveillance mission but with shorter ranges. Two example of MALE UAVs are
Persistent UAS Platforms and Agilis HALE UAV in Fig. 2.7.

• Medium-Range or tactile UAV (TUAV): the range of flight for this type of UAVs is
between 100 [km] and 300 [km]. The TUAVs IAI Heron (Machatz-1) and AAI (Textron)
RQ-7 Shadow are shown in Fig. 2.8.

• Close-range UAV: The close range UAVs can operate within the range less than
100 [km]. This type of UAVs is mainly used for traffic monotoring, powerline in-
spection, surveillance, or crop-spraying in precision agriculture.The close range UAV
Optimus UAV and RemoEye 006 are shown in Fig. 2.9.
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(a) Persistent UAS Platforms (b) WK-450 Watchkeeper

Figure 2.7: Medium-attitude long-endurance (HALE) UAV robots

(a) IAI Heron (Machatz-1) (b) AAI (Textron) RQ-7 Shadow

Figure 2.8: Medium-Range or tactile UAV (TUAV) robots

(a) Optimus UAV (b) RemoEye 006

Figure 2.9: Close-Range UAV

• Mini UAV (MUAV): The operation range for mini UAVs is up to 30 [km] and their
weight is less than 20 [kg]. The mini UAVs Orbiter Mini UAV and Skylark 1 LE Mini
are shown in Fig. 2.10.

(a) Orbiter Mini UAV (b) Skylark 1 LE Mini

Figure 2.10: Mini UAV robots
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• Micro UAV (MAV): the wingspan is less than 150 [mm]. This type of UAVs are mainly
used in urban environments or for indoor applications. Due to the small size, the micro
UAVs are very vulnerable to the wind.

(a) Micro UAV NX70 (b) Honeywell RQ-16 T-Hawk

Figure 2.11: Mini UAV robots

• Nano Air Vehicle (NAV): the size is of 10 [mm]. The Nano UAVs The Hornet 2-b (Prox
Dynamics) and Nano UAV Hornet 3 Prox Dynamics in Fig. 2.12a are complete with
camera and video transmitter.

(a) The Hornet 2-b (Prox Dynamics) (b) Nano UAV Hornet 3 Prox Dynamics

Figure 2.12: Nano UAV robots

• Remotely piloted helicopter (RPH): are UAVs that are capable of vertical take-off
and landing automatically with pre-programmed programs. This type of aircraft is
often used in missions that require hovering flight such as inspection or surveillance.
Remotely piloted helicopters Long Endurance Fuel Power Fixed Wing gasoline VTOL
UAV and Terrafugia TF-2 Tiltrotor are shown in Fig. 2.13

(a) Long Endurance Fuel Power Fixed Wing
gasoline VTOL UAV

(b) Terrafugia TF-2
Tiltrotor

Figure 2.13: Nano UAV robots
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2.1.3 Applications of UAVs
Nowadays, the uses of UAVs with diverse capabilities for both civilian and military applica-
tions are growing very fast. Moreover, there is a significant interest in the development of
novel drones that can operate autonomously in different types of complicated environments
and locations. UAVs can perform various missions in complicated environments both out-
door and indoor. Drones can be equipped with various sensors and cameras. Consequently,
UAVs are capable of performing accurate and reliable tasks of intelligence, surveillance, and
reconnaissance missions. The missions of UAVs can be categorized as for the military or
civil, type of the flight zones (outdoor or indoor), and type of the environments (air/space)
as shown in Figure 2.14.

Type of application

EnvironmentMissionFlight Zone

Outdoor Indoor Air Space

Military CivilMission launching drones

Bomb-droping drones

Flying camouflage drones

Communication disruptors

Battlefield medical supply

Invisible spy drones

Videography/Photography

Disaster response

City/Goverment

Environments & Climate

Construction drones

Space drones

Mining/oil & gas

Solar powered high-

altitude WIFI drones

Aviation delivery

Landing field drones

Inspections

Maritime

Meteorology

Agriculture

Hobby

Mapping

Miscellaneous

Figure 2.14: Classification of drones’ applications[158]

Search and rescue missions

A really important application of UAV is to search and rescue missions [231]. A search
and rescue UAV is usually used by emergency services, such as police officers, firefighters,
or rescue teams. Every second is vital in search and rescue operations. In order to most
effectively deploy rescue missions, we need to understand and get a quick overview of the
situation. While manned aerial vehicles and helicopters require time to be ready for oper-
ating the mission, drones can be operated instantaneously without any preparation time.
Unmanned aerial vehicles UAVs can provide real-time visual information and data in the
aftermath of an earthquake or hurricane. They can also become an eye in the sky to locate
a lost person in the mountain for example. Thanks to high mobility, quick deployment, able
to operate in complex environments including small environments such as caves, this type
of UAVs is ideal for searching over vast areas for missing persons in need of rescue and in
any environment.
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Environmental protection

Besides rescue or military applications, UAV is also increasingly applied in environmental
management such as managing agricultural lands, real-time weather condition and forecast,
observing the effects of climate change, monitoring the biodiversity of different ecosystems
from rain forests to the oceans, monitoring crops pest, and tracking wildlife in different areas
[219].

Mailing and delivery

Unmanned delivery service is attracting the attention of big companies in the world such as
Amazon, Google [224][87]. More and more companies are using drones to deliver products
to their customers. To accomplish this, the UAV is equipped with the ability to vertically
take off and land.

Drone in Precision Agriculture (PA)

With increasing populations, the demand for food is increasing. The latest advanced tech-
nologies should be applied in agriculture to meet this growing demand. Several types of
robots have been designed for using in PA such as mobile robots for harvesting, crops mon-
itoring. With the introduction of low-cost drones with advanced capabilities, the use of
UAVs in precision agriculture is growing really fast. Drones are playing a significant role in
optimizing agriculture operations. Thanks to the help of drones, agricultural activities such
as crop management, crop counting, crop health monitoring, and spraying pesticides can
be operated more cost-effectively and more quickly as compared to conventional methods,
which typically rely on the use of piloted aircraft.

2.1.4 Advantage, disadvantages, and typical uses of UAVs
In the previous subsection, we have examined the classification and applications of UAVs.
In this chapter, we examine the advantages and disadvantages of UAVs for the fixed-wing
UAV, single rotor UAV, and multirotor UAV.

2.1.4.1 Fixed Wing UAV

Fixed-wing UAVs use a wing like a normal aeroplane to provide the lift by the aircraft’s
forward motion. Fixed-wing UAVs can be self-propelled, pure gliders (vehicles whose free
flight does not rely on a method of propulsion) or a mixture of the two. Fixed-wing UAVs
can be distinguished to the other types of UAVs that they cannot stay hovering in one place
with vertical lift rotors in the air.

Fixed wing UAVs are well known in the military, as they are often used when manned flight is
considered too risky or difficult. They are also used in the commercial industry, monitoring,
etc.

Advantages:

• The operating time of fixed-wing UAVs can be a couple of hours and can up to 16
hours or more.
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• Fixed-wing UAVs can fly at a high altitude.

• Fixed-wing UAVs have the ability to carry more weight.

Disadvantages:

• Fixed-wing UAVs are usually expensive.

• Training is usually required for flying.

• Launcher or long runway are needed to get a fixed-wing UAVs into the air.

• It is required the runway, parachute, or special method for landing (recovering) the
UAVs.

• Fixed-wing UAVs can’t hover in the air.

Typical uses:

• The fixed-wing UAVs are usually used for commercial purposes such as aerial mapping,
inspection, agriculture, construction, security, and surveillance due to the ability of long
endurance, high altitude, and long operating fly time.

2.1.4.2 Single Rotor UAV

While a multi-rotor UAV has many different rotors to hold it up, a single rotor UAV has
just one rotor, plus a tail rotor to control its heading.

Advantages:

• A single rotor UAVs have the benefit of much greater efficiency over a multi-rotor,

• Long flying time if they are powered by a gas motor.

• Single rotor UAVs are able to hover vertically in the air.

• Single Rotor UAV are strong and durable.

• Heavy payload capability.

Disadvantages:

• Single Rotor UAVs are harder to fly than multi-rotor UAV types.

• Single rotor UAVs can be expensive.

• Single rotor UAVs have a higher complexity.

• Single rotor UAVs can be dangerous because of their heavy spinning blade.

Typical uses:

• Surveying, research, Aerial LIDAR laser scan.

2.1.4.3 Multirotors UAVs

A multirotor UAV is one of the robots that has the ability to achieve agile motion in the air.
Unlike fixed-wing UAV, multirotor UAVs rely on the rotation of rotors to generate power,
which will generate powerful airflow. This is the popular choice for aerial photography, film
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making and surveillance. It can also be used by professionals and hobbyists alike because of
its small size and ready to fly out of the box capabilities. The multirotors UAVs classification
is shown in Figure 2.15.

Multirotor UAVs carry several rotors on their body and can be further classified based on
the number of them on the platform of the drone. There are tricopters (3 rotors as in Figure
2.15a, 2.15b), quadcopters (4 rotors as in Figure 2.15c, 2.15d), hexacopters (6 rotors as in
Figures 2.15e, 2.15f, 2.15g, 2.15h, 2.15i) and octocopters (8 rotors as in Figures 2.15j, 2.15k,
2.15l, 2.15m, 2.15n, 2.15o). The most commonly used of Multirotor UAVs are quadcopters.

Advantages:

• Simpler rotor mechanics required for flight control, easy for maintenance.

• Multirotor UAVs are easy control and maneuver.

• Multirotor UAVs have the ability to hover in the air.

• Multirotor UAVs can take off and land vertically.

• Multirotor UAVs are very stable.

Disadvantages:

• Low flying time (usually 15-30 minutes).

• Multirotor UAVs are limited on payload capability.

• Multirotor UAVs’s energy is spent on fighting gravity and stabilizing in the air.

Typical uses:

• Aerial photography and video aerial inspection, leisure, agriculture, construction, se-
curity.

2.2 Quadrotors
Based on the analysis of the advantages and disadvantages of different types of UAVs as
detailed in the previous subsection, we choose quadrotor as the research object in the content
of this thesis. The main features of the quadrotor will be considered in more detail in this
subsection.

A quadcopter is a helicopter that consists of a rigid cross-frame equipped with four rotorsM1,
M2, M3, and M4 as shown in Figure 2.16. There are two main configurations for quadrotor:
"+" configuration as in Figure 2.16a, and "X" configuration as in Figure 2.16b. The motors
are equidistant from the center of the quad by about L.

Each rotor Mi (for i = 1, ..,4) generates thrust fi for i = 1, ...,4. The direction of rotation
of the rotors are fixed and fi is always a positive quantity. The main thrust is the sum of
all the thrusts which are generated by the rotors. The detailed mathematical equations of
quadrotor will be studied in Chapter 3.
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(a) Tri rotor Normal (b) Tri rotor
Reversed Multi

(c) Quadrotor plus (d) Quadrotor X (e) Hexa Plus

(f) Hexa X (g) Hexa H (h) Hexa Coax Y6 (i) Hexa Coax
Reversed

(j) Octo Plus (k) Octo X (l) Octo Square Plus

(m) Octo Square X (n) Octo H (o) Octo Colinear
Plus

(p) Octo Colinear X (q) Octo Coax Plus (r) Octo Coax X X8

Figure 2.15: Multirotors classification according to the principle of flight

In order to avoid the yaw drift due to the reactive torques, the quadrotor aircraft is configured
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M1

M2

M3

M4

BX

BY BZ

L

Mα

(a) Quadrotor + configurations

M1M2

M3 M4

BX

BY BZ

L

Mα

(b) Quadrotor X configurations

Figure 2.16: Quadrotor configurations

such that the set of rotors M2,M4 (left-right) revolves in clockwise (CW) direction, while
the pair of rotors M1,M3 (front-rear) rotates in counterclockwise (CCW) direction.

Advantages:

• Rotor mechanics are simplified as it depends on four fixed pitch rotors unlike the
variable pitch rotor in the helicopter.

• Due to the symmetry in the configuration, the gyroscopic effects are reduced leading
to simpler control.

• Stationary hovering can be more stable in quadrotors than in helicopters due to the
presence of four propellers providing four thrust forces shifted a fixed distance from
the center of gravity instead of only one propeller centered in the middle as in the
helicopters structure.

• More advantages are the vertical take-off and landing capabilities, better maneuver-
ability and smaller size due to the absence of a tail, these capabilities make quadrotors
useful in small area monitoring and buildings exploration.

Disadvantages:

• Quadrotors consume a lot of energy due to the presence of four separate propellers.

• Quadrotors have a large size and heavier than some of their counterparts again to the
fact that there is four separate propellers.

2.3 Coverage Path planning methods used for UAV
CPP is one of the most important tasks for robot motion and missions. Consider an area of
interest composed by the robot’s free space and its boundaries. CPP is the determination
of a path that a robot must take in order to pass over each point in an environment while
avoiding obstacles such that the entire target environment is covered.
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Based on the path that has been generated, robots can accomplish their predefined tasks
such as cleaning, painting, window cleaning, and inspection of complex structures. CPP
has been extensively studied in recent years for applications such as vacuum cleaning robots
[245], painter robots [17], path planning for autonomous underwater vehicles [171], demining
robots [3], lawn mowers [28]. For the aerial context, the obstacles can be represented by
no-flying zones (NFZ) that the UAV should avoid during its operation.
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Figure 2.17: Regions of interest

In [36], the authors defined the requirements for the robot to perform a coverage operation.
Although the target application for CPP problems in the aforementioned paper is mentioned
for mobile robots in a 2-dimensional environment, the same requirements are used for other
coverage scenarios as follows:

• the robot is required to go through all the points in the target area covering it com-
pletely
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• the robot is required to fill the region of interest without overlapping paths.

• the robot must operate continuously and sequentially without any repetition of paths

• the robot is required to avoid all the obstacles of the region of interest

• simple motion trajectories such as straight lines or circles should be used for the purpose
of simplicity in control

• the use of an "optimal" path is desired under available conditions

However, due to the complexity of the working region with obstacles, it is really hard to
satisfy all the aforementioned requirements. As a result, some requirements need to be
made with a higher priority than others.

Region of interest
The region of interest to be completely covered by a robot can be represented by a poly-
gon which contains n vertices v1, ...,vn. Each vertex vi contains a pair of coordinates
(vx (i) ,vy (i)), and the internal angle at i-th vertex can be referred by γi. The edge be-
tween two vertices vi and vi+1 for i= 1, ...,n−1 are ei and the edge between vertex vn and
v1 is en as in Figure 2.17. The shape of region of interest can be any type of polygon such as
convex with no holes inside as in Figure 2.17a, concave with holes inside as in Figure 2.17d.
These holes can be considered as the no-fly zones where the UAVs are not allowed to fly.

2.3.1 No Decomposition
If the shape of the region of interest is regular-shaped and non-complex, the complete cov-
erage mission can be performed without decomposition. Simple geometric patterns are
sufficient to explore such areas. The two popular patterns are back-and-forth (BF) as in
Figure (2.18a) and the spiral (SP) as in Figure (2.18b).

(a) Back and Forth trajectory (b) Spiral trajectory

Figure 2.18: Simple geometric patterns for coverage path planing
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2.3.2 Cellular Decomposition (CD)
The environment is always divided into non-overlapping regions called cells using a decom-
position technique in order to simplify the coverage [44]. The size of the cells depends on
the type of decomposition method and an applied specific strategy to guarantee complete
coverage. These cells typically have the same size as a robot (terrestrial coverage) or are
proportional to the sensor’s range (aerial coverage). Several motions are required to fully
cover the large cell, while a single motion is enough for the smaller cells. There exist sev-
eral different cellular decomposition methods, however, the most commonly used in CPP
problems involving UAVs are exact and approximate cellular decomposition.

Exact cellular decomposition

Exact cellular decomposition is a decomposition method in which the regions of interest are
divided into non-overlapping sub-areas (cells) whose reunion exactly occupies the target area.
By using a simple motion as back-and-forth, each cell can be fully explored. Consequently,
the CPP problem of the whole region of interest is now referred to as the motion planning
problem from one cell to another [44]. The robot can move between two cells, which have a
mutual border. The adjacency graph is proposed to represent the motion of the robot as in
Figure. 2.19. In this adjacency graph, each cell represents a node, while the edge represents
neighbour cells. The final complete coverage path is the combination of motions performed
inside the cells and the connections between cells [80].
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Figure 2.19: Exact cellular decomposition method and adjacency graph

Several cellular decomposition methods have been studied as trapezoidal decomposition
technique [120], boustrophedon decomposition [45], and Morse-based cellular decomposition
[225].

In the trapezoidal decomposition technique [120], the free spaces are divided into trapezoidal
cells. There are two parallel sides on each cell, and each cell can be covered by simple back
and forth motion parallel to either side. Therefore, the whole working area can be totally
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scanned by visiting each cell in the adjacency graph. A vertical line is swept from left to right
through the working area of the robot. Each time the line encounters a vertex of a polygon,
one can say that an event occurs. Three types of events are defined: IN, OUT, and MIDDLE.
In an IN event, the current cell is closed and two new cells are opened. When an OUT event
occurs, the current two cells are closed and a new cell is created. Finally, MIDDLE event
is the event that a current cell is closed and a new single cell is initiated. Consequently, by
using these three events, the environment can be totally divided into separated trapezoidal
cells.

A drawback of the trapezoidal decomposition (shown in Figure 2.20a) is that it generates
many cells that, intuitively, can be merged together to form bigger cells. This is clearly
an inconvenient, as the more cells are present, the longer the final coverage path is. This
happens because the trapezoidal decomposition creates only convex cells. However, non-
convex cells can also be completely covered by simple motions. To overcome this limitation,
the boustrophedon cellular decomposition was proposed. The boustrophedon decomposition
(shown in Figure 2.20b) is similar to the trapezoidal decomposition introduced above, but
it only considers vertices where a vertical segment can be extended both above and below
the vertex. The vertices where this occurs are called critical points.

(a) Trapezoidal decomposition (b) Boustrophedon decomposition

Figure 2.20: Exact cellular decomposition method

The boustrophedon decomposition [45] addresses the issue of redundant movements by merg-
ing together cells between successive IN and OUT movements. The major difference is in
the case of a MIDDLE event, where no new cell is formed, but the current cell is updated
in width. So cells are only created on change of connectivity, as a result the number of cells
are less than in the case of trapezoidal decomposition. The point which changes the connec-
tivity of the cell is termed as a critical point. In the implementation of this algorithm, the
MIDDLE event is replaced by two new events called – FLOOR and CEILING. The FLOOR
event corresponds to vertices on top of obstacles, while CEILING event corresponds to ver-
tices that are at the bottom of obstacles. Both an IN event as well as an OUT event are
associated with FLOOR and CEILING pointers. So for a given cell, CEILING and FLOOR
pointers points to the top and bottom of a cell.

In [225], Acar et al generalized the boustrophedon decomposition by proposing a cellular de-
composition approach based on critical points of Morse functions. In this paper, the authors
show that the boustrophedon decomposition is a particular case of Morse decomposition.
With respect to the original boustrophedon decomposition, the Morse-based decomposition
has the advantage of handling also non-polygonal obstacles. By choosing different Morse
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functions, different cell shapes are obtained, e.g. circular or spiked cells. Theoretically,
Morse-decomposition can be applied to any n-dimensional space. Moreover, they presented
a method to perform coverage of planar spaces by detecting the critical points using sensory
range information, and a motion-template-based algorithm that ensures to encounter all the
critical points in the target area. Therefore, this method allows complete coverage on line.

Approximate cellular decomposition

For approximate cellular decomposition technique, the region of interest is divided into a
set of regular cells [44]. The shape of regular cells can be a square, rectangular, triangle,
or hexagonal. The size of the cells is proportional to the footprint of the camera in the
UAV. The coverage path contains a set of n way-points (w1, ...,wn) as in Figure 2.21. Each
way-point wi contains not only information such as latitude, longitude, and altitude, but
also navigation command to the vehicle as take-off, landing, speed, the coordinate of the
next point, or the command to move to the next point.
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(a) UAV picture frame (b) Grid and way-points

Figure 2.21: Approximate cellular decomposition method

2.4 State of the art on the control of quadcopters
The quadrotor UAV is a great platform for control systems research thanks to its nonlin-
earities and under-actuated configuration. Consequently, research on quadrotors UAV has
attracted a lot of attention from researchers and industrials all over the world in recent years.
Thanks to the wide development of modern control theory and technology, many advanced
control algorithms have been researched and used successfully for quadrotors controlling.

The quadrotor UAV controllers can be classified into three main categories: (i) linear flight
controllers, (ii) model-based nonlinear flight controllers, (iii) learning-based control methods.
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2.4.1 Proportional Integral Derivative controller
Proportional Integral Derivative (PID) controller is one of the most successful and widely
used among linear controllers. It is indeed the most applied controller in the industry [104].
The classical PID controller has the advantage that it has a simple structure, high stability,
good robustness, and parameters are easy to adjust but needs experience.

In [58], a Disturbance Observer Based (DOB) PID controller for a quadrotor testbed has
been developed which can stabilize the quadrotor and enhance the performance of the flight
control under complex real-time flight scenarios. In [133], the authors propose a linear
time-invariant controller consists of a Proportional Derivative (PD) controller and a robust
compensator. This controller achieves the robust attitude control for uncertain quadrotors.

Another PID controller [127] is applied for regulating both the position and orientation of a
quadrotor. The parameter gains of the controller are chosen manually. Small response time,
almost zero steady-state error, and slight overshoot show the performance of the controller for
attitude stabilization. In [197] a PID controller that can perform a steady flight of quadrotor
from one point to another is designed while ignoring air resistance and external factors.
Another Proportional Integral (PI)/PID controller which reduces the steady-state error is
proposed in [86]. However, this controller is not reasonable and effective to compensate for
Coriolis force.

A nonlinear PID controller is proposed in [211]. The structure of this nonlinear PID controller
consists of a linear PID control module and an inertia torque compensation department
module. The effectiveness of this controller for attitude stabilization and robustness of the
unmodeled dynamic system is shown in the simulation results.

Although the PID controller has been successfully applied for controlling the quadcopter,
there exists some disadvantages. The PID controller gains turning is a challenge as it must
be conducted around the equilibrium point to give a good performance. Therefore, this is
a time-consuming process. In addition, the classic PID controller might not really suit for
quadrotor control when it operates in an unstable environment.

2.4.2 Linear Quadratic Regulator (LQR)/Gaussian-LQR/G
The Linear Quadratic Regulator (LQR) is a popular optimal control algorithm and have
been successfully used for controlling quadrotors. The LQR operates a dynamic system in
the space state form by minimizing a suitable quadratic objective function. By adjusting
the system control gain, the LQR controller can adapt each control circuit performance
coordinate with system requirements automatically.

The LQR algorithm is applied for quadcopter in [29]. The authors also compare its perfor-
mance to the performance of PID controller. The two controllers developed on this paper
provide average results. However, the conclusion about the better performance of the LQR
controller than the PID is not indicated clearly.

In [48], the authors propose a simple path-following LQR controller on a full dynamic model
quadrotor. The simulation results show that by using optimal real-time trajectories under
the presence of wind and other disturbances, the quadcopter still tracks the predefined path.
Nevertheless, the quadcopter loses path tracking after avoiding the obstacles.
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However, these algorithms are suitable for linear systems and it is not convenient for nonlinear
systems unless some hypotheses are made. In [252], an LQR is proposed for controlling
the sensitivity and reaction speed of a quadrotor. The simulation results show that the
performance of the linear LQR model is better than the nonlinear model for real-time and
speed reaction.

The LQR algorithm becomes Linear Quadratic Gaussian (LQG) when it combines with
Kalman Filter. The LQG algorithm is really effective for the systems with Gaussian noise
or incomplete state information. In [150], an LQG with integral action is developed for
quadrotor attitude stabilization and gives good results in hover mode.

2.4.3 Sliding Mode Control (SMC)
SMC is a nonlinear control algorithm that is robust to parameter variations and model
uncertainties and is insensitive to external disturbances. SMC uses a discontinuous control
signal to the system to make sure that the system slides along a prescribed path. The main
advantage of SMC is that it does not simplify the dynamics through linearization and has
good tracking. However, the main disadvantage of SMC is the chattering phenomenon.

A PID based sliding mode controller [141] is proposed for a micro quadrotor. This SMC is
able to make the micro quadrotor accurately track the desired altitude and attitude. In [243],
the quadrotor system was subdivided into the full-actuated and under-actuated systems. An
SMC is designed for stabilizing the cascaded under-actuated systems. Simulation results
show the robustness and good stability of the quadcopter.

In [53], a Super Twisting Algorithm (STA) based on the second-order sling mode technique
is designed and implemented for attitude tracking of the quadrotor. The good performance
of the proposed method in stabilization, reference tracking, and disturbance rejection cases
are shown in experimental results. Beside, in [194], the authors propose a sliding mode
controller based on the Lyapunov stability theory. The proposed SMC controller gains the
ability to track the predefined path and drive the quadrotor to the desired position while
injecting noises. An SMC controller is designed in [24] that improves the robustness to the
external disturbances and model uncertainty of the system. This proposed SMC does not
require to resort to high power gain and is able quickly to compensate for the changes of the
external disturbances.

2.4.4 Backstepping Control
Backstepping control is a recursive algorithm that decomposes the controller into several
steps and makes each step stable progressively. The advantage of backstepping control is
that this algorithm converges fast thanks to less computational resources and it has the
ability to reject disturbances well. However, its disadvantage is that its robustness is not
good in the presence of modeling uncertainties.

A DOB based backstepping controller in [59] is designed for high-performance trajectory
tracking of the quadrotor. This disturbance observer-based controller serves as a compen-
sator, which effectively rejects external disturbances and model mismatches. In [142], the
quadrotor system is divided into under-actuated, fully actuated, and propeller subsystems.
Then, a backstepping control is designed for stabilizing the quadcopter. The simulation
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results show that good tracking was achieved for position and yaw angle. The roll and pitch
angles are stabilized by using the Lyapunov stability theory.

Besides, a nonlinear controller using Lyapunov-based backstepping techniques for path fol-
lowing of quadrotor is designed in [35]. The controller in this approach guarantees the global
convergence of the closed-loop path following error to zero under the presence of constant
wind disturbances

In [71], an integrator is added and the traditional backstepping algorithm becomes integral
backstepping control for increasing the robustness of the general backstepping controller
for a quadcopter under external disturbances. The integrator in this integral backstepping
controller is able to eliminate the steady-state errors of the system, reduces response time
and restrains the overshoot of the control parameters.

2.4.5 Adaptive Control Algorithms
Adaptive control is a robust control technique which is aimed at adapting to parameter
changes in the system to obtain the optimal control effect during operating time. The
parameters are either uncertain or time-varying. Adaptation means a combination of on-
line parameter estimation and control, whereby an appropriate controller is selected on the
knowledge of the current estimate for the uncertain process.

In [54], a continuous time-varying adaptive controller is developed for quadcopter with
known uncertainties in mass, moments of inertia, and aerodynamic damping coefficients.
A decentralized adaptive controller is presented in [151]. This controller is designed with
the improved Lyapunov based Model Reference Adaptive Control technique. Simulation
results show the proposed controller works properly for a quadrotor with parametric and
non-parametric uncertainties under various conditions during flight time.

2.4.6 Robust Control Algorithms
A robust controller is designed to deal with uncertainty in the system parameters or dis-
turbances. This controller ensures the controller performance within acceptable disturbance
ranges or un-modeled system parameters. The main disadvantage of the robust controller is
poor tracking ability.

In [134], the authors develop a robust motion controller based on a nominal controller and
robust compensator for attitude and position control of a quadrotor. The proposed robust
compensator minimizes the influence of uncertainties, such as nonlinear dynamics, coupling,
parametric uncertainties, and external disturbances in the rotational and translational dy-
namics.

Another robust tracking controller is designed in [221]. This controller guarantees asymptotic
stability under the presence of parametric uncertainties and unknown nonlinear disturbances.

2.4.7 Optimal Control Algorithms
Several optimal controllers have been successfully applied for controlling the quadcopter,
such as LQR, L1, H∞, and Kalman filter. The main disadvantage of optimal control is
generally their poor robustness. An optimal controller for reference tracking of both attitude
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and heading of a quadcopter which is robust and L1 optimal is proposed in [201]. The
performance of the controller for error minimization and rejection of persistent disturbances
is validated by the experiment.

In [186], the authors design an integral optimal predictive H∞ controller for stabilization of
the rotational movement of a quadrotor and for path following. The simulation shows that
the controller has good robustness and is able to reject the external disturbances.

Another H∞ controller is designed in [42] which is based on quasi-LPV. This controller
can perform the quadrotor control of vertical speed and attitude. The loop shaping H∞
is developed to combine robust control and classic loop shaping, which overcome the usual
drawbacks of the standard H∞. Some other H∞ controller for quadcopter are also shown in
[188] and [70].

2.4.8 Model Predictive Control (MPC)
MPC is a type of control that uses an explicit model of the plant to predict future output
behavior while minimize the tracking error of future horizon by solving optimal control
problems online [114]. The main advantage of MPC compared to Backstepping, feedback
linearization, and also sliding mode, is that this controller is able to handle operational
constraints prevalent in a control system explicitly. However, a typical disadvantage of MPC
is the need for high computational power due to repetitive calculations online.

In [2], an efficient MPC was successfully implemented which deploys fewer prediction points
and the less computational requirement is presented in order to control a quadrotor with
limited airborne computational power.

2.4.9 Exact Feedback Linearization
Feedback linearization is a process of converting exactly, by nonlinear state or output feed-
back control a nonlinear system into a linear system so that the linear feedback control
techniques can be applied. After that, the controller is designed by theory related to the
linear control system to achieve the requirements of controlling the system. The main dis-
advantage of exact feedback linearization is the need of an exact model. This leads to the
complexity in controller design.

In [154], the quadcopter dynamic is divided into the inner loop (for attitude) and the outer
loop (for position). The authors ignore some factors such as air resistance and design feed-
back linearization controller to control the attitude of the quadcopter. Besides, the combi-
nation of feedback linearization and GH∞ controllers are applied to design the controller for
a quadcopter. This controller takes into account also the parameter uncertainties, noises,
and external disturbances. Consequently, the designed controller gains a high quality of
robustness.
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2.5 Conclusion
In this chapter, a short review of UAVs, their classifications, applications, and advantages
and disadvantages has been analyzed. Then, the state of the art of complete CPP1 of UAVs
and control of quadrotors are also reviewed.

1Coverage Path Planning (CPP)
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3 System modeling

This chapter is dedicated to system modeling of quadrotor. In section 3.1, we offer a
brief review of the previous methods for modeling the quadrotor. Then the concepts
and generalities for writing the dynamic model of the quadrotor are given in the section
3.2. Next, the quadrotor kinematic is described in section 3.3. The knownledge about
the forces and moments acting on the quadrotor is required for building the dynamic
system differential equations of quadrotor. Therefore, the forces and moments acting
on the quadrotor are discussed in section 3.4. Then, we get the dynamic model of the
quadrotor by using the Euler-Lagrange formalism in section 3.5. The chapter concludes
with small conclusion.
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3.1 Review of the multirotors modeling
Since there are 6 degrees of freedom (DOF) but controlled by only 4 input variables (the
speeds of four propellers), the quadcopters are underactuated, highly dynamic, nonlinear,
and coupled systems. In addition, the uncertainties, caused by the environment and in-
duced by aerodynamic phenomena, lead to challenging modeling task. By using a number
of assumptions, the factors that are too small and that have a negligible influence on quad-
copters dynamics can be ignored. These simplified models can be used to approximate the
vehicle dynamics requiring effective control strategies. Many models have been studied in
the literature, with various levels of complexity and completeness.

Mesicopter project [72], started in 1999 and ended in 2001. It aimed to study the feasibility of
a centimeter scale quadrotor. In this paper, the author derived a dynamic model for a small
quadrotor called Mesicopter. The Mesicopter was the first proposed quadrotor model that
is used for hovering. The Mesicopter model was generated by assuming that the dynamics
are decoupled along the two planes of symmetry. The author has also explicitly given the
expression of some aerodynamic forces such as thrust and hub.

In [62], the authors proposed a dynamic model for X-shaped quadrotor. In this paper, the
attitude dynamics are modeled by double integrators and ZY X-Euler angles representation
was used for describing the rotations of the quadcopter in the East-North-Up (ENU) standard
of frames. Beside, a compact quadcopter model was proposed in [213]. The equations
of motion of quadcopter were considered in the North-East-Down (NED) reference frame
by using Newton’s equations of motion of a rigid object. Several aerodynamic forces and
moments are neglected such as the drag force were assumed in this model.

In [216], the author took into account the gyroscopic effect due to the rotation of propellers
considered as rigid rotating disks. In [179], an extended model of the quadrotor is used by
adding the dynamics of the rotor to the motion equation of the quadrotors. The authors
related the applied inputs to the angular velocities of the rotors. The dynamics of the rotor
are approximated by a first-order system. Then for control purposes, The final model of the
quadrotor is simplified.

In [61], the drag forces that affect the translational dynamics were added to the equations of
motion of the quadrotors. These forces were considered as functions of the velocities. The
same model was also derived by using the Euler-Lagrange approach as in [167].

In the PhD thesis of Bouabdallah in [30] and in his paper [195], the dynamic model of a cross
quadrotor was studied. This model included also the blade flapping effect. In this thesis, both
Euler-Lagrange and Newton-Euler approaches are used for the modeling dynamic model of
the quadcopter. However, the various effects are not well defined in the appropriate frames,
which lead to some errors that are reported and rectified later in the thesis of Wang in [232].

Hoffmann’s work in [79] showed that the flapping tips the thrust vector away from the
horizontal plane. As a result, some residual forces influence attitude control as well as the
total thrust force. After that, this phenomenon has been more extensively studied in [189].
Other aspects such as the non-rigidity of propellers [177], the ground effect [126][20], etc
have also been further studied more.
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In this chapter, we propose a dynamic model of the quadcopter based on Wang’s model
under the ideal flight conditions (i.e without wind). In our model, we consider the effect of
the hub forces as well as the hub moment around ZB-axis.

3.2 Concepts and Generalities
The Euler angles are the three angles provided by Leonhard Euler and are the basis of
a method to represent the 3D orientation of an object with respect to a fixed coordinate
system using a combination of three rotations around different axes. The reference frames
used for describing the Euler angles are Inertial frame, Vehicle 1 frame, Vehicle 2 frame and
body-fixed frame. The inertial frame axes are Earth-fixed, the body frame axes are aligned
with the sensor, while the Vehicle-1 and Vehicle-2 are intermediary frames on the sequence
of transform operations the inertial frame to the body frame.

The Inertial Frame

The inertial frame RE (OE ,XE ,YE ,ZE) as shown in Figure 3.1, is an Earth-fixed set of axes
that is used as an unmoving reference.

The sequence of rotations used to represent a given orientation is first yaw, then pitch, and
finally roll.

Figure 3.1:
Inertial Frame

Figure 3.2:
Vehicle-1 Frame

Figure 3.3:
Vehicle-2 Frame

Figure 3.4:
Body fixed Frame

The Vehicle-1 Frame (Yaw Rotation)

Yaw is the angle represents rotation about the inertial-frame OEZE-axis by an angle ψ. The
yaw rotation produces a new coordinate frame R1 (O1,X1,Y1,Z1) where the O1Z1-axis is
aligned with the inertial frame and the x and y axes are rotated by the yaw angle ψ. The
new coordinate frame R1 (O1,X1,Y1,Z1) is called vehicle-1 frame and shown in Figure 3.2.

Rotation of a vector from the Inertial Frame RE to the Vehicle-1 Frame R1 can be performed
by multiplying the vector by the rotation matrix

Rv1
I (ψ) =

 cosψ sinψ 0
−sinψ cosψ 0

0 0 1

 (3.1)
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The Vehicle-2 Frame (Yaw and Pitch Rotation)

The pitch angle quantifies the rotation of the vehicle 1 frame around the vehicle-1 frameO1Y1-
axis by an angle θ. The pitch rotation produces a new coordinate frame R2 (O2,X2,Y2,Z2)
where the O2Y2-axis is aligned with the vehicle-1 O1Y1-axis and the x and z axes are rotated
by the yaw angle θ. The new coordinate frame R2 (O2,X2,Y2,Z2) is called vehicle-2 frame
and shown in Figure 3.3. It is important to note that pitch is not rotation about the inertial-
frame OEYE-axis.

The rotation matrix for moving from the vehicle-1 frame R1 to the vehicle-2 frame R2 is
given by

Rv2
v1 (θ) =

 cosθ 0 −sinθ
0 1 0

sinθ 0 cosθ

 (3.2)

The rotation matrix for moving from the inertial frame RE to the vehicle-2 frame R2 is the
multiplication of the yaw matrix and the pitch matrix:

Rυ2
I (θ,ψ) = Rυ1

I (θ)Rυ2
υ1 (ψ) (3.3)

T

T

T

T

1

2

3

4

Figure 3.5: The Inertial Frame to Body frame

The Body Frame (Yaw, Pitch, and Roll Rotation)

The body reference frame RB (OB,XB,YB,ZB) is produced from the rotation vehicle-2 frame
R2 about the vehicle-2 O2X2-axis by an angle φ as shown in Figure 3.4. The body frame
is the coordinate system that is aligned with the body of the aircraft as in Figure 3.5. For
the quadcopter, the body-frame OBXB-axis is the axis that passes from the center of the
quadcopter OB to the first motor, while the body-frame OBYB-axis is the axis that passes
from the center of the quadcopter OB to the fourth motor.
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The rotation matrix for moving from the vehicle-2 R2 frame to the body frame RB is given
by

RBv2 (ϕ) =

 1 0 0
0 cosϕ −sinϕ
0 sinϕ cosϕ

 (3.4)

Consequently, the complete rotation matrix for moving from the inertial frame RE to the
body frame RB is given by

RBI (ϕ,θ,ψ) = RBυ2 (ϕ)R
υ2
υ1 (θ)R

υ1
I (ψ) (3.5)

Performing the multiplication, the complete rotation from the inertial frame RE to the body
frame RB is given by

RBI (ϕ,θ,ψ) =

 cosψ cosθ cosθ sinψ −sinθ
cosψ sinϕsinθ− cosϕsinψ cosϕcosψ+ sinϕsinθ sinψ sinϕsinθ
sinϕsinψ+ cosϕcosψ sinθ cosϕsinψ sinθ− cosψ sinϕ cosϕcosθ


(3.6)

The rotation matrix for moving the opposite direction from the body frame RB to the inertial
frame RE is given by

RIB (ϕ,θ,ψ) = Rυ1
I (−ψ)Rυ2

υ1 (−θ)RBυ2 (−ϕ) (3.7)

Performing the multiplication, the complete rotation from the body frame RB to the inertial
frame RE is given by

RIB (ϕ,θ,ψ) = R (x,ϕ)R (y,θ)R (z,ψ)

=

 cosψ cosθ cosψ sinθ sinϕ− sinψ cosϕ cosψ sinθ cosϕ+ sinψ sinϕ
sinψ cosθ sinψ sinθ sinϕ+ cosψ cosϕ sinψ sinθ cosϕ− sinϕcosψ
−sinθ cosθ sinϕ cosθ cosϕ


(3.8)

Note that all this is reverse the order of operations and reverse the direction of rotation.

Remark 3.1. The Euler angles φ, θ, and ψ are bounded as follows

−π2 ≤ ϕ≤
π
2

−π2 ≤ θ ≤
π
2

−π ≤ ψ ≤ π
(3.9)

�

Based on the previous description, the transformation between the Earth-fixed frame and the
Body-fixed frame can be explicitly expressed using the rotation matrix R. So, the velocity
vector V B =

[
u v w

]T
∈ R3 of the vehicle, expressed in a Body-fixed frame, can be

rotated into the Earth-fixed frame as follows

ξ̇ =

 ẋ
ẏ
ż

=
 cθcψ sϕsθcψ− cϕsψ cϕsθcψ+ sϕsψ

cθsψ sϕsθsψ+ cϕcψ cϕsθsψ− sϕcψ
−sθ sϕcθ cϕcθ


 u
v
w

 (3.10)

where ξ̇ =
[
ẋ ẏ ż

]T
∈R3 is the velocity vector of the quadrotor in the Earth fixed frame

RE , c∗ denotes cos∗ and s∗ denotes sin∗.
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3.2.1 Quadcopter model
A quadcopter is a helicopter that consists of a rigid cross-frame equipped with four rotors
M1, M2, M3, andM4 which rotate at angular speed ω1, ω2, ω3, and ω4 respectively as shown
in Fig. 3.6. Each rotor Mi (for i = 1, ..,4) generates thrust fi which is proportional to the
square of the angular speed ωi, means that Ti = kω2

i . The direction of rotation of the rotors
are fixed (i.e., ωi ≥ 0, i ∈ {1,2,3,4}), consequently Ti is always a positive quantity.

The main thrust u is the sum of all the thrusts which are generated by the rotors, that is

u=
4∑
i=1

Ti (3.11)

Figure 3.6: Quadcopter configuration with coordinate frames and forces

In order to avoid the yaw drift due to the reactive torques, the quadrotor aircraft is config-
ured such that the set of rotors M2,M4 (left-right) revolves at angular speeds ω1 and ω2 in
clockwise (CW) direction generating thrusts of T1 and T3, while the pair of rotors M1,M3
(front-rear) rotates at angular speeds ω2 and ω4 in counterclockwise (CCW) direction gen-
erating thrusts of T2 and T4.
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Figure 3.7:
Roll motion

Figure 3.8:
Pitch motion

The quadcopter is controlled by varying the angular speeds ωi, i = 1,2,3,4 of the four ro-
tors Mi, i = 1,2,3,4. The forward/backward, left/right, and the yaw motions are achieved
through a differential control strategy of the thrust generated by each rotor.

Figure 3.9:
Yaw motion

Figure 3.10:
Hovering motion

Forward pitch motion is obtained by increasing the speed of the rear motorM3 while reducing
the speed of the front morot M1 as in Figure 3.8. Contrary, backward pitch motion is
obtained by reducing the speed of the rear motor M3 while increasing the speed of the front
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motor M1. Similarly, the roll right motion is obtained by increasing the speed of the left
motor M2 while reducing the speed of the right motor M4 as in Figure 3.7. Contrary, the
roll left motion is obtained by reducing the speed of the left motor M2 while increasing the
speed of the right motor M4. Yaw motion is obtained by increasing the torque of the front
and rear motors (τ1 and τ3) while decreasing the torque of the lateral motors (τ2 and τ4) as
in Figure 3.9 or inverse. Such motions can be performed while maintaining the total thrust
constant.

The hovering motion is obtained by maintaining constant speed for all the motors such that
the total thrust is equal to mg as in Figure 3.10 while compensating disturbances.

The Z motion is obtained by maintaining the same speed for all the motors. The quadrotor
moves up if the total thrust is greater than mg as in Figure 3.11, and moves down if the
total thrust is less than weight mg.

Figure 3.11: Z motion

3.3 Helicopter kinematics
Let q be the coordinate vector of the quadcopter which is expressed by the following equation

q = (x,y,z,ϕ,θ,ψ) ∈R6 (3.12)
where ξ = (x,y,z) ∈R3 denotes the position vector of the center of mass of the quacopter
relative to a fixed inertial reference frame RE , while η = (ϕ,θ,ψ) ∈R3 is the vector of three
Euler’s angles which denotes the orientation of the quadcopter in RE . The coordinates of
the quadcopter is depicted in Fig. 3.5.

The linear velocities in the body frame are determined by VB, and the angular velocities by
Ω

VB =

 vx
vy
vz

 ; Ω =

 p
q
r

 (3.13)
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The relationship between the angular velocity vector in the body frame and the generalized
velocities η̇ [85] is depicted as

Ω =Wηη̇
η̇ =W−1

η Ω (3.14)

where

Wη =

 1 0 −sinθ
0 cosϕ cosθ sinϕ
0 −sinϕ cosθ cosϕ

 (3.15a)

W−1
η =

 1 sinϕtanθ cosϕtanθ
0 cosϕ −sinϕ
0 sinϕ/cosθ cosϕ/cosθ

 (3.15b)

Remark 3.2. The matrix Wη is invertible if

θ 6= (2k−1)π/2,k ∈ Z

�

The quadrotor is assumed to have symmetric structure with the four arms aligned with the
body x- and y-axes. Thus, the inertia matrix is diagonal matrix I in which

I =

 Ix 0 0
0 Iy 0
0 0 Iz

 (3.16)

where Ix, Iy, and Iz are the moments of inertia with respect to the axis x, y, and z respec-
tively.

3.4 Applied forces and moments on the quadcopter

3.4.1 Applied forces
The ground effects are neglected, then three main forces acting on the quadcopter are con-
sidered: gravity force, thrust forces, and hub forces.

• Gravity: Gravity is the force by which a planet or other body draws objects toward
its center and denoted as

G= −mg (3.17)
Gravity is along the axis ZE in the negative direction with g is the gravity acceleration.

• Thrust: Each rotor ri produces the thrust Ti which depends on its angular velocity
Ωi. The thrust force Ti is along the ZB axis in the positive direction. Thrust Ti is
depicted in Figure 3.12a. The equation for thrust is

Ti = CTρA(ΩiRr)
2 (3.18)

where CT is the aerodynamic coefficient, ρ = 1.293kg/m3 is the air density, A is the
effective propeller disk area, Rr is the propeller radius.
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• Hub forces: Each rotor ri also produces the hub force Hi which is also dependent
on its angular velocity Ωi. The hub force Hi is in the plane XBYB on the negative
direction of the horizontal velocity Vh (the projection of the forwarding velocity Vf in
the XBYB plane). Thus, the hub force can be decomposed into two components Hxi
along XB-axis and Hyi along YB-axis in the Body-fixed frame. The Hub force Hi and
its two components Hxi and Hyi are depicted in Figure 3.12a. The equation for hub
force is

Hi = CHρA(ΩiRr)
2 (3.19)

where CH is the aerodynamic coefficient.
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(a) Forces induced by rotor
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(b) Rotor gyroscopic effect
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(c) Blade flapping

Figure 3.12: Aerodynamic phenomena [32]

Thus, the total thrust force T , and hub forces Hxi, Hyi on x and y axes acted on the
quadcopter can be calculated as

T =
4∑
i=1

Ti (3.20)

Hx =
4∑
i=1

Hxi (3.21)

Hy =
4∑
i=1

Hyi (3.22)

Once the main forces have been reviewed, the net external force vector acting on the vehicle
is expressed in the Body-fixed frame as:

FB =

 Hx

Hy

T

+RBI

 0
0
G



=


−

4∑
i=1

Hxi

−
4∑
i=1

Hyi

4∑
i=1

Ti

+RBI

 0
0
−mg


(3.23)

where RBI is the rotation matrix from the Earth-fixed frame RE to the Body-fixed frame RB
as defined on 3.6.
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3.4.2 Applied moments
In this section, the main external moments that are expressed in the Body-fixed frame and
their directions will be presented.

• Rolling and Pitching moments: Roll momentsMφ around XB and pitch moment
Mθ around YB axes, are achieved by the difference in combined thrusts in the opposite
sides of the vehicle. These moments are really important because they contribute to
the control of the vehicle. The directions of these moments are decided according to
the right hand rule. The Roll momentsMϕ and pitch momentMθ can be defined as

Mϕ = L
4∑
i=1

sinαiTi

Mθ = −L
4∑
i=1

cosαiTi
(3.24)

where αi denotes the angle between the i-th arm and XB-axis.

• Yawing moment: Moment Qi around the shaft of the i-th rotor is generated by the
acting of the aerodynamic forces on the blade elements. Thus the yawing moment Qi
for each rotor is defined as:

Qi = CQρARr(ΩiRr)
2 (3.25)

where CQ is the aerodynamic coefficient.

The sum of these moments, considering all the rotors, induces the rotation of the
quadrotor about ZB axis. There are 4 rotors that are separated by different rota-
tional directions (clockwise and counterclockwise) inducing moments in the different
direction. Consequently, the total yawing moment is given by:

Q=
4∑
i=1

SpiQi (3.26)

where Spi = 1 if i-th rotor rotates in the clockwise direction and Spi =−1 if i-th rotor
rotates in the counter clockwise direction.

• Hub moment: As we have seen above, the hub force has two components Hx and
Hy along XB and YB axes respectively. These hub forces generate moments on the
vehicle around the ZB-axis. These two components contribute to the motion according
to their locations oi, i= 1, ...,2Nr, and can be defined as.

Hx = L
4∑
i=1

sinαiHxi

Hy = −L
4∑
i=1

cosαiHyi
(3.27)

Therefore, the resulting hub moment is the sum of the moment of the two component
Hx and Hy, given by the following equation

H = Hx+Hy
= L

4∑
i=1

sinαiHxi−L
4∑
i=1

cosαiHyi
(3.28)

where the moment Hx is generated by the force Hx and the moment Hy is generated
by the force Hy.
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• Gyroscopic moment: Rotations about two axes causes a third rotation about a third
axis, which is perpendicular to the plane formed by the two former axes (Figure 3.12b).
This effect is called the gyroscopic effect. Consequently, when the quadrotor rotates
along the XB axis, another moment along YB axis is generated on each spinning rotor.
When the quadrotor rotates along YB axis, each rotor also has a moment along XB

axis. The direction of moments follows right hand rule. Therefore, the total gyroscopic
components can be calculated as:

Gx = Jrq
4∑
i=1

SpiΩi

Gy = −Jrp
4∑
i=1

SpiΩi

(3.29)

where Jr is the moment of inertia of the rotor (consider the moments of inertia of all
the rotor are equal), Spi = 1 if i-th rotor rotates in the clockwise direction and Spi =−1
if i-th rotor rotates in the counter clockwise direction.

• Blade flapping moment: When the quadrotor is in the translational flight mode,
there exists a difference in lift between the blades that advance and the blades that
recede. This effect is called the blade flapping. The difference of the lifts generates
a moment to the rotor disk as shown in Figure 3.12c). The flapping moment Bi is
around an axis perpendicular to the plane formed by the rotor shaft and the forward
velocity of the multirotor and is given by the following equation:

Bi = CBρARr(ΩiRr)
2 (3.30)

where CB is the aerodynamic coefficient.

The flapping moment Bi of each i-th rotor can be separated into two components Bxi
and Byi with respect to the x and y axes. Therefore, the total blade flapping moment
of a quadrotor is:

Bx =
4∑
i=1

SpiBxi

By =
4∑
i=1

SpiByi
(3.31)

where Spi = 1 if the i-th rotor rotates in the clockwise direction and Spi = −1 if the
i-th rotor rotates in the counter clockwise direction.

Based on the moments affecting the quadcopter as previously seen in (3.24), (3.25), (3.28),
(3.29), (3.31), the total moment vector affecting the quadcopter is presented in the Body-
fixed frame as:

MB =

 Mϕ+Gx+Bx
Mθ+Gy+By

Q+H



=


l

4∑
i=1

sinαiTi+Jrq
4∑
i=1

SpiΩi+
4∑
i=1

SpiBxi

−l
4∑
i=1

cosαiTi−Jrp
4∑
i=1

SpiΩi+
4∑
i=1

SpiByi
4∑
i=1

SpiQi+ l
4∑
i=1

sinαiHxi− l
4∑
i=1

cosαiHyi


(3.32)
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3.5 Modeling with Euler-Lagrange Formalism

Define the Lagrangian L (q, q̇) as the sum of the translational and rotational energies minus
potential energy

L (q, q̇) = Ttrans+Trot−U (3.33)
where Ttrans, Trot, and U are the translational kinetic energy, rotational kinetic energy, and
potential energy respectively and expressed by the following equations

Ttrans =
m

2 ξ̇
T ξ̇ (3.34a)

Trot =
1
2ΩT IΩ (3.34b)

U =mgz (3.34c)

where z is the altitude, m is the mass, Ω =
[
p q r

]T
is the vector of angular velocity,

and I denotes the inertia matrix of the quadcopter, and g is the gravity acceleration.

Define the Jacobian matrix J (η)

J = J (η) =W T
η IWη (3.35)

J =

 Ix 0 −Ix sinθ
0 Iy cos2ϕ+ Iz sin2ϕ (Iy− Iz) sinϕcosϕcosθ

−Ix sinθ (Iy− Iz) sinϕcosϕcosθ Ix sin2 θ+ Iy sin2ϕcos2 θ+ Iz cos2ϕcos2 θ


(3.36)

From (3.34b), (3.14), and (3.35) one obtains

Trot =
1
2 η̇

TJη̇ (3.37)

The full dynamic model of quadcopter can be obtained by using Euler-Lagrange equations
with external forces as

d

dt

(
∂L

∂q̇

)
− ∂L
∂q

=

[
Fξ
τ

]
(3.38)

where Fξ =R (ϕ,θ,ψ) F̂ ∈R3 is the translational force acting on the quadcopter, and τ ∈R3

are the yaw, pitch and roll moments around axis z, y, and x, the R (ϕ,θ,ψ) ∈ SO (3) is the
rotational matrix in (3.8).

From (3.23), one can see that the force F̂ can be written as

F̂ =


−

4∑
i=1

Hxi

−
4∑
i=1

Hyi

4∑
i=1

Ti

+RBI

 0
0
G

 (3.39)
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Consequently, the translational and rotational Lagrangians are defined respectively as

Ltrans =
m

2 ξ̇
T ξ̇−mgz (3.40a)

Lrot =
1
2 η̇

TJη̇ (3.40b)

The derivative of the translational Lagrangian is

d

dt

(
∂Ltrans

∂ξ̇

)
− ∂Ltrans

∂ξ
= Fξ (3.41)

gives the following translational equation

mξ̈+mgEz = Fξ (3.42)

The derivative of the rotational Lagrangian is given by

d

dt

(
∂Lrot
∂η̇

)
− ∂Lrot

∂η
= τ (3.43)

∂Lrot
∂η̇

=
1
2
(
J +JT

)
η̇ = Jη̇ (3.44)

Jη̇+

(
J̇− 1

2
∂

∂η

(
η̇TJ

))
η̇ = τ (3.45)

C (η, η̇) = J̇− 1
2
∂

∂η

(
η̇TJ

)
(3.46)

where

τ =MB =


l

4∑
i=1

sinαiTi+Jrq
4∑
i=1

SpiΩi+
4∑
i=1

SpiBxi

−l
4∑
i=1

cosαiTi−Jrp
4∑
i=1

SpiΩi+
4∑
i=1

SpiByi
4∑
i=1

SpiQi+ l
4∑
i=1

sinαiHxi− l
4∑
i=1

cosαiHyi

 (3.47)

Jη̈+C (η, η̇) = τ (3.48)
with C (η, η̇) defined as follows

C (η, η̇) =

 c11 c12 c13
c21 c22 c23
c31 c32 c33

 (3.49)
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where

c11 = 0
c12 = (Iy− Iz)

(
θ̇ cosϕsinϕ+ ψ̇sin2ϕcosθ

)
+(Iz− Iy) ψ̇cos2ϕcosθ− Ixψ̇ cosθ

c13 = (Iz− Iy) ψ̇ cosϕsinϕcos2θ

c21 = (Iz− Iy)
(
θ̇ cosϕsinϕ+ ψ̇sin2ϕcosθ

)
+(Iy− Iz) ψ̇cos2ϕcosθ+ Ixψ̇ cosθ

c22 = (Iz− Iy) ϕ̇cosϕsinϕ
c23 = −Ixψ̇ sinθ cosθ+ Iyψ̇sin2ϕcosθ sinθ+ Izψ̇cos2ϕsinθ cosϕ
c31 = (Iy− Iz) ψ̇ cosϕsinϕcos2θ− Ixθ̇ cosθ
c32 = (Iz− Iy)

(
θ̇ cosϕsinϕsinθ+ ϕ̇sin2ϕcosθ

)
+(Iy− Iz) ϕ̇cos2ϕcosθ

+ Ixψ̇ cosθ sinθ− Iyψ̇sin2ϕcosθ sinθ− Izψ̇cos2ϕcosθ sinθ
c33 = (Iy− Iz) ϕ̇cosϕsinϕcos2θ− Iy θ̇sin2ϕcosθ sinθ− Iz θ̇cos2ϕcosθ sinθ

+ Ixθ̇ cosθ sinθ

(3.50)

3.5.1 Complete quadrotor simulation model
From equations (3.10), (3.42), (3.14), (3.48) the complete dynamic model of the quadrotor
can be written as follows:

 ẋ
ẏ
ż

=
 cθcψ sϕsθcψ− cϕsψ cϕsθcψ+ sϕsψ

cθsψ sϕsθsψ+ cϕcψ cϕsθsψ− sϕcψ
−sθ sϕcθ cϕcθ


 u
v
w

 (3.51a)

 ẍ
ÿ
z̈

= 1
m

 cθcψ sϕsθcψ− cϕsψ cϕsθcψ+ sϕsψ
cθsψ sϕsθsψ+ cϕcψ cϕsθsψ− sϕcψ
−sθ sϕcθ cϕcθ



−

4∑
i=1

Hxi

−
4∑
i=1

Hyi

4∑
i=1

Ti

+
 0

0
G

 (3.51b)

 ϕ̇
θ̇
ψ̇

=
 1 sϕ tanθ cϕ tanθ

0 cϕ −sϕ
0 sϕ secθ cϕ secθ


 p
q
r

 (3.51c)

 Ixṗ
Iy q̇
Iz ṙ

=
 (Iy− Iz)qr
(Iz− Ix)pr
(Ix− Iy)pq

+


l
4∑
i=1

sinαiTi+Jrq
4∑
i=1

SpiΩi+
4∑
i=1

SpiBxi

−l
4∑
i=1

cosαiTi−Jrp
4∑
i=1

SpiΩi+
4∑
i=1

SpiByi
4∑
i=1

SpiQi+ l
4∑
i=1

sinαiHxi− l
4∑
i=1

cosαiHyi

 (3.51d)

where sec∗ denotes 1
cos∗ .

3.5.2 Simplified quadrotor simulation model
The model of the quadcopter in this thesis assumes the following characteristics:
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Assumption 3.1. Assume that:

• The structure of the quadcopter and propellers are rigid and perfectly symmetrical.

• The Center of Gravity (CoG) of the quadcopter coincides with the origin of the body
fixed frame.

• The thrust and drag are supposed to be proportional to the square of propeller’s speed.

• The propellers are considered to be rigid and therefore blade flapping is negligible.

• The Earth is flat and non-rotating leads to the difference of gravity by altitude or the
spin of the earth is negligible.

• Surrounding fluid velocities (wind) are negligible.

• Ground effect is negligible.

• The quadrotor is hovering over a point or flying with moderate speeds (speeds do not
exceed 5m/s).

Under the above assumptions, we get

ϕ̇≈ p
θ̇ ≈ q
ψ̇ ≈ r

(3.52)

Therefore, the differential system equations describing the movement of quacopter without
disturbances is obtained from (3.51a - 3.51d) as follows:

ẍ=(cosϕsinθ cosψ+ sinϕsinψ) U1
m

(3.53a)

ÿ =(cosϕsinθ sinψ− sinϕcosψ) U1
m

(3.53b)

z̈ =(cosϕcosθ) U1
m
−g (3.53c)

ϕ̈=
Iy− Iz
Ix

θ̇ψ̇− Jr
Ix

Ωrθ̇+
1
Ix
U2 (3.53d)

θ̈ =
Iz− Ix
Iy

ϕ̇ψ̇+
Jr
Iy

Ωrϕ̇+
1
Iy
U3 (3.53e)

ψ̈ =
Ix− Iy
Iz

ϕ̇θ̇+
1
Iz
U4 (3.53f)

3.6 Disturbance and parameters variations and their
effect to quadcopters

Suppose that dx, dy, and dz are the three disturbance forces acting on the quadrotor in the
direction x, y, and z respectively. And there are also three disturbances moments dϕ, dθ,
and dψ acting on the quadcopter.
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The differential system equations describing the movement of quacopter with disturbances
can be rewritten from (3.53a - 3.53f) as follows:

ẍ=(cosϕsinθ cosψ+ sinϕsinψ) U1
m

+
dx
m

(3.54a)

ÿ =(cosϕsinθ sinψ− sinϕcosψ) U1
m

+
dy
m

(3.54b)

z̈ =(cosϕcosθ) U1
m
−g+ dz

m
(3.54c)

ϕ̈=
Iy− Iz
Ix

θ̇ψ̇− Jr
Ix

Ωrθ̇+
1
Ix
U2 +

dϕ
Ix

(3.54d)

θ̈ =
Iz− Ix
Iy

ϕ̇ψ̇+
Jr
Iy

Ωrϕ̇+
1
Iy
U3 +

dθ
Iy

(3.54e)

ψ̈ =
Ix− Iy
Iz

ϕ̇θ̇+
1
Iz
U4 +

dψ
Iz

(3.54f)

During operation, some dynamic parameters of quadcopter may change. For example, the
mass of quadcopter changes in agricultural applications when quadcopters are used for spray-
ing pesticides or for irrigation of crops. As the mass changes, the moments of inertia of the
quadcopter also change. Therefore, the control laws for the quadcopter need to take into
account the dynamics of the varying parameters for better stabilization. In the context of
this thesis, the robust Linear Parameter Varying (LPV) control laws and LPV Unknown
Input Observer (UIO) will be developed for controlling and stabilizing the quadcopter.

3.7 Conclusion
In this chapter, dynamic modeling of quadrotor has been described. First, six Degrees of
Freedom (DOF) rigid-body model was developed using Euler-Largrange formalism. Next,
the main acting forces and moments were included in the absence of wind. Finally, some
simplifications have been considered in order to elaborate relatively simple control laws for
a purpose of implementation by adopting the hierarchical control architecture.
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4 Robust Path Planning

This chapter is devoted to the Coverage Path Planning (CPP) problem for quadrotor
applications in Precision Agriculture (PA). First, the basic concepts of CPP for UAV
will be covered in section 4.1. Then, section 4.2 will outline the CPP problems that
will be studied in the content of this thesis. There are two CPP problems in this
thesis: (i) CPP for detecting the infected areas of an agricultural area, and (ii) CPP
for pesticide spraying the whole infected areas that have been detected in the first CPP
problem. The next two sections, 4.3 and 4.4, will study in detail the two problems of
CPP prementioned above. The final section, 4.5, will be devoted to conclusions and
some comments on the obtained simulation results.
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4.1 Preliminary concepts

4.1.1 Path generation
The path-planning problem has been intensively studied for decades in robotics. In the be-
ginning, path planners solved the problem by a deterministic search of a discrete workspace.
Then, for applying the differential constraints to the path-planning problems, the randomiza-
tion techniques were studied to sample the configuration space. There are a lot of research
literature on path-planning methods. One of the most significant works is the textbook
of LaValle [121]. In the comprehensive surveys [130] and [84], the authors compare some
algorithms on a rigorous basis such as degree of soundness, completeness, optimality, and
precision.

In this subsection, only basic information of well-known basic path-planning strategies such
as Graph-based and Deterministic graph search methods with some illustrations are quickly
reviewed.

4.1.1.1 Graph-based methods

4.1.1.2 Dijkstra Algorithm

Dijkstra’s algorithm is an algorithm which is proposed by computer scientist Edsger W.
Dijkstra in [55]. This algorithm finds the shortest paths between nodes in a graph, which
may represent, for example, road networks. Its main feature is that the starting point is
as the center to be extended to the end point. Each edge of the graph is formed to an
ordered element pair by the two vertices. Each edge has its own value which is described by
a weight function. Dijkstra’s algorithm is working in two vertex sets named A and B. At the
beginning, the set A is set to empty. When a vertex in B is moved to A, the selected vertex
ensures the sum of all the edge weight from the starting point to the point is minimized.
The efficiency of this algorithm is not high because it has to traverse numbers of nodes.

4.1.1.3 A* Algorithm

A* algorithm [172] was first proposed in 1968. The A* algorithm is developed on the basis
of the Dijkstra algorithm. A* algorithm starts from a specific node then it updates the
weighted value of the current child nodes. The child node with the smallest weighted value
is used to update the current node until all nodes are traversed. The main feature of A*
algorithm is that it establishes the evaluation function f (n) = g (n)+h (n), where g (n) is
the actual cost from the initial node to the node n, and h (n) is the estimated cost of the
optimal path from node n to the target node in the state space.

In most cases, the value of h (n) is the Euclidean distance between the two nodes. For the
case that g (n) is constant, f (n) is only affected by the value of the function h (n). When
the node is close to the target node, the value of function h (n) is small leads to the value
of f (n) is also small. Consequently, the search for the shortest path always proceeds in the
direction of the target point. The A* algorithm is more efficient than the Dijkstra algorithm
as it performs informed rather than uninformed search. In addition, A* considers additional
information about the minimal distance to the target (the distance function), consequently
the A* algorithm expands more promising vertices than Dijkstra.
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4.1.1.4 D* Algorithm

The A* algorithm is mainly applied for global search in the static environment which means
that the environment does not encompass any moving obstacles. However, in practical
applications, the working environment for robots always contains dynamic obstacles. To
overcome this inconvenient, the D* algorithm [210] was introduced in 1994. The D* algo-
rithm is mainly used for robots to explore the path. This algorithm considers the working
space as a series of states which represents the direction of the robot’s position. Another
researches on D* algorithm can be found in [74][108][115].

4.1.2 Deterministic graph search

4.1.2.1 PRM (Probabilistic RoadMap)

PRM planner is a very well-known sampling-based path planning strategies. In [112], an
undirected graph Gp (called roadmap) is constructed by randomly sampling the space. For
each vertex in Gp, connections to some k nearest neighboring vertices are considered. If
the link between two vertices is in Dfree (the space is not occupied or obstacle-free), the
corresponding edge is added to the roadmap. As more vertices and more edges are added,
the roadmap data structure approximates the work-space more accurately. Both initial and
goal configurations are connected to the roadmap. In [111], authors discussed the theoretical
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Figure 4.1: Path planning by PRM

properties of the PRM algorithm. This algorithm tries to connect two nodes pini and pgoal
using a graph-search method like Dijkstra’s algorithm. If there exist difficulties during the
query phase, the PRM can turn back to the construction phase to adapt the size of the
roadmap. A graphical representation of a roadmap is shown in Figure 4.1.

If the environment is static, the same roadmap can be reused for further or for multiple
queries at the same time. This feature gives PRM the ability to be suitable for trajectory
planning of multi-agent systems. However, the convergence rate is slow, and the produced
paths are not optimal because the produced paths are generated based on the random points,
consequently, the produced paths are only optimal with respect to the points that have been
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generated. Furthermore, PRM has particular difficulty with solutions that pass through
narrow passages where the performance of PRM planners can degrade as it may be less
suitable for problems with significant dynamic constraints.

To overcome the shortcomings of PRM, several extension have been studied such as Lazy
PRM in [27] or Medial Axis Probabilistic Roadmap planner (MAPRM) [97][157][237]. A
version of PRM for dynamic environments is proposed in [33]. Some other PRM-based
planners are in [208][162].

4.1.2.2 Rapidly-exploring Random Tree (RRT)

Beside PRM, another really good sampling-based planner is RRT. RRT planner can quickly
find a feasible path from pini to pgoal. The first publication on RRT is described in [123],
and followed by a more detailed report [122]. In these two papers, the vehicle is considered
holonomic, neither dynamics nor kinematic constraints are considered. In [63], the author
extended the RRT to dynamic systems. Then in [65], the same author gives more extensive
description to the RRT planner and a tree T is created in Dfree. In this paper, the author
also proposed that collision-free configurations that can be reached are represented by the
nodes and feasible collision-free paths between nodes are represented by edges. The root
node of the tree is the initial configuration pini. The tree is growing and exploring Dfree

until a path is found, means that there exists a path between pini and pgoal as in Figure 4.2.
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Figure 4.2: Path planning by RRT

4.1.2.3 RRT-connect

RRT-connect is a variant of RRT. It is designed specifically for path planning problems
that involve no differential constraints. The RRT-Connect planner is based on two ideas: (i)
the Connect heuristic that attempts to move over a longer distance, and (ii) the growth of
RRTs from both pini and pgoal. With these extensions, the search tree converges rapidly to
a solution. Nevertheless, this variant of RRT also has a limitation with narrow passages and
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high constrained workspaces [103]. Another approach [124] proposed a Selective Retraction-
based RRT Planner (SR-RRT) that efficiently handles a wide variety of environments that
have different characteristics.

4.2 Coverage path planing problems formulation
Suppose we have a rectangular agricultural area as shown in Figure 4.3. Note that this is
not the restriction because if the agricultural area is not rectangular (polygon ABCDEFG
in Figure 4.4), we can add some no-fly-zone to the original agricultural area to get the new
rectangular agricultural area (polygon MNPQ). The simplest way to get a rectangular
agricultural area is to get the smallest rectangle containing the entire original agricultural
area as in Figure 4.4.
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Figure 4.3: Coverage path planing problem formulation

The agricultural area (Figure 4.3) contains

• Obstacles, which are the yellow polygons. These obstacles can be convex or concave
polygons, and they are the non-fly-zone,

• The white areas are areas where the plants are free of pests,
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• The red dots are areas where crops are infected,

• The coordinates of the obstacles are assumed known prior, while the coordinates of
the infected crops (red dots) are not known in prior.
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Figure 4.4: Coverage path planing problem formulation

Augmentation of obstacle sizes

In the process of performing its tasks, the UAV has to avoid the obstacles. Therefore, the
distance from the center of the UAV to any point in the obstacles should be greater or equal
to the radius r of the smallest circle which covers the UAV (Figure 4.5a). For simplicity,
consider the UAV as a point, it is necessary to augment the size of the obstacles by a radius
depending on the size of the UAV. At each border point of the obstacle, the operator draws
a circle with radius r and creates the new obstacle inside the red curve (in Figure 4.5a).
However, the augmented obstacle now is no longer a polygon.

r

(a) Augmented obstacle by using circle

 Augmented area 

 UAV boundary 

 Obstacle 

(b) Augmented obstacle by using
Minkowski sum

Figure 4.5: Augmentation of the size of obstacles
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In this study, we use another solution to augment the size of obstacle such that the augmented
obstacle is a polygon. Suppose that the shape of UAV is a square that its edge is greater
than diameter of the UAV (Figure 4.5b). Let us denote the set of vertices of this square by
A, and the set of vertices of the obstacles by B. The augmented obstacle is generated is the
Minkowski sum [21] of A and B.

augmented_obstacle= A⊕B = {x+ y|x ∈ A,y ∈B}

It is easy to prove that in the worst case scenario, when the center of the UAV is on the
edge of augmented obstacle, the distance from the center of the UAV to the real obstacle
(green polygon in Fig 4.5b) is always greater than the radius of the UAV and the UAV will
not collide with the obstacle.

Tasks to be solved

Our main tasks are:

1. Infected areas detection: We have to detect the coordinates of all the infected areas
of crops by using UAV which is equipped with a special camera. It means that the
coordinates of all the red dots in Figure 4.3 should be determined. Several requirements
are needed to be satisfied while performing the infected areas detection task

• UAV has to avoid the obstacles.

• Maximize the infected areas that can be detected.

• Minimize the path length for the UAV.

2. Pesticide spraying: With the information about the coordinates of all the infected
areas (coordinates of all the red dots in Figure 4.3), we have to spray the pesticide to
all the infected areas of crops by using UAV which is equipped with pesticide tank.
Several requirements are needed to be satisfied while performing the infected areas
detection task

• UAV has to avoid the obstacles.

• Pesticide should be sprayed to all the infected areas that have been detected from
the Infected areas detection task

• Minimize the path length for the UAV

4.3 Infected areas detection

4.3.1 Problem formulation
As we have discussed in Section 4.2, the main task of this section is to determine the
coordinates of all the infected areas. To do this, the entire agricultural area must be taken by
specialized cameras. The gathered images will be analyzed using specialized image processing
algorithms. From there, the positions of an infected crop can be identified. Thus, the problem
of detecting all the crops affected by pests will be converted into the problem CPP of all the
agricultural areas.



4.3. Infected areas detection 63

Herein, we present a new approach for maximizing the coverage path planning while mini-
mizing the path length of an aerial robot in agriculture environment with concave obstacles.
For resolving this problem, we propose a new Cellular Decomposition (CD) which is based
on a generalization of the Boustrophedon variant, using Morse functions, with an extension
of the representation of the critical points. This extension leads to a decrease of the number
of cells after decomposition. The results show that this new CD works well even with sev-
eral concave obstacles inside the environment. Furthermore, for path planning, the cells are
divided again into two classes, leading to have a cell set better suited for use of the TSP to
get complete coverage. Genetic Algorithm (GA) and Travelling Salesman Problem (TSP)
algorithms are applied to obtain the shortest path. Then, an approach is also proposed to
maximize the scanned area on the working area with obstacles.

UAV platform

This section considers a quad-rotor equipped with a special spectral camera mounted on a
gimbal stabilizer, which compensates for small rotation displacements that may be experi-
enced by the UAV during navigation. The objective of the mission is to capture images of
the whole area of plants by a dedicated spectral camera. Based on spectrum study of images
that have been taken, one can have the information about the health and pest of the plant.

We assume that images are taken by special spectral camera which has the following param-
eters:

• Image frame is rectangle with the length and width are respectively L andH as depicted
in Figure 4.6).

• Images have to be taken such that they have the same direction and the overlap regions
on the horizontal and vertical sides as dL and dH (in Figure 4.7)
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Figure 4.6: UAV with frame picture
capture
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Figure 4.7: Picture frames
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Figure 4.8: Proposed algorithm

4.3.2 Proposed algorithm for infected areas detection
The contribution of this section focuses on maximizing the coverage path planning and min-
imizing the path length of an aerial robot in agriculture environment with concave obstacles.
The algorithm is depicted in Figure 4.8. It is a combination of distance minimization and
profit maximization. For accomplishing this problem, one has to resolve three main tasks.

The first task is dedicated for CD (Figure 4.8). A new CD is based on a generalization
of the Boustrophedon variant [45], using Morse functions [225], with an extension of the
representation of the critical points. The feature of this extension is that the number of cells
after decomposition is decreased compared to the decomposition methods in [45], [225]. With
this new proposed approach, the environment can be divided into a number of separating
obstacles and obstacle-free regions. In each obstacle-free region which can be called obstacle-
free cell, the aerial robot can make back and forth motion to cover the whole working area.

Based on the cells that have been decomposed by CD, the second task is aiming to generate
way-points in each cell (WG in Figure 4.8) and maximize the percentage of coverage (OSA
in Figure 4.8). The trade-off condition between percentage of coverage and number of way-
points is the condition for ending the algorithm.

Finally, in the third task, once the cells have been created by CD, the way-points have been
created by WG and OSA, the cells are divided again into two classes, leading to have a
cell set better suited for using the TSP algorithm to get complete coverage. GA and TSP
algorithms with some modifications are applied to obtain the shortest path for the UAV to
make complete coverage.
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4.3.2.1 Cellular Decomposition (CD)

Several CD methods have been studied as trapezoidal decomposition technique [120], bous-
trophedon decomposition [45], and Morse-based CD [225].

In the trapezoidal decomposition technique [120], the free spaces are divided into trapezoidal
cells. There are two parallel sides on each cell, and each cell can be covered by simple back
and forth motion parallel to either side. Therefore, the whole working area can be totally
scanned by visiting each cell in the adjacency graph. A vertical line is swept from left to right
through the working area of the robot. Each time the line encounters a vertex of a polygon,
one can say that an event occurs. Three types of events are defined: IN, OUT, and MIDDLE.
In an IN event, the current cell is closed and two new cells are opened. When an OUT event
occurs, the current two cells are closed and a new cell is created. Finally, MIDDLE event
is the event that a current cell is closed and a new single cell is initiated. Consequently, by
using these three events, the environment can be totally divided into separated trapezoidal
cells.

A drawback of the trapezoidal decomposition is that it generates many cells that, intu-
itively, can be merged together to form bigger cells. This is clearly an inconvenient, as
the more cells are present, the longer the final coverage path is. This happens because the
trapezoidal decomposition creates only convex cells. However, non-convex cells can also be
completely covered by simple motions. To overcome this limitation, the boustrophedon CD
was proposed. The boustrophedon decomposition is similar to the trapezoidal decomposition
introduced above, but it only considers vertices where a vertical segment can be extended
both above and below the vertex. The vertices where this occurs are called critical points.

The boustrophedon decomposition [45] addresses the issue of redundant movements by merg-
ing together cells between successive IN and OUT movements. The major difference is in
the case of a MIDDLE event, where no new cell is formed, but the current cell is updated
in width. So cells are only created on change of connectivity, as a result the number of cells
are less than in the case of trapezoidal decomposition. The point which changes the connec-
tivity of the cell is termed as a critical point. In the implementation of this algorithm, the
MIDDLE event is replaced by two new events called – FLOOR and CEILING. The FLOOR
event corresponds to vertices on top of obstacles, while CEILING event corresponds to ver-
tices that are at the bottom of obstacles. Both an IN event as well as an OUT event are
associated with FLOOR and CEILING pointers. So for a given cell, CEILING and FLOOR
pointers points to the top and bottom of a cell.

In [225], Acar et al generalized the boustrophedon decomposition by proposing a CD ap-
proach based on critical points of Morse functions. In this paper, the authors show that the
boustrophedon decomposition is a particular case of Morse decomposition. With respect to
the original boustrophedon decomposition, the Morse-based decomposition has the advan-
tage of handling also non-polygonal obstacles. By choosing different Morse functions, differ-
ent cell shapes are obtained, e.g. circular or spiked cells. Theoretically, Morse-decomposition
can be applied to any n-dimensional space. Moreover, they presented a method to perform
coverage of planar spaces by detecting the critical points using sensory range information,
and a motion-template-based algorithm that ensures to encounter all the critical points in
the target area. Therefore, this method allows complete coverage on line.
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A new approach for CD will be proposed here. Based on the Morse method, critical points
can be determined. However, Morse method does not categorize the type of critical points.
In this approach critical points are categorized into four groups as follows (Figure 4.9b):

• Critical point IN type 1 (red circle): the connectivity of a slice is increased by one and
the obstacle is on the right.

• Critical point IN type 2 (blue circle): the connectivity of a slice is increased by one
and the obstacle is on the left.

• Critical point OUT type 1 (red square): the connectivity of a slice is decreased by one
and the obstacle is on the left.

• Critical point OUT type 2 (blue square): connectivity of a slice is decreased by one
and the obstacle is on the right.
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Figure 4.9: Cellular Decomposition (CD) methods

The algorithm for decomposing the cluttered environment to cells is shown as follows:

• Step 1: Use a vertical line and sweep it from the left to the right of the environment,
and find all the critical points.

• Step 2:

– At each critical point IN type 1, draw a horizontal line to the left till when that
line touches the obstacle or the border of the area.

– At each critical point OUT type 1, draw a horizontal line to the right till that
line touches the obstacle or the border of the area.

The results of the original boustrophedon method and the CD of this approach are shown
in Figure 4.9b and 4.9a.

Remark 4.1. In Figure 4.9b and 4.9a, the vertical line sweep from the left to the right. In
principle, however, the vertical line can be swept from the right to the left, from the bottom
to the top, from the top to the bottom, or in any direction. �

Simulation results analysis

This approach has been run and verified in Matlab. From Figure 4.9b and 4.9a, one can
see that with our approach, the area has been splitted into two cells compared with four
cells of the Boustrophedon decomposition method. Area with complicated forms (convex,
non-convex, polygon, and arbitrary shape) (Figure 4.10) of obstacles has been divided to
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Figure 4.10: Agricultural area with convex and concave obstacles

Figure 4.11: Critical points

only 6 cells (Figure 4.17) by using the new proposed approach, compared with more than
20 cells if using Boustrophedon method. In Figure 4.11 shows the critical points.
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Remark 4.2. In this simulation, the vertical line is swept from the top to the bottom to get
fewer cell compared to the case that the vertical line is swept from the left to the right. �

1

2 3 4

5

6

Figure 4.12: Cells after decomposition

4.3.2.2 Way-points generation (WG)

As described in section 4.3.1, picture frames which are taken by the camera mounted on the
aerial robot are rectangular. Consequently, for gathering the whole area of the environment,
frames need to be arranged as in Figure 4.7. Centers of these rectangles are the positions of
the UAV, in which the pictures will be taken. We can see that the set of all these points is
the set of way-points that the UAV has to visit.

Remark 4.3. In rectangular picture frames, as shown in Figure 4.13, there are several
rectangles that have a center (red star in Figure 4.14) belonging to the obstacles. These are
the locations that UAV can not reach since they are located in the no-fly-zone regions. �

Remark 4.4. In many cases, the center of the rectangular frames on the right most and
bottom may not be within the area of the agricultural area we are working with. Therefore,
the algorithm needs to recalculate the positions of the rectangles so that they are within the
agricultural land under consideration. �

Way-points are generated as follows:

• The first rectangle on the top left corner has the center with coordinate (Xs,Ys).

• Fill the whole working area with rectangles (Figure 4.13) from the left to the right and
from the top to bottom such that two neighbor rectangles on horizontal direction have
an overlapped rectangle area with dimension dH × L, and two neighbor rectangles on
vertical direction have an overlapped rectangle area with dimension H × dL (Figure
4.7).
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Figure 4.13: Picture frames

Figure 4.14: Rectangles with centers in obstacles

• Find coordinates of the set X that consists of all the centers of rectangles which are
not located in the obstacle (Figure 4.15).
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• From the coordinates of the picture frames in each cell, we have to generate the bous-
trophedon path as in Figure 4.16. In Figure 4.17 shows the boustrophedon trajectory
in each cell and the picture frame in cell number 4.

Figure 4.15: Picture frames that centers are not in obstacles
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Figure 4.16: Boustrophedon path in each cell
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Figure 4.17: Cellular decomposition to cells

4.3.2.3 Optimization of the percentage of coverage (OSA)

Optimization process is processed as follows:

• Calculate the non-obstacle area of all rectangles that have been created with center in
X.

• Find the percentage of coverage and number of images needed for the coverage.

• By varying the coordinate of the first image, means that by varying (Xs,Ys) such
that (Xs,Ys) ∈

[
1...H2 ;1...L2

]
, one can have the maximal coverage percent or minimal

number or images needed to be taken.

Simulation results analysis

Simulations in this section have the following parameters:

• Image dimension : 1200×700

• Picture frame dimension

– H = 40; dH = 2

– L= 80; dL= 2

• trade-off function: coverage_percentage× (1−α) −no_way_point×α where α= 0.2
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Table 4.1: Some results for simulations in Matlab

Xs Ys Number of way-points % coverage Trade-off function
20 40 230 95.0196 30.0085
20 38 229 94.6407 29.8860
19 39 228 94.3653 29.8922
1 1 275 96.3794 22.1035
2 10 266 96.4520 23.9616
3 13 266 96.3549 23.8839

Simulations in this section have the following parameters:

• Image dimension : 1200×700

• Picture frame dimension

– H = 20; dH = 2

– L= 40; dL= 2

• trade-off function: coverage_percentage× (1−α) −no_way_point×α where α= 0.2

Table 4.2: Some results for simulations in Matlab

Xs Ys Number of way-points % coverage Trade-off function
1 1 1044 97.5 -130.8
1 7 1048 97.8 -131.4
2 5 1030 97.9 -127.7
10 20 1026 97.5 -127.2
10 14 1031 97.9 -127.9
9 14 1029 97.8 -127.6

The simulation results given in table 4.1 show that, in the case when the dimension of images
is large (H = 40,dH = 2;L= 80,dL= 2) the number of way-points affects the percentage of
coverage. However, with the same trade-off function, when the dimension of images is small
(H = 20,dH = 2;L= 40,dL= 2), the percentage of coverage seems not to be affected by the
number of way-points.

4.3.2.4 Optimized path planning generation

Theoretically, it is possible to find the shortest traveling distance for all the way-points
generated in the previous section. To do that, firstly, the distance between each two points
needs to be calculated and the path between this two points has to avoid the obstacles.
Several methods can perform that such as PRM or RRT[5]. For instance, if there are n way-
points, the number of paths to be found is n(n−1)

2 . After that we can use TSP for finding
the shortest path between n way-points. However, the calculation time can be important.

For avoiding this disadvantage, this section provides another approach. Instead of applying
TSP for all the way-points, first we will split the whole area to non-obstacle separated cell
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and each cell can be covered by simple back and forth motion (as has been proposed at the
beginning of this section) by the UAV. Then, the TSP is applied only for finding the shortest
path length for moving between cells.

In [45], the authors used the adjacency graph for finding the sequence of cells to be visited
to cover the area. But this approach does not guarantee the order of visited cell gives the
shortest path for changing between cells. In this section, we introduce a method for finding
the cells’ sequence with the shortest path length for changing cells.
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Figure 4.18: In/Out points in each cell

As seen in the previous section, the working area was splitted into obstacle-free cells, and
the UAV can make the back and forth motion to cover cells. Consequently, for each cell,
there will be two points: initial and final for the UAV coverage (Figure 4.18). For example,
for cellk, these two points are ka and kb. UAV can start covering the kth cell from point ka
to kb or inverse from kb to ka.

Here each cell will form two nodes of the TSP such as two nodes cell1a and cell1b for cell1.
Consequently, if the UAV is in node cell1a , it has to go through node cell1b and inverse. To
do this, an additional constraint has to be added to the constraints of TSP for each cell:

xcellka_cellkb+xcellkb_cellka = 1 k = 1,2, ...,2n (4.1)

The UAV starts at initial position (START), scan the whole area and go back to the final
position (STOP) for charging the battery as shown in Figure 4.19.

To ensure that there will always exist a solution for this optimization problem, the initial
population for GA has the form as shown in Figure 4.21. The flip, slide and swap operations
are always operated on each pair of nodes x_a and x_b where x ∈ [1,n]. In each iteration,
the random swap position of cell x_a and x_b is also processed.

The flip, slide and swap operations are described in Figures 4.20b, 4.20c, 4.20a i,j such as
i < j.

The advantages of using proposed flip, slide, swap operations as depicted above will make
the search for optimal path faster because this search is performed only on the set of paths
that satisfy the given request. Furthermore, the solution is always found even though the
number of cells is huge.

If proposed flip, slide, swap operations are not applied, the optimal path can only be found
when the number_of_cell≤ 16, and the simulation time is always greater than 2000 seconds.
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Figure 4.19: Travelling Salesman problems with additional constraints for this problem

Simulation results as showns in table 4.3 were performed on a Dell insprion 7559 with Core
i7, 8Gb, Windows10, Matlab 2016b configurations specified in the table. The parameters for
GA are: population_size= 1000; number_of_iteration= 1e4; number_of_cell = 100;

Table 4.3: Time of simulation

Simu. With proposed operations Without proposed operations
1 732.8133 sec, solution found > 3000 sec, no solution
2 743.4828 sec, solution found > 3000 sec, no solution
3 742.2244 sec, solution found > 3000 sec, no solution
4 742.6994 sec, solution found > 3000 sec, no solution

START STOP1a 1b bnan
Cell 1 Cell n

Figure 4.21: Genetic algorithm using in this approach

The algorithm is shown on Algorithm 1.
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Figure 4.20: Swap, flip, and slide operations for GA
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Figure 4.22: Cellular Decomposition (CD) in the proposed approach
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Algorithm 1: Genetic Algorithm and Travelling salesman problem approach
input : instance Π,

population size: 4×α,
number of iterations: δ

output: Solution X
Generate 4×α feasible solutions randomly with the form as in Figure 4.21;
Save them in the population Pop;
globalMin=∞;
for i← 1 to δ do

// Update the best solution
Select the best solution minDist in Pop;
if minDist < globalMin then

globalMin=minDist;
// Mutation
for j← 1 to α do

// Mutate the best to get three new routes
Find the best solution bs on 4 solutions X4×j; X4×j−1; X4×j−2; X4×j−3 of Pop;
bs1 is generated by flip bs from random elements I (nodeIaandnodeIb) to
J (nodeJaandnodeJb);
bs2 is generated by swap random element I and J in bs ;
bs3 is generate by slide bs from random element I to J ;
Two gens in elements I (I ∈ [1, ..,n]) of bs1, bs2, and bs3 can be randomly
swapped;
Generate matrix Tj from 4 columns matrix bs, bs1, bs2, and bs3;

// Updating
Update Pop= T1 +T2 + ...+Tα;

return the best solution X in Pop;
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Figure 4.23: Genetic algorithm using in the proposed approach
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4.4 Pesticide spraying
The contribution of this subsection focuses on generating the best path for an UAV to
distribute medicine to all the infected areas of an agriculture environment which contains
non-convex obstacles, pest-free areas and pests-ridden areas. The algorithm for generating
this trajectory can save the working time and the amount of medicine to be distributed to
the whole agriculture infected areas.

From the information on the map regarding the coordinates of the obstacles, non-infected
areas, and infected areas, the infected areas are divided into several non-overlapping regions
by using a clustering technique. There is a trade-off between the number of classes generated
and the area of all the pests-ridden areas. After that, a polygon will be found to cover each
of these infected regions. However, obstacles may occupy part of the area of these polygons
that have been created previously. Each polygon that is occupied in part by obstacles
can be further divided into a minimum number of obstacle-free convex polygons. Then, a
Boustrophedon path of optimal length will be created for each convex polygon that has been
created for the UAV to follow. Finally, this subsection deals with the process of creating a
minimal path for the UAV to move between all the constructed convex polygons and generate
the final trajectory for the UAV which ensures that all the infected agriculture areas will be
covered by the medicine.

The algorithm of the proposed method has been tested on MATLAB and can be used in
precision agriculture.

4.4.1 Problem statement and decomposition
To fix ideas, suppose that the agricultural area of interest is as depicted in Figure 4.24. In
this figure, there are obstacles (the yellow areas), uninfected plants (the white areas), and
infected plants (the dotted red area). One can see that the infected area are close to some
obstacles and an UAV which wants to move from one area to another will meet an obstacle
on its path. To tackle the stated problem, we propose the algorithm illustrated in Figure
4.25. In view of this algorithm, the problem could be subdivided into four main tasks.

• The first task is MAP DIVISION (MD). From the information of the map about the
coordinates of obstacles and infected areas, we divide the infected areas into several
non-overlapping regions (clusters) using a clustering technique [93]. Intuitively, the
smallest shape covering each cluster is formed by the boundary of the cluster. Never-
theless, this shape does not necessarily minimize the trajectory of the UAVs. Hence
we propose another approach for this cluster-covering step. In particular, we char-
acterize the minimal convex polygon covering each cluster. Note that to ultimately
determine the trajectory of the UAVs, we need to divide each covering polygon into
convex regions. For this reason, the number of convex regions produced by the former
approach might be larger than that of the later. In fact, which method is more efficient
(i.e. producing fewer number of convex regions, smaller coverage region and shorter
trajectory of the UAVs) is not known a prior; this is problem-specific. We provide an
algorithm for the comparison in the simulation. However, the covering polygon of each
cluster might be occupied by obstacles, which we eliminate using available coordinates
data. Then, we divide each obstacles-free covering polygon into a minimum number
of convex polygons.
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Figure 4.24: Problem definition

• The second task is WAY-POINTS INFECTED AREA (WIA). We create the way-
points for each obstacle-free convex polygon (generated from the MD task) such that
when the UAV follows these points, the whole area of the obstacle-free convex polygon
will be covered.

• The third task is TRAJECTORY GENERATION (TG). This task aims at creating a
boustrophedon trajectory for each convex polygon that has been created in MD. After
that, by applying the TSP method, we can find the shortest path for the aerial robot
to cover the whole polygon.

• The fourth task consists in finding the best path for the UAV to change between
infected regions without colliding with obstacles.

4.4.1.1 UAV platform

This study deals with the spraying pesticide to plant by using UAV. Consequently, the UAV
should be equipped with a mechanism that can spray the crop. We also assume that the
distance from the UAV to the crop is h (m) and a radial area of radius R (Figure 4.26) of
the crop below the UAV will be covered by the pesticide.
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Figure 4.26: UAV with frame picture capture

4.4.2 Map division (MD)
The purpose of this section is to generate convex polygons which cover all the pest-ridden
areas in the agriculture area with non-convex obstacles (Figure 4.24).

4.4.2.1 Classification of infected areas

The question now is that from the data of the coordinates of the pests, we need to group
them into smaller non-intersecting areas. This task can be completed using clustering algo-
rithms[93] [226]. Cluster analysis or clustering is a Machine Learning technique whose task
is grouping a set of objects in such a way that objects in the same group (called a cluster)
are more similar (in some sense) to each other than to those in other groups (clusters).
Each data point of a given set of data points can be classified into a specific cluster. Data
points in the same cluster should have analogous features or properties, while data points
in different clusters should have highly dissimilar features or properties. This technique is
widely applied in exploratory data mining, pattern recognition, image analysis, information
retrieval, bioinformatics, data compression, and computer graphics.

In this study, we adopt the K-means algorithm [102], the output of which is illustrated In
Figure 4.27 where distinct clusters are represented by different colors.
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Figure 4.27: Division infected areas to several smaller regions

4.4.2.2 Calculation of polygons for covering all the infected areas

The aim of this task is to generate a polygon that contains all the infected points of each
generated cluster. We propose two approaches: (i) find the minimal convex polygon which
covers all the infected points in each cluster, and (ii) find the boundary polygon which covers
all the infected points in each cluster. As mentioned earlier, an algorithm to compare the
efficiency of the two methods will be presented in Section 4.4.3.4.

4.4.2.3 Minimal Convex Partitions

As shown in Figure 4.28, the polygon covering all infected points may occupy part of the
obstacle. Therefore, a new obstacle-free polygon needs to be generated as shown in Figure
4.29.
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(a) Infected points covered by miminal convex
polygon method

(b) Infected points covered by boundary polygon
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Figure 4.28: Infected points covered by poygonal decompositions
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Figure 4.29: Minimal convex polygon decomposition

A convex partition by segments of a polygon is a decomposition into convex polygons ob-
tained by introducing arbitrary segments [89][75][7][6]. By applying Greene’s dynamic pro-
gramming algorithm [89], the non-convex polygon can be divided into a minimum number
of convex polygons (Figure 4.29).

The algorithm that describes the process of dividing an infected area into obstacle-free convex
polygons is shown in Figure 4.30.

4.4.3 Trajectory generation (TG)
The task of this section is to create a trajectory for the UAV to cover the entire infected area
in a convex polygon. There exists two common trajectories for covering a convex polygon,
the first is the Boustrophedon trajectory, and the second is spiral. In this thesis, we use the
boustrophedon.
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Figure 4.31: Trapezoid

Figure 4.32: Way-points of trapezoid

4.4.3.1 Waypoints generation for convex polygon

Consider the convex polygon ABCDEFG with two parallel sides AB and DE separated
by a distance of 2R as shown (in Figure 4.31). Draw a parallel line at distance R to the
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edge AB. This line intersects the sides of the convex polygon ABCDEFG at M and N .
Form the rectangle X1X2X3X4 with two edges X1X2 and X3X4 parallel to edge AB and
X1X2 = X3X4 =MN . When the UAV moves from M to N , overlapping region between
the convex polygon ABCDEFG and the rectangle X1X2X3X4 will be covered. It remains
to find the path for the UAV in the uncovered regions of the ABCDEF polygon. In Figure
4.31, these regions are made up of the triangle NTC and the quadrangle MEGS. Consider
first the triangle NTC to the right of X2X3. Observe that the furthest vertex of this triangle
to point N is less than R. Consequently, when the UAV is at N , it will cover the area of
this triangle. For the quadrangle MFGS to the left of X1X4, notice that its furthest vertex
is G. Let P be a point on the segment GM at distance R from G. Since ABCDEFG is a
convex polygon, the point P and the segment PM belong to the polygon A. When the UAV
moves from P to M , the whole area of MFGS can be covered. Thus, PMN (the red lines
in Figure 4.32) is the shortest path the UAV must follow to cover the entire area of polygon
ABCDEF .

As calculated above, a moving trajectory can be calculated for convex polygons with two
parallel sides of a distance 2R in between.

1 2
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(a) Split convex polygon into several trapezoids
with α angle

1 2

3

4

S

E

(b) Path way with α angle

Figure 4.33: Augmentation of the size of obstacles

The task now is to create the motion trajectory of the UAV over an entire convex polygon
so that when the UAV moves in this orbit, its entire area can be covered. Consider a convex
polygon that has been subdivided into smaller convex polygons as illustrated in Figure 4.33a
by parallel lines at distance 2R from one another and at an angle α to the horizontal axis.

In this fashion, the optimal trajectory for each convex polygon 1,2,3,4 can be created.
Combining these trajectories, we obtain the motion trajectory between the points S and E
(Figure 4.33b). When the UAV moves along this trajectory, the entire area of the polygon
can be covered.

4.4.3.2 Trajectory generation for each convex polygon

As shown in Figure 4.33a, the generated trajectory depends on the slope of the parallel lines.
Therefore, we vary the angle of these parallel lines to numerically compute the shortest path.
This algorithm is shown in Figure 4.34. There is an optimal α for each convex polygon.
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Figure 4.34: Algorithm for way-point of infected area

By using the algorithm in Figure 4.34, we can create the shortest trajectory for each convex
polygon region so that when the UAV follows that path, the entire area of the convex polygon
will be covered (Figure 4.35).

4.4.3.3 Trajectory generation for entire agriculture area

As a result of the previous section, the Boustrophedon trajectory was generated for each
convex polygon. Each orbit of these convex polygons has two points S and E. This means
that when UAV comes from point E, it goes to point S when moving on the Boustrophedon
trajectory or vice versa from S to E, the entire area of that convex polygon will be covered.
However, how the UAV can scan the entire area of a pest, also means that the UAV must
move through all the generated Boustrophedon trajectory inside generated convex polygons.

An algorithm that allows finding the shortest path for UAV has been previously developed by
the author [175]. By using GA with some modification on the swap, flip and slide operations
and the Traveling Salesman Problem with some additional constraints, the shortest path for
changing the cells has been developed. This algorithm guarantees that the solution always
exists and the time for calculation is decreasing.



4.4. Pesticide spraying 85

S1

E1

S2

E2

S3

E3

S4

E4
S5

E5

(a) Waypoints generation for infected areas
covered by minimal convex polygon

S1

E1

S2

E2

S3

E3

S4

E4

S5

E5
S6

E6

S7

E7

S8

E8

S9
E9

S10

E10

S11E11

(b) Waypoints generation for infected areas
covered by boundary polygon

Figure 4.35: Waypoints generation for infected areas

4.4.3.4 Simulation results

The covered area and length of Boustrophedon trajectory

In this simulation, we compare the covered area and the trajectory length of generated
Boustrophedon trajectories when each obstacle-free cluster is generated by minimal convex
polygon (Figure 4.35a) and boundary polygon (Figure 4.35b). From the results in Table 4.4,

Table 4.4: Minimal convex polygon vs Boundary polygon

Length(m) Area(m2)

Experiment 1 Minimal convex polygon 29860 8119
Boundary polygon 26275 7482

Experiment 2 Minimal convex polygon 26089 7222
Boundary polygon 23035 6841

Experiment 2 Minimal convex polygon 26146 7301
Boundary polygon 22397 6664

we can see that the method for generating the obstacle-free by using boundary is better than
the method for generating the obstacle-free by using minimal convex polygon. The area and
the trajectory length for the later method are smaller than the former.

Number of classes vs covered area and length of Boustrophedon trajectory

In this simulation, we are going to compare the trajectory length when the pest-ridden areas
of an agricultural area are divided into different numbers of classes. The result is shown in
Figure 4.36.
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Figure 4.36: Simulation result

From the results in Table 4.5, we can see that the number of clusters affects the area of
polygon needed to be covered and generated trajectory. When the number of cluster is
higher, the area of polygon needed to be covered and generated trajectory are lower. Beside
that, the method for generating the obstacle-free by using boundary polygon is better than
the method for generating the obstacle-free by using minimal convex polygon. However,
the number of divided convex polygons with the boundary polygon is much higher than the
number of divided convex polygons with the minimal convex polygon decomposition. This
number affects the length of trajectory for changing between divided convex polygons.
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Table 4.5: Classes number vs Trajectory path length

No Cl. Division method No con.
polygon Area(m2) Trajectory

length(m)

5 Min. con. polygon 14 240762 63357
Boundary polygon 37 204158 59574

10

Min. con. polygon

20 227956 60764
19 227681 60588
19 229330 60965
15 223351 59009
18 229149 60893

Boundary polygon

54 204158 56700
55 206239 57272
56 203441 56567
56 206246 57423
59 205353 57357

15

Min. con. polygon

24 218952 58573
23 214078 57310
23 208604 55935
22 215226 57651
26 221521 59350

Boundary polygon

77 191593 54729
74 191657 55345
68 181859 50956
79 193424 55266
76 196747 54123

4.5 Conclusion
In this chapter, we have studied two tasks for the quadrotor to be used in PA:

• Infected area detection

• Pesticide spraying all the infected areas

For the first task, we have proposed a new approach for maximizing the coverage area
and minimizing the path length of an aerial robot in agriculture environment with concave
obstacles. Firstly, we propose a new approach for cellular decomposition. Based on the
critical points as in [45] and [225], the extension of this approach is that the critical points
have been categorized to several groups, and the cells have been created from these groups.
This extension leads to a decrease of the number of cells after decomposition. The results
show that this new cellular decomposition works well even with several concave obstacles
inside the environment.

Secondly, we have proposed a method for maximizing the percentage of coverage and we have
given some comments for the trade-off between the percentage of coverage and the number
of way-points for the UAV. The percentage of coverage is up to 97.9%.
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Finally, by using GA with some modification on the swap, flip and slide operations and
the TSP with some additional constraints, the shortest path for changing the cells has
been developed. This algorithm guarantees that the solution always exists and the time for
calculation is decreasing.

For the second task, we have proposed a method for generating a trajectory which allows the
UAV to put the medicine to the entire pest-ridden area of an agricultural area. First, the
pest-ridden areas have been divided into several smaller areas (clusters) by using clustering
technique. After that, each cluster is divided again to several obstacle-free convex polygons.
Then the shortest Boustrophedon trajectory is created in each obstacle-free convex poly-
gon. Finally, the shortest trajectory for changing between obstacle-free convex polygons is
generated to form the final trajectory.

Several extensions from this section are possible. One might consider the recalculating the
trajectory under the windy condition of the environment or trajectory generation for a team
of UAV. Field tests are also subject of future work. The continuation of this work is also
to add the UAV equations of motion as constraints on the path. Then the efficiency of the
algorithm will be improved to be real-time usable.
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5 Nonlinear robust control and state
estimation of UAVs

Motion control design plays a crucial role in aerial autonomous vehicles for accomplish-
ing the predefined tasks. The UAV faces a variety of disturbances when performing
outdoor missions. Especially for the duty of spraying pesticides or transporting goods,
the mass of the Unmanned Aerial Vehicle (UAV) changes. It is followed by the changes
in dynamic parameters such as the moments of inertia. Therefore, developing a suit-
able control algorithm that is robustly stable under the external disturbances and the
changes of parameters is essential. This chapter is organized as follows: in Section 5.1,
we take a quick look at the control system of the quadcorter. Due to the changes of the
mass and moments of inertia, their values should be calculated or estimated and will
be presented in section 5.2. Then, the position/altitude control of quadcopter is shown
in section 5.3. In the next section 5.4, the dynamic output feedback controller will be
designed for the attitude subsystem of the quadcopter. Next, the Attitude/Altitude
LPV Unknown Input Observer (UIO) of mass-varying quadcopter is designed in section
5.5. The Attitude/Altitude LPV H∞ State feedback Controller and Static output feed-
back LPV for mass-varying controller are presented respectively in sections 5.6 and 5.7.
Finally, the conclusions are given in the last section.
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5.1 Control system for quadcopter
For the purpose of convenience, the mathematical equations of the quadcopter model without
disturbances in (3.53) can be written as follows:

ẍ=(cosϕsinθ cosψ+ sinϕsinψ) U1
m

(5.1a)

ÿ =(cosϕsinθ sinψ− sinϕcosψ) U1
m

(5.1b)

z̈ =(cosϕcosθ) U1
m
−g (5.1c)

ϕ̈=
Iy− Iz
Ix

θ̇ψ̇− Jr
Ix

Ωrθ̇+
1
Ix
U2 (5.1d)

θ̈ =
Iz− Ix
Iy

ϕ̇ψ̇+
Jr
Iy

Ωrϕ̇+
1
Iy
U3 (5.1e)

ψ̈ =
Ix− Iy
Iz

ϕ̇ψ̇+
1
Iz
U4 (5.1f)

The system can be rewritten in the state-space form

Ẋ = f (X,U) (5.2)

where U is the input vector and X denotes the state vector choosen as follows:

X =
[
x y z ϕ θ ψ ẋ ẏ ż ϕ̇ θ̇ ψ̇

]T
(5.3a)

U =
[
U1 U2 U3 U4

]T
(5.3b)

where inputs are mapped by

U1 = kf
(
ω2

1 +ω2
2 +ω2

3 +ω2
4
)

U2 = kf
(
−ω2

2 +ω2
4
)

U3 = kf
(
ω2

1−ω2
3
)

U4 = kz
(
−ω2

1 +ω2
2−ω2

3 +ω2
4
) (5.4)

and
Ωr = ω1−ω2 +ω3−ω4 (5.5)

where ωi for i= 1,2,3,4 denotes the i-th rotor velocity, and Ti for i= 1,2,3,4 are the thrust
generated by the i-th rotor and the thrust Ti (t) is a function of the rotor speed defined by

Ti (t) = kfω
2
i (5.6)
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where kf and kz are the constant coefficients, and

f (X,U) =



ẋ
ẏ
ż
ϕ̇
θ̇
ψ̇

ux
U1
m

uy
U1
m

(cosϕcosθ) U1
m −g

Iy−Iz
Ix

θ̇ψ̇− JrΩr
Ix

θ̇+ l
Ix
U2

Iz−Ix
Iy

ϕ̇ψ̇+ JrΩr
Iy

ϕ̇+ l
Iy
U3

Ix−Iy
Iz

ϕ̇θ̇+ 1
Iz
U4



(5.7)

where

ux = cosϕsinθ cosψ+ sinϕsinψ (5.8a)
uy = cosϕsinθ sinψ− sinϕcosψ (5.8b)

It is worthwhile to note in the latter system that the angles and their time derivatives do
not depend on translation components. On the other hand, the translations depend on the
angles. One can ideally imagine the overall system described by (5.7) as constituted of two
subsystems, the angular rotations and the linear translations (see Figure. 5.1).
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Figure 5.1: Connection between rotational and translational subsystems of the quadcopter

Therefore the control system of the quadcopter can be divided into subcontrollers such
as position controller (for controlling x and y), altitude controller (for controlling z), and
attitude controller (for controlling three Euleur angles ϕ, θ, and ψ) as described in Figure
5.2
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Figure 5.2: General Controller system structure for quadcopter

5.2 Quadrotor’s states and parameters estimation

5.2.1 State estimation overview
Thanks to the maneuverability, low cost and ability to hover in place, the quadrotors have
been widely applied in applications for a variety of dangerous or complex tasks, such as
inspection [166] [247], search and rescue [149], exploration [220], interaction with the en-
vironment [218] [77], transportation [135], and mapping [136]. TO ensure the successful
completion of the aforementioned tasks, precise control, and reliable navigation performance
are essential. Therefore, the accurate knowledge of the vehicle’s physical characteristics and
its states plays a really critical role.

In [236], the state variables (position, velocities, and attitude) of an autonomous quadrotor
UAV were estimated by using the Kalman Filter (KF) under the condition of sufficient mea-
surements. In [66], the quadrotor’s attitude was estimated by using two Extended Kalman
Filters (EKF) along with a Direction Cosine Matrix (DCM) algorithm for a single low-cost
IMU sensor. Also in this work, the authors use Extended Kalman Filter (EKF) for filtering
a 3-axis gyro sensor to detect the angular rate, then Euler angles are calculated through
the DCM algorithm using the filtered gyro and magnetometer sensor. Then, another EKF
is used to enhance the estimation of the Euler angles. In [241], the authors use Optimal
Kalman Filter (OKF) to estimate the state variables of the quadrotor under the presence of
the white Gaussian process and measurement noises, which are caused by the actuator and
sensor faults, respectively.

5.2.2 Quadrotor’s parameters estimation
Besides the state variables, other dynamic parameters such as mass and moments of inertia
are also important and need to be determined accurately.

In [129] and [113], the authors proposed approaches based on kinematic models. They
identify the spatial-temporal poses of sensors such as IMU, monocular or stereo cameras.
To estimate the inertia properties, the authors combine the IMU, pose sensor, and motor
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speed measurements. This not only allows the estimation of relative positions of the different
sensor modules and the linear and rotational IMU biases but also the position of the Center
of Mass, the Moment of Inertia and the mass.

In [148], the frequency-domain approach is used for determining the Moment of Inertia of
the quadrotor. This work does not use a probabilistic framework to eliminate the noise and
uncertainty associated with the sensor data. This approach also limits the motions of the
system to one axis at a time and unable to estimate the position of the center of mass.

5.2.3 Calculation/estimation of mass and moments of inertia
When the UAV sprays pesticides or delivers packages, the mass of the UAV decreases grad-
ually or abruptly. In both cases, the total mass of the UAV is the same and is assumed to
contain several smaller cylinders. In the case of a gradual mass reduction, the number of
cylinders is much larger than the case of a abrupt mass change.

In particular, we assume that there are n cylinders m1,m2, ...,mn attached to the UAV as
shown in Fig. 5.3. Each cylinder mi, i= 1, ...,n has the height hi, radius r, and mass mi. To
simulate the process of reducing the mass of the UAV, the cylinders mi, i = 1, ...,m will be
sequentially (mn, ...,m1) detached from the UAV over time. We call xk, yk, and zk(Fig. 5.3)
the three axes x, y, and z for calculation the moments of inertia of the mass which contains
k cylinders from 1 to k, where k = 1, ...,n.

Due to the variation of the mass of the UAV over time, the moments of inertia will also
change. Therefore, the moments of inertia of the whole system need to be recalculated at
each change. Moments of inertia of mass (m1 + ...+mk) ,k = 1, ...,n with respect to their x

h1

2r

2R

xq

yq

zq

xn

yn

zn

M

m1

(h1+...+hn)/2

hn

mn

Figure 5.3: Moment of inertia of the systems quadcopter-mass
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and y axes xk and yk respectively are:
J(m1+...+mk)/xk =J(m1+...+mk)/yk

=

 k∑
i=1

mi

 r2

4 +

 k∑
i=1

mi


(

k∑
i=1

hi

)2

12

(5.9)

Hence, moments of inertia of mass (m1 + ...+mk) ,k = 1, ...,n with respect to the axes xq
and yq of the quadcopter are:

J(m1+...+mk)/xq =J(m1+...+mk)/yq

=J(m1+...+mk)/xk +

 k∑
i=1

mi


(

k∑
i=1

hi

)2

2

=
n∑
i=1

mi

r2

4 +
7
12

 k∑
i=1

hi

2
(5.10)

Moments of inertia of mass (m1 + ...+mk) ,k = 1, ...,n with respect to their zk axes and the
zq axis of the quadcopter are:

J(m1+...+mk)/zk = J(m1+...+mk)/zq =

 k∑
i=1

mi

 r2

2 (5.11)

Finally, moments of inertia of a system which contains the quadcopter and k cylinders
m1, ...,mk for k = 1, ..,n with respect to the three axis of the quadcopter xq, yq, and zq are:

J[quad_(m1+...+mk)]/xq =Jquad/xq +J(m1+...+mk)/xq

=Jquad/xq +
k∑
i=1

mi

r2

4 +
7
12

 k∑
i=1

hi

2 (5.12)

J[quad_(m1+...+mk)]/yq =Jquad/yq +J(m1+...+mk)/yq

=Jquad/yq +
k∑
i=1

mi

r2

4 +
7
12

 k∑
i=1

hi

2 (5.13)

J[quad_(m1+...+mk)]/zq =Jquad/zq +J(m1+...+mk)/zq

=Jquad/zq +

 k∑
i=1

mi

 r2

2
(5.14)

5.3 Position/Altitude control
In this section, the translational subsystem will be considered. The differential equations of
dynamic translational subsystem is given by:

ẍ= (sinψ sinϕ+ cosψ sinθ cosϕ) U1
m

ÿ = (sinψ sinθ cosϕ− cosψ sinϕ) U1
m

z̈ = (cosθ cosϕ) U1
m −g

(5.15)



96 Chapter 5. Nonlinear robust control and state estimation of UAVs

The state vector is then defined by:

X =
[
x ẋ y ẏ z ż

]T
=
[
x1 x2 x3 x4 x5 x6

]T

5.3.1 Position control
As U1 controls z, we can only define desired ϕref and θref to be computed to achieve that
xc and yc go to desired xref and yref .

In this subsection, a simple PD controller is designed for calculating the required roll ϕref
and pitch θref .

We define the position and velocity errors x and y as:

epx = xref −x
evx = ẋref − ẋ
epy = yref −y
evy = ẏref − ẏ

And we want these errors to decay exponentially to 0.

If we take the error term and make it obey a second order linear differential equation with
proper coefficients, we can guarantee that the error goes exponentially to 0.

Means:
ẍref − ẍc+Kdxėvx+Kpxepx = 0
ÿc− ÿc+Kdy ėvy+Kpyepy = 0

where ẍc and ÿc are the commanded accelerations which are calculated by the controller.

Hence, the second derivative of commanded xc and yc are calculated as:

ẍc = ẍref +Kpx (xref −x)+Kdx (ẋref − ẋ)
ÿc = ÿref +Kpy (yref −y)+Kdy (ẏref − ẏ)

(5.16)

Suppose that the quadcopter is around the hover position, we have:

U1 ≈ mg
θ ≈ 0
ϕ ≈ 0
ψ ≈ ψref

Therefore, the required ϕref and θref can be obtained as:

ϕref = 1
g (ẍc · sinψref − ÿc · cosψref )

θref = 1
g (ẍc · cosψref + ÿc · cosψref )

(5.17)

Coefficients of PD controller are selected to ensure stability and the responses to trajectory
tracking as follows:

KPx = 20; Kdx = 2; KPy = 25; Kdy = 3
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5.3.2 Altitude control
In this subsection, we design a integral back-stepping controller for altitude of the quadcopter
which is able to track the reference. The error of the altitude z (state x5), its derivative are
defined as follows:

z5 = x5d−x5
ż5 = ẋ5d−x6

(5.18)

For improving the system’s robustness against modeling uncertainties and external distur-
bance, thus improving steady-state control accuracy, we define also the integral of state x5
as

ξ5 =
t∫

0
z5 (τ )dτ (5.19)

We study the stability of the altitude system via Lyapunov theory, the Lyapunov function
and its derivative are:

V (z5) =
1
2z

2
5

V̇ (z5) = z5 (ẋ5d−x6)
(5.20)

We can see no direct control law in (5.20). Consequently, x6 is defined as a virtual control.
To make V̇ (z5) negative semi-definite, the desired virtual control is defined as:

x6d = ẋ5d+ c5z5 +λ5ξ5 (5.21)

where c5 and λ5 are positive numbers.

In order to make x6 follows the stabilizing function x6d, we define the error state z6 as the
deviation between x6d and x6:

z6 = x6d−x6 (5.22)
The virtual control x6 and the derivative of z6 are:

x6 = ẋ5d+ c5z5 +λ5ξ5− z6 (5.23)

ż6 = ẍ5d+ c5ż5 +λ5ξ̇5−
cosϕcosθ

m
U1 + g (5.24)

The Lyapunov function is extended as

V1 =
1
2z

2
5 +

1
2λ5ξ

2
5 (5.25)

The time derivative of the Lyapunov function V1 is:

V̇1 = z5ż5 +λ5ξ5ξ̇5
= z5 (ẋ5d−x6)+λ5ξ5z5
= z5 (z6− c5z5−λ5ξ5)+λ5ξ5z5
= −c5z2

5 + z5z6

(5.26)

For making the time derivative of Lyapunov function negative, z6 should be added to it.
Define the new Lyapunov function as

V2 =
1
2z

2
5 +

1
2λ5ξ

2
5 +

1
2z

2
6 (5.27)
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Then, the derivative of the new Lyapunov function is

V̇2 = −c5z2
5 + z5z6 + z6

(
ẍ5d+ c5ż5 +λ5ξ̇5−

cosϕcosθ
m

U1 + g

)
(5.28)

For ensuring the negativity of V̇2, we choose U1 as

U1 =
m

cosϕcosθ
(
ẍ5d+

(
1− c25 +λ5

)
z5− c5λ5ξ5 +(c5 + c6)z6 + g

)
(5.29)

where c6 is a positive number.

Then
V̇2 = −c5z2

5− c6z2
6 (5.30)

Coefficients of the Back-stepping controller are selected as:

c5 = 0.001; c6 =30; λ5 = 30

5.4 LPV H∞ Attitude control
In this section, the rotational subsystem will be considered. In this section, we assume that
the quadcopter is symmetric and Ix = Iy.

Therefore, the differential equations of rotational dynamic subsystem is given as:

ϕ̈=
Ix− Iz
Ix

θ̇ψ̇− JrΩr

Ix
θ̇+

l

Ix
U2 (5.31a)

θ̈ =
Iz− Ix
Ix

ϕ̇ψ̇+
JrΩr

Ix
ϕ̇+

l

Ix
U3 (5.31b)

ψ̈ =
1
Iz
U4 (5.31c)

5.4.1 Roll-pitch H∞ controller
The dynamic of Roll-Pitch subsystem (5.31a - 5.31b) is rewritten in descriptor form for
reducing the number of subsystems as{

Ixϕ̈ = (Ix− Iz) θ̇ψ̇−JrΩrθ̇+ lU2
Ixθ̈ = − (Ix− Iz) ϕ̇ψ̇+JrΩrϕ̇+ lU3

(5.32)
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Figure 5.4: Roll Pitch H∞ controller.

State vector is
XT
RP =

[
ϕ θ ϕ̇ θ̇

]T
The roll-pitch susbsystem can be written as:

ERP Ẋ = ARPX+BRPu
y = CRPX+DRPu

(5.33)

where:

ERP =



1 0 0 0
0 1 0 0

0 − (Ix− Iz) ψ̇
+JrΩr

Ix 0

− (Ix− Iz) ψ̇
−JrΩr

0 0 Ix



ARP =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 ; BRP =


0 0
0 0
l 0
0 l


CRP =

[
1 0 0 0
0 1 0 0

]
; DRP =

[
0 0
0 0

]
The parameter ρRP that is varying is:

ρRP =
[
Ix (Ix− Iz) ψ̇ Ωr

]T
=

[
ρRP1 ρRP2 ρRP3

]T (5.34)

Their varying ranges are in table 5.1.
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Table 5.1: Parameters range for LPV H∞ Roll-Pitch and Yaw controllers

Parameter Description Range
ρRP1 Ix [0.0075,0.0128]kg.m2

ρRP2 (Ix− Iz) ψ̇
[
−5×10−4,0.0173

]
kg.m2

ρRP3 Ωr [−300,300]rad.s−1

ρY Iz [0.0130,0.0162]kg.m2

In order to express the system in a polytopic form, matrices ARP ,BRP ,CRP ,DRP ,ERP can
be decomposed as:

ARP = ARP0 +ρRP1ARP1 +ρRP2ARP2 +ρRP3ARP3
BRP = BRP0 +ρRP1BRP1 +ρRP2BRP2 +ρRP3BRP3
CRP = CRP0 +ρRP1CRP1 +ρRP2CRP2 +ρRP3CRP3
DRP = DRP0 +ρRP1DRP1 +ρRP2DRP2 +ρRP3DRP3
ERP = ERP0 +ρRP1ERP1 +ρRP2ERP2 +ρRP3ERP3

where:
A0 =

[
02 I22
022 022

]
;A1 = A2 = A3 = A4 = [044]

B0 = l

[
022
I22

]
;B1 = B2 = B3 = B4 = [042]

C0 =
[
I22 022

]
;C1 = C2 = C3 = C4 = [024]

D0 =D1 =D2 =D3 =D4 = [022]

E0 =

[
I22 022
022 022

]
;E1 =

[
022 022
022 I22

]
;

E2 =

 022 022
0 −1
1 0 022

 ;E3 =

 022 022
0 −Jr
Jr 0 022


Weight functions for Roll-Pitch H∞ controller are chosen as following:

Wu1 =
s

s+400000 ;Wu2 =
s

s+400000
WP1 =

1
s+0.1 ;WP2 =

1
s+0.1

The norm of LPV H∞ Roll-Pitch subsystem is γRP = 0.544

Remark 5.1. In this simulation, LPV gain-scheduled H∞ controller is synthesized by using
the command hinfgs of the robust control toolbox in Matlab. Basically, this controller is the
dynamic output feedback controller. This controller minimizes the closed-loop quadratic H∞
performance from reference signal

[
ϕref θref

]T
to
[
z1 z2 z3 z4

]T
signal. �
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5.4.2 Yaw H∞ controller
The dynamic of Yaw susbsystem (5.31c) is rewritten in descriptor form as

Izψ̈ = U4 (5.35)

KY

−
refψ

ψ
eψ

4
U

( )3PW s

( )3u
W s 5

z

6
z

( )( )YYG Gaugρ

( )
( )' '

Y

Y
P

G

ρ( )' : '
Y Y

G K

( )' : 'Y YK e

( )' 'Yr

Figure 5.5: Yaw H∞ controller.

The state vector is XT
Y =

[
ψ ψ̇

]T
and the control input is uY = U4.

The roll-pitch susbsystem can be written as:

EY ẊY = AYX+BY uY
yY = CYX+DY uY

(5.36)

where:
AY =

[
0 1
0 0

]
; BY =

[
0
1

]
; CY =

[
1 0

]
;

DY = [0] ; EY =

[
1 0
0 Iz

]
The parameter ρY that is varying is: ρY = [Iz]. Its varying range is in table 5.1.

In order to express the system in polytopic form, matrices AY ,BY ,CY ,DY ,EY can be de-
composed as:

AY = AY0 +ρYAY1
BY = BY0 +ρYBY1
CY = CY0 +ρY CY1
DY = DY0 +ρYDY1
EY = EY0 +ρYEY1

where:
AY0 =

[
0 1
0 0

]
;AY1 =

[
0 0
0 0

]
;BY0 =

[
0
1

]
;BY1 =

[
0
0

]
CY0 =

[
1 0

]
; CY1 =

[
0 0

]
; DY0 = [0] ;DY1 [0]

EY0 =

[
1 0
0 0

]
; EY 1 =

[
0 0
0 1

]
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Weight functions for Yaw H∞ controller are chosen as following:

Wu3 = 0.25
s+0.2

WP3 = s3+0.03s2

s3+12000s2+11300000s+1000

The norm of LPV H∞ Yaw subsystem is γY = 0.0188

Remark 5.2. The controller is synthesized by using the command hinfgs of the robust con-
trol toolbox in Matlab as in Remark 5.1. This controller minimizes the closed-loop quadratic
H∞ performance from reference signal ψref to

[
z5 z6

]T
signal. �

5.4.3 Simulation results and discussions
In this section, the trajectory for the quadcopter to follow is defined as follows: first, the
quadcopter goes up 2m on altitude, and then follows a square of 8m of side on x and y (Fig.
5.13). The yaw angle ψ is not change during the flight.

The mass declines in two manners: gradually and abruptly. A test for the robustness of
the proposed controller with respect to step and impulse disturbances is also considered. In
particular, we consider wind as a source of disturbances.

The first type of disturbances involves a series of wind impulses with velocity Vw = 7 · i+
7 · j+ 7 ·k at 5s, 15s, 25s, 35s, 45s, 55s, 65s, 75s, 85s, respectively. The second type of
disturbances comes from two wind steps with velocity Vw = 1 · i+ 1 · j+ 1 ·k from 15s to
25s, and from 55s to 65s, respectively. Both types of disturbances are demonstrated in the
fourth plot of Fig. (5.6) . In this figure, the changes of mass, moments of inertia wrt to the
three axis x,y,z are shown in the first, second, and third plot, respectively.
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Figure 5.6: Variation of mass and moments of inertia and disturbances.

In the gradual mass reduction simulation, the mass reduces gradually from 0.93 [kg] to
0.6 [kg]) in a period from 0s to 90s, as shown in the first plot of Fig. (5.6). At each point
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Figure 5.7: Translation coordinates: X, Y, Z.
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Figure 5.8: Orientation coordinates: ϕ, θ, ψ.

the mass changes, the recalculated moments of inertia are shown in the second and third
plots of the same figure.

In the abrupt mass reduction simulation, the mass declines abruptly at 10s (from 0.93 [kg]
to 0.83 [kg]), at 20s (from 0.83 [kg] to 0.73 [kg]), at 45s (from 0.73 [kg] to 0.63 [kg]), and at
60s (from 0.63 [kg] to 0.6 [kg]), as shown in the first plot of Fig. (5.6). At each point the
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Figure 5.9: Error in X, Y, Z, ψ.
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Figure 5.10: Error in φ, θ, and ψ.

mass changes, the recalculated moments of inertia are shown in the second and third plots
of the same figure.
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Figure 5.11: Input signals: U1, U2, U3, U4.
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Figure 5.12: Horizontal trajectory.

5.4.4 Comments on the simulation results
From the simulation results, we can see that the quadcopter is stable and tracks the prede-
fined trajectory well under the variation of dynamic parameters and the presence of distur-
bances.
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Figure 5.13: 3D trajectory.

Fig. (5.8) shows that the roll, pitch and yaw angles track their designated trajectories. The
error of roll, pitch and yaw are shown in Fig. (5.10). The maximum error is about 10 degrees
only when the system is disturbed by high impulse disturbances, but it quickly drops to near
0 degree.

Fig. (5.7) shows the references and responses in x, y, and z. Fig. (5.9) shows the errors
with respect to x, y, and z and ψ.

In both instances of mass variation, the quadcopter still tracks the predefined trajectory
even under step and impulse disturbances, as shown in Fig. (5.12) and Fig. (5.13).

In many cases, the states of the system are not unavaible or too expensive for measuring,
the measured outputs are noisy, or some disturbances acting to the system are unable to be
measured. Consequently, obsever is used to overcome this difficulties.

5.5 Attitude/Altitude Linear Parameter Varying (LPV)
Unknown Input Observer (UIO)

The problems of observing the state and the unknown inputs of a linear/non-linear dynamic
system is a challenging problem and have been studied since the 1970’s [41][170][64]. An
observer can play the aims of a virtual (software) sensor. This virtual sensor is aimed to
estimate system parameters that are difficult or impossible to measure such as states or
unknown inputs (faults, disturbances,...).

Several extensions for observer have been considered for linear and nonlinear systems after
the result proposed by D.G. Luenberger in [140]. The state estimation error is expressed
as a system which is free from any unknown input in decoupling approach. The full rank
conditions ensure the necessary and sufficient conditions for the existence of the observer
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[50][60]. For the second approach, both state vector and unknown input are estimated at the
same time under the assumption that unknown inputs are part of the state vector [109][238].

In [223], a nonlinear disturbance observer-based backstepping controller is developed for at-
titude, altitude, and position control subject to some external disturbances. The stability
analysis of the nonlinear disturbance observer is successfully done using the Lyapunov stabil-
ity theory. In [9], a sliding mode control scheme is proposed for a quadrotor in the presence
of an exogenous disturbance. The authors propose a disturbance observer to reject the effect
of the unknown disturbance on the quadrotor by using a nonlinear sliding mode surface.

For a quadrotor, it is really important to determine the external forces and moments such
as the force of the wind. However, forces and moments are really difficult to measure during
the operation. Therefore, an alternative solution is to use an observer. Furthermore, the
mass and moments of inertia of UAVs are important impacting parameters to take into
account, however, for some reasons, the mass is varying. For example, in applications for
spraying pesticides, the mass and moments of inertia of flying equipment will vary slowly
over time. Meanwhile, with the job of transporting goods, the mass and moments of inertia
of aircraft change abruptly. Mass change implies the changes of moments of inertia. Because
of the changes of quadcopter’s parameter (mass and moments of inertia), the fixed structure
observer might not be working precisely. These issues can be addressed using LPV UIOs
[100].

The aim of this section is to design an LPV Unknown Input Observer for the attitude of
a mass-varying quadcopter, which can estimate the external torques. The feature of this
proposed LPV UIO is that its structure can vary along with the changes of the mass and
moments of inertia. To begin with, the design of UIO for the LPV system is considered.
The existence conditions of the LPV UIO is studied, and then the gains of the UIO are
calculated by resolving LMIs, which ensure the convergence to zero of the state estimation
error and the unknown input estimation error. Then, from the dynamic of the attitude of
the mass-varying quadcopter, the LPV altitude controller is generated. Finally, an LPV UIO
is designed for the altitude system of the mass-varying quadcopter.

5.5.1 Problem formulation
This sub-section aims to design an LPV UIO for a LPV system which structure is expressed
by {

ẋ (t) = A (ρ (t))x (t)+B (ρ (t))u (t)+E (ρ (t))d (t)
y (t) = Cx (t)

(5.37)

where x (t) ∈ Rn, u (t) ∈ Rnu , d (t) ∈ Rnd , and y (t) ∈ Ry are the state vector, the control
input, the unknown input, and the output of the system, respectively. The matrices A (·),
B (·), and D (·) are varying parameters with appropriate dimensions, and C is a matrix of
constants. ρT (t) =

(
ρ1, ...,ρnρ

)
represents the vector of nρ time-varying parameters which

are sufficiently smooth and bounded which means that ρ (t) is an element of Θ, a hyper-
rectangle defined by

Θ =
{
ρ (t) ∈Rnρ

∣∣∣∣ρ1 ∈
[
ρ1,ρ1

]
, ...,ρnp ∈

[
ρ
np

,ρnp
]}

(5.38)

where ρ
i
and ρi, i = 1, ...,nρ define the lower and upper bounds of the varying parameter

ρi (t).
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For sake of simplicity, in what follows we put ∆ (ρ (t)) as ∆ρ where ∆ is a matrix depending
on the varying parameter ρ (t). In addition, system (5.37) can be free of input by defining
an auxiliary system in the form{

ṡ (t) = Aρs (t)+Bρu (t)
ys (t) = Cs (t)

(5.39)

Define the errors z (t) = x (t)− s (t) and yz (t) = y (t)−ys (t), the new dynamics{
ż (t) = Aρz (t)+Eρd (t)
yz (t) = Cz (t)

(5.40)

can be obtained from the systems in (5.37) and (5.39), which are free from the known input
u (t). Thus, after estimating the state ẑ (t), the real state x̂ (t) is obtained by the equation

x̂ (t) = ẑ (t)+ s (t) (5.41)

Consequently, the problem of designing the LPV UIO for LPV system in (5.37) is transformed
to the problem of designing the LPV UIO for the LPV system without the known input
depicted in (5.40).

Definition 5.1. The system (5.37) is said to be uniformly strongly algebraically observable
[100] with respect to the parameter ρ (t) if there exists positive integers ky , ku and kρ such
that ρ(j) (t) ∈ Θj ,j = 0, ...,kρ the state of the system (5.37) can be expressed as a vector
function of the outputs, the inputs, the parameters and their time derivatives up to a finite
orders

x (t) = F
(
y (t) , ...,y(ky),u (t) , ...,u(ku),ρ (t) , ...,ρ(kρ)

)
(5.42)

�

Assume also that the time derivatives of the parameters belong to the compact sets defined
by

Θj =
{
ρ(j) ∈Rnρ

∣∣∣∣ρ(j)1 ∈
[
ρ1j ,ρ1j

]
, ...,ρ(j)np ∈

[
ρ
npj

,ρnpj
]}

(5.43)

where ρ
ij
and ρij , i= 1, ...,nρ define the lower and upper bounds of the jth derivative of the

varying parameter ρi (t).

Definition 5.2. Given the system (5.37), the number r is called the relative degree [11] of
the output y (t) with respect to the unknown input d (t) if the unknown input d (t) appears in
the equation of the rth time derivative of the output

(
y(r) (t)

)
and not in y(k) for k < r.. �

5.5.2 LPV UIO design for LPV system
Let us consider the LPV system in (5.40) where yz (t) ∈Rny and d (t) ∈Rnd . Suppose that,
each output yzi (t) has a relative degree ri where i = 1, ...,ny with respect to the unknown
inputs. Thus, the vector of relative orders is given by

{
r1,r2, ...,rny

}
.

The matrices Eρ (ρ (t)) and C can be rewritten as Eρ (ρ (t)) =
[
E1
ρ E2

ρ ... Endρ
]
, C =[

C1 . . . Cny
]T
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By differentiating ri times the ith output yzi (t), ones gets

yzi (t) =Ciz (t) (5.44a)
ẏzi (t) =CiAρ︸ ︷︷ ︸

M i
1ρ

z (t) (5.44b)

ÿzi (t) =
(
M i

1ρAρ+ Ṁ i
1ρ
)

︸ ︷︷ ︸
M i

2ρ

z (t) (5.44c)

y(3)zi (t) =
(
M i

2ρAρ+ Ṁ i
2ρ
)

︸ ︷︷ ︸
M i

3ρ
...

z (t) (5.44d)

y(ri)zi (t) =
(
M i

(ri−1)ρAρ+ Ṁ i
(ri−1)ρ

)
︸ ︷︷ ︸

M i
riρ

z (t)+M i
(ri−1)ρE

i
ρdi (t) (5.44e)

From (5.44a) to (5.44e), the output time derivatives are obtained in matrix form as follows

Y (t) =Mρz (t)+Γρd (t) (5.45)

where

Y (t) =


y
(r1)
1 (t)

y
(r2)
2 (t)

...
y
(rny)
ny (t)

 ,Mρ (t) =


M1
r1ρ

M2
r2ρ...

M
ny
rnyρ


and

Γρ =


M1

(r1−1)E
1
ρ M1

(r1−1)E
2
ρ . . . M1

(r1−1)E
nd
ρ

M2
(r2−1)E

1
ρ M2

(r2−1)E
2
ρ . . . M2

(r2−1)E
nd
ρ

... ... . . . ...
M

ny

(rny−1)
E1
ρ M

ny

(rny−1)
E2
ρ . . . M

ny

(rny−1)
Endρ


Consequently, the observer for (5.40) is proposed in the form{ ˙̂z (t) = (Aρ−QρMρ−LρC) ẑ (t)+QρY (t)+Lρyz (t)

d̂ (t) = Γ−1
ρ (Y (t)−Mρẑ (t))

(5.46)

where Qρ and Lρ are to be determined.

Theorem 5.1. The system (5.46) is an observer for the system (5.40) if the following
conditions are satisfied:

• The matrix Γ is full column rank ∀ρ ∈Θ

• The pair (Aρ−QρMρ,C) is detectable ∀ρ ∈ Θ, where Qρ = EΓ−1 if ny = nd, and
Qρ = EΓ† if ny > nd, Γ† is the pseudo inverse of Γ

• The parameter varying matrix (Aρ−QρMρ−LρC) is stable ∀ρ ∈Θ
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Proof. The state estimation error is defined as e (t) = z (t)− ẑ (t) and the unknown input
estimation error ed (t) = d (t)− d̂ (t). The derivative of the error is

ėz (t) = ż (t)− ˙̂z (t)
= Aρz (t)+Eρd (t)− (Aρ−QρMρ−LρC) ẑ (t)−QρY (t)−Lρyz (t)
= (Aρ−QρMρ−LρC)e (t)+ (Eρ−QρΓρ)d (t)

(5.47)

Under the condition that the matrix Γ is full column rank, Γ† (Γ−1 if Γ is square) exists and
ensures that Eρ−QρΓρ = 0, the state estimation dynamics becomes

ėz (t) = (Aρ−LρC−QρMρ)e (t) (5.48)

From the condition that the pair (Aρ−QρMρ,C) is detectable ∀ρ ∈ Θ, the gain matrix
Lρ can be computed in order to ensure the asymptotic stability of the system (5.48) which
ensures that state of the observer converges asymptotically to the state of the system. The
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Figure 5.14: Unknown Input Observer for dynamic system

unknown input estimation can be computed as follows

ed (t) = d (t)− d̂ (t) = −Γ−1
ρ Mρez (t) (5.49)

which ensures that ed converges towards 0 when ez (t)→ 0. The structure of UIO in (5.46)
is depicted in figure 5.14. �

5.5.3 Convergence analysis and LMI formulation
From (5.48) and (5.49), we have{

ėz (t) = (Aρ−QρMρ−LρC)ez (t)
ed (t) = −Γ−1

ρ Mρez (t)
(5.50)
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In order to derive LMI conditions for design purpose, we next transform the matrices Aρ,
Qρ,M⊂, and Γρ in a polytopic form where the parameters ρ (t) ∈Θ, one obtains

Aρ =
2nρ∑
i=1

µi (ρ (t))Ai

Qρ =
2nρ∑
i=1

µi (ρ (t))Qi

Mρ =
2nρ∑
i=1

µi (ρ (t))Mi

Γρ =
2nρ∑
i=1

µi (ρ (t))Γi

(5.51)

∀ρ (t) ∈Θ and µi (ρ (t)) satisfy the convex sum property

2nρ∑
i=1

µi (ρ (t)) = 1, 0≤ µi (ρ (t))≤ 1, i= 1, ...2nρ , ∀ρ (t) ∈Θ (5.52)

Thus, the gain matrix Lρ can be determined as

Lρ =
2nρ∑
i=1

µi (ρ (t))Li (5.53)

Consequently, the state estimation error dynamics (5.48) can be expressed by

ėz (t) =
2nρ∑
i=1

2nρ∑
j=1

µi (ρ (t))µj (ρ (t)) (Aj−QiMj−LjC)ez (t) (5.54)

Standard LMI for stability can be obtained using a quadratic Lyapunov function in the form

V (ez (t)) = eTz (t)Xez (t) ,X =XT > 0 (5.55)
The time derivative of the Lyapunov function is

V̇ (ez (t)) = ėTz (t)Xez (t)+ eTz (t)Xėz (t) (5.56)

Finally, the derivative of the Lyapunov function V (ez (t)) in (5.56) can be rewritten as

V̇ (ez (t)) = eTz (t) [AρX+XAρ− (QρMρ)
T
X+XQρMρ−CTKT

ρ −KρC]ez (t) (5.57)

where Kρ = LρC.

After computing the time derivative of the Lyapunov function V (ez (t)) and by using the
state estimation error dynamics (5.54) and the convex sum property of the weighting func-
tions in (5.52), sufficient LMI conditions ensuring asymptotic stability are obtained as follows

ATj X+XAj− (QiMj)
T
X+XQiMj−CTKT

j −KjC < 0, i,j = 1...2np (5.58)

where the gains of the observer are obtained from the equation Li =X−1Ki. This solution
ensures the convergence to zero of the state estimation error ez (t), and the unknown input
estimation error ed (t).
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5.5.4 LPV UIO design
The proposed LPV Unknown input observer is based on Linear Matrix Inequality (LMI)
methods. The resolvability of the resulting LMI conditions in this case is quite compromised
due to the number of submodels. The more number of submodel is, the more is conservative-
ness of LMI conditions. In order to reduce this number, we adopt here a simpler model. We
assume that the quadcopter is symmetric and Ix = Iy. We also assume that to the altittude
sub-model of the quadcopter is disturbed the torques d (t) =

[
dϕ dθ dψ

]T
allowing to

write: 
ϕ̈ = Iy−Iz

Ix
θ̇ψ̇− JrΩr

Ix
θ̇+ l

Ix
U2 +

1
Ix
dϕ

θ̈ = Iz−Ix
Ix

ϕ̇ψ̇+ JrΩr
Ix

ϕ̇+ l
Ix
U3 +

1
Ix
dθ

ψ̈ = 1
Iz
U4 +

1
Iz
dψ

(5.59)

We can see that, the dynamic equation of the yaw angle does not contain Euler angles or
their derivatives. Thus, the dynamic of quadcopter attitude can be decomposed into two
subsystems, the roll-pitch subsystem is the first two equations and the yaw subsystem is the
third equation of (5.59).

5.5.4.1 LPV UIO for Roll-Pitch

The system differential equations for ϕ and θ are rewritten from (5.59) as
ϕ̇ = ϕ̇
θ̇ = θ̇

ϕ̈ = Iy−Iz
Ix

θ̇ψ̇− JrΩr
Ix

θ̇+ l
Ix
U2 +

1
Ix
dϕ

θ̈ = Iz−Ix
Ix

ϕ̇ψ̇+ JrΩr
Ix

ϕ̇+ l
Ix
U3 +

1
Ix
dθ

(5.60)

LPV system for roll pitch can be obtained from system differential equation (5.60) as{
ẋ1 (t) = A1ρ1

x1 (t)+B1ρ1
u1 (t)+E1ρ1

d1 (t)

y1 (t) = C1x1 (t)
(5.61)

where varying parameters, state, output, known input, and unknown input are respec-
tively ρ1 (t) =

[
ρ11 ρ12

]T
=
[

1
Ix

Iy−Iz
Ix

ψ̇− JrΩr
Ix

]T
, x1 (t) =

[
ϕ θ ϕ̇ θ̇

]T
;y1 (t) =[

ϕ θ ϕ̇ θ̇
]T

, u1 (t) =
[
U2 U3

]
;d1 (t) =

[
dϕ dθ

]T
and the system matrices are:

A1ρ1
=


0 0 1 0
0 0 0 1
0 0 0 ρ12
0 0 −ρ12 0

 ;B1ρ1
=


0 0
0 0
lρ11 0

0 lρ11



C1 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ;E1ρ1
=


0 0
0 0
ρ11 0
0 ρ11


(5.62)

Define an auxiliary system in the form{
ṡ1 (t) = A1ρ1

s1 (t)+B1ρ1
u1 (t)

ys1 (t) = C1s1 (t)
(5.63)
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Define the errors z1 (t) = x1 (t)− s1 (t) and yz1 (t) = y1 (t)−ys1 (t), the new dynamics{
ż1 (t) = A1ρ1

z1 (t)+E1ρ1
d1 (t)

yz1 (t) = C1z1 (t)
(5.64)

can be obtained from the systems in (5.61) and (5.63), which are free from the known input
u1 (t). Thus, after estimating the state ẑ1 (t), the real state x̂1 (t) is obtained by the equation
x̂1 (t) = ẑ1 (t)+ s1 (t).

Take the derivative of the output yz1 =
[
yz11 yz12 yz13 yz14

]T
as in (5.44a) to (5.44e),

one obtains: 

y
(2)
z11 = ρ12τ4 +ρ11dϕ

y
(2)
z12 = −ρ12τ3 +ρ11dθ

y
(1)
z13 = ρ12τ4 +ρ11dϕ

y
(1)
z14 = −ρ12τ3 +ρ11dθ

(5.65)

Consequently, the relative degrees ri of the ith output, i = 1, ..,4 respectively are r11 = 2,
r12 = 2, r13 = 1, and r14 = 1.

Following the defined vector Y1 (t) =
[
y
(2)
z11 y

(2)
z12 y

(1)
z13 y

(1)
z14

]T
=M1ρ1

z1 (t)+Γ1ρ1
d1 (t) in

(5.45), one obtains

Γ1ρ1
=


ρ11 0
0 ρ11
ρ11 0
0 ρ11

 (5.66)

which satisfies the full column rank condition and its pseudo-inverse is given by

Γ†1ρ1
=

[ 1
2ρ11

0 1
2ρ11

0
0 1

2ρ11
0 1

2ρ11

]
(5.67)

The unknown input decoupling matrix Q1ρ1
is then given by

Q1ρ1
=


0 0 0 0
0 0 0 0
1
2 0 1

2 0
0 1

2 0 1
2

 (5.68)

We can verify that the pair
(
A1ρ1

−Q1ρ1
M1ρ1

,C1
)
is detectable, where the matrix M1ρ1

and A1ρ1
−Q1ρ1

M1ρ1
are respectively

M1ρ1
=


0 0 0 ρ12
0 0 −ρ12 0
0 0 0 ρ12
0 0 −ρ12 0


A1ρ1

−Q1ρM1ρ1
=

[
02 I2
02 02

] (5.69)

Finally, the gain matrix L1ρ of the UIO can be calculated such that the parameter varying
matrix A1ρ1

−Q1ρ1
M1ρ1

−L1ρ1
C2 is stable ∀ρ11,ρ12 ∈ Θρ1 by solving LMIs as in (5.58),

where Θρ1 is the hyper-rectangle for ρ11 and ρ12 which is defined in (5.38).
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5.5.4.2 Linear Parameter Varying (LPV) Unknown Input Observer (UIO) for
Yaw

The system differential equations for ψ are rewritten from (5.59) as{
ψ̇ = ψ̇
ψ̈ = 1

Iz
U4 +

1
Iz
dψ

(5.70)

LPV system for yaw can be obtained from system differential equation (5.70) as{
ẋ2 (t) = A2ρ2

x2 (t)+B2ρ2
u2 (t)+E2ρ2

d2 (t)
y2 (t) = C2x2 (t)

(5.71)

where varying parameters, state, output, known input, and unknown input are respectively
ρ2 (t) = [ρ21] =

[
1
Iz

]
;x2 (t) =

[
ψ ψ̇

]T
;y2 (t) =

[
ψ ψ̇

]T
; u2 (t) = [U4] ;d2 (t) = [dψ] and

the system matrices are

A2ρ2
=

[
0 1
0 0

]
;B2ρ2

= E2ρ2
=

[
0
ρ21

]
;C2 =

[
1 0
0 1

]
(5.72)

Define an auxiliary system in the form{
ṡ2 (t) = A2ρ2

s2 (t)+B2ρ2
u2 (t)

ys2 (t) = C2s2 (t)
(5.73)

Define the errors z2 (t) = x2 (t)− s2 (t) and yz2 (t) = y2 (t)−ys2 (t), the new dynamics{
ż2 (t) = A2ρ2

z2 (t)+E2ρ2
d (t)

yz2 (t) = C2z2 (t)
(5.74)

can be obtained from the systems in (5.71) and (5.73), which are free from the known input
u2 (t). Thus, after estimating the state ẑ2 (t), the real state x̂2 (t) is obtained by the equation
x̂2 (t) = ẑ2 (t)+ s2 (t).

Take the derivative of the output yz2 =
[
yz21 yz22

]T
as in (5.44a) to (5.44e), one obtains:

 y
(2)
z21 = ρ21dψ

y
(1)
z21 = ρ21dψ

(5.75)

Consequently, the relative degrees ri of the ith, i= 1,2 output respectively are r21 = 2, r22 = 1.

Following the defined vector Y2 =
[
y
(2)
z21 y

(1)
z22

]T
in (5.45), one obtains

Γ2ρ2
=

[
ρ21
ρ21

]
(5.76)

which satisfies the full column rank condition and the pseudo-inverse exists and given by

Γ†2ρ1
=
[ 1

2ρ21
1

2ρ21

]
(5.77)
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The unknown input decoupling matrix Q1ρ is then given by

Q2ρ2
=

[
0 0
1
2

1
2

]
(5.78)

We can verify that the pair
(
A2ρ2

−Q2ρ2
M2ρ2

,C2
)
is detectable, where the matrix M2ρ2

and A2ρ2
−Q2ρ2

M2ρ2
are respectively

M2ρ2
=

[
0 0
0 0

]
;A2ρ2

−Q2ρ2
M2ρ2

=

[
0 1
0 0

]
(5.79)

Finally, the gain matrix L2ρ2
of the UIO can be calculated such that the parameter varying

matrix A2ρ2
−Q2ρ2

M2ρ2
−L2ρ2

C2 is stable ∀ρ21 ∈ Θρ2 by solving LMIs as in (5.58), where
Θρ2 is the hyper rectangle for ρ21 which is defined in (5.38).

Remark 5.3. As we can see the system matrices in (5.62) and (5.72), the state repeats
exactly the output of the system. It means that we use the information of the measured
outputs to estimate itself. This observer helps to recover the real state of the system efficiently
in case of disturbed outputs. Furthermore, this observer allows us to estimate the unknown
input that affects the system. The information about unknown inputs is really useful for
improving the quality of quadcopter control.

Remark 5.4. Suppose that each actuator thrust Laplace transform is given by

Ti (s) =
Ki

1+ τis
Vi (s) , i= 1,2,3,4 (5.80)

where Ti is the Laplace transform of the thrust Ti (t), Vi is the pulse width modulation (PWM)
voltage, Ki is the armature gain, and τi is the time constant of the ith, i= 1, ..,4 rotor. The
corresponding differential equation is

Ṫi = −
1
τi
Ti+

Ki

τi
vi (5.81)

We also known that, the thrust Ti (t) is a function of the rotor speed

Ti (t) = kfω
2
i (5.82)

where kf is the constant coefficient.

Consequently, based on the PWM applied to each rotor, the rotor speed ωi can be estimated.
Thus, the residual speed Ωr = ω2 +ω4−ω1−ω3 can also be estimated.

Remark 5.5. Due to Remark 5.3 and Remark 5.4, one can see that all the varying param-
eters for LPV UI observers designed in 5.5.4.1 and 5.5.4.2 can be measured.

5.5.4.3 LPV UIO for Altitude

The system differential equations for altitude z are rewritten from (3.54c) as{
ż = ż

z̈ = cosϕcosθ
m U1−g+ 1

mdz
(5.83)



116 Chapter 5. Nonlinear robust control and state estimation of UAVs

LPV system for altitude can be obtained from system differential equation (5.83) as{
ẋ3 (t) = A3ρ3

x3 (t)+B3ρ3
u1 (t)+E3ρ3

d3 (t)
y3 (t) = C3x3 (t)

(5.84)

where varying parameters, state, output, known input, and unknown input are respectively
ρ3 (t) =

[
cosϕcosθ

m

]
;x3 (t) =

[
z ż

]T
;y3 (t) =

[
z ż

]T
; u3 (t) = [U1] ;d3 (t) = [dz] and the

system matrices are

A3ρ3
=

[
0 1
0 0

]
;B3ρ3

= E3ρ3
=

[
0
ρ3

]
;C3 =

[
1 0
0 1

]
(5.85)

Define an auxiliary system in the form{
ṡ3 (t) = A3ρ3

s3 (t)+B3ρ3
u3 (t)

ys3 (t) = C3s3 (t)
(5.86)

Define the errors z3 (t) = x3 (t)− s3 (t) and yz3 (t) = y3 (t)−ys3 (t), the new dynamics{
ż3 (t) = A3ρ3

z3 (t)+E3ρ3
d3 (t)

yz3 (t) = C3z3 (t)
(5.87)

can be obtained from the systems in (5.84) and (5.86), which are free from the known input
u3 (t). Thus, after estimating the state ẑ3 (t), the real state x̂3 (t) is obtained by the equation
x̂3 (t) = ẑ3 (t)+ s3 (t).

Take the derivative of the output yz3 =
[
yz31 yz32

]T
as in (5.44a) to (5.44e), one obtains: y

(2)
z31 = ρ3dψ

y
(1)
z32 = ρ3dψ

(5.88)

Consequently, the relative degrees ri of the ith, i= 1,2 output respectively are r31 = 2, r32 = 1.

Following the defined vector Y3 =
[
y
(2)
z31 y

(1)
z32

]T
in (5.45), one obtains

Γ3ρ3
=

[
ρ3
ρ3

]
(5.89)

which satisfies the full column rank condition and the pseudo-inverse exists and given by

Γ†3ρ3
=
[ 1

2ρ3
1

2ρ3

]
(5.90)

The unknown input decoupling matrix Q3ρ is then given by

Q3ρ3
=

[
0 0
1
2

1
2

]
(5.91)

We can verify that the pair
(
A3ρ3

−Q3ρ3
M3ρ3

,C3
)
is detectable, where the matrix M3ρ3

and A3ρ3
−Q3ρ3

M3ρ3
are respectively

M3ρ3
=

[
0 0
0 0

]
;A3ρ3

−Q3ρ3
M3ρ3

=

[
0 1
0 0

]
(5.92)

Finally, the gain matrix L3ρ3
of the UIO can be calculated such that the parameter varying

matrix A3ρ3
−Q3ρ3

M3ρ3
−L3ρ3

C3 is stable ∀ρ3 ∈ Θρ3 by solving LMIs as in (5.58), where
Θρ3 is the hyper-rectangle for ρ3 which is defined in (5.38).
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5.5.5 Simulation results
The quadcopter parameters for simulation are listed in the following table 5.2.

Table 5.2: Quadcopter parameters definition

Parameter Name Value Unit
m Quadcopter mass 2.0 Kg
l Arm length 0.23 m
b Thrust coefficient 7.73213×10−6 N · s2

d Drag coefficient 1.27513×10−7 N ·m · s2

Ix,Iy Inertia on x and y axis 0.0142 Kg ·m2

Iz Inertia on z axis 0.0267 Kg ·m2

Jr Rotor inertia 8.5×10−4 Kg ·m2

ωi Rotor speed [0,500] rad · s−1

Based on quadcopter’s parameters in table 5.2, and the definition of varying parameters in
subsections 5.5.4.1 and 5.5.4.2, the ranges of varying parameters are shown in the table 5.3.
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Figure 5.15: Variations of mass and moments of inertia
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Figure 5.16: States z,ϕ,θ,ψ vs estimated
states ẑ, ϕ̂, θ̂, ψ̂

0 5 10 15 20 25 30
-1

0

1

2

0 5 10 15 20 25 30
-400

-200

0

200

0 5 10 15 20 25 30

-400

-200

0

0 5 10 15 20 25 30

Time(s)

-400

-200

0

Figure 5.17: States ż, ϕ̇, θ̇, ψ̇ vs estimated
states ˙̂z, ˙̂ϕ, ˙̂θ, ˙̂ψ

Table 5.3: Variation ranges of varying parameters

ρ
i

ρi
ρ11 47.09580 84.0336
ρ12 35.84230 44.8430
ρ21 -74.1176 74.1176

For simulation, the mass of quadcopter is varying abruptly between 5s and 25s from 2 (kg)
to 1.12 (kg). Along with the quadcopter’s mass variation, the moments of inertia Ix,Iy,Iz
around the three axes Ix= Iy ∈

[
0.0119 0.0142

][
kg ·m2

]
, and Iz ∈

[
0.0223 0.0267

][
kg ·m2

]
abruptly change as in Fig. 5.15.

The actual and estimated states of the quadcopter for the simulation with the step reference
trajectories of ϕ,θ, and ψ are shown in Fig. 5.16 and Fig. 5.17, while the actual and
estimated disturbances (random disturbances) and their differences are shown in Fig. 5.18.
The estimated state and disturbances converge to the actual values in about 7s.
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Figure 5.18: Unknown Inputs estimation
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Figure 5.19: States z,ϕ,θ,ψ vs estimated
states ẑ, ϕ̂, θ̂, ψ̂

In Fig. 5.19, 5.20, and 5.21 are shown the results for the case of step reference signals and
constant disturbances.

Different simulations using multiple reference (impulse, step, random, and sin) and different
types of disturbances (impulse, step, random, and sin) have shown a satisfactory performance
of the proposed UIO.
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Figure 5.20: States ż, ϕ̇, θ̇, ψ̇ vs estimated
states ˙̂z, ˙̂ϕ, ˙̂θ, ˙̂ψ
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Figure 5.21: Unknown Inputs estimation
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The same simulations for slow variation of mass are also conducted, the state and unknown
inputs are also well estimated.

5.6 Attitude/Altitude LPV H∞ State feedback Con-
troller

5.6.1 System model and problem statement
The aim of this section is to propose a simple design procedure of LPV state feedback for
the attitude/altitude stabilization problem of the mass-varying quadrotor aircraft. In our
context, the main objective of the state feedback synthesis is to handle the mass, moments
of inertia and rotors velocity variations which are assumed to be measured. This is achieved
using a LPV formalism which allows to obtain a Takagi-Sugeno (TS) model with 16 sub-
models depending on the extremal values of the varying parameters. The controller is then
synthesized on the basis of a 16 sub-models system. It allows us to perform both a reference
trajectory tracking and disturbance rejection for attitude/altitude control of a mass-varying
quadcopter. First, an augmented state which includes the integration of the trajectory
errors for improving tracking control is computed. Next, to penalize the control inputs of the
attitude/altitude system, weight functions are also added to the previous augmented system.
Then, an LPV H∞ state-feedback controller is designed by solving a set of Linear Matrix
Inequality (LMI) obtained from the Bounded Real Lemma and LMI region characterization.
Simulations are conducted for several types of disturbances (sine, impulse, step, and random)
and variations (slow and abrupt) of mass and moments of inertia. The reference path
(sine, impulse, and step) is well-followed showing the ability of the design method to handle
different performance objectives.

The remainder of the section is organized as follows: Subsection 5.6.1.1 presents the dy-
namical model of the quadcopter and some preliminary concepts for designing the objective
of the multi-objective controller. Subsection 5.6.3 is dedicated for designing the LPV state
feedback controller for the attitude/altitude of the quadcopter. The controller is practically
synthesized in subsection 5.6.4, while simulation results are presented in subsection 5.6.5.
Some remarks on the simulation results are shown in subsection 5.6.6.

5.6.1.1 Quadrotor model

A quadcopter is a helicopter which consists of a rigid cross frame equipped with four rotors
as shown in Fig. 5.22. Its four rotors generate four independent thrusts. In order to avoid
the yaw drift due to the reactive torques, the quadrotor aircraft is configured such that
the set of rotors M2,M4 (left-right) revolve clockwise (CW) at angular speeds ω2 and ω4,
respectively generating thrusts of τ2 and τ4, while the pair of rotors M1,M3 (front-rear)
rotates at angular speeds ω1 and ω3 in counterclockwise (CCW) direction generating thrusts
of τ1 and τ3. The direction of rotation of the rotors are fixed (i.e., ωi ≥ 0, i ∈ {1,2,3,4}).
The forward/backward, left/right and the yaw motions are achieved through a differential
control strategy of the thrust generated by each rotor.

If a yaw motion is desired, the thrust of one set of rotors has to be reduced and the thrust
of the other set are increased while maintaining the same total thrust to avoid an up (down)
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motion. Therefore, the yaw motion is then realized in the direction of the induced reactive
torque. Besides, forward (backward) motion is achieved by pitching in the desired direction
by increasing the rear (front) rotor thrust and decreasing the front (rear) rotor thrust to
maintain the total thrust. Finally, a sideways motion is achieved by rolling in the desired
direction by increasing the left (right) rotor thrust and decreasing the right (left) rotor thrust
to maintain the total thrust.

Let I = {ex,ey,ez} denotes an inertial frame, and A = {e1,e2,e3} denotes a frame rigidly
attached to the aircraft as shown in Fig. 5.22.

The mathematical model of the quadcopter was generated by the techniques of both Euler-
Newton [30] and Euler-Lagrange [31], given as follows:

ẍc = (sinψ sinϕ+ cosψ sinθ cosϕ) U1
m

ÿc = (sinψ sinθ cosϕ− cosψ sinϕ) U1
m

z̈c = (cosθ cosϕ) U1
m −g

ϕ̈ = Iy−Iz
Ix

θ̇ψ̇− JrΩr
Ix

θ̇+ l
Ix
U2

θ̈ = Iz−Ix
Iy

ϕ̇ψ̇+ JrΩr
Iy

ϕ̇+ l
Iy
U3

ψ̈ = Ix−Iy
Iz

ϕ̇θ̇+ 1
Iz
U4

(5.93)

where m denotes the mass of the quadcopter, (xc,yc,zc) are the three positions of the center
of mass, (ϕ,θ,ψ) are the three Euler angles, Ix, Iy, and Iz are the moments of inertia w.r.t the
three axis x, y, and z respectively; Jr is the moment of inertia of the propellers, l represents
the distance from the rotors to the center of mass of the quadrotor aircraft. Ωr is the overall
residual propeller angular speed, b and d are thrust and drag coefficients. The quadcopter’s
inputs are: the thrust force (U1), three torques (roll torque (U2), pitch torque (U3), and
yaw torque (U4)). The force and torques are related to the rotor speed as follows:

U1 = kf
(
ω2

1 +ω2
2 +ω2

3 +ω2
4
)
=

4∑
i=1

Ti

U2 = kf
(
ω2

4−ω2
2
)
= T4−T2

U3 = kf
(
ω2

3−ω2
1
)
= T3−T1

U4 = kz
(
−ω2

1 +ω2
2−ω2

3 +ω2
4
)

= (T2 +T4)− (T1 +T3)

(5.94)

and
Ωr = ω1−ω2 +ω3−ω4 (5.95)

where ωi for i= 1,2,3,4 denotes the i-th rotor velocity, and Ti for i= 1,2,3,4 are the thrust
generated by the i-th rotor and the thrust Ti (t) is a function of the rotor speed defined by

Ti (t) = kfω
2
i (5.96)

where kf and kz are the constant coefficients.

The first three equations of the system differential equations in (5.93) denote the translational
movement, while the last three present the rotational movement of the quadcopter. We
restrict the purpose of this section to the attitude tracking. Thus, the equations related to
the longitudinal and lateral motions of the quadcopter in (5.93) are removed.
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5.6.1.2 Actuator model

Adopting an actuator model has twofold. First of them is to reflect the low pass filtering of
each actuator with a time constant κi, i = 1,2,3,4. The second allows us to prevent the B
matrix of the obtained state-space representation to be parameter dependent. Each actuator
thrust Laplace transform is given by

Ti (s) =
Ki

1+κis
Vi (s) , i= 1,2,3,4 (5.97)

Ti is the Laplace transform of the thrust Ti (t), Vi is the pulse width modulation (PWM)
voltage applied to rotor i, and Ki is the armature gain.

The corresponding differential equation is

Ṫi = −
1
κi
Ti+

Ki

κi
Vi (5.98)

Remark 5.6. Based on the PWM applied to each rotor, the rotor speed ωi can be estimated.
Thus, the residual speed Ωr = ω2 +ω4−ω1−ω3 can also be estimated.

5.6.1.3 Simplified model

The previous model still exhibits too many parameters and its polytopic representation
will involve at least 26 sub-models. If one considers control synthesis using LMI methods,
the solvability of the resulting LMI conditions in this case is quite compromised due to
conservativeness of conditions which will request the common stabilization of a huge number
of sub-models. In order to reduce this number, we adopt here a simplified model. In
particular, suppose that Ix = Iy and ϕ and θ are small so that cosϕcosθ ≈ 1.

We also assume that the attitude/altitude subsystem of the quadcopter is affected by torques
dϕ, dθ, dψ, and force dz allowing to write:

ϕ̈ = −JrΩr
Ix

θ̇+ l
Ix
(T4−T2)+

1
Ix
dϕ

θ̈ = JrΩr
Ix

ϕ̇+ l
Ix
(T3−T1)+

1
Ix
dθ

ψ̈ = (T4+T2)−(T3+T1)
Iz

+ 1
Iz
dψ

z̈c = T1+T2+T3+T4
m + 1

mdz−g

(5.99)

Note that g is also the disturbance to the system. Then the disturbances can be written in
the vector form as d (t) =

[
dϕ dθ dψ dz g

]T
.

Then, the LPV model of attitude/altitude sub-system in (5.93) is performed as:

ẋ (t) = A (Ix,Iz,Ωr,m)x (t)+Bu (t)+E (Ix,Iz,Ωr,m)d (t) (5.100)
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where state x=
(
ϕ,θ,ψ,zc, ϕ̇, θ̇, ψ̇, żc,T1,T2,T3,T4

)T
has twelve components, the control in-

put vector is composed of the four motor voltages u = (v1,v2,v3,v4)
T , and the system ma-

trices A (Ix,Iz,Ωr,m), B (Ix,Iz,Ωr,m), and E (Ix,Iz,Ωr,m) are

A (Ix,Iz,Ωr,m) =
[
A11 A12 A13

]
B (Ix,Iz,Ωr,m) =

[
08×4
B∗

]

E (Ix,Iz,Ωr,m) =

 04×5
E∗

04×5


where

A11 = [012×4] ; A12 =



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 Ix−Iz

Ix
ψ̇− Jr

Ix
Ωr 0 0

−Ix−IzIx
ψ̇+ Jr

Ix
Ωr 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0



A13 =



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 −l/Ix 0 l/Ix

−l/Ix 0 l/Ix 0
−l/Iz l/Iz −l/Iz l/Iz
1/m 1/m 1/m 1/m
−1/κ1 0 0 0

0 −1/κ2 0 0
0 0 −1/κ3 0
0 0 0 −1/κ4



B∗ =


K1/κ1 0 0 0

0 K2/κ2 0 0
0 0 K3/κ3 0
0 0 0 K4/κ4

 ; E∗ =


1/Ix 0 0 0 0

0 1/Ix 0 0 0
0 0 1/Iz 0 0
0 0 0 1/m −1


Note that, as described above, the system matrix B is time invariant.

Thus a TS model with 16 sub-models could be obtained depending on the extremal values of
the parameters. This representation is called nonlinear sector approximation [214]. In fact,
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we define the varying parameters as follows

ρ1 =
1
Ix
∈
[ 1
Ix

1
Ix

]
=
[
ρ1 ρ1

]
ρ2 =

1
Iz
∈
[ 1
Iz

1
Iz

]
=
[
ρ2 ρ2

]
ρ3 =

1
m ∈

[ 1
m

1
m

]
=
[
ρ3 ρ3

]
ρ4 =

Ix−Iz
Ix

ψ̇− Jr
Ix

Ωr ∈
[
ρ4 ρ4

] (5.101)

The main objective of the control design procedure is to synthesize a state feedback controller
that could be scheduled according to mass, moment of inertias and rotor speeds variations.
As it can be seen from the simplified quadrotor model, it is linear in all the parameters. One
can thus obtain a LPV model depending on four parameters, the moment of inertia with
respect to x axis Ix ∈

[
Ix Ix

]
, the moment of inertia with respect to z axis Iz ∈

[
Iz Iz

]
,

the residual velocity Ωr ∈
[

Ωr Ωr

]
, and the mass m ∈

[
m m

]
of the quadcopter.

Then a sixteen sub-models TS system is achieved

ẋ (t) =
16∑
i=1

µi (Āix (t)+Bu (t)+ Ēid (t)) (5.102)

where µi ≥ 0,1≤ i≤ 16,∑16
1 µi = 1 and

µ1(ρ(t)) =m11m21m31m41; µ2(ρ(t)) =m11m21m31m42
µ3(ρ(t)) =m11m21m32m41; µ4(ρ(t)) =m11m21m32m42
µ5(ρ(t)) =m11m22m31m41; µ6(ρ(t)) =m11m22m31m42
µ7(ρ(t)) =m11m22m32m41; µ8(ρ(t)) =m11m22m32m42
µ9(ρ(t)) =m12m21m31m41; µ10(ρ(t)) =m12m21m31m42
µ11(ρ(t)) =m12m21m32m41; µ12(ρ(t)) =m12m21m32m42
µ13(ρ(t)) =m12m22m31m41; µ14(ρ(t)) =m12m22m31m42
µ15(ρ(t)) =m12m22m32m41; µ16(ρ(t)) =m12m22m32m42

with
m11(ρ(t)) =

ρ1−ρ1
ρ1−ρ1

; m12(ρ(t)) = 1−m11

m21(ρ(t)) =
ρ2−ρ2
ρ2−ρ2

; m22(ρ(t)) = 1−m21

m31(ρ(t)) =
ρ3−ρ3
ρ3−ρ3

; m32(ρ(t)) = 1−m31

m41(ρ(t)) =
ρ4−ρ4
ρ4−ρ4

; m42(ρ(t)) = 1−m41

The matrices Ai,1≤ i≤ 16 are obtained from

Ā1 = A
(
ρ1,ρ2,ρ3,ρ4

)
; Ā2 = A

(
ρ1,ρ2,ρ3,ρ4

)
Ā3 = A

(
ρ1,ρ2,ρ3,ρ4

)
; Ā4 = A

(
ρ1,ρ2,ρ3,ρ4

)
Ā5 = A

(
ρ1,ρ2,ρ3,ρ4

)
; Ā6 = A

(
ρ1,ρ2,ρ3,ρ4

)
Ā7 = A

(
ρ1,ρ2,ρ3,ρ4

)
; Ā8 = A

(
ρ1,ρ2,ρ3,ρ4

)
Ā9 = A

(
ρ1,ρ2,ρ3,ρ4

)
; Ā10 = A

(
ρ1,ρ2,ρ3,ρ4

)
Ā11 = A

(
ρ1,ρ2,ρ3,ρ4

)
; Ā12 = A

(
ρ1,ρ2,ρ3,ρ4

)
Ā13 = A

(
ρ1,ρ2,ρ3,ρ4

)
; Ā14 = A

(
ρ1,ρ2,ρ3,ρ4

)
Ā15 = A

(
ρ1,ρ2,ρ3,ρ4

)
; Ā16 = A (ρ1,ρ2,ρ3,ρ4)

(5.103)
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The output vector y =
[
ϕ θ ψ z

]T
is constituted by the quadrotor attitude/altitude

position which are obtained from
y = Cx+Du (5.104)

where

C =


1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0


and

D = [04×4]

Figure 5.22: Quadcopter

P(s)

K
u x

w z

Figure 5.23: Control structure

Remark 5.7. Suppose that the quadcopter is attached with n objects o1, ...,on, and the mass
of quadcopter and objects are mq, mo1 , ...,mon respectively. Therefore, the mass of the system
consists of the quadcopter and n objects can be easily calculated by the equation m =mq+
mo1 + ...+mon. When oi - the i-th object is detached from the quadcopter for i= n, ...,1, the
remaining mass of the system can be recalculated.

Depending on the mass and shape of each object, ones can calculate its moments of inertia
around the axes passing through its center of mass. When attaching these objects to the
quadcopter, based on their shapes and positions with respect to the center of gravity G of
the quadcopter, their the moments of inertia with respect to the three axes Ix,Iy,Iz of the
quadcopter can be calculated. Thus the moment of inertia of the system which contains
quadcopter and n objects o1, ...,on relative to Ix,Iy,Iz can be calculated.

Another online approach to estimate the geometric and inertia parameters of a multirotor
aerial vehicle is already developed in [239].

Remark 5.8. From Remarks 5.6 and 5.7 one can see that all the varying parameters can
be estimated in real time.
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5.6.2 Preliminary concepts
Suppose the polytopic LPV system is of the form

ẋ (t) = A (ρ (t))x (t)+B1 (ρ (t))w (t)+B2u (t)
z (t) = C (ρ (t))x (t)+D11 (t)w (t)+D12u (t)
x (0) = x0

(5.105)

where x ∈ Rn is the system state, u ∈ Rm is the control input, w ∈ Rp is the exogenous
input, and z ∈Rq is the controlled output. The ρ-parameter dependent system matrices is
defined as

A(ρ(t)) =
N∑
i=1

µi(ρ(t))Ai; B1(ρ(t)) =
N∑
i=1

µi(ρ(t))B1i

C1(ρ(t)) =
N∑
i=1

µi(ρ(t))C1i ; D11(ρ(t)) =
N∑
i=1

µi(ρ(t))D11i

while B2 and D12 are constant matrices.

The purpose of this section is to design a LPV state-feedback control law

u (t) =
N∑
i=1

µi (ρ (t))Kix (t) (5.106)

such that the following conditions are satisfied:

• TheH∞ norm of the system (5.105) from w to z (as depicted in Fig. 5.23) is guaranteed
to be smaller than some predefined value γ > 0 for tracking and disturbance rejection
(robustness). This condition is guaranteed by the following Theorem 5.2 below

• Closed loop poles are placed in a predefined LMI region [202] for ensuring the ability of
fast and well-damped transient response. The closed-loop poles satisfy the condition
Re
(
λ
(
A+B2Y X−1

))
<−α for α > 0

Re
(
λ
(
A+B2Y X−1

))
<−α, α > 0 ⇔∃X =XT � 0

s.t 2αX+He (AiX+B2Yi) ≺ 0, i= 1, ...,N
(5.107)

where Re (∗) defines the real part of the complex number ∗.

Theorem 5.2. (Theorem 3.4.1 in [46]) The LPV system (5.105) is quadratically stabilizable
using a state-feedback of the form (5.106) if there exist a matrix X ∈ Sn�0, matrices Yi ∈
m×n, i= 1, ...,N , and a scalar γ > 0 such that the LMIs He (AiX+B2Yi) (∗)T (∗)T

B1i
T −γIp (∗)T

CiX+D12Yi D11i −γIq

≺ 0 (5.108)

hold for all i = 1, ...,N . Moreover, the state-feedback control law given by (5.106) with the
matrices Ki = YiX

−1 ensures that the L2-gain of the transfer w→ z is smaller than γ > 0
for all µ : R≥0→ ΛN . �

Then the state-feedback control law given by (5.106) with the matrices Ki = YiX
−1 satisfy

Theorem 5.2 and equation (5.107) ensures that the L2-gain of the transfer w→ z is smaller
than γ > 0 for all µ : R≥0 → ΛN and the poles of the close loop system satisfy condition
Re
(
λ
(
A+B2Y X−1

))
<−α, α > 0.
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5.6.3 LPV Attitude State feedback controller design
In this subsection, we aim to design a H∞ LPV feedback control scheme for the atti-
tude/altitude stabilization of the quadrotor aircraft.

First, the output y=
[
ϕ θ ψ zc

]T
of the system must track r=

[
ϕref θref ψref zref

]T
,

a reference trajectory . Therefore, to achieve these objectives, the outputs of the integrator
are considered as extra state variables xe =

[
xϕ xθ xψ xz

]T
as

xϕ =
t∫

0
eϕ (δ)dδ, eϕ = ϕref −ϕ

xθ =
t∫

0
eθ (δ)dδ, eθ = θref − θ

xψ =
t∫

0
eψ (δ)dδ, eψ = ψref −ψ

xz =
t∫

0
ez (δ)dδ, ez = zref − zc

(5.109)

Define the error signal e= y− r. The error signal e can be rewritten in the matrix form as

e= y− r = Cx− I4r (5.110)

Second, for penalizing the outputs U1,U2,U3,U4 of the system, the weight functions Wui , i=
1,2,3,4 are added to the system as depicted in Fig (5.24). The system matrices of weight
functions Wui , i= 1,2,3,4 are Aui , Bui , Cui , and Dui .

Then, the dynamic of all the weighting functionsWu1 ,Wu2 ,Wu3 andWu4 can be constituted
as {

ẋu = Auxu+Buu
yu = Cuxu+Duu

(5.111)

where xu =
[
xu1 xu2 xu3 xu4

]T
is the state, u =

[
U1 U2 U3 U4

]T
represents the

input, yu =
[
z1 z2 z3 z4

]T
is the outputs of weight functions, and the system matrices

of the weight function in (5.111) can be deducted as follows:

∆u =


∆u1 0 0 0
0 ∆u2 0 0
0 0 ∆u3 0
0 0 0 ∆u4

 , ∆ ∈ {A,B,C,D}

The augmented system with the new states, weight functions is depicted in Fig. 5.24.

Define w =
[
rT dT

]T
, z =

[
yu
T eT

]T
, and x̃=

[
xT xe

T xu
T
]T

respectively as the
exogenous input, exogenous output, and state of the augmented affine parameter-dependent.
The affine parameter-dependent of the system differential equations in (5.100) with aug-
mented states and weight functions can be regathered from (5.100), (5.104), (5.110), and
(5.111) as follows:  ˙̃x =

16∑
i=1

µi (ρ (t))
(
Ãix̃+ B̃1iw+ B̃2u

)
z = C1x̃+D11w+D12u

(5.112)
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where

Ãi =

 Āi 0 0
−C 0 0
0 0 Au

 ;B̃1i =

 0 Ēi
−I4 0

0 0

 ;B̃2 =

 B̄i
0
Bu


C1 =

[
0 0 Cu
C 0 0

]
;D11 =

[
0 0
−I4 0

]
;D12 =

[
Du

0

]

The aim now is to design the LPV H∞ optimal state-feedback controller of the form

u (t) =

 16∑
i=1

µi (ρ (t))Ki

 x̃ (t) (5.113)

making the closed-loop system

˙̃x (t) =
16∑
i=1

µi (ρ (t))
((
Ãi+ B̃2Ki

)
x̃ (t)+ B̃1iw

)
(5.114)

robustly asymptotically stable.

Define the LMIs for H∞ optimal state-feedback controller for all TS sub model with common
matrix X and each Yi for each TS sub model based on Theorem 5.2 and poles location
conditions in (5.107) as

minimize
γ,X,Y1,...,Y16

γ

subject to
X =XT � 0
He

(
AiX+B2Yi

)
(∗)T (∗)T

B
T
1i −γI (∗)T

C1iX+D12Yi D11i −γI

≺ 0

He
(
AiX+B2Yi

)
+ 2αX ≺ 0; i= 1..16

(5.115)

By solving the LMIs in (5.115), the optimal H∞ state feedback controller with the smallest
attenuation level γ > 0 for the attitude/altitude sub system of the mass-varying quadcopter
can be formulated as

K (ρ) =
16∑
i=1

µi (ρ (t))YiX
−1 (5.116)

5.6.4 Practical controller design
We consider Takagi-Sugeno (TS) model where the mass varies in the interval interval [m,m]
with m= 1.12 (kg) and m= 2.0 (kg). The moments of inertia Ix = Iy varies in the interval[
Ix,Ix

]
with Ix = 0.0119

(
kg.m2

)
and Ix = 0.0142

(
kg.m2

)
. The moments of inertia Iz varies

in the interval
[
Iz,Iz

]
with Iz = 0.0223

(
kg.m2

)
and Iz = 0.0267

(
kg.m2

)
. The total residual

angular speed Ωr of motors varies in the interval
[
Ωr,Ωr

]
with Ωr =−1000

[
rad · s−1

]
and

Ωr = 1000
[
rad · s−1

]
. The controller is designed using the procedure developed above.
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Figure 5.24: Block diagram of the attitude robust controller with augmented states and weight
functions

The quadcopter parameters for simulation are listed in the following table 5.4. Based on the
quadcopter’s parameters in table 5.4, and the definition of varying parameters in subsections
5.6.1.3, the ranges of varying parameters are shown in the table 5.5.
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Table 5.4: Quadcopter parameters definition

Parameters Name Value Unit
m Quad. mass 2.0 Kg
l Arm length 0.23 m
b Thrust coef. 7.73213×10−6 N .s2

d Drag coef. 1.27513×10−7 N .m.s2

Ix,Iy Inertia vs x, y 0.0142 Kg.m2

Iz Inertia vs z 0.0267 Kg.m2

Jr Rotor inertia 8.5×10−4 Kg.m2

ωi Rotor speed [0,500] rad/s
τi Rotor time const 15 rad/s
g Gravity accel. 9.81 m/s2

5.6.5 Testing scenario
In simulations, the mass of the quadcopter is varying abruptly between 5s and 25s from
2 (kg) to 1.12 (kg). Along with the quadcopter’s mass variation, the moments of inertia
Ix,Iy,Iz for Ix = Iy ∈

[
0.0119 0.0142

]
, and Iz ∈

[
0.0223 0.0267

][
kg ·m2

]
also abruptly

change as in Fig. 5.25. Fig. 5.26 shows the responses of ϕ, θ, ψ and z when the reference

Table 5.5: Variation ranges of varying parameters

ρ
i
, i= 1,2,3,4 ρi, i= 1,2,3,4

ρ1 47.09580 84.0336
ρ2 35.84230 44.8430
ρ3 0.5000 0.89290
ρ4 -74.1176 74.1176

signals are impulses and the disturbances dϕ, dθ, dψ, and dz are impulses. Fig. 5.27 shows
the responses of ϕ, θ, ψ and z when the reference signals are random, the z reference signal is
impulse, and the disturbances dϕ, dθ, dψ, and dz are random. Fig. 5.28 shows the responses
of ϕ, θ, ψ when the reference signals φ,θ,ψ are, the z reference signal is step, and the
disturbances dϕ, dθ, dψ, and dz are also sine.

The simulation results suggest that the proposed controller works well for various reference
signals (impulse, random, constant, and sine) and several types of disturbances (impulse,
random, constant, and sine).

The same simulation for slow variation of mass is also conducted, the reference paths are
also well-followed.
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Figure 5.25: Variations of Mass, Ix, Iy, and
Iz
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Figure 5.26: Impulse references ϕ, θ, ψ, im-
pulse reference z, and impulse disturbances dϕ,
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Figure 5.27: Random references ϕ, θ, ψ, im-
pulse reference z, and random disturbances dϕ,

dθ, dψ, dz
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Figure 5.28: Sine references ϕ, θ, ψ, step ref-
erence z, and sine disturbances dϕ, dθ, dψ, dz
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5.6.6 Remarks on simulation results
This section addresses the problem of attitude/altitude control of a quadcopter UAV. The
focus is on handling mass, moments of inertia variation of the UAV according to the specific
application of transporting different device types. By adding some additional state and
weight functions, the linear parameter-dependent system is gathered. Thus the problem of
reference tracking is formulated as H∞ state feedback. It is solved using the LMI conditions
framework. The obtained controller is found to be able to follow the prescribed trajectory
with a high level of performance.

Future works of this section could concern the observer-based controller for a mass-varying
quadcopter.

5.7 LPV Static output feedback controller for Atti-
tude/Altitude

The aim of this section is to propose a simple design procedure of static output feedback for
quadrotor. The use of static output feedback controller simplifies greatly control law reading
and implementation [37], [57]. However, the synthesis is known as a hard problem but some
relaxation procedures allow to reduce conservatism [56]. In our context, the main objective
of the static output feedback synthesis is to handle the mass and rotors velocity variations
which are assumed to be measured. This is achieved using a Takagi-Sugeno (TS) formalism
which allows to obtain a linear parameter varying model in the form of a convex sum of
submodels [214]. The controller is then synthesized on the basis of a 4 submodels system.

The remainder of this section is organized as follows. Subsection 5.7.1 presents the classical
quadrotor model which is simplified in order to obtain a TS model suitable for control
synthesis. Subsection 5.7.2 is devoted to the reference model tracking problem setting and
model adaptation. Thus, the controller is synthesized in subsection 5.7.3 while simulation
results are presented in section 5.7.4. Some remarks on simulation results are shown in
subsection 5.7.5.

5.7.1 More simplified model
The mathematical differential equations of attitude/Altitude system of quadcopter are rewrit-
ten as 

ϕ̈ = Iy−Iz
Ix

θ̇ψ̇− JrΩr
Ix

θ̇+ l
Ix
U2

θ̈ = Iz−Ix
Iy

ϕ̇ψ̇+ JrΩr
Iy

ϕ̇+ l
Iy
U3

ψ̈ = Ix−Iy
Iz

ϕ̇θ̇+ 1
Iz
U4

z̈c = (cosθ cosϕ) U1
m −g

(5.117)

The previous model still exhibits too much parameters and its polytopic representation will
involve 29 submodels. If one considers control synthesis using Linear Matrix Inequalities
methods, the resolvability of the resulting LMI conditions in this case is quite compromised
due to conservativeness of conditions which will request the common stabilization of a huge
number of submodels. In order to reduce this number, we adopt here a more simplified
model.
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By using the model of the actuator as given in remark 5.4 and the simplification that
velocities are small such that the product of the velocities can be assumed to be zero,
allowing to write: 

ϕ̈ = −JrIx θ̇Ωr+ lT4−T2
Ix

θ̈ = Jr
Iy
ϕ̇Ωr+ lT1−T3

Iy

ψ̈ = l (
T2+T4)−(T1+T3)

Iz
z̈c = −g+ T1+T2+T3+T4

Iz

(5.118)

Gathering all the equations, one can establish the LPV model

ẋ (t) = A (m,Ωr)x (t)+Bv (t)+Ed (t) (5.119)

where the state vector is has twelve components: x =
(
ϕ, ϕ̇,θ, θ̇,ψ, ψ̇,zc, żc,T1,T2,T3,T4

)T
,

the control input vector is composed of the four motor voltages v = (v1,v2,v3,v4)
T , the

disturbance input is the Earth gravity d= g, and the matrix A (m,Ωr) is given by

A (m,Ωr) =
[
A11 A12 A13

]
(5.120)

where

A11 =



0 1 0 0
0 0 0 −JrIx Ωr

0 0 0 1
0 Jr

Iy
Ωr 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0



; A12 =



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0



; A13 =



0 0 0 0
0 − l

Ix
0 l

Ix
0 0 0 0
l
Iy

0 − l
Iy

0
0 0 0 0
− l
Iz

l
Iz

− l
Iz

l
Iz

0 0 0 0
1
m

1
m

1
m

1
m

− 1
τ1

0 0 0
0 − 1

τ2
0 0

0 0 − 1
τ3

0
0 0 0 − 1

τ4


while

B =



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
K1
τ1

0 0 0
0 K2

τ2
0 0

0 0 K3
τ3

0
0 0 0 K4

τ4



; E =



0
0
0
0
0
0
0
−1
0
0
0
0


The main objective of the control design procedure is to synthesize a controller that could
be scheduled according to mass, inertia and rotor speed variation. As it can be seen from
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the simplified quadrotor model, it is linear of both parameters. In addition, parametrizing
the moment of inertia in the form Ji = κim, (i= x,y,z), one can thus obtain a LPV model
depending on two parameters, the mass m ∈ [mm,mM ] and the velocity Ωr ∈ [Ωm,ΩM ].

Thus a Takagi-Sugeno model with fours submodels could be obtained depending on the ex-
tremal values of the parameters. This representation is called nonlinear sector approximation
[214]. In fact, defining ρ1 =m ∈ [mm,mM ] and ρ2 =

Ωr
m ∈

[
Ωm
m , ΩM

m

]
a four submodels TS

system is achieved

ẋ (t) =

 4∑
i=1

µi (ρ (t))Ai

x (t)+Bu (t)+Ed (t) (5.121)

where µi ≥ 0,1≤ i≤ 4,
4∑
i=1

µi = 1 and

µ1 =m11m21, µ2 =m11m21
µ3 =m12m21, µ3 =m12m22

with
m11 =

ρ1max−ρ1
ρ1max−ρ1min

, m12 = 1−m11
m21 =

ρ2max−ρ2
ρ2max−ρ2min

, m22 = 1−m21

The matrices Ai,1≤ i≤ 4 are obtained from

A1 = A (mm,Ωm)
A2 = A (mm,ΩM )
A3 = A (mM ,Ωm)
A4 = A (mM ,ΩM )

Notice that the obtained model is an exact representation of the model of equation (5.119).
The obtained model is a continuous time model. However for implementation aspects and
when considering preview information, it is more convenient to consider it in discrete time
domain. In fact the preview information is only available at some sensor sample times.
Knowing that, the model is discretized using a simple Euler method, this leads to the discrete-
time state-space model with sample time of T = 0.05sec. x (k+ 1) =

(
4∑
i=1

µi (ρ (t))Ai

)
x (k)+Bu (k)+Ed (k)

y (k) = Cx (k)
(5.122)

where (Ai,B,E) =
(
I12 +TAi,TB,TE

)
The output vector is constituted by the quadrotor altitude and attitude position which are
obtained from the matrix

C =


1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0


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5.7.2 Controller Design
The considered model has the gravity a constant disturbance input. In order to cancel it
in the control design and to obtain a zero steady state error, one can take the difference
operator on both sides of equation (5.122) which leads to: ∆x (k+ 1) =

(
4∑
i=1

µi (ρ (t))Ai

)
∆x (k)+B∆u (k)

∆y (k) = C∆x (k)
(5.123)

We consider in this section the problem of reference signal tracking with preview information.
The output signal y (k) has to follow the predefined reference signal r (k). Defining the error
signal e (k) as

e (k) = y (k)− r (k) (5.124)
and writing the error dynamics, one can define the augmented plant with the augmented
state vector x̃=

[
eT (k) ,∆xT (k)

]T
which reads x̃ (k+ 1) =

4∑
i=1

µi (ρ (t))
(
Ãix̃ (k)+ B̃∆u (k)+Gp∆r (k)

)
e (k) = C̃x̃ (k)

(5.125)

where
Ãi =

[
I4 C
0 Ai

]
, B̃ =

[
0
B

]
, Gp =

[
−I4

0

]
, C̃ =

[
I4 0

]
Suppose now that the reference signal values are known np samples ahead. Let us define the
vector

xr (k) =
[

∆rT (k) · · · ∆rT (k+np)
]T

(5.126)
and the matrix

Ar =



0 I4 0 · · · 0
0 0 . . . . . . ...
... ... . . . . . . 0
0 · · · · · · 0 I4
0 · · · · · · 0 0


The objective now is to embed the reference signal appearing in equation (5.125) into a state
vector. This is achieved by defining the state vector

x̂ (k) =
[
x̃T (k) x̃Tr (k)

]T
which allows to obtain the augmented system x̃ (k+ 1) =

4∑
i=1

µi (ρ (t))
(
Âix̂ (k)+ B̂∆u (k)

)
yp (k) = Ĉx̂ (k)

(5.127)

where

Âi =

[
Ãi Gp
0 Ar

]
, B̂ =

[
B̃
0

]
,

 Iq
C

Inpq+q


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The aim now is to design a static output feedback controller of the form

∆u (k) =

 4∑
i=1

µi (ρ (t))Ki

yp (k) (5.128)

making the closed-loop system

x̂ (k+ 1) =
4∑
i=1

µi (ρ (t))
(
Âi+ B̂KiĈ

)
x̂ (k) (5.129)

robustly asymptotically stable. Following the results provided in [128], given a scalar β and

Figure 5.29: Measured and reference path Figure 5.30: Absolute error on path following

Figure 5.31: Measured and reference value
for the altitude

Figure 5.32: Measured and reference values
for the pitch angle

matrices Q,W , if there exist Pi > 0,Ui,Li,Gi,1≤ i≤ 4 such that

Πi ≺ 0, 1≤ i≤ 4 (5.130)
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where

Πi =

 −Gi−G
T
i +Pi ∗ ∗

ÂiGi+ B̂iLiQ −Pi ∗
ĈGi−UQ βW TLTi B̂

T Θ

 (5.131)

and Θ = −βUW −βW TUT , then the system (5.129) is robustly asymptotically stable, and
the gain matrix can be obtained by

Ki = LiU
−1 (5.132)

One can notice that this matrix gain involves the following components

Ki =
[
Kei Kyi Kri (0) . . . Kri (np)

]
(5.133)

thus the command increment is given by

∆u (k) =Kee (k)+Ky∆y (k)+
np∑
j=0

Kr (j)∆r (k+ j) (5.134)

where
Ke =

4∑
i=1

µiKei, Ky =
4∑
i=1

µiKyi, Kr (j) =
4∑
i=1

µiKri (j)

and finally the control input is obtained from

u (k) =Ke

np∑
j=0

e (k)+Kyy (k)+
np∑
j=0

Kr (j)r (k+ j) (5.135)

5.7.3 Practical controller design
The TS model is considered assuming that the mass varies in the interval [mm,mM ] with
mm= 1 [kg] andmM = 2 [kg]. The total propeller velocity is varying in the interval [Ωm,ΩM ]
with Ωm = −0.2 and ΩM = 0.2. The controller is designed using the procedure developed
above. The preview horizon is taken up to np = 5 points.

5.7.4 Testing scenario
As stated in the introduction, this paper is concerned with the attitude/altitude control. It
is then assumed that the reference values for the pitch, roll, yaw and attitude are provided
by an external loop. The quadrotor is requested to follow a circular path while increasing its
altitude from 5 [m] to 10 [m]. The path is shown in Fig. 5.29. One can see that the reference
path is well followed. This can be verified in the Fig. 5.30 where the absolute value does not
exceed 0.1 [m]. The altitude reference is also well followed as presented in Fig. 5.31.This is
also the case for the pith angle in Fig. 5.32. The reference value set for the yaw angle is 0.
This is reached in less than one second in Fig. 5.34. The same simulation is now conducted
by increasing the quadrotor mass until 2 [kg]. The system responses in this case are shown
in Fig. 5.35 to Fig. 5.38. The responses become more oscillatory but remain acceptable.
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Figure 5.33: Measured and reference values
for the roll angle

Figure 5.34: Measured and reference values
for the yaw angle

Figure 5.35: Measured and reference value
for the altitude for added mass

Figure 5.36: Measured and reference values
for the pitch angle for added mass

5.7.5 Comments on the simulation results
This section addresses the problem of attitude/altitude control of an UAV. The focus is put
on handling mass variation of the UAV according to the specific application of transporting
different device types. Following an incremental model simplification, a simple LPV model is
obtained for the selected motions. Afterwards, a 4 submodels TS model is derived. Thus the
problem of reference tracking is formulated for static output feedback. It is solved using LMI
conditions framework. The obtained controller is found to be able to follow the prescribed
trajectory with high level of performance. Future works will both concern the exploration
of reactive path planning realization and fault tolerant control.
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Figure 5.37: Measured and reference values
for the roll angle for added mass

Figure 5.38: Measured and reference value
for the yaw angle for added mass

5.8 Conclusion
In this chapter, we have examined the control problem for quadrotor applied in PA. In
these applications, the mass of the quadrotor changes over time leads to changes in dynamic
parameters of quadrotor such as the moments of inertia change. First, if the states of
the system are available (measured or estimated), a H∞ LPV controller was developed for
a mass-varying quadrotors. Then, when states are not available, the LPV dynamic and
static controllers have been designed. Then, this chapter also concern the Linear Parameter
Varying (LPV) Unknown Input Observer (UIO) for the mass-varying quadrotor.
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6 Simulation results

This chapter is dedicated for simulation results. In the first section 6.1, the Cover-
age Path Planning (CPP) for disease detection and crops spraying are generated. The
section 6.2 is for simulation results of controlling the quadrotor. First, we show the
stabilization simulation results for quadrotor using Linear Parameter Varying (LPV)
H∞ dynamic output feedback, LPV static output feedback, and LPV H∞ state feed-
back controllers in subsection 6.2.1. The LPV Unknown Input Observer (UIO) for the
altitude/attitude of the quadrotor will be shown in subsection 6.2.2. Then, in the sub-
section 6.2.3, the full control of quadrotor to follow the predefined points is given. The
conclusion and some remarks are in section 6.3.
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6.1 Coverage Path Planning (CPP) simulations

6.1.1 Coverage Path Planning (CPP) for disease detection
Assume that we have a rectangular agricultural land as shown in figure 6.1. In this agri-
cultural land, there are convex and concave obstacles (yellow polygons) and pest infestation
plants (red dots). The positions of the obstacles are known in prior, while the locations of
pests ridden areas are unknown.
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Figure 6.1: Agricultural area with obstacles and infected points

Scenario 1. Our mission is to use UAVs to take pictures of the entire agricultural land so
that the coordinates of the crop areas affected by pests can be determined.
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Figure 6.2: Scenario 1
Original images with obstacles used for infected area detection

Based on the proposed algorithm in Figure 6.3, first, it is necessary to define critical points
(blue and red circles in Figure 6.3). Then from these critical points, the agricultural area is
divided into cells as in Figure 6.4 by using the proposed algorithm on 4.3.2.1. In this case,
the agricultural area is divided into four non-intersecting obstacle-free regions (as shown and
numbered in Figure 6.4).

Using the path generation algorithm proposed in the 4.3.2.2 section, we will draw rectangles
equal in size to the frame size that the camera-equipped on the UAV can capture. These
rectangles should intersect in both the long and short sides (as shown in Figure 6.5) to
ensure the completeness of coverage of the entire area.

In the rectangles, as shown in Figure 6.5, we see that there are a number of rectangles
centered on the obstacles (Figure 6.6). These locations are the points that the UAV cannot
reach. Therefore, only rectangles whose center is not on obstacles (Figure 6.7) are considered
to create the motion trajectory for UAV.
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Figure 6.3: Scenario 1:
Infected area detection Critical points
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Figure 6.4: Scenario 1:
Infected area detection Cellular decomposition
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Figure 6.5: Scenario 1:
Infected area detection Image frames
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Figure 6.6: Scenario 1:
Infected area detection Image frames in obsta-

cles

Rectangles whose center is not on obstacles are grouped into other groups depending on which
cells the center coordinates are. As shown in Figure 6.7, rectangles whose center is not on
obstacles are grouped into four groups with different colors.

From the center coordinates of the rectangles of these groups, the boustrophedon paths for
the UAV in each cell (as shown in Figure 6.8a) are generated ensuring that UAV does not
collide with the obstacles while traveling along with the generated path.
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Figure 6.7: Scenario 1:
Infected area detection Image frames in obstacles free

S1

E1

S2

E2

S3

E3

S4

E4

50 100 150 200 250 300 350 400

50

100

150

200

250

300

350

400

(a) Boustrophedon path
contains collision with obstacles
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(b) Boustrophedon path
without collision with obstacles

Figure 6.8: Scenario 1:
Infected area detection Boustrophedon path in cells
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Figure 6.9: Scenario 1:
Infected area detection Start Stop Points in cells
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Figure 6.10: Scenario 1:
IA detection paths for changing cells using PRM

TSP

Figure 6.8a shows that there exists one path that collides the obstacle. Consequently, the
PRM should be applied for the two points that form the segment that collides obstacle to find
the shortest obstacle-free path between them.

The final generated boustrophedon trajectory is shown in Figure 6.8b, we see that in the
Boustrophedon trajectory generated on each cell, there are two points Si and Ei with i =
1,2,3,4. These two points are the points where UAV enters or exits the cell. The entering
and existing points Si and Ei in cells are shown in Figure 6.9.

Using the improved TSP algorithm detailed in the subsection 4.3.2.4, we can find the trajec-
tory to change between cells so that the travel distance of the UAV is the smallest as shown
in the Figure 6.10.
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Figure 6.11: Scenario 1:
IA detection full path

Therefore, the moving trajectory of UAV is obtained as follows (as depicted on Figures 6.10
and 6.11): UAV starts at point START , moves to point S1, moves along the Boustrophedon
trajectory in cell 1 to point E1, moves to point E2, moves along the Boustrophedon trajectory
in cell 2 to point S2, moves to point S4, moves along the Boustrophedon trajectory in cell 4
to point E4, moves to point S4, moves along the Boustrophedon trajectory in cell 3 to point
EE, moves to point STOP .

�
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6.1.2 Coverage Path Planning (CPP) for crops spraying
Scenario 2. In this section, we perform a simulation to apply pesticides to the entire pest-
affected crop area identified in section 6.1.1.

Assume agricultural area with fault and concave obstacles (yellow polygons) and pest-infested
crop areas (red spots) as shown in the Figure 6.12. The coordinates of the obstacles and the
crop areas affected by pests are known, thanks to the previous study.
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Figure 6.12: Scenario 2:
Scenario 1 IA spraying obstacles and infected

points
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Figure 6.13: Scenario 2:
IA spraying minimal Divide infected areas to

classes

First, the agricultural areas affected by pests and diseases will be grouped into different classes
using clustering as shown in Figure 6.13. In this simulation, the number of selected classes
is 2. Therefore we see that the pests and diseases are divided into two groups (the dots have
different colors in Figure 6.13).

As discussed on 4.4.2, there are two methods to create polygons that cover each class of
infected crop points: minimal convex polygon (Figure 6.14) and boundary polygon (Figure
6.15). In the case boundary polygon, this is the smallest polygon which covers all given
points. This polygon can be convex or concave. Meanwhile, in the case of minimal convex
polygon, this is the smallest convex polygon containing all given points.

However, as shown in Figures 6.14 and 6.15, we see that these two polygons partially cover
the obstacles. Therefore, in order to create an obstacle-free area, we can create new polygons
that cover all the pests and diseases and obstacle-free as in Figures 6.16 and 6.17.
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Figure 6.14: Scenario 2:
IA spraying minimal convexy polygons vs ob-

stacles
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Figure 6.15: Scenario 2:
IA spraying boundary polygons vs obstacles
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Figure 6.16: Scenario 2:
IA spraying obstacle free minimal convex poly-

gons vs obstacles
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Figure 6.17: Scenario 2:
IA spraying obstacle free boundary polygons vs

obstacles

Next, the resulting polygons in Figures 6.16 and 6.17 are divided into the minimal number
of convex polygons as in Figures 6.18 and 6.19.

Remark 6.1. For the purpose of clarity, the red and blue dots (infected areas) will not be
shown in Figure 6.18 - Figure 6.24.
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Figure 6.18: Scenario 2:
IA spraying minimal convex decomposition
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Figure 6.19: Scenario 2:
IA spraying boundary polygon

Using the proposed algorithm for trajectory generation in convex polygon in 4.4.3, the bous-
trophedon trajectories are generated on each convex generated polygons as in Figures 6.20
and 6.21.
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Figure 6.20: Scenario 2:
IA spraying minimal convex decomposition

path
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Figure 6.21: Scenario 2:
IA spraying boundary polygon path

Also in Figures 6.20 and 6.21, we see that in the Boustrophedon trajectory generated on each
convex polygons, there are two points Si and Ei with i = 1, .... These two points are the
points where UAV enters or exits the convex polygon. The entering and exiting points Si and
Ei in cells are shown in Figures 6.22 and 6.23.
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Figure 6.22: Scenario 2:
IA spraying minimal convex decomposition
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Figure 6.23: Scenario 2:
IA spraying boundary decomposition START

STOP points
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Figure 6.24: Scenario 2:
IA spraying paths for changing cells using prm tsp

Therefore, the moving trajectory of UAV is obtained as follows (as depicted on Figures 6.24:
UAV starts at point START , moves to point E4, moves along the Boustrophedon trajectory
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in cell 4 to point S4, moves to point E2, moves along the Boustrophedon trajectory in cell 2
to point S2, moves to point E1, moves along the Boustrophedon trajectory in cell 1 to point
S1, moves to point E3, moves along the Boustrophedon trajectory in cell 3 to point S3, moves
to point S5, moves along the Boustrophedon trajectory in cell 5 to point E5, moves to point
E6, moves along the Boustrophedon trajectory in cell 6 to point S6, moves to point STOP .

�
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6.2 Quadrotor Control simulations

6.2.1 Quadrotor stabilization

6.2.1.1 Linear Parameter Varying (LPV) H∞ state feedback controller

In this section, we simulate the reference tracking of the LPV H∞ state feedback alti-
tude/attitude controller for a mass-varying quadcopter under disturbances. Due to the
variation of the mass, the moments of inertia with respect to the three axes x, y, and z are
also changing. The mass can be changed abruptly or gradually.

• The disturbances dϕ, dθ, dψ, and dz to roll ϕ, pitch θ, yaw ψ, and altitude z of the
quadcopter can be sinus, random, step, square wave, or constant.

• The reference signals for roll ϕ, pitch θ, yaw ψ, and altitude z can be of the form sinus,
random, step, square wave, or constant.

The configuration of the LPV H∞ Altitude/Attitude State Feedback Controller for mass-
varying quadcopter is shown in Figure 6.25.
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Figure 6.25: LPV H∞ Altitude/Attitude State Feedback Controller for mass-varying quadcopter
configuration
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Scenario 3. In this simulation:

• Simulation time is 30 (s)

• The mass is abruptly changes at 5 (s) from 2 (kg) to 1.65 (kg), at 10 (s) from 1.65 (kg)
to 1.3 (kg), at 15 (s) from 1.3 (kg) to 1.18 (kg), and at 25 (s) from 1.18 (kg) to 1.12 (kg).
Consequently, the moments of inertia also change abruptly at 5 (s), 10 (s), 15 (s), 25 (s)
as shown in Figure 6.26.

• The reference signals ϕref , θref , ψref , and zref (the first sub-figure of Figure 6.28)
are:

– ϕref is a square wave signal of frequency 1/6 (Hz), max amplitude is 30 (deg),
min amplitude is 0 (deg)

– θref is a square wave signal of frequency 1/6 (Hz), max amplitude is 29 (deg),
min amplitude is 0 (deg)

– ψref is a square wave signal of frequency 1/6 (Hz), max amplitude is 28 (deg),
min amplitude is 0 (deg)

– zref is a square wave signal of frequency 1/5 (Hz), max amplitude is 1.5 (m), min
amplitude is 1 (m)

• The disturbances dϕ, dθ, dψ, and dz (the last four sub-figures of Figure 6.28 are:

– dϕ is a random signal, max amplitude is 2.1 (Nm), min amplitude is −2.1 (Nm)

– dθ is a random signal, max amplitude is 2.1 (Nm), min amplitude is −2.1 (Nm)

– dψ is a random signal, max amplitude is 2.1 (Nm), min amplitude is −2.1 (Nm)

– dz is a square wave signal of frequency 1/4 (Hz), max amplitude is 6 (N), min
amplitude is −6 (N)
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LPV H∞ Alt/Att State Feedback Controller

The last four sub-figures of the Figure 6.28 show the reference signals and responses of ϕ, θ,
ψ, and z respectively.

We can see that ϕ, θ, ψ, and z track the reference signals well even under disturbances and
the changes of mass and moments of inertia. The response time for ϕ, θ, ψ, and z are small.

The last four sub-figures of the Figure 6.29 show the differences between the actual signal
and reference signals of ϕ, θ, ψ, and z. We can see that, these error signals tend to zero
quickly.

The input signals U1, U2, U3, and U4 for the quadcopter are shown in Figure 6.27. �
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Scenario 4. In this simulation:

• Simulation time is 30 (s)

• The mass gradually changes from 2 (kg) to 1.12 (kg) over a period of time from 5 (s)
to 25 (s). Consequently, the moments of inertia also gradually change over a period of
time from 5 (s) to 25 (s) as shown in Figure 6.30.

• The reference signals ϕref , θref , ψref , and zref (the first sub-figure of Figure 6.32)
are:

– ϕref is a constant signal, ϕref = 30 (deg)

– θref is a step signal at 4 (s) from 0 (deg) to 29 (deg)

– ψref is a step signal at 6 (s) from 0 (deg) to 28 (deg)

– zref is a constant signal, zref = 1 (m)

• The disturbances dϕ, dθ, dψ, and dz (the last four sub-figures of Figure 6.32 are:

– dϕ is a sine signal of frequency 1/6 (Hz), maximum amplitude is 2.1 (Nm), min-
imum amplitude is 0 (Nm)

– dθ is a sine signal of frequency 1/6 (Hz), maximum amplitude is 2.1 (Nm), min-
imum amplitude is 0 (Nm)

– dψ is a sine signal of frequency 1/6 (Hz), maximum amplitude is 2.1 (Nm), min-
imum amplitude is 0 (Nm)

– dz is a random signal, maximum amplitude is 3 (N), minimum amplitude is
−6 (N)
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ϕ, θ, ψ, and z
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Figure 6.33: Scenario 4:
eϕ, eθ, eψ, and ez

LPV H∞ Alt/Att State Feedback Controller

The last four sub-figures of the Figure 6.32 show the reference signals and responses of ϕ, θ,
ψ, and z respectively.

We can see that ϕ, θ, ψ, and z track the reference signals well even under disturbances and
the changes of mass and moments of inertia. The response time for ϕ, θ, ψ, and z are small.

The last four sub-figures of the Figure 6.33 show the differences between the actual signal
and reference signals of ϕ, θ, ψ, and z. We can see that, these error signals tend to zero
quickly.

The input signals U1, U2, U3, and U4 for the quadcopter are shown in Figure 6.31. �
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6.2.2 Quadrotor Unknown Input Observer (UIO)
To evaluate the effectiveness of the proposed Linear Parameter Varying (LPV) Unknown
Input Observer (UIO), we conduct two types of simulation in this section. The first type
of simulation concerns the UIO for the system without measurement noises in subsection
6.2.2.1. While the second one concerns the UIO for the system with measurement noises
in subsection 6.2.2.2. The simulation results suggest that the proposed UIO works well for
various reference signals (impulse, random, constant, and sine), several types of disturbances
(impulse, random, constant, and sine), and with or without measurement noises.

6.2.2.1 Quadrotor Unknown Input Observer (UIO) without measurement noise

In this section, we simulate the Unknown Input Observer (UIO) for altitude/attitude of a
mass-varying quadcopter under disturbances. Due to the variation of the mass, the moments
of inertia with respect to the three axes x, y, and z are also changing. The mass can be
changed abruptly or gradually.

• The disturbances dϕ, dθ, dψ, and dz to roll ϕ, pitch θ, yaw ψ, and altitude z of the
quadcopter can be sinus, random, step, square wave, or constant.

• The reference signals for roll ϕ, pitch θ, yaw ψ, and altitude z can be of the form sinus,
random, step, square wave, or constant.

The configuration of the LPV UIO for Altitude/Attitude of a mass-varying quadcopter is
shown in Figure 6.34. For controlling the Altitude/Attitude of the quadrotor, the LPV H∞
state feedback controller designed in 5.6 is used. In this simulation, we do not consider the
measurement noises, consequently, the measured values are directly the inputs to the LPV
UIO block as shown in Figure 6.34.

For simplify, In the simulation, the derivatives of the outputs are calculated by generic
differentiator. However, in the real cases, the time derivatives of the outputs can be corrupted
by measurement noises. In this case, in order to get the derivatives of the outputs which
are less sensitive to the measurement noises, sliding mode or algebraic differentiators can be
applied.

QUADCOPTER

Altitude/Attitude

State Feedback

Controller

����������

�	
�����


�������������

�	
�����

1U

2U

4U

3U

ref
z

refψ

ref
ϕ

ref
θ

x

y

z

� �
� �
� �
� �� �

ϕ

θ

ψ

� �
� �
� �
� �� �

ϕ

θ

ψ

� �
� �
� �
� �� �

ɺ

ɺ

ɺ

x

y

z

� �
� �
� �
� �� �

ɺ

ɺ

ɺ

H∞
LPV

z
d

dϕ

dθ

dψ

�
�
�
�
�
�
�
�
�

Reference

signals

�
�
�
�
�
�
�
�
�

Disturbances

Unknown Input 

Observer (UIO)

H∞
LPV

Figure 6.34: LPV H∞ UIO for mass-varying quadcopter configuration



6.2. Quadrotor Control simulations 159

Scenario 5. In this simulation:

• No measurement noises are considered

• Simulation time is 30 (s)

• The mass gradually changes from 2 (kg) to 1.12 (kg) over a period of time from 5 (s)
to 25 (s). Consequently, the moments of inertia also gradually change over a period of
time from 5 (s) to 25 (s) as shown in Figure 6.35.

• The reference signals ϕref , θref , ψref , and zref (Figure 6.38) are:

– ϕref is a step signal at 2 (s) from 0 (deg) to 30 (deg)

– θref is a step signal at 4 (s) from 0 (deg) to 28 (deg)

– ψref is a step signal at 6 (s) from 0 (deg) to 26 (deg)

– zref is a constant signal, zref = 1 (m)

• The disturbances dϕ, dθ, dψ, and dz (Figure 6.36) are:

– dϕ is a sine wave signal of frequency 1 (rad/s), amplitude is 1.1 (Nm)

– dθ is a sine wave signal of frequency 1 (rad/s), amplitude is 1.3 (Nm)

– dψ is a sine wave signal of frequency 1 (rad/s), amplitude is 1.5 (Nm)

– dz is a random signal, maximum amplitude is 6 (N) and , minimum amplitude is
−30 (N)
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The actual unknown inputs dz, dϕ, dθ, dψ and their estimated values are shown in Figure
6.36 and Figure 6.37 shows the differences between actual unknown inputs and estimated
unknown inputs. We can see that the estimated unknown inputs tend to actual unknown
inputs in about 5 (s).

In Figure 6.38 are shown the desired, actual, and estimated value of ϕ, θ, ψ, and z. We
can see that ϕ, θ, ψ, and z track the reference signals well (as in Figure 6.38) even under
disturbances and the changes of mass and moments of inertia. The response time for ϕ, θ,
ψ, and z are small.

The actual, and estimated value of ϕ̇, θ̇, ψ̇, and ż are shown in Figure 6.40, while Figure
6.41 shows the difference between the actual and estimated values of ϕ̇, θ̇, ψ̇, and ż. �
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Scenario 6. In this simulation:

• No measurement noise is considered

• Simulation time is 30 (s)

• The mass abruptly changes at 5 (s) from 2 (kg) to 1.65 (kg), at 10 (s) from 1.65 (kg) to
1.3 (kg), at 15 (s) from 1.3 (kg) to 1.18 (kg), and at 25 (s) from 1.18 (kg) to 1.12 (kg).
Consequently, the moments of inertia also change abruptly at 5 (s), 10 (s), 15 (s), 25 (s)
as shown in Figure 6.42.

• The reference signals ϕref , θref , ψref , and zref (Figure 6.45) are:

– ϕref is a square wave signal of frequency 1/6 (Hz), maximum amplitude is 30 (deg),
minimum amplitude is 0 (deg)

– θref is a square wave signal of frequency 1/6 (Hz), maximum amplitude is 28 (deg),
minimum amplitude is 0 (deg)

– ψref is a square wave signal of frequency 1/6 (Hz), maximum amplitude is 26 (deg),
minimum amplitude is 0 (deg)

– zref is a constant signal, zref = 1 (m)

• The disturbances dϕ, dθ, dψ, and dz (Figure 6.43) are:

– dϕ is a random signal, maximum amplitude is 1.1 (Nm) and minimum amplitude
is −1.1 (Nm)

– dθ is a random signal, maximum amplitude is 1.3 (Nm) and minimum amplitude
is −1.3 (Nm)

– dψ is a random signal, maximum amplitude is 1.5 (Nm) and minimum amplitude
is −1.5 (Nm)

– dz is a random signal, maximum amplitude is 6 (N) and minimum amplitude is
−30 (N)
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The actual unknown inputs dz, dϕ, dθ, dψ and their estimated values are shown in Figure
6.43 and Figure 6.44 shows the differences between actual unknown inputs and estimated
unknown inputs. We can see that the estimated unknown inputs tend to actual unknown
inputs in about 5 (s).

In Figure 6.45 are shown the desired, actual, and estimated value of ϕ, θ, ψ, and z. We
can see that ϕ, θ, ψ, and z track the reference signals well (as in Figure 6.45) even under
disturbances and the changes of mass and moments of inertia. The response time for ϕ, θ,
ψ, and z are small.

The actual, and estimated value of ϕ̇, θ̇, ψ̇, and ż shown in Figure 6.47, while Figure 6.48
shows the difference between the actual and estimated values of ϕ̇, θ̇, ψ̇, and ż. �
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6.2.2.2 Quadrotor Unknown Input Observer (UIO) with measurement noise

In this section, we simulate the Unknown Input Observer (UIO) for altitude/attitude of a
mass-varying quadcopter under disturbances. Due to the variation of the mass, the moments
of inertia with respect to the three axes x, y, and z are also changing. The mass can be
changed abruptly or gradually.

• The disturbances dϕ, dθ, dψ, and dz to roll ϕ, pitch θ, yaw ψ, and altitude z of the
quadcopter can be sinus, random, step, square wave, or constant.

• The reference signals for roll ϕ, pitch θ, yaw ψ, and altitude z can be of the form sinus,
random, step, square wave, or constant.

The configuration of the LPV UIO for Altitude/Attitude of a mass-varying quadcopter is
shown in Figure 6.49. For controlling the Altitude/Attitude of the quadrotor, the LPV
H∞ state feedback controller designed in 5.6 is used. In this simulation, we consider the
measurement noises. The outputs of the quadcopter are measured by the Measurement
block. The white noises are added to the outputs of the quadcopter here (in Figure 6.49),
then the noisy outputs of the quadcopter (the outputs of the Measurement block) are the
inputs to the LPV UIO block.

QUADCOPTER

Altitude/Attitude

State Feedback

Controller

����������

�	
�����


�������������

�	
�����

1U

2U

4
U

3
U

ref
z

ref
ϕ

x

y

z

� �
� �
� �
� �� �

ϕ

θ

ψ

� �
� �
� �
� �� �

ϕ

θ

ψ

� �
� �
� �
� �� �

ɺ

ɺ

ɺ

x

y

z

� �
� �
� �
� �� �

ɺ

ɺ

ɺ

H∞
LPV

z
d

dϕ

dθ

dψ

�
�
�
�
�
�
�
�
�

Reference

signals

�
�
�
�
�
�
�
�
�

Disturbances

����	��
���

Unknown Input 

Observer (UIO)

LPV
ref

ψ

ref
θ

Figure 6.49: LPV H∞ UIO for mass-varying quadcopter configuration



166 Chapter 6. Simulation results

Scenario 7. In this simulation:

• Measurement noises (random white noises) are considered

• Simulation time is 30 (s)

• The mass abruptly changes at 5 (s) from 2 (kg) to 1.65 (kg), at 10 (s) from 1.65 (kg) to
1.3 (kg), at 15 (s) from 1.3 (kg) to 1.18 (kg), and at 25 (s) from 1.18 (kg) to 1.12 (kg).
Consequently, the moments of inertia also change abruptly at 5 (s), 10 (s), 15 (s), 25 (s)
as shown in Figure 6.50.

• The reference signals ϕref , θref , ψref , and zref (Figure 6.53) are:

– ϕref is a random signal, maximum amplitude is 22 (deg), minimum amplitude is
−40 (deg)

– θref is a random signal, maximum amplitude is 30 (deg), minimum amplitude is
−22 (deg)

– ψref is a random signal, maximum amplitude is 48 (deg), minimum amplitude is
−48 (deg)

– zref is a square wave signal of frequency 1
6 (Hz), maximum amplitude is 1.5 (m),

minimum amplitude is 1 (m)

• The disturbances dϕ, dθ, dψ, and dz (Figure 6.51) are:

– dϕ is a sinus signal of frequency 1
6 (Hz), maximum amplitude is 1.1 (Nm) and

minimum amplitude is −1.1 (Nm)

– dθ is a sinus signal, maximum amplitude is 1.3 (Nm) and minimum amplitude is
−1.3 (Nm)

– dψ is a sinus signal, maximum amplitude is 1.5 (Nm) and minimum amplitude is
−1.5 (Nm)

– dz is a square wave signal of frequency 1
4 (Hz), maximum amplitude is 6 (N) and

minimum amplitude is −40 (N)
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Figure 6.56: Scenario 7:
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(real and measured) values
LPV UIO for Alt/Att

The actual unknown inputs dz, dϕ, dθ, dψ and their estimated values are shown in Figure
6.51 and Figure 6.52 shows the differences between actual unknown inputs and estimated
unknown inputs. We can see that the estimated unknown inputs tend to actual unknown
inputs in about 5 (s).

In Figure 6.53 are shown the desired, actual, measured, and estimated value of ϕ, θ, ψ, and
z. We can see that ϕ, θ, ψ, and z track the reference signals well (as in Figure 6.53) even
under disturbances and the abrupt changes of mass and moments of inertia. The response
time for ϕ, θ, ψ, and z are small.

The Figure 6.54 shows the differences between the real and estimated values, and between
real and measured values of ϕ, θ, ψ, and z. These errors signals are really small compared to
the actual values. We can see that, even under disturbances, the abrupt changes of mass and
moments of inertia, and the measurement noises, the estimated values still track the actual
values of ϕ, θ, ψ, and z well.

The actual, and estimated value of ϕ̇, θ̇, ψ̇, and ż are showed in Figure 6.55, while Figure 6.56
shows the difference between the actual and estimated, and between the actual and measured
values of ϕ̇, θ̇, ψ̇, and ż. We can see that, even under disturbances, the changes of mass and
moments of inertia, and the measurement noises, the estimated values still track the actual
values of ϕ, θ, ψ, and z well.

Some simulations has been conducted when the outputs of the quadcopter are disturbed by
the same random white noise signals as given in 6.53 and 6.54, if the UIO is not applied,
the control is lost. �
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Scenario 8. In this simulation:

• Measurement noises (random white noises) are considered

• Simulation time is 30 (s)

• The mass gradually changes from 2 (kg) to 1.12 (kg) over a period of time from 5 (s)
to 25 (s). Consequently, the moments of inertia also gradually change over a period of
time from 5 (s) to 25 (s) as shown in Figure 6.57.

• The reference signals ϕref , θref , ψref , and zref (Figure 6.60) are:

– ϕref is a step signal at 2 (s) from 0 (deg) to 30 (deg)

– θref is a step signal at 4 (s) from 0 (deg) to 28 (deg)

– ψref is a step signal at 6 (s) from 0 (deg) to 26 (deg)

– zref is a square wave signal of frequency 1/6 (Hz), maximum amplitude is 1.5 (m),
minimum amplitude is 1 (m)

• The disturbances dϕ, dθ, dψ, and dz (Figure 6.58) are:

– dϕ is a random signal, maximum amplitude is 1.1 (Nm) and minimum amplitude
is −1.1 (Nm)

– dθ is a random signal, maximum amplitude is 1.3 (Nm) and minimum amplitude
is −1.3 (Nm)

– dψ is a random signal, maximum amplitude is 1.5 (Nm) and minimum amplitude
is −1.5 (Nm)

– dz is a random signal, maximum amplitude is 6 (N) and minimum amplitude is
−30 (N)
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Figure 6.57: Scenario 8:
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Figure 6.63: Scenario 8:
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The actual unknown inputs dz, dϕ, dθ, dψ and their estimated values are shown in Figure
6.58 and Figure 6.59 shows the differences between actual unknown inputs and estimated
unknown inputs. We can see that the estimated unknown inputs tend to actual unknown
inputs in about 5 (s).

In Figure 6.60 are shown the desired, actual, measured, and estimated value of ϕ, θ, ψ, and
z. We can see that ϕ, θ, ψ, and z track the reference signals well (as in Figure 6.60) even
under disturbances and the gradual changes of mass and moments of inertia. The response
time for ϕ, θ, ψ, and z are small.

The Figure 6.61 shows the differences between the real and estimated values, and between
real and measured values of ϕ, θ, ψ, and z. We can see that, even under disturbances, the
gradual changes of mass and moments of inertia, and the measurement noises, the estimated
values still track the actual values of ϕ, θ, ψ, and z well.

The actual, and estimated value of ϕ̇, θ̇, ψ̇, and ż are shown in Figure 6.62, while Figure 6.63
show the difference between the actual and estimated, and between the actual and measured
values of ϕ̇, θ̇, ψ̇, and ż. We can see that, even under disturbances, the changes of mass and
moments of inertia, and the measurement noises, the estimated values still track the actual
values of ϕ, θ, ψ, and z well.

Some simulations has been conducted when the outputs of the quadcopter are disturbed by
the same random white noise signals as given in 6.60 and 6.61, if the UIO is not applied,
the control is lost. �



172 Chapter 6. Simulation results

6.2.3 Quadrotor path following
In this section, we simulate the full control for a mass-varying quadcopter under disturbances
to follow predefined trajectory. Due to the variation of the mass, the moments of inertia with
respect to the three axes x, y, and z are also changing. The mass can be changed abruptly
or gradually.

• The disturbances dϕ, dθ, dψ, and dz to roll ϕ, pitch θ, yaw ψ, and altitude z of the
quadcopter can be of the form sinus, random, step, square wave, or constant.

• The reference signals for roll ϕ, pitch θ, yaw ψ, and altitude z can be of the form sinus,
random, step, square wave, or constant.

The configuration of the the full control for a mass-varying quadcopter is shown in Figure
6.64.
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Figure 6.64: LPV H∞ UIO for mass-varying quadcopter configuration
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Scenario 9. In this simulation:

• No measurement noise is considered

• Simulation time is 90 (s)

• The mass of the quadcopter changes in the two manners:

– The mass gradually changes from 2.0 (kg) to 1.12 (kg) over a period of time from
10 (s) to 85 (s). Consequently, the moments of inertia also gradually change over
a period of time from 10 (s) to 85 (s) as shown in the first two sub-figures of Figure
6.65.

– The mass abruptly changes at 10 (s) from 2.0 (kg) to 1.824 (kg), at 20 (s) from
1.824 (kg) to 1.736 (kg), at 30 (s) from 1.736 (kg) to 1.56 (kg), at 40 (s) from
1.56 (kg) to 1.472 (kg), at 50 (s) from 1.472 (kg) to 1.384 (kg), at 60 (s) from
1.384 (kg) to 1.296 (kg), at 70 (s) from 1.296 (kg) to 1.208 (kg), and at 85 (s)
from 1.208 (kg) to 1.12 (kg). Consequently, the moments of inertia also change
abruptly at 10 (s), 20 (s), 30 (s), 40 (s), 50 (s), 60 (s), 70 (s), 85 (s) as shown in
the last two sub-figures of Figure 6.65.

• The quadrotor must follow a square trajectory as follows: Quadrotor moves from (0,0,0)
to (0,0,2) over the interval of time [0 (s) ;5 (s)], moves from (0,0,2) to (10,0,2) over
the interval of time [10 (s) ;25 (s)], moves from (10,0,2) to (10,10,2) over the inter-
val of time [25 (s) ;45 (s)], moves from (10,10,2) to (0,10,2) over the interval of time
[45 (s) ;65 (s)], moves from (0,10,2) to (0,0,2) over the interval of time [65 (s) ;85 (s)],
moves from (0,0,2) to (0,0,0) over the interval of time [85 (s) ;90 (s)] as in Figure 6.70.
Therefore, reference signals xref , yref , zref , and ψref are:

– xref keeps at 0 (m) over the interval of time [0 (s) ;5 (s)], changes from 0 (m) to
10 (m) over the interval of time [5 (s) ;25 (s)], keeps at 10 (m) over the interval
of time [25 (s) ;45 (s)], changes from 10 (m) to 0 (m) over the interval of time
[45 (s) ;65 (s)], keeps at 0 (m) over the interval of time [65 (s) ;90 (s)].

– yref keeps at 0 (m) over the interval of time [0 (s) ;25 (s)], changes from 0 (m) to
10 (m) over the interval of time [25 (s) ;45 (s)], keeps at 10 (m) over the interval
of time [45 (s) ;65 (s)], changes from 10 (m) to 0 (m) over the interval of time
[65 (s) ;85 (s)], keeps at 0 (m) over the interval of time [85 (s) ;90 (s)]

– zref changes from 0 (m) to 2 (m) over the interval of time [0 (s) ;5 (s)], keeps at
2 (m) over the interval of time [5 (s) ;85 (s)], and changes from 2 (m) to 0 (m)
over the interval of time [85 (s) ;90 (s)].

– ψref = 0 (deg)

• The disturbances dx, dy, and dz are WindX , WindY , and WindZ in (the first sub-
figure of Figure 6.66) are:

– WindX is a square wave signal of frequency 1/9 (Hz), maximum amplitude is
5.1 (m/s), minimum amplitude is 0 (m/s)

– WindY is a step signal at 5 (s) from 0 (m/s) to 4.8 (m/s)
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– WindZ is a square wave signal of frequency 1/10 (Hz), maximum amplitude is
1.5 (m/s), minimum amplitude is 0 (m/s)
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Figure 6.65: Scenario 9:
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Figure 6.66: Scenario 9:
x, y, and z, their responses, and disturbances
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Figure 6.67: Scenario 9:
U1, U2, U3 and U4
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Figure 6.68: Scenario 9:
Errors on X, Y , Z and ψ
Quadrotor path following

The results in Figure 6.66, 6.69 and 6.70 show that the quadcopter follows the reference
trajectory well even under the disturbances. The Figure 6.68 shows the errors of the outputs
and reference signals. We can see that, for x and y, the maximum values of the errors are
less than 0.15m. This errors happen when the disturbances are applied.
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Figure 6.67 show the inputs to the quadcopter U1, U2, U3, and U4.
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Figure 6.71: Scenario 9:
X, Y , and Z vs time

Quadrotor path following

The results in Figure 6.71 show that the mass variations (abrupt or gradual) do not effect to
the ability of path following of the quadcopter. The quadcopter follows the reference trajectory
even under the different types of disturbances and variations of the mass and moments of
inertia. �
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Scenario 10. In this simulation:

• No measurement noise is considered

• Simulation time is 90 (s)

• The mass of the quadcopter changes in the two manners:

– The mass gradually changes from 2.0 (kg) to 1.12 (kg) over a period of time from
10 (s) to 80 (s). Consequently, the moments of inertia also gradually change over
a period of time from 10 (s) to 80 (s) as shown in the first two sub-figures of Figure
6.72.

– The mass abruptly changes at 10 (s) from 2.0 (kg) to 1.648 (kg), at 30 (s) from
1.648 (kg) to 1.384 (kg), at 50 (s) from 1.384 (kg) to 1.164 (kg), and at 80 (s)
from 1.164 (kg) to 1.12 (kg). Consequently, the moments of inertia also change
abruptly at 10 (s), 30 (s), 50 (s), 80 (s) as shown in the last two sub-figures of
Figure 6.72.

• The quadrotor must follow a square trajectory as follows: Quadrotor moves from (0,0,0)
to (0,0,2) over the interval of time [0 (s) ;5 (s)], moves from (0,0,2) to (10,0,2) over
the interval of time [10 (s) ;25 (s)], moves from (10,0,2) to (10,10,2) over the inter-
val of time [25 (s) ;40 (s)], moves from (10,10,2) to (0,10,2) over the interval of time
[45 (s) ;65 (s)], moves from (0,10,2) to (0,0,2) over the interval of time [65 (s) ;85 (s)],
moves from (0,0,2) to (0,0,0) over the interval of time [85 (s) ;90 (s)] as in Figure 6.77.
Therefore, reference signals xref , yref , zref , and ψref are:

– xref keeps at 0 (m) over the interval of time [0 (s) ;5 (s)], changes from 0 (m) to
10 (m) over the interval of time [5 (s) ;25 (s)], keeps at 10 (m) over the interval
of time [25 (s) ;45 (s)], changes from 10 (m) to 0 (m) over the interval of time
[45 (s) ;65 (s)], keeps at 0 (m) over the interval of time [65 (s) ;90 (s)].

– yref keeps at 0 (m) over the interval of time [0 (s) ;25 (s)], changes from 0 (m) to
10 (m) over the interval of time [25 (s) ;45 (s)], keeps at 10 (m) over the interval
of time [45 (s) ;65 (s)], changes from 10 (m) to 0 (m) over the interval of time
[65 (s) ;85 (s)], keeps at 0 (m) over the interval of time [85 (s) ;90 (s)]

– zref changes from 0 (m) to 2 (m) over the interval of time [0 (s) ;5 (s)], keeps at
2 (m) over the interval of time [5 (s) ;85 (s)], and changes from 2 (m) to 0 (m)
over the interval of time [85 (s) ;90 (s)].

– ψref = 0 (deg)

• The disturbances dx, dy, and dz are WindX , WindY , and WindZ in (the first sub-
figure of Figure 6.73) are:

– WindX is a square wave signal of frequency 1/9 (Hz), maximum amplitude is
5.1 (m/s), minimum amplitude is 0 (m/s)

– WindY is a sine signal of frequency 1/40 (Hz), maximum amplitude is 4.9 (m/s),
minimum amplitude is −4.9 (m/s)

– WindZ is a step signal at 6 (s) from 0 (m/s) to 1.5 (m/s)
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Figure 6.73: Scenario 10:
x, y, and z, their responses, and disturbances
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Figure 6.74: Scenario 10:
U1, U2, U3 and U4
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Figure 6.75: Scenario 10:
Errors on X, Y , Z and ψ
Quadrotor path following

The results in Figure 6.73, 6.76 and 6.77 show that the quadcopter follows the reference
trajectory well even under the disturbances. The Figure 6.75 shows the errors of the outputs
and reference signals. We can see that, for x and y, the maximum values of the errors are
less than 0.15m. This errors happen when the disturbances are applied.

Figure 6.74 show the inputs to the quadcopter U1, U2, U3, and U4.
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Figure 6.78: Scenario 10:
X, Y , and Z vs time

Quadrotor path following

The results in Figure 6.78 show that the methods of mass variation (abrupt or gradual) do
not effect to the ability of path following of the quadcopter. The quadcopter follows the
reference trajectory even under the different type of disturbances and variations of the mass
and moments of inertia.

The quadcopter tracks the reference signal well even at the vertices of the rectangle as in
Figures 6.76 and 6.77 �
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Scenario 11. In this simulation:

• No measurement noise is considered

• Simulation time is 90 (s)

• The mass of the quadcopter changes in the two manners:

– The mass gradually changes from 2.0 (kg) to 1.12 (kg) over a period of time from
5 (s) to 80 (s). Consequently, the moments of inertia also gradually change over
a period of time from 5 (s) to 80 (s) as shown in the first two sub-figures of Figure
6.79.

– The mass abruptly changes at 5 (s) from 2.0 (kg) to 1.824 (kg), at 10 (s) from
1.824 (kg) to 1.648 (kg), at 20 (s) from 1.648 (kg) to 1.560 (kg), at 40 (s) from
1.560 (kg) to 1.472 (kg), at 55 (s) from 1.472 (kg) to 1.164 (kg), and at 80 (s)
from 1.164 (kg) to 1.12 (kg). Consequently, the moments of inertia also change
abruptly at 5 (s), 10 (s), 20 (s), 40 (s), 55 (s), 80 (s) as shown in the last two
sub-figures of Figure 6.79.

• The quadrotor must follow a circle trajectory as follows: Quadrotor moves from (0,0,0)
to (0,0,2) over the interval of time [0 (s) ;5 (s)], moves along the circle with radius 5m
and center (0,-5,2) over the interval of time [5 (s) ;85 (s)], moves from (0,0,2) to (0,0,0)
over the interval of time [85 (s) ;90 (s)] as in Figure 6.84. Therefore, reference signals
xref , yref , zref , and ψref are:

– xref keeps at 0 (m) over the interval of time [0 (s) ;5 (s)], changes along sine
trajectory 5sin

(
(t−5) π

40

)
over the interval of time [5 (s) ;85 (s)], keeps at 0 (m)

over the interval of time [85 (s) ;90 (s)].

– yref keeps at 0 (m) over the interval of time [0 (s) ;5 (s)], changes along sine
trajectory 5cos

(
(t−5) π

40

)
− 5 over the interval of time [5 (s) ;85 (s)], keeps at

0 (m) over the interval of time [85 (s) ;90 (s)].

– zref changes from 0 (m) to 2 (m) over the interval of time [0 (s) ;5 (s)], keeps at
2 (m) over the interval of time [5 (s) ;85 (s)], and changes from 2 (m) to 0 (m)
over the interval of time [85 (s) ;90 (s)].

– ψref = 0 (deg)

• The disturbances dx, dy, and dz are WindX , WindY , and WindZ in (the first sub-
figure of Figure 6.80) are:

– WindX is a sine signal of frequency 1/40 (Hz), maximum amplitude is 5.1 (m/s),
minimum amplitude is −5.1 (m/s)

– WindY is a constant signal 4.9 (m/s)

– WindZ is a impulse signal of frequency 1/10 (Hz), maximum amplitude is 2.5 (m/s),
minimum amplitude is 0 (m/s)
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Figure 6.79: Scenario 11:
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Figure 6.80: Scenario 11:
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Figure 6.81: Scenario 11:
U1, U2, U3 and U4

Quadrotor path following
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Figure 6.82: Scenario 11:
Errors on X, Y , Z and ψ
Quadrotor path following

The results in Figure 6.80, 6.83 and 6.84 show that the quadcopter follows the reference
trajectory well even under the disturbances. The Figure 6.82 shows the errors of the outputs
and reference signals. We can see that, for x and y, the maximum values of the errors are
less than 0.15m. This errors happen when the disturbances are applied.

Figure 6.81 shows the inputs to the quadcopter U1, U2, U3, and U4.
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Figure 6.85: Scenario 11:
X, Y , and Z vs time

Quadrotor path following

The results in Figure 6.85 show that the mass variations (abrupt or gradual) do not effect to
the ability of path following of the quadcopter. The quadcopter follows the reference trajectory
even under the different type of disturbances and variations of the mass and moments of
inertia.

�
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Scenario 12. In this simulation:

• No measurement noise is considered

• Simulation time is 90 (s)

• The mass of the quadcopter changes in the two manners:

– The mass gradually changes from 2.0 (kg) to 1.12 (kg) over a period of time from
15 (s) to 80 (s). Consequently, the moments of inertia also gradually change over
a period of time from 15 (s) to 80 (s) as shown in the first two sub-figures of Figure
6.86.

– The mass abruptly changes at 15 (s) from 2.0 (kg) to 1.736 (kg), at 40 (s) from
1.736 (kg) to 1.472 (kg), and at 80 (s) from 1.472 (kg) to 1.12 (kg). Consequently,
the moments of inertia also change abruptly at 15 (s), 40 (s), and 80 (s) as shown
in the last two sub-figures of Figure 6.86.

• The quadrotor must follow a circle trajectory as follows: Quadrotor moves from (0,0,0)
to (0,0,2) over the interval of time [0 (s) ;5 (s)], moves along the circle with radius 5m
and center (0,-5,2) over the interval of time [5 (s) ;85 (s)], moves from (0,0,2) to (0,0,0)
over the interval of time [85 (s) ;90 (s)] as in Figure 6.84. Therefore, reference signals
xref , yref , zref , and ψref are:

– xref keeps at 0 (m) over the interval of time [0 (s) ;5 (s)], changes along sine
trajectory 5sin

(
(t−5) π

40

)
over the interval of time [5 (s) ;85 (s)], keeps at 0 (m)

over the interval of time [85 (s) ;90 (s)].

– yref keeps at 0 (m) over the interval of time [0 (s) ;5 (s)], changes along sine
trajectory 5cos

(
(t−5) π

40

)
− 5 over the interval of time [5 (s) ;85 (s)], keeps at

0 (m) over the interval of time [85 (s) ;90 (s)].

– zref changes from 0 (m) to 2 (m) over the interval of time [0 (s) ;5 (s)], keeps at
2 (m) over the interval of time [5 (s) ;85 (s)], and changes from 2 (m) to 0 (m)
over the interval of time [85 (s) ;90 (s)].

– ψref = 0 (deg)

• The disturbances dx, dy, and dz are WindX , WindY , and WindZ in (the first sub-
figure of Figure 6.87) are:

– WindX is a sine wave signal of frequency 1/40 (Hz), maximum amplitude is
5.1 (m/s), minimum amplitude is −5.1 (m/s)

– WindY is a sine wave signal of frequency π/40 (Hz), maximum amplitude is
4.9 (m/s), minimum amplitude is −4.9 (m/s)

– WindZ is a sine wave signal of frequency π/40 (Hz), maximum amplitude is
2.5 (m/s), minimum amplitude is −2.5 (m/s)
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Figure 6.88: Scenario 12:
U1, U2, U3 and U4
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Figure 6.89: Scenario 12:
Errors on X, Y , Z and ψ
Quadrotor path following

The results in Figure 6.87, 6.90 and 6.91 show that the quadcopter follows the reference
trajectory well even under the disturbances. The Figure 6.89 shows the errors of the outputs
and reference signals. We can see that, for x and y, the maximum values of the errors are
less than 0.1m. This errors happen when the disturbances are applied.

Figure 6.88 show the inputs to the quadcopter U1, U2, U3, and U4.
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Figure 6.92: Scenario 12:
X, Y , and Z vs time

Quadrotor path following

The results in Figure 6.92 show that the methods of mass variation (abrupt or gradual) do
not effect to the ability of path following of the quadcopter. The quadcopter follows the
reference trajectory even under the different type of disturbances and variations of the mass
and moments of inertia.

The quadcopter tracks the reference signal well even at the vertices of the rectangle as in
Figures 6.90 and 6.91 �
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6.3 Conclusion
In this chapter, we have simulated different scenarios for both the complete coverage path
planning and control of mass-varying quadrotor.

For the complete coverage path planning, the proposed algorithm generates the best tra-
jectory for quadrotor to capture the pictures of the whole agriculture areas. Based on the
gathered pictures, the infected crop areas are detected. The second task of complete cover-
age path planning is to generate the best trajectory for the quadrotor to spray pesticide to
all the infected areas. The simulations show the ability of the proposed algorithm to gener-
ate the trajectory not only to cover the whole predefined areas but also with the minimum
trajectory while avoiding obstacles.

For the control part, several control simulations for LPV H∞ state feedback controller, static
output feedback controller, dynamic output feedback controller have been conducted. the
simulation results show the ability of good reference tracking (several types of references
are considered such as sine, step, square wave, random) under the existence of disturbances
(several types of disturbances are considered such as sine, step, square wave, random) and
changes of dynamic parameters of quadrotor (mass and moments of inertia). We also con-
ducted simulations for LPV UIO. The results show that the proposed LPV UIO can well
estimate the unknown disturbances and the states of the system.
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7 General conclusion and perspectives

7.1 Conclusions
In this research work, we have proposed some new algorithms for Coverage Path Plan-
ning (CPP) and control of quadcopter for Precision Agriculture (PA), such as pest-ridden
area detection and spraying insecticides. We started the manuscript by an introduction to
the importance and application of robotics in precision agriculture to increase crop yields.
Then, we emphasized our goals and main contributions and we look at the drones, their clas-
sification, their applications. Based on the above analysis, the quadrotor has been selected
as the research object in the content of this thesis. Next, we studied CPP algorithms and
control laws that have been applied to the quadrotors.

In the first part, we present a new complete CPP algorithm by proposing a new Cellular
Decomposition (CD) which is based on a generalization of a Boustrophedon variant, using
Morse functions, with an extension of the representation of the critical points. This exten-
sion leads to a decrease in the number of cells after decomposition. Genetic Algorithm (GA)
and Travelling Salesman Problem (TSP) algorithm are then applied to obtain the shortest
path for complete coverage. Next, from the information on the map regarding the coordi-
nates of the obstacles, non-infected areas, and infected areas, the infected areas are divided
into several non-overlapping regions by using a clustering technique. Then an algorithm is
proposed for generating the best path for a UAV to distribute medicine to all the infected
areas of an agriculture environment which contains non-convex obstacles, pest-free areas,
and pests-ridden areas.

In the second part, we study the design of a robust control law that allows the UAV to track
the predefined trajectory for a dynamic model-changing helicopter due to the changes of
dynamic coefficients such as the mass and moments of inertia. Therefore, robust observer and
control law are required to adopt the changes in dynamic parameters as well as the impact of
external forces. The proposed approach is to explore the modeling techniques, planning, and
control by the Takagi-Sugeno type technique. To have easily implantable algorithms and
adaptable to changes in parameters and conditions of use, we favor the synthesis of Linear
Parameter Varying (LPV) Unknown Input Observer (UIO), LPV quadratic state feedback,
robust state feedback, and static output feedback controllers. The observers and controllers
are designed by solving a set of Linear Matrix Inequality (LMI) obtained from the Bounded
Real Lemma and Linear Matrix Inequality (LMI) conditions.
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In summary, besides the generic dynamic model that we have proposed for multirotors that
may fly under wind gust, the performed work contains the following achievements:

• Coverage path planning

1. Firstly, we propose a new approach for cellular decomposition. Based on the
critical points as in [45] and [225], the extension of this approach is that the
critical points have been categorized to several groups, and the cells have been
created from these groups. This extension leads to a decrease of the number of
cells after decomposition. The results show that this new cellular decomposition
works well even with several concave obstacles inside the environment.

2. Secondly, we have proposed a method for maximizing the percentage of coverage
and we have given some comments for the trade-off between the percentage of
coverage and the number of way-points for the UAV. The percentage of coverage
is up to 97.9%.

3. Finally, by using GA with some modification on the swap, flip and slide operations
and the TSP with some additional constraints, the shortest path for changing the
cells has been developed. This algorithm guarantees that the solution always
exists and the time for calculation is decreasing.

4. For the second task, we have proposed a method for generating a trajectory which
allows the UAV to put the medicine to the entire pest-ridden area of an agricul-
tural area. First, the pest-ridden areas have been divided into several smaller
areas (clusters) by using clustering technique. After that, each cluster is divided
again into several obstacle-free convex polygons. Then the shortest Boustrophe-
don trajectory is created in each obstacle-free convex polygon. Finally, the short-
est trajectory for changing between obstacle-free convex polygons is generated for
the final trajectory.

• Control

1. If the states of UAV can be measured of estimated, we developed an LPV H∞
state feedback controller for mass-varying quadrotor. This controller is robustly
stable under the disturbances

2. When the states might not be available, the dynamic and static LPV controllers
have been proposed for mass-varying quadrotor.

3. In order to overcome unmeasured states, we proposed also the Linear Parameter
Varying (LPV) Unknown Input Observer (UIO) for mass-varying quadrotor.

7.2 Perspectives
In the following, we list some challenges that one may highlight in the future.

• Coverage path planning issues

1. In the research content of this thesis, the issue of energy optimization has not been
considered. Therefore, the energy optimization problem should be considered.
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Furthermore, the UAVs must be aware of the remaining energy level and be able
to return to the given locations before running out of energy.

2. For large agricultural areas, one UAV cannot completely perform the CPP task.
Hence the expansion of the CPP problem for a team of UAVs is necessary. In
addition, even if one quadrotor is totally damaged or in trouble, others may take
over the coverage subtask.

3. The proposed coverage path-planning algorithm considers only off-line in 2D
work-space with static obstacles. The 3D dynamic environment could be an
interesting extension for the CPP.

4. The trajectory generated by the proposed CPP does not consider the dynamic
constraints of the UAV. For example, the UAV is not able to make a sharp turn.
We have to consider also constraints on the limit speed and acceleration of the
UAV for the CPP problem.

5. Several extensions from this section are possible. One might consider recalcu-
lating the trajectory under the windy condition of the environment or trajectory
generation for a team of UAV. Field tests are also subject of future work. The
continuation of this work is also to add the UAV equations of motion as con-
straints on the path. Then the efficiency of the algorithm will be improved to be
real-time usable.

• Control issues

1. The mass and moments of inertia of the quadrotor in the research content of
this thesis are calculated according to the amount of pesticide sprayed over time.
An extension of this could be the on-line estimation of the quadrotor mass and
moments of inertia according to parameters measured from sensors such as ac-
celerometer, gyroscope, etc

2. The control laws need to be simulated on Robot Operating System (ROS), devel-
oped on embedded computers, and applied to the real platform quadrotors.
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A Preliminaries

This section presents some preliminaries about gain-scheduling, with particular emphasis
on Linear Parameter Varying (LPV) systems. Then, we also review analysis and design of
LPV control systems using the quadratic framework and discussing several possible specifi-
cations, like stability, D-stability (pole clustering in a subset of the complex plane), H∞/H2
performance, and finite-time stability/boundedness.

A.0.1 Linear Parameter Varying (LPV) system
Definition A.1. Linear Parameter Varying (LPV) systems [205][204][152] are linear dy-
namical systems whose mathematical description depends on parameters that change values
over time. The system matrices are fixed functions of some varying parameters ρ ∈ Rnρ,
assumed to be unknown a priori but measured or estimated in real-time[203]. LPV systems
are described by equations of the form as follows:

σ ·x (τ ) = A (ρ (τ ))x (τ )+B (ρ (τ )u (t)) , τ ≥ 0
y (τ ) = C (ρ (τ ))x (τ )+D (ρ (τ )u (τ ))
x (0) = x0

(A.1)

where

• The notation σ · x (τ ) stands for ẋ (τ ) for continuous systems and for x (k+ 1) for
discrete systems.

• x ∈ Rnx, u ∈ Rnu, and y ∈ Rny are the state, input, and output vectors respectively.
The system matrices are A (ρ (τ )) ∈Rnx×nx, B (ρ (τ )) ∈Rnx×nu, C (ρ (τ )) ∈Rny×nx,
and D (ρ (τ )) ∈Rny×nu.

�

Remark A.1. The equation (A.1) describes both Continuous Time Linear Parameter Vary-
ing (CT LPV) and Discrete Time Linear Parameter Varying (DT LPV).

• For CT LPV, τ = t, and (A.1) becomes
ẋ (t) = A (ρ (t))x (t)+B (ρ (t)u (t)) , t≥ 0
y (t) = C (ρ (t))x (t)+D (ρ (t)u (t))
x (0) = x0

(A.2)
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• For DT LPV, τ = k, and (A.1) becomes

x (k+ 1) = A (ρ (k))x (k)+B (ρ (k)u (k)) , k ≥ 0
y (k) = C (ρ (k))x (k)+D (ρ (k)u (k))
x (0) = x0

(A.3)

�

Definition A.2. (Generic Parameter Dependent system [46]) The Generic Parameter De-
pendent system is the system in the form

σ ·x (τ ) = A (ρ (τ ))x (τ )+Bu (ρ (τ ))u (t)+Bw (ρ (τ ))w (t)
z (τ ) = Cz (ρ (τ ))x (τ )+Dzu (ρ (τ ))u (t)+Dzw (ρ (τ ))w (t)
y (τ ) = Cy (ρ (τ ))x (τ )+Dyw (ρ (τ ))w (t)
x (0) = x0

(A.4)

where x ∈ Rnx, u ∈ Rnu, y ∈ Rny , w ∈ Rnw , and , z ∈ Rnz are the state, input, measured
output, exogenous input, and controlled output vectors respectively. The system matrices
are A (ρ (τ )) ∈ Rnx×nx, Bu (ρ (τ )) ∈ Rnx×nu, Bw (ρ (τ )) ∈ Rnx×nw , Cz (ρ (τ )) ∈ Rnz×nx,
Dzu (ρ (τ )) ∈ Rnz×nu, Dzw (ρ (τ )) ∈ Rnz×nw , Cy (ρ (τ )) ∈ Rny×nx, Dyu (ρ (τ )) ∈ Rny×nu,
Dyw (ρ (τ )) ∈Rny×nw . �

Remark A.2. The equation (A.4) describes both continuous time and discrete time generic
parameter dependent system according to σ.

• For continuous time and generic parameter dependent system, τ = t, and (A.4) becomes

ẋ (t) = A (ρ (t))x (t)+Bu (ρ (t))u (t)+Bw (ρ (t))w (t)
z (t) = Cz (ρ (t))x (t)+Dzu (ρ (t))u (t)+Dzw (ρ (t))w (t)
y (t) = Cy (ρ (t))x (t)+Dyu (ρ (t))u (t)

(A.5)

• For discrete time generic parameter dependent system, τ = k, and (A.4) becomes

x (k+ 1) = A (ρ (k))x (k)+Bu (ρ (k))u (t)+Bw (ρ (k))w (t)
z (k) = Cz (ρ (k))x (k)+Dzu (ρ (k))u (t)+Dzw (ρ (k))w (t)
y (k) = Cy (ρ (k))x (k)+Dyu (ρ (k))u (t)

(A.6)

�

Definition A.3. The N-unit simplex, denoted by ΛN , is defined as the set

ΛN :=

χ ∈RN
≥0 :

N∑
i=1

χi = 1
 (A.7)

�
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Definition A.4. The LPV system in (A.1) is called polytopic if its state space system
matrices can be represented as follows

A (ρ (τ )) =
N∑
i=1

µi (τ )Ai

B (ρ (τ )) =
N∑
i=1

µi (τ )Bi

C (ρ (τ )) =
N∑
i=1

µi (τ )Ci

D (ρ (τ )) =
N∑
i=1

µi (τ )Di

(A.8)

where Ai ∈Rnx×nx, Bi ∈Rnx×nu, Ci ∈Rny×nx, and Di ∈Rny×nu for i= 1, ...,n and µ (t) ∈
ΛN . �

From definition A.4, the LPV polytopic system in (A.1) can be rewritten as

σ ·x (τ ) =
N∑
i=1

µi (τ ) [Aix (τ )+Biu (τ )]

y (τ ) =
N∑
i=1

µi (τ ) [Cix (τ )+Diu (τ )]
(A.9)

where the quadruples (Ai,Bi,Ci,Di) define the so-called vertex systems, and µi, i = 1, ...,n
are the coefficients of the polytopic decomposition such that

N∑
i=1

µi (ρ (τ )) = 1, µi (ρ (τ ))≥ 0, ∀i= 1, ...,N , ∀ρ ∈Θ (A.10)

Definition A.5. (Poles of an LPV system [82]) Given an autonomous LPV system

σ ·x (τ ) = A (ρ (τ ))x (τ ) (A.11)

where the state vector x ∈ Rnx, the varying parameter vector ρ (τ ) ∈ Θ ⊂ Rnρ, and the
system matrix A (ρ (τ )) ∈ Rnx×nx. The poles of (A.11) are the set of all the Linear Time
Invariant (LTI) system obtained by freezing ρ (τ ) for all ρ ∈Θ. �

Definition A.6. (D-stability of an LPV system) Given a subset D of the complex plane.
The autonomous LPV system (A.11) is called to be D-stalbe if all its poles lie in D. �

Definition A.7. (LMI regions [43]) A subset D of the complex plane is called a LMI region
if there exist matrices α= [αkl]k,l∈{1,...,m} ∈ Sm×m and β = [βkl]k,l∈{1,...,m} ∈ Sm×m such that

D = {z ∈ C : fD (z) ≺ 0} (A.12)
where fD is the characteristic function

fD (z) = α+βz+βT z∗ = [αkl+βklz+βklz
∗]k,l∈{1,...,m} (A.13)

There are several typical LMI regions as follows:

• Left-hand semiplanes Re (z) < λ

α= −2λ β = 1
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• Right-hand semiplanes Re (z) > λ

α= 2λ β = −1

• Disks of radius r and center (−c,0)

α=

[
−r c
c −r

]
β =

[
0 1
0 0

]

• Horizontal strips −ω ≤ Im (z) ≤ ω

α=

[
−2ω 0

0 −2ω

]
β =

[
0 1
−1 0

]

�

Definition A.8. (H∞ norm [78]) The H∞ norm of a stable real-rational transfer matrix
T (σ) of CT and DT systems are defined as

• for CT system:
‖T (s)‖∞ = sup

ω∈R
σmax (T (jω)) (A.14)

• for DT system:
‖T (z)‖∞ = sup

ω∈[−π,π]
σmax

(
T
(
ejω

))
(A.15)

where σmax (∗) is the largest singular value of the matrix ∗.

H∞-norm is an important quantity for measuring robust stability, error in model order re-
duction. The H∞-norm can also be used to measuring the system input-output gain of finite
energy signals. �

Definition A.9. (H∞ performance of an LPV system [202]) Given a LPV system defined
as follows:

σ ·x (t) = A (ρ (t))x (t)+B (ρ (t)ω (t))
z (t) = C (ρ (t))x (t)+D (ρ (t)ω (t))

(A.16)

γ∞ is called the H∞ performance of the system (A.16) if ‖Tzw (σ,ρ)‖∞ < γ∞ for all ρ ∈Θ,
where Tzw (σ,ρ) is the closed-loop transfer function from w (t) to z (t). �

Definition A.10. (H2 norm [202]) Given a stable real-rational transfer matrix T (σ). The
H2 norm of CT and DT T is defined as:

• for CT system:

‖T (s)‖2 =

√√√√√ 1
2π

∞∫
−∞

Tr
[
T (jω)TT (jω)

]
dω (A.17)

• for DT system:

‖T (z)‖2 =

√√√√√ 1
2π

π∫
−π

Tr
[
T (ejω)

T
T (ejω)

]
dω (A.18)
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where Tr (∗) is the trace of the matrix ∗. �

Definition A.11. (H2 performance of a LPV system [202]) Given a LPV system defined
as follows:

σ ·x (t) = A (ρ (t))x (t)+B (ρ (t)ω (t))
z (t) = C (ρ (t))x (t)

(A.19)

γ2 is called the H2 performance of the system (A.19) if ‖Tzw (σ,ρ)‖2 < γ2 for all ρ ∈ Θ,
where Tzw (σ,ρ) is the closed-loop transfer function from w (t) to z (t).

Note that, the H2 performance is really effective for handling stochastic aspects such as
measurement noise and random disturbances. �

Theorem A.1. (Quadratic stability of CT LPV systems [23][83]) The autonomous CT LPV
system in (A.11) is quadratically stable

1. if there exists a positive definite matrix P such that

A(ρ)TP +PA (ρ) ≺ 0, ∀ρ ∈Θ (A.20)

2. if there exists a positive definite matrix Q such that

QA(ρ)T +A (ρ)Q≺ 0, ∀ρ ∈Θ (A.21)

�

Theorem A.2. (Quadratic stability of DT LPV systems [118][73]) The autonomous DT LPV
system in (A.11) is quadratically stable

1. if there exists a positive definite matrix P such that

A(ρ)TPA−P (ρ) ≺ 0, ∀ρ ∈Θ (A.22)

2. if there exists a positive definite matrix P such that[
−P PA (ρ)

A(ρ)TP −P

]
≺ 0, ∀ρ ∈Θ (A.23)

3. if there exists a positive definite matrix P such that[
−Q A (ρ)Q

QA(ρ)T −Q

]
≺ 0, ∀ρ ∈Θ (A.24)

�

Theorem A.3. (Quadratic D-stability of LPV systems [160]) Given a LMI region D defined
as in (A.12), the autonomous LPV system:

σ ·x (t) = A (ρ)x (t) (A.25)

The system (A.25) is said to be quadratically D-stable:
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1. if there exists P � 0 such that:

α⊗P +β⊗PA+βT ⊗ATP
=
[
αklP +βklPA+βklA

TP
]
k,l∈{1,...,m}

≺ 0, ∀ρ ∈Θ (A.26)

2. if there exists Q� 0 such that:

α⊗Q+β⊗AQ+βT ⊗QAT

=
[
αklQ+βklAQ+βklQA

T
]
k,l∈{1,...,m}

≺ 0, ∀ρ ∈Θ (A.27)

�

Theorem A.4. (Quadratic H∞ performance of CT LPV systems [43]) The CT LPV system
has quadratic H∞ performance γ∞

1. if there exists P � 0 such that: A(ρ)TP +PA (ρ) PB (ρ) C(ρ)T

B(ρ)TP −I D(ρ)T

C (ρ) D (ρ) −γ2
∞I

≺ 0, ∀ρ ∈Θ (A.28)

or equivalent to [15] A(ρ)TP +PA (ρ) PB (ρ) C(ρ)T

B(ρ)TP −γ∞I D(ρ)T

C (ρ) D (ρ) −γ∞I

≺ 0, ∀ρ ∈Θ (A.29)

2. if there exists Q� 0 such that: A (ρ)Q+QA(ρ)T B (ρ) QC(ρ)T

B(ρ)T −I D(ρ)T

C (ρ)Q D (ρ) −γ2
∞I

≺ 0, ∀ρ ∈Θ (A.30)

or equivalent to [15] A (ρ)Q+QA(ρ)T B (ρ) QC(ρ)T

B(ρ)T −I D(ρ)T

C (ρ)Q D (ρ) −γ∞I

≺ 0, ∀ρ ∈Θ (A.31)

�

Theorem A.5. (Quadratic H∞ performance of DT LPV systems) The DT LPV system has
quadratic H∞ performance γ∞

1. if there exists P � 0 such that:
P PA (ρ) PB (ρ) 0

A(ρ)TP P 0 C(ρ)T

B(ρ)TP 0 γ2
∞I D(ρ)T

0 C (ρ) D (ρ) I

� 0, ∀ρ ∈Θ (A.32)
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or equivalent to [15]
P PA (ρ) PB (ρ) 0

A(ρ)TP P 0 C(ρ)T

B(ρ)TP 0 γ∞I D(ρ)T

0 C (ρ) D (ρ) γ∞I

� 0, ∀ρ ∈Θ (A.33)

2. if there exists Q� 0 such that:
Q A (ρ)Q B (ρ) 0

QA(ρ)T Q 0 QC(ρ)T

B(ρ)T 0 γ2
∞I D(ρ)T

0 C (ρ)Q D (ρ) I

� 0, ∀ρ ∈Θ (A.34)

or equivalent to [15]
Q A (ρ)Q B (ρ) 0

QA(ρ)T Q 0 QC(ρ)T

B(ρ)T 0 γ∞ D(ρ)T

0 C (ρ)Q D (ρ) γ∞I

� 0, ∀ρ ∈Θ (A.35)

�

The problem with the conditions provided in Theorems A.1-A.5 is that they rely on the
satisfaction of infinite number of constraints. This is really hard or even impossible for
satisfaction. This difficulty can be overcome by considering the polytopic form [46] which
allow to extract tractable conditions as in the following results.

Theorem A.6. (Quadratic stability of polytopic CT LPV systems[191]) Given an autonomous
polytopic CT LPV system

ẋ (t) =
N∑
i=1

µi (ρ (t))Aix (t) (A.36)

where µi, i= 1, ...,N satisfies (A.10). The system (A.36) is said to be quadratically stable:

1. if there exists P � 0 such that:

Ai
TP +PAi ≺ 0, ∀i= 1, ...,N (A.37)

2. if there exists Q� 0 such that:

QAi
T +AiQ≺ 0, ∀i= 1, ...,N (A.38)

�

Theorem A.7. (Quadratic stability of polytopic DT LPV systems[191]) Given an autonomous
polytopic DT LPV system

x (k+ 1) =
N∑
i=1

µi (ρ (k))Aix (k) (A.39)

where µi, i= 1, ...,N satisfies (A.10). The system (A.39) is said to be quadratically stable:
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1. if there exists P � 0 such that:[
−P PAi
−ATi P −P

]
≺ 0, ∀i= 1, ...,N (A.40)

2. if there exists Q� 0 such that:[
−Q AiQ
−QATi −Q

]
≺ 0, ∀i= 1, ...,N (A.41)

�

Theorem A.8. (Quadratic D-stability of polytopic LPV systems[191]) Given an LMI region
D defined as in (A.12), the autonomous polytopic LPV system:

σ ·x (t) =
N∑
i=1

µi (ρ (t))Aix (t) (A.42)

where µi, i= 1, ...,N satisfies (A.10). The system (A.42) is said to be quadratically D-stable:

1. if there exists P � 0 such that:

α⊗P +β⊗PAi+βT ⊗ATi P
=
[
αklP +βklPAi+βklA

T
i P

]
k,l∈{1,...,m}

≺ 0, ∀i= 1, ...,N (A.43)

2. if there exists Q� 0 such that:

α⊗Q+β⊗AiQ+βT ⊗QATi
=
[
αklQ+βklAiQ+βklQA

T
i

]
k,l∈{1,...,m}

≺ 0, ∀i= 1, ...,N (A.44)

�

Theorem A.9. (Quadratic H∞ performance of polytopic CT LPV systems[191]) Given an
CT LPV system defined as follows:

ẋ (t) =
N∑
i=1

µi (ρ (t)) [Aix (t)+Biω (t)]

z (t) =
N∑
i=1

µi (ρ (t)) [Cix (t)+Diω (t)]
(A.45)

where µi, i= 1, ...,N satisfies (A.10). The system (A.45) has quadratic H∞ performance γ∞:

1. if there exists P � 0 such that: ATi P +PAi PBi CTi
BT
i P −I DT

i

Ci Di −γ2
∞I

≺ 0, ∀i= 1, ...,N (A.46)
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2. if there exists Q� 0 such that: AiQ+QATi Bi QCTi
BT
i P −I DT

i

CiQ Di −γ2
∞I

≺ 0, ∀i= 1, ...,N (A.47)

�

Theorem A.10. (Quadratic H∞ performance of polytopic DT LPV systems[191]) Given an
DT LPV system defined as follows:

x (k+ 1) =
N∑
i=1

µi (ρ (k)) [Aix (k)+Biw (k)]

z (k) =
N∑
i=1

µi (ρ (k)) [Cix (k)+Diw (k)]
(A.48)

where µi, i= 1, ...,N satisfies (A.10). The system (A.48) has quadratic H∞ performance γ∞:

1. if there exists P � 0 such that:
P PAi PBi 0

ATi P P 0 CTi
BT
i P 0 I DT

i

0 Ci Di γ2
∞I

� 0, ∀ρ ∈Θ (A.49)

2. if there exists Q� 0 such that:
Q AiQ Bi 0

QATi Q 0 QCTi
BT
i 0 I DT

i

0 CiQ Di γ2
∞I

� 0, ∀ρ ∈Θ (A.50)

�

Theorem A.11. (Quadratic Stabilization of CT LPV systems - State feedback[46]) Consider
CT LPV system given in the first equation of (A.1). This CT LPV system is quadratically
stable by a state feedback control law given by

u (t) =K (ρ (t))x (t) (A.51)

if there exists Q� 0 and K (ρ (t)) ∈Rnu×nx such that

He{A (ρ)Q+B (ρ)K (ρ)Q} ≺ 0, ∀ρ ∈Θ (A.52)

�

Theorem A.12. (Quadratic Stabilization of DT LPV systems - State feedback[191]) Con-
sider DT LPV system given in the first equation of (A.1). This DT LPV system is quadrat-
ically stable by a state feedback control law given by

u (t) =K (ρ (t))x (t) (A.53)
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if there exist Q� 0 and K (ρ (t)) ∈Rnu×nx such that[
−Q A (ρ)Q+B (ρ)K (ρ)Q

(A (ρ)Q+B (ρ)K (ρ)Q)T −Q

]
≺ 0, ∀ρ ∈Θ (A.54)

�

Theorem A.13. (Quadratic D-Stabilizability of LPV systems - State feedback[202]) Con-
sider an LMI region given in (A.12). This LPV given in the first equation of (A.1) is
quadratically stable by a state feedback control law given by

u (t) =K (ρ (t))x (t) (A.55)

if there exist Q� 0 and K (ρ (t)) ∈Rnu×nx such that

α⊗Q+He{β⊗ [A (ρ)Q+B (ρ)K (ρ)Q]} ≺ 0, ∀ρ ∈Θ (A.56)

�

Theorem A.14. (Quadratic H∞ State feedback for CT LPV systems[202]) Given the CT LPV
system

ẋ (t) = A (ρ (t))x (t)+B1 (ρ (t))w (t)+B2 (ρ (t)u (t))
z (t) = C1 (ρ (t))x (t)+D11 (ρ (t)w (t))+D12 (ρ (t)u (t))

(A.57)

The CT LPV system (A.57) with state feedback control law has quadratic H∞ performance
γ∞ if there exist Q� 0 and K (ρ (t)) ∈Rnu×nx such that He [A (ρ)Q+B (ρ)K (ρ)Q] ∗ ∗

B1(ρ)
T −I ∗

C1 (ρ)Q+D12 (ρ)K (ρ)Q D11 (ρ) −γ2
∞I

≺ 0, ∀ρ ∈Θ (A.58)

�

Remark A.3. It is possible to consider γ∞ as a variable, then γ̄∞ = γ2
∞. Consequently, the

LMI in Theorem A.14 can be rewritten as follows: He [A (ρ)Q+B (ρ)K (ρ)Q] ∗ ∗
B1(ρ)

T −I ∗
C1 (ρ)Q+D12 (ρ)K (ρ)Q D11 (ρ) −γ̄∞I

≺ 0, ∀ρ ∈Θ (A.59)

A.0.2 Observability and Detectability of LPV systems
Theorem A.15. (Obsevability) LPV system (A.1) is quadratically detectable, if there exists
a matrix P � 0 and a matrix function L (ρ) such that:

(A (ρ (t))+L (ρ (t))C)TP +P (A (ρ (t))+L (ρ (t))C) ≺ 0, ∀ρ (t) (A.60)

�
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A.0.3 Filtering the input
In many cases, the inputs matrices of polytopic LPV systems can be varying and leads to
the difficulty in controller designing. However, by using appropriate low-pass filter [14] and
augmenting the system with the state of the filter, we can change the system to new system
with constant inputs matrices.

Given an LPV system

σ ·x (τ ) =A (ρ (τ ))x (τ )+B1 (ρ (τ ))w (τ )+B2 (ρ (τ ))u (τ ) (A.61a)
z∞ (τ ) =C1∞ (ρ (τ ))x (τ )+D11∞ (ρ (τ ))w (τ )+D12∞ (ρ (τ ))u (τ ) (A.61b)
z2 (τ ) =C12 (ρ (τ ))x (τ )+D112 (ρ (τ ))w (τ )+D122 (ρ (τ ))u (τ ) (A.61c)

Define a new control input ũ (τ ) such that

σ ·xu (τ ) =Au (ρ (τ ))x (τ )+Buũ (τ ) (A.62a)
u (τ ) =Cuxu (τ ) (A.62b)

where Au (ρ (τ )) is parameter varying stable matrix, while Bu and Cu are constant matrices.

From (A.62), we obtain new LPV system[
σ ·x (τ )
σ ·xu (τ )

]
=

[
A (ρ (k)) B (ρ (τ ))Cu

0 Au (ρ (τ ))

][
x (τ )
xu (τ )

]
+

[
B1 (ρ (τ ))

0

]
w (τ )+

[
0
Bu

]
ũ (τ )

(A.63a)

z∞ (τ ) =
[
C1∞ (ρ (τ )) D12∞ (ρ (τ ))

][ x (τ )
xu (τ )

]
+D11∞ (ρ (τ ))w (τ ) (A.63b)

z2 (τ ) =
[
C12 (ρ (τ )) D122

][ x (τ )
xu (τ )

]
(A.63c)

We can rewrite (A.61) as

σ · x̃ (τ ) = Ã (ρ (τ )) x̃ (τ )+ B̃1 (ρ (τ ))w (τ )+ B̃2ũ (τ )
z∞ (τ ) = C̃1∞ (ρ (τ )) x̃ (τ )+ D̃11∞ (ρ (τ ))w (τ )
z2 (τ ) = C̃12 (ρ (τ )) x̃ (τ )

(A.64)

where

Ã (ρ (τ )) =

[
A (ρ (k)) B (ρ (τ ))Cu

0 Au (ρ (τ ))

]
;B̃1 (ρ (τ )) =

[
B1 (ρ (τ ))

0

]
;B̃2 =

[
0
Bu

]
C̃1∞ (ρ (τ )) =

[
C1∞ (ρ (τ )) D12∞ (ρ (τ ))

]
;D̃11∞ (ρ (τ )) =D11∞ (ρ (τ ))

C̃12 (ρ (τ )) =
[
C12 (ρ (τ )) D122

]

A.0.4 Controller design for polytopic LPV systems
In this section, we review some results on designing the state feedback controller of the form

u (t) =
N∑
i=1

µi (ρ (t))Kix (t) (A.65)
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for polytopic LPV system.

In this case, the matrices A (ρ (t)), B1 (ρ (t)), C1 (ρ (t)), D11 (ρ (t)), C2 (ρ (t)), W (ρ (t)) are
assumed to be in the polytopic form as follows

A (ρ (t))
B1 (ρ (t))
C1 (ρ (t))
D11 (ρ (t))
C2 (ρ (t))
W (ρ (t))


=

N∑
i=1

µi (ρ (t))



Ai
B1,i
C1,i
D11,i
C2,i
Wi


(A.66)

Theorem A.16. (Quadratic H∞ State feedback for DT LPV systems[191]) Given the DT LPV
system

x (k+ 1) = A (ρ (k))x (k)+B1 (ρ (k))w (k)+B2 (ρ (k)u (k))
z (k) = C1 (ρ (t))x (k)+D11 (ρ (k)w (k))+D12 (ρ (k)u (k))

(A.67)

The CT LPV system (A.67) with state feedback control law has quadratic H∞ performance
γ∞ if there exist Q� 0 and K (ρ (t)) ∈Rnu×nx such that

Q A (ρ)Q+B (ρ)K (ρ)Q B1 (ρ) 0
∗ Q 0 QC1(ρ)

T +QK(ρ)TD12(ρ)
T

∗ ∗ I D11 (ρ)
∗ ∗ ∗ γ2

∞I

� 0, ∀ρ ∈Θ

(A.68)
�

Theorem A.17. (Quadratically stabilizing polytopic state-feedback controller for CT LPV
systems[191]) The CT LPV system is quadratically stable by a state feedback of the form
(A.65) if there exist Q� 0 and Γi ∈Rnu×nx , i= 1, ...,N such that[

−Q AiQ+BΓi
(AiQ+BΓi)

T −Q

]
≺ 0, ∀ i= 1, ...,N (A.69)

Then the polytopic state feedback control gain can be calculated as Ki= ΓiQ−1, ∀ i= 1, ...,N .
�

Theorem A.18. (Quadratically stabilizing polytopic state-feedback controller for DT LPV
systems[191]) The DT LPV system is quadratically stabilizable by a state feedback of the
form (A.65) if there exist Q� 0 and Γi ∈Rnu×nx , i= 1, ...,N such that

He{AiQ+BΓi} ≺ 0, ∀ i= 1, ...,N (A.70)

Then the polytopic state feedback control gain can be calculated as Ki= ΓiQ−1, ∀ i= 1, ...,N .
�

Theorem A.19. (Quadratically D-stabilizing polytopic state-feedback controller for LPV
systems[191]) Given an LMI region D defined as in (A.12). Let Q� 0 and Γi ∈Rnu×nx , i=
1, ...,N such that

α⊗Q+He{β⊗ (AiQ+BΓi)} ≺ 0, ∀ i= 1, ...,N (A.71)
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Then, the closed-loop system made up by the LPV system (A.1) for the case B (ρ (t)) = B
and polytopic system matrices in (A.66) and the polytopic state-feedback control law given
by (A.65) with the gains calculated as Ki = ΓiQ−1, i= 1, ...,N , is quadratically D stable. �

Theorem A.20. (Quadratic H∞ polytopic State feedback control for CT LPV systems[191])
The polytopic CT LPV is quadratically stabilizable by a state feedback of the form (A.65) if
and only if there exist a matrix Q� 0 and Γi ∈Rnu×nx , i= 1, ...,N such that He{AiQ+BΓi} ∗ ∗

BT
1,i −I ∗

C1∞iQ+D1∞2Γi D1∞2 −γ2
∞I

≺ 0, ∀ i= 1, ...,N (A.72)

Moreover, the state feedback control law given by (A.65) with matrices Ki = ΓiQ−1, ∀ i =
1, ...,N has the quadratic H∞ performance γ∞. �

Theorem A.21. (Quadratic H∞ polytopic State feedback control for DT LPV systems[191])
The polytopic DT LPV is quadratically stabilizable by a state feedback of the form (A.65) if
and only if there exist a matrix Q� 0 and Γi ∈Rnu×nx , i= 1, ...,N such that

Q AiQ+BΓi B1i 0
∗ Q 0 QCT1∞i

∗ ∗ I DT
1∞1,i

∗ ∗ ∗ γ2
∞I

≺ 0, ∀ i= 1, ...,N (A.73)

Moreover, the state feedback control law given by (A.65) with matrices Ki = ΓiQ−1, ∀ i =
1, ...,N has the quadratic H∞ performance γ∞. �
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B Clustering method

Clustering or cluster analysis is the task of dividing the data points or objects into groups
(called clusters) in such a way data points in the same cluster are more similar (in some
sense) to other data points in the same group than the other data points in other clusters.

• Density-Based Methods: Density-based Clustering methods are the clustering meth-
ods that are based on detecting areas where points are concentrated and where they
are separated by areas that are empty or sparse. The data points, that do not belong
to any cluster, are considered as noise. Density-based Clustering methods have good
accuracy and ability to merge two clusters. Some representatives of Density-based
Clustering methods are DBSCAN (Density-Based Spatial Clustering of Applications
with Noise) [67], OPTICS (Ordering Points to Identify Clustering Structure) [251], etc.

• Hierarchical Based Methods[163]: The clusters formed in these methods form a
tree-type structure based on the hierarchy. New clusters are formed using the previ-
ously formed one. Hierarchical based clustering methods can be divided into two main
types:

– Agglomerative clustering (bottom-up approach)[4]: An object is initially consid-
ered as a single-element cluster (leaf). The two most similar clusters are combined
into a new bigger cluster (nodes) at each step of the algorithm. Then, this proce-
dure is repeated till all the data points belong to just one single big cluster (called
root). Result of agglomerative clustering method is the tree which can be plotted
as a dendrogram.

– Divisive hierarchical clustering (top-down approach)[242]: This algorithm is in an
inverse order of Agglomerative clustering. The algorithm starts with the root, in
which all objects are included in a single cluster. The most heterogeneous cluster
is divided into two clusters at each iteration step. The process is repeated until
all objects are in their own cluster.

Some examples of Hierarchical clustering Based Methods are CURE (Clustering Us-
ing Representatives) [90], BIRCH (Balanced Iterative Reducing Clustering and using
Hierarchies) [248], etc.

• Partitioning clustering Methods: are the clustering methods that partition the ob-
jects into groups based on their similarity and each partition forms one cluster. This
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method is commonly implemented by optimizing an objective criterion similarity func-
tion especially when the distance is a major parameter. Some examples of Partitioning
clustering Methods are K-means [146][173], CLARANS (Clustering Large Applications
based upon Randomized Search) [159], K-medoids clustering or PAM [119].

• Grid-based clustering Methods: are the clustering methods where the data space
is divided into a finite number of cells that form a grid-like structure. All the clustering
operation performed on these grids are fast and independent of the number of data
objects. Some examples of Grid-based clustering Methods are STING (Statistical
Information Grid) [234], wave cluster [207], CLIQUE (CLustering In Quest) [165], etc.
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C Minimal convex polygon
decomposition

A partition of a polygon P is a set of primitive units (or polygons, these primitive units can
be triangles, rectangles, squares, convex or concave polygons) such that these polygons do
not intersect each other and the union of these polygons is exactly equal to the interior of the
original polygon P . A polygon partition problem is a problem of finding a partition which
is optimal in some sense. The optimal criterion for this polygon partition problem can be
partition with a smallest number of polygons, with polygons of smallest total side-length, or
minimal number of convex polygons.

Polygon partitioning is a really important class of problems in computational geometry
because most geometric problems are simpler and faster on convex objects than on non-
convex ones. There exists a number of different polygon partitioning problems. They are
depending on the type of polygon that is being partitioned and also on the types of units
(polygons) allowed for partitioning.

The term polygon decomposition is often used as a general term that includes both covering
and partitioning[143].

Polygon decomposition has been widely applied in several areas:

• Polygon decomposition has been widely used in computational geometry. Generally,
problems that restrict the types of polygons such as convex or star-shaped are always
simpler than the ones with general polygons. Therefore, for computational geometry
problems, polygons are first decomposed into simpler component parts. Then, the
algorithm is applied to the gathered simpler polygons. Finally, partial solutions are
combined to get the full solution. Examples can be seen in [164] [8].

• Very large-scale integration (VLSI) is the procedure for generating an integrated cir-
cuit (IC) by combining millions of MOS transistors onto a single chip. Layouts are
illustrated as polygons [137] in VLSI data processing, and one method for preparing
the electron-beam lithography is to decompose these polygon regions into fundamental
simple polygons. Polygon decomposition is also applied for dividing the routing region
into channels.

• Pattern recognition [25] is the process of recognizing patterns by using machine learn-
ing algorithm. These techniques extract information from an object for identifying,
classifying, or describing it. General polygons are usually recognized by decomposing
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it into simpler components, then identify the components and their interrelationships.
Finally, the gathered information is used to determine the shape of the object.

• Some others applications of Polygon decomposition include image processing [153],
computer graphics [222], database systems [132], and data compression [139].

Several methods for polygon decomposition are:

• Partitioning a polygon to triangles [1][117]

• Partitioning a polygon to pseudo-triangles [10][96]

• Partitioning a rectilinear polygon into rectangles [52]

• Partitioning a polygon to trapezoids [39][16]

• Partitioning a polygon to convex quadrilaterals [187][145]

• Partitioning a polygon to m-gons [131][125]
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D CGAL library

The Computational Geometry Algorithms Library (CGAL) is an open source software library
of computational geometry algorithms that provides easy access to efficient and reliable
geometric algorithms in the form of a C++ library. It was initially released in 1996 and
primarily written in C++. Nowadays, CGAL libraries are also available for Python and
Java.

CGAL is used and applied in a number of areas that require geometric computation such as
computer vision, medical imaging, computer-aided design, geographic information system,
molecular biology, and robotics.

The CGAL library covers the following topics:

• Geometry kernels - basic geometric operations on geometric primitives

• Arithmetic and algebra

• Convex hull algorithms

• Polygons and polyhedra

• Polygon and polyhedron operations

• Arrangements

• Point set triangulations

• Delaunay triangulations

• Voronoi diagrams

• Mesh generation

• Geometry processing

• Search structures

• Shape analysis, fitting, and distances

• Interpolation

• Kinetic data structures
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The main CGAL package was used in this thesis is "2D Polygon Partitioning". This package
provides functions for partitioning polygons in monotone or convex polygons. The algorithms
can produce results with the minimal number of polygons, as well as approximations which
have no more than four times the optimal number of convex pieces but they differ in their
runtime complexities.
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Titre: Plani�cation et Commande robustes de véhicules aériens sans pilote

Mots clés: Systèmes multi-modèle Takagi-Sugeno, Commande robuste, Plani�cation et suivi

de trajectoire, Mission coordonnée, Optimisation énergétique, Commande déportée

Résumé: L'objectif de cette thèse est de

réaliser la modélisation, la plani�cation de tra-

jectoire et le contrôle d'un robot hélicoptère

sans pilote pour la surveillance de grandes

surfaces, en particulier dans des applications

d'agriculture de précision. Plusieurs tâches de

l'agriculture de précision sont abordées. Dans

les missions de surveillance des ravageurs, les

drones seront équipés de caméras spécialisées.

Une trajectoire sera recherchée et créée pour

permettre aux aéronefs sans pilote de capturer

des images de zones de cultures entières et

d'éviter les obstacles pendant le vol. Les zones

infectées seront ensuite identi�ées en analysant

les images prises. Lors de la pulvérisation

d'insecticides, l'aéronef doit être contrôlé pour

voler selon une trajectoire préprogrammée et

pulvériser l'insecticide sur toutes les zones de

culture infectées.

Dans la première partie, nous présentons un

nouvel algorithme de plani�cation de chemin

de couverture complet en proposant une nou-

velle décomposition cellulaire qui repose sur une

généralisation de la variante Boustrophédon, à

l'aide de fonctions Morse, avec une extension de

la représentation des points critiques. Cette ex-

tension conduit à un nombre réduit de cellules

après décomposition. L'algorithme génétique

(GA) et l'algorithme de problème du voyageur

de commerce (TSP) sont ensuite appliqués pour

obtenir le chemin le plus court pour une cou-

verture complète. Ensuite, à partir des infor-

mations sur la carte concernant les coordonnées

des obstacles, des zones infectées et non infec-

tées, les zones infectées sont divisées en plusieurs

régions non chevauchantes en utilisant une tech-

nique de regroupement. Ensuite, un algorithme

est proposé pour générer le meilleur chemin pour

qu'un véhicule aérien sans pilote (UAV) dis-

tribue des médicaments à toutes les zones in-

fectées d'un environnement agricole qui contient

des obstacles non convexes, des zones exemptes

de parasites et des zones infestées de parasites.

Dans la deuxième partie, nous étudions la

conception d'un système de contrôle robuste

qui permet au véhicule de suivre la trajec-

toire prédé�nie d'un hélicoptère à modèle dy-

namique variable en raison des changements

de coe�cients dynamiques tels que la masse

et les moments d'inertie. Par conséquent, les

lois robustes d'observation et de contrôle sont

nécessaires pour adopter les changements des

paramètres dynamiques ainsi que l'impact des

forces externes. La méthode proposée consiste à

explorer les techniques de modélisation, de plan-

i�cation et de contrôle par l'approche LPV. Pour

avoir des algorithmes facilement implantables et

adaptables aux changements de paramètres et

de conditions d'utilisation, nous privilégions la

synthèse de l'Observateur d'Entrées Inconnues

(UIO) à Paramètre Linéaire Variable (LPV), et

des controlleurs retour d'état quadratique LPV,

retour d'état robuste et retour de sortie statique.

L'observateur et les contrôleurs sont conçus en

résolvant un ensemble d'inégalités matricielles

linéaires (LMI) obtenues à partir du lemme réel

borné et de la caractérisation des régions LMI.

En�n, pour mettre en évidence les performances

des algorithmes de plani�cation de trajectoire

et des lois de contrôle générées, nous e�ectuons

une série de simulations à l'aide de MATLAB

Simulink. Les résultats de la simulation sont as-

sez prometteurs. L'algorithme de plani�cation

de trajectoire de couverture suggère que la tra-

jectoire générée raccourcit la distance de vol de

l'aéronef mais évite toujours les obstacles et cou-

vre toute la zone d'intérêt. Les simulations pour

l'observateur LPV UIO et les contrôleurs LPV

sont e�ectuées avec les cas où la masse et les mo-

ments d'inertie changent brusquement et lente-

ment. Le LPV UIO est capable d'estimer les

variables d'état et les perturbations inconnues

et les valeurs estimées convergent vers les vraies

valeurs des variables d'état et les perturbations

inconnues de manière asymptotique. Les con-

trôleurs LPV fonctionnent bien pour divers sig-

naux de référence (impulsion, aléatoire, con-

stant et sinusoïdale) et plusieurs types de per-

turbations (impulsionnelle, aléatoire, constante

et sinusoïdale).
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Abstract: The objective of this thesis is to

realize the modeling, trajectory planning, and

control of an unmanned helicopter robot for

monitoring large areas, especially in precision

agriculture applications. Several tasks in preci-

sion agriculture are addressed. In pest surveil-

lance missions, drones will be equipped with

specialized cameras. A trajectory will be re-

searched and created to enable unmanned air-

craft to capture images of entire crop areas and

avoid obstacles during �ight. Infected areas will

be then identi�ed by analyzing taken images. In

insecticides spraying, the aircraft must be con-

trolled to �y in a pre-programmed trajectory

and spray the insecticide over all the infected

crop areas.

In the �rst part, we present a new complete cov-

erage path planning algorithm by proposing a

new cellular decomposition which is based on

a generalization of the Boustrophedon variant,

using Morse functions, with an extension of the

representation of the critical points. This ex-

tension leads to a reduced number of cells after

decomposition. Genetic Algorithm (GA) and

Travelling Salesman Problem (TSP) algorithm

are then applied to obtain the shortest path for

complete coverage. Next, from the information

on the map regarding the coordinates of the ob-

stacles, non-infected areas, and infected areas,

the infected areas are divided into several non-

overlapping regions by using a clustering tech-

nique. Then an algorithm is proposed for gener-

ating the best path for a Unmanned Aerial Ve-

hicle (UAV) to distribute medicine to all the in-

fected areas of an agriculture environment which

contains non-convex obstacles, pest-free areas,

and pests-ridden areas.

In the second part, we study the design of a ro-

bust control system that allows the vehicle to

track the prede�ned trajectory for a dynamic

model-changing helicopter due to the changes

of dynamic coe�cients such as the mass and

moments of inertia. Therefore, the robust ob-

server and control laws are required to adopt

the changes in dynamic parameters as well as

the impact of external forces. The proposed ap-

proach is to explore the modeling techniques,

planning, and control by the Linear Parame-

ter Varying (LPV) type technique. To have

easily implantable algorithms and adaptable to

changes in parameters and conditions of use, we

favor the synthesis of Linear Parameter Varying

(LPV) Unknown Input Observer (UIO), LPV

quadratic state feedback, robust state feedback,

and static output feedback controllers. The ob-

server and controllers are designed by solving a

set of Linear Matrix Inequality (LMI) obtained

from the Bounded Real Lemma and LMI regions

characterization.

Finally, to highlight the performances of the

path planning algorithms and generated control

laws, we perform a series of simulations in MAT-

LAB Simulink environment. Simulation results

are quite promising. The coverage path plan-

ning algorithm suggests that the generated tra-

jectory shortens the �ight distance of the air-

craft but still avoids obstacles and covers the

entire area of interest. Simulations for the LPV

UIO and LPV controllers are conducted with

the cases that the mass and moments of iner-

tias change abruptly and slowly. The LPV UIO

is able to estimate state variables and the un-

known disturbances and the estimated values

converge to the true values of the state vari-

ables and the unknown disturbances in asymp-

totically. The LPV controllers work well for

various reference signals (impulse, random, con-

stant, and sine) and several types of distur-

bances (impulse, random, constant, and sine).
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