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Abstract

The existence of the dark matter and the truth beyond its nature has been
one of the greatest puzzle of the twentieth century and still it is nowadays.
In the last decades several hypothesis, such as the WIMPs model, have
been proposed to solve such puzzle but none of them has been able so far
to succeed.
In this thesis work we will focus on an other very appealing model in which
dark matter is successfully described by an ultra-light scalar field whose
origin can be sought in the low-energy limit of one of the most promising
unification theories: the String Theory.

In this work we show how such scalar field, if present, interacts with stan-
dard matter and in particular with the optical apparatus that is at the core
of gravitational waves antennas. We derive and discuss the signal produced
by this interaction through different approaches deriving both approximated
and exact solutions. Special attention is paid to the second-order term of
the signal approximate series expansion whose contribution ends up to be
not negligible when one factors in the specific geometrical dimensions and
frequency range of gravitational waves detectors like Advanced LIGO and
Advanced Virgo.
As suggested by recent surveys, we assume the presence of a dark matter
stream in the local neighborhood of the solar system and show its effect on
the signal.

We then propose and discuss a hierarchical statistical analysis aimed to
the signal detection. In case of no detection a limit curve for the coupling
parameter d∗g is derived. Such curve is then analyzed in detail showing the
magnitude of the contribution of the first-order and second-order terms of
the signal series expansion. We analyze the modification of the constraint
curve due to the variation of the fraction of local dark matter belonging to
the stream. We show finally how the constraint curve responds to variations
of the search parameter and discuss the optimal choices.

3



4

Keywords:- Alternative Theory of Gravitation - Scalar Tensor Theory -
Dark Matter - Gravitational Waves - Signal Analysis



Résumé

L’existence de la matière noire et la vérité sur sa nature a été l’une des plus
grandes énigmes du XXe siècle et elle l’est encore aujourd’hui. Au cours des
dernières décennies, plusieurs hypothèses, telles que le modèle WIMPs, ont
été proposées pour résoudre une telle énigme. Aucune d’entre elles n’a pour
l’instant réussi.
Dans ce travail de thèse, nous nous concentrerons sur un autre modèle très
attrayant dans lequel la matière noire pourrait être décrite avec succès par
un champ scalaire ultra-léger. L’origine de ce champ peut être recherchée
dans la limite de basse énergie de l’une des théories d’unification les plus
prometteuses : la théorie des cordes.

Dans ce travail, nous montrons comment un tel champ scalaire, s’il est
présent, interagit avec la matière standard et en particulier avec l’appareil
optique qui est au cœur des antennes d’ondes gravitationnelles. Nous eval-
uons et nous discutons le signal produit par cette interaction à travers
différentes approches. Des solutions approximatives et exactes sont ensuite
obtenues. Une attention particulière est accordée au terme du deuxième
ordre de l’expansion en série approximative du signal. On trouve, en effet,
que sa contribution finit par ne pas être négligeable lorsque l’on tient compte
des dimensions géométriques spécifiques et de la gamme de fréquence des
détecteurs d’ondes gravitationnelles comme Advanced LIGO et Advanced
Virgo.
En tenant compte des travaux récents, nous supposons la présence d’un flux
de matière noire voisin du système solaire et nous montrons son effet sur le
signal.

Nous proposons et discutons une analyse statistique hiérarchique visant
à la détection du signal. En cas de non-détection, une courbe limite pour
le paramètre de couplage d∗g est dérivée. Cette courbe est ensuite analysée
en détail montrant l’ampleur de la contribution des termes de premier ordre
et de deuxième ordre de l’expansion en série de signaux. Nous analysons
la modification de la courbe de contrainte en raison de la variation de la
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fraction de matière noire locale appartenant au flux. Nous montrons enfin
comment la courbe de contrainte répond aux variations du paramètre de
recherche. Une discussion sur des choix optimaux est proposée.

Mots clés:- Théorie Alternative de la Gravitation - Théorie Tenseur Scalaire
- Matière Noire - Ondes Gravitationnelles - Analyse de Signal
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Introduction

Although the theory of General Relativity has passed numerous tests, it is
nowadays challenged by theoretical considerations and by galactic and cos-
mological evidences [130]. From a theoretical point of view, because of its
classical frame, General Relativity cannot be dealt with in the same way as
for others fundamental interactions. Numerous theoretical developments of
a quantum theory of gravitation, that would be able to unify the gravita-
tional sector with the standard model of particles, also seem to demand for
a modification of the Einstein’s theory.
In addition to this, some of the current galactic and cosmological obser-
vations seem to require the introduction of new entities, such as the dark
energy and the dark matter, in order to be explained. Recent analyses of the
Cosmic Microwave Background suggest that only around 30% of the total
energy density in our universe is accounted by matter, and the fraction be-
comes way smaller if one considers just the standard barionic matter [100].
On galactic scale, we see that the observed rotational curves of galaxies, as
well as their total luminosity, do not fit the prediction based on General
Relativity. This strongly suggest the presence of something, i.e. the dark
matter, able to affect the gravitational behavior of the system it is a part
of, without showing any kind of electromagnetic interaction [105, 124]. Such
exotic and mysterious components of our universe can be interpreted as new
types of matter, as a modification of the undergoing theory of gravitation,
or as a combination of the two.
In the last decades, astronomers and physicists have come up with differ-
ent ideas in order to address the aforementioned inconsistencies of General
Relativity. One of the first hypothesis assumed intergalactic gas to be the
responsible of the high galactic mass-to-luminosity ratio values. However, it
was discarded when studies on the Coma and Pegasus I clusters showed that
hydrogen abundance was less than the 2% of what would have been required
for gravitational binding [97, 87]. An other hypothesis saw the galactic dark
matter made up of massive astrophysical compact halo objects, MACHOs
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in short. In this group one would find black holes, neutron stars as well
as white and red dwarf and planets. Nowadays the MACHOs hypothesis
is quite strongly dismissed as gravitational microlensing surveys together
with the determination of the primordial light element abundances favor a
non-baryonic nature for the dark matter [100, 83, 120]. If dark matter is
not made up of baryonic matter, then one must look elsewhere. WIMPs
(Weakly Interacting Massive Particles) seemed to be able to accommodate
this requirement becoming one of the most popular dark matter candidate
of the last decade. Loosely speaking, a WIMP is any massive particle that
possess a weak, but non negligible coupling to the ordinary matter. In the
last years several experiments have been performed in order to detect this
weakly interacting massive particles, both through direct detection meth-
ods (see for example [28, 1]) and through indirect detection method (see for
example [101, 13, 63]). Unfortunately, nowadays the WIMP hypothesis has
not been able yet to prove herself true despite the effort gone into it.
Motivated by this -to date- unsuccessful search, scientists have began to
increase their attention on alternative viable candidates, among which we
find ultralight scalar fields. Such dark matter candidate consist in a mas-
sive scalar field φ which oscillate in time when its mass is larger than
mφ � h̄H/c2 ∼ 1.5 × 10−33 eV/c2. Where, in the previous inequality, H
denotes the Hubble constant and mφ represent the scalar field mass that, in
our study, takes values from 10−14 eV/c2 up to 10−11 eV/c2.
The oscillating behavior of ultralight scalar field generates various peculiar
phenomena that one can exploit in order to probe its existence. For in-
stance, the oscillation of the scalar field φ induces a similar behavior in the
fine-structure constant α, the electron mass me or the quantum chromo-
dynamic mass scale. In turn, these variations creates a modulation in the
energy spacing ∆E between two electronic levels as well as in the hyperfine
transition frequency ratio of different atoms. [20] and [68] show, for exam-
ple, how one could look for these effects in order to validate the presence
of the scalar field. In the same way, as proposed in [61], one can exploit
the induced oscillation of the Bohr radius, and the resulting variation of the
atoms size and length of chemical bonds, to detect the scalar field via the
implementation of optical cavities.
In our work we investigate the possibility of detecting this ultralight scalar
field dark matter with a gravitational wave antenna such as Advance LIGO
and Advanced Virgo, which in the last five years have proven to be ex-
tremely sensible instrument and able to push their boundaries further and
further [3, 4, 5]. The spatial variations of the scalar field is in fact able to
exert position-dependent oscillatory force on gravitational waves detectors’
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optical equipment. As a result, the optical equipment undergoes position-
dependent oscillatory motions, which ends up with non-vanishing signals in
the gravitational wave detectors’ outputs. In this work, we derive an expres-
sion for the signal, first approximately, with the geodesic deviation and then,
exactly, through a rigorous geometrical derivation. We propose a two-step
search strategy optimized to find sinusoidal-like signals. A detailed discus-
sion addresses the assumptions and approximations on which such detection
method is based on and how one could adapt it if those assumptions would
reveal to be unmet. Finally we test the effectiveness of the search strategy
proposed in this work by applying it to fake data. In particular, we bury in
Gaussian noise a signal that reproduces the one that would be generated by
the interaction of the ultra-light scalar field with the interferometer’s optical
apparatus. We then apply the proposed detection method to see whether
or not it allows us to recover the signal. In case of no detection, we assess
how strong are the constraints we are able to put on the parameter of the
underling interaction theoretical model.
The organization of the document is as follows. The first chapter of this
manuscript will be devoted to a recap of the basis of the theory of general
relativity. In its final part we will introduce the so-called scalar-tensor the-
ory as an extension of the Einstein’s theory. In chapter 2 we will deal with
the physic beyond the gravitational waves. We will explain the principles
that allow gravitational waves interferometer to work and the basic approach
to signal analysis used to look for a detection. Chapter 3 will focus on the
dark matter paradigm addressing two main questions: why do we think dark
matter exist? what is dark matter made of? We will analyze some of the
most compelling hypothesis such as the WIMPs’ and FDM hypothesis and
discuss the state of the art as it is nowadays. Finally in the last chapter
we will show how the dark matter can be described in the framework of the
scalar-tensor theory through the consideration of a ultra-light scalar field
coupled with the standard matter. We will show how this scalar field would
interact with the optical apparatus of gravitational waves interferometers
extrapolating the kind of output signal it would produce. A signal analysis
approach will be presented subsequently to finally conclude with the possi-
ble constraint one would be able to put on one of the model most important
parameter in case of no detection. A final section is then dedicated to data
simulations and analysis.
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Chapter 1

General Relativity and its
extensions

1.1 General Relativity

A good point to start if one wants to understand how gravity can be de-
scribed through the curvature of the space-time is to consider one of the
most known physical principles: the Principle of Equivalence. In its
weak formulation (Weak Equivalence Principle, or WEP) it states that the
inertial mass of a body mi is equals to its gravitational mass mg. The iner-
tial mass is the constant that multiplies the acceleration in the second law
of the Newtonian mechanics

~F = mi~a (1.1)

and quantifies the resistance one feels when one tries to move an object.
For a given object, this quantity assumes always the same value despite the
nature of the force acting on it (mechanical, electromagnetic, etc.). On the
other side, the gravitational mass relates the gravitational force exerted on
an object with the variation of the gravitational potential Ψ,

~Fg = mg∇Ψ. (1.2)

Although a priori these two quantities have very little in common, it has been
proved to extremely high precision that mi = mg. A direct consequence of
this equality is the universal interaction between matter and gravity. Every
object falls at the same rate when it is subject to the same gravitational
field. Such behavior allows us to reformulate the weak equivalence princi-
ple as follows: In a small enough region of the space-time, the motion of

13



14 CHAPTER 1. GENERAL RELATIVITY AND ITS EXTENSIONS

free-falling objects are the same in a gravitational field and a uniformly ac-
celerated frame. Let us imagine to be in a box, unable to observe the outside
world, while doing experiments involving the motion of test objects. Let us
imagine also that such a box is accelerating at a constant rate. The weak
equivalence principle states that there is no way for us to disentangle the
effect of the gravitational field from those of an uniformly accelerating frame
by studying the behavior of freely-falling objects. Famous is the example
of the lift accelerating in the vacuum with an acceleration ~a perpendicular
to the floor, direct toward the roof, and equal in magnitude to the accel-
eration ~g we experience on the Earth’s surface. There would be no way to
distinguish between the trajectory of a freely-falling objects inside such lift
and one inside a lift at rest on the Earth’s surface. After the conclusion
of his theory of the special relativity (SR), Einstein thought to generalize
the weak equivalence principle to something more inclusive that could bet-
ter account for the new theoretical frame given by the SR. This extension
of the weak equivalence principle is known as the Einstein Equivalence
Principle, or EEP and states that in small region of the space-time, the
laws of physics reduce to those of special relativity; thus it is impossible to
detect the existence of a gravitational field by means of local experiments.
One of the major implication of the Einstein equivalence principle is that
there is not such thing as a gravitational neutral object that can be used to
measure the acceleration due to gravity. Because every objects respond to
the presence of gravity in the same way, the gravitational acceleration is not
something one can reliably define. The idea then is to get rid of it defining
freely-falling objects as unaccelerated. But if gravity no longer generates an
acceleration it means the it can no longer be regarded to as a force and its
effects must be addressed to something else. As we will see this ”something
else” is indeed the curvature of the space-time.

1.1.1 Space-time manifold and metric

An other consequence of the Einstein equivalence principle is that the idea
of an infinitely extended inertial frame is no more acceptable. If one start to
build a structure out of rigid rods and clocks around a freely-falling object
in order to define an inertial frame, he or she will soon discover that far
away particles, initially at rest respect to this frame, will start to accelerate
as a consequence of the in-homogeneity of the gravitational field. Therefore,
the best one can do is to define locally inertial frames as those frames which
follow the motion of individual freely-falling objects in a small region of the
space-time. In order to capture and describe this new complexity of the
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space-time one needs to use mathematical structures known as differential
manifolds. A differential manifold can be regarded as a set that looks lo-
cally like a flat space, but might have a very different global geometry. To
have an example of such a mathematical structure, one has to look not fur-
ther than the surface of the Earth. It looks essentially flat if we confine our
observation to small enough region of it, and definitely round if we let us look
at it as a whole. To be a little more rigorous one can say that a manifold
describes a space with a possible complex topology and morphology that
nevertheless behaves locally as the flat Euclidean space. The flat Euclidean
space, also known as Rn, is the set of n-tuples

(
x1, x2, ..., xn

)
equipped with

a flat, positive-defined, metric ηµν = diag (1, ..., 1), where ”diag” means a
diagonal matrix with the given elements. It is worth to remark that this
local association between the manifold and the Euclidean space holds true
only as far as one is considering the behavior of function and coordinate. By
no means this wants to say that the metric would be the same. It is the met-
ric, in fact, that encodes the information on the manifold morphology and
curvature. The metric itself is described by the symmetric, non-degenerate
(0, 2) tensor gµν . This tensor covers countless roles and one can easily say
that is one of the most important pillars of Einstein’s theory. To enumerate
few of these, we just need to consider that the metric determines causality;
it provides a notion of local inertial frame; is fundamental in the definition
of ”future” and ”past” events and replaces the Newtonian gravitational field
Ψ in the description of the gravitational interaction. A way to characterize
a given metric is through its signature. In order to do it, one needs first to
put the metric in its canonical form

gµν = diag (−1,−1, ...,+1, ...0, ..., 0) . (1.3)

The metric signature is then defined as the number of both positive and
negative eigenvalues. If the metric is continuous and all its eigenvalues are
different from zero, its signature will be the same at every point of the
manifold. In the literature a metric with all positive eigenvalues is called
Euclidean or Reimannian. If there is instead a single negative eigenvalues
one refers to it as a Lorentzian or Pseudo-Riemannian metric. Any other
combination represent an indefinite metric. In the theory of the general
relativity, for example, one considers a four-dimensional manifold whose
metric is characterized by the signature (-1, +1, +1, +1). In particular, the
negative eigenvalue is associated with the temporal dimension of the space-
time whereas the three positive ones are associated with the remaining three
spatial dimensions.
It is possible to show that, at any given point p of the manifold, there exist
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a coordinate system xµ̂ that allows us to express the metric in its canonical
form and to set equal to zero all its first derivatives

gµ̂ν̂ (p) = ηµν , ∂σ̂gµ̂ν̂ (p) = 0. (1.4)

Such coordinates are referred to as local inertial coordinates. Note that, if in
the local inertial coordinates frame one has the ability to make the metric at
the point p looks like that of flat space, it means that the information on the
manifold curvature cannot be encoded either in gµν or in its first derivatives
∂σgµν . The second derivatives of the metric are the one who play the most
important role in describing the space curvature. It turns out true in fact
that there are no way to set ∂ρ∂σgµν = 0 for any manifold that is not the
Euclidean flat space itself.

1.1.2 Parallel-transport and geodesic equation

But what is exactly the curvature of the space-time and how can we de-
scribe it from a more appropriate mathematical point of view? We are used
to think about curvature as an extrinsic characteristic of the space. We
are able to say that a surface is curve because of the way it bends in R3.
However, as far as we know, our space-time is not naturally embedded in
a higher dimensional space. That’s the reason way one usually prefers to
use an intrinsic definition of curvature that therefore can be applied for ev-
ery manifold, in any situation. This notion of curvature can be defined in
terms of parallel transport. It is very intuitive to understand that to paral-
lel transport a vector, for example, means to move it along a path having
it always pointing in the same direction. One can immediately grasp how
this notion can help us characterizing the curvature of a manifold if he or
she considers that on a plane, a parallel-transported vector always coincides
with its initial value. However this is not true on a sphere, see Fig. 1.1.

Figure 1.1: On the left we show the parallel transport of a vector around a closed
curve on a plane. One can see that the vector “comes back” pointing in the same
direction. On the right we show the parallel transport of a vector around a closed
curve on a sphere. This time the vector comes back rotated by a certain angle.



1.1. GENERAL RELATIVITY 17

In order to perform a parallel transport, we need to define some sort of
derivative. In fact, given a notion of derivative, one can state that a vector
is parallel transported along a curve if its derivative is zero along that given
curve. Unfortunately, the common partial derivative will not do the work
as it is a coordinate system dependent object and we need something that
will not change when we change the coordinate system we are in (something
said covariant). This is the reason why we introduce the covariant deriva-
tive ∇. The covariant derivative, or derivative operator, is a linear map
that transforms (k, l) tensor into (k, l+1) tensor. One also requires it other
proprieties such as to satisfy the Leibniz rule and to be commutative with
tensor contraction. Such derivative operator can be defined through the way
it acts upon vector, co-vector and by extension any (k, l) tensor as follows

∇µtν = ∂µt
ν + Γνµσt

σ;

∇µων = ∂µων − Γσµνωσ;
(1.5)

and for a generic (k, l) tensor

∇σTµ1...µkν1...νl
= ∂σT

µ1...µk
ν1...νl

+
∑
i

ΓµiσρT
µ1...ρ...µk
ν1...νl

−
∑
j

ΓρσνjT
µ1...µk
ν1...ρ...νl

.
(1.6)

Γs are known as Christoffel symbols and their purpose is to connect the par-
tial derivative operator ∂ with a covariant derivative operator ∇. Provided
with the tool of the covariant derivative, the notion of parallel transport
along a curve C can be now defined as follows: given a vector vµ, one can
state that it is parallel transported along C if the equation

tν∇νvµ = 0 (1.7)

is satisfied at each point as one moves along C, where tν represents, at
any given point, the tangent of the curve. If one parameterizes C with the
parameter t, then eq. (1.7) can be cast in the form

dvν

dt
+
∑
µ,σ

tµΓνµσv
σ = 0. (1.8)

Given a metric tensor gµν and two vectors vµ and wν , it is possible to show
that there exists only one derivative operator ∇ that leaves unchanged the
inner product gµνt

µwν when the two vectors are parallel transported along
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a generic curve. The Christoffel symbol that connects such operator with
the partial derivative operator can be expressed in terms of the metric and
its prime derivatives as follows

Γσµν =
1

2
gσρ (∂µgνρ + ∂νgµρ − ∂ρgµν) . (1.9)

The importance of this choice is that in this way the sense of orthogonality,
the vectors’ norms and so on, are not spoiled by the act of parallel trans-
porting.
The notion of parallel transport also allows us the characterize the geodesics
of the manifold. A geodesic, as we will see, is the equivalent of a straight line
in the Euclidean flat space. That is a line that goes ”as straight as possible”
given the intrinsic curvature of the manifold. One can translate this idea in
term of parallel transport by demanding the tangent vector of the geodesic
to be parallel propagated along the geodesic curve itself, i. e.

tν∇νtµ = 0. (1.10)

In particular, the quantity tν∇νtµ is equal to zero only for a particular
parameterization of the curve called affine parameterization. For any other
choice one would have the weaker condition

tν∇νtµ = αtµ, (1.11)

where α is an arbitrary function of the curve. However, since it is always
possible to describe a curve in terms of its affine parameter, there is no loss
of generality in considering only curves which satisfy eq. (1.10) rather then
(1.11). Once again, one can write eq. (1.10) in a way that makes explicit
the curve parameterization

d2xµ

dt2
+ Γµσν

dxν

dt

dxσ

dt
= 0, (1.12)

where the repeated indexes are summed over. Immediately we see that in
a flat space-time, where the Christoffel symbols Γ are equal to zero, the
geodesic equation reduces to

d2xµ

dt2
= 0 (1.13)

and thus describes a straight line. We know that the straight line in Eu-
clidean space also represents the path of shortest distance between two
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points. It can be proved that such propriety can be is translated to geodesics
in case of curved space. To show how this can be demonstrated let us con-
sider a timelike path in the space-time, the result will then be applicable to
any kind of path. For timelike path, we know that is more convenient to
reason in terms of the proper time defined by the following functional

τ =

∫ (
−gµν

dxµ

dλ

dxν

dλ

)1/2

dλ, (1.14)

where the integral is over the path between two points of a given space-time
that can be causally connected. One could find the stationary points of
this functional through the usual calculus-of-variation method. However,
because of the particular form of the functional, one can make things easier
considering that

δτ =

∫
δ
√
−fdλ

= −
∫

1

2
(−f)−1/2 δfdλ,

(1.15)

where

f = gµν
dxµ

dλ

dxν

dλ
. (1.16)

If now one chooses the arbitrary parameter λ to be exactly the proper time
τ , then the tangent vector becomes the four-velocity Uµ and

f = gµν
dxµ

dτ

dxν

dτ
= gµνU

µUν = −1. (1.17)

Injecting eq. (1.17) in eq. (1.15), one can see that

δτ = −1/2

∫
δfdτ, (1.18)

which simplifies the derivation. Hence one can search for the stationary
point of the functional

I =
1

2

∫
gµν

dxµ

dτ

dxν

dτ
dτ. (1.19)

The variation δI can be recovered by considering the change in the integral
under the infinitesimal variation of the path

xµ → xµ + δxµ

gµν → gµν + (∂σgµν) δxσ.
(1.20)
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After some integration by part one obtains

δI =

∫ [
gµν

d2xµ

dτ2
+

1

2
(∂µgνσ + ∂νgµσ − ∂σgµν)

dxµ

dτ

dxν

dτ

]
δxσdτ. (1.21)

In order to find a stationary point the integrated term must vanish for any
variation δxσ. This is true if and only if

gµν
d2xµ

dτ2
+

1

2
(∂µgνσ + ∂νgµσ − ∂σgµν)

dxµ

dτ

dxν

dτ
= 0. (1.22)

One can see that if we multiply eq. (1.22) by the inverse metric gσρ we end
up exactly with the geodesic equation as described in eq. (1.12) where the
Christoffel symbols defined in eq. (1.9) are the special ones defined from the
space-time metric gµν .

1.1.3 Curvature and Riemann tensor

Geodesic curves can be also used in order to characterize the curvature of
the manifold. It is known that one of the postulate of the Euclidean flat
geometry is that initially parallel straight lines remain parallel forever. We
have seen how the notion of geodesic generalizes the straight line of the Eu-
clidean flat space, so we can ask ourselves if this postulate stays true also
when applied to geodesics. With very little surprise, the answer is negative
if the space considered is anything else that the flat space. Let us consider
the spherical representation of our planet. One can imagine two travelers
that move toward the north pole starting from the equator at two nearby
location (see Fig. 1.2).
Even if their paths are straight and parallel at the beginning, the two will
eventually cross at the pole. This well known behavior is a direct conse-
quence of the Earth curvature. Let us now try to describe this phenomenon
in a more rigorous mathematical way. One can start by considering a one-
parameter family of geodesics γs (t). That is a collection of geodesics pa-
rameterized by the affine parameter t and labeled by s ∈ R.
Provided that the members of such a family do not cross each other at any
point, any point of the surface described by γs can be characterized by the
coordinates xµ(s, t). It is straightforward to define two natural vector fields
associated with xµ. The first is the vector field of the geodesics tangent
vectors

Tµ =
∂xµ

∂t
, (1.23)
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Figure 1.2: Even if the meridians are parallel to each other along the equator line,
due to the Earth curvature they eventually meet of the North Pole.

Figure 1.3: One-parameter family of geodesics γs with tangent Tµ and deviation
vector Sµ.

whereas the second

Sµ =
∂xµ

∂s
(1.24)

is usually referred to as the deviation vector field. The reason for this is
that Sµ provides us with the intuitive notion of how far a geodesic is from
its neighborhood. It make sense then to define the a vector field whose role
is to describe how fast this “distance” between two adjacent geodesics varies
as one moves along the geodesics themselves. To do this one considers the
vector field

V µ = T σ∇σSµ. (1.25)
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Similarly one also defines the “relative acceleration” vector field

Aµ = T σ∇σV µ. (1.26)

Since S and T are basis vectors of the coordinate system xµ(s, t) one can
prove that the relation

Sσ∇σTµ = T σ∇σSµ (1.27)

holds true. With this in mind, one is ready to compute the acceleration

Aµ = T ρ∇ρ (T σ∇σSµ)

= T ρ∇ρ (Sσ∇σTµ)

= (T ρ∇ρSσ) (∇ρTµ) + T ρSσ∇ρ∇σTµ,
(1.28)

where in the second line one has utilized relation (1.27) and the third line
results from the application of the Leibniz rule. Next step is to add and
subtract the quantity T ρSσ∇σ∇ρTµ. Note that, because in curved space
the covariant derivative operator does not commute, this T ρSσ∇σ∇ρTµ is
very much different from T ρSσ∇ρ∇σTµ. It follows that

Aµ = (T ρ∇ρSσ) (∇ρTµ) + T ρSσ∇σ∇ρTµ

+ T ρSσ (∇ρ∇σ −∇σ∇ρ)Tµ

= T ρSσ (∇ρ∇σ −∇σ∇ρ)Tµ.
(1.29)

It is useful at this point to define the Riemann tensor Rµνσρ so that

(∇ρ∇σ −∇σ∇ρ)Tµ = RµνσρT
ν . (1.30)

Plugging this into the previous calculation, one finally obtains

Aµ = RµνσρT
νT ρSσ. (1.31)

The Riemann tensor turns out to be crucial in the description of curved
manifold as it single handedly encodes all the information one needs to
describe the curvature of the manifold. For this reason it is worth to look
more into detail its property. In order to do this, it is useful to express the
Riemann tensor in terms of Christoffel symbols and their derivatives

Rσµρν = ∂ρΓ
σ
µν − ∂νΓσµρ + ΓλµνΓσλρ − ΓλµρΓ

σ
λν . (1.32)

The Riemann tensor has a total of n4 components where n is the dimension
of the manifold one is considering. Because of numerous symmetry propriety
this tensor satisfies, among the n4 components the independent ones are just

1

12
n2
(
n2 − 1

)
. (1.33)
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In our case, we are interested in the number of independent components for
n = 4. It turns out that in this case they are 20. These twenty components
are strictly related with the twenty degrees of freedom in the second deriva-
tives of the metric. Those are exactly the twenty degrees of freedom that
cannot be set to zero no matter the choice of the coordinate system. Also
important, for reasons that will be clear later, is the fact that the Riemann
tensor satisfy the Bianchi identity

∇λRρσµν +∇ρRσλµν +∇σRλρµν = 0 (1.34)

where Rρσµν = gρωR
ω
σµν .

The Riemann tensor can be decomposed into its “trace part” and “trace free
part”. To obtain the first, we need to contract its first and third indexes

Rσµσν = Rµν . (1.35)

The result of this operation is called Ricci tensor and it can be proved that
it is the only non-trivial (0,2) tensor one can built contracting the Riemann
tensor. Its trace R = Rµµ is known as the Ricci scalar. The trace free part
takes the name of Weyl tensor and, for manifold of dimensions n ≥ 3, is
defined by the equation

Cρσµν = Rρσµν −
2

(n− 2)

(
gρ[µRν ]σ − gσ[µRν ]ρ

)
+

2

(n− 1) (n− 2)
gρ[µgν ]ρR,

(1.36)

where the square brackets mean that one is taking the symmetric sum over
the indexes, e.g.

A[µν] = Aµν +Aνµ. (1.37)

Let us now focus our attention on the trace part of Rρσµν and its contraction,
namely the Ricci tensor and the Ricci scalar respectively. In particular, as a
consequence of the fact that the Bianchi identity is respected by the Riemann
tensor, Rµν and R satisfy the following equation

∇µRρµ =
1

2
∇ρR. (1.38)

This expression is also known as the twice-contracted Bianchi identity and
can be re-written in the form

∇µ
(
Rµν −

1

2
gµνR

)
= 0. (1.39)
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The divergence-free tensor

Gµν = Rµν −
1

2
gµνR (1.40)

takes the name of Einstein tensor and is of great importance for the Einstein
theory of general relativity.

1.1.4 Einstein’s Equation

Let us now discuss the Einstein field equations of the space-time and see
how to recover them. As for the geodesic equation, the field equations of
general relativity can be found through the principle of least action. Given
the action

S =

∫
L
(
ϑi,∇µϑi

)
dnx, (1.41)

its critical points will be the classical solutions we are looking for. Here ϑi (x)
represent a set of fields that are the dynamical variables of the theory. The
quantities dnx and L are instead densities whose product is a well-defined
tensor. An other way to see it, is to decompose the Lagrangian density L
as follows

L =
√
gL̂,

→
∫ √

−gL̂
(
ϑi, ∂µϑ

i
)
dnx

(1.42)

Here L̂ is the Lagrangian of the theory, thus a scalar quantity, while the
product

√
−gdnx represents the invariant volume element. To see why it is

soo, let us consider the the transformations

xµ = xµ (x̂ν) , (1.43)

where the x̂ν are the coordinates associated with the local inertial system.
Then one has

dnx = Jdnx̂, J = det

(
∂xµ

∂x̂ν

)
. (1.44)

The Jacobian of the transformation can be evaluated considering that

gσ̂ρ̂ = diag (−1, 1, 1, 1) ,

gσ̂ρ̂ =
∂xµ

∂x̂σ
∂xν

∂x̂ρ
gµν ,

→ ĝ = −1 = J2g.

(1.45)
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It follows that the expression for the invariant volume element is

dnx̂ =
1

J
dnx =

√
−gdnx. (1.46)

The task we are left with is to chose our Lagrangian L̂. In our case the
dynamical variable is the metric gµν , so L̂ must be a scalar quantity made
out of the space-time metric. Moreover, this scalar must somehow include
at least the second derivatives of the metric as we have shown that the
metric itself, as well as its first derivatives, can be set to zero at any one
point. As we just saw, the Riemann tensor is made from the second second
derivatives of the metric and we know at least one scalar quantity that can be
constructed from it, the Ricci tensor R. It can be proved that any nontrivial
tensor that involves the metric and its derivatives up to the second order,
can be expressed in terms of the metric and the Riemann tensor. Therefore,
the Ricci scalar is the only independent scalar made out of the metric and
its first and second derivatives. The choice L̂ = R seems therefore to be the
simplest one. The deriving action

SH =

∫ √
−gRdnx, (1.47)

is usually referred to as the Hilber action, or Einstein-Hilbert action. As
one can is, SH is not expressed in the form (1.41). We know on the other
hand that this would not be possible as the ∇σgµν = 0. This means that
one cannot use the Euler-Lagrange equations and needs instead to consider
how small variations of the metric affect the action SH . In practices, is
more convenient to study the behavior of SH under variations of the inverse
metric gµν . It can be proved that the stationary points obtained in this way
are the same one would have obtained varying the action with respect to
gµν . Therefore one has

δSH = δ

∫ √
−gRdnx = δ

∫ √
−ggµνRµνdnx

=

∫
dnxRδ

√
−g +

∫
dnx
√
−gRµνδgµν +

∫
dnx
√
−ggµνδRµν .

(1.48)

The second term on the r.h.s. is already in the correct form X · δgµν , so
all we need to do is to evaluate the other remaining two. As for the first of
them, one can use the relation

δg = gµνδgµν = −ggµνδgµν , (1.49)



26 CHAPTER 1. GENERAL RELATIVITY AND ITS EXTENSIONS

that leads then to

δ
√
−g = − 1

2
√
−g

δg = − 1

2
√
−g

gµνδg
µν . (1.50)

For the last term we consider that

δRµν = ∇ρ
(
δΓρµν

)
−∇ν

(
δΓρρµ

)
. (1.51)

Therefore the integral becomes∫
dnx
√
−ggµνδRµν

=

∫
dnx
√
−ggµν

[
∇ρ
(
δΓρµν

)
−∇ν

(
δΓρρµ

)]
=

∫
dnx
√
−g∇ρ

[
gµν

(
δΓρµν

)
− gµρ

(
δΓρρν

)]
.

(1.52)

As one can see, the third term is an integral with respect to the invariant
volume element of the covariant divergence of a vector. Therefore, it can be
set to zero by making the variation vanish to the infinity. Wrapping up the
last results, we have

δSH =

∫
dnx
√
−g
[
Rµν −

1

2
gµνR

]
δgµν . (1.53)

Stationary points are the ones which satisfy the condition δSH/δg
µν = 0

and therefore one has

1√
−g

δSH
δgµν

= Rµν −
1

2
gµνR = 0. (1.54)

These are the well-known Einstein’s field equations, or to be more precise,
the Einstein’s field equations in vacuum, as we haven’t considered any con-
tribution related to the matter distribution. In order to get the general
equations one has to consider the action

S =
c4

16πG
SH + SM , (1.55)

where SM is the action for the matter and SH has been normalized to obtain
the correct dimension. The quantity 16πG/c4 represents in fact the coupling
constant between matter and geometry. Following the same steps as before,
one obtains

1√
−g

δS

δgµν
=

c4

16πG

(
Rµν −

1

2
gµνR

)
+

1√
−g

δSM
δgµν

= 0. (1.56)
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If now we define the energy-momentum tensor to be

Tµν = −2
1√
−g

δSM
δgµν

, (1.57)

we recover the complete Einstein’s equations

Rµν −
1

2
gµνR =

8πG

c4
Tµν . (1.58)

It is worth to notice that the left hand side of the equation is exactly the
Einstein tensor Gµν . therefore eq. (1.58) can be written as

Gµν =
8πG

c4
Tµν . (1.59)

The identification of the variation of SM with the energy-momentum tensor
Tµν could seem a little bit boldly. We would like then to show that it is indeed
a well motivated choice. Let start by considering the Poisson equation

∇2Ψ = 4πGρ, (1.60)

with Ψ the gravitational potential and ρ the mass density. Of course one
would like the Einstein’s equations to reduce to them in the Newtonian limit.
To see how our choice of Tµν allows exactly that let consider the contraction
of eq. (1.58)

R = −8πG

c4
T. (1.61)

The Einstein’s equation can be now re-written in the slightly different form

Rµν =
8πG

c4

(
Tµν −

1

2
gµνT

)
. (1.62)

In the Newtonian limit, we can assume gravity to be weak and time-independent.
We can also assume particle’s velocity to be not relativistic. In this frame,
the energy-momentum tensor for a perfect fluid is described by

Tµν =
(
c2ρ+ p

)
UµUν + pgµν , (1.63)

where p and c2ρ describe respectively the momentum density and rest energy
and Uµ is the fluid four-velocity. In reality the pressure can be neglected in
the Newtonian limit as the particles of the fluid have velocities well below
the one of the light. Therefore the energy-momentum tensor reduces to

Tµν = c2ρUµUν . (1.64)
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The fluid we are describing represents then some massive body, e.g. the
Earth, that can be thought as dust. In the fluid rest frame, one has

Uµ =
(
U0, 0, 0, 0

)
, (1.65)

where the time-like component U0 of the four-velocity can be fixed through
the normalization

gµνU
µUν = −1. (1.66)

In the Newtonian limit g00 and g00 are equal to the Minkowski metric com-
ponent η00, η00 plus a correction proportional to the gravitational potential
Ψ

g00 = −1− 2

c2
Ψ

g00 = −1 +
2

c2
Ψ.

(1.67)

Therefore, up to the first order in the correction Ψ one has

U0 = 1− 1

c2
Ψ. (1.68)

The T00 component of the energy-momentum tensor then assume the form

T00 = c2ρ

(
1− 1

c2
Ψ

)(
1− 1

c2
Ψ

)
. (1.69)

However, since the energy density c2ρ is already assumed to be small, one
can neglect all the correction terms and get

T00 = c2ρ, Tµν = 0 for µ, ν 6= 0. (1.70)

In the same way, the trace of Tµν can be approximated to

T = g00T00 = −c2ρ. (1.71)

With these results to our disposal we can write the field equations as follows

R00 =
4πG

c2
ρ. (1.72)

We need now to evaluate the R00 component of the Ricci tensor in the New-
tonian approximation. First we notice that R00 = Ri0i0 as the component
R0

000 of the Riemann tensor is zero. Therefore one has

R00 = Ri0i0 = ∂iΓ
i
00 − ∂0Γii0 + ΓiiλΓλ00 − Γi0λΓλi0. (1.73)
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The last two terms on the right-hand side can be neglected as Γ is first
order in the correction Ψ and thus (Γ)2 contributes only at the second order.
The second term instead is straight up zero as it involve a time derivative
that vanish under the assumption of static field made in the Newtonian
approximation. One is therefore left with

R = Ri0i0 = ∂iΓ
i
00

=
1

c2
∇2Ψ.

(1.74)

Finally, putting all together, one can see how we recover exactly the Poisson
equation

∇2Ψ = 4πGρ. (1.75)

1.2 The Standard Cosmological Model

One of the best achievement of the theory or General Relativity is the fact
that it provides us for the first time with the tools necessary to describe, in
a rigorous scientific way, the universe we live in. In this section we will in-
troduce and briefly discuss the so-called Standard Cosmological Model and
its key features.
It is easy to regard at the universe as the most heterogeneous system one
could think of. We know for example that a galaxy disk is very different from
the cold and desolate interstellar space, or that the center of the Milky Way
bears little resemblance to our solar system. On small scales, in fact, this
heterogeneity is certainly true. However, things are not the same when the
scales in play are as big as hundreds of mega-parsec, or even bigger. Differ-
ent observational results suggest that the universe is indeed rather uniform
at this macro-scales. The most known observation that encourages this hy-
pothesis is the 3K cosmic background radiation, i.e. the cosmic leftover from
the Big Bang. This radiation that permeates our entire observable universe,
although not perfectly smooth, presents deviations from regularity that are
on the order of 10−5, or less.
The hypothesis of a uniform universe, also known as Cosmological Principle,
is mathematically described by the notions of homogeneity and isotropy. An
homogeneous space is characterized by the fact that its metric is the same
throughout the manifold. Isotropy, instead, refers to some specific point in
the manifolds and states that in that point the space looks the same no
matter in what direction we look. One must notice that a priori there is
no relationship between homogeneity and isotropy. That’s to say that a
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manifold can be homogeneous but nowhere isotropic, or it can be isotropic
around one of its points without being homogeneous. Nevertheless, if the
manifold is isotropic around one point and also homogeneous, then it must
be isotropic around all of its points. In the same way, if the manifold is
isotropic around all its points, then it must also be homogeneous. In our
case, observations strongly suggest that the universe around the Earth is
isotropic. On the other side, if we accept that we are not at the center of
the universe, we have to assume also that at any other point in the space the
universe would appear isotropic as it appears to us. The space would than
be isotropic everywhere, and thus homogeneous. We remark however that
this characteristics apply only to space, and not to spacetime as a whole.
The spacetime of a universe that is homogeneous and isotropic in space, but
evolving in time, can be described through a manifold like R×Σ. R denotes
here the time direction, while Σ describes a three-dimensional space-like slide
into which the universe can be foliated. The metric of this spacetime is then
described in the comoving coordinates by

ds2 = −dt2 +R (t) dσ2,

dσ2 = γij (x) dxidxj
(1.76)

where t represents the cosmic time, R (t) is the scale factor and dσ2 is the
three-dimensional metric defined on Σ. It is worth to notice that because
of the particular coordinates we have chosen, the coefficient in front of dt2

doesn’t depend on the xi and the metric doesn’t present any cross terms
dtdxi.
It is useful to think of homogeneity and isotropy in terms of symmetries.
One can in fact think of homogeneity as invariance of the space under trans-
lations, while isotropy represents the invariance under rotations. This means
that dσ2 cannot be any metric, but it needs to satisfies these symmetries.
A metric that does so has the form

dσ2 =
dr2

1− kr2
+ r2dΩ2,

dΩ2 = dθ2 + sin2 θdφ2,

(1.77)

where k is related to the three-dimensional Ricci scalar by the equation

k = R(3)/6, (1.78)

end, therefore, encodes the information on the curvature of Σ. The overall
metric on the spacetime becomes therefore

ds2 = −dt2 +R (t)

[
dr2

1− kr2
+ r2dΩ2

]
, (1.79)
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also known as Freidmann-Robertson-Walker metric, or FRW metric.
In the usual parameterization, it is common to absorb the physical size of
the manifold into the scale factor R (t) in order to normalize the parameter
k which therefore can take the values

k ∈ {−1, 0,+1} . (1.80)

Such parameterization is possible as the Freidmann-Robertson-Walker met-
ric is invariant under the transformation

R→ λ−1R′,

r → λr′,

k → λ−2k′.

(1.81)

As k encodes the curvature information, for different values of the parameter
our three-dimensional manifold will assume different geometries. To better
understand the nature and the shape assumed by the manifold, it is useful
to introduce the new radial coordinate defined by

dµ =
dr√

1− kr2
, (1.82)

that can be integrated to obtain

r = Fk (µ) . (1.83)

One can see now that if k = −1, the metric on Σ becomes

dσ2 = dµ2 + (sinhµ)2 dΩ2. (1.84)

This metric describes a three-dimensional hyperboloide of constant negative
curvature. It is also referred in the literature as open space, as globally the
space described by this metric could extend forever.
For k = 0 one obtains

dσ2 = dµ2 + µ2dΩ2

= dx2 + dy2 + dz2.
(1.85)

This metric denotes a three-dimensional flat manifold, i.e. the flat Euclidean
space.
Finally, for k = +1, we have

dσ2 = dµ2 + (sinµ)2 dΩ2, (1.86)
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that is the metric of a three-sphere. In this case, the space one is considering
is closed and characterized by a positive curvature.
Now that we know what kind of metric we need to describe our homogeneous
and isotropic universe, we can use the Einstein’s equations to determine how
this metric will evolve. In order to do this, it is common in literature to
redefine R (t) in order to have the dimensionless scale factor

a (t) =
R (t)

R0
. (1.87)

According to transformation (1.81) the radial coordinate and the curvature
parameter become

r = R0r
′,

k =
k′

R2
0

.
(1.88)

One can see how in this different parameterization the radial curvature ac-
quire the dimension of a distance while the curvature parameter has the
dimension of a distance−2. The FRW metric then reads

ds2 = −dt2 + a (t)

[
dr2

1− kr2
+ r2dΩ2

]
(1.89)

The next step now is to derive the dynamic of the scale factor a (t) through
the Einstein’s equations. In order to do so, we need to characterize the
matter content of the universe. Following the literature, we choose to model
the matter and energy content of our universe by a perfect fluid that is at
rest in the comoving coordinates. We obtain therefore

Tµν =
(
c2ρ+ p

)
UµUν + pgµν , (1.90)

where Tµν represents the energy-momentum tensor while Uµ = (1, 0, 0, 0)
denotes the fluid four-velocity. However, we are not done yet. As we will
see, we also need to characterize the relationship between the fluid energy
density ρ and its pressure p. It is the common in cosmology to consider the
simple equation of state

p = ωρ, (1.91)

where ω is a constant independent of time.
If now one plugs eq. (1.90) and eq. (1.91) into the zero component of the
conservation of energy equation ∇µTµ0 = 0, one gets

ρ̇

ρ
= −3 (1 + ω)

ȧ

a
, (1.92)
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that one can then integrate to obtain

ρ ∝ a−3(1+ω). (1.93)

A priori, the cosmological fluid is made up of different contributions and
therefore studying its dynamic is not trivial. Nevertheless, is educational to
analyze its asymptotic behavior when one of its components dominates all
the others.
Ordinary stars and galaxies, and in general any set of collisionless nonrela-
tivistic particles, represent the matter component of the cosmological fluid.
The peculiarity of this component is that its pressure is negligible in com-
parison with its energy density and thus, it can be considered equal to zero

pM = 0. (1.94)

This is the reason why it is often referred to as dust. As we will see, the
dark matter model considered in this work possesses this property. In a
universe where the matter component is the dominating one, the energy
density evolves as the inverse of the cube of the scale factor

ρM ∝ a−3. (1.95)

In this scenario, in fact, the most important contribution to the energy
density comes from the rest energy, that in turns is proportional to the
number density. As the universe gets bigger (smaller) the number density
will of course decrease (increase) at a rate that is proportional to the cube
of the scale factor a. The overall energy density of the fluid will therefore
do the same.
The second key component is the radiation, which is characterized by the
equation of state

pR =
1

3
c2ρR. (1.96)

With radiation we intend not just the actual electromagnetic radiation, but
also massive particles which moves at speeds very close to the speed of light.
Those particles, as far as their equation of states is concerned, becomes in
fact indistinguishable from photons. When the evolution of the cosmological
fluid is driven by this radiation, the dynamics of its energy density is given
by

ρR ∝ a−4. (1.97)

If on one side, in fact, the number density of photons and relativistic parti-
cles decreases at the same rate of the number density of the nonrelativistic



34 CHAPTER 1. GENERAL RELATIVITY AND ITS EXTENSIONS

particles, on the other side the former also lose energy because of redshift at
a rate of a−1. We think that today the matter energy density is around three
orders of magnitude bigger that the radiation energy density. However, as
the two densities evolves differently, this means that in the past, when the
universe was much smaller, the radiation energy density was the dominant
one.
Finally, one can think of the vacuum energy also as a perfect fluid charac-
terize by the equation of state

pΛ = −c2ρΛ. (1.98)

It would therefore represent a third component for the cosmological fluid
whose energy density would be unaffected by the expansion(contraction) of
our universe

ρΛ ∝ a0. (1.99)

Therefore, in an expanding universe such it is the one we are living in, if
there is a nonzero vacuum energy, it will eventually dominate the other two
components in the long run.

In general however, the evolution of the cosmological energy density, as
well as the dynamic of the scale factor a (t), is derived through the Einstein’s
equations

Rµν − Λgµν =
8πG

c4

(
Tµν −

1

2
gµνT

)
, (1.100)

where Λ is the so-called Cosmological constant.
From the Friedmann-Robertson-Walker metric (1.89) the nonzero compo-
nents of the Ricci tensor can be evaluated obtaining

R00 = −3
ä

a
,

R11 =
aä+ 2ȧ2 + 2k

1− kr2
,

R22 = r2
(
aä+ 2ȧ2 + 2k

)
,

R33 = r2
(
aä+ 2ȧ2 + 2k

)
sin2 θ.

(1.101)

Plugging eq. (1.101) and eq. (1.90) into the Einstein’s equations, one gets(
ȧ

a

)2

=
8πG

3
ρ− kc2

a2
+

1

3
Λc2, (1.102)
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and
ä

a
= −4πG

3

(
ρ+

3p

c2

)
+

1

3
Λc2. (1.103)

These are known as the Friedmann equations and define the evolution
of the Friedmann-Robertson-Walker metric once the content of our universe
and its geometrical features are given.
The factor

H ≡ ȧ

a
(1.104)

is referred to as the Hubble parameter and is usually used to describe the
rate of the expansion of the universe. Observations suggest that its current
value - often referred to as the Hubble constant H0 - should be around
70±10km/sec/Mpc. Since there is still some uncertainty on its exact value,
it is often parametrized as follows

H0 = 100h km/sec/Mpc, (1.105)

where all the uncertainties are condensed into the parameter h. The Hubble
constant, among other things, allow us to set a “standard” cosmological
time given by

tH = H−1
0

= 3.09× 1017h−1sec,
(1.106)

as well as a standard cosmological length

dH = H−1
0 c

= 9.25× 1025h−1m.
(1.107)

This is extremely useful to evaluate which phenomena are important at
cosmological scales, and which instead can be neglected.
Current observations suggest that Hubble parameter is actually increasing.
That is to say that, not only our universe is expanding, but that the rate
at which it is growing is getting bigger and bigger. Such acceleration can
be explained by the cosmological constant that would represent an intrinsic
curvature of the space-time geometry of our universe. An other option
could be to assume instead the presence of a vacuum energy component in
the cosmological fluid. Such component, in the literature, is referred to as
dark energy. In a universe where this component has the same order of
magnitude of the matter component, the second Friedmann equation (1.103)
reads

ä

a
= −4πG

3

(
ρM −

2pΛ

c2

)
, (1.108)
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where we have defined

ρΛ =
Λc2

8πG
, pΛ = − Λc4

8πG
. (1.109)

We see then that, if pΛ is big enough, the r.h.s. of the equation will as-
sume positive values leading to an accelerated expansion. It proves useful
at this point to introduce the concepts of critical density and density
parameter. The former is defined as follows

ρcrit =
3H2

8πG
, (1.110)

whereas the latter is simply given by the ratio

Ω =
ρ

ρcrit
. (1.111)

Equation (1.102) can be recast in the form

Ω− 1 =
kc2

H2a2
, (1.112)

where the density parameter encodes all type of contribution, i.e. Ω =
ΩM + ΩR + ΩΛ . We see that the sign of k, and thus the spacial geometry
of the universe, is determined by whether Ω is greater than, equal to, or less
than one. The critical density defines therefore the value of energy density
one needs to have a flat space. If ρ > ρcrit, we will have a closed space,
while if ρ < ρcrit we will have an open one. Recent observations seems to
imply that the universe we live in is spatially flat, i.e. Ω ∼ 1. Moreover, the
biggest contributions to the density parameter Ω, nowadays, seems to come
from its matter and vacuum components. One has, respectively

(ΩM )0 ∼ 0.3 (ΩΛ)0 ∼ 0.7 (1.113)

It seems likely in fact that the radiation density, although dominant in the
very early stages of our universe, is significantly lower than the other two in
the present epoch.
It is worth to look more into the matter contribution to the density param-
eter. We said that it represents roughly the 30% of the total energy density
present in our universe, but we still haven’t specified what its constituents
are. As we know, it must be made up of nonrelativistic particles. However
we have no guarantees that those particles are the same one that we find
in the so-called ordinary matter, i.e. everything that is made from atoms
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and their constituents. Generally speaking, the rest mass - and thus the en-
ergy density - associated with ordinary matter comes mostly from baryons.
Electrons in fact are characterized by masses around thousand times lighter
than the one ascribed to protons and neutrons. It turns out, however, that
the standard baryonic mass isn’t enough to account by itself for the observed
density. As we briefly discuss in chapter 3, recently estimations based on
the cosmic microwave background seem to favor a remarkably small value
for the baryon density

ωb = Ωbh
2 ' 0.02

=⇒ Ωb ' 0.04.
(1.114)

There must be therefore some kind of nonbaryonic matter able to account
for this significant discrepancy. To distinguish nonbaryonic matter from or-
dinary matter, the former is usually referred to as dark matter. In chapter
3 we discuss the evidences that support the existence of such exotic matter,
as well as some of the most known dark matter candidates.

As we have seen, even if the the Cosmological Standard Model seems to
be well in accordance with most of the observational data, it does also rise
a lot of open questions.
The nature of dark matter and dark energy are for example one of those.
Although it is possible that the latter is connected with the so-called cos-
mological constant Λ, one still needs to justify its presence in the Einstein’s
equations and why its contribution to the total energy density of the cosmo-
logical fluid is, in our epoch, precisely of the same order of magnitude of the
energy density derived from the matter contribution. If we go back to eq.
(1.99) and eq. (1.95) we see how the ratio between the two energy densities
evolves as

ρΛ

ρM
∝ a3. (1.115)

This means that in a universe that expands, or contracts, it is extremely
unlikely for this ratio to be of the order of unity as it seems to be nowadays.
Although the anthropic principle could answer this paradox, it isn’t seen by
the scientific community as a satisfying solution.
Beside this, the Cosmological Standard Model seems to present also some
fine-tuning issues. They are usually referred to as the flatness problem and
the horizon problem. Without going to much into details, flatness problem
is related to the fact that Ω = 1 is an “unstable point”, i.e. any deviation
from this values - even the smallest one - will grow with time. Therefore,
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the only way for our universe to be flat in the current epoch is to assume
that at its early stages it was even “flatter”. That’s to say that one has to
fine tone the initial value of Ω so that

ΩI − 1� 1. (1.116)

Such strong assumption would require a well motivated theoretical support
that is lacking in the standard gravitational theory.
On the other side, the horizon problem derives from the fact that there is
only a finite distance that photons can have traveled within the age of the
universe. One of the implications that derives from this is that points of
the universe that are far away enough from each other cannot be in casual
contact. That means that whatever happens in one of the two points, it
cannot affect (or be affected by) what happens in the other point. It be-
comes therefore extremely difficult to justify the degree of homogeneity that
we measure in the Cosmic Microwave Background.
The common paradigm, accepted by scientists in order to address this prob-
lems, hypothesizes an era in the very early universe of extremely fast expan-
sion. This era is also referred to as the Inflation era. One way to obtain
this inflationary phase is to consider the presence of a scalar filed whose en-
ergy density would be the engine powering this exponential-like expansion.
We will not discuss this subject in this document, as it is out of the scope
of our work. Nevertheless we wanted to point out how, even at cosmological
level, the theory of general relativity seems to require some tweaks to fit the
observational data we now have at our disposal.

1.3 Extended theories of General Relativity

While the success of the General Relativity is undisputed, this theory also
exhibits a series of inconsistencies and shortcomings that have led physicists
to wonder if the gravitational theory developed by Einstein is indeed the
definitive theory one must use to explain the gravitational interaction and
the phenomena that derive from it.
From a theoretical point of view, one of the key issue with the General Rel-
ativity is represented by its classical frame which isn’t suited to be easily
quantized. This prevent us from deal with gravitation in the same way we
deal with other fundamental interactions creating a serious obstacle to a
general unification. One of the reason why General Relativity is so hard to
quantized is that the gravitational field one would like to quantized is cou-
pled to itself. The non-linearity that derives from this feature seems to be in



1.3. EXTENDED THEORIES OF GENERAL RELATIVITY 39

direct contradiction with the superposition principle that is one of the main
tenet of quantum theory. Beside this, one also needs to take into account
that General Relativity assumes a classical description of matter that we
know cannot be valid at the atomic and subatomic scales that dominates
the primordial universe.
From an observational point of view, on the other side, Einstein’s theory of
gravity is affected by several shortcomings both at cosmological and galac-
tic scale. One just needs to think about the Standard Cosmological Model
paradoxes such as the flatness problem and the horizon problem, or the
missing mass problem that mostly concerns galactic scales and will be dis-
cussed more in detail later in this manuscript.
One way to address these problems is to assume that the interaction between
the geometry of the spacetime with the quantum fields generates some back-
reaction that modify the gravitational Lagrangian. With Extended theories
of gravitation one usually referrers to all those theories in which the effective
Lagrangian presents higher-order terms of the curvature invariants, e.g. R2

or RµνRµν , or terms with nonminimal coupled scalar fields, e.g φ2R.

1.3.1 Scalar-Tensor Theories

The theory of General Relativity is also referred to as a tensor theory as its
main actor is the metric tensor gµν . By analogy, one can guess that in the
scalar-tensor theories there will be two main actors: the metric tensor and a
scalar field. It must be stressed that the additional scalar field is not simply
added on top of the general relativity, instead it enters into the structure of
the theory in a nontrivial manner through a nonminimal coupling term.
One of the strongest theoretical motivation behind the development of scalar
tensor theories lies in the wish to recover the Mach’s Principle. George
Berkeley followed by Ernst Mach - from which the principle takes the name
- reinterpreted the Newton’s rotating bucket argument arguing that the
empty space of the Newtonian mechanics is not empty at all. It is in fact
filled with enormous quantities of matter. The Mach’s principle states there-
fore that the inertial forces experienced by a body in nonuniform motion are
determined by the quantity and distribution of matter in the universe. His-
torically, Einstein himself was inspired by this idea that was suggestive of a
connection between geometry and matter. The way in which scalar-tensor
theories recover the Mach’s principle is by “promoting” the gravitational
constant G to a function of a scalar field ϕ. It turns out, as we will see,
that the source of the scalar field is the matter distribution in the considered
system (e.g. the universe) [32]. It follows therefore that the gravitational
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parameter G, and thus the inertial forces as well, depends now on the ge-
ometrical distribution of the matter present in the system. Moreover, the
fact that G is no more a constant, but rather a function able to vary in
time and space following the variation of the scalar field itself, also plays
well into the Dirac’s large numbers hypothesis [52]. This hypothesis tries to
address a set of large number “coincidences” that gained the attentions of
others theorists in his time. According to Dirac’s hypothesis, what would
appears as a coincidence could be explained, at physical level, if one assumes
that the physical constants are actually not constants and that their values
depend on the age of the Universe. We conclude remarking that, from a
cosmological and galactic observational point of view, scalar-tensor theories
are also very interesting. On one side, in fact, they can give rise to the
inflationary scenarios often invoked to address several problems of the Cos-
mological Standard Model. On the other side, they are also able to provide
very appealing dark matter models as we will see in the following chapters
of this document.

1.3.2 The prototype Brans-Dicke model

One of the first pioneers of the scalar-tensor theories was P. Jordan, who
started to embed a four-dimensional curved manifold in a five-dimensional
flat spacetime. He demonstrated that a constraint in formulating projective
geometry can be a four-dimensional scalar field which in turns allows us to
describe a spacetime-dependent gravitational constant in accordance with
the Mach’ principle and the Dirac’s hypothesis.
In the last decades, numerous scalar-tensor theories have been developed.
Discussing all of them would be lengthy and out of the scope of this study.
Nevertheless, we find that could be useful to briefly review at least the one
among them that is considered in the literature as the prototype of a scalar-
tensor theory: the Brans-Dicke model.
We start with the fundamental Lagrangian

LBD =
1

χ

√
−g
(
ϕR− ω 1

ϕ
gµν∂µϕ∂νϕ

)
+ Lmatter (Ψ) , (1.117)

where ϕ is the Brans-Dicke (BD) scalar field, ω is a constant, Ψ represents
the matter fields and χ = 8πG/c4. Here, as we will see below, G is a constant
which is not the constant of Newton that is measured with Cavendish type
experiments. It is worth to remark that, in this prototype model, the matter
Lagrangian Lmatter is assumed to be independent from the scalar field ϕ
such that the theory satisfies the weak equivalence principle [131]. As we
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will see, this assumption will be relaxed in the main part of the manuscript.
Moreover, the scalar field itself doesn’t have a mass term as usually happens
in more sophisticated scalar-tensor models as the one we will consider.
Let us now focus our attention on the two terms the scalar field figures in.
The second one

− ω 1

ϕ
gµν∂µϕ∂νϕ, (1.118)

is the minimal coupling term as it can be obtained via the ”comma-to-
semicolon rule” from

− ω 1

ϕ
ηµν∂µϕ∂νϕ. (1.119)

The ”comma-to-semicolon rule” is the substitution rule1

ηµν → gµν , ∂µ → ∇µ. (1.120)

On the other hand, there is no way to recover the first term applying the
”comma-to-semicolon rule”. It is this term indeed that encodes the nonmin-
imal coupling. The reason why this is important is because the two terms
behaves in two totally different ways in the local inertial frame: one reduces
to a simplified version of itself, the other vanish completely. It is also worth
to notice that the nonminimal coupling term replaces the standard term of
the Hilbert-Einstein action

1

χ

√
−gR. (1.121)

One could think of it as if we replaced the standard constant by an effective
one that depends on the scalar field background’s value.

1

χeff
=

c4ϕ

8πG
=

c4

8πGeff
. (1.122)

This also plays along the assumption suggested by Dirac that the gravita-
tional constant should not be an invariable quantity, but rather something
determined by the status of the gravitational system. Nevertheless, it must
be pointed out that also Geff is still not the Newton constant one would
measure from Cavendish type experiments, as it doesn’t take into account
the contribution to the Newton constant coming from the scalar field kinetic
term. See below.
As one has done for the Einstein’s theory, the Brans-Dicke field equations

1in eq. (1.118) we took advantage of the fact that the standard derivative and the
covariant derivative of a scalar field coincide
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can be recovered via the variation of the action

SBD =

∫ √
−gLBDdnx. (1.123)

However, since this time the independent fields are two, the metric tensor
field gµν and the scalar field ϕ, we shall consider two variations of the action.
The first one, is the one we take with respect of the metric tensor and can
be calculated in a similar fashion to what done in the previous section. For
this reason we will give here directly the result

ϕGµν+gµν2ϕ−∇µ∇νϕ = χTµν+
ω

ϕ

(
∇µϕ∇νϕ−

1

2
gµν∇σϕ∇σϕ

)
, (1.124)

where 2 is a covariant d’Alembert operator defined by

2ϕ =
1√
−g

∂µ
(√
−ggµν∂νϕ

)
. (1.125)

Let us now consider the variation with respect to the scalar field ϕ

δLBD = Rδϕ+
ω

ϕ2
∇σϕ∇σϕδϕ−

2ω

ϕ
∇σδ∇σϕ. (1.126)

After integrating by parts, it can be set equal to the Klein-Gordon equation

ϕR− ω∇
σϕ∇σϕ
ϕ

+ 2ω2ϕ = 0 (1.127)

plus a pure divergence term that vanishes when integrated over the invariant
volume. If now one confronts the Klein-Gordon equation with the trace of
eq. (1.124)

−Rϕ+ 32ϕ = χT − ω∇σϕ∇
σϕ

ϕ
, (1.128)

we finally obtain

2ϕ =
χ

2ω + 3
T. (1.129)

Equation (1.129) shows that the source of the scalar field is indeed the
matter distribution. Although such result could seem counterintuitive at
first as Lmatter does not depend on ϕ, the reason why it is possible lies
exactly in the presence of the nonminimal coupling term. Moreover from
eq. (1.129) one can also see that in the limit ω → ∞ the coupling between
matter and scalar field vanishes and the theory tends to the standard General
Relativity. The absence of a direct coupling between matter and scalar field
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at the Lagrangian level does has also another important consequence, that
is to preserve the covariant conservation law of matter

∇µTµν = 0. (1.130)

This can be shown by evaluating the covariant derivative ∇µ of the con-
trovariant form of eq. (1.124). The preservation of eq. (1.130) implies that
the world lines of point mass particles are geodesic of the space-time. The
weak equivalence principle therefore isn’t violated.
If one makes a post-Newtonian development of the theory [131], the effec-
tive gravitational constant that appears in the time-time component of the
metric is

GN =
2ω + 4

2ω + 3

G

φ0
, (1.131)

where φ0 is the background value of the scalar field in the solar system (see
eq. (38) in [131]). This GN is the actual value of the measured constant of
Newton in Cavendish-like experiments. As one can see, it is indeed inversely
proportional to the value of the background φ, which may evolve with time
on a cosmological time scale. However, it also depends on the parameter ω
that appears in the kinetic term of the scalar filed.
In the last decades, several experiments have been performed to constraint
the values of the free parameter ω. One of the most stringent one comes
from measuring the shift in frequency of a radio signal sent from, and to, the
Cassini spacecraft while close to conjunction with the Sun [30]. The results
of this test suggest that ω > 4× 104 at the 2σ-level. Although such an high
values could seem to be difficult to justify from a theoretical point of view,
is not impossible. In they work [45], T. Damour and K. Nordtvedt show
that scalar-tensor theories generically contain a natural attractor mechanism
which drives them toward the standard theory of General Relativity. The
fact that, nowadays, the parameter ω is so high could therefore be justified
by this mechanism. In any case it is worth to remind that, as a prototype,
one does not expect the Brans-Dicke model to represent the definitive theory
of gravitation. To conclude this subsection, we want to underline that when
the scalar-field actually possesses a mass term - as we assume in our study
- the observational constraints are weakened with respect to the massless
case. See for example [134] and the discussion therein.

1.3.3 Connection with String Theory

Now that we have seen the very basic mechanisms of scalar-tensor theories
through the example of the Brans-Dicke model, we would like to conclude



44 CHAPTER 1. GENERAL RELATIVITY AND ITS EXTENSIONS

this section, and chapter, briefly discussing another of the reason why this
branch of gravitational theories is so appealing. That is the fact that scalar
fields seem to natural appear in the context of unification theories such
as the string theory. This is also the case for theories with additional2,
compactified, dimensions. Not by chance the Kaluza-Klein theory was of
great inspiration for Jordan as we have already mentioned. Let us take for
example the string theory. It has been proved that in the low-energy limit,
a closed string has a zero mode that can be described by a symmetric tensor
behaving the same way as the metric tensor. In this context, the graviton
has as companion a scalar field Φ. Without going to much into the details, it
can be shown that the field equations at tree level of these zero-mode fields
are described by

Rµ̄ν̄ = −2∇µ̄∇ν̄Φ +
1

4
Hµ̄ρ̄σ̄H

ρ̄σ̄
ν̄

∇λ̄H λ̄µ̄ν̄ − 2 (∂λ̄Φ)H λ̄µ̄ν̄ = 0

R = 4
(
2Φ + (∂Φ)2

)
+

1

12
(HH) ,

(1.132)

where the totally antisymmetric field strength is defined through

Hµ̄ν̄λ̄ = ∂µ̄Bν̄λ̄ + cyclic permutations, (1.133)

and Bµ̄ν̄ is itself an antisymmetric second-rank tensor field. It turns out that
the same field equations can be obtained from the following Lagrangian [58]

Lstr =
√
−ge−2Φ

(
1

2
R+ 2gµ̄ν̄∂µ̄Φ∂ν̄Φ− 1

2
Hµ̄ν̄λ̄H

µ̄ν̄λ̄

)
. (1.134)

The non-perturbative version of the field equations (1.132) are not known in
either string or superstring theories, and so is not the corresponding effective
Lagrangian. However, Damour and Polyakov [43] argued that it should take
the following generic form (here directly written in 4 dimensions)

S =

∫
d4x
√
ĝ

{
Bg (Φ)

α′
R̂+

BΦ (Φ)

α′

[
42̂Φ− 4

(
∇̂Φ
)2
]

−BF (Φ)
k

4
F̂ 2 −Bψ (Φ)

¯̂
ψD̂ψ̂ + ...

}
,

(1.135)

where ĝµν represents the metric appearing in the σ-model formulation of
string theory and is employed to define all the covariant constructs present

2here with ”additional” we mean any dimension beyond the fourth
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in the previous equation (∇̂, R̂, D̂, ...). The dilaton is denoted here by Φ

whereas F̂ and
¯̂
ψD̂ψ̂ describe the electromagnetic and the fermionic sectors.

The functions Bi (Φ) with i = g,Φ, F, ψ describe how the dilaton couples
with each sector.
One could now think to perform a conformal transformation of the metric
with a rescaling of the scalar field in order to recast the action into a the
more standard form where the coefficient in front of the gravity factor R̂ is
equals to one and the second term of eq. (1.135) reduces to the standard
scalar field kinetic term. In technical terms, one has sent the action from
the string frame to the Einstein frame [121].
In this frame, if one assumes that the dilaton field Φ does not vary too much,
we can expand the coupling functions Bi (Φ) around some background values
Bi0 as follows

Bi (Φ) ' Bi0 + diΦ, (1.136)

where di = ∂Bi/∂Φ. As mentioned in [43], it is generally expected that
a non-perturbative effect should also lead to give an effective potential to
the dilaton (or moduli) field(s). Hence, the more general low energy effec-
tive action expected from superstring theory is something like eq. (1.135),
but with an additional potential. In this way one would recover something
extremely similar to the scalar-tensor action we consider in our study, see
equations (3.32-3.34).
The fact that scalar fields naturally appear in unification theories like the
string theory has certainly contributed to the growth of interest in scalar-
tensor theories. However, if they reached the success they had, it is also
because of they ability to tackle some of the well-known limit of the general
relativity. In the last chapter of this manuscript we will see, in fact, how
dark matter can be modeled by an ultra-light scalar field coupled with the
Lagrangian matter and how the presence of such scalar field could be de-
tected thanks to gravitational waves antenna. As we still don’t know what
dark matter is, such model is relevant in its own right and doesn’t necessarily
needs to be motivated by some unification theory. Nevertheless, we found
worth to at least point out that it could indeed be the case, as massless or
light scalar fields with a coupling to matter are generically expected from
string and superstring theories.
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Chapter 2

Gravitational Waves

2.1 Linearized Gravity and Gravitational Waves

Linearized gravity is an approximation of the general theory in which the
gravitational field is assumed to be weak, but not static. This ability to vary
with time, together with the absence of any restriction on the motion of the
test particles, in turn allows to discuss phenomena such as gravitational
radiation and light deflection that are out of the domain of some more re-
strictive approximation, such as the well-known Newtonian approximation.
The weakness of the gravitational field can be expressed in mathematical
terms by stating that it exists at least one coordinate frame in which the
total metric gµν can be decomposed into the the Minkowski metric plus a
small perturbation

gµν = ηµν + hµν , |hµν | � 1. (2.1)

We will assume that in such a frame the flat Minkowski metric takes its
canonical form

ηµν = diag (−1,+1,+1,+1) . (2.2)

As a consequence of the condition we required for the perturbation, one is
allowed to neglect anything that is higher than the first order in hµν . It
follows then that the inverse metric gµν has the form

gµν = ηµν − hµν . (2.3)

One can actually think of the linearized gravity as a theory which is described
by the symmetric tensor hµν and its evolution in the flat spacetime. In order

47
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to recover the field equations for the perturbation we first start writing down
the Christoffel symbols

Γσµν =
1

2
gσρ (∂µgνρ + ∂νgµρ − ∂ρgµν)

=
1

2
ησρ (∂µhνρ + ∂νhµρ − ∂ρhµν) .

(2.4)

We can now pass to the Riemann tensor. Here one can notice that since
the Christoffel symbols are already of the same order of magnitude of the
perturbation, the terms in the Riemann tensor in which they multiply each
others can be ignored.

Rµνρσ = ηµν∂ρΓ
λ
νρ − ηµλΓλνρ

=
1

2
(∂ρ∂νhµσ + ∂σ∂µhνρ − ∂σ∂νhµρ − ∂ρ∂µhνσ) .

(2.5)

The Ricci tensor is obtained by contracting over the indexes µ and ρ

Rµν =
1

2

(
∂σ∂νh

σ
µ + ∂σ∂µh

σ
ν − ∂µ∂νh−2hµν

)
, (2.6)

where 2 is the D’Alembertian in the flat space

2 = −∂2
t + ∂2

x + ∂2
y + ∂2

z , (2.7)

and the trace of the perturbation h is defined as follows

h = ηµνhµν = hµµ. (2.8)

Contracting the two indexes we are left with gives the Ricci scalar

R = ∂µ∂νh
µν −2h. (2.9)

Finally combining eq. (2.6) and eq. (2.9) one obtains the Einstein tensor

Gµν = Rµν −
1

2
R =

=
1

2

(
∂σ∂νh

σ
µ + ∂σ∂µh

σ
ν − ∂µ∂νh−2hµν − ηµν∂ρ∂σhρσ + ηµν2h

)
.

(2.10)

The field equations describing the dynamic of the perturbation field hµν are
then

Gµν =
8πG

c4
Tµν , (2.11)
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where Tµν is the energy-momentum tensor. It is worth to notice that one
needs to evaluate the former tensor only to the zeroth order in hµν . In fact,
for the weak-field limit assumption to apply, Tµν must itself be small.
Before going further, it is useful to examine the degrees of freedom associated
with these equations and their gauge invariance. At the beginning of this
section we assumed the existence of at least one coordinate frame in which
the metric could be decomposed into a flat component ηµν , plus a small
perturbation hµν . However, such demand is not able to completely specify
the coordinate frame we are going to work into. It could very much be
possible to find an other frame in which our metric would be described by

gµν = ηµν + h̃µν , (2.12)

where

|h̃µν | � 1 and h̃µν 6= hµν . (2.13)

To makes things more clear let us imagine two diffeomorphic manifolds,
Mb and Mp. The former represent the background spacetime on which one
has defined the flat Minkowski metric ηµν . The latter is instead the physical
spacetime where one has the metric gµν obeying the Einstein field equations.
Finally let us call φ the diffeomorphism that connects the two manifold -
φ : Mb → Mp - and that allows us to move tensors from the background
spacetime to the physical spacetime, and vice versa. The perturbation hµν
can be now regarded as the difference between the pulled-back metric of the
physical spacetime and the flat one of the background

hµν = (φ∗g)µν − ηµν . (2.14)

In order to be consistent with what assumed above, we will consider among
all the possible diffeomorphisms only the ones for which the condition |hµν | �
1 holds true. However even if one limit his or her choice in this way, the
number of permissible diffeomorphisms is still large. To see how we can
group together all of them, let us consider the one-parameter family of dif-
feomorphisms ϕε : Mb → Mp generated by the vector field ξµ (x). One can
now define the family of perturbations

h(ε)
µν = [ϕ∗ε (φ∗g)]µν − ηµν , (2.15)
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where the condition |h(ε)
µν | � 1 will still hold for ε small enough. Making use

of the perturbation definition we gave just above, we then obtain

h(ε)
µν = ϕ∗ε (h+ η)µν − ηµν

= ϕ∗ε (hµν) + ϕ∗ε (ηµν)− ηµν

= ϕ∗ε (hµν) + ε

[
ϕ∗ε (ηµν)− ηµν

ε

]
.

(2.16)

If ε is small as we assumed it to be, than at the lowest order the first therm
on the r.h.s. of eq. (2.16) will be equal to hµν whereas the remaining other
two will give the Lie derivative of the metric along the vector field ξµ. Since
in our case we are considering the Minkowski metric, one has

h(ε)
µν = hµν + ε (∂µξν + ∂νξµ) . (2.17)

This equation shows that perturbations related to each other through the
quantity ε (∂µξν + ∂νξµ) represent physically equivalent spacetimes. The
diffeomorphism ϕε allow us to change the representation without modifying
the physical situation or spoiling the requirement for the perturbation to be
small. In this sense the linearized theory is said to be gauge invariant and
eq. (2.17) denotes the permitted gauge transformation. It is interesting to
notice that, as for the electromagnetism, the invariance is the result of the
conservation of some tensor under the gauge transformation. For the elec-
tromagnetism this tensor is Fµν , that is invariant under the electromagnetic
gauge transformation Aµ → Aµ+∂µλ. On the other hand, in our case is the
variation of the Riemann tensor to be zero for the transformation described
by eq. (2.17) as one can easily see

δRµνρσ =
1

2
(∂ρνµεσ + ∂ρνσεµ + ∂σµνερ + ∂σµρεν

−∂σµρεν − ∂σµνερ − ∂ρνµεσ − ∂ρνσεµ) = 0.
(2.18)

Making use of this gauge freedom allows us to greatly simplify the field
equations of the perturbation. We start introducing the so called trace-
reversed perturbation

h̄µν = hµν −
1

2
ηµνh, (2.19)

where one can see that the reason why this quantity is named trace-reversed
perturbation is because

h̄ = ηµν h̄µν = −h. (2.20)
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The Einstein equations (2.11) in terms of h̄µν read as follows

2h̄µν − ηµν∂ρ∂σh̄ρσ − ∂ρ∂ν h̄µρ − ∂ρ∂µh̄νρ = −16πG

c4
Tµν . (2.21)

At the same time, the gauge transformation equation becomes

h̄(ε)
µν = h̄µν − ε (∂µξν + ∂νξµ − ηµν∂σξσ) . (2.22)

If one chooses the vector field ξµ such that it satisfies the condition

2ξµ = −∂ν h̄µν , (2.23)

the relation
∂ν h̄(ε)

µν = 0 (2.24)

will hold true for the gauged transformed perturbation. The field equations
then reduce themselves to the simple wave equations

2h̄µν = −16πG

c4
Tµν . (2.25)

Equation (2.24) is often referred to as the Lorentz gauge1 and reduces the
independent components of the symmetric tensor h̄µν from ten to six. Fur-
thermore, it must be observed that the Lorentz gauge does not fix the gauge
completely and indeed it leaves us with still some degrees of freedom to play
with in order to further simplify the field equations.
Let start by studying the free-propagation case. Outside the source one has

2h̄µν = 0, (2.26)

as the energy-momentum tensor is null. One can now use the residual gauge
freedom to require the perturbation to meet the following conditions

h̄0µ = 0

h̄ii = 0

∂ih̄ij = 0,

(2.27)

where the index i runs only on the spatial dimensions. The gauge results to
be totally fixed by these additional conditions and goes under the name of
transverse-traceless gauge, or simply TT gauge. The remaining degrees of
freedom of the perturbation are now only two. It must be remarked however,

1it can also be referred to as the Hillbert gauge or the harmonic gauge.
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that this gauge choice can be done only outside the source. Moreover it is
very clear from the definition (2.19) that in the TT gauge h̄µν = hµν .
A particular well-known set of solutions for the wave equation (2.26) are the
plane waves

hTTµν = Cµνe
ikσxσ (2.28)

with Cµν describing a two time covariant tensor, constant and symmetric.
In order to satisfy the transverse-traceless conditions (2.27), Cµν must be
itself traceless and purely spatial

C0ν = 0

ηµνCµν = 0.
(2.29)

In order for (2.28) to represent a solution of the wave equation (2.26), the
constant wave vector kσ must be a null vector

kσk
σ = 0. (2.30)

If one writes kσ =
(
ω, k1, k2, k3

)
where ω is the frequency of the wave, this

condition translates to
ω2 = δijk

ikj . (2.31)

Moreover, if one wants the perturbation to be transverse, the wave vector
also has to be orthogonal to the tensor Cµν . This is mathematically encoded
in the relation

kµCµν = 0. (2.32)

To help visualizing the form and the effect of a gravitational wave let us
assume our wave is traveling along the x3 direction, that is

kµ =
(
ω, 0, 0, k3

)
= (ω, 0, 0, ω) . (2.33)

From the conditions C0ν = 0 and kµCµν it follows that C3ν = 0 as well. Our
tensor Cµν has then the form

Cµν =


0 0 0 0
0 C11 C12 0
0 C21 C22 0
0 0 0 0

 . (2.34)

Finally we can further simplify its form by taking in consideration that it
must be symmetric and traceless.

Cµν =


0 0 0 0
0 C11 C12 0
0 C12 −C11 0
0 0 0 0

 . (2.35)
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As one can see, the two tensor components C11 and C12 together with the
frequency ω are all one needs to completely characterized the wave. The
independent tensor components are related with the two possible polariza-
tion of the gravitational perturbation and are usually represented with the
symbols h+ and h×, respectively. The reason for such a choice will be soon
be clear. Adding all together our perturbation can be described through the
following formula

hTTµν =


0 0 0 0
0 h+ h× 0
0 h× −h+ 0
0 0 0 0

 eiωkσx
σ
. (2.36)

Let see now how the passage of a gravitational wave would effect a simple
“detector” composed by a ring of test masses. See Fig. 2.1

Figure 2.1: Ring of equidistant test particles.

We have seen how advantageous is to describe the gravitational perturbation
in the TT frame, however it is not the frame normally used to describe
what happen in a ground based detector. Let us assume for the moment
that our laboratory, as well as the detector within it, are inside a drag-
free satellite. Then all the apparatus would be in free fall in the total
gravitational field generated by the Earth - and by the gravitational waves
that could be present. If we restrict our attention to a region of space small
enough, then in the Fermi normal coordinate system the metric ds2 is flat
whether or not gravitational waves are present

ds2 ' −c2dt2 + δijdx
idxj . (2.37)

As we are considering a free falling frame, we know that the derivatives of
gµν are null at the point P around which we expand. Therefore no correction
to the metric appear at the fist order in |xi|. If we push the expansion at
the second order, we get

ds2 '− c2dt2
[
1 +R0i0jx

ixj
]

− 4

3
cdtdxiR0ijkx

jxk + dxidxj
[
δij −

1

3
Rikjlx

kxl
]
,

(2.38)
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where the second order derivatives of the metric have been expressed in
terms of the Riemann tensor that, in turn, is evaluated at the expansion
point P . For ground-based detectors things are a little bit more complex
as, of course, they are not in free fall with respect of the Earth gravity and
they also rotates respect to the local gyroscopes defined by the Fermi normal
coordinate system. As a result, the metric in the laboratory frame up to
O
(
|x|2
)

is

ds2 '− c2dt2
[
1 +

2

c2
~a · ~x+

1

c4
(~a · ~x)2 − 1

c2

(
~Ω× ~x

)2
+R0i0jx

ixj
]

+ 2cdtdxi
[

1

c
εijkΩ

jxk − 2

3
R0jikx

jxk
]

+ dxidxj
[
δij −

1

3
Rikjlx

kxl
]
.

(2.39)

Here ~a represents the acceleration of the detector with respect to the local
free-falling frame whereas ~Ω describes its angular velocity relative to the
local gyroscopes. Such coordinate system takes the name of proper detector
frame and it is the one often implicitly used to describe phenomena that
take place in a laboratory. The effects of the gravitational waves are coded
in the quadratic order term proportional to the Riemann tensor which also
accounts for the slowly varying gravitational field of the Earth. In principle,
in order to detect the effect of gravitational wave one should first get rid
off all the other contributions to the metric perturbation due to the inertial
acceleration 2~a · ~x/c2, the gravitational redshift

(
~a · ~x/c2

)2
, etc. (see [92]),

that often are many order of magnitude stronger. However, this problem
can be circumvented by focusing the response of the detector in a frequency
window high enough that all those static and slowly-varying terms are neg-
ligible, whereas the contribution coming from the gravitational waves is still
effective2. This means that in order to deduce the dynamic of the test masses
one can use the free-falling frame metric described in eq. (2.38). To do this
one can make use of the geodesic deviation equation

d2ξi

dτ2
+ ξσ∂σΓi00

(
dx0

dτ

)2

= 0, (2.40)

where we exploited the fact that the Christoffel symbols vanishe at the
expansion point P and that the dxi/dτ term is negligible compared to the

2The effect of the acceleration ai is directly counterbalanced by the suspension mech-
anism and thus can be neglected as well.
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dx0/dτ since, as far as we describe the detectors component, we are in a non-
relativistic regime. It is easy to show that because gµν = ηµν + O

(
xixj

)
,

the only non-zero terms in ∂σΓi00 are the one in which the two metric’s
derivatives present are spatial derivatives acting on xixj . As a result of this,
overall, at P the quantities Γρµν , ∂0Γi00 and ∂0Γi0j are equal to zero. One
finds therefore that

ξσ∂σΓi00 = ξj∂jΓ
i
00 = ξjRi0j0. (2.41)

We can now re-write eq. (2.40) in the from

d2ξi

dτ2
+ ξjRi0j0

(
dx0

dτ

)2

= 0. (2.42)

If we limit ourselves to linear order in the perturbation h, this equation
can be further simplified. We know in fact that dt2 differs from dτ2 for a
correction term ' O

(
h2
)
. On the other side, the Riemann tensor Ri0j0 is by

itself = (h). This allows us to replace the proper time τ with the coordinate
time t obtaining

ξ̈i = −c2Ri0j0ξ
j . (2.43)

The only thing we have left is to evaluate the Riemann tensor component
Ri0j0 in the proper detector frame. However since the Riemann tensor is
invariant in the linearized version of the general relativity, one can evaluate
it in any other frame and the result will not change. We can thus evaluate
it in the TT frame where it has the simple form

Ri0j0 = − 1

2c2
ḧTTij . (2.44)

Finally the geodesic deviation equation is obtained by plugging eq. (2.44)
into eq. (2.43)

ξ̈i =
1

2
ḧTTij ξ

j . (2.45)

If we consider our ring of test masses to be initially at rest in the proper
detector frame and the ring’s center to coincide with its origin, then the
quantity ξi describes the distance of a test mass with respect to the ori-
gin. As before, we consider a gravitational waves propagating along the x3

direction whereas the ring is completely contained in the orthogonal plane(
x1, x2

)
. If one considers just the + polarization and chooses the origin of

time so that hTTij = 0 at t = 0, then in the
(
x1, x2

)
plane the perturbation
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is described by

hTTij = h+

 1 0 0
0 −1 0
0 0 0

 sinωt. (2.46)

We can write the vector ξi as follows

ξi (t) = (x0 + δx (t) , y0 + δy (t) , z0 + δz (t)) , (2.47)

where (x0, y0, z0) are the unperturbed positions while δx, δy and δz are the
displacements induced by the gravitational perturbation. We now apply eq.
(2.45) obtaining

δẍ = −h+

2
(x0 + δx)ω2 sinωt,

δÿ = +
h+

2
(y0 + δy)ω2 sinωt

δz̈ = 0.

(2.48)

Figure 2.2: Top: the distortion induced on the test particles ring by the passage
of a gravitational wave with + polarization. Bottom: the distortion induced on the
test particles ring by the passage of a gravitational wave with × polarization.

The fist thing one can notice is that the test masses are confined in the
(x, y) plane. Moreover since both δx and δy are O (h+), they end up to be
negligible with respect to the constant counterparts x0, y0 at the linear order
in the perturbation h. Then equations (2.48) are easily integrated to give

δx (t) =
h+

2
x0 sinωt

δy (t) = −h+

2
y0 sinωt.

(2.49)
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The same process can be repeated with a × polarized gravitational wave
obtaining

δx (t) =
h×
2
y0 sinωt

δy (t) =
h×
2
x0 sinωt.

(2.50)

The resulting effect on the test masses composing our ring-shaped detector
is shown in Fig. 2.2 and makes clear the reason why the two polarization
are named the way they are.

2.2 Detection of Gravitational Waves

2.2.1 Interferometers

Figure 2.3: Schematic representation of a Michelson interferometer.

Now that we have seen how gravitational waves interact with a simple
configuration of test masses, let us make a step forward and see how they in-
teract with actual detectors. The idea to detect gravitational waves through
the use of interferometers was first proposed by M. Gertsenshtein and V. I.
Pustovoit in the 1962. A large gravitational waves interferometer is an ex-
tremely complex apparatus that at its core shares very much in common
with a Michelson interferometer. See Fig. 2.3. At the detector’s base one
has a laser which plays the role of a monochromatic light source whose light
is sent on a beam-splitter. The beam splitter separates the laser beam in
two beam of equal amplitude, each of which then travels in one of the two
perpendicular arms the detector is made of. At the end of these arms, to-
tally reflecting mirrors allow the beams to travel back to the beam-splitter
where they recombine together. Finally a photodetector collect part of the
recombined beam - while the other part goes back toward the laser - and
measure its intensity whose variations can be used to spot the passage of
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gravitational waves.
Let us consider the position of the beam-splitter as the origin of our coor-
dinate frame, and let us also identify the arms directions as the x̂ and ŷ
directions so that the positions of the mirrors are identified by the coordi-
nates (ξx, ξy). Let us assume now a gravitational wave coming from the z
direction with only the plus polarization

h+ (t) = h0 cos (ωgwt) . (2.51)

The dynamic of the mirror on the x arm in the presence of such a wave is
then described by

ξ̈x =
1

2
ḧ+ξx, (2.52)

where we used eq. (2.45) and consider that the mirror cannot move in the y
direction, ξy (0) = ξ̇y (0) = 0. One can solve equation (2.52) perturbatively
in h0 by substituting ξx = Lx. The solution of the resulting equation is then

ξx (t) = Lx +
h0Lx

2
cos (ωgwt) . (2.53)

A photon that starts at the beam-splitter at time t0, moving along the
positive x axis, will reach the mirror at the time t1 given by the relation
c (t1 − t0) = ξx (t1). Once again one can solve this equation perturbatively
in h0. The result reads

c (t1 − t0)(x) = Lx +
h0Lx

2
cos [ωgw (t0 + Lx/c)] . (2.54)

After a round-trip, the photon gets back at the beam-splitter at a time t2
defined by

∆T (x) (t) = t
(x)
2 − t(x)

0 = 2
Lx
c

+
h0Lx
c

cos [ωgw (t0 + Lx/c)] . (2.55)

As in general we are interested in the light coming out of the beam-splitter
it is useful to rename t2 = t and express the time t0 as a function of it

t
(x)
0 = t− 2

Lx
c

+
h0Lx
c

cos [ωgw (t− Lx/c)] , (2.56)

where, at the first order in h0, the relation t0 = t − 2L/c holds true. As
one can see, the time-of-flight of the photons in the interferometer arms is
directly affected by the presence of the gravitational wave.
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To understand how the detector capitalized on this making possible to detect
the gravitational wave let us consider the electric field of the input laser light

Ex = E0e
−iωLt+i~kL·~x, (2.57)

where we denoted by ωL and kL the frequency of the laser and its wavenum-

ber, respectively. Then at time t
(x)
0 the electric field at the beam-splitter is

described by

E(x) (t) = −1

2
E0e

−iωLt
(x)
0

= −1

2
E0e

−iωL(t−2Lx/c)+ih0
ωLLx
c

cos[ωgw(t−Lx/c)].

(2.58)

where the overall factor 1/2 comes from the reflection and transmission at
the mirror. In the same way, one can describe the field that went through
the y arm as follows

E(y) (t) =
1

2
E0e

−iωLt
(y)
0

=
1

2
E0e

−iωL(t−2Ly/c)−ih0
ωLLy
c

cos[ωgw(t−Ly/c)].

(2.59)

In order to simplify the notation we define the quantities

∆φx (t) = h0
ωLLx
c

cos [ωgw (t− Lx/c)]

∆φy (t) = −h0
ωLLy
c

cos [ωgw (t− Ly/c)] .
(2.60)

As these two quantities are already of order h0 we can replace the arms
lengths Lx and Ly inside the cosines with

L =
Lx + Ly

2
(2.61)

considering that in general they are very close to be exactly equal. The
electric field in the two arms can be then written as follow

E(x) (t) = −1

2
E0e

−iωL(t−2L/c)+ikL(Lx−Ly)+i∆φx(t),

E(y) (t) = +
1

2
E0e

−iωL(t−2L/c)−ikL(Lx−Ly)+i∆φy(t),

(2.62)



60 CHAPTER 2. GRAVITATIONAL WAVES

with ∆φx = −∆φy. The term kL (Lx − Ly) produces a constant phase φ0

that can be adjusted to choose the best working point for the apparatus.
The total electric field at the output is then

Eout (t) = E(x) (t) + E(y) (t)

= −1

2
E0e

−iωL (t− 2L/c)
[
ei(φ0+∆φx) + e−i(φ0+∆φx)

]
= −iE0e

−iωL(t−2L/c) sin [φ0 + ∆φx] .

(2.63)

One can now see how the presence of a gravitational wave affects the total
power P ∼ |Eout|2 measured at the photodetector

P = P0 sin2 [φ0 + ∆φx (t)]

=
1

2
P= {1− cos [2φ0 + ∆φgw (t)]} ,

(2.64)

where the effect of the gravitational wave is encoded in the factor ∆φgw =
∆φx −∆φy = 2∆φx.
Before going further, let us confront the phase modification generated by
the gravitational wave ∆φgw with the offset phase φ0

∆φgw = 2LkLh0 cos (t− L/c)
φ0 = kL (Lx − Ly) .

(2.65)

One can notice that in the limit ωgwL/c� 1 the effect of the gravitational
waves on the phase shift is formally equivalent to a modification of the arms
length asymmetry Lx − Ly equals to

∆ (Lx − Ly) = 2Lh (t− L/c) , (2.66)

or, in terms of photons time-of-flight ∆T inside the arms as

∆T (x) −∆T (y) =
2L

c
h (t− L/c) . (2.67)

Now that we have seen how gravitational waves modify the power measured
at the photodetector, what is left to do is to decide how to extract the
information on the phase from the interfetometer output. Unfortunately
this proves to be less trivial that one could initially think. Let us consider
eq. (2.64). A priori we could think that the best choice is to select φ0 = π/4
as working point since it is the maximum of the derivative ∂P/∂φ0 and
therefore the sensibility to a variation of the kind φ0 → φ0 + ∆φgw, due
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to the effect of a gravitational wave, would be at its maximum as well.
However one will soon notice that there is indeed a problem with such a
choice. The issue is that we would then be extremely sensible also to the
laser power variations P0 → P0 + ∆P0 and, unfortunately, these variations
are expected to be much stronger than the signal one would expect from
gravitational waves. An other strategy could be to set the working point on
a dark fringe φ0 = 0. The advantage of such a choice is that the output,
when gravitational waves are not present, is zero and measurement are no
more affected by the laser power fluctuations. However this come with a
huge drawback. At the working point φ0 = 0 both the power output P and
its derivative ∂P/∂φ0 are null. As a consequence the variation ∆P induced
by the passage of a gravitational wave would be of the order O

(
h2
)

making
it impossible to be detected. In order to overcome this issue one modulates
the input laser light thanks to a Pockels cell. In this way the input laser
beam acquires a time-varying phase and, once expanded in Fourier modes,
it reads

Ein = E0

[
J0 (Γ) e−iωLt + J1 (Γ) e−i(ωL+Ωmod)t − J1 (Γ) e−i(ωL−Ωmod)t + ...

]
,

(2.68)
where the dots encode the terms with frequencies ωL±nΩmod for n = 2, 3, ....
Ωmod = 2πfmod is a parameter directly proportional to the modulation fre-
quency, Γ is the modulation index and Jn are the Bessel functions. The
net effect of the modulation is then to create sidebands in the input signal.
Although these sidebands are a priori infinite, for small Γ all of them but
the first two can be neglected. If we define the sidebands frequency ω± and
wavenumber k± as follows

ω± = ωL ± Ωmod, k± =
ω±
c
, (2.69)

then the electric fields at the output for the carrier and the sidebands are
respectively

(Eout)c = −iE0J0 (Γ) e−iωLt+2ikLL sin

(
2π

∆L

λL

)
,

(Eout)± = ∓E0J1 (Γ) e−iω±t+2ik±L sin

[
2π

(
∆L

λL
± ∆L

λmod

)]
,

(2.70)

where we defined

L =
Lx + Ly

2
, ∆L = Lx − Ly. (2.71)
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It easy to see that if one chooses Lx = Ly → ∆L = 0, then both the carrier
and the two sidebands are on the dark fringe and (Eout)c = (Eout)± = 0.
However, the situation is very much different if one chooses instead to have
two arms of different length and in particular in such a way that their
difference is equal to an integer number of laser wavelengths. Such a choice is
also known as Schnupp asymmetry. If we plug ∆L = nλL into the equations
(2.70) we obtain

(Eout)c = 0,

(Eout)± = ∓E0J1 (Γ) e−iω±t+2ik±L sin (2π∆L/λmod) .
(2.72)

The carrier remains on a dark fringe whereas the sidebands do not. Let us
consider now a gravitational wave with a plus polarization passing through
the detector along its orthogonal axis such that one has

∆L→ ∆L+ Lh (t) . (2.73)

The total electric field at the output of the interferometer would then be

(Eout)tot = (Eout)c + (Eout)+ + (Eout)− = −iE0e
−iωLt+2ikLL

× [J0 (Γ) kLLh (t) + 2J1 (Γ) sin (2π∆L/λmod) cos (Ωmodt− α)] ,

(2.74)

where to simplify the notation we have defined the phase α = 4πL/λmod. It
is important to mention that in the term accounting for the sidebands, the
second, the correction term O (h) to the quantity ∆L has been neglected as
it would have led to an undetectable term ∼ O

(
h2
)

in the power output.
The total power output | (Eout)tot |2 is composed by three terms. The first
one derives from the modulus contribution and, as expected, is proportional
to O

(
h2
)
. The second term is proportional to cos2 (Ωmodt− α) and it is the

squared modulus of the sidebands contribution. This term is not affected
by the presence of the gravitational wave and, once one recast it in the form

cos2 (Ωmodt− α) =
1

2
[1 + cos (2Ωmodt− 2α)] , (2.75)

we can see that it is made up of a direct current term plus an oscillating term
characterized by the frequency 2Ωmod. Finally the third therm represents
the beatings between the carrier and the sidebands

4E2
0J0 (Γ) J1 (Γ) kLLh (t) sin (2π∆L/λmod) cos (Ωmod − α) . (2.76)
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It oscillates with a frequency Ωmod and, more important, it is linear in the
perturbation h (t). Thanks to the modulation of the input laser light and the
asymmetric arms one is able to use the interferometer as a null instrument
that in presence of gravitational waves is still able to produce an output
linear in the perturbation amplitude h. Finally, it is worth to notice that
since the sidebands are not on the dark fringe, fluctuation of the laser power
can still affect the final output. However the great advantage is that now the
signal is encoded in a term characterized by the modulation frequency fmod
rather than the perturbation frequency fgw. This means that the signal has
now to compete with variation of the laser power at modulation frequency
that are way smaller as fmod is typically several order of magnitude greater
than fgw.

2.3 Introduction to signal analysis with GW de-
tectors

We have seen how the modulation of the input laser light allows us to collect
more easily the information about the gravitational perturbation that are
carried by the detector output. Unfortunately, fluctuations of the input laser
are not the only responsible for overall apparatus noise. In this section we
will address the issue of how to extract the meaningful part of the signal
from the typically much larger detector noise. This section also represents
a theoretical introduction to the analysis tools we will use in the subsection
Search Strategy (4.3.3) of chapter 4.
As first step, let us characterize the noise in a way that will make it easier
to deal with it. One can think of a gravitational waves detector as a linear
system whose input is the gravitational wave signal that one wants to detect
and whose output is a combination of the same signal with some noise.
Usually the input is described by the scalar quantity

h (t) = Dijhij (t) . (2.77)

Here Dij represents the detector tensor, a constant tensor which depends
only on the detector geometry. For a gravitational wave interferometer it
takes the form

Dij = x̂ix̂j − ŷiŷj . (2.78)

On the other hand, the output signal is the juxtaposition of hout (t), a linear
function in the frequency space of the input h (t), and the noise contribution

sout (t) = hout (t) + nout (t) . (2.79)
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The relation between hout (t) and the input signal is described by

h̃out (f) = T (f) h̃ (f) , (2.80)

where T (f) is the transfer function of the system. More precisely one can
think of a detector as a sequence on linear systems whose output is the input
of the next stage down on the line. A priori, one should consider the noise
contribution at each of these steps and propagate it up to the final output.
An easier way to characterize the detector noise is instead to introduce the
effective quantity n (t) defined as follows

ñ (f) = T−1 (f) ñout (f) , (2.81)

where nout (t) is the total noise measured at the fictitious output. There-
fore, n (t) should be interpreted as the noise that, if injected at the apparatus
input, would produce the measured noise nout (t) at the output. The advan-
tage of this definition is that n (t) can be compared directly with the effect
of the gravitational wave h (t). One can then introduce the sum

s (t) = h (t) + n (t) (2.82)

and consider this quantity to be the output of the detector. The advantage
of referring everything to the input quantities h (t), n (t) is that one can use
the latter to estimate the minimum magnitude of the gravitational pertur-
bation needed in order for the signal to be detectable3. Let us now define
the spectral noise density. We start considering the noise auto-correlation
function

R (τ) = 〈n (t+ τ)n (t)〉 . (2.83)

Together with the average value 〈n (t)〉 this is all one needs to characterize
n (t) assuming that it is a Gaussian stochastic process. Furthermore, if the
noise is stationary, 〈n (t)〉 can be set to zero with a constant shift. Usually
one can assume that R (τ) goes to zero quite fast for |τ | → ∞ as any
information about the noise at a time t provides very little insight on the
noise value at the subsequent time t+ τ . This means that one can take the
Fourier transform of the auto-correlation function and define the one-sided
noise spectral density Sn (f) as follows

1

2
Sn (f) =

∫ ∞
−∞

dτR (τ) ei2πfτ . (2.84)

3The other advantage is that it makes more straightforward to compare the perfor-
mance of different detectors
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We can invert this relation to get

R (τ) =
1

2

∫ ∞
−∞

dfSn (f) e−i2πfτ , (2.85)

where one has taken advantage of the reality of the auto-correlation function
R (τ) and its invariance under time translations. Finally we consider the case

R (0) =
〈
n2 (t)

〉
=

∫ ∞
0

dfSn (f) .
(2.86)

One can use this result to show that, if ñ (f) does exist, definition (2.84) is
equivalent to 〈

ñ∗ (f) ñ
(
f ′
)〉

= δ
(
f − f ′

) 1

2
Sn (f) , (2.87)

One can notice here that for f = f ′ the right-hand side of the latter equation
diverges. Fortunately this is true only if the Fourier transform is performed
on a time domain of infinite length. In a real experiment, one is able to
collect data only for a finite time T. Therefore, once one takes into consid-
eration this restriction on the time interval, one has

δ (f = 0) =

[∫ T/2

−T/2
dte−i2πft

] ∣∣∣∣
f=0

= T, (2.88)

and thus 〈
|ñ (f) |2

〉
=

1

2
TSn (f) . (2.89)

Having at our disposal the quantity Sn (f) to describe the detector noise,
the next goal now is to understand how to get valuable information from the
data despite the noise contribution. In particular, there are two questions
that one would like to answer. First, whether or not a gravitational wave
signal is present in the data. Second, in case the signal is present, what are
the physical characteristics of the source. Such questions can be addressed
using the technique of classical inference. Classical statistic is a branch of
statistical inference in which probability is defined as the ”long-run relative
occurrence of an event in a set of identical experiments”. For this reason
is also referred to as frequentist statistic. Following this interpretation,
the measured data are the result of random draws based on an underlying
probability distribution p (d|H). Here d denotes the set of data while H
represents the hypothesis, or model, we assume the distribution is based
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on. A statistics are defined as a random variables constructed from the
data. Their purpose is usually to estimate parameters related to the signal
or indicate how well a particular hypothesis is represented by the collected
data. They are typically constructed from likelihood function, although this
is not an a priori requirement. The probability distribution of these statistics
takes the name of sampling distribution. If the statistic is simple enough, it
can be evaluated analytically, otherwise Monte Carlo simulations are usually
used. In either cases they are needed in order to able to calculate confidence
intervals for parameters estimation or p-values for hypothesis testing. So
how one can use these tools to look for a gravitational wave signal? Let
assume that one wants to confirm the hypothesis that a gravitational wave
signal with some fixed but unknown amplitude a > 0 is present in the
data. Let us define such hypothesis as H1. Let us now introduce the other
hypothesis H0 that there is no gravitational wave signal in the data, i.e.
a = 0. The latter is also known in the literature as null hypothesis. The
common strategy is to argue for H1 by arguing against H0. We need then
something that can tell us how likely it is for the parameter a to be equals
to zero according to the data we measured. In order to do that one defines
a particular statistic Λ, known as detection statistic, that will be the core of
the statistical test. In particular, if the observed value Λobs obtained through
the data lies far out in the tails of the statistic sampling distribution, then
the data themselves are most likely not consistent with the hypothesis we
assumed and thus such hypothesis can be rejected. The confidence level
with which one rejects H0 is quantified thought the significance of the test,
also called as p-value. Such quantity is defined as follows

p = Prob (Λ > Λobs|H0) =

∫ ∞
Λobs

p (Λ|H0) dΛ, (2.90)

where p (Λ|H0) is the statistic sampling distribution under the assumption
that the null hypothesis is correct. Usually, the confidence level of the rejec-
tion is set a priori. A threshold value Λ∗ is then evaluated from it according
to the false alarm probability α (see Fig. 2.4) that, in turn, is defined by

α = Prob (Λ > Λ∗|H0) =

∫ ∞
Λ∗

p (Λ|H0) dΛ. (2.91)

The false alarm probability function measures the probability to obtain
Λobs > Λ∗ by pure chance. That is to say that α tells how likely it is
for one to reject the null hypothesis when it is actually true. On the other
side, the false dismissal error β tells us how likely it is for one to accept
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Figure 2.4: A binomial distribution with parameter n = 60 and p = 0.35. The
value of α equals the area under the probability distribution for Λ ≥ Λ∗ = 28.

the null hypothesis, i.e. Λobs < Λ∗, when it is actually false. It is defined as
follows

β = Prob (Λ < Λ∗|Ha) =

∫ Λ∗

−∞
p (Λ|Ha) dΛ, (2.92)

where p (Λ|Ha) describes the sampling distribution of the detection statistic
assuming the presence in the data of a signal characterized by the ampli-
tude a. It is easy to see how these two quantities are intrinsically related
together. In fact, if we set an high threshold value Λ∗ in order to minimize
the false alarm probability, the false dismissal probability will in turn in-
crease. To check this, one just needs to consider that β is defined as the
probability for the detection statistic to assume a value Λobs smaller than
the detection threshold Λ∗. Hence, higher is the threshold we set, higher is
the false dismissal probability we will obtain. By the same token, a small
threshold value, although able to reduce the false dismissal probability, will
also increase the probability of a false alarm as a consequence of the less
strict requirement one assumes to establish the presence of a signal in the
data. In general it is up to the analysts to decide how to balance these two
properties choosing the most suitable value for the detection threshold. In
particular, in the context of gravitational waves data analysis, it is common
to set the false alarm probability to some low value, i.e. 5%, and chose
as detection statistic the one that minimizes the false dismissal probability.
Such approach is also known as the Neyman-Pearson criterion. In order to
check how efficient are the choices one has made in terms of signal detection,
one defines the test power or detection probability

γ (a) = 1− β (a) . (2.93)

The detection probability is used to quantify the fraction of times that the
test statistic is able to correctly spot the presence of a signal in the data,
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given the false alarm rate α as well as the amplitude of the signal itself a.
See Fig. 2.5.

Figure 2.5: A binomial distribution with parameter n = 60 and p = 0.54. The
value of p has been chosen so that the area under the probability distribution for
Λ ≥ Λ∗ = 28 is equal to 0.9.

One of the great advantage of the detection probability is that it is data-
independent and, as such, it can be used as a figure-of-merit for proposed
search method. In fact, because it also depends on the signal amplitude, it
can be used to get valuable information about the signal even in absence
of a detection. This is particularly useful when one deals with unknown
parameter characterizing the source model or the theory behind it, as we
will see in the last part of Chapter 4.



Chapter 3

Introduction to the Dark
Matter paradigm

3.1 Introduction

The study of the dark matter paradigm is nowadays one of the most puz-
zling and at the same time compelling task for many cosmologists and as-
tronomers. The phrase ”dark matter” itself has gone under an important
development in the last decades. While at first the word ”dark” was just
a mere adjective representing the impossibility to detect this astrophysical
material because of their supposed faint electromagnetic emission, nowadays
the phrase ”dark matter” is often used as a name, a proper noun to account
for whatever makes up the bulk of our Universe’s matter density. In this
chapter, we aim to throw some light on its history focusing on the theoret-
ical arguments and observations that led to the establishment of the dark
matter as the standard explanation for a wide variety of astrophysical obser-
vations. Some of the most known dark matter candidates will be presented
and discussed, exploring their pros and cons.

Before going further it would be reasonable to address the elephant in the
room: ”what is dark matter?”. Unfortunately physicists and astronomers
are still far from being able to provide an exact and exhaustive answer to this
question. Nevertheless we can give an “operative” definition of dark matter
by qualitative describing the features one wants to ascribe to it. One can
describe dark matter as some form of material that either emits, reflects nor
absorbs electromagnetic radiation ( radio waves, light, gamma rays, etc..).
Let’s imagine to have a cloud of dark matter interposing between a source of
light and an observer. What happens is that the light goes straight through

69
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Figure 3.1: The light rays that pass through the dark matter do not interact with
it eventually reaching unperturbed the observer.

the cloud eventually reaching the observer. It doesn’t bounce off, it doesn’t
get absorbed, it doesn’t interact in any way with the dark matter could.

Figure 3.2: The light rays that pass through the ordinary matter can be reflected,
absorbed, etc.. before reaching the observer.

On the other hand normal matter, which is everything that makes us up and
everything we know about, would indeed appear dark to the same observer.
That is of course because it does something different: it interacts with light.
Standard matter may looks dark because it can absorb light, or reflect it,
so that the light will not reach the observer whereas dark matter is just
invisible. Now that we have addressed this first question, we can move on
the next one:” Why do we believe dark matter exists?”

3.2 Dark Matter evidences

3.2.1 Galaxy Clusters

From a chronological point of view, the study of the mass of galaxy clusters
gave one of the first hints of dark matter existence. Galaxy clusters are the
most extended gravitationally bound systems and, as such, they provide an
ideal tool for cosmologists to study the formation and evolution of the struc-
tures of the Universe. In the first half of the 20th century the astronomer
Fritz Zwicky published two works on galaxies cluster, in 1933 and in 1937
respectively [137, 138], in which he proposed different methods to determine
their mass. Motivated by the large scatter in the apparent velocities of
several galaxies within it, he focused his attention to the particular case of
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Figure 3.3: Distribution of the Virgo Cluster galaxies member velocities as a
function of their distances from the cluster center [115].

the Coma cluster. From the observed velocity dispersion Zwicky obtained
a conservative lower limit on the mass of the cluster of 4.5 × 1013M�. If
one considers that the Coma cluster contains about one thousand galaxies
within a radius of 2×106 light-years, such a value corresponds to an average
mass-per-galaxy of about 4.5×1011M�. Assuming that the average absolute
luminosity for cluster galaxies is around 8.5× 107 times that of the Sun, we
are led to a remarkable high mass-to-light ration of 500. Although we know
nowadays that this is quite an overestimation due to the incorrect value he
used for the Hubble constant1, this result clearly suggests the presence of
some sort of non emitting mass component in the cluster. The pioneering
study of Fritz Zwicky is followed in the successive decades by numerous other
works. Sinclair Smith publishes his study on the Virgo Cluster in the 1936
[115] in which, analyzing thirty-two members of the cluster, he concludes
that ”high line-of-sight velocities are just as likely to be found in one part of
the cluster as others”. Assuming that the outer members of the cluster are
moving in a circular orbit, he estimates the total mass of the Virgo cluster
to be 2 × 1047g ' 1014M�. Neglecting the intergalactic material this leads
to an average mass of 2× 1011M� for the 500 galaxies members. This esti-
mate, as the one obtained by Zwicky, is indeed incompatible with the one
previously derived by Hubbles.
In the 1951 Thornton Page approaches the problem on a different angle

1Zwicky used the value estimated by Hubble and Humason H0 = 558kmMpc/s with
an estimated uncertainty of 10-20%[76].
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Figure 3.4: A table showing the distance, luminosity, mass and mass-to-light
ratio of different galaxies and galactic cluster as compiled by M. Schwarzschild in
his paper [113].

studying several systems of double galaxies [95]. The analysis of the angular
separation and the radial velocities of twenty pairs of galaxies suggests an
average individual mass of 8× 1010M�, with an uncertainty much less than
±40%. It is worth to mention that in his work Thornton Page also identifies
a group of remarkably heavy galaxies, characterized by a mean individual
mass of 1.5 × 1011M�, thus further whetting what is also referred to as
”missing mass problem”.
Three years later in the 1954 Martin Schwarzchild, son of the famous Karl
Schwarzchild, contributes to shed some light on the missing mass issue by ex-
tending the analysis to several astrophysical objects of great interest among
which one finds the Coma cluster itself [113]. Martin Schwarzchild updates
the distance scale of the celestial bodies and, in the case of the Coma cluster,
he also gets rid of the tales values for the radial velocities assuming they
could belong to some non-members. Of the twenty-two observed galaxies,
five are rejected bringing the root mean square radial velocity relative to the
mean of the cluster from 1080km/s down to 630km/s. He obtains a final
total mass of 3 × 1014M� that, divided among the eight hundred member
galaxies, results in an average individual mass of 4× 1011M� in accordance
with Zwicky previous investigation. Martin Schwarzschild summarizes all
his results in the table here showed as Fig. 3.4 in which one can see dif-
ferent objects showing a mass-to-light ratio of the same order as the one of
the Coma cluster. At this point in time the dark matter hypothesis is not
yet commonly accepted, nor is it disregarded. Nevertheless, it is very clear
to the astronomers community that the discrepancy between the masses
of galaxies inferred from cluster dynamics and those from the rotation of
galaxies, or their luminosity, is a problem that needs more information to
be finally solved.
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As we have seen, the determination of the galaxies cluster masses has
historically played a key role supporting the dark matter assumption. In the
following part we will briefly touch on three different methods of measuring
a galaxies cluster mass.

The Virial theorem: early estimates of cluster masses were based on the
application of the Virial theorem. Even if this theorem had already been
used in astronomy, the merit to first apply it to galaxies clusters in order
to infer their masses goes to Fritz Zwicky, whose work we already cited in
the beginning of this chapter. If one assumes that clusters of galaxies are
bound and self-gravitating systems, than the virial theorem provides us with
a relation between the kinetic and potential energies of the system

T̄ = −1

2
Ū , (3.1)

where the bar represents the time average

Ā =
1

τ

∫ τ

t=0
dtA (t) dt. (3.2)

One can estimate U assuming at first approximation that the galaxies are,
on the average, uniformly distributed inside a sphere of radius R. This is a
fair approximation to use if we limit ourselves to just a qualitative order of
magnitude estimation. The masses of a generic cluster shell and the sphere
delimited by it are

m shell = 4πr2ρdr and m sphere =
4

3
πr3ρ. (3.3)

Where ρ is considered to be the constant density

ρ =
3M

4πR3
. (3.4)

Therefore, the energy required in order to strip away the outermost shell is

dU = −G
m shell m sphere

r
. (3.5)

We can then find the total binding energy by integrating over all the shells
obtaining

U = −G
∫ R

0

(
4πr2ρ

) (
4
3πr

3ρ
)

r
dr

= −3GM2

5R
.

(3.6)
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Finally, one can express the total kinetic energy T̄ in terms of the total mass
M by defining the average velocity

v̄av : T̄ =
N∑
i=1

miv̄
2
i =

N∑
i=1

miv̄
2
av = Mv̄2

av. (3.7)

Combining eq. (3.1), eq. (3.6) and eq. (3.7) one obtains

M =
5Rv̄2

av

3G
. (3.8)

It is worth to underline that, as Zwicky states himself, this method pro-
vides just an order of magnitude estimate. Projection effects, contamina-
tion by foreground galaxies and anisotropy of the velocity distribution may
introduce uncertainties into the determination of the galactic cluster mass.
Nevertheless it remains true that these uncertainties by themselves are too
small to explain the virial masses Zwicky and other found.

X-Ray: the hot ionized gas present in the galaxies clusters emits in the X-
rays band. The gas has a temperature of order 108K and contains around
10−3atoms/cm3. The fully ionized hydrogen and helium in the clusters pro-
duce most of the electrons present in the gas. One defines ρg(r) as the
mass density of the cluster gas at the distance r. If we assume that the
gas is in hydro-static equilibrium, so that the pressure gradient balances the
gravitational acceleration, one has

dP

dr
= −ρg(r)g(r). (3.9)

The gas pressure P can be related to the density via the ideal gas law

P

kBT
=

ρg
µpmp

, (3.10)

where mp is the mass of the proton and µp is the mean atomic mass of the
plasma, approximately equal to 0.6 amu. It follows that, for a spherically
symmetric system in hydro-static equilibrium, the total dynamical mass
under the premise of Newtonian gravity is given by

M(r) = − kbTr

Gµpmp

(
d lnρg(r)

d ln r
+
d ln T (r)

d ln r

)
. (3.11)
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If the gas is isothermal, we can describe its distribution through the formula

ρg = ρg(0)[1 + (R/Rc)
2]−3β/2. (3.12)

Here Rc represents the core radius and the parameter β is define as follow

β =
µpmpσ

2

kbT
, (3.13)

where σ is the line-of-sight velocity dispersion. In the literature this is also
referred to as the hydro-static isothermal β-model.
The upside of this method respect to the previous one is the absence of
contamination effects together with the fact that the mass distribution is
derived directly without any assumption about the dark matter distribu-
tion as in the case with the virial theorem. The accuracy of this model
has been examined though several hydrodynamical numerical simulations in
the past years with sometimes contradictory results. From his study in the
1996, Evrard found that the hydro-static isothermal β-model was able to
reproduce remarkably accurate estimates when utilized at radii where the
cluster mean density is between 500 and 2500 times the critical density [53].
However, in the same years other authors such as Balland and Blanchard
argued for the opposite conclusion stating that the hydro-static equilibrium
equation is unstable and so the resulting accuracy of the mass estimates is
rather poor [26]. If one jumps ten years ahead, one can find an other study
investigating the bias on the X-ray mass estimates with mock long Chandra
exposures of five cluster of galaxies obtained from high-resolution hydrody-
namic simulation. The authors found that the mass profile obtained via
direct application of the hydro-static equilibrium equation was more robust
than the one based on the β-model which underestimated the cluster mass
up to a 40% [102] 2. Nowadays application of machine learning techniques
to this problem seems to provide very promising updates by identifying the
morphological parameters which encode the dynamical state of the cluster.
Focusing the attention on the surface brightness concentration, smoothness
and asymmetry, parameters whose feature importance reveals to be the high-
est among the others will allow to improve the accuracy of the future cluster
masses predictions as discussed by Sheridan B. Green et al. in their recent
paper [66].

2It is important to remark that the data analysis performed in this work has been made
assuming ideal conditions as for example the perfect knowledge on both the background
and the instrument response.
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Figure 3.5: The effect of the lens L is to distort the angles β that would be
observed in a flat Minkowski background into the angles θ [127].

Gravitational lensing: the last approach we will speak about is the one
based on the gravitational lensing mechanism. The fact that light should
be affected by the mass distribution of the environment is a quite an old
idea. Newton himself was one of its greater supporter. However it was only
later that physicists, tanks to the theory of the general relativity, were able
to fully describe this phenomenon. Let us assume to have a source S, an
observer O and a lens L between them as shown in Fig. 3.5. Light rays
emitted from S are deflected by the lens. As a result of this, the observer
sees the images in direction corresponding to the tangents to the real incom-
ing light ray paths. If we define M(ξ) as the mass inside the radius ξ, one
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can evaluate the deflection angle α̃(ξ) as follows3

α̃(ξ) =
4GM(ξ)

c2ξ
. (3.14)

One can differentiate between three different kinds of gravitational lensing:
strong lensing, weak lensing and microlensing. In particular, we are inter-
ested in the second one, the weak gravitational lensing. Weak lensing occurs
when a non-uniform matter distribution laying between the observing point
and distant light sources affects the measurable properties of the sources.
Position, shape and brightness of the source can be modified due to the
lensing effect. In general, modifications of the position are very difficult to
deal with due to the lack of knowledge about the unaffected original posi-
tion. As for the shape deformation, it can be measured by averaging over
a whole ensemble of images. This is possible because the weak lensing acts
as the coherent deformation of the shapes of extended backgrounds sources.
For this reason large sky surveys such as SDSS [135], COSMOS survey [81],
CFHTLS [71], etc. play a key role in the study of this phenomenon.
The first detection of a coherent weak lensing signal is due to Tyson, Valdes
and Wenk [123]. They found a systematic alignment of 20-60 faint back-
ground galaxy images centered on foreground galaxy cluster. Three years
later, N. Kaiser and G. Squires proposed a powerful method to reconstruct
the surface mass distribution of the galaxies cluster taking advantage of the
relations between the external shear, the convergence and the effective lens-
ing potential. More details can be found in [78]. This method was largely
employed and expanded in the following years. In the 1996 G. Wilson, S.
Cole and C.S. Frenk proposed a method for estimating a multiplicative factor
in order to compensate for the diminished magnitude of the reconstructed
density surface in this simulations. They proved that, thanks to this adjust-
ment, weak lensing observations can, not only reproduce accurate maps of
the cluster morphology, but also provide a quantitative measurement of the
cluster mass distribution [132]. One year earlier, in the 1995, P. Schnelder
and C. Seitz proposed the theoretical basis to extend the Kaiser & Squires
method to the nonlinear regime, where the liner approximation could not
be considered valid anymore as it happens close to the center region of the
cluster [112]. More recent works also show how one can take advantage of
the weak lensing phenomenon to determine the cluster center [114]. Such
an improvement of the cluster center localization, in turn, allows a better

3It is worth to specify that the previous equation holds true only for the circular-
symmetric case in the thin-lens approximation.
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estimate of the cluster mass further showing how the gravitational lensing
tool plays a key role in the galactic cluster analysis.

3.2.2 Galactic Rotation Curves

The so-called ”missing-mass” problem that we have briefly mentioned pre-
viously has historically been one of the most important pieces of evidence
for dark matter existence. Its origin dates back to beginning of the 20th
century when astronomers started to investigate Andromeda (M31) rota-
tion curve, i.e. the circular velocity profile of the stars and gas as a function
of their distance from the galactic center [24]. It is actually fairy easy to
grasp a qualitatively idea of what this curve should looks like simply using
the Kepler’s laws. For this purpose let’s consider a generic spiral galaxy in
which the majority of the stars are located in the galactic disc surrounding
its center. Applying the Kepler’s third laws one can deduce its rotation
curve. If one focuses on the stars populating the outer region of the disc,
we can approximate the gravitational force that acts upon them to be the
force that would be generated by a mass M(r) located at the center of the
galaxy. Then it follows

T 2 =
4π2

G (M (r) +mstar)
r3, (3.15)

where T is the star’s orbital period, mstar is its mass and M (r) represents
the total mass inside the orbit of the star. Assuming that M (r) � mstar

4

one finally gets

v (r) =

√
GM (r)

r
. (3.16)

For r → ∞ we can assume the amount of mass inside the orbit to be the
total mass M of the galaxy. We then finally recover the expression

v (r) =

√
GM

r
. (3.17)

One would expect the rotational curve to exhibits a power law asymptotic
behavior v (r) ∝ r−1/2 for large galactocentric radii. However, this expecta-
tion turns out to not be in agreement with the experimental measurements
as shown in Fig.3.6. In the 1957 a work presenting the first radio rota-
tion curve of M31 was published by van de Hulst, Jean Jacques Raimond,
and Hugo van Woerden. Thanks to the new 25 meter radio telescope, the

4reasonable for outer region’s stars
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Figure 3.6: The plot shows the circular velocities in the Andromeda Nebula as
a function of the distance from the galactic center. The velocities a reported in
km/s. In particular the dots mark the observations on the north following side of
the nebula whereas the crosses represent the observations on the south preceding
side. The circles, finally, identify the normal points [113].

observation could be extended up to 2 degrees away from the galactic cen-
ter. Remarkably, the rotation curve appeared to remain ”flat” even at that
greater distances [124].

”At first glance we see from the position of the maxima that [the rotation
curve] is of the order of 200 to 250 km/sec throughout this region and that
it does not strongly decrease with increasing distance from the center”

The 21 cm emission originates from the ”hyperfine structure” of the
hydrogen atom. This is a corrections to the hydrogen atom model that takes
in account the weak interaction between the spins of the proton and of the
electron in the atom. One can think of the quantum spin as the angular
momentum of particles spinning on their own axis. In the particular case
of an hydrogen atom these particles would be the proton and the electron.
Keeping this simple picture in mind, one can think the electron and the
proton as magnetic dipoles generating slights magnetic fields due to their
rotating motion. The 21 cm transition is a direct result of the interaction of
these two ”magnetic” fields. There is in fact an energy difference between
when the dipole moments of the two particles are aligned or anti-aligned.
In particular, the state where the two magnetic moments are anti-aligned is
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Figure 3.7: Schematisation of the hydrogen atomic transition.

a lower energy state. When the two magnetic moments are aligned, in fact,
the energy increases making the system less stable. When the electron in
the atom goes under a transition from aligned to anti-aligned a photon is
produced (for reference see Fig. 3.7). The wavelength of the released photon
happens to be of 21 cm from which one gets this line name. The reasons
why this emission is so important in astronomy and for the evolution of the
missing-mass problem are multiple. First it allows to expand the survey
frequency pull out from the optical and near infrared range. Galaxies can
now be identified on the bases of their gas content rather than of theirs stellar
one. This come very handy when trying to detect low surface brightness
galaxies which usually lack in stars quantity. This advantage of course holds
true also for galaxies’ outer regions where the local stellar density drops
down. The other advantage is that one can get spectral data in a natural
way along with all the information that they carry with them, e.g. the
redshift, or recession velocity and the rotational velocity of the galaxy. The
21 cm emission, therefore, allows also to extend the rotational curve to larger
radii.
In the 1970 good quality spectroscopic observations are extended out to
110 arcminutes away from the galactic center thanks to the image tube
spectrograph developed by Kent Ford ten years earlier, thus establishing
an other milestone in the context of the galactic rotation curves. In the
same year Vera Rubin and Kent Ford publish their work [108] showing that
the data they obtained are indeed compatibles with radio measurements
obtained in the 1966 by M. Roberts [104]. It is also worth to mention the
study done by K. Freeman on the rotation curves pick for the M33 and
NGC 300 [56] and the work published by D. Rogstad and G. Shostak on the
rotation curves of five different galaxies - M33, NGC 2403, IC 342, M101 and
NGC 6946 [105]. Freeman noticed that the rotation curves exhibited pick at
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Figure 3.8: The plot shows the azimuthally averaged hydrogen surface densi-
ties (on the left) and the rotation velocities (on the right) for the galaxies M33,
NGC2403, IC342, M101 and NGC 6946. R80 marks the radius within which the
80% of the observed hydrogen is found [105].

larger radii than predicted whereas D. Rogstad and G. Shostak found that
the rotation curve for all the five galaxies they studied remained flat out to
the largest radii observed. See Fig.3.8. In the next years, several other works
follow. The galaxies pull and the maximum observed radius grow to a point
where it seems fair to assume that the rotation curves of these objects stay
flat well beyond the optical size of the galaxies. Such result strongly suggests
that the galaxies mass continues to grow beyond the region occupied by the
stars and gas [109]. By the end of the eighties, the flat rotation curves
observed by radio astronomers has done much to establish the existence of
some kind of invisible mass filling the outer parts of galaxies as we read in
the review on the status of the ”missing mass problem” authored by Sandra
Faber and John Gallagher [54].
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Figure 3.9: The full-sky image of the temperature fluctuations in the cosmic
microwaves background as a result of nine years of WMAP data collection.

3.2.3 Cosmic Microwave Background

The cosmic microwave background (CMB) radiation first discovered by Pen-
zias and Wilson [96] represents an other extremely powerful tool to constrain
different key characteristics of our Universe such as its geometry and its
matter content. This radiation is thought to be the leftover from the Big
Bang. Right after the Big Bang, the Universe is an hot and dense plasma
of photons, leptons and quarks. Protons appear some time later when the
Universe had expanded and cooled enough. At this stage, the mean free
path a photon can travel before encountering a free electron is still very
short and thus the early Universe results to be effectively opaque to elec-
tromagnetic radiation. Eventually, the temperature goes down enough that
the formation of neutral hydrogen becomes energetically favored and the
fraction of free electrons and protons drops substantially. The hydrogen
atoms created after this recombination present electrons in a high energy
state. The transition of these electrons to lower energy states is associ-
ated with photons emission. Such a phenomenon goes under the name of
photon decoupling. The cosmic microwave background radiation that we
observe today is made up exactly by these photons that decoupled from
matter and traveled freely through the universe. Today, the CMB shows
a thermal spectrum almost indistinguishable from the one of a black body
at a temperature of 2.72548 ± 0.00057 K. Such a spectrum, characterized
by small anisotropies, seems to be otherwise homogeneous to an extremely
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high degree. These anisotropies can be modeled as small fluctuation about
the Friedmann-Robertson-Walker metric whose dynamics is led by the laws
of general relativity. The extensive data obtained by space missions like
COBE [27], WMAPS [119] and PLANK [101] allowed the use of the Monte
Carlo Markov Chain method to reproduce the evolution of the Universe and
finally constrain the primary parameters of the model. As an example in
Fig. 3.10 we show the list of parameters utilized by the Plank collaboration
in one of their recent analysis [100]. As one can see, although the baryon
density ωb = Ωbh

2 and dark matter density ωc = Ωch
2 are allowed to variate

in the range [0.005, 0.1] and [0.001, 0.99] respectively, the current determi-
nation for these two parameters are according to the Plank collaboration
around the values ωb = 0.02230 ± 0.00014 and ωc = 0.1188 ± 0.0010 5. We
see it more explicitly in Fig. 3.11. The estimations of the barion and dark
matter densities can vary slightly depending on the data sets one decides to
use in conjunction with the one deriving from the CMB observation. The
use of external data sets as a complement to the CMB anisotropies power
spectrum is done not only to improve the final estimations themselves, but
mainly to remove - or at least mitigate - the degeneracy in the parameter
space. To conclude, the analysis of the anisotropies of the cosmic microwave
background radiation not only seems to prove the auto consistency of the
ΛCDM model, but also represent a strong hint to the existence of dark
matter from a large scale (high redshift) point of view.

3.3 Dark Matter candidates

3.3.1 Intergalactic gas and MACHOs

We saw how the idea that some form of hidden mass is present in both
galaxies and galactic cluster strengthened during the twentieth century. As-
tronomers came up with different ideas in order to address and hopefully
shade light on the mass discrepancy problem. One of the first hypothesis as-
sumed intergalactic gas to be the responsible of such high mass-to-luminosity
ratio values. However, it was put aside when studies on the Coma and Pe-
gasus I clusters showed that hydrogen abundance was less than the 2% of
what would have been required for gravitational binding [97, 87]. With
the intergalactic gas ruled out, the next hypothesis pointed to what were
probably the second most likely candidates: compact objects qualitatively
similar to ordinary stars but otherwise much less luminous. In this group

5the error intervals here represent the 68% confidence limit.
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Figure 3.10: List of the cosmological parameters used. For each of them a sum-
mary definition as well as the value taken in the base ΛCDM model (where appro-
priate) is given. The top block groups the primary parameters that are varied in
the Monte Carlo Markov Chain with uniform priors. The range of these priors are
listed in square brackets.
Note In addition to the other priors, a hard prior of [20, 100] km/(s Mpc) has been
imposed on the Hubble constant H0.
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Figure 3.11: List of the parameters 68% confidence limits for the base ΛCDM
model. The confidence limits are obtained from the Plank CMB power spectra in
conjunction with lensing reconstruction (”lensing”) and external data (”ext”) such
as barionic acoustic oscillation (BAO) and joint light-curve Analysis (JLA) [101].
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Figure 3.12: The plot shows the limit on the mass-luminosity-ratio of a population
of stars whose total mass is sufficient to bind the Coma cluster. M8 dwarf stars,
obtained continuing the stellar mass function are proposed as viable explanation to
the mass-luminosity-ration discrepancy in the Coma cluster [118].

one finds black holes, neutron stars as well as white and red dwarf and
planets. These objects, disseminated either in the galactic halos or in the
intra-cluster space, all have at fist glance the quality needed to fit the role
of ”dark matter”. As an example one can look at the J. Tarter and J. Silk
paper in which they show that M8 dwarf stars cloud be able to account
for the unseen mass present in the Coma cluster [118]. These objects were
later grouped under the label MACHOs -massive astrophysical compact halo
objects - by Kim Griest in contrast with the rising conjecture according to
which dark matter would be made up of weakly interacting massive particles
- WIMPs. Nowadays the MACHOs hypothesis is quite strongly dismissed as
gravitational microlensing surveys, together with the determination of the
primordial light element abundances, favor a non-baryonic nature for the
dark matter. In fact, even if the MACHOs electromagnetic emission is very
faint or totally absent by itself, these objects can still be detected by looking
for the effect that their presence exerts on the light emitted by surrounding
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stars and galaxies. In particular, in any nearby galaxy, a star has a proba-
bility of 10−6 to be strongly microlensed by a compact object located in the
Milky Way halo. The maximum amplification is obtained when the source,
the observer and the lensing point mass are all perfectly aligned. The dura-
tion of the lensing phenomenon is expected to last between 2 hours and 2
years for object masses that range from 10−6M� to 102M� [35]. In the 2000
a 5.7 years long detection campaign of the Large Magellanic Cloud reveals
13-17 possible candidates, way more than the 2-4 expected from the known
stellar population. As a result the MACHO collaboration concluded that
the macho halo fraction for the Large Magellanic Cloud was around 20%
with a 95% confidence interval of 8% to 50% [14]. However, an other exten-
sive campaign lead by the EROS (Experience pour la Recherche d’Objets
Sombres) collaboration revealed that the previous result were quite too op-
timistic. Covering a larger solid angle than MACHO (43 deg2 instead of
11 deg2 ), thus reducing the contamination due to self-lensing, and having
an higher sampling frequency, they were able to find just one candidate.
As a result, the macho halo fraction value was updated to 8% with a 95%
confidence level and machos in the mass range 0.6× 10−7M� < M < 15M�
were ruled out as primary dark matter candidates [83, 120]. As we already
mentioned, the determination of the primordial light element abundances is
of great importance in reinforcing the idea that machos can not be part of
the dark matter paradigm. In the beginning of the second half of the twen-
tieth century people started to realize that stellar nucleosynthesis could not
account for total observed helium abundance [33]. Deuterium abundance
also revealed to be an hot point. Despite the fact that it is not generated
in stars, it appears to be very present in the interstellar medium. In the
1973, H. Reeves et al. argued that pregalactic nucleosynthetis offered the
most plausible solution for this puzzling dilemma [103]. More important, the
study of the abundance of the primordial light elements allowed to derive
upper limits on the cosmological baryon density. In their paper published
in May 2001, S. Burles et al. infer a baryonic fraction ΩBh

2 = 0.020± 0.002
at 95% confidence level [34]. These value proves to be in good agreement
with the one we just mentioned in the previous section obtained by WMAP
and Plank through the analysis of the cosmic microwave background (see
Fig. 3.13). In light of this results, it is rather clear that the answer to the
missing mass problem cannot come from machos or baryonic matter.
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Figure 3.13: ΛCDM model fit to WMAP nine-year data combined with a pro-
gression of external data sets. For a complete list of parameter values for this model
look at http://lambda.gsfc.nasa.gov/ [72]. The value for Ωbh

2 reported in the ta-
ble shows why even if baryonic matter can contribute to account for the missing
mass in galaxies and galactic clusters, it can not be the only reason behind this
discrepancy.

3.3.2 WIMPs

If the constituents of dark matter cannot be found in baryonic matter, then
one must look elsewhere. The weakly interacting massive particles (WIMPs)
hypothesis responds exactly to this need. Strictly speaking only those par-
ticles whose mass is between 2 GeV and hundreds of TeV and that interact
through the weak interaction coupling of the Standard Model fall into the
wimps category. However, from a more loose point of view, any massive
particle that possess a weak, but non negligible coupling to the ordinary
matter could be referred as a wimp. Claiming for the existence of a new
particle is not something someone does without second thoughts. To assume
the existence of new kind of matter one would like to have more than just
the need to solve an incongruity of its cosmological model. One of the rea-
sons why wimps are so appealing is indeed because the scientific community
already has different other motivation to extend the Standard Model in the
weak sector. Most of these motivations arise from the need to explain exper-
imental data that otherwise one would be able to justify only for seemingly
“unnatural” choices of parameters. To give an example of this “fine-tuning”
problem we can look at the Higgs boson mass mh and its value. The physical
mass of the Higgs boson is obtained by adding the quantum correction due
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to loop-level diagrams ∆m2
h to the its standard tree-level mass m2

h0

m2
h = m2

h0 + ∆m2
h ∼ m2

h0 +
λ2

16π2
Λ2. (3.18)

Here λ is an O (1) dimensionless coupling parameter whereas Λ represents
the energy scale at which the standard model is no longer a valid description
of the nature. Because ∆m2

h is proportional to Λ one would expect mh to be
roughly of the same order of magnitude too. However, this does not seem
to be the case as mh ∼ 100GeV whereas Λ ∼ MPl ' 1.2× 1019GeV . This
in turn implies that m2

h0 and ∆m2
h must cancel to 1 part in 1036 in order to

obtain the expected physical Higgs mass, which is hardly reasonable. Such a
paradox may be circumvented if Λ ≤ 1TeV , that would imply the existence
of new physics at the weak scale. One could also suggest that maybe the
Higgs boson is not a fundamental scalar. However, even in this scenario,
some new particle at the weak scale would be required in order to describe
the Higgs boson structure. Either way the solution of the hierarchy problem
- as it is called - seems to imply the existence of new particles with mass
around mweak ∼ 10GeV − TeV .
An other reason why physicists has been attracted by the WIMP hypothesis
has to do with the natural ability they have to match the expected abun-
dance determined by the analysis of the cosmic microwave background. Such
a feature is often referred to as the ”WIMPs miracle”. Let us assume that in
the early hot and dense universe the (generic) dark matter (DM) particles χ,
as well as the standard matter (SM), were in thermal equilibrium with the
primordial thermal bath. Particles production from annihilation balanced
each other out. The dark matter number density is defined as follows

nχ (T ) =

∫
d3p

(2π)3 fχ (p, T ) , (3.19)

where fχ represents the dark matter distribution function. One can then
describe the cosmological evolution of the dark matter particle through the
Boltzmann equation

dnχ
dt

+ 3H (T )nχ = −〈σv〉
(
n2
χ − n2

χ,eq

)
. (3.20)

H (T ) is the Hubble rate whereas the quantity σv on the left hand side of
the equation is the pair annihilation cross-section associated to the process

χ+ χ→ SM + SM. (3.21)
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Being the cross-section temperature depended, its thermal averaged is taken.
Finally nχ,eq represents the equilibrium number density. One can estimate
nχ,eq by replacing fχ with the equilibrium distribution function (convention-
ally taken to be the Maxwell-Boltzmann distribution) in the eq. (3.19). As
the Universe expands it also starts to cool down and eventually its temper-
ature drops below the dark matter mass. Under the hypothesis that the χ
particle remains in a state of thermal equilibrium, its annihilation rate will
enter the so-called ”Boltzmann-tail” where

nχ,eq ∝ e−mχ/T . (3.22)

In this state the number of dark matter particles would drop to zero, except
that the Universe expansion prevents such a thing to happen. Once the
Hubble rate H (T ) overcome the annihilation rate one gets what is called
a thermal freeze-out. The Universe had become so large that the dark
matter particles are no longer able to find each other to annihilate. Their
number therefore asymptotically approaches to a constant called ”thermal
relic density”

ΩDM =
mχs0Y0

ρc
. (3.23)

Here s0 is the present time entropy density, Y0 is the comoving dark mat-
ter number density evaluated at today’s temperature and ρc is the critical
density of the Universe

ρc (T ) =
3H (T )2M2

PL

8π
. (3.24)

The comoving density Y0 can be semi-analytically estimated through the
equation

Y0 '
π

45
MPL

[∫ Tf

T0

g
1/2
∗ 〈σv〉dT

]−1

, (3.25)

where Tf is the freeze-out temperature and g
1/2
∗ is a function of the tem-

perature T related to the degrees of freedom of the primordial thermal bath
(see more in [64]).
The dark matter relic density can be then numerically evaluated making use
of the expressions above

ΩDMh
2 ≈ 8.76× 10−11GeV −2

[∫ Tf

T0

g
1/2
∗ 〈σv〉

dT

mχ

]−1

. (3.26)
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Figure 3.14: The panel shows the time (top) and temperature (bottom) depen-
dence of the comoving number density Y and the thermal relic density Ωχof a
100 GeV, P-wave annihilating dark matter particle. The dashed line pictures the
number density of a particle that remain in thermal equilibrium whereas the solid
one is associated with an annihilation cross-section that yields to the relic density
suggested by CMB analysis [55].

The reason why the WIMP hypothesis is such an attractive solution of the
dark matter issue is that, for typical weak-scale pair annihilation cross-
sections6 σ ∼ G2

FT
2, typical freeze-out temperature T ∼ mχ/20 and for

electroweak mass-scale mχ ∼ 200GeV , the thermal relic density obtained
through eq. (3.26) matches the experimental cosmological density determi-
nation ΩDMh

2 ≈ 0.12. It must be realized that the occurrence of this match
between theoretical and the experimental one relies specifically on the cross-
section and partially on the particle’s mass. Therefore, one must not regard
at it as something unique to the weak scale and the weak interaction. By
the same token, not all the wimp candidates are able to reproduce this result
(see the neutralino relic density n the SUSY model [25]). Nevertheless, it is
remarkable that particles whose existence has been hypothesized for theo-
retical reasons would also be able to solve the dark matter issue so elegantly.

An other characteristic usually ascribed to wimps is to not be relativis-
tic around the time when they fall out of thermal equilibrium in the early
Universe. The reason behind this are easy to understand. Let us assume
dark matter particles to be relativist at the time of decoupling from thermal

6GF represents the Fermi constant.
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plasma. A candidate for this so-called hot dark matter (HDM) could be for
example the light (mn ∼ 10 eV ) neutrinos. The limitations of this model
have been known since the 1980s [129]. Because of the large primordial
coherence length of the neutrino distribution, the resulting clustering scale
cannot be consistent with what we observe, at least without exotic assump-
tions on the other cosmological parameters. As analyzed by C. S. Frenk and
D. M. White, in such a universe supercluster formation would precede the
formation of the galaxies themselves leading to a galaxy distribution char-
acterized by a large and well-defined scale which is clearly in contrast with
the pictures provided by the CfA redshift survey [57]. Because of this severe
discrepancy, the community agree that hot dark matter contribution to the
total dark matter density can only be negligible, if not completely null.
On the other hand non relativistic dark matter, also called cold dark mat-
ter (CDM), seems to behave in a very different way. Once decoupled from
the thermal plasma, its density perturbations begin to grow linearly. This
provides early potential wells that act as seeds to trigger and/or to enhance
the development of standard matter density perturbations. Such a feature
is in fact one of the main reason why the cold dark matter model is able
to successful reproduce the observations provided by large scale structure
numerical simulations Fig. 3.15. It must be said that the cold dark matter
conjecture exhibits some weak points as well. Dissipationless ΛCDM sim-
ulations produce massive subhaloes whose density is too high to host any
of the observed bright satellite [31] and fail to recover the correct number
of substructure at the galactic scale [88]. In particular, the latter goes by
the name of the ”missing satellite problem” (MSP) and the scientific com-
munity seems to have taken a big step forward in solving it the last year.
In their work published in November 2018, Stacy Y. Kim et al. show how
the discrepancy underlying the missing satellite problem can be reduced, or
even extinguished, thanks to the discovery of many new dwarfs below the
luminosity limit thus strengthening the cold dark matter hypothesis [79].
Warm dark matter in the form of a sterile neutrino with a mass of a few
KeV also has been considered as a possible candidate for a while. However
recent studies based of high resolution hydrodynamical simulation seems to
disfavor masses as low as 1 ∼ 4 keV with a confidence level between 2σ and
9σ [126].
In the last decades numerous efforts have been made to detect the pres-
ence of these particles. Bounds on WIMP interaction have been strongly
improved and, in some cases, new phenomena have been discovered that
could be addressed to the dark matter paradigm. This has been the result
of different strategies whose principles we are going to touch in the next lines.
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Figure 3.15: The figure shows the result of five N-body simulations together with
the galaxy distribution in the CfA redshift survey. The middle-top, middle-bottom
and the right-bottom panels utilize HDM models and assume Ωm = 1. The left-top
and the left-bottom instead are based on CDM model and assume Ωm = 0.2[57].
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Direct detection: one of the implication of the WIMP miracle is that in
order to obtain the observed relic density, wimps must annihilate to other
particles through the channel eq. (3.21). Assuming that those other particles
are made of ordinary matter, the necessity of this interaction suggests that
dark matter is also able to scatter off standard matter through interaction
of the kind

χ+ SM → χ+ SM, (3.27)

whose energy footprint could be detected by measuring the nuclear recoil
of the target [59, 98, 85]. It is worth to underline that the WIMP miracle
not only suggests that such an interaction should exist, but also implies that
DM-SM must be efficient. One can see then how cosmology provides us with
bounds on this interaction rate. The WIMP-nuclei differential scattering
event rate R as a function of the recoil energy E is described by the following
equation

dR

dE
(E) =

ρχσ0F
2 (E)

2µ2mχ

∫ vesc

vmin

d3v
f (~v, t)

v
. (3.28)

As one can see, it depends directly on the local dark matter density ρχ and
the DM-nucleus scattering cross-section in the zero momentum transfer limit
σ0 and it is inversely dependent on the dark matter mass mχ and the square
of the reduced mass of the WIMP-target system µ = mχM/ (mχ +M), for
nucleus of mass M . Here F (E) is the nuclear form factor of the target while
v and f (~v, t) represent, respectively, the relative velocity of the WIMP χ
with respect to the target and the distribution of the dark matter particle
velocity with a cut-off at the galaxy escape velocity vesc. Finally, vmin
denotes the minimum velocity required for an event with energy E to occur

vmin =
δ +ME/µ√

2ME
, (3.29)

with δ = 0 in the case of elastic scattering. Since one is mostly interest in
cold dark matter model, the limit v → 0 is usually applied. One can then
decompose the cross-section in two contributions:

σ0F
2 (E) ' σSDF 2

SD (E) + σSIF 2
SI (E) , (3.30)

where the labels SD and SI identify the spin-dependent and the spin-
independent contributions at zero momentum transfer respectively. The
spin-independent component of the cross-section grows quadratically with
respect of the atomic mass of the target nucleus when in absence of isospin
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violation. For this reason, the differential recoil event rate increases substan-
tially for heavy target nuclei providing therefore stronger exclusion limits
compared to the one obtained for the spin-dependent counterpart7.
Although nuclear scattering is at the core of all the direct detection experi-
ments, they differentiate from one to another based on the different choices
of signal detection techniques utilized. In the case of the DAMA/LIBRA
experiment [28] scintillating crystals are used in order to collect light signals
from the WIMP-nucleus scattering. The DAMA/LIBRA experiment looks
for evidence of the existence of dark matter particles in the galactic halo
by analyzing the annual modulation signature of the single-hit events. The
clear advantage of this strategy is to be dark matter model-independent. In
the last years they have been reporting to detect a cosine-like modulated
signal with measured period of 0.998±0.002 yr that could be interpreted as
originated by dark matter particles [29]. Other positive results have been
obtained also by the Coherent Germanium Neutrino Technology (CoGeNT)
collaboration. The CoGeNT experiment exploits the p-type point-contact
germanium detectors to search for a dark matter signal. These detectors re-
ally shine in testing low-mass (mχ ∼ 10GeV ) dark matter candidates thanks
to their low-energy threshold and ability to reject surface backgrounds. In
the 2011 the analysis of a almost fifteen months of data showed a monthly
modulation of the event rate in the low-energy region. The excess of events
above the background was compatible with the one expected from dark
matter despite the low significance of ∼ 2.8σ [1]. In the same year another
promising development come from the Cryogenic Rare Event Search with
Superconducting Thermometers project, in short CRESST-II. This experi-
ment employs cryogenic detectors with CaWO4 as scintillating target mate-
rial to discriminate the type of interacting particle and detect a dark matter
signature from the background signal. The total likelihood function in the
parameter space exhibits two maxima corresponding to the WIMPS particle
masses of mχ1 = 25.3GeV and mχ2 = 11.6GeV with a corresponding sig-
nificance level of 4.2σ and 4.7σ respectively [19]. In the same region one also
find the 3 WIMP candidate events observed by the CDMS-Si detector (Cryo-
genic Dark Matter Search). The maximum in the likelihood function sug-
gests a WIMP mass of mχ ∼ 8.6GeV with an overall probability that these
events could have been generated by background fluctuation estimated to
be around 0.19%[37]. However, as one can see, the subsequent experiments
SuperCDMS [8] and CDMS-II [9] are in the disagreement with this result

7It also important to mention that spin-zero isotopes do not give any signal in dark
matter searches based on SD.
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and imply that the signal is not caused by potential WIMPs candidates, but
rather is a consequence of the fallacy of the background model utilized. The
same can be told about the CRESST-II and CoGeNT results. Once a real-
istic model of surface roughness is employed in the calculation, a significant
contribution to the number of events in the acceptance region in CRESST-II
data arises from cascades of secondary recoils caused by recoiling 103 keV
206Pb nucleus from decays of 210Pb present on - and under - the surface of
support used to hold the target in place [82]. Experiments like CDEX and
MALBEK reject at 90% confidence level the parameter space region within
6 and 20 GeV thus strongly questioning the interpretation of the results
obtained by the CoGeNT collaboration [136, 62]. On the other hand, inde-
pendent analysis of the CoGeNT data concluded that a dark matter based
interpretation of the excess events is preferred with a confidence not higher
than 1.7σ once the event rise-time is properly fitted8 thus allowing to bet-
ter describe the background contribution [2, 46]. The signature detected by
DAMA/LIBRA hasn’t found confirmation in any follow up campaign and,
even worst, other experiments seems to be in conflict with its result. Despite
the annual modulation being able to reproduce several features expected for
a dark matter signal, its interpretation as dark matter evidence would be
in tension with null results obtained by other collaborations. XMASS [133],
for example, reports exclusion upper limit of the DM-nucleus cross-section
of 10−40cm2 for dark matter particle masses between 6GeV up to 16GeV
looking for annual modulation with a single phase liquid xenon detector.
This takes away most of the region allowed by DAMA/LIBRA. Also the
recent result from XENON1T seems to disfavor the interpretation of the
annual modulation found by DAMA/LIBRA as due to dark matter parti-
cles by excluding new parameter space for the WIMP-nucleus cross-section
for WIMP masses above 6 GeV in the case of spin-independent elastic scat-
ter [21]. This still keep open the window for model dominated by inelastic
and spin-dependent WIMP-proton coupling, with the caveat of assuming a
different quenching factor in both experiments. However, also this option
seems to produce strong tension with null results from other direct detec-
tion experiments [50]. As matter of fact the direct detection campaigns for
WIMP have not been yet able to provide solid evidences of the existence of
a WIMP candidate able to solve the dark matter paradigm. Nowadays the
most stringent current limit on the spin-independent cross-section σSI are
set by dual phase xenon detectors like the already mentioned XENON1T,
as well as by other experiments like LUX [12] and PandaX-II [117] that set

8with a log-normal or a Pareto distribution.
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Figure 3.16: In the plot above current and expected future limits of the spin-
independent cross-section σSI are shown as a function of the wimp candidate mass
mχ. More details in [107]. In is important to stress that the presented boundaries
are a direct product of the underlying assumptions about the pertinent astrophysical
quantities such as the local dark matter density or its velocity distribution. The
latter being particularly important for those experiments sensitive only to the tails
of the distribution.

important boundaries on σSI for masses between 40 and 50 GeV (see Fig.
3.16). Form the spin-dependent side new constrain lines have recently been
published by the PICO collaboration [18, 17].

Indirect detection: if wimps particles do exist they are expected to an-
nihilate. Indirect detection methods aim to find the byproducts of such an-
nihilation over the galactic and/or extragalactic background. Gamma-ray
emission constitute a main target for indirect detection as their propagation
is mostly unaffected by the interstellar medium and Galactic magnetic fields.
The direct advantage of such a feature is that data collected retain valuable
information on the morphology and location of the emission region where
the gamma-rays were produced [41, 60]. The gamma-ray flux from WIMP
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annihilation can be described by the following equation

dΦ

dΩdE
=

σv

8πm2
χ

dN

dE

∫
l.o.s.

ρ2 (~r (s,Ω)) ds. (3.31)

Here ρ represents the dark matter density that is integrated along the line
of sight whereas Ω is the solid angle underlying the observed volume of the
sky. The WIMP annihilation cross-section is encoded in the parameter σ
while the candidate mass and its mean velocity are, respectively, mχ and v.
Finally one can see that the annihilation differential flux is also proportional
to the energy spectrum dN/dE which expresses the number of gamma-rays
produced per annihilation at the given energy E. As the differential flux is
proportional to the dark matter density, some regions are more promising to
look at compared to others. Those that stand out the most are the galactic
center (GC) and the dwarf spheroidal galaxies (dSphs) of the Local Group.
As for the Galactic center, there seems to be a reasonable suspicion that dark
matter density could peak in the innermost region of our galaxy thus pro-
viding what would be probably the largest signal from WIMP annihilation.
Unfortunately on the other hand, the inability to relay on a precise dark
matter density model profile for the galactic center, together with the com-
plexity of the potential conventional gamma-ray sources that also populate
the same galactic region, strongly enhances the uncertainties on the inferred
WIMP properties. These issues are alleviated in the case of dSphs which one
theorizes to be dark matter dominated and whose gamma-ray budget one
expects to be less effected by the astrophysical background. The trade off for
the enhancement of the constraint obtained through dwarf spheroidal galax-
ies comes in the form of a much lower expected signal if compared to the
Galactic Center. Worth to mention is also the possibility to perform a full
sky search to have an overall constraint on dark matter annihilation. The
idea is to look for spectral features and/or angular correlations produced by
dark matter annihilation in the - approximately - isotropic background made
up of the unresolved dark matter halos. Fig. 3.17 provides an easy-to-read
summary of the pros and cons for the targets candidates we just mentioned,
plus someone else. The Galactic Center seems indeed to exhibit an excess of
gamma-ray above the expected background as shown by different analysis
based on the Fermi-LAT9 data [74]. For more details see also the analysis
performed by the Fermi-LAT Collaboration itself using different specialized

9The Fermi Large Area Telescope (Fermi-LAT) is a pair-conversion spatial telescope
with a precision tracker and calorimeter able to cover an energy range from below 20 MeV
to more than 300 GeV [23].
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Figure 3.17: As one can see from this plot from [42], GC is the target that
most likely would be able to produce a ”detection” due to the high strength of the
signal associated with it. Nevertheless, in term of robustness of the exclusion limits
obtained, the combined analysis of dwarf galaxies represent by far a better option.

interstellar emission models in order to isolate the gamma-rays coming from
the inner region (within ∼ 1 kpc) from the one coming from the rest of the
galaxy [11]. Although the presence of an excess in the gamma-ray flux seems
to be quite established, whether or not its origin is related with WIMPs is
still unclear. The difficulty comes mostly from intrinsic dependence between
the spectral proprieties of the signal and the model assumed to describe the
interstellar emission. Moreover as L. Roszkowski et al. point out in their
paper [40], even if the morphological properties of the Galactic Center Ex-
cess (GCE) can be explained in the framework of small-scale dark matter
substructures this would require that more than the 80% of the galactic
halo must be made up of substructures. Such a hypothesis unfortunately is
in strong contradiction with the results of numerical simulations. An other
issue with this dark matter interpretation of the GCE raises from the fact
that similar excess in the gamma-ray flux seems to be present also in other
region along the galactic plane where the dark matter signal is expected
to be zero [7]. On the other hand, the galactic center excess could also be
explained by the presence of a population of unresolved millisecond pulsars.
The advantage of this option is that the signature produced by the mil-
lisecond pulsar would match with the galactic center excess spectrum below
the 10 GeV while the excess emission above this threshold can be related
to the inverse Compton IC scattering of high energy electrons potentially
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produced as a secondary component [75]. Another possible way to explain
the galactic center excess would involve a leptonic cosmic-rays outburst.
Models with a single outburst underestimate the excess emission observed
in the Galactic Center. However, models that consider the possibility of a
second outburst seems to fit much better the data. Nevertheless, a little bit
of fine-tuning is required in order for the gamma-ray emissions to exhibit
roughly the same spectral shape at all relevant latitudes as observed by the
Fermi-LAT [39]. Finally, an other option is to explain the galactic center
excess with a stellar over-density in the Galactic bulge and in the nuclear
stellar bulge as shown by the analysis carried on by O. Macias et al. em-
ploying an hydrodinamical model to register the position of interstellar gas
associated with diffuse Galactic gamma-ray emissions [84]. To summarize,
although the Galactic Center Excess is something established with a more
than reasonable confidence, we are still far from clearly understand whether
or not it is based on DM/WIMP annihilation or something totally different.
Space based telescope as Fermi-LAT are not the only one working on dark
matter indirect detection. A ground-based observational campaign is car-
ried on by several other telescopes among which the Imaging Air Cherenkov
Telescopes (IACTs) are for sure one of the most promising. Currently run-
ning IACTs include the VERITAS array on four 12m diameter telescopes in
Arizona [73], the two MAGIC 17m diameter telescopes located in Canary
Island of La Palma [15] and the four HESS telescopes placed in the Khomas
highlands of Namibia [10]. Since gamma-rays interact with the atmosphere,
ground-based detectors can not work the same way as the space-based one.
What they do is instead to observe the Cherenkov light produced by the
showers of charged particles created by the interaction between the atmo-
sphere and the gamma-rays. One of the main challenge of this method is
to recognize and map the background sources in order to distinguish them
from the actual signal. Some of these sources, like the isotropic cosmic-
ray background, turn out to be much stronger than the gamma-ray signal.
For this reason the energy threshold are higher compared to those of the
space telescopes like Fermi-LAT. However the large volume of atmosphere
observed is usually able to mitigate this issue leading to effective observed
area bigger than the spatial counterpart. In Fig. 3.18 the limit for the
dark matter particles annihilation χχ → bb̄ are summarized. As one can
see, in the low dark matter mass sector the strongest limit comes from the
constraints on σv around the time of recombination obtained by the Plank
collaboration through the analysis of the CMB [101]. All the middle section,
up to mχ = 103GeV , is mostly constrained by the Fermi-LAT analysis of
dwarf galaxies [13] and galactic center [63]. The latter being less competitive



3.3. DARK MATTER CANDIDATES 101

Figure 3.18: The plot from [107] shows the current and future limits on the DM
annihilation cross-section compared to the one we have nowadays. As one can
see the Fermi-LAT stacked analysis of 45 dwarf galaxies and 15 years of data [38]
(dashed brown line) will improve the constraint in the low mass region providing
limits on the same order of the one obtained from the GCE analysis. On the other
hand of the spectrum, for masses up to 104GeV , thanks to the CTA collaboration
one will be able to strengthen the constraint on the annihilation cross-section gain-
ing almost one order of magnitude respect current one [36] (dashed pink and red
lines).
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due to the uncertainties in the halo profile. Finally in the high mass range
103GeV < mχ < 104GeV the HESS analysis of the galactic center improves
the Fermi-LAT limits for the dark matter annihilation cross-section setting
them to 〈σv〉(cm3/s) ' 10−25 [6].

To wrap it up, the WIMP hypothesis although very promising has not
been able to prove herself true. Despite the numerous experiments employed
and the large range of approaches based on different detection methods and
phenomena, we do not have yet any conclusive detection. For a more detailed
description of WIMPs see [107, 22].

3.4 Fuzzy Dark Matter

Motivated by the -to date- unsuccessful search for wimp particles, in the
last decades scientists have began to increase their focus on alternative vi-
able dark matter candidates. Among these the Fuzzy Dark Matter (FDM)
appears to be one of the most promising.

In the theory of General Relativity (GR) the metric tensor gµν is the only
mediator of the gravitational interaction. Nevertheless, several extensions
of the theory assume the presence of additional fields which contribute to
determine the dynamics of the spacetime. The scalar-tensor theories develop
from the pioneering work of Jordan, Brans and Dicke and are nowadays one
of the most studied alternative theories of gravity. As the name suggests,
in these theories the metric tensor is joined by a scalar field φ which in the
FDM scenario plays also the role of dark matter candidate. Mathematically,
this model can be described through the action

S =
1

c

∫
d4x

√
−g

2k
[R− 2∂γφ∂

γφ− V (φ)] + Smatter (gµν ,Ψi, φ) , (3.32)

with k = 8πG/c4, R the Ricci scalar related to the space-time metric gµν ,
V (φ) being the scalar field’s potential, and Smatter the matter action

Smatter =
1

c

∫
d4x
√
−g [LSM (gµν ,Ψi) + Lint (gµν ,Ψi, φ)] , (3.33)

where LSM is the Lagrangian density of the Standard Model of particles
depending on the standard model fields Ψi whereas Lint characterizes the
interaction between the matter and the scalar field φ. The presence of
the nonminimal coupling, here introduced by the term Lint, as well as the
existence of the scalar field φ is motivated by numerous extended theories
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such as the low energy action of string theories [65], extended F (R) gravity
[49] or Kaluza-Klein theories with additional compactified dimensions [93].
If we assume the coupling between the scalar field and the standard matter to
be weak, then one can describe the interaction with its linear approximation
which reads as follow

Lint = φ

 de
4e2

F 2 − dgβg
2g3

(
FA
)2 − ∑

i=e,u,d

(dmi + γmidg)miΨ̄iΨi

 , (3.34)

with Fµν the standard electromagnetic Faraday tensor, e the electric charge
of the electron, FAµν the gluon strength tensor, g3 the Quantum Chromody-
namics (QCD) gauge coupling, β3 the β function for the running of g3, mi

the mass of the fermions, γmi the anomalous dimension giving the energy
running of the masses of the quantum chromodynamics coupled fermions
and ψi fermion spinors. The interaction between the scalar field φ and the
different matter sectors is parameterized by the constants dmi and dg.

3.4.1 Motivation

It is common knowledge that the ΛCDM model is able to produce ex-
tremely accurate predictions at large scales. As an example, one has to look
no further that the precision with which this model determines the power
spectrum of mass fluctuations at the present time - redshift z ' 0 - from
the observations of the cosmic microwave background - redshift z ' 103 -
to within few percent. This becomes even more remarkable if one consid-
ers that the amplitude of these fluctuations has increased by five orders of
magnitude in this span of time. On the other side, at smaller scales as those
of the stellar distribution in normal galaxies - around 10kpc - the ΛCDM
model predictions starts to be more sporadic, less accurate and sometimes
even inconsistent with observations [128]. Even if complex and yet unknown
baryonic dynamics may prove able to account for such inconsistencies, it is
worth to explore those other well-motivated models, as the FDM model,
that seems to be able to replicate the success of the CDM model at large
scale as well as to solve some of its shortcoming at small scales.

Cusp-core problem: one of the discrepancies we mentioned before is the
so-called ”cups-core problem”. A well established prediction of the CDM
model is that the density in halos and subhalos should be inversely propor-
tional to radius ρ (r) ' r−1 of the system. One would then expect to mea-
sure singular density cusps in the center of these structures. On the other
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side FDM halos are characterized by a central core, sometimes called soliton,
that rises as stationary, minimum-energy solution of the Schrodinger-Poisson
equation. Although the degeneraicies intercurrent the velocity anisotropy
profile and the observational signature of the mass profile make harder to
chose for a final claim, the majority of studies seems to favor the core be-
havior over cusps [48].

The missing-satellite problem: the discrepancy between the expected
distribution of CDM subhalos in massive galaxies and the number of small
satellite galaxies observed to orbit luminous galaxies is often referred to
as the missing-satellite problem [80]. Common solutions for this problem
usually tap into the baryonic physics suggesting that gas accretion onto
subhalos could be suppressed because of the heat generated by ultraviolet
background radiation, or that the gas could be driven out by stellar winds
and supernovae. The FDM model on the other hand predicts a number of
low-mass subhalos much smaller, if compared to the CDM, making it able
to address this problem in a very natural way. FDM suhalos, in fact, result
to be more affected by tidal disruption. This is directly related with the
capability of FDM to tunnel through the potential barrier centered on the
tidal radius. One can actually constrain the minimum mass of FDM needed
for a system to survive for a determined number of orbits at a given radius.
See more in [77] and its appendix.

M > 6.7× 108M�

(
M

1011M�

)1/4(10kpc

a

)3/4(10−22eV

m

)3/2

, (3.35)

where M and M represent the mass of the subhalo and the host respec-
tively, a is the radius, m is the FDM characteristic mass and it has been
considered a number of orbits equal to 10. Numerical simulations seem to
produce a similar cutoff as they find halo substructure suppression below
' 108M� [110].

To-big-to-fail problem: dissipationless ΛCDM simulations predict the
existence of massive subhaloes of the Milky Way characterized by high con-
centration and circular velocities. These halos are actually so dense that
they can not host any of the Milky Way’s bright satellites. Such haloes
however are yet to be observed [31]. If one allows a fraction f of dark mat-
ter to be described by FDM then, for subhaloes masses smaller than fMm,
the concentration of the halos for the Milky Way would drop compared to
the one predicted by the ΛCDM model. Here Mm is the characteristic mass



3.4. FUZZY DARK MATTER 105

associate to the modes k which entered the horizon when the sound speed
was large [86]. One can also regard at the to-big-to-fail problem as the non-
observation of large numbers of satellites with maximum circular velocity
vmax ≥ 40kms−1. In this case one can easily see how FDM solve or at list
alleviate this issue as the maximum circular velocity predicted by this dark
matter model is 25% lower vmax ∼ 30kms−1.

3.4.2 Detection methods

It is already been mentioned that fuzzy dark matter is supposed to oscillate
at its Compton frequency when mφ � h̄H/c2 ∼ 1.5× 10−33eV/c2. Because
of the fuzzy dark matter coupling with standard matter, these oscillation
gives rise to a number of different phenomena that can be exploited as a
way to probe the fuzzy dark matter existence.

Atomic spectroscopy: atomic spectroscopy in cesium vapor has been
proved to be useful to test masses range between 8×10−11eV and 4×10−7eV .
The oscillation of the scalar field φ induces a similar behavior in the fine-
structure constant α and the electron mass me. In turn, the variation of α
and me creates a modulation in the energy spacing ∆E between two elec-
tronic levels in the 133Cs atom. As shown by D. Antypas et al., one can
look for this modulation by exciting the cesium vapor with a continuous-
wave laser light of frequency fL ∼ ∆E/2π [20]. See Fig. 3.19 for the results.
Likewise, A. Hees et al. use the dual 133Cs/87Rb atomic fountain clock FO2
at LNE-SYRTE as a tool to search for a sinusoidal signature in the atomic
frequency ratio generated by the ultra-light scalar field [68]. The scalar field
in fact produces an harmonic signature in the ratio of the Rb/Cs hyperfine
frequencies as described by the following equation

yRb/yCs − 1 ≈ O + [kαde + kq (dm̂ − dg)]
1

ω

(
8πG

c2
ρDM

)1/2

, (3.36)

where dm̂, de and dg are dimensionless coefficients characterizing the cou-
pling between the scalar and the standard model fields. O is a constant
offset, kα and kq are sensitivity coefficients and ρDM is the dark matter local
energy density. Even if any evidence has been found yet, the rapid progres-
sion of atomic clocks will open the way to similar searches with other types
of transitions allowing to further probe the parameter space describing the
coupling between this dark matter candidate and the standard matter.
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Figure 3.19: The panel shows the bounds on the coupling constants of DM to the
photon and the electron, respectively gγ and ge [20].
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Black Holes Superradiance: although some models assume dark mat-
ter to be able to have non gravitational interaction, most of the present
observations and estimations one has on dark matter are a product of its
gravitational effects in astrophysics and cosmology. That’s why purely grav-
itational objects like black holes (BH) can be effectively used to probe the
nature of dark matter. We know that under specific circumstances, black
holes lose their angular momentum in a very efficient way when they interact
with bosons present in their surroundings. This effect is known as super-
radiance [116]. In order for the superradiance mechanism to be effective,
two conditions must be met. The first is that the boson population energy
ωb divided by the boson magnetic quantum number m associated with its
angular momentum, must be smaller than the angular velocity of the balk
hole event horizon ΩH ,

ωb
m

< ΩH . (3.37)

The second one is that

ΓbτBH ≥ lnNm, (3.38)

where Γb is the growth rate of the field, τBH is the black hole characteristic
timescale and Nm is the final occupation number of the cloud. What is
important here is that the leading contribution to the growth rate Γ is
dependent on the mass of the field. Thus monitoring the mass and the spin
of a black hole one is able to constrain the boson field mass parameter.
A paper has been published in the 2019 where Hooman Davoudiasl and
Peter B. Denton take advantages of the initial data from the Event Horizon
Telescope on M87* to limit the field mass parameter µb [47]. Fig. 3.20 shows
the boundaries they obtained for µb as a function of the dimensionless spin
parameter

a∗ =
JBH

GNM2
BH

, (3.39)

which is defined by the black hole angular momentum JBH , its mass MBH

and the Newton’s constant GN .

Optical cavities: an other possibility is to exploit the DM-induced os-
cillation of the Bohr radius a0 = h̄/ (αmec) that consequently gives rise to
a variation of the atoms size as well as to the length of chemical bonds.
Andrew A. Geraci et al. [61] propose the use of two co-located high-finesse
Fabry-Perot optical cavities the first of which should consist of mirrors con-
nected by a rigid cavity spacer while in the second optical cavity the two
mirrors are suspended by pendulums. The goal of such arrangement is to
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Figure 3.20: The panel shows the limit on light bosons as a function of the
observed M87* dimensionless spin a∗. The blue shaded area represent the constrain
on the scalar model whereas the orange one shows the constrain on the vector model.
The grey area is the range usually attributed to FDM and finally the 1σ inference
region of the spin is colored in khaki [47].
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create a discrepancy in the cavities’ sensitivity to high-frequency variation
in the length of the supporting spacer. As a result, the presence of an ultra-
light scalar field would create a spike in the power spectral density of the
measured differential strain related with the two different optical cavities.
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Chapter 4

Testing FDM in the solar
system

In this chapter we will show how it is possible to detect the presence of
fuzzy dark matter in the solar system through the use of gravitational waves
antennas. The spatial variations of the scalar field is in fact able to exert
a position-dependent oscillatory force on the gravitational waves detectors’
optical equipment. As a result, the optical equipment undergoes position-
dependent oscillatory motions, which ends up with non-vanishing signals in
the outputs of the gravitational waves detectors. In the following sections
of this chapter we will analyze this detection opportunity in more detail.

4.1 FDM Model

From action (3.32) the following field equations can be derived [70]:

Rµν = k

[
Tµν −

1

2
gµνT

]
+ 2∂µφ∂νφ+

1

2
gµνV (φ) , (4.1)

2φ = −k
2
σ +

V ′ (φ)

4
, (4.2)

with

Tµν = − 2√
−g

δ
√
−gLmatter
δgµν

, (4.3)

σ =
1√
−g

δ
√
−gLmatter
δφ

=
δLint
δφ

. (4.4)
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As it has been shown by Damour and Donoghue in their work [44], the
action used to model the matter at the microscopic level, including the
scalar field interaction (3.34), can phenomenologically be replaced at the
macroscopic level by the standard point mass action

Smatter (gµν ,Ψi, φ) = −c2
∑
A

∫
A
dτmA (φ) , (4.5)

where dτ is the proper time interval defined by c2dτ2 = −gµνdxµdxν and A
is a label to differentiate the different bodies. The coupling strength between
the scalar field and the matter is parameterized by the coupling factor

αA (φ) =
∂ lnmA (φ)

∂φ
= dg + ᾱA, (4.6)

where mA is the mass of the body one is considering, dg = 1√
4πG

∂lnΛ3
∂φ is a

universal contribution to αA, while ᾱA is the Equivalence Principle-violating
part and depends on the body composition. Here Λ3 is the quantum chro-
modynamics energy scale. In order to better understand where this decom-
position comes from, one can think the mass mA to be made up of two
terms

mA = mrestmass
A + EbindingA , (4.7)

where the first term is the rest-mass contribution to the mass of an atom -
such as the contribution from the fermions mass terms - while the second
accounts for the binding energy. In particular, EbindingA is itself made up
of two contributions: one from the strong interaction and another from the
electromagnetic interaction. At the energy scale considered (µ ∼ 1 GeV)
most of the mass of nucleons comes from the gluonic binding energy as the
mass of the u and d quarks are ∼ MeV, whereas the mass of a proton is ∼
1 GeV. At this scale, in fact, one has integrated out the effect of the weak
interaction as well as the effect of the heavy quarks (c, b, and t).
When the dilaton field couples differently to different terms of the matter
sector, the theory no longer satisfy the universality of free fall, as different
contributions to the mass respond differently to this additional gravitational
field. The precise way atoms are responsive to the non-minimal coupling
depend on nuclear and atomic physics. For instance, nuclear processes that
bind the nucleons together are sensitive to a change of the dilaton field,
because a change of the dilaton field corresponds in effect to a change of the
coupling constant of the standard model of particles (such as g3 and α).
The decomposition of mA translates to the parameter ᾱ of eq. (4.6) which,
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therefore, can be decomposed as fallows

ᾱA = ᾱrmwo.EM
A + ᾱbindA + ᾱ

(de)
A . (4.8)

In particular, the first term on the r.h.s. encodes the contribution to ᾱA com-
ing from the terms linear in the quark and electron masses in the rest-mass
contribution to the total mass mA. It is worth to notice that ᾱrmwo.EM

A

doesn’t contain any electromagnetic contribution. The effect of the elec-
tromagnetic contribution to the masses of the nucleons, together with the

nuclear Coulomb energy term, are in fact encoded in the term ᾱ
(de)
A . Finally

ᾱbindA denotes the contribution to ᾱA coming from the strong interaction
term present in the nuclear binding energy.
Through nuclear physic considerations, T. Damour and John F. Donoghue
[44] evaluated these terms to be equal to

ᾱrmwo.EM
A ' FA

[
0.040 (dm̂ − dg) + 0.0017 (dδm − dg)

A− 2Z

A

+5.5× 10−4 (dme − dg)
Z

A

]
,

ᾱbindA = (dm̂ − dg)FA

×

[
0.045− 0.036

A1/3
− 0.020

(A− 2Z)2

A2
− 1.42× 10−4Z (Z − 1)

A4/3

]
,

ᾱ
(de)
A = deFA

[
−1.4 + 8.2

Z

A
+ 7.7

Z (Z − 1)

A4/3

]
× 10−4.

(4.9)

Here Z denotes the atom’s atomic number, A is its number mass and FA is
defined by

FA =
A ·mamu

mA
, (4.10)

where mamu = 931MeV is the atomic mass unit. The parameter dg, de and
dme are three of the five coupling parameters introduced in eq. (3.34), while
dm̂ and dδm denote the following linear combination of the remaining two

dm̂ =
dmdmd + dmumu

md +mu
, dδm =

dmdmd − dmumu

md −mu
, (4.11)

where md, mu are the mass of the up and down quarks. If we plug eq. (4.9)
into eq. (4.8), we obtain

ᾱA = [(dm̂ − dg)Qm̂ + (dδm − dg)Qδm + (dme − dg)Qme + deQe]A , (4.12)
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where the coefficient Qka plays the role of the ”dilaton charge” coupled to
the parameter ka and are expressed through the following equations

Qm̂ = FA

[
0.093− 0.036

A1/3
− 0.020

(A− 2Z)2

A2
− 1.4× 10−4Z (Z − 1)

A4/3

]
,

(4.13)

Qδm = FA

[
0.0017

A− 2Z

A

]
, (4.14)

Qme = FA

[
5.5× 10−4Z

A

]
, (4.15)

Qe = FA

[
−1.4 + 8.2

Z

A
+ 7.7

Z (Z − 1)

A4/3

]
× 10−4. (4.16)

Several charges have components that are not or weakly dependent on the
atomic numbers A and Z. Hence, one can factor these contributions out in
order to define a novel “universal” parameter d∗g. This is what we will show
now.
Following [44], one can assume

FA ' 1, (4.17)

and

Z ' 1

2

A

1 + 0.015A2/3
. (4.18)

The first simplification is motivated by the fact that the leading terms in the
dilaton charges vary by factor of a few over different values of Z and A, while
FA differs from one only at 10−3 level. As for the second approximation, it
is justified by the fact that the “valley” of stable nuclei is located, a priori,
along the specific line where one has an equal number of protons and neu-
trons and therefore A = 2Z. Then, the presence of the Coulomb repulsion
between protons modifies the stability conditions, favoring a relative small
excess of neutrons over protons. This is why we obtain eq. (4.18).
We notice that, at this approximation level, the terms 0.020 (A− 2Z)2 /A2

in Qm̂ and 0.0017A − 2Z/A in Qδm are subdominant and can therefore be
neglected. On the other side, one also finds that it is possible, at the leading
order, to consider A = 2Z in Qme and Qe.
Taking into consideration all of this, we simplify the dilaton charges obtain-
ing

Qm̂ '
[
0.093− 0.036

A1/3
− 1.4× 10−4Z (Z − 1)

A4/3

]
, (4.19)
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Qme ' 2.75× 10−4, (4.20)

and

Qe '
[
2.7 + 7.7

Z (Z − 1)

A4/3

]
× 10−4. (4.21)

We see now how terms that don’t depend on the body composition appear
in the approximated form of the dilaton charges. Those terms can be then
taken out and incorporated into a new definition of dg that encompasses all
the composition independent terms, obtaining

d∗g = dg + 0.093 (dm̂ − dg) + 2.75× 10−4 (dme − dg) + 2.7× 10−4de. (4.22)

Summing up what we have discussed, the coupling factor αA can be decom-
posed into a universal parameter d∗g plus the composition dependent factor

ᾱA =
[
Q′m̂
]
A

(dm̂ − dg)+
[
Q′me

]
A

(dme − dg)+
[
Q′e
]
A
de+

[
Q′δm

]
A

(dδm − dg) ,
(4.23)

where the coefficients
[
Q′j

]
A

denote the parts of the dilaton charges that

depend on the body composition.

4.1.1 Scalar field solution

If one considers a quadratic self-interacting potential of the kind

V (φ) = 2
c2m2

φ

h̄2 φ2, (4.24)

then mφ has the dimension of a mass. This represents, in fact, a quite
common choice for V (φ). However, the reason why we decided to consider
this potential in our study is that it makes the scalar field behave as a
pressureless fluid characterized only by its energy density, as we will see
later in this subsection. Those are exactly the characteristics we ascribe to
cold dark matter.
At the Minkowskian order the field equation for φ becomes

1

c2
φ̈ (~x, t)−∆φ (~x, t) = −4πG

c2
αA (φ) ρA (~x)−

c2m2
φ

h̄2 φ (~x, t) , (4.25)

where ρA is the standard matter density and αA (φ) is given by eq. (4.6). It
is worth to remark that, in general, one would also have a term proportional
to the Hubble parameter H = ȧ/a. However, because the timescale of the
phenomena we are interested in is way smaller than 1/H, it can be discarded.
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Because of the linear nature of eq. (4.25), its most general solution can be
derived by adding together its particular solutions, here referred to as φ1

and φ2. The latter can be obtained by solving respectively

2φ1 = −
c2m2

φ

h̄2 φ1, (4.26)

2φ2 = ∇2φ2 =
c2m2

φ

h̄2 φ2 +
4πG

c2
αA (φ) ρA (~x) . (4.27)

It is worth to mention that φ1 (~x, t) is a dynamic solution whereas φ2 (~x) is
a static one as it does not evolve over time. Adding φ1 and φ2 together one
gets

φ (~x, t) = φ1 (~x, t) + φ2 (~x) ,

= φ0 cos
(
~kDM · ~x− ω0t+ δ

)
+ Const · e

−mφx

x
.

(4.28)

where δ is an unknown phase, |k|2 + ω2
φ/c

2 = ω2
0/c

2 and

~kDM =
ωφ~vDM
c2

and ωφ =
mφc

2

h̄
. (4.29)

(4.28) represents the most general solution to eq. (4.25).
Our goal will be to study the oscillating motion of the optical equipment
induced by the presence of the scalar field φ and its interaction with the
equipment itself. For this reason we can neglect the static part φ2 (~x) of the
solution (4.28) and focus just on the dynamical one

φ1 (~x, t) = φ0 cos
(
~kDM · ~x− ω0t+ δ

)
. (4.30)

In order to show that the scalar field φ does represent a good dark matter
candidate, we first consider its asymptotically behavior. At cosmological
scales, the scalar field gives rise to an energy density [70]

ρ =
c2

8πG

[
φ̇2 +

c2V (φ)

2

]
, (4.31)

and a pressure

p =
c2

8πG

[
φ̇2 − c2V (φ)

2

]
. (4.32)
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If one averages over one oscillating period, the pressure term vanishes whereas
the energy density becomes [125]

ρφ =
c6

4πGh̄2

m2
φφ

2
0

2
. (4.33)

At large scale then, the scalar field φ can be regarded at as a pressureless
fluid characterized by its energy density ρφ. Such characteristics are the
same ascribed to the dark matter in the ΛCDM model. The fact that φ
shares the same behavior of the dark matter is indeed one of the main
reason why the community thinks it could be a very promising candidate.
If one assumes that the scalar field accounts for all the dark matter in the
galaxy, then it is possible to estimate the magnitude φ0 of the oscillation
for any given value of the mass mφ [68]. Using a value of the local galactic
dark matter energy density of ρDM = 0.5Gev/cm3 [94], the amplitude φ0 at
infinity is given by

φ0 ∼
8 · 10−31eV

mφ
. (4.34)

Since one wants to describe the dark matter present in our galaxy, we
want the de Broglie wavelength associated with the oscillating scalar field
to be smaller that the galactic size. As discussed in [51] one can iden-
tify the de Broglie wavelength of the scalar field with its coherent length
λc = h̄/ (mφv0). Here v0 ' 10−3c is the dark matter dispersion virial veloc-
ity while mφ is the mass of the scalar field. If one considers that the Milky
Way size is around 1021m, than one gets the condition

mφ ≥ 10−24eV (4.35)

On the other side, in order for the scalar field to behave like a wave rather
than a collection of particles, one needs the average mode occupation number
n̄k to be much greater than one. Following [51] one defines the average mode
occupation number as follows

n̄k = (2π)3 ρDMfDM,k (k) /mφ, (4.36)

where ρDM is the local dark matter energy density and fDM,k (k) denotes the
dark matter momentum distribution normalized with respect to k. There-
fore, in order to have n̄k � 1, one needs the number density ρDM/mφ to be
also much greater than one which leads to

mφ ≤ 10eV. (4.37)



118 CHAPTER 4. TESTING FDM IN THE SOLAR SYSTEM

Using this constrains in eq. (4.34), one gets φ0 ≤ 7·10−7 that justifies the
Minkowskian approximation used in this work and proves that the model is
self-consistent. Furthermore, we can combine the two boundaries given by
eq. (4.35) and eq. (4.37) and translate them to fφ through the eq. (4.29).
One then obtains the following constrains on the oscillation frequency of the
scalar field

10−10Hz ≤ fφ =
ωφ
2π
≤ 1015Hz. (4.38)

As we know the Advanced LIGO and Virgo interferometers sensitivity range
goes from ∼ 10Hz up to ∼ 104Hz. Such frequency range translates to a
mass range that goes from 10−14eV up to 10−11eV and thus this will be the
range we will be able to probe with the method discussed in this work.

4.2 GW detectors response to FDM

As discussed in the previous subsection the atomic mass, and thus the mass
of the optical equipment in the interferometers, depends on the value of the
scalar field φ. At the Minkowskian order one has:

S = −c2

∫
mA (φ)

γ
dt, (4.39)

where

γ =
1√

1−
(
ẋiA/c

)2 . (4.40)

The Euler-Lagrange equations are then:

d

dt

(
∂L
∂ẋiA

)
=

∂L
∂xiA

, (4.41)

∂L
∂xiA

= −c
2

γ
∂imA = −c

2

γ

∂mA

∂φ
∂iφ, (4.42)

∂L
∂ẋiA

= mA (φ) γẋiA ⇒
d

dt

(
∂L
∂ẋiA

)
= mA (φ) γẍiA + ṁAγẋ

i
A +mAγ̇ẋ

i
A.

(4.43)
Under the limit

ẋiA � viDM and ẋiA � c (4.44)

the test particle (the mirrors) is subject to the acceleration

ẍiA = aiA = −c2∂ lnmA (φ)

∂φ
∂iφ = −c2α (φ)A ∂

iφ. (4.45)
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Injecting eq. (4.6) and the solution from the previous section, one finally
gets

aiA ' −c2d∗gφ0k
i
DM sin

(
~kDM · ~x− ω0t+ δ

)
= −d∗gφ0ωv

i
DM sin

(
~kDM · ~x− ω0t+ δ

)
.

(4.46)

4.2.1 Effect on the phase shift ∆ϕ

In this subsection we will derive the signal generated by the interaction
between the scalar field φ and the optical equipment of the interferometer.
In order to do this, two different methods are presented and discussed. The
first one is based on the geodesic deviation and as such is in general valid
only in the limit

f0 �
c

2πL
, (4.47)

where f0 is the scalar field oscillation frequency, L is the length of the
interferometers arms and c is the speed of the light. The second method
is instead based on a rigorous geometrical derivation and will generalize the
first for any values of f0 and L. The method based on the geodesic deviation
turns out to be the most common used in the literature and, as consequence
of that, people have been missing in the model of the signal an additional
term that comes from the non-approximative derivation. In this regard, an
example will be discussed in the subsection (4.2.2).

Geodesic equation determination The interaction between the mat-
ter fields and the scalar filed generates through the acceleration (4.46) an
additional phase shift ∆ϕ in the carrier. Therefore in a certain sense, the
presence of the scalar field φ mimics the effects of the passage of a gravita-
tional wave in the detector.
Let us consider the standard geodesic deviation equation

ξ̈a + ξbucRacbdu
d = 0, (4.48)

where the term proportional to the Riemann tensor accounts for the effects of
the gravitational waves. Because of the interaction of the scalar field with
the standard matter at the Lagrangian level, a new term appears in eq.
(4.48). The geodesic deviation is then described by the following equation

ξ̈a + ξbucRacbdu
d + d∗gξ

c∇c∇aφ+ d∗gξ
c∇c

(
ubua∇bφ

)
= 0. (4.49)
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See appendix A for a detailed derivation. Let us assume now that no gravita-
tion wave is present - the Riemann tensor is null - and that the contribution
to the acceleration ξ̈a comes from the interaction between the testing mass
and the dark matter scalar field. Using the same assumption as the in the
previous chapter, the geodesic deviation equation in the proper detector
frame reads

ξ̈a = −ξcd∗g∇c∇aφ

= ξjd∗gφ0ω
2
0

vDMi vDMj
c2

cos
(
~kDM · ~x− ω0t+ δ

)
.

(4.50)

It is worth to notice that, since in the detector rest frame ua = (1, 0, 0, 0)
for both the beam-splitter and the mirrors, the fourth term on the left hand
side of eq. (4.49) doesn’t play any role in the optical equipment dynamic
described by eq. (4.50). Comparing the right hand term of eq. (4.50) with
eq. (2.45) one can see that it is possible to identify the term multiplying
the displacement ξj in the former equation as the second time derivative of
some effective perturbation tensor produced by the presence of a fictitious
gravitational wave

ḧeffij = d∗gφ0ω
2
0

vDMi vDMj
c2

cos
(
~kDM · ~x− ω0t+ δ

)
. (4.51)

In this sense one can say that the interaction between the scalar field φ and
the test mass of the interferometer produces the same effect of a gravitational
wave defined by

heffij ≡ d
∗
gφ0

vDMi vDMj
c2

cos
(
~kDM · ~x− ω0t+ δ

)
. (4.52)

In order to obtain the effective signal one only needs to contract the effective
tensor heffij with the detector tensor Dij = n̂n̂− m̂m̂. The result is

heff (~x, t) = d∗gφ0

[
(~vDM · n̂)2 − (~vDM · m̂)2

c2

]
cos
(
~kDM · ~x− ω0t+ δ

)
.

(4.53)
As in the standard case, however, this is just an approximation whose va-
lidity holds true when

L� c

ω0
(4.54)

where L is the detector characteristic linear size and ω0 is the scalar field
frequency. This indeed assures that the displacement |ξi| is much smaller
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than the typical scale over which the scalar field changes substantially.
For a more rigorous derivation one has to derive the time-of-flight of the
photons that travel in the arms of the detector ad evaluate how the presence
of the scalar field modifies it. This is exactly what we will do in what follows.

Geometrical determination If one assumes that no gravitational wave
is passing through the interferometer then the motion of the optical equip-
ment is due exclusively to its interaction with the scalar field. Therefore its
dynamic can be determined by intregrating eq. (4.46). For the mirror and
the beam-splitter one gets respectively1

~aB ' −d∗gω0~vDMφ0 sin
(
~kDM · ~rB0 − ω0t+ δ

)
⇒ ~rB =

d∗g
ω0
~vDMφ0 sin

(
~kDM · ~rB0 − ω0t+ δ

)
+ ~rB0 ,

(4.55)

where terms of order
[
d∗gω0 (~v · n̂)φ0

]2
have been neglected. In the same

way one also obtains

~aM ' −d∗gω0~vDMφ0 sin
(
~kDM · ~rM0 − ω0t+ δ

)
⇒ ~rM =

d∗g
ω0
~vDMφ0 sin

(
~kDM · ~rM0 − ω0t+ δ

)
+ ~rM0 ,

(4.56)

where the integration constants have been chosen so that〈
~rA
〉

= ~rA0 ;
〈
~̇rA
〉

= 0 with A = B,M. (4.57)

If one defines the ~x axis as the one connecting the beam-splitter to the

mirror, Then ~rM0 − ~rB0 = ~L ≡
(
~L · x̂, 0, 0

)
. In the proper detector frame,

the space-time is assumed to be flat in absence of gravitational waves or any
other perturbation. Then a photon that starts at the beam-splitter at time
t0, moving along the positive x axis, will reach the mirror at time t1 given
by

c (t1 − t0)(x) = ~rM (t1) · x̂− ~rB (t0) · x̂, (4.58)

whereas for the other way around one has

− c (t2 − t1)(x) = ~rB (t2) · x̂− ~rM (t1) · x̂. (4.59)

1the label B identifies the beam-splitter whereas the label M identifies the mirror
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Figure 4.1: Schematic representation of the photon traveling path.

The expression for the round trip shown in Fig. 4.1 is finally obtained by
combining the previous two equations

c∆T (x) = c (t2 − t0) = 2~rM (t1) · x̂− ~rB (t0) · x̂− ~rB (t2) · x̂. (4.60)

Let us now explicit the three terms on the right hand side one by one.
The first one represents the position of the mirror at the time t1

~rM (t1) · x̂ = ~xM0 · x̂+ d∗g
(~vDM · x̂)

ω0
φ0 sin

(
~kDM · ~xM0 − ω0t1 + δ

)
=

= ~xB0 · x̂+ Lx + d∗g
(~vDM · x̂)

ω0
φ0 sin

(
~kDM · ~xB0 − ω0t1 + δ +

~vDM · x̂
c

· ω0L

c

)
,

(4.61)

whereas the second and the third one describe respectively the position of
the beam-splitter at the times t0 and t2

~rB (t0) · x̂ = ~xB0 · x̂+ d∗g
(~vDM · x̂)

ω0
φ0 sin

(
~kDM · ~xB0 − ω0t0 + δ

)
=

= ~xB0 · x̂+ d∗g
(~vDM · x̂)

ω0
φ0 sin

(
~kDM · ~xB0 − ω0t1 + δ +

ω0L

c

)
,

~rB (t2) · x̂ = ~xB0 · x̂+ d∗g
(~vDM · x̂)

ω0
φ0 sin

(
~kDM · ~xB0 − ω0t1 + δ − ω0L

c

)
.

(4.62)
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The total distance traveled by the photon is obtained by plugging eq. (4.61)
and eq. (4.62) in to eq. (4.60)

c∆T (x) = 2 · ~xB0 · x̂+ 2Lx + 2d∗g
(~vDM · x̂)

ω0
φ0 sin

(
~kDM · ~xB0 − ω0t1 + δ +

~vDM · x̂
c

· ω0L

c

)
− ~xB0 · x̂− d∗g

(~vDM · x̂)

ω0
φ0 sin

(
~kDM · ~xB0 − ω0t1 + δ +

ω0L

c

)
− ~xB0 · x̂− d∗g

(~vDM · x̂)

ω0
φ0 sin

(
~kDM · ~xB0 − ω0t1 + δ − ω0L

c

)
= 2Lx + 2d∗g

(~vDM · x̂)

ω0
φ0

[
cos

(
~vDM · x̂

c
· ω0L

c

)
− cos

(
ω0L

c

)]
sin
(
~kDM · ~xB0 − ω0t1 + δ

)
+ 2d∗g

(~vDM · x̂)

ω0
φ0 sin

(
~vDM · x̂

c
· ω0L

c

)
cos
(
~kDM · ~xB0 − ω0t1 + δ

)
.

(4.63)

Before proceeding further we can re-write the last expression by considering
that local dark matter velocity is not relativistic, in fact |vDM |/c ' 10−3 �
1. Then eq. (4.63) can simplified to

c∆T (x) ' 2Lx + 2d∗g
(~vDM · x̂)

ω0
φ0

[
1− cos

(
ω0L

c

)]
sin
(
~kDM · ~xB0 − ω0t1 + δ

)
+ 2Ld∗g

(~vDM · x̂)2

c2
φ0 cos

(
~kDM · ~xB0 − ω0t1 + δ

)
.

(4.64)

The same evaluation can now be repeated for the other arm of the interfer-
ometer

c∆T (y) ' 2Ly + 2d∗g
(~vDM · ŷ)

ω0
φ0

[
1− cos

(
ω0L

c

)]
sin
(
~kDM · ~xB0 − ω0t1 + δ

)
+ 2Ld∗g

(~vDM · ŷ)2

c2
φ0 cos

(
~kDM · ~xB0 − ω0t1 + δ

)
.

(4.65)

The signal h (~x, t) is then determined thorough the equation

h (~x, t) =
c
(
∆T (x) −∆T (y)

)
2L

, (4.66)
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which leads to2

h (~x, t) = d∗g
(~vDM · n̂)− (~vDM · m̂)

ω0L
φ0

[
1− cos

(
ω0L

c

)]
sin
(
~kDM · ~x− ω0t+ δ

)
+ d∗g

(~vDM · n̂)2 − (~vDM · m̂)2

c2
φ0 cos

(
~kDM · ~x− ω0t+ δ

)
.

(4.67)

Where one has replaced the notation x̂, ŷ, ~xB0 and t1 with n̂, m̂, ~x and t in
order to simplify the comparison with the previous result.
One has to remark two things about eq. (4.67). The first is that if we take
its first order expansion in ω0L/c

hfirst (~x, t) = d∗g
(~vDM · n̂)2 − (~vDM · m̂)2

c2
φ0 cos

(
~kDM · ~x− ω0t+ δ

)
,

(4.68)
one recovers exactly the same result we derived through the use of the
geodesic deviation, see eq. (4.53). If one then pursuits the expansion up
to the second order we obtain hfirst plus a new term.

h (~x, t) = +d∗g
(~vDM · n̂)2 − (~vDM · m̂)2

c2
φ0 cos

(
~kDM · ~x− ω0t+ δ

)
+

1

2
d∗g

(~vDM · n̂)− (~vDM · m̂)

c

ω0L

c
φ0 sin

(
~kDM · ~x− ω0t+ δ

)
.

(4.69)

What is remarkable here is that if one considers the characteristic length
and frequency band of the LIGO and Virgo detectors, this second order
term contributes at the total signal as strongly as hfirst. Therefore it can
not be neglected. To show this, we first recall that φ0 is actually a φ0 (ω).
In particular

φ0 '

√
8πGρφ
c2ω2

0

. (4.70)

Let us assume now for simplicity that the dark matter velocity is aligned with
one of the interferometer arms. Then the amplitudes of the two oscillating
terms are

A1 = d∗g
v2
DM

c2

√
8πGρφ

cω0
,

A2 =
1

2
d∗g
vDM
c

ω0L

c

√
8πGρφ

cω0
.

(4.71)

2we assumed L = Lx = Ly
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It is now easy to see that if one considers vDM/c ' 10−3, L ' 103 and
ω0 ' 102 the ration between the two amplitudes becomes

A1

A2
=
vDM
c

2c

ω0L
' 1. (4.72)

It is worth to note that the amplitude of A2 doesn’t depend on the oscillation
frequency ω0. The purpose of the simplified situation described here is just to
make the reader aware that the amplitude of the two terms are comparable.
Said in an other way, it is an example to show that there is at least one
direction for which the second order term cannot be neglected. In any case,
in the following and in particular in section 4.3, the appropriate dark matter
velocity direction is taken in consideration, as it is its modulation due to
the diurnal earth rotation. In Fig. 4.7 for example, it is shown that even in
this case the two amplitudes remain comparable (depending of course also
on the oscillating frequency of the signal).
We conclude this subsection by underling that, in the same way, one can
check that the next order term is negligible as one would expect.
The amplitudes of the two oscillating terms, up to the third order, are in
fact

A1 = d∗g
v2
DM

c2

√
8πGρφ

cω0
,

A2 = d∗g
vDM
ω0L

√
8πGρφ

cω0

[
1

2

ω2
0L

2

c2
− 1

24

ω4
0L

4

c4

]
.

(4.73)

Then, the ratio between the amplitudes A2 and A1 is

A2

A1
=

1

2

ω0L

vDM
− 1

24

ω0L

vDM

ω2
0L

2

c2
, (4.74)

where one can see that for L ' 103 and ω0 ' 102 the third-order term is
' 106 times smaller than the others two, and thus negligible.

4.2.2 Relevance of the additional term for other similar DM
searches

This kind of effect does play a role also in other experiment whose aim is to
detect dark matter via the use of gravitational waves antennas. In their work
[99], A. Pierce et al. propose to use gravitational waves interferometers to
detect dark matter in the form of dark photons. As a result of the interaction
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with the dark matter, the test masses in the interferometer undergo the
acceleration

~ai (t, ~xi) =
~Fi (t, ~xi)

Mi
' εe

qD,i
Mi

∂i ~A (t, ~xi)

= εe
qD,i
Mi

mA
~A0 cos

(
mAt− ~k · ~xi

)
.

(4.75)

Here ε gives the ratio of the dark photon coupling strength to the electro-
magnetic coupling strength, e is the electromagnetic coupling constant, Mi

and qD,i are respectively the total mass and dark charge of the ith test ob-

ject. The dark photon mass is described by ma while ~A is the dark gauge
field. In order to simplify the derivation that will follow, we introduce the
quantity

ε̃ = −εeqD
M
mA, (4.76)

where one has taken in consideration that the test masses are composed
of the same elements. Following the same steps that we have shown in
the previous subsection, one can see that an additional non-negligible term
pops up in the formula describing the amplitude of the oscillating differen-
tial displacement of the two interferometer arms (see appendix B for more
details)

∆L =

√
[ax cos θ − ay sin θ]2

(
|k|L sinα

m2
A

)2

+
(ax − ay)2 L4

4c4
, (4.77)

where the quantities ax and ay are defined as follows

ax = −ε̃Ax, ay = −ε̃Ay. (4.78)

As we are interested in the quantity
√
〈∆L2〉LIGO defined in eq. (A3) of

[99], we begin by squaring eq. (4.77) obtaining

∆L2 =
[
cos θ̃ cos θ − sin θ̃ sin θ

]2
(
|a||k|h̄2L sinα sin α̃

c4m2
A

)2

+

(
cos θ̃ − sin θ̃

)2
|a|2L4 sin2 α̃

4c4
,

(4.79)

where, in order to make the next step clearer, ax and ay have been expressed
in spherical coordinates

ax = |a| cos θ̃ sin α̃, ay = |a| sin θ̃ sin α̃. (4.80)
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One can now take the average over all possible direction for ~k and ~a

〈∆L2〉 =
1

(4π)2

∫ 2π

0
dθ

∫ π

0
sinαdα

∫ 2π

0
dθ̃

∫ π

0
sin α̃dα̃ ∆L2

=
2

9

|a|2|k|2h̄4L2

c8m4
A

+
1

6

|a|2L4

c4
.

(4.81)

Finally, we obtain
√
〈∆L2〉LIGO by taking the square-root of the last ex-

pression √
〈∆L2〉LIGO =

√
2

9

|a|2|k|2L2

m4
A

+
1

6
|a|2L4. (4.82)

A detailed derivation of the additional term

(ax − ay)2 L4

4c4
(4.83)

that appears in eq. (4.77) is presented in appendix B of this manuscript.

Let us discuss this result. In particular, let us see how, with some ma-
nipulation, one could fairly easily get an hint of the effects produced by the
second-order term.
In [99], the authors obtain√

〈∆L2〉LIGO ∝
|a||k|h̄2L

c4m2
A

, (4.84)

where the proportional constant between the two previous quantity is what
they define as CLIGO and, in their case, its value happens to be equal to√

2/3.
First of all, one can see how the introduction of the second-order correction
makes the definition of CLIGO unclear as, now,

√
〈∆L2〉LIGO is no more

proportional to |a||k|h̄
2L

c4m2
A

.

However, one could still stick with the proportional constant CLIGO just
to get an idea of what would be the effect introduced by the second-order
correction on the study presented in [99]. In some sense, one introduces a
novel proportional constant that must also depend on the specific mass of
the dark matter field. In order to do that, it is useful to define a mass m̄A

such that the two contributions have the same amplitude:

2

9

|a|2|k|2h̄4L2

c8m̄4
A

=
1

6

|a|2L4

c4
. (4.85)
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In particular, one finds that m̄A = 4.43·10−14eV which correspond to a scalar
field oscillating frequency of ' 10 Hz. For mA = m̄A one has therefore

√
〈∆L2〉LIGO =

√
2

9

|a|2|k|2h̄4L2

c8m̄4
A

+
1

6

|a|2L4

c4

=

√
4

9

|a|2|k|2h̄4L2

c8m̄4
A

=
2

3

|a||k|h̄2L

c4m̄2
A

.

(4.86)

One can see that, thanks to this manipulation, the relation (4.84) is once
again valid. Therefore, for what said before, it make sense now to define a
constant of proportionality. One defines the new constant of proportionality
C̄LIGO(mA), such that one has C̄LIGO(m̄A) =

√
2CLIGO. The

√
2 comes

from the fact that at m̄A, the first and second order exactly have the same
amplitude. In this sense one cloud say that the effective result one obtains
from the addition of the second-order correction term is to modify the value
of the proportional constant CLIGO in a way that depends on mA. For
masses mA 6= m̄A, one would get

C̄LIGO (λ) =
√

(1 + λ2)CLIGO, (4.87)

where the parameter λ is defined by mA = λm̄A. It is worth to notice that
in order to get the correct dependence from λ, one needs to make explicit
the dependency of k on the scalar filed mass mA: k = v0mA/h̄.
One can have a quick hint of what would be the effect of the introduction of
this second-order term by simply replacing the constant CLIGO with C̄LIGO,
that is instead a function of the dilaton mass ( and therefore of its oscillating
frequency). To say it in other words, instead of considering the first order
term plus the second-order one, we consider just the first-order term but we
multiply it by a function of the dilaton mass rather than by a constant. This
function, C̄LIGO, is what will encode the effect of the second-order term. As
shown in Fig. 4.2, for a generic mass mA much smaller than m̄A (λ � 1),
the magnitude of the second-order term is negligible compared to the one of
the first-order term. As a result we obtain C̄LIGO ' CLIGO. On the other
side, for a generic mass mA much bigger than m̄A (λ� 1), the second term
is the dominant one and thus the value of C̄LIGO deviates from the constant
value CLIGO more and more.
This little excursus is meant just to give a rough idea about how the second
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Figure 4.2: C̄LIGO as function of the parameter λ.

order becomes dominant for oscillating scalar dark matter with a mass bigger
than a specific value. In practice though, the most appropriate procedure
is to follow is the one in which the second-order term and its effect on the
quantity

√
〈∆L2〉LIGO are explicitly considered.

4.3 Foreseen constraints on the parameters space

4.3.1 Dark Matter repartition model

In order to determine whether or not gravitational wave antennas are able
to detect the signals produced by the dark matter, first one needs to char-
acterize the local dark matter distribution. Following the work of Ciaran
A. J. O’Hare et al. [94] we assume a total dark matter energy density
ρφ ' 5 · 1014eV m−3. This total energy density is divided into two different
contributions. The first of these is associated with the dark matter halo
that envelops the Milky Way while the second represents the dark mat-
ter stream (S1) discussed in the paper. Streams are often present in halos
simulations and, as other substructure, are generated by the tidal disrup-
tion of satellite galaxies and dark subhalos. Data from the Sloan Digital
Sky Survey (SDSS) and the Gaia satellite [90, 91] strongly suggest for the
presence of a counter-rotating stellar stream, together with its dark matter
appendage, in the Solar neighborhood whose progenitor appears to be a mas-
sive dwarf spheroidal comparable to the present-day Fornax dwarf galaxy.
The stream contains 34 confirmed stellar members and it is ∼ 2 kpc wide.
The mean position of its components in galactic coordinates is (8.9, 0.6, 2.5)
kpc with a dispersion of (1.6, 1.4, 1.9) kpc and its mean velocity is given by
~vstr = (8.6,−286.7,−67.9) km/s. To have a direct comparison, the Solar po-
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Figure 4.3: The figure shows the 34 confirmed members of the S1 stream (orange
dots) together with their velocity (grey arrows). The sun and its velocity are
represented instead by the magenta star and arrow. One can see how the sun
moves clock-wise with respect to the galactic bulge (purple sphere) whereas the
stream proceeds almost in the opposite direction.[94].

sition and velocity are (8.2, 0, 0.014) kpc and ~v� = (11.1, 245.04, 7.25) km/s
respectively. It is easy to see then that not only the S1 stream is passing
directly through the Solar neighborhood but also that it does it with a very
high relative velocity due to its counter-rotating nature. Fig. 4.3 provides
a visual representation of the stream morphology showing the portion of S1
that is interjected by the Gaia and SDSS data sets.

Following the suggestion of Ciaran A. J. O’Hare et al. [94] we model
both components of the local dark matter through a Maxwellian distribu-
tion boosted by some velocity. For the halo we used as boost the laboratory
velocity obtaining

fh (~v) ' 1(
2πσ2

h

)3/2 exp

(
−|~v − ~vlab|

2

2σ2
h

)
. (4.88)
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Here
√

2σh = v0 = 232.8km/s [94] and ~vlab = ~v�. One can model the stream
component in the same way by replacing σh with σs and ~vlab with ~vlab−~vstr.

fs (~v) ' 1

(2πσ2
s)

3/2
exp

(
−|~v − ~vlab + ~vstr|2

2σ2
s

)
, (4.89)

with σs ' 46km/s [94]. Next thing one needs to do is to determine how
much of the local dark matter energy density is included in the halo and how
much is in the stream. Unfortunately, measuring the dark matter component
attached to S1 is a rather difficult task. For this reason following [94] we
will consider the stream to be responsible for the 10% of the total amount
of the local dark matter while the halo will account for the remaining 90%.
This seems a rather reasonable assumption considering the massive nature
of the stream progenitor. Fig. 4.4 shows how the presence S1 modify the
dark matter speed distribution in the laboratory frame.
In light of what have been said, one can re-write equation (4.69) as follows

h (~x, t) = h1 cos
(
ω0t− ~kDM · ~x− δ

)
− h2 sin

(
ω0t− ~kDM · ~x− δ

)
=

√
8πG

c3ω0
d∗g

[√
ρs

(
~vs · ~d

)
(~vs · ~a) +

√
ρh

(
~vh · ~d

)
(~vh · ~a)

]
× cos

(
ω0t− ~kDM · ~x− δ

)
−
√

8πG

c3

L

2
d∗g

[√
ρs

(
~vs · ~d

)
+
√
ρh

(
~vh · ~d

)]
sin
(
ω0t− ~kDM · ~x− δ

)
,

(4.90)

where ~d = n̂− m̂, ~a = n̂+ m̂ and one has defined the quantities

ρh = 0.9ρφ, ρs = 0.1ρφ, (4.91)

and

~vh = 〈fh (~v)〉 = (−11.1,−245.04,−7.25) km/s,

~vs = 〈fs (~v)〉 = (−2.5,−531.74,−75.15) km/s.
(4.92)

Before concluding this section, it is useful to re-write ~vh and ~vs in the equa-
torial coordinate system as this is the system we will use from now on. In
order to do this one can simply write ~vh and ~vs in galactic spherical coor-
dinate and then convert them into equatorial spherical coordinate through
the following equations

sin δ = sin δG sin b+ cos δG cos b cos (122◦.9− l)
cos δ sin (α− αG) = cos b sin (122◦.9− l)
cos δ cos (α− αG) = cos δG sin b− sin δG cos b cos (122◦.9− l) .

(4.93)
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Figure 4.4: The plot shows the dark matter speed distribution for a model as-
suming the standard halo model(green) and the halo-plus-stream model (red). The
colored region for each of the two models takes in account the modulation of the
velocity distribution produced by the annual variation of ~vlab due to the Earth ro-
tation around the Sun [94]. Due to its negligible impact, this effect has not been
considered in what follows.
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Here αG = 192◦.85 and δG = 27◦.13 represent respectively the right as-
cension and the declination of the Galactic Pole in the equatorial coordi-
nate system. The right ascension and the declination of the vector one is
transforming are given by α and δ whereas l and b are the vector’s galactic
longitude and latitude. In the equatorial coordinate system one then obtains

~vh = (−114.17, 120.03,−181.04) km/s

~vs = (−197.38, 253.37,−430.4) km/s.
(4.94)

4.3.2 Diurnal response of the interferometers

Before discussing how the detector output signal can be analyzed in order
to extract the signal we have to study how the angular efficiency of the
gravitational antennas effects the strength of the signal as a result of the
diurnal rotation of the Earth. This effect is encoded in the time evolution of
the vector ~a = n̂+ m̂ and ~d = n̂− m̂. Therefore, one needs to evaluate these
vectors in the equatorial coordinate system. Let us consider the standard
equatorial coordinate system. Its origin coincides with the center of the
Earth, its z axis corresponds to the Earth’s rotation axis and points toward
the North pole. The x axis and y axis lie in the Earth’s equatorial plane
and the first points towards the vernal point. In this frame the vector
characterizing the detector’s arms directions can be described through the
use of Euler’s rotation matrix as follows

n̂ = Rz (θ1)Ry (θ2)Rz (θ3) n̂0, m̂ = Rz (θ1)Ry (θ2)Rz (θ3) m̂0, (4.95)

with

n̂0 = (1, 0, 0) , m̂0 = (cos γ, sin γ, 0) . (4.96)

The three quantities θ1, θ2 and θ3 are instead function of the geodesic
latitude of the detector site δ, the angle between the interferometer arms
γ, the angle measured counter-clockwise from East to the bisector of the
interferometer arms ξ. In particular

θ1 = δ0 + ωEt

θ2 =
π

2
− δ

θ3 = ξ − γ

2
+
π

2
,

(4.97)

where ωE and δ0 are the Earth diurnal angular velocity and the phase defin-
ing the position of the Earth in its diurnal motion at t = 0. For the purpose
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Figure 4.5: Ground-based detector configuration [89].

of what follows it is simpler to focus just on the time-dependent part of n̂
and m̂ that can be therefore put in the form

n̂ (t) =

 nx cos (ωEt)− ny sin (ωEt)
nx sin (ωEt) + ny cos (ωEt)

nz

 , (4.98)

m̂ (t) =

 mx cos (ωEt)−my sin (ωEt)
mx sin (ωEt) +my cos (ωEt)

mz

 , (4.99)

where the components nx, ny, nz, mx, my and mz are constant defined by
the aforementioned geometrical parameter


nx = cos θ3 cos θ2 cos δ0 − sin θ3 sin δ0

ny = cos θ3 cos θ2 sin δ0 + sin θ3 cos δ0

nz = − cos θ3 sin θ2,

(4.100)

and 
mx = − sin θ3 cos θ2 cos δ0 − cos θ3 sin δ0

my = − sin θ3 cos θ2 sin δ0 + cos θ3 cos δ0

mz = sin θ3 sin θ2.

(4.101)

We are now ready to discuss our strategy to detect the signal h (~x, t). To



4.3. FORESEEN CONSTRAINTS ON THE PARAMETERS SPACE 135

Figure 4.6: The top panel shows the evolution of the geometrical factor G1 during
the Earth’s daily rotation together with its mean value Ḡ1. In the bottom panel
one sees instead the evolution of G2 and is mean value.

Figure 4.7: The plot compares the two amplitudes h1 and h2 for different choices
of the signal characteristic frequency. In the left panel f = 1Hz and the term
h1 is dominant. In the middle panel one considers f = 10Hz for which the two
amplitudes are of the same order. Finally, in the right panel we compare h1 and
h2 for f = 100Hz where the first term becomes almost negligible. It is worth to
remark that h2 is independent of the signal frequency f .
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start, it proves useful to express the signal as a single oscillating component

h (~x, t) = h cos
(
ω0t− ~kDM · ~x− δ + ϕ

)
,

h =

√
8πG

c3

[
G1

ω2
0

+
L2G2

4

]1/2

d∗g,

ϕ = atan2

(
−
√

8πG

c3
d∗g
L

2

√
G2,

√
8πG

c3ω0
d∗g
√
G1

)
,

(4.102)

where G1 = G1 (ωEt) and G2 = G2 (ωEt) are the geometrical factors

G1 =
[√

ρs

(
~vs · ~d

)
(~vs · ~a) +

√
ρh

(
~vh · ~d

)
(~vh · ~a)

]2
,

G2 =
[√

ρs

(
~vs · ~d

)
+
√
ρh

(
~vh · ~d

)]2
.

(4.103)

Fig. (4.6) shows the amplitudes variations as function of time of the two
oscillating terms the signal is made of. In order to derive (4.102-4.103) from
(4.90), we used the relation

A cos (ωt− δ)−B sin (ωt− δ)
= ρ cos (ωt− δ + ϕ) ,

(4.104)

with

ρ =
√
A2 +B2, ϕ = atan2 (B,A) . (4.105)

4.3.3 Search Strategy

Now that the signal has been cast in a more manageable form one can start
discussing about its detection strategy. Although a priori the oscillation
frequency of the signal is uniquely determined by the scalar field mass mφ

as in the case analyzed in [99], the dark matter virial velocity broadens the
latter by a factor ∆f/f ∼ |vDM |2 ' 10−6. As we are going to work with data
sets whose time length will be of T ∼ 30s, the resolution in the frequency
domain will be of the order 1/T ' 10−2. In accordance to this, the signal can
be considered to be monochromatic in the frequency band one is interested
in. In their work, [99], A. Pierce et al. examine the gravitational antennas
response to a near-monochromatic stochastic gravitational wave background
and then translate such results to the case of dark photon dark matter taking
into account all the peculiar features of the latter, e.g. the inherently long
coherent time. In our case we decide to focus more on the dark matter signal,



4.3. FORESEEN CONSTRAINTS ON THE PARAMETERS SPACE 137

whose form has been derived in great detail, and base our search strategy on
it without using direct analogies with results provided by the gravitational
wave sector. For this reason we adopt the approach suggested by B. Allen,
M. A. Papa and B. F. Schutz [16] for an optimized search strategy whose
detail will be discussed in the next lines.
Let us consider a data stream sampled at discrete times t = tj = j∆t for an
observational time T = 30s. This will provide us with N = T/∆t samples
of the data here denoted as dj for j = 0, 1, ...N − 1. For simplicity we will
assume T to be an integer multiple of ∆t. The question we would like to
answer is whether or not the data set dj contains the signal

hj = h cos
(

2πf0tj − ~kDM · ~x− δ + ϕ
)
. (4.106)

As one is considering an observational time of the order of tens of seconds,
it make sense to average out the effects of the diurnal rotation of the Earth.
Therefore we replace the quantities h and ϕ with

h̄ =
1

TE

∫ TE

0
hdt, ϕ̄ =

1

TE

∫ TE

0
ϕdt, (4.107)

and absorb the constants ϕ̄ and ~kDM · ~x into the random phase δ.
To continue, we consider the discrete Fourier Transform (DFT) of the dataset
dj defined as follows

xk =
N−1∑
j=0

dje
2πitjfk , for k = −N/2 + 1, ..., N/2, (4.108)

where

fk =
k

T
=

k

N∆t
(4.109)

are the resolved frequencies, i.e. the frequencies that correspond to the
k-th bin. Since the discrete Fourier transform is invertible, one can work
in the frequency domain and then translate back any result in the time
domain without any concerns. The other advantage offered by working
in the frequency domain is that for stationary noise the different Fourier
components are uncorrelated. As both the signal and the noise are made of
real quantities it follows that xk = x∗−k. One can therefore restrict his or
her attention to just the positive frequency without losing any information.
Furthermore, x0 and xN/2 can be set to zero by removing from the data the
direct current value and applying anti-aliasing filters. The data set we need
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to work with is then xk for k = 1, ..., N/2− 1. Each realization of the data
set x will have a probability attached to it, here denoted by p (x|h), where h
is the amplitude of the signal. Let assume that both the real and imaginary
part, nkre and nkim , of the noise contribution to xk to be independent and
gaussian with average µkre = µkim = 0 and variance σ2

kre
= σ2

kim
= σ2

k.
The probability distributions of the noise realization of each bin are then
described by

p (nk) = p (nkre) p (kim)

=
1√

2πσk
e
−
n2kre
2σ2
k · 1√

2πσk
e
−
n2kim
2σ2
k

=
1

2πσ2
k

e
− n2k

2σ2
k .

(4.110)

In absence of signal, i.e. h = 0, the probability distribution of our dataset
x is given by

p (x|0) =

N/2−1∏
k=1

1

2πσ2
k

e
− x2k

2σ2
k . (4.111)

On the other hand, when the signal is present one has

p (x|h) = e
−N

2

4
h2

2σ2
l I0

(
Nh

2σl

|xl|
σl

)
p (x|0) , (4.112)

where I0 is a modified Bessel function of the first kind described by

I0 (z) =
1

π

∫ π

0
dθez cos θ. (4.113)

In order to obtain the expression (4.112), one first assume the frequency f0

of the signal to coincide with one of the resolved frequency, e.g. fl. The
probability distribution of the data is therefore equal to

p (x|h) =
1

2πσ2
l

∫ 2π

0
dδ

1

2π
e
− |xl−(N/2)heiδ |2

2σ2
l

N/2−1∏
k=1,k 6=l

1

2πσ2
k

e
− x2k

2σ2
k , (4.114)

where we assumed the unknown phase δ to be uniformly distributed in the
interval [0, 2π). Let us write now the data sample xl in terms of its modulus
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|xl| and phase φl. Then

−1

2
|xl − (N/2)heiδ|2 = −1

2
|xl|2 −

1

2

N2

4
h2 +

N

4
h|xl|

[
ei(φl−δ) + e−i(φl−δ)

]
= −1

2
|xl|2 −

1

2

N2

4
h2 +

N

4
h|xl| cos (φl − δ) .

(4.115)

The integration over δ gives therefore

1

2πσ2
l

∫ 2π

0
dδ

1

2π
e
− |xl−(N/2)heiδ |2

2σ2
l

=
1

2πσ2
l

e
− [|xl|2+(N2/4)h2]

2σ2
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0
dδ

1
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e
|xl|Nh
2σ2
l

cos(φl−δ)

=
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l

e
− [|xl|2+(N2/4)h2]

2σ2
l I0

(
Nh

2σl

|xl|
σl

)
,

(4.116)

from which eq. (4.112) is easily recovered. Before proceed further let identify
the quantities σk. In chapter 2 eq. (2.89) we have seen that〈

n∗ (f)n
(
f ′
)〉

= δ
(
f − f ′

) 1

2
Sn (f)

=⇒
〈
|n|2 (f)

〉
=

1

2
TSn (f) ,

(4.117)

where Sn (f) is the one-sided noise spectral density of the detector. Since
Sn (f) is a continuous quantity whereas the σk is a discrete one, the first
thing to do is to re-write eq. (4.117) in terms of discrete quantities. It can
be proved that, up to a factor ∆t, the discrete Fourier transform of a finite
set of discretely-sampled data is equivalent to the Fourier transform of the
discretized data evaluated at the discrete frequency fj . See appendix D in
[106] fore more details. Therefore〈

|n|2
〉

=
〈
n2
re

〉
+
〈
n2
im

〉
= ∆t2

〈
n2
kre

〉
+ ∆t2

〈
n2
kim

〉
=

1

2
N∆tSn (fk) .

(4.118)

On the other side we know that〈
n2
kre

〉
=
〈
n2
kim

〉
= σ2

k. (4.119)
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Adding all together one finally gets

∆t2
〈
n2
kre

〉
+ ∆t2

〈
n2
kim

〉
= 2∆t2σ2

k

=
1

2
N∆tSn (fk)

→σ2
k =

1

4

N

∆t
Sn (fk) .

(4.120)

In order to help simplifying the notation in some of the following results, let
us define the parameter

ε =

√
Th√
Snk

=
Nh

2σk
. (4.121)

Following the path described in chapter 2, one needs now to define a statistic,
i.e. a function of the data set x. In order to do this, we first consider the
likelihood ration statistic

Γ (x) =
p (x|h)

p (x|0)
= e
−N

2

4
h2

2σ2
l I0

(
Nh

2σl

|xl|
σl

)
= e−

1
2
ε2I0

(
ε
|xl|
σl

)
. (4.122)

Such statistic plays in fact a key role because of the Neyman-Pearson cri-
terion (or lemma). This criterion states that an optimal statistic Λ (x), i.e.
one that minimize the false dismissal probability for a given false alarm
probability, is any function of the observed data which shares the same level
surfaces of the likelihood ration function Γ (x) [16]. In our case Γ (x) de-
pends only on the modulus of the l’th |xl|. Since the likelihood function
increases monotonically, any other monotonically increasing function of |xl|
will share the same level surfaces with it. For these reason we choose as
statistic the function

Λ =
|xl|2

σ2
l

. (4.123)

We need now to evaluate the false alarm probability α and the false dismissal
probability β as function of the generic threshold Λ∗. According to eq. (2.91)
one has

α (Λ∗) =

∫
|xl|2

σ2
l

>Λ∗

p (x|0) dx

= e−Λ∗/2

(4.124)

where the integration measure is intended as follows∫
dx ≡

N/2−1∏
k=1

∫ ∞
−∞

dxkre

∫ ∞
−∞

dxkim . (4.125)
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In the same way, we can evaluate the false dismissal probability

β (Λ∗, h) =

∫
|xl|2

σ2
l

≤Λ∗

p (x|h) dx

= e
−N

2h2

8σ2
l

∫ √Λ∗

0
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Nh

2σl
u

)
du

= e−
1
2
ε2
∫ √Λ∗

0
u e−

1
2
u2I0 (εu) du,

(4.126)

with u = |xl|/σl.
Unfortunately, as also remarked in [16], the last integral cannot be evaluated
in closed form. However, for small signals, and therefore small values of ε,
the modified Bessel function can be approximated with the first two terms
of its power series representation

I0 (z) = 1 +
z2

4
, (4.127)

from which it follows

β (Λ∗, h) = 1− e−Λ∗/2 − N2h2

16σ2
l

Λ∗e
−Λ∗/2, (4.128)

or, equivalently

β (Λ∗, ε) = 1− e−Λ∗/2 − 1

4
ε2Λ∗e

−Λ∗/2. (4.129)

In Fig. 4.8 (top panel) we show how the approximated form of β, eq.
(4.128), compares with the corresponding exact expression, eq. (4.126). We
see that even for ε of the order of unity, the error on beta is less than 5%. It
is worth to remark here that, a priori, one cannot make any statements on
the magnitude of ε as h, and thus ε itself, are proportional to the unknown
parameter d∗g. It is useful then to define the quantity

δrβ =
|β − β̃|
β

, (4.130)

where β̃ is the approximated expression of the false dismissal probability
given in eq. (4.128) whereas β is the exact value given by eq. (4.126). See
Fig. 4.8 (bottom panel). In what follows our approximation will considered
to be valid only in the region where δrβ < 0.05. Fig. 4.9 shows the re-
partition of the parameter space that follows from this assumption.
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Figure 4.8: Top panel: the plot shows a confrontation between the exact expres-
sion of the false dismissal probability β and its approximated form as function of
the magnitude of ε. Bottom panel: the plot show the relative error δrβ as function
of the magnitude of ε.

Fig. 4.10 shows the relationship between the false alarm probability α (Λ∗),
the false dismissal probability β (Λ∗, h) and the chosen threshold Λ∗. Be-
cause the statistic we used has been chosen through the Neyman-Pearson
criteria we are assured that for any given signal magnitude h and false alarm
probability, it will provide the minimum value for the false dismissal proba-
bility. We would like now to find the optimal choice for Λ∗ to maximize our
chances to detect the signal. To do this we assume a two years long obser-
vation campaign. Therefore, considering a single data stream time length
of 30s, one ends up with n ∼ 106 different data sets. For each of those
data sets, in absence of signal, one has a probability α (Λ∗) to find a peak.
Because the data sets are independent, the probability to find an overall
number m of peaks follows the binomial distribution

p (m,α) =

(
n
m

)
αm (1− α)n−m . (4.131)

If no signal is present, one is expected to find on average αn peaks. On the
other hand, if the signal is present, the average number of peaks is (1− β)n.
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Figure 4.9: The plot shows how the constraint δrβ < 0.05 divides the d∗g parameter
space into two region. The region shaded in lightblue is therefore the parameter
space region in which the approximation (4.128) can be used safely. We will further
discuss on this subject later on, at the end of this subsection.

Figure 4.10: The false dismissal probability β as function of the false alarm
probability α. We consider d∗g = 0.1 and the frequency of the signal f ' 30Hz. The
value of the threshold Λ∗ is made to vary along the curve from 0 to 6. The marks
correspond to the values Λ∗ = 0, 0.5, 1, 1.5, ..., 6.
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If one now defines the significance

s =
〈m〉signal − 〈m〉no signal

σ

=
(1− β)n− αn√

α (1− α)n

=
1

4
ε2

Λ∗√
eΛ∗/2 − 1

√
n,

(4.132)

a good way to fix the threshold is to chose the value of Λ∗ that maximizes
s. In our case one obtains

0 =
ds

dΛ∗
∝
(
eΛ∗/2 − 1

)−1/2
− 1

4
Λ∗

(
eΛ∗/2 − 1

)−3/2
eΛ∗/2

=⇒ 1− 1

4
Λ∗

(
eΛ∗/2 − 1

)−1
eΛ∗/2 = 0

=⇒ (Λ∗ − 4) eΛ∗/2 + 4 = 0

=⇒ Λ∗ = 3.18721.

(4.133)

One can check that for Λ∗ = 3.18721 the second derivative d2s/dΛ2
∗ assume

the negative value ' −0.47. This confirms that the value we found is indeed
a maximum of the significance function s.
To conclude we would show the constraint that would arise in case of no
detection. To do this we first define the value m∗ such that

CDF [p (m,α) < m∗] = C̃, (4.134)

where C̃ is an adjusted threshold that takes in account the number of trials
Nt performed during the search. Since we do not know a priori in which
bin the signal should be present, i.e. we don’t know the signal frequency,
we scan over all the frequency range of the detector. The number of trials
is therefore

Nt =
(fmax − fmin)

∆f
+ 1 = (fmax − fmin)T + 1, (4.135)

where fmax and fmin are the minimum and maximum frequency the detector
is sensible to. For example let assume one wants to find the value m∗ for
which the probability to get m > m∗, when no signal is present, is less than
5% 3 then

C̃ =
0.95

Nt
. (4.136)

3Later on the considered confidence level will always be of 95%, when not otherwise
specified.
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Let us assume now the signal to be present. We could ask ourselves to find
for which value of β the number m of peaks is at least equal to m∗ 95%
of the time. The value b∗ that we are looking for is the one satisfying the
relation

CDF [p (m, 1− β∗) < m∗] = 0.05. (4.137)

As the threshold Λ∗ have already be fixed, one can determine the minimum
signal amplitude h∗ needed in order to get β = β∗ by inverting eq. (4.128).
Finally the constraint on the parameter d∗g are obtained by isolating its
contribution from the signal amplitude h∗

β∗ = 1− e−Λ∗/2 − N2h2
∗

16σ2
l

Λ∗e
−Λ∗/2

= 1− e−Λ∗/2 − Th2
∗

4Snl
Λ∗e

−Λ∗/2

→ h2
∗ =

(
eΛ∗/2 − 1− β∗eΛ∗/2

)
Λ∗

4Snl
T

→ d∗g =

(
eΛ∗/2 − 1− β∗eΛ∗/2

)1/2
Λ

1/2
∗

√
4

T

√
Snl
h̄2

.

(4.138)

Figure 4.11 shows the expected limit on d∗g for a two years long observation
campaign. The grey area defines the parameter region in which the approx-
imated form used to evaluate the false dismissal probability β, eq. (4.128),
leads to a relative error δrβ greater than 5%. To extend the constraint also
to the gray region would not be difficult. One just needs to invert eq. (4.126)
numerically, something that can be easily done with Python (or other lan-
guages). The point is that, even if it is easy, its computational cost is also
quite high. As one does not expect anyway a strong signal, we decided to
not follow this route, but this is what the LVK collaboration should do if it
decides to follow this type of analyses.

4.3.4 Comparison with Morisaki et al.

One can confront it with the result proposed by S. Morisaki and T. Suyama
based on a very similar study [89]. This study appeared on arXiv while
conducting the thesis work presented in the present manuscript (for which
the results discussed in section 4.3 had already been obtained). Nevertheless,
some key differences are present in the two works. In particular: i) we
consider the effects of the dark matter stream S1, ii) we use a different
windowing in order to take into account the glitches present in the data and
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Figure 4.11: Constraints on d∗g parameter at 95% confidence level. We considered
a two-years long observation campaign and a single search time T = 30s. The
dark matter local content is assumed to consist of 90% halo and the remaining
10% stream. The limit are derived considering the LIGO-Hanford interferometer
sensitivity during O3. The code used to obtain this curve, as well as the following
ones, has been posted in https://gitlab.com/FrancescoCipriano/phd-manuscript.git
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iii) we use a more conservative statistical criterion to evaluate the possible
constraint on the parameter d∗g.
In order to confront these two works, we first show that the signal we derived
in eq. (4.69) is exactly the same one described in equations (27) and (28) of
their work. This is easily done once we re-write eq. (4.69) in natural units
(c = h̄ = 1) and set κφ~k = φ0. One gets in fact

2d∗gκφ~k

sin2
(
mφL

2

)
mφL

(
~k · ~n− ~k · ~m

)
mφ

sin
(
ωk (t− L)− ~k · ~x+ θ~k

)
= + d∗gφ02

sin2
(
ωL
2

)
ωL

(~v · ~n− ~v · ~m) sin
(
ωt− ~k · ~x− δ

)
=− d∗gφ0

[1− cos (ωL)]

ωL
(~v · ~n− ~v · ~m) sin

(
~k · ~x− ωt+ δ

)
,

(4.139)

and

− d∗gκφ~k

(
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)2
−
(
~k · ~m

)2

m2
φ

cos
(
ωk (t− L)− ~k · ~x+ θ~k

)
=− d∗gφ0

[
(~v · ~n)2 − (~v · ~m)2

]
cos
(
~k · ~x− ωt+ δ

)
.

(4.140)

The overall minus sign is justified by the different definition of h (t) as the
one they use turns out to be the exact opposite of the one we use in our
work (see eq. (26) in [89]).
Beside this, the models used to describe the dark matter content in the local
system differ slightly: if in [89] the dark matter content is described by a
superposition of non-relativistic waves and the result are given averaging
the square of the signal obtained over all the possible direction of the wave
vector ~k, in our work instead (following the suggestions present in [94]) we
consider the presence of both a dark matter halo and a dark matter stream
each of which is modeled through a Maxwellian distribution boosted by some
appropriate velocity. The presence of a dark matter stream in the vicinity
of solar system seems to affect the magnitude of the constraint one is able
to put on the coupling parameter d∗g in a rather significant way. For this
reason we think it would be of great interest to consider it in any kind of
search whose goal is to detect dark matter presence in the local system.
As for the detection method, a difference is present in the observation time.
In our work, in fact, the total time of the observational campaign is divided
in smaller segment each of which is as long as 30s. Although such division
has the side effect to smooth out the fine features of the dark matter signal,
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we think this choice is able to account for a more realistic scenario in which
experimental limitations, e.g. the presence of transient noise (glitches), pre-
vent the acquisition of a continuous data stream for long periods. The search
strategy we propose is therefore slightly different as it account also for this
experimental limit.
Finally a difference is also present in the way used to evaluate the signal
amplitude threshold for detection, and thus the constraint on d∗g one derives
from it. In our case such amplitude is defined as the magnitude for which the
signal, if present, will be detected 95% of the time. In [94] is instead defined
as the magnitude for which the expected value of the detection statistic in
presence of the signal exceeds the expected value of the detection statistic
in absence of signal - pure noise - for a quantity greater of the square root
of its variance. Despite our approach being more conservative the two final
constraining curves do not differ a lot. To help this comparison we can con-
sider a less conservative way to derive our limit on the parameter d∗g that is
more similar to the one used in [94]. To do this we look for the value h∗∗
for which

s =
〈m〉h=h∗∗

− 〈m〉h=0

σ
≥ 1 (4.141)

To further facilitate the confront we assume a total observational time of
just one year and a local dark matter energy density ρφ = 3 · 1014eV m−3.
The result obtained through the two method are compared in Fig. 4.12.
To conclude, we have seen how several differences distinguish our work from
the one proposed in [89]. On one side there is the assumed dark matter
galactic model. Although considering, or not considering, the presence of
the dark matter S1 stream does not undermine the result obtained, in our
work we have shown that its contribution does improve the boundaries one
is able to set on the coupling parameter d∗g. For this reason, as long as one
can reasonably assume that this dark matter stream is present in our galaxy,
we think it should be taken into account in this kind of experiments.
On the other side, for what concerns instead the detection method, one has
two important difference. Respectively, they are the different approaches in
determining the signal amplitude threshold and the different assumption the
two studies make on the data flux. In the work discussed in [89], the authors
seems to consider an uninterrupted flow of data over the entire observational
campaign. In our study instead we take into consideration the fact that this
is usually not the case. For this reason the method discussed in our work
is meant to be applied to a set of short data samples (30s long) that could,
or could not, be consecutive in time. This allows the method to be efficient
even in situation in which, due to some detector downtime or spikes in the
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Figure 4.12: Comparison between the constraints obtained on d∗g applying two
different method to determine the signal amplitude threshold for detection. The
curve in blue shows the limit obtained with the ”standard” method proposed in
our work (95% confidence) for an Halo-only dark matter model. The curve in green
shows the constraint one gets with the same method but considering also the dark
matter stream S1. Finally, the curve in cyan shows the limits obtained instead when
one uses the ”alternative” and less conservative method described by eq. (4.141).
For all the curve we have assumed ρφ = 3 ·1014eV m−3 and a total observation time
of one year.

background noise, one is obliged to reject part of the collected data. This
unfortunately comes with a small drawback. As showed in Fig. 4.14, the
greater is the duration of the single data samples, the better is the constraint
one can set on d∗g. However this is just a small price one has to pay to make
the method work in scenarios that better represent a real world situation.

4.3.5 Impact of the window size

In Fig. 4.13 we show the constraints one gets for coupling parameter d∗g
for different choices of the single search time T . One can see how, as one
increases the time T , the minimum of the constraint curve gets smaller and
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Figure 4.13: Different constraint curves on the parameter d∗g for different choices
of the single search time T .
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Figure 4.14: The minimum of the constraint curves as function of the single search
time T for a two-year long observational campaign.

smaller. One can also notice that the frequency associated with the mini-
mum of the curve doesn’t seem to change for different values of the single
search time. The first consideration is confirmed by the plot in Fig. 4.14
where we see that the minimum of the constrain curves is a monotonically
decreasing function of T in the examined region. As for the second consid-
eration, it is confirmed by the fact that the formula giving the constraint on
d∗g can be factorized into two terms. The first depending only on the search
time T and the second depending only on the signal frequency f

d∗g = F1 (T ) · F2 (f) (4.142)

with

F1 (T ) =

(
eΛ∗/2 − 1− β∗

)1/2
Λ

1/2
∗

√
4

T
, F2 (f) =

√
Snl
h̄2

. (4.143)

Let see now more in detail why each of those terms depend only on the
single search time T or, vice versa, on the frequency.
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As for F1 (T ), the first thing one should notice is that Λ∗ doesn’t depend
either on the frequency, nor on the single search time T. In fact, even if the
significance function s is a function of the frequency and T , the value that
maximize it doesn’t depend on them. See eq. (4.132) and eq. (4.133) of this
document.
The second and final thing one should notice is that β∗ doesn’t depend on
the frequency while it does depend on T. The parameter β∗ is in fact defined
by eq. (4.137) that is based on the probability distribution

p (m, 1− β) =

(
n
m

)
(1− β)m (β)n−m . (4.144)

For different values of T one gets different values of n as the number of data
sets if defined by

n =
2 years

T
. (4.145)

This in turn will produce a different determination for β∗.
As for F2 (f), we know that the one-sided noise spectral density Sn is by
definition - see eq. (2.84) - a function of the frequency. On the other side
h̃ is the signal amplitude divided by the coupling factor d∗g. As such it de-
pends on the signal frequency. See eq. (4.90). It is worth to notice that this
factorization could be possible only because of the approximation expressed
in eq. (4.127), although this should be checked rigorously.
In light of what we just said one would assume that choosing T > 30s
would be a better choice. This is indeed true, however one must account for
limitation one has in deciding how big, or how small, the single searching
time can be. For example, for obvious reasons, one cannot chose a single
searching time smaller than the inverse of the sampling frequency of the
instrumentation. At the same time an extremely small value of T would
also be problematic for the frequency space resolution ∆f = 1/T . For T
much smaller than the unity, the resolution in frequency would be so poor
to deprive the results of any interests. On the opposite side of the spectrum,
because we are using a statistical approach to get our constraint on d∗g, we
need the number of search n to be big enough to have a statistical signifi-
cance. However, the mean reason why we chose to not push the single search
time T over the tens of second is because of the glitches that appear in the
interferometers data-stream. The longer is T the higher is the probability
for a glitch to occur and that is the reason behind our choice of T = 30s.
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Figure 4.15: Different constraint curves on the parameter d∗g for different local
dark matter compositions.

4.3.6 Different constraints for different models

It is also interesting to see how the presence of the dark matter stream S1
affects the constraint on the parameter d∗g. In Fig. 4.15 we show different
limits curves for different rations between the dark matter present in the
stream and the one present in the halo. One can see that not only the
constraints become stronger the higher is the percentage of dark matter in
the stream, but also that the presence of the stream itself even for low per-
centage improves remarkably the overall strength of the constraint. To get a
better understanding of the effect of the stream on the final constraint curve,
we plotted in Fig. 4.16 the contribution to the final curve due to the stream
and the one due to the halo separately. We can immediately notice two
things. The first is that they share the same magnitude, the second is that
the stream seems to contribute more in the low-frequency band, whereas the
halo the halo contribution is predominant in the high-frequency band. Our
intuition suggests that this kind of behavior is due to the different strength
of the signal components h1 and h2. We have a visual confirmation of such



154 CHAPTER 4. TESTING FDM IN THE SOLAR SYSTEM

Figure 4.16: Constraint curves for the parameter d∗g considering the halo and the
stream contribution separately.
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Figure 4.17: Left-panel contributions to the constraint curve on the parameter
d∗g due to h1 and h2, defined in (4.90). Middle-panel comparison between the
contributions to the d∗g constraint due to the stream and the halo component of h1.
Right-panel comparison between the contributions to the d∗g constraint due to the
stream and the halo component of h2.

intuition in the panel 4.17 where one sees that the h1 part of the signal
generated by the stream S1 is stronger than the one that raises from the
halo and vice versa for h2. The reason why this is the case is because on
one side |vs| ' 2|vh| while on the other

√
ρh = 3

√
ρs. We know that h2 is

linear in
√
ρ and |v|. Even if |vs| is higher than its halo counterpart, it is

not high enough to compensate the discrepancy in energy density. On the
other side, h1 is linear in

√
ρ but quadratic in |v| and that is the reason why

the stream contribution in this case becomes the stronger between the two.
We would like to conclude this subsection underling that, although the pres-
ence of the S1 stream affects the result of our study enhancing the strength
of the constraint we are able to set on the parameter d∗g, it is by no means
necessary. In Fig. 4.16 we show how the constraints one would obtain con-
sidering just the dark matter stream are almost as strong as the one that
one gets from the halo itself, even if the former accounts only for the 10%
of the total dark matter energy density. In Fig. 4.15 we show instead the
constraint curves one obtains when the halo and the stream are combined
together and how they change when one changes the model’s parameters
(in the specific case, the relative dark matter energy density percentage ).
On the other side, we focus particularly on the fraction of dark matter den-
sity accounted by the stream because it is, together with the dark matter
mean velocity obtained from velocity distribution expressed in eq. (4.89),
the feature that impacts the most the result of our work.
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4.3.7 Comparison with other experiments

It proves interesting to confront the constraint curves obtained in this study
with the one relative to different other works. The interaction between an
ultra-light scalar field and the standard matter has been object of study of
other experiments like MICROSCOPE [122], Eöt-Wash [111] and SYRTE
[69].
However, an important difference between the latter and our study lies in
the fact that the coupling constant d∗g we are interested in does not depend
on the composition of the test particles. It describes in fact an universal
feature of the scalar-matter interaction. This translates in the fact that
constraints obtained by those other experiments do not refer to d∗g directly,
but rather to some of its combinations with other coupling parameter. As a
consequence, other experiments are only sensitive to terms that violate the
universality of free fall but not to terms that do not; whereas gravitational
waves detectors are sensitive to all terms, and in particular to terms that do
not violate the universality of free fall. To phrase it differently, our goal is
to test the universal part of the additional force that comes from this type
of dark matter, whereas the other mentioned experiments are only sensitive
to the parts that may violate the universality of free fall. One can see from
Fig. 3 of [70] in fact that experiments like MICROSCOPE or Eöt-Wash do
not give constraint directly on d∗g. What do they give are constraints on the
linear combinations

|dm̂ − dg|, and |dme − dg| (4.146)

where dg itself is a linear combination of d∗g and other coupling constant as
showed in eq. (4.22).
Despite the fact that those experiments are complementary in general, there
is a subspace of the parameter space where one is able to compare the con-
straints obtained in all those experiments - that is, the region for which all
the parameters but dg are equal to 0. Indeed, in this case, the amplitude of
both the universal and non-universal component of the dark matter induced
force is only proportional to dg. In accordance with that, we then re-plot
the data in Fig. 3 of [70] considering all the coupling parameters (dme , dmu ,
etc.) but dg equal to zero and we scale the data through eq. (4.22) in order
to get the corresponding limits on d∗g and confront the with the one obtained
in our work. See Fig. 4.18.
Therefore, under those assumptions the boundaries obtained from MICRO-
SCOPE or Eöt-Wash do apply to d∗g and, in the specific, are more compet-
itive than the one obtained in this study. However, the latter is comple-
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Figure 4.18: Confront of the upper limit on the coupling parameter d∗g obtained
considering the parameter region where all the coupling parameters but dg are equal
to zero. The limit are given with a 95% confidence level.

mentary to the results obtained by those other experiment because it allows
to set constraints on the parameter d∗g without having to make any sort of
strong assumption on the other coupling parameters. Moreover, one can
see that the region in the parameter space that correspond to a universal
coupling (i.e. dg = dm = dme) represents for the experiments mentioned
above a blind-spot where they are unable to make any prediction, see eq.
(4.146). On the other side the same region doesn’t affect our experiment
that would still be be able to constrain dg, and therefore dm and dme at the
same time. One can see why our proposed study is complementary to other
studies that are probing this type of dark matter by other means - and in
particular through the observations of signals related to a violation of the
weak equivalence principle.

4.3.8 Data simulation and analysis

In order to test the effectiveness of the search strategy proposed in this work,
a fake signal has been generated mimicking the interaction of the ultra-light
scalar field with the interferometer optical apparatus. The latter has been
then buried in Gaussian noise. The resulting stream of data has finally
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Figure 4.19: Top signal power spectrum as function of the frequency fk. Bottom
data power spectrum as function of the frequency. Note that the y-axis scale in the
top panel is two order of magnitude smaller than the scale in the bottom one.

been analyzed following the method described in chapter 44. A step-by-step
discussion on our simulation is discussed in what follows.
Following eq. (4.106) we simulate a cosinusoidal signal

hj = h cos (2πf0tj + δ) , (4.147)

where all the constant contribution to the signal phase have been incor-
porated in the term δ for simplicity. For our simulation we have chosen
to work with a signal frequency of 20Hz whose corresponding amplitude is
h ' 1.04× 10−24. In the latter we have assumed d∗g = 0.1.
We generated a total of 5000 sets of data each of which is 30 seconds long5.
The time-step we used is ∆t = 0.00125s. Because of glitches, maintenance
and up-dates, the data generated by a gravitational antenna are not ob-
tained in an uninterrupted flow. In order to take into account such features
in our simulation, a delay is introduced between some of data set6. The
effect of these delays is to reset any prior information on the signal phase.

4code posted in https://gitlab.com/FrancescoCipriano/phd-manuscript.git
5this adds up to less than two day of total observation time.
6for seek of simplicity we made so that the delay has a 50% chance to occur.



4.3. FORESEEN CONSTRAINTS ON THE PARAMETERS SPACE 159

We then operate a discrete Fourier transform on the signal and add the
Gaussian noise characterized by

µk = 0, (4.148)

and

σ2
k =

N

4∆t
Sn(fk), (4.149)

where N = T/∆t is the number of point one has for each data set and Sn(fk)
is the detector one-sided noise spectral density.
Finally the obtained data are analyzed following the search strategy pro-
posed and discussed in the subsection (4.3.3). Although in this case - as
we known the frequency of the signal we injected - we already know the
exact frequency bin one should look at in order to find the signal, in order
to make the simulation more realistic we decided to extend the search also
to some of the adjacent bins. In particular for each run we chose to analyze
a frequency range that goes from 39.83 Hz up to 40.17 Hz. The size of the
analyzed frequency range is taken into account in the determination of the
threshold needed to claim for a detection.
We initially tested the code performances with a “strong” injected signal
(d∗g = 0.1 =⇒ h ' 1.04 · 10−24). In 88 out of the 100 test runs we managed
to detect the injected signal correctly. In 2 of the remaining runs the signal
was correctly recovered but we also registered the presence of a false alarm.
In other two a false alarm was present and the injected signal was not de-
tected and, finally, in the remaining 8 no signal or false alarm was detected.
We have subsequently tested the code with a weaker signal (d∗g = 0.01 =⇒
h ' 1.04 · 10−25). In this case we saw that, because of the weakness of the
signal and the relatively small amount of simulated data7, we where not able
to detect the injected signal. In Fig. 4.20 we show the constraint we where
able to put on the injected signal amplitude h and on the coupling parameter
d∗g as function of the length of the observational campaign. One can see how,
even if because of our computational limits the obtained constraint are not
as strong as the one inferred in chapter 4 (see Fig. 4.11 for example), they
get better and better the longer is the time of the observational campaign
we consider.

7for computational time limits we where able to simulate, at maximum, an amount of
data equivalent to a 0.7 days of observational campaign.
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Figure 4.20: Top panel: 95% confidence level upper limit on the injected signal
amplitude h ' 1.04 · 10−25. Bottom panel: 95% confidence level upper limit on the
coupling parameter d∗g.
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4.3.9 Discussion

Looking forward, one major point would be of course to perform an analysis
on real data provided by the already existing and operating ground-based
interferometers such as LIGO and Virgo. A first step in this direction can be
found in the subsection 4.3.8. There, we first generate a fake signal having
the same characteristics of the one produced by the interaction between the
ultra-light scalar field and the detectors optical apparatus, and we bury it
with Gaussian noise consistent with the one generated in an interferometer.
Then we analyze the data obtained in this way following the search method
described in this chapter in order to detect the initial signal.
Beside this, an extensive study of the glitches occurrence frequency in the de-
tectors would hallow for a more educated choice of single search time length
T . We have seen how the constraints on the coupling parameter d∗g benefit
from the increase in the search time T . Therefore having at our disposal
a precise statistical distribution of the glitches occurrence for each interfer-
ometer would allow us to determine how much the length of the search time
can be pushed before having a negative impact on the final constraint as a
consequence of the lost of data due to glitches.
Also, it would be interesting to study the other effects generated by the
interaction between the ultra-light scalar field and the standard matter. In
our work we have studied the effect that such interaction produces on the
position of the key optical elements of the detectors. Other works how-
ever, like [67], suggest that other effects produced by the coupling between
the dark matter field and the standard matter, e.g. the variation of the
beam-splitter refractive index, could produce an interesting signature in the
interferometer output. Also in [67], the authors show that introducing an
asymmetry in the thickness of the mirrors located in the two different arms
of the detector would produce a significant effect on the interferometer re-
sponse to dark matter presence.
Finally, taken into account how well gravitational antenna seem to perform
in this kind of dark matter search, it will be of great interest to extend this
kind of dark matter search also to the other experiments currently dedi-
cated to gravitational wave detection or those expected in the near future.
A good example is the LISA experiment, whose sensibility to dark matter
interaction has already been remarked by [99] and [89] among others. In
this case one could extend their work by considering the effect of a different
dark matter model as we have done by taking into account the presence of
the dark matter stream S1.
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4.4 Conclusion

To recap, we have seen how an ultra-light scalar field φ can be a valid can-
didate for dark matter. In particular, we have seen how a self-interacting
massive scalar field defined by the potential (4.24) behaves as a pressureless
fluid characterized only by its energy density ρφ and, as such, represents
an optimal candidate for cold dark matter. We have seen how the field
equation (4.2) admits an oscillating solution whose characteristic oscillating
frequency depends directly on the value of the mass of the scalar field. The
interaction between the scalar field and the optical apparatus of gravitational
waves antenna, such as LIGO and Virgo, have been studied in detail. We
have derived the effective signal produced by this interaction, first approx-
imately, with the geodesic deviation, and then exactly, through a rigorous
geometrical derivation. In particular we emphasized how the more rigorous
approach allowed us to notice that, when the characteristic geometrical size
and peculiar frequency working band of the aforementioned interferometers
is took into consideration, the second-order term of the signal power series
representation cannot be neglected. This second-order term in fact, which
is usually considered to be negligible in the literature, must be taken into
account and actually becomes the dominant one for frequencies greater than
∼10Hz. We also show how considering this additional term would be rel-
evant in other experiments - such as the one proposed in [99] - that share
the common goal to test dark matter model through the data collected by
gravitational waves interferometers.
We proposed a two-step search strategy optimized to find sinusoidal-like sig-
nals. We discussed in detail the assumptions and approximations on which
such detection method is based (e.g. weak signal approximation) and how
one could adapt them if those assumptions would reveal to be unmet. We
show that in case of no-detection, the sensitivities of the interferometers
are high enough to allow us to constrain the coupling parameter d∗g which
accounts for the composition-independent part of the interaction between
the scalar field and the standard matter present in the underling theoretical
model. We analyze the effects that different choices of the single search time
value T produce on the final constraint curves. In particular, we show how
the equation that regulates the constraints magnitude can be factorized into
two contributions. The first one, which depends only on the analyzed fre-
quency, and the second which depends instead on single search time value.
We also show how, for greater values of T , the minimum of the constraint
curve gets smaller and smaller, thus suggesting that the optimal choice for
the single search time is the highest value allowed by the glitches rate. We
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discuss how the constraint curves are affected by different assumptions on
the underling dark matter distribution model, referring in particular to the
presence of a dark matter stream in the solar system neighborhood. We see
that the presence of the S1 stream, even if by no means necessary in order
to establish the validity of the proposed experiment, enhances the strength
of the constraint we are able to set on the parameter d∗g. As proof of it, we
show how the constraints one would obtain considering just the dark matter
stream are almost as strong as the one that one gets from the halo itself,
even if the former accounts only for the 10% of the total dark matter energy
density (see Fig. 4.16).
The results of our work are finally confronted both with the ones obtained
from the similar study proposed in [89] and the ones discussed in [70]. As
for the former, we point out the main differences between the two stud-
ies: considering - or not - the presence of the dark matter stream S1, the
different criterion used to evaluate the detection threshold for the signal
amplitude and the different assumption made on the data flux. The method
discussed in our work, in fact, is meant to be applied to a set of short data
samples (30s long) that could, or could not, be consecutive in time. This
allows the method to be efficient even in situation in which, due to some
detector downtime or spikes in the background noise, one is forced to reject
part of the collected data. We also confront the expected constraint curves
obtained from the experiment proposed in this work with the ones one gets
from other experiments, such as MICROSCOPE, Eöt-Wash and SYRTE.
We show that, even if the overall sensitivity of the latter is overall greater,
they present blind spots in some regions of the parameters space (e.g. where
dg = dm = dme). On the other side, the experiment we proposed doesn’t
have such issue and, in general, is able to constrain the parameter d∗g with-
out making any assumption on the other parameters of the theory. In other
words, our proposal is aimed at testing the universal part of the additional
force that comes from this type of dark matter, whereas the other mentioned
experiments are only sensitive to the parts that may violate the universality
of free fall. For this reason this experiment represents a test bench for the
underling theory that is complementary to the ones already existing.
Finally we test the effectiveness of the search strategy proposed in this work
by applying it to fake data. In particular, we buried in Gaussian noise a
signal that reproduces the one that would be generated by the interaction
of the ultra-light scalar field with the optical apparatus of the interferome-
ters. The method has been tested both with a “strong” signal and a weak
one. In the first scenario the signal has been correctly recovered in 90% of
the simulations. In the second case, as expected, the signal was too weak
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to be detected. Nevertheless we show that the constraint obtained for the
coupling parameter d∗g improved as we increased the number of data sets
simulated, that is to say the length of the observational campaign.



Appendix A

Geodesic deviation in
presence of the scalar field φ

In this appendix we derive the geodesic deviation equation in presence of a
ultra-light scalar field φ which interacts with the standard matter fields as
described by equations (3.32-3.34).
Let us consider the field equations (4.2) that we rewrite here for simplicity

Rµν = k

[
Tµν −

1

2
gµνT

]
+ 2∂µφ∂νφ+

1

2
gµνV (φ) , (A.1)

2φ = −k
2
σ +

V ′ (φ)

4
. (A.2)

The first of them can be combined with its trace,

R = −kT + 2∂γφ∂
γφ+ 2V, (A.3)

to obtain

Rµν − 1

2
gµνR = kTµν + 2∂µφ∂νφ− gµν∂γφ∂γφ−

1

2
gµνV. (A.4)

Let us evaluate then the covariant derivatives of the latter. From the left-
hand side one obtains

∇µ
(
Rµν − 1

2
gµνR

)
= ∇µGµν = 0, (A.5)
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where the last equality comes from the Bianchi identity. The covariant
derivative of the right-hand side gives instead

k∇µTµν + 2∇µ (∇µφ∇νφ)− gµν∇µ (∇γφ∇γφ)− 1

2
V ′∇νφ

= k∇µTµν + 2∇µ (∇µφ∇νφ)− gµγ∇ν (∇µφ∇γφ)− 1

2
V ′∇νφ

= k∇µTµν + 22φ∇ν − 1

2
V ′∇νφ+ 2∇µφ∇µ∇νφ− 2∇ν∇µφ∇µ

= k∇µTµν − kσ∇νφ+
1

2
V ′∇νφ− 1

2
V ′∇νφ+ 2 (∇µ∇ν −∇ν∇µ)φ∇µφ

= k∇µTµν − kσ∇νφ.
(A.6)

Therefore, putting all together one finally gets

∇µTµν = σ∇νφ. (A.7)

Let us consider now a test particles whose energy-momentum tensor Tµν

can be describes by
Tµν = ρuµuν , (A.8)

where ρ is the particle energy density and uµ is its four-velocity. The quan-
tity ∇µTµν is therefore equal to

∇µTµν = ∇µ (ρuµuν) = uν∇µ (ρuµ) + ρuµ∇µuν . (A.9)

One can combine now the latter with the continuity equation

∇µ (ρuµ) = D. (A.10)

It is worth to underline that a priori D is not equals to 0 because of the
coupling between the matter and the scalar field. The correct value of D can
be evaluated by multiplying eq. (A.7) and eq. (A.9) by uν and confronting
the two results

D = −σuµ∇µφ. (A.11)

Finally one obtains the geodesic equation in presence of the ultra-light scalar
field

uµ∇µuν =
σ

ρ
(gµν + uµuν)∇µφ

' −d∗g (gµν + uµuν)∇µφ
= −d∗g∇νφ− d∗guµuν∇µφ

(A.12)
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One can notice that, in absence of the scalar field φ, eq. (4.50) reduces to
the standard geodesic equation

uµ∇µuν = 0. (A.13)

This also means that the presence of the scalar field and its interaction with
the standard matter fields creates a violation of the Equivalence Principle.
We have now all we need to calculate the geodesic deviation equation in
presence of φ. To do so, let us consider the one parameter family of geodesic
γs (τ). We define then the tangent to the family uµ = (∂τ )µ and the deviation
vector ξµ = (∂s)

µ. The latter intuitively describes how far a geodesic is
from its neighborhood, that is to say that it provides the notion of distance
between two adjacent geodesic. The relative velocity between two adjacent
geodesic can be therefore described by the vector field

vµ = uν∇νξµ, (A.14)

while the relative acceleration is described by

aµ = uρ∇ρvµ = uρ∇ρ (uν∇νξµ) = uρ∇ρξν∇νuµ + ξνuρ∇ρ∇νuµ. (A.15)

The two terms on the right-hand side can be further developed obtaining

uρ∇ρξν∇νuµ + ξνuρ∇ρ∇νuµ

= uρ∇ρξν∇νuµ + ξνuρ∇ν∇ρuµ − ξνuρ∇ν∇ρuµ + ξνuρ∇ρ∇νuµ

= ξρ∇ρuν∇νuµ + ξνuρ∇ν∇ρuµ − ξνuρRµρνσuσ

= ξρ∇ρ (uν∇νuµ)− uνξρ∇ρ∇νuµ + ξνuρ∇ν∇ρuµ − ξνuρRµρνσuσ

= −ξνuρRµρνσuσ − ξρ∇ρ
(
d∗g∇µφ

)
− ξρ∇ρ

(
d∗gu

νuµ∇νφ
)

= −ξνuρRµρνσuσ − d∗gξν∇ν∇µφ− d∗gξν∇ν (uνuµ∇νφ) .

(A.16)

Therefore, combining the last two equations, one obtains

aµ + ξνuρRµρνσu
σ + d∗gξ

ν∇ν∇µφ+ d∗gξ
ν∇ν (uσuµ∇σφ) = 0. (A.17)
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Appendix B

Second order term in the
Dark Photon Dark Matter
search

In this appendix we explicitly derive the signal produced by the interaction of
the Dark Photon Dark Matter with the optical apparatus of a gravitational
waves interferometer. In order to do this we will utilize the geometrical
approach described in chapter 4 of this manuscript. This will allow us to
put in evidence the presence of a not negligible second order term which is
absent in [99].
As showed in [99], because of the interaction with the dark matter, each of
the test masses undergoes the acceleration

~ai (t, ~xi) =
~Fi (t, ~xi)

Mi
' εe

qD,i
Mi

∂i ~A (t, ~xi)

= εe
qD,i
Mi

mA
~A0 cos

(
mAt− ~k · ~xi

)
.

(B.1)

Here ε gives the ratio of the dark photon coupling strength to the electro-
magnetic coupling strength, e is the electromagnetic coupling constant, Mi

and qD,i are respectively the total mass and dark charge of the ith test ob-

ject. The dark photon mass is described by ma while ~A is the dark gauge
field. In order to simplify the derivation that will follow, we introduce the
quantity

ε̃ = −εeqD
M
mA, (B.2)

where one has taken in consideration that the test masses are composed
of the same elements. The motion of the mirror and the beam-splitter are
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therefore described by

~rM =
ε̃

m2
A

~A0 cos
(
mAt− ~k · ~rM0 + δ

)
+ ~rM0 ,

~rB =
ε̃

m2
A

~A0 cos
(
mAt− ~k · ~rB0 + δ

)
+ ~rB0 .

(B.3)

Let us consider a photon that starts at the beam-splitter at the time t0,
reaches the mirror at time t1 moving along the positive x axis, and goes
back to the beam-splitter at time t2. The total length of its round trip is
given by

∆Lx = 2~rM (t1) · x̂− ~rB (t0) · x̂− ~rB (t2) · x̂. (B.4)

Let us now evaluate the terms on the right-hand side of the latter equation
one by one.

2~rM (t1) · x̂ = 2~rM0 · x̂+ 2
ε̃ ~A0 · x̂
m2
A

cos
(
mAt1 − ~k · ~rM0 + δ

)
= 2~rB0 · x̂+ 2

(
~rM0 − ~rB0

)
· x̂+ 2

ε̃ ~A0 · x̂
m2
A

cos
(
mAt1 − ~k · ~rB0 − ~k ·

(
~rM0 − ~rB0

)
+ δ
)

= 2~rB0 · x̂+ 2L+ 2
ε̃ ~A0 · x̂
m2
A

cos
(
mAt1 − ~k · ~rB0 − ~k · L+ δ

)
,

(B.5)

− ~rB (t0) · x̂ = −~rB0 · x̂−
ε̃ ~A0 · x̂
m2
A

cos

(
mAt1 − ~k · ~rB0 −mA

L

c
+ δ

)
, (B.6)

− ~rB (t2) · x̂ = −~rB0 · x̂−
ε̃ ~A0 · x̂
m2
A

cos

(
mAt1 − ~k · ~rB0 +mA

L

c
+ δ

)
, (B.7)

where one has made use of the approximations

t0 ' t1 −
L

c
, t2 ' t1 +

L

c
. (B.8)

One can now combine equations (B.5, B.6, B.7) to obtain, after some alge-
braic manipulation

∆Lx = 2L+ 2
ε̃Ax
m2
A

[
cos
(
~k · L

)
− cos

(
mAL

c

)]
cos
(
mAt− ~k · ~r0 + δ

)
− 2

ε̃Ax
m2
A

sin
(
~k · L

)
sin
(
mAt− ~k · ~r0 + δ

)
,

(B.9)
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where we have defined Ax = ~A0 · x̂ and set t1 = t, ~rB0 = ~r0. Because ~k ·L� 1
the previous equation can be approximated as follow

∆Lx = 2L+ 2
ε̃Ax
m2
A

[
1− cos

(
mAL

c

)]
cos
(
mAt− ~k · ~r0 + δ

)
− 2

ε̃Ax
m2
A

(
~k · L

)
sin
(
mAt− ~k · ~r0 + δ

)
.

(B.10)

The same process can be repeated for the y axis. We then obtain

∆Ly = 2L+ 2
ε̃Ay
m2
A

[
1− cos

(
mAL

c

)]
cos
(
mAt− ~k · ~r0 + δ

)
− 2

ε̃Ay
m2
A

(
~k · L

)
sin
(
mAt− ~k · ~r0 + δ

)
.

(B.11)

Therefore the relative change of the two arm lengths is

∆L =
∆Lx −∆Ly

2

= ε̃
(Ax −Ay)

m2
A

[
1− cos

(
mAL

c

)]
cos
(
mAt− ~k · ~r0 + δ

)
− ε̃(Axkx −Ayky)L

m2
A

sin
(
mAt− ~k · ~r0 + δ

)
.

(B.12)

The signal generated by the interaction of the dark photon with the inter-
ferometer is obtained via the equation

h (~x, t) =
∆Lx −∆Ly

2L
, (B.13)

which leads to

h (~x, t) = ε̃
(Ax −Ay)
m2
AL

[
1− cos

(
mAL

c

)]
cos
(
mAt− ~k · ~r0 + δ

)
− ε̃(Axkx −Ayky)

m2
A

sin
(
mAt− ~k · ~r0 + δ

)
.

(B.14)

Let us now confront our results with the one in [99]. In order to do this we
rewrite eq. (B.12) defining

ax = −ε̃Ax, ay = −ε̃Ay. (B.15)
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Following [99] we also define α to be the angle between the wave vector
~k and the normal to the LIGO plane and θ to be the angle between the
projected 2D wave vector and the x axis. We then obtain

∆L = [ax cos θ − ay sin θ]

(
|k|L sinα

m2
A

)
sin
(
mAt− ~k · ~r0 + δ

)
− (ax − ay)

m2
A

[
1− cos

(
mAL

c

)]
cos
(
mAt− ~k · ~r0 + δ

)
.

(B.16)

Applying eq. (4.104) one can see that ∆L oscillates with an amplitude equal
to

|∆L| =

√
[ax cos θ − ay sin θ]2

(
|k|L sinα

m2
A

)2

+
(ax − ay)2

m4
A

[
1− cos

(
mAL

c

)]2

.

(B.17)
One can check that at the first order in mAL/c one recovers exactly eq. (A2)
of [99]

|∆L| = |ax cos θ − ay sin θ|
(
|k|L sinα

m2
A

)
. (B.18)

However, considering also the second order term, the amplitude becomes

|∆L| =

√
[ax cos θ − ay sin θ]2

(
|k|L sinα

m2
A

)2

+
(ax − ay)2 L4

4c4
. (B.19)

To show that this additional term is not negligible let us assume, for sim-
plicity, ~a and ~k to be both parallel to one of the interferometer arm. Because
the geometrical factor we are getting rid off in this way are O (1) this will
not affect our qualitative analysis. One therefore obtains

|∆L| =

√(
h̄2|a||k|L
c4m2

A

)2

+
|a|2L4

4c4
, (B.20)

where all the physical constant have been restored. Let us consider the ratio
of the square root of the two terms

h̄2|a||k|L
c4m2

A

· 2c2

|a|L2
=

2h̄2|k|
c2m2

AL

=
2h̄v0

c2mAL
=

2v0

ω0L

=
v0

πf0L
' 1,

(B.21)

where one has considered v0 ' 105m/s, f0 ' 100Hz and L ' 103m.
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T. Dent, H. Dereli, V. Dergachev, R. T. DeRosa, R. De Rosa, R. De-
Salvo, S. Dhurandhar, M. C. Dı́az, L. Di Fiore, M. Di Giovanni,
A. Di Lieto, S. Di Pace, I. Di Palma, A. Di Virgilio, G. Dojci-
noski, V. Dolique, F. Donovan, K. L. Dooley, S. Doravari, R. Douglas,
T. P. Downes, M. Drago, R. W. P. Drever, J. C. Driggers, Z. Du,
M. Ducrot, S. E. Dwyer, T. B. Edo, M. C. Edwards, A. Effler, H.-
B. Eggenstein, P. Ehrens, J. Eichholz, S. S. Eikenberry, W. Engels,
R. C. Essick, T. Etzel, M. Evans, T. M. Evans, R. Everett, M. Fac-
tourovich, V. Fafone, H. Fair, S. Fairhurst, X. Fan, Q. Fang, S. Fari-
non, B. Farr, W. M. Farr, M. Favata, M. Fays, H. Fehrmann, M. M.
Fejer, D. Feldbaum, I. Ferrante, E. C. Ferreira, F. Ferrini, F. Fide-
caro, L. S. Finn, I. Fiori, D. Fiorucci, R. P. Fisher, R. Flaminio,
M. Fletcher, H. Fong, J.-D. Fournier, S. Franco, S. Frasca, F. Fras-
coni, M. Frede, Z. Frei, A. Freise, R. Frey, V. Frey, T. T. Fricke,



BIBLIOGRAPHY 175

P. Fritschel, V. V. Frolov, P. Fulda, M. Fyffe, H. A. G. Gabbard, J. R.
Gair, L. Gammaitoni, S. G. Gaonkar, F. Garufi, A. Gatto, G. Gaur,
N. Gehrels, G. Gemme, B. Gendre, E. Genin, A. Gennai, J. George,
L. Gergely, V. Germain, Abhirup Ghosh, Archisman Ghosh, S. Ghosh,
J. A. Giaime, K. D. Giardina, A. Giazotto, K. Gill, A. Glaefke, J. R.
Gleason, E. Goetz, R. Goetz, L. Gondan, G. González, J. M. Gon-
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G. Dálya, S. L. Danilishin, S. D’Antonio, K. Danzmann, A. Das-
gupta, C. F. Da Silva Costa, V. Dattilo, I. Dave, M. Davier, D. Davis,
E. J. Daw, B. Day, S. De, D. DeBra, J. Degallaix, M. De Lau-
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I. Braun, T. Bretz, A. Cañellas, E. Carmona, A. Carosi, P. Colin,



BIBLIOGRAPHY 185

E. Colombo, J. L. Contreras, J. Cortina, L. Cossio, S. Covino, F. Dazzi,
A. de Angelis, G. de Caneva, E. de Cea Del Pozo, B. de Lotto, C. Del-
gado Mendez, A. Diago Ortega, M. Doert, A. Domı́nguez, D. Do-
minis Prester, D. Dorner, M. Doro, D. Elsaesser, D. Ferenc, M. V.
Fonseca, L. Font, C. Fruck, R. J. Garćıa López, M. Garczarczyk,
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D. Ramı́rez Garćıa, L. Rauch, S. Reichard, C. Reuter, B. Riedel,
A. Rizzo, A. Rocchetti, N. Rupp, J. M. F. Dos Santos, G. Sartorelli,
M. Scheibelhut, S. Schindler, J. Schreiner, D. Schulte, M. Schumann,
L. Scotto Lavina, M. Selvi, P. Shagin, E. Shockley, M. Silva, H. Sim-
gen, D. Thers, F. Toschi, G. Trinchero, C. Tunnell, N. Upole, M. Var-
gas, O. Wack, H. Wang, Z. Wang, Y. Wei, C. Weinheimer, C. Wittweg,
J. Wulf, J. Ye, Y. Zhang, T. Zhu, and Xenon Collaboration. Dark
Matter Search Results from a One Ton-Year Exposure of XENON1T.
Phys. Rev. Lett., 121(11):111302, Sep 2018.
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on WIMP annihilation for contracted dark matter in the inner Galaxy
with the Fermi-LAT. J. Cosmology Astropart. Phys., 2013(10):029,
Oct 2013.

[64] P. Gondolo and G. Gelmini. Cosmic abundances of stable particles:
improved analysis. Nuclear Physics B, 360:145–179, August 1991.

[65] Michael B. Green, John H. Schwarz, and Edward Witten. Superstring
Theory: 25th Anniversary Edition, volume 1 of Cambridge Mono-
graphs on Mathematical Physics. Cambridge University Press, 2012.

[66] Sheridan B. Green, Michelle Ntampaka, Daisuke Nagai, Lorenzo Lo-
visari, Klaus Dolag, Dominique Eckert, and John A. ZuHone. Using X-
Ray Morphological Parameters to Strengthen Galaxy Cluster Mass Es-
timates via Machine Learning. arXiv e-prints, page arXiv:1908.02765,
Aug 2019.

[67] H. Grote and Y. V. Stadnik. Novel signatures of dark matter in
laser-interferometric gravitational-wave detectors. Physical Review
Research, 1(3):033187, December 2019.
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