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Industry 4.0 aims to improve the production and associated services through the digitalization and automation of manufacturing processes. A key characteristic of factories in Industry 4.0 is that assets and machines in plants are equipped with sensors which collect data for effective equipment condition based monitoring. This monitoring of all the equipment involved in a manufacturing process allows early detection of undesirable behaviors or situations that could lead to failures, which affect the performance, energy-use and reliability of manufacturing processes. Through the early detection of these situations, proactive decisions can be made to avoid production downtime. In order to detect these situations the data collected by the sensors must be interpreted. This is a challenging task as it requires the integration and processing of heterogeneous data coming from different sources, with different temporal resolutions and different underlying meanings. Moreover, to create added value out of these data, it must be combined with domain knowledge containing resource specification and planning information. In this context, semantic web technologies are increasingly considered as key technologies to improve data integration. In particular, ontologies emerge as a pertinent method to represent knowledge of manufacturing in a machine-interpretable way through the construction of semantic models. These models provide a virtual representation of the resources as well as the modeling of relevant situations from expert knowledge. In a real factory resources execute their tasks over time and under different conditions (contexts). It is necessary that the model represents in which situation(s) the resource is performing its tasks to allow a more informed decision making, since the actions to take and rules that manage the task may vary according to the current situation. In other words, the model must evolve in order to represent in which situation(s) the resource is concerned during the execution of its tasks.

The main objective of this thesis is to address the evolution of semantic models in Industry 4.0. To this end, firstly we propose a semantic model (ontology) for the manufacturing domain that represents the resources and processes that are part of a factory, with special emphasis on modeling the context of these resources and processes. Relevant situations that combine sensor observations with domain knowledge are also represented in the model. Secondly, an approach that uses stream reasoning to detect these situations that lead to potential failures is introduced. This approach enriches data collected from sensors with contextual information using the proposed semantic model. The use of stream reasoning facilitates the integration of data from different data sources, different temporal resolutions as well as the processing of these data in real time. This allows to derive high-level situations from lower-level context and sensor information. Detecting situations can trigger actions to adapt the process behavior, and in turn, this change in behavior can lead to the generation of new contexts leading to new situations. These situations can have different levels of severity, and can be nested in different ways. Dealing with the rich relations among situations requires an efficient approach to organize them. Therefore, we propose a method to build a lattice, ordering those situations depending on the constraints they rely on. This lattice represents a road-map of all the situations that can be reached from a given one, desirable or undesirable. This helps in decision support, by allowing the identification of the actions that can be taken to correct the abnormality avoiding in this way the interruption of the manufacturing processes. Finally, an industrial application scenario for the proposed approach is described. Through it, we verify that (1) the proposed semantic model is generic and extensible to accommodate a wide spectrum of manufacturing processes. Furthermore, its modular architecture allows i to describe manufacturing capabilities of manufacturing resources in different levels of modularity; (2) the use of stream reasoning together with classical reasoning approaches allow to detect abnormal situations as well as their possible causes in a suitable way; and

(3) the exploitation of the lattice helps in decision making tasks, by allowing the identification of the actions that can be taken to correct the abnormality.

Résumé

L'Industrie 4.0 vise à améliorer la production et les services associés grâce à la numérisation et à l'automatisation des processus de fabrication. Une caractéristique clé des usines de Industry 4.0 est que les actifs et les machines des usines sont équipés de capteurs qui collectent des données pour une surveillance efficace basée sur l'état des équipements. Cette surveillance de tous les équipements impliqués dans un processus de fabrication permet la détection précoce de comportements indésirables ou de situations pouvant conduire à des défaillances, qui affectent les performances, la consommation d'énergie et la fiabilité des processus de fabrication. Grâce à la détection précoce de ces situations, des décisions proactives peuvent être prises pour éviter les arrêts de production. Afin de détecter ces situations, les données recueillies par les capteurs doivent être interprétées. C'est une tâche difficile car elle nécessite l'intégration et le traitement de données hétérogènes provenant de différentes sources, avec des résolutions temporelles et des significations sous-jacentes différentes. De plus, pour créer une valeur ajoutée à partir de ces données, il faut les combiner avec des connaissances de domaine contenant des informations sur la spécification et la planification des ressources. Dans ce contexte, les technologies du web sémantique sont de plus en plus considérées comme des technologies clés pour améliorer l'intégration des données. En particulier, les ontologies apparaissent comme une méthode pertinente pour représenter la connaissance de la fabrication d'une manière interprétable par les machines grâce à la construction de modèles sémantiques. Ces modèles fournissent une représentation virtuelle des ressources ainsi que la modélisation de situations pertinentes à partir de connaissances d'experts. Dans une usine réelle, les ressources exécutent leurs tâches au fil du temps et dans différentes conditions (contextes). Il est nécessaire que le modèle représente dans quelle(s) situation(s) la ressource exécute ses tâches pour permettre une prise de décision plus éclairée, car les actions à entreprendre et les règles qui gèrent la tâche peuvent varier en fonction de la situation actuelle. En d'autres termes, le modèle doit évoluer afin de représenter dans quelle(s) situation(s) la ressource est concernée lors de l'exécution de ses tâches.

L'objectif principal de cette thèse est d'aborder l'évolution des modèles sémantiques dans l'industrie 4.0. À cette fin, nous proposons tout d'abord un modèle sémantique (ontologie) pour le domaine de la fabrication qui représente les ressources et les processus qui font partie d'une usine, en mettant particulièrement l'accent sur la modélisation du contexte de ces ressources et processus. Les situations pertinentes qui combinent les observations des capteurs avec la connaissance du domaine sont également représentées dans le modèle. Ensuite, une approche qui utilise le raisonnement par flux pour détecter ces situations qui conduisent à des défaillances potentielles est introduite. Cette approche enrichit les données collectées par les capteurs avec des informations contextuelles en utilisant le modèle sémantique proposé. L'utilisation du raisonnement en flux facilite l'intégration de données provenant de différentes sources, de différentes résolutions temporelles ainsi que le traitement de ces données en temps réel. Cela permet de dériver des situations de haut niveau à partir d'informations contextuelles et de capteurs de niveau inférieur. La détection de situations peut déclencher des actions pour adapter le comportement du processus, et à son tour, ce changement de comportement peut conduire à la génération de nouveaux contextes conduisant à de nouvelles situations. Ces situations peuvent avoir différents niveaux de gravité et peuvent être imbriquées de différentes manières. La gestion des relations riches entre les situations nécessite une approche efficace pour les organiser. C'est pourquoi nous proposons une méthode pour construire un treillis, en ordonnant ces situations en fonction des con-traintes sur lesquelles elles reposent. Ce treillis représente une feuille de route de toutes les situations qui peuvent être atteintes à partir d'une situation donnée, souhaitable ou indésirable. Cela aide à l'aide à la décision, en permettant l'identification des actions qui peuvent être prises pour corriger l'anomalie en évitant ainsi l'interruption des processus de fabrication. Enfin, un scénario d'application industrielle pour l'approche proposée est décrit. À travers celui-ci, nous vérifions que (1) le modèle sémantique proposé est générique et extensible pour s'adapter à un large éventail de procédés de fabrication. De plus, son architecture modulaire permet de décrire les capacités de fabrication des ressources de fabrication à différents niveaux de modularité ; (2) l'utilisation du raisonnement en flux avec les approches de raisonnement classiques permet de détecter les situations anormales ainsi que leurs causes possibles de manière appropriée ; et (3) l'exploitation du treillis aide à la prise de décision, en permettant l'identification des actions qui peuvent être prises pour corriger l'anomalie.

Mots-clés : Technologies sémantiques ; Ontologie ; Modélisation du contexte ; Industrie 4.0 ; Raisonnement en flux ; Surveillance des Processus.
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Introduction Contexte

Historiquement, les révolutions industrielles ont changé la façon dont la société vit et travaille. La première révolution industrielle (du 18ème au 19ème siècle) a utilisé l'énergie de l'eau et de la vapeur pour mécaniser la production [START_REF] Phyllis | The first industrial revolution[END_REF]. La deuxième révolution industrielle (1870 à 1914) a utilisé l'énergie électrique pour permettre la production de masse de biens [START_REF] Mokyr | The second industrial revolution, 1870-1914[END_REF]. La troisième révolution industrielle (1980 à 2010) a utilisé l'électronique et les technologies de l'information pour automatiser la production [START_REF] Rifkin | The third industrial revolution. how lateral power is transforming energy, the economy, and the world[END_REF]. Aujourd'hui, une quatrième révolution industrielle, également connue sous le nom d'Industrie 4.0, s'appuie sur la troisième. L'industrie 4.0 se caractérise par une fusion des technologies qui brouille les lignes entre les sphères physique et numérique. Parmi ces technologies, on trouve l'intelligence artificielle (IA), la robotique, l'Internet des objets (IoT) et les systèmes cyberphysiques. La figure 1.8 illustre ces révolutions industrielles et les technologies clés associées à chacune d'entre elles.

L'objectif principal de l'industrie 4.0 est donc d'améliorer la production et les services associés par l'utilisation de technologies innovantes [SMB + 17, WWLZ16]. Pour garantir une productivité, une disponibilité et une efficacité élevées des processus de fabrication, la détection de situations anormales dans les lignes de production est une question cruciale pour les fabricants [START_REF] Hashemian | State-of-the-Art Predictive Maintenance Techniques[END_REF]. Afin de résoudre ce problème, les usines s'appuient sur la surveillance de l'état du système (condition monitoring). Il s'agit de surveiller tous les équipements impliqués dans un processus de fabrication afin de détecter rapidement les comportements ou situations indésirables qui pourraient conduire à des anomalies, qui affectent leurs performances, leur consommation d'énergie ou leur fiabilité. Grâce à la détection précoce de ces situations, des décisions proactives peuvent être prises pour éviter les arrêts de production. Ces décisions peuvent impliquer, par exemple, de modifier les paramètres du processus pour en adapter le comportement.

Une caractéristique importante de la production industrielle dans l'industrie 4.0 est que les éléments physiques tels que les capteurs, les actionneurs et les machines de l'entreprise sont connectés entre eux et à l'internet. Dans cet environnement, les capteurs Dans ces circonstances, le modèle sémantique lui-même doit évoluer afin de représenter dans quelle(s) situation(s) se trouve(nt) la ou les ressources pendant l'exécution de ses tâches pour soutenir la prise de décision.

Par conséquent, cette thèse étudie l'utilisation des méthodes de représentation des connaissances, en particulier les technologies du web sémantique, pour construire un modèle sémantique évolutif qui représente le domaine industriel, en mettant l'accent sur la modélisation du contexte pour fournir la notion de situation.

Motivation

Comme mentionné dans la section précédente, les modèles sémantiques sont utiles pour la représentation des connaissances sur un domaine particulier, en l'occurrence l'industrie 4.0. Cependant, ces modèles sémantiques sont plutôt statiques, ce qui signifie qu'ils ne Efficience. En ce qui concerne la détection des situations, l'efficacité du traitement est liée à la capacité de faire face à une grande quantité de données collectées pour générer de nouveaux résultats en temps utile (par exemple, les situations anormales doivent être détectées rapidement pour permettre des actions de résolution).

Aide à la décision. Une fois qu'une situation susceptible de conduire à des défaillances est détectée, une action doit être entreprise pour la contrer. Les actions modifient l'état du système et conduisent à d'autres situations. Afin d'aider à la prise de décision et de choisir l'action la plus appropriée, il est nécessaire de comprendre les relations entre les situations.

Ces exigences motivent la proposition d'un nouveau cadre pour traiter l'évolution des modèles sémantiques dans l'industrie 4.0. Le cadre proposé utilise les technologies sémantiques pour représenter le domaine de la fabrication en mettant l'accent sur la modélisation du contexte des ressources impliquées dans une usine. il vise à détecter les situations qui peuvent conduire les processus de fabrication dans l'industrie 4.0 à des défaillances et leurs causes possibles. Grâce à la détection de ces situations et de leurs causes, des décisions appropriées peuvent être prises pour éviter l'interruption des processus de fabrication.

Contributions

Cette thèse propose un cadre pour aborder l'évolution des modèles sémantiques dans l'industrie 4.0. Un aperçu du cadre est présenté dans la figure 1.10, les rectangles en pointillés bleus représentent les principales contributions de cette thèse qui sont décrites ci-dessous.

La première contribution est liée au développement du modèle sémantique ; et les autres contributions sont liées à la gestion de l'évolution du modèle sémantique.

• Un modèle de connaissance ontologique pour le domaine de l'industrie est proposé pour fournir une représentation déclarative et abstraite des ressources, des processus, des capteurs et des relations entre eux. En outre, le modèle est fortement orienté vers la modélisation du contexte des ressources impliquées dans un processus de fabrication. Les situations pertinentes qui combinent les observations des capteurs et la connaissance du domaine y sont également représentées.

• Une approche qui utilise le raisonnement par flux pour détecter les situations pertinentes qui conduisent à des défaillances potentielles est introduite. Cette approche enrichit les données collectées par les capteurs avec des informations contextuelles en utilisant le modèle sémantique proposé. L'utilisation du raisonnement sur les flux de données facilite l'intégration de données provenant de différentes sources, de différentes résolutions temporelles ainsi que le traitement de ces données en • Les situations détectées peuvent déclencher des actions visant à adapter le comportement du processus, et ce changement de comportement peut à son tour entraîner la création de nouveaux contextes conduisant à de nouvelles situations. Pour organiser les situations en fonction des contraintes sur lesquelles elles reposent, la construction d'un treillis est proposée. Ce treillis représente une feuille de route de toutes les situations, désirables ou non, qui peuvent être atteintes à partir d'une situation donnée. Cela aide à l'aide à la décision, en permettant l'identification des actions qui peuvent être prises pour corriger le comportement du processus.

Enfin, un scénario d'application industrielle pour l'approche proposée est étudié. Au moyen de celui-ci, nous vérifions que (i) le modèle sémantique proposé est générique et extensible pour s'adapter à un large spectre de processus de fabrication, et que son architecture modulaire permet la description de ressources de fabrication avec différents niveaux de modularité ; (ii) l'utilisation du raisonnement en flux avec les approches de raisonnement classiques permet la détection de situations anormales ainsi que de leurs causes possibles de manière appropriée ; et (iii) l'exploitation du treillis aide à la prise de décision, en permettant l'identification des actions qui peuvent être prises pour corriger le comportement anormal du processus.

État de l'art

Dans cette section, la première sous-section présente les concepts de base des systèmes intelligents. L'architecture KREM est décrite ainsi que ses quatre composantes. La deuxième sous-section décrit les approches existantes pour la surveillance de l'état des systèmes dans l'Industrie 4.0. Nous nous concentrons en particulier sur les modèles ontologiques et leurs extensions basées sur des règles qui sont pertinentes pour la surveillance du système. Enfin, à la fin de chaque sous-section, un résumé est présenté ainsi que quelques conclusions pertinentes.

Aperçu des systèmes intelligents

Un système intelligent est un programme informatique qui utilise des techniques d'intelligence artificielle pour résoudre des problèmes complexes qui seraient normalement traités par une personne ayant une expertise [START_REF] Nick R Milton | Knowledge technologies[END_REF]. Ces systèmes ont un modèle de calcul d'un certain domaine d'intérêt dans laquelle les symboles servent de substituts aux artefacts du domaine du monde réel, tels que les objets, événements et relations, etc [START_REF] John | Knowledge representation: logical, philosophical and computational foundations[END_REF].

Une base de connaissances stocke ces symboles et le système effectue un raisonnement en manipulant ces symboles.

Les applications peuvent fonder leurs décisions sur des questions posées à la base de connaissances. Elles sont programmées pour résoudre des problèmes de manière sim- 

La composante Règles (Rules)

La composante Rules d'un système intelligent permet différents types de raisonnement sur les instances des ontologies contenues dans la composante Knowledge. Nous considérons le raisonnement comme la capacité à générer des conclusions non triviales à partir de prémisses ou d'hypothèses [START_REF] Anicic | Stream reasoning and complex event processing in etalis[END_REF]. Les faits affirmés connus sont appelés connaissances explicites, tandis que les faits déduits sont des connaissances implicites. Le Semantic Web Rule Language (SWRL) étend les axiomes OWL avec des règles similaires à IF-THEN. Ces règles logiques sont exécutées par un raisonneur, qui est un logiciel capable de déduire des conséquences logiques à partir d'un ensemble de faits ou d'axiomes affirmés [START_REF] Abburu | A survey on ontology reasoners and comparison[END_REF]. Certains des moteurs de règles les plus connus dans la communauté du web sémantique sont Jess3 , Jena4 et Drools5 .

Les solutions actuelles de raisonnement sur les ontologies ont été développées pour des données statiques ou à évolution lente, ce qui n'est pas le cas pour la nature dynamique des données dans le domaine de l'Industrie 4.0 où les machines de fabrication sont équipées de capteurs qui collectent des données en continu. Les données des cap- 

Stratégies de maintenance dans le contexte industriel.

Les stratégies de maintenance dans le domaine industriel entrent généralement dans l'une des trois catégories suivantes, chacune avec ses problèmes et ses avantages : 

Contributions de cette thèse

Les principaux éléments de notre proposition sont présentés dans la 

Raisonnement sur les flux de données pour la détection et le diagnostic des situations anormales

Introduction Context

Historically, industrial revolutions have changed the way society lives and works. The first industrial revolution (18th to 19th century) used water and steam power to mechanize production [START_REF] Phyllis | The first industrial revolution[END_REF]. The second industrial revolution (1870 to 1914) used electric power to enable mass production of goods [START_REF] Mokyr | The second industrial revolution, 1870-1914[END_REF]. The third industrial revolution (1980 to 2010) used electronics and information technology to automate production [START_REF] Rifkin | The third industrial revolution. how lateral power is transforming energy, the economy, and the world[END_REF]. Now a fourth industrial revolution, also known as Industry 4.0, is building on the third one.

Industry 4.0 is characterized by a fusion of technologies that is blurring the lines between the physical and digital spheres. Among these technologies there are Artificial Intelligence (AI), Robotics, the Internet of Things (IoT) and Cyber Physical Systems (CPS). Figure 1.8

shows these industrial revolutions and the key technologies associated with each of them. The main objective of Industry 4.0 is, then, to improve the production and associated services through the use of the innovative technologies just mentioned [SMB + 17, WWLZ16]. To ensure high productivity, availability, and efficiency of manufacturing pro-
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cesses, the detection of abnormal conditions of production lines is a crucial issue for manufacturers [START_REF] Hashemian | State-of-the-Art Predictive Maintenance Techniques[END_REF]. In order to tackle this issue, factories rely on condition monitoring. This is the task of monitoring all the equipment involved in a manufacturing process for early detection of undesirable behaviors or situations that could lead to anomalies, which affect its performance, energy-use or reliability. Through the early detection of these situations, proactive decisions can be made to avoid production downtime. These decisions can imply, for example, changing the process parameters to adapt the processes behavior.

An important characteristic for industrial production in Industry 4.0 is that physical items such as sensors, actuators, machines and enterprise assets are connected to each other and to the Internet. In this environment, devices and sensors generate an increasing amount of data that can be used for effective equipment condition monitoring. In order to detect abnormal situations, the data collected by the sensors must be interpreted. This is a challenging task as it requires the integration and processing of heterogeneous data coming from different sources, with different temporal resolutions and different underlying meanings. Moreover, a key point to consider is that the monitoring of industrial processes should depend not only on their internal state and on user interactions but also on the context of their execution. Making industrial processes context-aware allows to provide added-value information to improve their performance. Context is any information that can be used to characterize the situation of an entity [START_REF] Dey | Towards a better understanding of context and context-awareness[END_REF]. It is usually considered as a mixture of geospatial data, environmental sensor inputs, service descriptions, among others. In manufacturing, a dynamic context model should not only take into account the context of tools, machines, parts and products, but also the planning of the manufacturing processes, the specification of resources and the control system configuration. Context data is subject to constant change and can be highly heterogeneous.

Semantic Web technologies have proved their efficiency to deal with this data integration issue. The Semantic Web is an extension of the World Wide Web that combines knowledge engineering and AI methods to represent, integrate, and reason upon data and knowledge through ontologies and rules. In computer science, an ontology is considered as "an explicit specification of a conceptualization for a domain of interest" [START_REF] Thomas | A translation approach to portable ontology specifications[END_REF]. Ontologies emerge as a pertinent method to represent knowledge of any kind (in particular, manufacturing knowledge) in a machine-interpretable way. The semantic models built in this way provide a virtual representation of the resources of a manufacturing plant as well as of the relevant situations associated to them. Furthermore, reasoning on ontologies through its rule-based extensions allows transforming raw observations collected by sensors into higher-level abstractions, such as situations of interest, that are meaningful for humans and provide a better understanding about the physical world to support decision making tasks. For example, observations from sensors can be used to optimize power consumption in a production line to avoid failures. This data transformation process is illustrated using the well known "knowledge hierarchy" [START_REF] Rowley | The wisdom hierarchy: representations of the dikw hierarchy[END_REF] shown in Figure 1.9.

Current solutions for reasoning on ontologies were traditionally developed for static 

Motivation

As mentioned in the previous section, semantic models are useful for the representation of knowledge about a particular domain, in this case Industry 4.0. However, these semantic models are rather static, meaning that they do not meet the dynamics of manufacturing processes. For the model to represent in which situations the processes are executed, it is necessary that the semantic model evolves in order to represent what happens in the real world.

The semantic model can evolve due to different reasons. The first possibility is related to a change in the structure of the model itself, i.e. addition/removal of concepts and relations. This type of change is studied in the field of ontology evolution [SMMS02, Sto04, NK04, PDTC07] and is not addressed in this thesis. The second possibility is related to the addition of instances to concepts already defined and to the addition of relations over existing instances. One example can be the addition of a physical resource to the factory that would be reflected as a new instance of the corresponding resource concept in the semantic model. Another example can be the addition of a detected situation and the fact that a certain resource is involved in that situation (meaning a new link between two instances through an existing relation).

Situations of interest in the industrial domain depend on sensor data and domain knowledge. Besides the static information about industrial entities, dynamic information, such as the way the industrial processes are executed, has to be described. Therefore, the
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data collected from the sensors deployed in a factory needs to be explicitly represented to describe the process state. This is the first requirement for the semantic model to be build.

Another requirement is the representation of temporal relations among processes and of spatial relations between entities and locations in the factory. These relations are used to identify different situations of interest. This implies handling information that evolves in time, such as the changes of situation(s) a machine can go through or the changes in the values of a machine parameter according to the different decisions made. Consequently, the semantic model must provide enough expressiveness to capture high level knowledge, such as situations, from time annotated data coming from sensors.

More specifically, the requirements that the semantic model must meet are:

Data Integration. The integration of information that comes from different sources is a key requirement. Moreover, the integration of data coming from sensors (data streams)

with background knowledge that describes the application domain is also required (e.g., the streaming data collected from a machine is combined with background knowledge about different constraints that indicate abnormal behavior).

Time representation. Time plays a central role in this thesis. This demands for a suitable representation of time, where data can be annotated with their time of occurrence and validity. Beside processing streaming data, it is also required to manage historical data, i.e.

time annotated information about previous states of the resource under analysis (e.g., the history of temperature readings from a certain machine). This can be used, for example, to identify trends, to extract statistics, or to compare previous and current information to identify new types of anomalies or situations.

Efficiency. Regarding situation detection, processing efficiency is related to the ability to cope with large amount of data being collected to timely generate new results (e.g.

abnormal situations need to be promptly detected for enabling counter actions).

High level decision support. Once a situation that may lead to failures is detected, an action needs to be undertaken to counter-act it. Actions change the state of the system and lead to other situations. In order to help in decision making and choose the most appropriate action, it is necessary to understand the relationships among situations.

These requirements motivate the proposal of a novel framework to deal with the evolution of semantic models in Industry 4.0. The proposed framework uses semantic technologies to represent the manufacturing domain with special emphasis on modeling the context of the resources involved in a factory. The proposed framework aims at detecting situations that can lead manufacturing processes in Industry 4.0 to failures and their possible causes. Through the detection of these situations and their causes, appropriate decisions can be made to avoid the interruption of manufacturing processes.

Contributions

A framework to address the evolution of semantic models in Industry 4.0 is proposed in this thesis. An overview of the framework is shown in Figure 1.10, the blue-dotted rectan-
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gles represent the main contributions of this thesis that are described below.

The first contribution is related to the development of the semantic model; and the other ones are related to the management of the evolution of the semantic model. • An ontological knowledge model for the manufacturing domain is proposed to provide a declarative, abstract representation of the resources, processes, sensors and the relationships among them. Furthermore, the model is strongly oriented towards modelling the context of the resources involved in a manufacturing process. Relevant situations that combine sensor observations with domain knowledge are also represented in it.

• An approach that uses stream reasoning to detect relevant situations that lead to potential failures is introduced. This approach enriches data collected from sensors with contextual information using the proposed semantic model. The use of stream reasoning facilitates the integration of data from different data sources, different temporal resolutions as well as the processing of these data in real time. This allows to identify situations from low-level context and sensor data streams combined with background knowledge. Furthermore, our proposal uses classical reasoning approaches for determining the possible causes that generate the situation when stream reasoning results are not sufficient.

• Detected situations can trigger actions to adapt the process behavior, and in turn, this change in behavior can lead to the generation of new contexts leading to new situations. To organize the situations based on the constraints they rely on, the building of a lattice is proposed. This lattice represents a road-map of all the situations that can be reached from a given one, desirable or undesirable. This helps
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in decision support, by allowing the identification of the actions that can be taken to correct the process behavior.

Finally, an industrial application scenario for the proposed approach is studied. By means of it, we verify that (i) the proposed semantic model is generic and extensible to accommodate a wide spectrum of manufacturing processes, and that its modular architecture allows the description of manufacturing resources with different levels of modularity; (ii) the use of stream reasoning together with classical reasoning approaches allows the detection of abnormal situations as well as of their possible causes in a suitable way; and (iii) the exploitation of the lattice helps in decision making, by allowing the identification of the actions that can be taken to correct the abnormal behavior of the process.

Road-map of the Thesis

This manuscript is composed of two parts. The first part introduces the theoretical foundations and gives a comprehensive review of existing research works to frame our work. It is structured into two chapters. The second part presents the contributions of this thesis.

It consists of five chapters. Figure 1.11 shows the structure of this thesis. The content of each chapter is briefly described below.

Chapter 2. This chapter gives the theoretical foundations and basic concepts of smart systems (also known as knowledge-based systems). First, the classic architecture of smart systems is described. Then, the KREM architecture, a novel and generic knowledge-based framework for problem-solving in engineering disciplines, is exposed to frame our proposal. The concept of ontology is introduced as well as the key concepts and the associated technologies of the Semantic Web. The concepts of classical reasoning and stream reasoning are also presented. Finally, the notion of context and the main approaches for context handling are described.

Chapter 3. This chapter presents the related works about condition monitoring in Industry 4.0. The key elements of Industry 4.0, including Cyber-Physical Systems (CPS), the Internet of Things (IoT), Cloud Computing and Big Data analysis techniques are briefly described. Some of the existing maintenance strategies in the industrial domain are also introduced. The existing approaches for condition monitoring are reviewed. We classify the existing works for condition monitoring into data-driven approaches and knowledgebased approaches. The advantages and disadvantages of each approach are also discussed. In the review of approaches for condition monitoring, we pay special attention to the ontological models and their rule-based extensions that are relevant to represent the manufacturing domain as well as the existing ontological models for context modeling.

Approaches for handling the representation of knowledge that change over time are also described in this chapter.
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Chapter 4. This chapter provides a global introduction to the proposed framework. A general architecture of Industry 4.0, coming from the literature, is introduced. This general architecture permits a clear positioning of each of our contributions. An overview of the components of the proposed framework is presented as well as the interactions among them.

Chapter 5. In this chapter an ontology-based approach for context modeling in the industrial domain is proposed. The ontological model for the representation of the entities involved in a manufacturing process, emphasizing the modeling of the context, is described. The conceptual modules that shape the proposed ontological model are pre-

sented. An evaluation of the proposed ontological model is performed according to different ontology evaluation criteria such as structure, function and usability.

Chapter 6. This chapter presents an approach that combines stream and classical reasoning methods to detect certain situations that can lead to potential failures and their causes. The proposed approach enriches data collected from sensors with contextual information to allow real-time situation detection.

Chapter 7. This chapter presents an approach to establish an order among relevant situations, depending on how their constraints are related to each other. In this way, it is possible to identify the actions that can be taken to correct the abnormal situation, considering that certain actions can lead to other situations than can be also abnormal. The proposed approach uses the lattice theory to provide an expressive formalization of the hierarchy of situations by considering how the situation's constraints are related to each other.

Chapter 8. This chapter describes the design and implementation of the proposed framework. The technologies and tools used for this development are introduced as well as the implementation of the core functionalities of it. An illustrative case study from the industrial domain is presented as a proof of concept.

Finally, some concluding remarks about the issues tackled in this thesis are presented as well as some perspectives for future work. Technologies [START_REF] Nick R Milton | Knowledge technologies[END_REF].
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A smart system is a computer program that uses Artificial Intelligence techniques to solve complex problems that would normally be performed by a person who has a specific expertise [START_REF] Nick R Milton | Knowledge technologies[END_REF]. These systems have a computational model of some domain of interest in which symbols serve as surrogates for real world domain artifacts, such as physical objects, events and relationships, etc [START_REF] John | Knowledge representation: logical, philosophical and computational foundations[END_REF]. A knowledge base stores those symbols in form of statements and the system performs reasoning by manipulating these symbols.

Applications can base their decisions on domain questions posed to the knowledge base.

They are programmed to solve problems in a similar way to that of an expert, e.g. make inferences based on the current case and adopt the right strategy to solve the problem;

they can deal with incomplete information by making requests for further information;

they have a user interface that makes intelligent requests for information and can explain how it has arrived at its answers; and finally, they can be developed by reusing generic structures, rules and problem-solving methods.

In this chapter, the basic concepts of smart systems are introduced. Two architectures are described: first, the classic architecture of smart systems and then the KREM architecture. In subsequent sections, the four components of the KREM architecture are described in detail. Finally, in the last section, a summary of the chapter is presented as well as some relevant conclusions.

Smart Systems architecture

In this section, two smart system architectures are presented. First, the basic components of the classic smart systems architecture are described. Second, the KREM components that provide the framework for structuring our work are detailed.

The Classic architecture

Normally, the classic architecture of a smart system consists of the following components.

Figure 2.1 shows this architecture and the interaction among its components.

• Knowledge Base (KB): It contains domain-specific information, structures and rules.

One of its components is a formal conceptual model of the domain of interest.

Among the existing formal conceptual models, ontologies are formal representations of vocabularies that are specific to a certain area [START_REF] Thomas | A translation approach to portable ontology specifications[END_REF]. The concept of ontology is detailed in section 2.2.1. For this, the inference engine implements a reasoning algorithm.

• In addition, some smart systems incorporate a series of interfaces for users or other systems to access knowledge and editors that facilitate the maintenance of the knowledge base.

The development of a smart system is a complex task that relies on the application of methods and tools specially designed to support the acquisition and management of • Difficulty in knowledge elicitation: Most of the knowledge an expert operates is tacit, making that often, the set of elicited rules cannot accurately describe the problem solving process [START_REF] Slade | Case-based reasoning: A research paradigm[END_REF]. This situation is known as the "knowledge elicitation bottleneck" [START_REF] Hayes-Roth | Building expert system[END_REF];

• Lack of efficiency: rule-based systems do not remember previously solved problems. Every time there is a new problem to be solved, the rule-based system has to execute rules from the beginning;

• Lack of robustness: if the current problem does not match any of the rules, the smart system will fail in providing a solution.

The KREM architecture

In [START_REF] Zanni | Building collective intelligence through experience: a survey on the use of the krem model[END_REF] the authors proposed a novel architecture called KREM (Knowledge, Rules, Experience and Meta-Knowledge) to manage the complexity of developing smart systems.

Its main goal is to solve the problems associated with knowledge acquisition from experts or from data and to incorporate the capitalization of experience with the aim of improving decision-making.

The four components of KREM are (Figure 2.2):

• The Knowledge component that contains the domain knowledge.

• The Rules component that allows different types of reasoning (monotone, spatial, temporal, fuzzy, or other) depending on the application.

• The Experience component that allows the capitalization and reuse of prior knowledge.

• The Meta-knowledge component that includes knowledge about the other three components, depending on the application. Unlike a traditional smart system, a KREM-based system is able to deal with incomplete expert knowledge models, by progressively completing them, learning with experience. The use of meta-knowledge, to formally represent the context of the decision to be made, can steer its execution more efficiently. The KREM model has already been successfully used in several applications: the semantic analysis of urban satellite images, the diagnosis in small and medium enterprises and the formalization of the Lean enterprise

[ZMS19].
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In the following, each component as well as different technologies for implementing the components of the KREM architecture are explained. We use this decomposition in four components to guide the review of related works in the following sections.

The Knowledge component

The knowledge component contains knowledge about a certain domain by means of a formal conceptual model. Among the existing conceptual models, ontologies have been widely used to formalize domain knowledge. This section introduces the concept of ontology. Then, semantic web technologies to develop ontologies are described.

Concept of Ontology

The notion of "ontology" originally denotes the study of existence in philosophy. In semantic technologies, ontologies are conceptual models of what "exists" in some domain, brought into machine-interpretable form by means of knowledge representation techniques.

Ontologies have been explored from different points of view, and there exist several definitions of what an ontology is. In computer science, the most cited definition of an ontology is the following.

Definition 1 An ontology is a formal, explicit specification of a shared conceptualization of a domain of interest [START_REF] Thomas | A translation approach to portable ontology specifications[END_REF].

This definition captures several characteristics of an ontology as a specification of domain knowledge:

• Formal refers to the fact that the specification of domain knowledge in an ontology is machine readable and is interpreted in a well-defined way, which excludes natural language;

• Explicit means that the concepts and the constraints on their use are explicitly defined;

• Shared reflects the notion that an ontology captures consensual knowledge, that is, not private to some individual but accepted by a group; and,

• A conceptualization refers to an abstract model of some phenomenon in the world built by identification of the relevant concepts associated to it. Moreover, an ontology describes a conceptualization in general terms. Instead of making statements about a specific situation involving particular individuals, an ontology tries to cover as many situations as possible, that can potentially occur.

There are several reasons to develop and use ontologies according to [START_REF] Noy | Ontology development 101: A guide to creating your first ontology[END_REF][START_REF] Wang | Ontology based context modeling and reasoning using OWL[END_REF]. Some of the most common ones are: (1) to share a common understanding of the structure of information among people or software agents, (2) to analyse domain knowledge, CHAPTER 2. SMART SYSTEMS OVERVIEW

(3) to separate domain knowledge from operational knowledge, (4) to enable reuse of domain knowledge, (5) to infer high-level knowledge, and (6) to make domain assumptions explicit.

In the following subsections, the ontology-related background knowledge is introduced, including ontology components, common ontology development methods and the different types of ontologies.

Components of an ontology

The main components of an ontology are the following.

• Concepts (also called classes, categories or types) are abstract representations that reflect some aspects of a domain (e.g. physical objects, ideas, tasks, people, etc.). • Instances (or individuals) represent the named and identifiable concrete objects in the domain of interest, i.e. the particular individuals belonging to each concept.

They map to unary predicates in

They map to constants in First Order Logic. Figure 2.3 shows a set of instances that represent the concepts of Person, Country and Animal.

• Axioms are statements that allow to structure the domain. There are two fundamental types of axioms: integrity and derivation axioms. Integrity axioms define the relationships among the different concepts in the domain, along with their eventual restrictions. These restrictions may be static (e.g. "A waiter is a man who is also a waiter") or cardinal (e.g. "A person is a parent if and only if has at least one child").

Derivation axioms model the domain rules that permit to deduce new facts from stored knowledge. They are expressions like IF {conditions} THEN {consequences}.

Consequences are deduced as long as conditions are met.

Ontology development

Building an ontology is a complex task mainly because there is no single way to model the knowledge about a domain. Consequently, it usually results in an iterative process.

It is advisable to follow some basic design criteria (called ontological principles). These principles are described by [Gru93, GPFLCGP04]: • Clarity, the model must represent the desired meaning of the terms in a clear way.

• Coherence, the model must allow only inferences that are consistent (not contradictory).

• Interoperability, the model must have well-defined semantics so that multiple entities in different environments can understand and inter-operate with each other correctly.

• Re-usability, the model needs to support the reuse of its modules to reduce the information needed to be transferred and processed.

• Extensibility, the model should be extensible for developing new functions and support extension of domain specific knowledge based on existing vocabulary.

• Modularity, the model needs to capture different structural knowledge to decrease the complexity of the model and simplify the development phase.

Several methodologies can be found in the literature to develop an ontology [START_REF] Noy | Ontology development 101: A guide to creating your first ontology[END_REF][START_REF] Uschold | Ontologies: Principles, methods and applications[END_REF]. In [START_REF] Uschold | Ontologies: Principles, methods and applications[END_REF], the authors highlight a series of elementary steps to build an ontology. These steps are described below and are shown in Figure 2.4: 1. Identification of the purpose and the scope: It is important to be clear about why the ontology is being built and what its intended uses are. In particular, "competency questions" should be answered at this step. "Competency questions" are user-oriented questions that allow to scope the ontology. They are questions that must be answered through exploring and querying the ontology.

2. Construction of the Ontology. ii. production of precise unambiguous text definitions for such concepts and relationships;

iii. identification of terms to refer to such concepts and relationships; iv. all the designers need to agree on all of the above.

(b) Coding: explicit representation in a formal language of the conceptualization captured in the previous step.

(c) Integration of existing ontologies: how and whether to use (all or part of) ontologies that already exist.

3. Evaluation: technical assessment of the ontologies with respect to the requirements specification, the competency questions, and/or the real world is done. 

Type of Ontologies

A categorization of ontologies can be made according to their level of conceptualization.

Different types of ontologies exhibit different potentials for reuse. The most prominent insights in this respect have been published in [START_REF] Guarino | Semantic matching: Formal ontological distinctions for information organization, extraction, and integration[END_REF]. There are different ways to characterize an ontology:

• Depending on the level of abstraction and scope of conceptualization we can distinguish among: CHAPTER 2. SMART SYSTEMS OVERVIEW -Upper Ontologies (also called Foundational Ontologies) define general purpose concepts such as time, states, qualities, regions, etc., that are independent of a particular problem or domain. Among the most recognized top-level ontologies are DOLCE [GGM + 02], SUMO [NP01] and BFO [START_REF] Smith | Basic Formal Ontology for Bioinformatics[END_REF].

-Domain and Task Ontologies describe respectively the general knowledge about a certain domain (such as Medicine or Industry) or a generic activity (such as diagnosis or control). Their entities are usually obtained by specialization of the concepts of an upper ontology.

-Application Ontologies provide the concepts that are required for a particular application. They are built by specializing the concepts of domain and task ontologies. • Depending on the semantic richness of the conceptualization, an ontology can be distinguished between:

-Light-weight Ontologies are taxonomies of related concepts that do not include axiomatic definitions that formally define the semantics of their elements. Due to their simple design, they are sometimes not considered as ontologies.

-Heavy-weight Ontologies model the semantics of the domain, including a rich axiomatization to clarify the meaning of their concepts.

There are several modeling approaches to support the development of formal ontologies through different formalizations. Some of the best known are Description Logic (DL)

[BCM + 03], First Order Logic (FOL) [START_REF] Hodges | Elementary predicate logic[END_REF] and the Frames approach [START_REF] Minsky | A framework for representing knowledge[END_REF]. Each of CHAPTER 2. SMART SYSTEMS OVERVIEW these paradigms is supported by several languages, which differ in terms of expressiveness and computational tractability. In particular, Description Logic is the paradigm chosen by the Semantic Web community, and also the most used in the development of ontologies, by means of the Web Ontology Language (OWL) [START_REF] Baader | Description Logics as Ontology Languages for the Semantic Web[END_REF].

Semantic Web Technologies

The Semantic Web is an initiative of the World Wide Web Consortium1 (W3C) for a new generation of the Word Wide Web. The idea was originally presented by Tim Berners-Lee as a solution to improve the exploitation of knowledge stored on the web. Its goal was to give meaning to the content of traditional websites, allowing that knowledge content to be interpreted by software systems.

Semantic Web technologies offer a set of solutions to capture and manage the semantics of data. In the Semantic Web, ontologies are used as knowledge representation models and the language for writing such models is the Web Ontology Language (OWL). CHAPTER 2. SMART SYSTEMS OVERVIEW XML. Extensible Markup Language is a markup language that defines a set of rules for encoding documents in a format that is both human and machine-readable [BPSM + 00].

Users creates their own data-model and then they create the corresponding XML document with their defined entity tags and values. In order to use the information embedded in the document users must follow their own data-model. In addition, XML does not provide any logic relationship among different structures inside the users' data-model, which makes it difficult to express complex knowledge and relationships with XML alone.

Therefore, an upper layer is needed to express this knowledge. RDF addresses this issue. RDFS is a simple ontology definition language (compared with other languages such as OWL). It only allows to define taxonomies and do some basic inference about them.

RDF. The Resource Description

RDFS defines several classes which allow to identify the various concepts that need to be described in a particular domain. A class in RDFS corresponds to the generic concept of a type or category. In RDFS, a class C is defined by a triple of the form C rdf:type rdfs:Class. For example, we can define the class Animals (Animals rdf:type rdfs:Class)

to represent animals.

Essentially, RDFS provides modelling primitives for describing how properties and classes are intended to be used together in RDF data. Some of the most important ones are rdfs:Class, rdfs:subClassOf (relating a class to one of its superclasses; all instances of a class are instances of its superclass), rdfs:subPropertyOf (relating a property to one of its superproperties), rdfs:domain (indicating that a particular property applies to instances of a designated class; i.e. defining the domain of the property), rdfs:range (indicating that the values of a particular property are instances of a designated class; i.e.

defining the range of the property). Important annotation constructs are also added in RDFS such as rdfs:label (associating human-friendly label, a name, with a resource) and rdfs:comment (associating longer text with a resource). A complete list of all modeling primitives can be found at [START_REF] Antoniou | A Semantic Web primer[END_REF]. The semantics of OWL addresses distributed knowledge representation scenarios where complete knowledge about the domain cannot be assumed. OWL has two variants:

OWL. The Web

• OWL DL only has constructions that are supported by Description Logics. OWL 2 DL is based on the SROIQ logic [START_REF] Horrocks | The even more irresistible <i>sroiq<[END_REF]. It retains computational completeness and decidability. OWL DL includes all OWL language constructs, but they can be used only under certain restrictions (e.g., while a class may be a subclass of many classes, a class cannot be an instance of another class).

• OWL FULL supports a larger number of constructions than OWL DL, but these are not supported by Description Logics and it is undecidable. The purpose of OWL Full is to extend the vocabulary of the RDF Schema, but with no computational guarantees. For example, in OWL FULL a class can be treated simultaneously as a collection of individuals and as an individual.

OWL is based on the Open World Assumption (OWA). This assumption enables incomplete data to be used for reasoning. In a Closed World Assumption (CWA), such as in entity-relationship databases, anything that is not explicitly expressed is considered as false. Under the OWA, anything that is not declared as false may be true.

As described in section 2.2.1, an ontology is basically composed of individuals, classes and properties. Individuals or instances represent the particular elements of the domain, classes can be interpreted as sets of instances and properties are binary relationships over those individuals.

Below are some of the main OWL characteristics definitions of properties and classes.

Each property has a domain and a range. There are three main types of properties:

• Object properties describe relationships between individuals.

• Data properties are relationships between individuals and data values. The range of these properties is a Datatype, such as Integer, String, Float, among others.

• Annotation properties are used to add metadata to classes, to individuals and to object/data properties.

OWL has several constructions to specify the characteristics of the properties. Some of the most relevant are:

• Inverse: a property p 1 is inverse of a property p 2 iff ∀x, y : p 1 (x, y) ⇔ p 2 (y, x).

• Functional: a property p is functional iff ∀x, y, z : p(x, y) ∧ p(x, z) ⇒ y = z.

• Symmetric: a property p is symmetric iff ∀x, y : p(x, y) ⇒ p(y, x).

• Anti-symmetric: a property p is anti-symmetric iff ∀x, y : p(x, y) ∧ p(y, x) ⇒ x = y.

• Reflexive: a property p is reflexive iff ∀x : p(x, x).

• Un-reflexive: a property p is un-reflexive iff ∀x, y : p(x, y) ⇒ x = y.

• Transitive: a property p is transitive iff ∀x, y, z : p(x, y) ∧ p(y, z) ⇒ p(x, z).

• Property chain: if a property p 1 is defined as a composition of the properties p 2 and p 3 , then ∀x, y, z :

p 2 (x, y) ∧ p 3 (y, z) ⇒ p 1 (x, z)
In OWL, classes are defined by a set of restrictions. These restrictions set out the conditions that an individual must meet in order to be a member of the class. Three types of restrictions are available in OWL:

• Restrictions on Quantification OWL supports both existential (∃) and universal (∀) quantifications. An existential restriction (someValueFrom axiom) applied to a property describes the class of individuals who relates to, at least, a member of the class defined as the range of that property. An universal restriction (allValuesFrom axiom) applied to a property describes the class of individuals who, if they are in the specified property then the individuals are only related with members of the class defined as the range in the specified property.

• Cardinality restrictions allow to specify the minimum, maximum or exact number of times each class member participates in a given relationship.

• Value restrictions (hasValue restriction) The hasValue axiom allows to define classes based on the existence of specific values in their properties. and what results should be returned.

SPARQL

• Query pattern allows for specifying the query patterns that are matched against the data and used to generate the variable bindings of the defined variables in the query.

• Query modifiers allow for ordering and grouping the results.

Depending on the query type, the output of a query can be an RDF graph, a table, or a Boolean value. Listing 2.1 shows an example of a select query using the FOAF vocabulary5 that returns all persons who know someone with the first name Maria. 

The Rules component

The Rules component of a KREM smart system allows different types of reasoning over the individuals of the ontologies contained in the Knowledge component. We consider reasoning as the ability to generate non-trivial conclusions from premises or assumptions [START_REF] Anicic | Stream reasoning and complex event processing in etalis[END_REF]. The known asserted facts are called explicit knowledge, while the inferred ones as implicit knowledge.

In the following section we describe, the Semantic Web Rule Language (SWRL) that extends OWL axioms with IF-THEN like rules. These logical rules are executed by a reasoner, which is a piece of software able to infer logical consequences from a set of asserted CHAPTER 2. SMART SYSTEMS OVERVIEW facts or axioms [START_REF] Abburu | A survey on ontology reasoners and comparison[END_REF]. Some of the most known rules engines in the Semantic Web community are Jess6 , Jena7 and Drools8 .

Current solutions for reasoning on ontologies were developed for static or slow changing data which is not the case for the dynamic nature of the data in the domain of Industry 4.0 where the manufacturing machines are equipped with sensors that collect data continuously. Sensor data are an example of stream data which are rapidly changing data.

These data need to be quickly consumed and reasoned over. For example, if the values from a particular property drops from its allowed threshold then this information needs to be consumed quickly and an appropriate decision should be made.

To bridge this gap, a number of recent works propose to unify reasoning and stream processing, giving rise to the research field of Stream Reasoning (SR). The notion of stream reasoning is explained in section 2.3.2.

SWRL -The Semantic Web Rule Language

The Semantic Web Rule Language is a standard language based on OWL DL and on the Rule Markup Language (RuleML) [HPSB + 04]. SWRL allows to define rule expressions involving OWL concepts, thus enabling more powerful deductive reasoning than OWL alone.

SWRL extends OWL axioms with Horn-like rules [START_REF] Horn | On sentences which are true of direct unions of algebras[END_REF]. A Horn clause is a disjunction of literals with at most one positive; i.e. ¬p ∨ ¬q ∨ . . . ∨ u. This clause is equivalent to p ∧ q ∧. . . ⇒ u. The rules are composed in the form of implication between an antecedent (body) and a consequent (head).

ant eced ent → consequent

The intended meaning can be read as: whenever the conditions specified in the antecedent hold, then the conditions specified in the consequent must also hold.

Both the rule's body and head consist of zero or more atoms. Atoms on these rules are OWL concepts: C(x) and P(x, y), where C is an OWL class, P is an OWL property and x, y are variables, OWL individuals or OWL data values. Moreover, predicates sameAs(x, y), differentFrom(x, y) and operator(r, x, ...) are added to the language to include the semantics of interpreting same and different objects and SWRL operators libraries, respectively.

Although SWRL extends OWL, it has some limitations. For example, "SWRL rules cannot be used to modify existing information in an ontology" [START_REF] Rossello-Busquet | Owl ontologies and swrl rules applied to energy management[END_REF]. Indeed, SWRL rules are able to create new knowledge, i.e. new properties between existing instances, but they cannot create new instances "on the fly", nor change the value of an instance property.

SWRL, which has become the standard rule language in Semantic Web, is not used in stream data applications. Its nature makes SWRL unsuitable for doing continuous inference over stream data. For example, using aggregate functions on a particular window of CHAPTER 2. SMART SYSTEMS OVERVIEW time over data streams cannot be expressed in SWRL, nor the frequency with which a rule should be executed.

RDF Stream reasoning

In many real-world applications data take the form of continuous streams instead of the form of finite data sets stored in a traditional repository. This is the case for monitoring of network traffic, for telecommunications management, for manufacturing, for sensor networks, and for many other domains. In such applications, instead of classical "one-shot" queries, continuously running queries, which return new results as new data arrive on the streams are needed. A data stream is a sequence of items received continuously and in real-time, ordered either implicitly, by arrival time, or explicitly, by means of timestamps.

A number of Data Stream Management Systems (DSMSs) have been developed in the last decade to tackle the challenges raised by dynamic and high-velocity data streams.

To take advantage of the collected data streams, integration with domain knowledge containing resource specification and planning information is important. Reasoning on this information can infer new knowledge of the resources' current condition. Well integrated and aggregated information helps to monitor the resources and allows informed decisions.

However, the issues of handling heterogeneity, integration, and interpretation of data streams at semantic level are not addressed by DSMSs. The Semantic Web community, through its standards and technologies, provide answers to these issues, while employing ontologies and RDF data models. The integration of DSMSs and Semantic Web technologies has led to the semantically-enabled stream processing, usually called RDF Stream Reasoning [BBC + 10]. The novelty of this approach is in extending incremental reasoning techniques with the notions of time window and continuous processing.

Time window.

Traditional reasoning is based on the idea that all the information available should be taken into account when solving a problem. In stream reasoning, this principle is set aside and reasoning is restricted to a certain window of concern which consists of a subset of statement recently observed. This is necessary for several reasons. First of all, ignoring older statements allows to save computing resources in terms of memory and processing time to react to important events in real time. Secondly, in many real-time applications there is a silent assumption that older information becomes irrelevant at some point.

Continuous Processing

Traditional reasoning approaches are based on the idea that the reasoning process has a well defined beginning (when a request is made to the reasoner) and end (when the result is delivered by the reasoner). In stream reasoning, requests are registered at the reasoner and continuously evaluated against a knowledge base that is constantly changing. quently changing knowledge models as input. Users can register reasoning tasks (or queries) at a stream reasoner. Tasks consist of a predicate that is to be instantiated. The definition of this predicate as well as the additional information necessary to perform derivations can be considered as static knowledge models that are given to the system. The stream reasoner finds instantiations of the different predicates by applying a reasoning method and outputs either static or stream data. A static output is a variable binding that can be further processed by any reasoner. As an alternative, the stream reasoner can produce a stream as a result itself. In this case, instantiations of the goal predicates are added to the output stream as they are derived. Such a streaming answer is appropriate for further processing by other stream reasoners. Processing (RSP) languages are proposed to extend SPARQL with operators that take into account the streaming nature of RDF streams. These languages, similar to Continuous Query Language (CQL) [START_REF] Arasu | CQL: A Language for Continuous Queries over Streams and Relations[END_REF], integrate temporal windows and the FROM STREAM operator to define query graphs over a set of RDF streams, and to process them continuously.

In this section, we describe existing approaches aiming to perform reasoning over data streams and present a comparison among them.

All these approaches use RDF to represent RDF streams, that are ordered sequences of pairs, where each pair is constituted by a RDF triplet and its timestamp t: (<Subject,Predicate,Object>,t).

Streaming SPARQL [START_REF] Bolles | Streaming sparqlextending sparql to process data streams[END_REF] is one of the first language extensions to SPARQL for processing RDF data streams. The contribution of the model in the RSP field can be regarded as primarily theoretical. The first work on defining an algebra for a streaming version of SPARQL [START_REF] Groppe | A sparql engine for streaming rdf data[END_REF] was also theoretical, although it did provide an initial comparison with a purely static approach. Both approaches have been used as inspiration for later approaches.

C-SPARQL (Continuous SPARQL) [BBC + 10] proposes a query language to process RDF CHAPTER 2. SMART SYSTEMS OVERVIEW Finally, another possible approach is Sparkwave [START_REF] Komazec | Sparkwave: continuous schema-enhanced pattern matching over rdf data streams[END_REF] that is an RSP implementation that supports continuous reasoning over RDF data streams and time-based windows.

Preliminary evaluations of the execution engine have shown that it can provide higher throughput than both C-SPARQL and CQELS under certain conditions. However, the experiments were based on an adaptation of the Berlin SPARQL Benchmark [START_REF] Bizer | The berlin sparql benchmark[END_REF], which is designed to evaluate the performance of RDF stores, and contained no queries that required more than a single data stream. Sparkwave has some known limitations with respect to the size of the background knowledge that can be supported efficiently, and it provides only limited reasoning functionalities [START_REF] Margara | Streaming the web: Reasoning over dynamic data[END_REF]. 

The Experience component

The 

Case-based reasoning

CBR is regarded as a way to solve problems based on the retrieval and adaptation of cases, which are episodic descriptions of problems and their associated solutions [START_REF] Bradley P Allen | Case-based reasoning: Business applications[END_REF]. The CBR approach is used to capture experience by reproducing problem solving process of experts, at the psychological level, experts go back to previous problems they have solved and try to adapt the previous solution to solve the new problem.

The CBR approach can deal with the following situations:

• The elicitation of knowledge becomes a task of gathering typical cases and identifying features of the attributes, so that creating an explicit knowledge model of the domain is no longer necessary [WM94];

• A CBR system is able to access or manage large volumes of information [START_REF] Riesbeck | An interface for case-based knowledge acquisition[END_REF], thus giving available candidate solutions to new problems from analogies of past cases; Two crucial aspects are to be considered when applying a CBR approach, (1) in which way a case is represented and (2) in which way similarity between cases is calculated for retrieval purposes.

To deal with both aspects, SOEKS is presented below as a case representation framework and the similarity calculation measures for DDNA [STH + 12] are used for case retrieval.

SOEKS -Set of Experience Knowledge Structure

Set of Experience Knowledge Structure (SOEKS) is a knowledge structure for representing experience. It can store uncertain and incomplete information for further knowledge processing [START_REF] Sanin | Experience-based knowledge representation: Soeks[END_REF][START_REF] Sanin | An owl ontology of set of experience knowledge structure[END_REF]. SOEKS can be shaped in a language such as XML or OWL [START_REF] Sanín | Application of a multi-domain knowledge structure: the decisional dna[END_REF].

The experience collected by SOEKS can assists organizations in making precise decisions, predictions, and recommendations [START_REF] Sanin | Experience-based knowledge representation: Soeks[END_REF]. SOEKS is a dynamic structure that is dependent on the information and data that it has received.

A SOEKS contains four components [SS09] (Figure 2.10):

• Variables usually involve representing knowledge using an attribute-value language. This is the traditional frames approach [START_REF] Minsky | A framework for representing knowledge[END_REF] in knowledge representation.

• Functions describe associations among variables. Therefore, the set of experience uses functions and establishes links among the variables constructing multi objective goals.

• Constraints are another form expressing relationships among the variables. A constraint is a restriction of the feasible solutions in a decision problem and limits the performance of a system with respect to its goals.

• Finally, rules are suitable for representing inferences or for associating actions with conditions under which the actions should be performed. They are conditional relationships of the universe of variables. A set of experience makes up a decisional chromosome, which stores decisional strategies for that category. Collection of these decisional chromosomes establishes an entire inference tool to offer a blueprint of knowledge inside a system, machine, or organization [START_REF] Sanín | Application of a multi-domain knowledge structure: the decisional dna[END_REF]. It is called DDNA (Decisional DNA) of the organization. In this way, DDNA is a knowledge repository that is designed to capture decisional fingerprints inside organizations through the use of SOEKS [START_REF] Sanín | Application of a multi-domain knowledge structure: the decisional dna[END_REF], making it also shareable and transportable [START_REF] Sanin | An owl ontology of set of experience knowledge structure[END_REF]. Therefore, SOEKS is used as a case representation framework and the similarity calculation measures for DDNA [STH + 12] are used for case retrieval.

The Meta-Knowledge component

Meta-knowledge is knowledge about domain knowledge, about rules and about experience. In particular, this component provides a formal representation of the context, to identify the one in which actions should be taken. In the industrial domain, metaknowledge can control the firing of different sets of actions or rules according to different contexts, e.g. the rules for detecting the deviation of a machine temperature above its threshold may change according to the humidity of the machine's environment. In this way, the use of meta-knowledge can steer the execution of smart systems.

Context has been studied in areas like knowledge-based and ubiquitous systems, either for handling complex knowledge dynamically [START_REF] Giunchiglia | Domains and context: first steps towards managing diversity in knowledge[END_REF] or for providing smart human interfaces [START_REF] Anind K Dey | A conceptual framework and a toolkit for supporting the rapid prototyping of context-aware applications[END_REF]. Diverse representations of context exist in different research areas.

According to [START_REF] Schilit | Context-aware computing applications[END_REF], context-awareness is the capability of a system to gather information about its context or environment at any given time and to adapt its behavior accordingly by providing suitable services. The most widely referenced definition of context is the following.

Definition 3 Context is any information that can be used to characterize the situation of an entity. An entity is a user, a place, or a physical or computational object that is considered relevant to the interaction between an entity and an application, including the entity and the application themselves [START_REF] Dey | Towards a better understanding of context and context-awareness[END_REF].

Such entities and applications are capable of specifically reacting to their current location, time and other environment attributes and adapt their behavior without explicit user intervention, thus aiming at increasing usability and effectiveness. In this section, we study the existing models for context handling and analyze their advantages and drawbacks with respect to the requirements of Industry 4.0.

There has been some research regarding context information management methods.

A complete survey of them is presented in [START_REF] Perera | Context aware computing for the internet of things: A survey[END_REF]. According to these authors, the context information life-cycle is composed of four phases:

• Acquisition: context needs to be acquired from various sources. The sources can be physical or virtual sensors.

• Modelling: the collected data needs to be modelled and represented meaningfully.

• Reasoning: modelled data needs to be processed to derive high-level context information from low-level raw sensor data.

• Dissemination: both high-level and low-level context have to be distributed to the consumers who are interested in it.

In our work, we focus on context modeling and reasoning. Approaches for context handling can be divided into: Data-driven approaches and Knowledge-driven approaches.

Data-driven approaches for context handling

The data-driven approaches learn the context models from datasets collected from diverse sensors via data mining and machine learning techniques [BBRC09, CNW12]. Among classical machine learning approaches, we can cite Decision trees, Bayesian networks, Neural networks, support-vector machines (SVM), among others. Decision tree is a technique that builds a tree from a dataset that can be used to classify data. This technique has been used in [START_REF] Huang | A decision tree approach to conducting dynamic assessment in a context-aware ubiquitous learning environment[END_REF] for context handling in a learning environment. Bayesian networks is a technique based on probabilistic reasoning concepts [START_REF] Mamei | Macro programming through bayesian networks: Distributed inference and anomaly detection[END_REF]. Entities and relationships among them are represented by directed acyclic graphs and probabilities.

Bayesian networks are commonly used in combining uncertain information from a large number of sources and deducing higher-level contexts [START_REF] Ko | Development of context aware system based on bayesian network driven context reasoning method and ontology context modeling[END_REF], [START_REF] Park | Bayesian networkbased high-level context recognition for mobile context sharing in cyberphysical system[END_REF]. Artificial neural networks is a technique inspired from the biological neuron system. They are typically used to model complex relationships between inputs and outputs or to find patterns in data. It has been applied in [START_REF] Korel | A survey on context-aware sensing for body sensor networks[END_REF] for pervasive healthcare monitoring. Support vector machines are widely used for pattern recognition in context-aware systems. It has been used to detect activity recognition of patients in the healthcare domain [DMT + 07] and to learn situations in a smart home environment [START_REF] Brdiczka | Learning situation models in a smart home[END_REF].

Data-driven approaches have advantages such as a better handling of uncertain knowledge and the possibility to capture knowledge about temporal dependencies. However, they suffer from the cold start problem, since large datasets are needed to train the model for each activity. They also lack features regarding interoperability and re-usability.

Knowledge-driven approaches for context handling

In contrast to the Data-driven approaches, in Knowledge-driven approaches the difference between context modeling and context reasoning phases is clearer. Therefore, first we discuss the different techniques for context modeling and then we address the different context reasoning techniques.

In the context acquisition phase, data in multiple formats is obtained. To use it, it is necessary to store it in a machine readable and processable form, hereby all data should be converted into a unified format such that the context can be understood and shared.

This can be achieved by the use of knowledge representation approaches, classified by the scheme of the used data structures to represent and exchange contextual information.

Some of them may be classified in more than one category. The most relevant approaches are:

• Key-value models [START_REF] Schilit | Context-aware computing applications[END_REF] use key-value pairs to represent information in a simple way, but that cannot embed complex structuring information.

• Markup Scheme models [W3C, HBS02, IRRH03] use XML or RDF/S (described in section 2.2.2) and describe information with markup tags. Examples such as Composite Capabilities/Preferences Profiles (CC/PP) allow a user to describe their devices with some predefined functionalities [W3C]. However, it is not flexible and CHAPTER 2. SMART SYSTEMS OVERVIEW requires to use only the defined unambiguous attributes, and is limited in terms of expressivity of complex relationships.

• Graphical models [HIR03, HIR02, HM10, BKE03], such as the Unified Modeling Language (UML), allow the user to visually represent the classes and relationships in a particular domain. The key limitation of these Graphical models is that they only allow static specification of specialization and generalization of classes and relationships.

• Object Oriented models [START_REF] Schmidt | There is more to context than location[END_REF] allow the user to design the abstract model of the context as well as the instances in it. These object oriented models are flexible but they do not provide complex logic inference . Logic defines the conditions and can derive related conclusions.

• • Case-Based Reasoning. In this method, context knowledge is deduced from previous similar cases [START_REF] Mikalsen | Representing and reasoning about context in a mobile environment[END_REF]. However, it is difficult to accurately calculate the similarity of different cases.

• Rule-Based Reasoning. This reasoning method infers high level information on the basis of predefined rules [START_REF] Goix | Situation inference for mobile users: a rule based approach[END_REF]. A limitation of this method is the definition of the rules in advance, as these rules can be complex to define. The ontology-based approach is particularly suitable for context modeling due to its powerful representation capabilities and reasoning methods for handling heterogeneous sensor data [START_REF] Strang | A Context Modeling Survey[END_REF]. However, this approach needs expert knowledge to build the initial model. Contextual knowledge is interpreted and evaluated by means of ontology reasoning. This allows to infer new and more complex context characteristics.

Table 2.2 presents a summary of the advantages and disadvantages of the data-driven approaches and knowledge driven approaches for context handling discussed in this section. Due to the requirements of condition monitoring in Industry 4.0, we choose to use the ontology-based approach for context modeling.

Conclusion

In this Chapter, we provide an overview of the theoretical foundations of smart systems.

It starts with an introduction of the classic and the KREM architecture for the development of this kind of system. We frame our approach through the KREM architecture, that has four components. In the Knowledge component section, the concept of ontology is introduced as well as the key concepts of Semantic Web and the associated technologies used in this thesis. In the Rules component description, we present the notion of reasoning in static and dynamic scenarios. SWRL is a powerful language for offline reasoning, which has become the de facto standard rule language in the Semantic Web. Stream reasoning, that combines continuous processing of data streams with reasoning with rich background knowledge, can be used to deal with dynamic domains such as Industry 4.0.

The Monitoring is a crucial activity in industry. Any unexpected machine failure can degrade or even interrupts the manufacturing processes of a company. Therefore, it is fundamental to develop a well-implemented and efficient monitoring strategy to prevent unplanned stoppages of production, improve reliability and reduce operating costs.

This chapter describes existing approaches for condition monitoring in Industry 4.0.

We focus particularly on the ontological models and their rule-based extensions that are relevant to condition monitoring. The remainder of the chapter is organized as follows:

in section 3.1, we introduce the key elements of Industry 4.0. In section 3.2, the main existing maintenance strategies are described. This section also reviews related approaches for fault detection and diagnosis in condition monitoring systems. These approaches can be categorized into data-driven approaches and knowledge-based approaches. In section 3.3 some of the most relevant ontologies to model the manufacturing domain are reviewed. We analyse them highlighting their advantages as well as their drawbacks according to the requirements presented in the introduction of this thesis. In section 3.4, we describe a number of widely accepted and reusable ontologies to model context knowledge across different applications. In section 3.5 we present the approaches for handling the representation of knowledge that change over time. Finally, section 3.6 summarizes the chapter. Cyber-Physical Systems (CPS). CPS is the basic technology platform for IoT and IIoT, therefore the main enabler to connect physical machines. CPS integrates elements of the physical world (such as sensors and machines) with software, providing abstractions and analysis techniques, thus transferring the physical world into the virtual one. CPS have been widely adopted in a variety of production processes.

Key elements of

Lee et al. proposed the 5C architecture for utilizing CPS in manufacturing process [START_REF] Lee | A cyber-physical systems architecture for industry 4.0-based manufacturing systems[END_REF].

It consists of 5 levels, namely the Connection, Conversion, Cyber, Cognition, and Configuration levels. This architecture covers the steps from acquiring industrial data until generating meaningful information and decision-making for the end system. Below we briefly describe each of the levels.

• the Connection level acquires data from machines in an accurate and reliable way;

• the Conversion level derives useful information from data collected by the previous level;

• the Cyber level applies specific analytics to extract additional information and provides a better understanding of the state of physical assets in physical space;

• the Cognition level provides a proper presentation of the acquired knowledge to expert users to support decision making tasks. It transfers the acquired knowledge to the users.

• the Configuration level provides feedback from cyber space to physical space. Corrective and preventive actions are triggered in the physical space, based in the feedback.

To summarize, a CPS provides (1) the connectivity that allows real-time data collection and communication between the physical space and the cyber space; and (2) intelligent data processing and analytics that are capable of supporting decision making tasks in the cyber space.

Cloud Computing. Cloud Computing allows the storage of large amounts of data. This is important to store the data generated during a whole production process, considering that the machines and sensors produce more data than an operator. Likewise, cloud computing reduces investment in technological resources, allowing the storage space and processing capacity, which provides flexibility and adaptability [START_REF] Thames | Software-defined cloud manufacturing for industry 4.0[END_REF]. 

Big Data analysis technologies

Maintenance strategies in the industrial context

Maintenance strategies in the industrial domain generally fall into one of the three following categories, each with its issues and benefits:

• Reactive Maintenance (RM) [START_REF] Mobley | An introduction to predictive maintenance[END_REF][START_REF] Swanson | Linking maintenance strategies to performance[END_REF] is a run-to-failure maintenance management method. The maintenance action for repairing equipment is performed only when the equipment has broken down. A company using run-to-failure management does not spend any money on maintenance until a machine or system fails to operate. However, the cost of repairing or replacing a component would potentially be more than the production value received by running it to failure. Moreover, as components begin to vibrate, overheat and break, additional equipment damage can occur, potentially resulting in further costly repairs.

• In the following, we describe the two main approaches to implement Predictive maintenance: data-driven approaches and knowledge-based approaches.

Data-driven approaches to condition monitoring

With the development of big data related techniques and the ever-increasing availability of data, data-driven predictive maintenance is becoming more and more attractive. To extract useful knowledge and help to make appropriate decisions from huge amount of 

Knowledge-based approaches to condition monitoring

Many traditional condition monitoring systems and fault diagnosis systems make use of a priori expert knowledge and deductive reasoning processes [START_REF] Peng | Current status of machine prognostics in condition-based maintenance: a review[END_REF].

Expert knowledge is exploited to build an ontology that formally describes concepts In this way, the consequence can make changes that affect the system that is being monitored, if the conditions in the antecedent are met.

In the following, we make a review on several knowledge-based approaches for condition monitoring.

Recently, Gul et al.

[GC18] propose a condition monitoring based approach for risk assessment in a rail transportation system by using a fuzzy rule-based expert system. In Ontologies provide a way to integrate, share and reuse of domain knowledge, but other reasoning methods have to be integrated with ontologies to achieve predictive maintenance. Rule-based reasoning can be employed in order to achieve monitoring and diagnosis. These rules are built from expert knowledge, or are extracted from the analysis of large data sets, as mentioned above. However, knowledge-based approaches have difficulties in dealing with new (unknown by experts) faults and acquires complete knowledge to build a reliable set of rules.

Ontological models for the manufacturing domain

We gave a review of the existing knowledge-based predictive maintenance systems in the previous section. In this section, we give an overview on the development and usage of ontologies in the manufacturing domain. These ontologies were defined with distinct purposes and, therefore, describe different types of information related to that area.

The development of a knowledge-based predictive maintenance system requires domain knowledge about manufacturing processes to be represented in a formal way, thus making this knowledge usable by the system. To achieve this goal, semantic technologies, especially ontologies with their rule-based extensions, have shown promising capabilities for formalizing knowledge about predictive tasks in various domains [PC09, SWWP10].

A typical manufacturing system can be characterized according to three main notions:

Product, Process and Resource [START_REF] Martin | Design of a production system: an application of integration product-process[END_REF].

In [START_REF] Panetto | Onto-pdm: Productdriven ontology for product data management interoperability within manufacturing process environment[END_REF], authors have developed a product ontology, named ONTO-PDM. It pro- (beginof, endof). From the manufacturing product point of view, the notion Product could be deemed as a sub-concept under the core concept Object in the ontology. The PSL ontology provides a robust semantic foundation for modelling manufacturing product information. Furthermore, as indicated by the name, the PSL ontology is a powerful approach for the representation of manufacturing processes.

Other ontologies have been developed to enhance the performance of product information modeling in the manufacturing domain. As the PSL ontology, these ontologies include the notions of resource and process. Among them, the MASON Besides the ontologies presented above, there exist other ontologies that are more focused on modeling manufacturing processes and resources. The P-PSO (Politecnico di Milano Production Systems) ontology [START_REF] Garetti | P-PSO ontology for manufacturing systems[END_REF] considers three aspects in the manufacturing domain: the physical aspect (the material definition of the system), the technological aspect (the operational view of the system) and the control aspect (the management activities), for information exchange, design, control, simulation and other applications. Thus, its main classes are Component, Operation and Controller, which model the aforementioned three aspects, as well as part, Operator and Subsystem. (4) the product ontology, with the product information.

The presented ontologies define terms and relations for modeling the manufacturing domain, such as machine, process and the possible relations between them. The ontologies previously described do not allow representing the sensors attached to the company's resources and the properties they measure which are also fundamental for anomaly detection on production lines and reflect the correctness of mechanical system conditions.

In addition, they do not allow the representation of the context of the machines and processes. This is important to determine whether the observations collected by sensors represent abnormal behavior or not.

As mentioned in section 3.1, IoT is a key element of Industry 4.0. Nowadays, it is possible to use sensor networks to detect and identify a wide variety of observations, from simple phenomena to complex events and situations. However, the lack of integration between these sensor networks often isolates important or relevant data. To deal with this issue, the Semantic Sensor Web (SSW) approach provides tools that allow the integration of data from multiple data sources [START_REF] Sheth | Semantic Sensor Web[END_REF]. It introduces semantic annotations for describing: (1) the data produced by the sensors, introducing spatial, temporal, or situation/context semantics; and (2) the sensors and the sensor networks that provide such data. Furthermore, there are also works on defining suitable ontologies for data and sensors to enable both the integration of data from multiple sensor networks and external sources, and reasoning on such data. As an example, the W3C Semantic Sensor Network Incubator Group [HJC + 19] developed an ontology to describe sensors and sensor networks, the Semantic Sensor Network Ontology (SSN). Another work in this direction is SAREF4INMA [dRFID + 19], that pursues interoperability with industry standards. The SSN ontology is further detailed in section 5.1.3, which describes its use in this thesis.

To deal with context modelling in the industrial domain, the following section discusses the main ontologies in the literature for context modelling.

Ontological models for context modeling

A context modeling approach must satisfy two types of requirements: (1) those concerning the ontology design principles, mentioned in section 2.2.1, and (2) those concerning the application domain, in our case Industry 4.0.

The requirements from the application domain focuses on specific tasks from the industrial domain. The model must support the description of industrial entities (users, devices, sensors, etc) and the integration of entities which are not known at design-time.

Besides, the static information about an entity, it is also necessary to have some dynamic information associated to the processes the entity is involved in. Data collected from various sensors deployed in a factory need to be explicitly represented in order to describe that process. Also in the application domain, the representation of (a) temporal relations It does not offer the spatial and temporal reasoning that is necessary for Industry 4.0.

As an extension of the previous work, the authors of CoBrA-Ont have presented SOUPA (Standard Ontology for Ubiquitous and Pervasive Applications) [START_REF] Chen | SOUPA: Standard ontology for ubiquitous and pervasive applications[END_REF] shown in Figure 3.3. It is a general ontology for pervasive applications, with two parts: a core ontology and user extensions. The core ontology contains the following concepts: person, agent, belief-desire-intention (BDI), action, policy, time, space and event. Users can create their own ontology as an extension of SOUPA for specific pervasive applications. SOUPA reuses terms in different domain ontologies, such as FOAF1 , DAML-Time2 , OpenCyc [START_REF] Matuszek | An introduction to the syntax and content of cyc[END_REF] and CoBrA-Ont [START_REF] Chen | An ontology for contextaware pervasive computing environments[END_REF]. SOUPA is a very general and complex ontology, lacking features needed for our aims, such as spatio-temporal reasoning. CONON also contains rules to reason about the context. CONON does not provide a way to represent temporal data and the evolution of concepts in time. As SOUPA, this ontology is very general, which makes it difficult to apply it directly to a particular domain, such as industry. There is a need to put together concepts of these ontologies, concepts about sensors and the observations made by them, concepts about situations of interest, concepts about time and space, as well as the relationships between these concepts to aspire to build an ontology that allows the representation of the context in the domain of Industry 4.0.

SAWA (Situation

Some of the concepts and relations of the ontologies previously presented are reused in this thesis and are explained in Chapter 5.

Table 3.1 -Comparison of context ontologies.

Ontologies

Situation as objects

Situation types

Space and Time

Change over time

CoBra-Ont - - - SOUPA - - - ConOn - - - - SAWA Ontology - - - Situation Ontology - - -
The presented ontologies do not provide a way to capture the dynamic changes and the evolution of concepts in time, such as the different situations a machine can go through or the changes in the values of a property according to the different decisions made. This is a key point to deal with the dynamics of manufacturing processes as mentioned in the introduction to this thesis. In the following section, different approaches to deal with this issue are discussed.

Modeling knowledge that evolves in time

Representing knowledge that evolves in time through ontologies is a challenging problem. Temporal concepts can be represented by an ontology called OWL-Time [START_REF] Cox | Time ontology in OWL. W3C Recommendation[END_REF]. It provides rich descriptions of temporal intervals, instants, durations, and calendar terms. with additional constructs such as "always in the past", "eventually in the future". TDLs offer additional expressive capabilities over non temporal DLs and retain decidability (with an appropriate selection of allowed constructs) but they require extending the OWL syntax and semantics with the additional temporal constructs. Unfortunately, it is not possible to represent that a predicate holds in a particular time interval of time but only over past and future times. Concrete Domains [START_REF] Lutz | Description Logics with Concrete Domains -A Survey[END_REF] introduce datatypes and operators based on an underlying domain. This approach requires extending OWL or RDFS. TOWL [START_REF] Frasincar | TOWL: Integrating time in OWL[END_REF] is an approach combining the concrete domains and 4D-fluents approaches. However, it does not support qualitative temporal relations. Furthermore, it is not compatible with existing OWL editing, reasoning and querying tools. basic design decision in our work is to choose an approach which relies on existing OWL constructs. Thus, we exclude the temporal description logics, the concrete domain, the named graphs and temporal RDF approaches. Based on this analysis, we have decided to use the N-Ary relation approach, that is further explained in section 5.1.3.

Conclusion

In this chapter, we introduce background knowledge about Industry 4.0, by detailing its four key elements: IoT, CPS, Cloud Computing, and Big Data analysis technologies. Then, we describe the existing maintenance strategies in the industrial domain emphasizing the predictive maintenance strategies for Industry 4.0. Data-driven approaches, based on annotated data, and knowledge-based approaches, based on expert knowledge, for condition monitoring are also discussed.

CHAPTER 3. EXISTING APPROACHES FOR CONDITION MONITORING IN INDUSTRY 4.0

We have reviewed the existing ontologies and their rule-based extensions for knowledgebased condition monitoring systems. First, we reviewed the ontological models for the manufacturing domain. We analyse them highlighting their advantages and drawbacks according to the requirements for these works. Second, a survey about widely accepted and reusable ontologies to model context knowledge across different applications is presented. We analyzed them considering their application in the Industry 4.0 domain.

We summarize the domain coverage of the existing ontologies in Table 3 After reviewing the ontological models mentioned previously, we recognize that none of them provides a satisfactory knowledge representation of the five required sub-domains.

Some of these knowledge models focus on a narrow field, such as manufacturing resource planning and work orders, and they do not formalize context-related concepts, e.g., Activity and Location. Also, none of the existing ontologies provides a way of representing knowledge that evolve in time. To perform smart condition monitoring, the knowledge base should contain not only the machine-interpretable knowledge for characterizing the manufacturing entities or processes which are being monitored but also the knowledge about abnormal situations that are associated to failures. This motivates us to develop a more expressive and complete ontological model that provides a rich representation of the domain knowledge in the fields of manufacturing considering the notion of context.

In addition, the ontological models of the smart systems reviewed in this chapter are static. As described in the introduction, machines perform manufacturing processes in different contexts and these contexts change over time. According to the context in which a manufacturing process is executed, the rules that manage the process can change. In order to represent these contexts and the fact that a machine is performing a process in these contexts, the semantic model needs to evolve in time to represent this changing knowledge.

CHAPTER 

Part II

Contributions CHAPTER 4. PROPOSED FRAMEWORK OVERVIEW

This chapter provides a global overview of the proposed framework that encompasses the contributions of this thesis. The goal of the proposed framework is to address the evolution of semantic models in Industry 4.0, as explained in the introduction of this manuscript where the goals of this thesis were exposed.

The remainder of the chapter is structured as follows: Section 4.1 introduces the general architecture of Industry 4.0, according to the literature. This general architecture allows positioning each of our contributions, that are developed in the following chapters.

In section 4.2, the components of the proposed framework are introduced as well as the interaction among them. Each of the components is detailed in the following chapters.

Finally in section 4.3 some conclusions are presented.

General architecture for Industry 4.0

In [START_REF] Toro | A Perspective on Knowledge Based and Intelligent Systems Implementation in Industrie 4.0[END_REF] the authors focus on the conceptual model, architecture and key elements needed for the support and enhancement of Industry 4.0 with smart systems. They emphasize that contextual knowledge, user experience and semantics involved in manufacturing and production processes should be taken into consideration if a company aims at improving the equipment and production systems safety and availability, to reduce the number of unnecessary maintenance tasks and to optimize production costs.

In order to interpret raw sensor readings combined with contextual knowledge for the detection of certain situations that may lead to failures, our proposal relies on an adaptation of this framework. This adaptation is depicted in Figure 4.1 and is described below.

• The Sensors and Actuators layer contains the sensors and actuators that are deployed in the machines and in their environment. A sensor is a device that detects and responds to some type of input from the physical environment. Some examples are pressure sensors, accelerometers for measuring vibration, acoustic sensors for detecting leaks and temperature detectors. The output is a signal that can be converted to human-readable format or transmitted electronically over a network for reading or further processing. An actuator is a component of a machine that is responsible for moving and controlling a mechanism or system, for example by opening a valve. It can be activated by electric voltage or hydraulic pressure, or even human power. When it is activated the actuator converts the signal's energy into mechanical movement.

• The Communication layer is in charge of pre-processing the data coming from the Sensors and Actuators layer through processes such as filling missing values, smoothing noisy data, etc. Furthermore, data can be normalized and/or aggregated as required. This layer is also able to divide and distribute information and must ensure security and anonymity where necessary.

• The Semantic Enhanced CPS Representation layer contains the reasoning processes and modules that allow the semantic enrichment of raw data coming from sensors. The Reasoner module uses First Order Logic (FOL) under the Open World In a real factory, resources (such as machines and production lines) execute their tasks over time and under different situations. It is therefore necessary that the model represents in which situation(s) the resource is performing its tasks to allow a more informed decision making, since the actions to take and the rules that manage the manufacturing processes may vary according to the identified situation. In other words, the semantic model must evolve to be able to represent the situation(s) a certain resource is in during the execution of its tasks. This evolution is graphically shown in Figure 4.4. The semantic model is described in detail in Chapter 5.

The Monitoring component

The Monitoring component is responsible for collecting data from sensors in order to detect abnormal situations. It both uses the semantic model and modifies it. This compo- 

The Diagnosis component

The 

The Decision Making component

Once an abnormal situation an its causes have been detected, the Decision making component is responsible for determining and applying the adaptation strategies that are needed to improve the behavior of the production system. These strategies may include changes to the operation parameters of a machine or the launching of a maintenance task by the Application layer of Figure 4.1.

The choice of which action(s) to launch is made by the Decision making component.

This component also uses the semantic model to determine which actions are possible to execute to improve the operating conditions.

Since detecting abnormal situations can trigger actions to adapt the process behavior, this change in the behavior of the process can lead to the generation of new situations.

These abnormal situations can have different levels of severity, and can be nested in different ways. To understand and manage the relations among situations, an efficient approach to organize them is needed. Therefore, Chapter 7 proposes a method to build a lattice to order the possible situations associated to a process, depending on the constraints they rely on. This lattice represents a road-map of all the situations that can be reached from a given one. This helps in decision support, by allowing the identification of the actions that can be taken to correct the abnormality. Therefore, the Decision making component uses both the semantic model and the lattice to determine which actions to trigger to correct the abnormal situation.

Conclusion

In this chapter we presented the general architecture of Industry 4.0, presented in the literature. This general architecture allows us to position our contributions.

The proposed framework to address the evolution of semantic models in Industry 4.0 However, as indicated in the sate of the art, most of these existing ontological models focus on a very specific field and sometimes lack a formal representation of context. This is why it is needed to develop a new ontological model to describe the "Smart Factory" industrial domain with special emphasis on modelling the context of the components that constitute a real factory.

Therefore, this chapter proposes an ontology-based approach for context modeling in the industrial domain, suitable for Industry 4.0. The motivation for this ontological model lies on the fact that an isolated sensed value has to be interpreted in the context in which it is measured to become information that is relevant for decision making. Context is any information that can be used to characterize the situation of an entity. It is usually considered as a combination of geo-spatial data, environmental sensor inputs and service descriptions, among others. Context data is subject to constant change and can be highly heterogeneous. In manufacturing, a dynamic context model not only has to take into account the context of tools, machines, parts and products, but also information regarding the planning of manufacturing processes.

The remainder of the chapter is structured as follows: In section 5.1 the conceptual modules that compose the proposed ontological model are presented. In section 5.2 a complete description of the semantic alignment among ontologies is presented, based on the foundational concepts of DUL1 (DOLCE Ultra Lite) for obtaining a rigorous conceptualization. DUL is an upper-level ontology providing general concepts and relations at a high abstraction level. The proposed approach is evaluated according to several ontology evaluation criteria such as structure, function and usability in Section 5.3. Finally, some concluding remarks are given in Section 5.4.

The proposed ontological model

This section describes the modules that constitute the proposed model, called Context Ontology for Industry 4.0 (COInd4). The goal of this semantic model is to represent the concepts and relations in the industrial domain to enable context representation and reasoning.

The notion of context is based on Dey's definition of context [START_REF] Dey | Towards a better understanding of context and context-awareness[END_REF], presented in section 2.5. Location, identity, time, and activity are the primary context types for characterizing the situation of a particular entity. These context types not only help to answer the classic "W-questions" (Where, who, when and what), but also allow to deduce other contextual information. For example, with the location of an entity, it is possible to apply spatial reasoning and determine which other objects or people are located near that entity.

For building the ontological model, the criteria for ontology designed (also called "on- tological principles", described in section 2.2.1) were followed: clarity, coherence, interoperability, re-usability, extensibility and modularity. The ontology development process is based on the methodology proposed by [START_REF] Uschold | Ontologies: Principles, methods and applications[END_REF], also presented in section 2.2.1. We first define the purpose and scope of the ontological model; then we capture domain knowledge, conceptualize and formalize the ontologies and align them with existing ontologies, vocabularies and standards. In line with these best practices, we followed an iterative and incremental development process, i.e. the ontological model was continuously improved by a better understanding of the domain. The ontology is written in OWL and is developed with two specific APIs for Java, OWLAPI [START_REF] Horridge | The owl api: A java api for owl ontologies[END_REF] and the SWRLAPI [ODSM + 08].

Several ontologies, described in Chapter 3, were considered and reused. These ontologies can be classified, according to [START_REF] Gómez-Pérez | Ontological Engeenering[END_REF], as core ontologies, domain ontologies and application ontologies based on the subject of their conceptualization (see section

2.2.1).

An overview of the classes and properties from the proposed ontological model is 

The Resource module

The Resource module describes human entities and assets with attributes characterizing spatio-temporal features. In this section, global concepts are introduced to represent the resources of a factory. The ManufacturingFacility concept represents the machines and physical assets of a company. The Staff concept refers to all the people involved in industrial activities of a company who operates a ManufacturingFacility, such as operators and technicians. The Product concept aims to provide a representation of manufacturing products and product components.

Traditionally, machines used in manufacturing were monolithic pieces of equipment.

The need for flexibility and reconfiguration as well as time and cost pressures has led to developing machines from modular subsystems which provide different operations. The Resource module contains concepts for different types of devices and hardware compo- • Machine is a device that performs a task by itself or by human intervention;

• Workstation is a small integrated physical groupings of machines;

• Cell is a set of combined workstations for a particular complex task; and

• Line is a group of cells.

This decomposition enables to represent different Industry 4.0 processing sequences and flexible or re-configurable production lines. Another relevant point is that by using this taxonomy, it is possible to describe the context of a ManufacturingFacility at different nested levels (e.g. characterising the context of a Line and depicting the context of a Workstation that belongs to that Line). The DL axioms for defining the Resource class and the ManufacturingFacility class are:

Resource ≡ManufacturingFacility Staff Product ManufacturingFacility ∃operates -1 .Staff (Line Cell WorkSation Machine)

As an example of how to represent resources, the following expression stands for a Line :l which contains a Cell :c with one WorkStation :ws composed by two machines: an AssemblingMachine :am operated by an Operator :o and a ProcessingMachine :pm.

AssemblingMachine(:am) ∧ ProcessingMachine(:pm) ∧ WorkSation(:ws) ∧ contains(:ws,:am) ∧ contains(:ws,:pm) ∧ Cell(:c) ∧ isPartOf(:ws,:c) ∧ Line(:l) ∧ isPartOf(:c,:l) ∧ Operator(:o) ∧ operates(:o,:am)

The Process module

A Process represents a task or a set of tasks performed by one or more resources and is specified with its contextual information, e.g. occurring time, place and related resources.

The domain concepts given in the Process module represent a taxonomy of manufacturing processes. For example, processes include control operations and assembly opera- The hasSubProcess property allows the representation of process composition. The spatio-temporal relationships among processes are expressed using spatial and temporal logic.

The following expression indicates that a WorkStation :ws performs a Manufactur-ingProcess :mp that lasts for an interval of time :intTP. WorkSation(:ws) ∧ ManufacturingProcess(:mp) ∧ performsProcess(:ws,:mp) ∧ hasDuration(:mp,:intTP)

The Sensor module

All the sensors in a factory generate a stream of heterogeneous data. The lack of a formalized representation of these data would lead to weak interoperability among different systems and low re-usability. Therefore, the main goal of the Sensor module is to enrich the heterogeneous sensor data with a formalized semantics. This is done by adding metadata about contextual information (such as locations or timestamps).

The conceptualization of sensor measurements related to the sensing activity itself and to observations come from the Semantic Sensor Network3 (SSN) ontology presented in [HJC + 19]. The aim of SSN is to provide a formal representation of sensor characteristics, observable properties, observations and measurement processes that can be interpreted automatically. This allows to manage, interpret, query and control sensor networks using high-level specifications. The SSN ontology has been applied to a wide range of applications and use cases, such as satellite imagery, industrial infrastructures and the Internet of Things. The most relevant SSN concepts and relations that were re-used for the development of our ontological model are described below.

A sosa:Sensor is a device that detects and responds to some type of input from the physical environment. To do this, sensors implement a specific method that results in the calculation of the value of the observed property (sosa:ObservableProperty class).

The sosa:Observation class provides the structure to represent a single observation. Therefore, an instance of sosa:Observation is related to a single measurement (sosa:Result class) performed by a given sensor (sosa:Sensor class) on a single property of some entity (sosa:ObservableProperty and sosa:FeatureOfInterest classes, respectively).

The sosa:FeatureOfInterest class represents real-world phenomena and objects.

When measuring the height of a building, the height is the observed property, and the building is the sosa:FeatureOfInterest. The ssn:Property class is defined as an attribute of an entity than can be measured (e.g. temperature). The sosa:ObservableProperty is a subclass of ssn:Property.

The sosa:Result class is the result of the observation: a value together with the unit (e.g. "26 • C", "1000 mph", "1000 rpm"). To store the result value of an observation, the sosa:hasSimpleResult property can be used.

To specify the observation time, SSN has the sosa:resultTime datatype property that relates a sosa:Observation to a time instant. It indicates the time at which the observation was made.

One limitation of the SSN ontology is that it does not provide a way to represent the location of a sensor. In order to overcome this limitation, a new property is defined. The locatedIn property is used to assert that a sensor is deployed in a location.

The example below makes use of the previous properties to describe that a Machine :pm has a Sensor :vs which measures its vibration :pm_vibration. Machine(:pm) ∧ WorkSation(:ws) ∧ isPartOf(:ws,:pm) ∧ Cell(:c) ∧ isPartOf(:ws,:c) ∧ Line(:l) ∧ isPartOf(:c,:l) ∧ Sensor(:vs) ∧ ssn:Property(:pm_vibration) ∧ hasProperty(:pm,:pm_vibration) ∧ observes(:vs,pm_vibration) ∧ hasSensor(:pm,:vs)

The Location module

Many of the concepts that are represented in this ontological model are entities that can be located in space such as machines or sensors, and processes that can be located via their participating entities. The Location module provides concepts and relations that allow representing physical spatial places and the relations among them (e.g. a machine is located in a particular sector, and two sectors share a wall). To do so, the GeoSPARQL For any two RCC-8 relations R, S in that set, their composition CT(R, S ) is defined to be the unique smallest subset {T 1 , . . . , T n } of the set of eight relations such that

Y X DC Y X Y X EC Y X Y X PO Y X Y X EQ Y X Y Y TPP X Y X Y TPPi X X Y Y NTPP X Y X Y NTPPi X
(∀x∀y∀z)[R(x, y) ∧ S (y, z) ⇒ (T 1 (x, z) ∨ . . . ∨ T n (x, z))] is a theorem in RCC.
Thus, CT(R, S ) is the disjunction of all possible base relations which could hold between a and c provided that R(a, b) and S (b, c) hold. The following expression uses the EC relation to express that the geo:SpatialObject :l1 is externally connected with the geo:SpatialObject :l2 (e.g. both locations share a wall).

geo:SpatialObject(:l1) ∧ geo:SpatialObject(:l2) ∧ spatial:rcc8ec(:l1,:l2)

The Time module

A suitable temporal model should allow a consistent representation of temporal information in the industrial system. Temporal modelling is key in the manufacturing domain because both sensor measurements and process representations need to be positioned in a temporal dimension so that they can be correctly interpreted by the industrial system.

This module provides a way to represent temporal entities (e.g. time instants and time periods) as well as to interpret temporal relations (e.g. before, after, during, etc.). The Time module comprises all information related to the current time and allows time-stamping all the context information that may change over time.

The SWRL Temporal Ontology4 (SWRLTO) proposed in [START_REF] Martin | A method for representing and querying temporal information in owl[END_REF] Another interesting class is temporal:Fact. It models an entity that can extend over time and that is associated to the temporal:hasValidTime property, indicating the time period during which the associated information is true. Values of this property belong to the temporal:ValidTime class.

Regarding temporal reasoning and querying, SWRLTO implements a series of predicates embedded in SWRL that allows operating with temporal relations. Most of them are based on Allen's time algebra [START_REF] Bradley P Allen | Case-based reasoning: Business applications[END_REF]. Although this algebra was not originally designed to relate an interval to an instant, nor was it designed to relate two instants to each other, SWRLTO includes specific operators to allow this. In addition, SWRLTO offers some SWRL operators to perform granularity conversions and duration calculations in different time units. The possible values are: Years, Months, Days, Hours, Minutes, Seconds, and Milliseconds. If no granularity is specified, the finest granularity supported by the library (i.e., Milliseconds) is used. The most common temporal operators are described below:

• durationLessThan(duration,startDate,endDate,granularity): This predicate is satisfied if the first argument is less than the difference between two XML Schema date or date Time, specified by the startDate and endDate arguments, at the granularity specified by the final argument.

• durationEqualTo(duration,startDate,endDate,granularity): This predicate is satisfied if the first argument is equal to the difference between two XML Schema date or date Time, specified by the startDate and endDate arguments, at the granularity specified by the final argument. • durationGreaterThan(duration,startDate,endDate,granularity): This predicate is satisfied if the first argument is greater than the difference between two XML Schema date or date Time, specified by the startDate and endDate arguments, at the granularity specified by the final argument.

• notdurationLessThan, notdurationEqualTo, notdurationGreaterThan: These implement the inverse of the aforementioned duration operators.

• Allen's Temporal operators (Figure 5.3) For example, let us suppose we have three machines :pm1, :pm2 and :pm3 which execute respectively three processes :p1, :p2 and :p3. The duration intervals of each process are :iP1, :iP2 and :iP3, respectively. We know that the execution of :p2 starts when the execution of :p1 is finished and that the whole execution of :p3 is performed during :p2, as shown in (5.1), but we do not know the ending point of :p2, or the starting point of :p3. Even if the information about start and ending points is incomplete, it is possible to infer that the execution of :p3 must be after the execution of :p1 (i.e. :iP3 must be after :iP1, as expressed in (5.2)), because the whole execution of :p3 is performed during :p2 (:iP2 contains :iP3).

ProcessingMachine(:pm1) ∧ ProcessingMachine(:pm2) ∧ ProcessingMachine(:pm3) ∧ ManufacturingProcess(:p1) ∧ ManufacturingProcess(:p2) ∧ ManufacturingProcess(:p3) ∧ performsProcess(:pm1,:p1) ∧ performsProcess(:pm2,:p2) ∧ performsProcess(:pm3,:p3) ∧ hasTime(:p1,:iP1) ∧ hasTime(:p2,:iP2) ∧ hasTime(:p3,:iP3) ∧ swrlto:meets(:iP1,:iP2) ∧ swrlto:contains(:iP2,:iP3) (5.1) swrlto:after(:iP3,:iP1)

(5.2)
Another example is a WorkStation :ws which is composed by a Machine :pm which performs a process :mpp whose duration is :iMPP, and a Machine :am which performs a process :mpa whose duration is :iMPA. Machine(:am) ∧ Machine(:pm) ∧ WorkStation(:ws) ∧ isPartOf(:ws,:am) ∧ isPartOf(:ws,:pm) ∧ ManufacturingProcess(:mpp) ∧ performsProcess(:pm,:mpp) ∧ hasTime(:mpp,:iMPP) ∧ ManufacturingProcess(:mpa) ∧ performsProcess(:am,:mpa) ∧ hasTime(:mpa,:iMPA)

There are no specific spatio-temporal built-ins, however the combination of spatial and temporal operators allows a spatio-temporal analysis. The following expressions combines the use of spatial and temporal operators to show their straight integration. There are again three machines :pm1, :pm2 :pm3 which execute three processes :p1, :p2 and :p3, respectively. Process :p1 meets :p2 and :p2 contains :p3. The :pm1 and :pm2 Machine(:pm1) ∧ Machine(:pm2) ∧ Machine(:pm3) ∧ ManufacturingProcess(:p1) ∧ ManufacturingProcess(:p2) ∧ ManufacturingProcess(:p3) ∧ performsProcess(:pm1,:p1) ∧ performsProcess(:pm2,:p2) ∧ performsProcess(:pm3,:p3) ∧ hasTime(:p1,:iP1) ∧ hasTime(:p2,:iP2) ∧ hasTime(:p3,:iP3) ∧ time:meets(:iP1,:iP2) ∧ time:contains(:iP2,:iP3) ∧ geo:SpatialObject(:l1) ∧ geo:SpatialObject(:l2) ∧ spatial:rcc8ec(:l1,:l2) ∧ isInLocation(:pm1,:l1) ∧ isInLocation(:pm2,:l1) ∧ isInLocation(:pm3,:l2)

The Situation module

This module aims at representing relevant situations associated to abnormal behaviors in the industrial system. Therefore, first of all, we introduce the notion of situation. As evoked before, a situation defines an abstract state of affairs associated to a particular scenario of interest.

In this case, a situation is a specific scenario in which the system state shows a particular combination of sensed values for its attributes (observations) that are not desirable and could lead to a failure. Thus, a situation describes "intermediate" or "abnormal" manufacturing conditions that are described with expert knowledge, in the form of constraints. Consequently, from a conceptual point of view, a situation involves a combination of at least, one resource, eventually associated to its location, and at least one sensor measurement, fulfilling the constraints set by the expert. The whole can be linked through spatial, temporal and/or spatio-temporal relationships. It should be noted, that a situation is actually a general description (concept) about a specific scenario and there may be several instances (individuals) of these situations occurring at different points in time. For example, an abnormal behavior of a particular machine can be represented by a situation. This situation can happen more than once on the same machine or even on another machine of the same type; i.e. which means that there can be different instances of the abnormal situation in the ontology. These situations take place over a period of time, and their duration is represented by the property situationTime.

The Cause class represents the possible causes that provoke a situation. A situation is linked to its causes through the hasCauses property. The Action concept represents actions (preventive or reactive) needed to mitigate the situation or its severity. The actions can be diverse, such as tasks performed by operators or remote changes in the operating parameters of the machines. They are linked to a situation through the requiredAction property. In both cases, the link between a situation and its causes and the required actions is obtained from expert knowledge. The Constraint concept represents defined restrictions on certain observable properties, such as a maximum threshold for one value.

As a situation is expressed as a combination of constraints, this is represented through the associatedConstraints relation. Considering the concepts defined above, the concept of situation is formally defined by the following DL axiom. For example, a situation can be "the temperature in sector :l4 exceeds TEMP-MAX during the execution of process :p1 while process :p2 is also in execution, and both take place in the same sector". This is represented by the HighTemp2Proc class, depicted in the expression (5.3). The expression (5.4) shows the resources and processes involved in the situation. 

Integration of all the modules

The ontological modules described above reuse others ontologies that have been developed to address specific needs in different domains and following different approaches.

Therefore, it is necessary to semantically integrate them in order to have an ontological model that allows context modelling in the Industry 4.0 domain.

The integration among the modules is done mainly through the use of relationships (object properties, equivalence (≡) and subsumption ( )) that link concepts from one module with concepts from other modules. First, the integration of the Resource module with the rest of the modules is done:

• The Resource module is linked with the Sensor module through the sosa:hosts relation. This relation links a Resource with a sosa:Sensor. It is used to assert that one or more sensors are attached to a Resource in order to measure certain properties of it.

• The Resource module is linked with the Process module through the performsProcess relation. This relation links a Resource with a Process. It is used to assert that a resource performs one or more processes.

• The Resource module is linked with the Location module through the isInLocation relation. This relation links a Resource with a geo:SpatialObject. It is used to assert that a resource is located in a specific location.

• The Resource module is linked with the Situation module through the involvedIn-Situation relation. This relation links a Resource with one or more Situations.

It is used to assert that a resource is involved in one or more particular situation(s).

The Process module is linked to the Resource module as previously presented. Furthermore, it is also linked to the Time module, the Location module and the Situation module as described below:

• The Process module is linked with the Time module through the hasDuration relation. This relation links a Process with a temporal:ValidPeriod. It is used to assert the duration of a process.

• The Process module is linked with the Location module through the happensIn relation. This relation links a Process with a geo:SpatialObject. It is used to assert the location where a process occurs. It is worth highlighting that the location where a process occurs can be inferred from the location of the resources that execute that process.

• The Process module is linked with the Situation module through the concerned-BySituation relation. This relation links a Process with one or more Situations.

It is used to assert that a process is concerned by one or more situation(s). Similarly to the previous item, the fact that a situation concerns a process can be inferred from the fact that the situation involves the resource that executes that process.

The Sensor module is linked to the Resource module as previously presented. Furthermore, it is also linked to the Time module, the Location module and the Situation module as described below:

• The Sensor module is linked with the Time module through the hasTime relation. This relation links an Observation with a temporal:ValidTime. It is used to assert the time when an observation was made.

• The Sensor module is linked with the Location module through the locatedIn relation. One limitation of the existing SSN ontology is that it does not provide a way to represent the location of a sensor. In order to overcome this limitation, a new property is defined. The locatedIn property is used to assert that a sensor is deployed in a certain location. It is worth highlighting that the location where a sensor is located can be inferred from the location of the resource that hosts that sensor (if any).

• The Sensor module is linked with the Situation module through two relations, the definedOn relation and the hasObservation relation. The first one links a Constraint with a sosa:ObservableProperty. It is used to assert that a constraint is defined on a particular property. The second one links one or more Situation with one or more Observation. It is used to assert that a situation has one or more observations. From the observations we can obtain the necessary information to determine the resources involved in a situation as well as the processes concerned by the situation, its location and its time. among different concepts that evolve or change over time, such is the case of a resource involved in a situation that happens over a period of time. Therefore, the property that asserts that a resource is in a certain situation (involvedInSituation) holds during the interval in which the situation occurs.

• The Situation module is linked with the Location module through the occursIn relation. This relation links a Situation with one or more geo:SpatialObject.

It is used to assert the location or locations where a situation occurs. It is worth highlighting that the location(s) where a situation occurs can be inferred from the location of the resource that are involved by the situation.

All modules are linked together in one way or another as described above. This integration provides a way to represent situations of interest that take into account the context of the resources.

Ontology alignment with a foundational ontology

In order to further obtain a rigorous conceptualization of the proposed semantic model, we semantically align it with a foundational ontology. Ontology alignment is defined as a set of correspondences between two ontologies [START_REF] Shvaiko | A survey of schema-based matching approaches[END_REF]. As already mentioned in the section where all the conceptual modules are integrated (section 5.1.7), a correspondence establishes a sustained relationship between two entities, one of each ontology, such as: equivalence (≡), subsumption ( ) and disjointedness (⊥). In an ontological alignment, a foundational ontology acts as an external source of common knowledge since the concepts defined or reused in the proposed ontology are a specialization of general concepts shared by different domains. This semantic technique allows to relate concepts from different ontologies based on the analysis of their interpretations. This technique is less ambiguous and more rigorous than those based on the names of the entities as it happens with the syntactic matching methods. The SSN ontology, one of the most important components of our ontology is already aligned with DUL5 . The alignment among the concepts of SSN and DUL is shown in the equations 5.8, 5.9, 5.10, 5.11 and 5.12.

It is important to note that the whole alignment is not trivial and therefore there is not a unique way to align the concepts of our semantic model (or any semantic model) with Since SSN and DUL are aligned, the second step is the alignment between the SWRLTO and GeoSPARQL ontologies with DUL. The entities defined in these ontologies are at a similar level of abstraction. However, the SWRLTO and DUL ontologies consider different representations of temporal information. DOLCE (and therefore DUL) adopts the 4D fluent approach while SWRLTO is based on a reification approach.

In the 4D-fluent approach, time concepts are represented as 4-dimensional objects where the fourth dimension is time. It divides the world into two categories:

• the endurants, that represent entities that can be perceived in a complete way at any instant of time or, in other words, it is information that does not change over time; and

• the perdurants, that represent entities that extend in time accumulating different temporal parts. The changes occur in the properties of the temporal part, while the properties of the static part do not change.

Although SWRLTO is based on a reification approach, it has no restrictions regarding its use with other schemes. Indeed, the meaning of dolce:Perdurant is consistent with the definition of the swrlto:Fact concept, since it represents entities that can be extended in time. For this reason, an equivalence relationship is established between them (equation 5.6). Another alignment of concepts to emphasize is the one defined between the swrlto:ValidTime and dul:Time Interval classes (equation 5.5). Intuitively, it appears that swrlto:ValidTime is more general than dul:Time Interval since it involves instants and intervals of time while dul:Time Interval is defined as "any region in a dimensional space whose purpose is the representation of time" in DUL.

The geo:SpatialObject class represents everything that can have a spatial representation. This definition is consistent with that of the dul:PhysicalPlace concept of DUL, that is "any object that has a proper space region". Therefore, we align these concepts as shown in equation 5.7.

As a result of the alignment between the SWRLTO and GeoSPARQL ontologies with DUL, it can be highlighted that any domain ontology based on DUL can incorporate temporal and spatial reasoning capabilities. Furthermore, since the alignment operates on top level concepts, this does not alter the domain ontologies. This means that each member of dolce:perdurant with a particular dul:Time Interval is interpreted as a swrlto:Fact with a swrlto:ValidTime. Therefore, the functions embedded in SWRLTO can be used in rules and queries to reason about time. Similarly, each member of dul:Phy-sicalPlace is interpreted as geo:SpatialObject. Therefore, the operators embedded in GeoSPARQL can be used to reason about spatial aspects.

Finally, we present the alignments of the Resource, Process and Situation modules with DUL. From these modules, the main concepts are aligned with DUL.The Situation concept is defined as a sub-class of the temporal:Fact concept that is already aligned with DUL (equation 5.14). The Resource concept is interpreted as the dul:Object concept of DUL since a dul:Object is defined as "any physical, social, or mental object" (equation 5.13). The Process concept is interpreted as the dul:Method concept of DUL since a dul:Method is "a description that defines or uses concepts in order to guide the carrying out of actions aimed at accomplishing a task" (equation 5.15).

Alignment of classes

swrlto:ValidTime ≡ dul/dolce:Time Interval 

Alignment of object properties

swrlto:hasValidTime dul:is observable at (5. 16) swrlto:hasGranularity dul/dolce:has region (5.17)

Alignment of data properties

swrlto:hasStartTime dul:has interval date (5. 18) swrlto:hasFinishTime dul:has interval date (5. 19) swrlto:hasTime dul:has interval date (5.20)

Ontology evaluation

Finally, we evaluate the ontology to check that it does not contain pitfalls and that it covers all the requirements identified in section 3.4. In order to detect common mistakes done when developing ontologies we have used OOPS! [START_REF] Poveda-Villalón | OOPS! (OntOlogy Pitfall Scanner!): An On-line Tool for Ontology Evaluation[END_REF]. In OOPS!, ontology pitfalls are classified into three categories: structural, functional, and usability-profiling. Under each category, fine-grained classification criteria are provided to cope with specific types of mistakes. The ontology is evaluated according to the following three categories:

• Structural dimension focuses on mistakes detection on syntax and formal semantics. This category is composed of five criteria:

modeling decisions, which evaluates whether users use the ontology implementation language in a correct way;

real-world modeling or common sense, which evaluates the completeness of the domain knowledge formalized by the ontology;

no inference, which checks whether the desired knowledge can be inferred through ontology reasoning;

wrong inference, which refers to the detection of inference that leads to erroneous or invalid knowledge; and ontology language, which assesses the correctness of the ontology development language.

• Functional dimension considers the intended use and functionality of the proposed ontology. Under this category, two specific criteria are used to evaluate our proposal:

requirement completeness, which evaluates coverage of the domain knowledge that is formalized by the ontology;

application context, which evaluates the adequacy of the ontology for a given use case or application.

• Usability-profiling dimension evaluates the level of ease of communication when different users use the same ontology. Within this category, two specific criteria are applied for ontology evaluation:

ontology understanding, which evaluates the quality of information or knowledge that is provided to users;

ontology clarity, which assesses the quality of ontology elements for being easily recognized and understood by users. This criteria are commonly used to check the quality of ontologies when users do not have sufficient domain knowledge.

The evaluation of COInd4 with OOPS! has yield some minor pitfalls, that do not affect the consistency, reasoning or applicability of the ontology.

A first issue mainly regards "missing domain or range" errors inherited from the SSN ontology. The documentation of SSN states that not adding the domain or range to certain properties is a design decision not to be restrictive with them. However, we have decided to add the missing range and domains. Another minor issue is the case of the "recursive definitions". In our case, it was needed to define several recursive relations, such as "A production equipment can contain another production equipment". Therefore, we have not considered this pitfall as a mistake.

The final evaluation of the COInd4 ontology by OOPS! appears in Figure 5.4. 

CHAPTER 6. STREAM REASONING FOR ABNORMAL SITUATION DETECTION AND DIAGNOSIS

According to the metrics of Lean manufacturing [CBI], as measured by Overall Equipment Effectiveness (OEE), world-class manufacturing factories are working at 85% of their theoretical capacity, while medium-sized ones are at around 60%. Some of the reasons for this are detailed in [START_REF] Hashemian | State-of-the-Art Predictive Maintenance Techniques[END_REF]. The main ones are the launching of unnecessary maintenance tasks and, despite this, the breakdown of equipment. This leads to increased maintenance costs and production stoppages. In order to tackle these issues, as evoked in Chapter 4, factories rely on condition monitoring, which is the task of monitoring all the equipment involved in a manufacturing process for early detection of anomalies. In particular, in Industry 4.0 factories, machines and other plant resources are equipped with sensors that collect data continuously. These data can be exploited for condition monitoring.

In this chapter, the focus is on the real-time use of data collected from sensors attached to resources and the environment to detect situations that may lead to failures disrupting production processes, and to determine their possible causes. A situation, as defined in section 5.1.6, can be seen as a combination of one or several sensor measurements linked through spatial, temporal or spatio-temporal relationships, along with constraints given by experts. The detection of these situations requires the interpretation of observations considering the observations context (for example, other spatially or temporally related observations). These observations are generated from heterogeneous data sources. Therefore, data integration for observations interpretation is a key point to This chapter describes in detail the components in charge of Monitoring and Diagnosis introduced in Chapter 4. An approach that uses stream reasoning and classical reasoning methods (1) to detect situations that potentially lead to failures; and (2) to identify the possible causes that generated those situations is presented in this chapter. Knowing the causes helps choosing the most appropriate decision to avoid the interruption of manufacturing processes. The proposed approach enriches the data collected from sensors with contextual information by using the semantic model introduced in Chapter 5.

The remainder of the chapter is structured as follows: section 6.1 provides a detailed description of the Monitoring and the Diagnosis components for situation detection and cause determination. In section 6.2, an illustrative case study is introduced. Finally, in section 6.3 some conclusions are presented.

Relevant situation detection and cause determination

Certain situations that may lead to machine failures can be detected by interpreting observations in their contexts, for example, if an observation has an abnormal value it may CHAPTER 6. STREAM REASONING FOR ABNORMAL SITUATION DETECTION AND DIAGNOSIS be because another parameter is having abnormal values too. Let us consider the case where the temperature of a machine and the temperature of one of its components are being monitored. It is known that an increase in the temperature of the machine may be due to an increase in the temperature of its component, or vice versa. This allows the exploitation of expert knowledge about relationships between the values of certain parameters from the machines, from the processes and from their context for interpreting observations. Through the early detection of situations, the maintenance schedule can be adapted or further measures to prevent unexpected downtime can be taken.

The main components of our proposed framework are shown in Figure 6 Update/Create situation module that aims at refining already defined situations or defining new ones. This module is explained in section 6.1.3. The Decision Making component is not part of the task of detecting situations or determining the possible causes, but it exploits this information to support decision making tasks. It is described in section 6.1.4.

The Monitoring component

The modules involved in situation detection are Translation and Temporal Relations. The following two subsections explain both and describe the interaction among them as well as with the ontological model.

The Translation module

This module is responsible for (i) converting acquired data from sensors to RDF streams, and (ii) inserting them as instances into the ontology. Both tasks are performed respectively by the Stream Generator and the Instance creator sub-modules.

The Stream Generator sub-module performs semantic enrichment of the acquired data, using the concepts and relations among them as defined in the ontological model.

This allows the module to stream out semantically enriched data streams that are then consumed by the Stream Reasoner. The output streams are RDF streams. An RDF stream is an ordered sequence of pairs, where each pair is constituted by an RDF triplet and its timestamp t , (<Subject,Predicate,Object>,t) as defined in section 2.3.2.

The Instance creator sub-module creates instances from the received data and inserts them in the ontology, i.e. it is in charge of populating the ontological model with observations and their corresponding metadata, such as the sensor(s) which made the observation(s), the observed property and the timestamp.
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The Temporal Relations module

Once the data from the distributed and heterogeneous data sources are available in a homogeneous, contextualized and temporally ordered representation, the streams can be explored to generate new knowledge.

A set of queries, which combine background knowledge extracted from the ontology and some relevant parts of the streams, is registered and executed by the Stream Reasoner over the data streams. These queries represent particular situations to be identified and they include mainly temporal dependencies between observations (that can be normal ones or anomalies). There are several possibilities for the implementation of this module.

Some of them were discussed in section 2.3.2.

When this module detects situations, they can be converted into RDF streams and be returned as output, i.e. this module produces streams of situations as output. This output feeds another stream reasoner in the Cause determination module. In this way, the Temporal Relations module itself can be seen as an advanced sensor able to produce high level data. Furthermore, the detected situations are stored in the ontological model indicating also the resources involved in that situation. This is represented by the involvedInSituation relation explained in section 5.1.7 of Chapter 5.

The Diagnosis component

This component has only one module called Cause Determination to determine the possible causes that caused an abnormal situation.

The Cause Determination module

The purpose of the Cause Determination module is to identify the possible causes that generated a situation detected by the Temporal Relation module. For this, two components are used separately: a Stream Reasoner and a Reasoner.

Stream reasoning is more suitable to highly dynamic data than classical reasoning approaches. Thus, in the case where causes need to be determined in real-time, the Stream Reasoner is used to identify the causes. The association between the situations and their possible causes are stored in the ontological model and they are exploited by this module to return them. However, it is possible that some situations do not have identified causes in a real scenario, in which case the system notifies that the causes are unknown.

Therefore, in order to determine the possible causes of a situation classical reasoning approaches can be used. They provide other inferences that can help in determining the causes of a situation. More complex queries can be performed to the ontological model in order to extract information useful for cause determination. For example, it can be necessary to consider the Open World Assumption, which states that the absence of a statement alone cannot be used to infer that the statement is false. In this case, the Reasoner can be also used over the ontology to infer the causes, if the real-time requirement is not needed.

This last option has some advantages over the previous one. If the cause is identified later, CHAPTER 6. STREAM REASONING FOR ABNORMAL SITUATION DETECTION AND DIAGNOSIS it is added as an instance to the ontological model and linked to the situation for future use.

In both cases, the Diagnosis component provides the Decision Making component with the identified situation together with the possible causes inferred by the reasoner(s).

The association between the situation and the causes is also added to the ontological module.

The Abnormal Situation Refinement component

As mentioned in the previous subsection, the Translation module, in addition to generating the data streams, populates the ontology with semantically enriched data. The main purpose of the Update/Create situations module is to exploit the historical data stored as instances in the ontological model, to refine the already defined situations and eventually to find new ones. This can be accomplished by (i) reasoning over the ontology to derive implicit knowledge, and (ii) interacting with the ontology by issuing one-time queries.

These queries can be executed to check how often a situation happens or to check the trend of the values of certain properties to refine the constraints on them and thus refine the situations associated with those constraints.

This module uses a classic reasoner and not a stream reasoner because reasoning is applied to static data stored in the ontological model and not to the data streams.

The Decision Making component

Considering the situations and their causes, it is possible to support decision making tasks to determine what actions to launch to correct the behavior of the machines and avoid breakdowns. The actions to be triggered are diverse. For example, certain maintenance tasks can be launched remotely and performed by the machines themselves or the smart system can issue an alert to notify the operator closest to the machine to inspect it, if human action is needed.

Each application can perform more advanced reasoning and processing on the received data in order to determine the adaptation strategies that are needed to improve the behavior of the industrial system. These strategies may include changes to the operation parameters of a machine or the launching of a maintenance task, that are launched by the Application layer (Figure 4.1).

An Illustrative case study with two properties

In this section, a case study is presented to illustrate the application of our approach and the advantages of detecting abnormal situations by interpreting observations in their con- The formal description of the case study (Figure 6.2) is the following: Consider two properties P X and P Y . At time t r property P X exceeds its threshold T X indicating a positive deviation from its normal values. At time t j property P Y exceeds its threshold T Y also indicating a positive deviation from its normal values. This deviation is a consequence resulting from the increase of the values of P X . At time t a an action is triggered to correct the behavior of P X and at time t n , property P X is under T X . Then at t m , property P Y also falls under T Y . In this case, the sensed value of P Y at t j is interpreted in the context of property P X exceeding its threshold, since t r . The action launched at t a is decided considering this interpretation.

Let us consider the following industrial scenario with a machine M 1 as a part of a production line in a company. This machine has a main component M 2 , on which the operation of the machine depends. Both the machine and its component have sensors, called SensorTM 1 and SensorTM 2 , which measure respectively the temperature of the machine and of its component. The goal is to monitor the temperature of the machine and of its component. Formally, P Y and P X are the temperature properties of the machine and its component.

As shown in Figure 6.2, during the execution of the task performed by the machine, an increase in the M 2 temperature is observed. Let us assume that this is due to dirty filters in the cooling system. The M 2 temperature deviates from its normal behavior at t r , while P Y is normal. The observation made by SensorTM 2 at time t r is represented in the RDF format using the structure of our ontology in Listing 6.1. Later, at time t j the M 1 temperature also exceeds its threshold.

:obsTempM2 a sosa:Observation ; sosa:observedProperty :Px ; sosa:madeBySensor :SensorTM2 ; sosa:hasSimpleResult Tx^^xsd:float ; :hasTime tr .

Listing 6.1 -Example of an observation in RDF using the structure of our ontology. This deviation is a consequence of the increased M 2 temperature, as M 2 is the main heat source in M 1 . Consequentially, a higher M 2 temperature leads to a higher M 1 temperature.

Our approach allows to exploit this knowledge about the link between the two temperature values. Through this interpretation of the anomaly in P Y , it is possible to detect situation AbnormalT-M1M2.

The C-SPARQL query shown in Listing 6.2 detects this situation and selects the observations and the resources relevant to the situation of interest. Once the situation is detected, an instance (AbnormalT-M1M2) is added to the ontological model, as well as the relations with the corresponding observations (obsTempM1 and obsTempM2). The detection of this situation and its interpretation avoids a general inspection of M 1 due to its high temperature. Only the state of its component M 2 has to be verified. This allows to take action to correct the behavior of P Y considering its context. At time t a , an action is taken about M 2 (cleaning or replacement of the cooling system filters) that solves the problem, which enables the temperature of M 2 to decrease. After some time, this leads to a decrease in the temperature of M 1 .

Although the case study presented in this section involves only two properties, it shows the advantages of interpreting an observation in its context and the exploitation of background knowledge. In real cases, more complex situations can be detected using the proposed approach: for example, as an extension to the previous case, it is possible to interpret the anomaly of temperature P Y regarding the average of the values of temperature P X measured during a certain time window w, instead of only considering if one of these values is greater than the threshold T X . The corresponding C-SPARQL query is displayed in Listing 6.3. Our approach uses stream reasoning to detect situations that could lead to failures timely, to make the most appropriate decision to avoid the interruption of the manufacturing processes. The use of stream reasoning allows the integration of data from different data sources, with different underlying meanings, different temporal resolutions as well as the processing of these data in real-time. Furthermore, our proposal also uses classic reasoning approaches to complete the determination of causes that could not be obtained by stream reasoning.

The main limitation of the proposed approach is that not all situations associated with failures are known in advance. Therefore, if these failures happen they are not detected.

It is thus required to consult domain experts for decisions about these undetected failures. The domain experts asses the current state of the production system and provide appropriate decisions that can be further capitalized.

In this way, new queries capitalizing the experts' experience need to be registered to the stream reasoner to update the initial set of queries. Thus, when in the future a similar situation needs to be detected, the updated set of queries will detect that situation. The abnormal situation refinement component helps the experts in the creation of these new queries that represent the identified situations, as explained in this chapter.

To summarize, an approach that allows to detect high-level situations from low-level context and sensor information is proposed in this chapter. Once a situation that may lead to failures is detected, decisions must be made, such as whether the process should be interrupted or continued under sub-optimal conditions.

In order to support the Decision making component of our approach, it is relevant to consider which other situations can be reached from the current situation, to choose the most appropriate action.

As mentioned in section 5.1.6, a situation is expressed as a combination of constraints.

In this chapter we propose an approach to establish an order among the situations. The order among the situations is a hierarchy that depends on how situations' constraints are correlated. This order represents a road-map of all the situations, desirable or undesirable, that can be reached from a given one. In this way, it is possible to identify the actions that can be taken to correct the abnormality, considering that certain actions can modify the value of a property and thus change the state of the system, either by satisfying another constraint or, on the contrary, by not satisfying constraints anymore.

The proposed approach uses the lattice theory [START_REF] James B Nation | Notes on lattice theory[END_REF][START_REF] Davey | Introduction to Lattices and Order[END_REF]Gra11] to provide an expressive formalization to order the situations in a taxonomic way. In this way, the hierarchy of situations is formally extracted from the situations definitions. The remainder of the chapter is structured as follows: section 7.1 extends the state of the art described in Chapter 3, it presents related work for situation ordering. In section 7.2, the approach for building the lattice is introduced, providing the definitions for the construction of the hierarchy of situations. In section 7.3, the interpretation and exploitation of the lattice to support the decision making is detailed. In Section 7.4, we present some concluding remarks.

Related work

In this section, we extend the literature review, presented in Chapter 3, with focus on other approaches and research fields that are related to the notion of order among situations of interest.

Most of the proposals coming from the Complex Event Processing (CEP) community [CM12, BDG + 07, WDR06] offer relatively simple languages for representing complex events. However, these modeling proposals do not support the definition of complex events hierarchies. To overcome this limitation, TESLA [START_REF] Cugola | Tesla: A formally defined event specification language[END_REF], an event specification language for CEP, supports content-based event filtering and allows to capture relations among temporally related patterns of events. With the same goal as TESLA but coming . In order to obtain turbine condition statements, the authors implement rules given by an expert who is familiar with the behavior of the turbine, typical faults and their root causes. There are two types of rules:

generic rules used to highlight anomalies, and specific rules providing specific condition or potential root causes. In this case, it is possible to determine whether one antecedent is contained in another or not. However, there is not a direct way to determine that an antecedent or situation is partially occurring or that other constraints must be satisfied for another situation to occur.

Understanding the relations among situations, with an order among them, allows the choice of the most effective actions to overcome the effects of abnormal situations. In most of the solutions mentioned above and in section 3.2.2, it is possible to observe a hierarchy of events in the sense that complex events are composed of simple ones, but this hierarchy does not directly provide the information that certain complex events may occur partially in other complex events or that they share certain simple events or not. To the best of our knowledge, no works have been published to establish a formal representation of a hierarchy among (abnormal) situations.

The approach presented in this chapter is a method that allows to order not only the complex events already defined based on the simple events that compose them, but also to order certain combinations of simple events that do not completely compose a complex event. Additionally, it is possible to consider occurrences of simple events that imply the occurrence of other simple events for the construction of the situation hierarchy.

Situation hierarchy

As evoked before, analysing the relations among situations, with an order among them, allows the choice of the most effective actions to overcome the effects of abnormal situations. These actions can, in fine, adapt the maintenance schedule or lead to take further measures to prevent unexpected downtime. The idea driving this proposal is to formally represent a hierarchy among situations leading to failures.

In this section, we firstly introduce the definitions that are necessary for the construction of the hierarchy of situations, and secondly, we describe the steps to automatically CHAPTER 7. SITUATION HIERARCHIES FOR SUPPORTING DECISION MAKING build this hierarchy from the situations definitions and its associated lattice.

Definitions

In order to formally represent a hierarchy of situations, let us consider the following structure 〈S , C , R, T 〉 where:

• S = {s 1 , s 2 , s 3 , . . . , s n } is the set of all the situations,

• C = {c 1 , c 2 , c 3 , . . . , c m } is the set of all the constraints,

• R ⊆ S × C is a binary relation that links a situation with a constraint, and

• T ⊆ C × C is a binary relation that links a constraint with another constraint.

It is worth mentioning again two aspects about situations that were defined in section 5.1.6. The first one is that a situation defines an abstract state of affairs that represents a particular scenario of interest and involves observations linked through spatio-temporal relationships, resources and processes. The second one is that situations are abstract, meaning that there may be different instances of a given situation. Instances of the same situation can happen during different periods of time and involve several resources, but they all satisfy the same constraints.

Set C contains all the constraints that are associated with one or more situations in the set of situations S . These constraints concern properties of the processes, machines, resources and of the environment in which the tasks are executed. For example, if we consider variables MC1_Temp and MC2_Temp, corresponding to the temperature of a component of a machine and the temperature of another component of the same machine, then MC1_Temp < 40 • C and MC1_Temp>MC2_Temp are constraints defined on them.

The binary relation R is used to establish that a constraint is involved in a situation.

We write s 1 Rc 1 to indicate that the constraint c 1 is involved in the situation s 1 . The R relation is therefore built from the relationships between the situations and the constraints that are extracted from expert knowledge. < 60 • C, respectively. If c 1 is satisfied, then c 2 is necessarily also satisfied. Furthermore, some constraints may imply other constraints due to physical properties extracted from expert knowledge or observations. For this reason, the T relation is defined to indicate that if a constraint is satisfied, then another one is also satisfied. We write c 1 T c 2 .

Consider the implications among the constraints from the set of all constraints C

shown in Figure 7.1 (arrows labeled with T ). These implications are inferred from the order relations (<,>,≤,≥), from observations, or extracted from expert knowledge. Taking into account these relations, the constraints associated with each situation are established as shown in This operator retrieves all the situations involving at least all the constraints in the set Y . Therefore, considering the example presented above, if the constraints c 2 and c 5 are considered, then the situations involving those constraints are {c 2 , c 5 } = {s 1 , s 2 , s 3 , s 4 }. Let us note that these situations may involve other constraints, e.g. s 3 with c 4 and c 6 .

The lattice construction

Using the elements of the structure 〈S , C , R, T 〉 and the two operators . and . previously defined, the construction of the lattice representing the hierarchy of situations is detailed below.

In our approach, we group situations and their constraints as ordered pairs (X , Y ) where X is a set of situations and Y is a set of constraints such that X = Y and Y = X . The first component of the pair is a set including all the situations that share all the constraints belonging to the second component. The second component is therefore the set including all the common constraints among the situations of the first component.

In order to find all the pairs and thus the nodes of the lattice, given a set of situations S , a set of constraints C , and relations R and T , Algorithm 1 is applied. Firstly, {s} is computed for each situation s ∈ S (lines 3-5). Then, for any two sets in this set of sets (consSet ), their intersection is calculated. If this intersection is not yet contained in consSet , it is added to it (lines 6-12). This step is repeated until no new sets are generated. If set C of all the constraints and the empty set ({}) are not in consSet , they are also added to it (lines 13-18). These two sets yield the minimum and maximum nodes of the lattice, respectively. Finally, for every set O in consSet , O is computed (lines 19-21). In the end, set (set o f Pai r s) of all the (X , Y ) pairs that satisfy X = Y and Y = X is obtained. Once all the pairs are found, the next step is to order them in a lattice to build the hierarchy of situations. A lattice is an algebraic structure that consists of a partially ordered set in which every two elements have a unique supremum (also called least upper bound or join) and a unique infimum (also called greatest lower bound or meet). A partial order is a pair (P , ) where P is a set and is a binary relation over P where is reflexive, anti-symmetric and transitive.

Considering the example in

Ensure: {(X , Y )|X ⊆ S ∧ Y ⊆ C ∧ X = Y ∧ Y = X } 1: consSet ← {} //consSet i
for all O 2 ∈ consSet do 8: if O 1 ∩ O 2 ∈ consSet then 9: consSet ← consSet ∪ {{O 1 ∩ O 2 }}
For our lattice, we consider 

L = {(X , Y )|X ⊆ S ∧ Y ⊆ C ∧ X = Y ∧ Y = X }
Y ∩ Y are satisfied, noted as (X , Y ) (X , Y ) ⇔ X ⊆ X ∧ Y ⊆ Y .

Lattice proof

The fact that the hierarchy is a lattice allows us to know the situations that can be reached from the current situation, knowing also the intermediate situations (this is inherited from the fact that a lattice is a partial order).

In addition, let us suppose that two situations are happening simultaneously and these situations are represented in two different nodes of the lattice. Each set of situations from those nodes have a larger common set of situations with the constraints that are common to all situations in both sets of the two nodes. Dually, each set of situations have a smaller common subset of situations, which comprises all the constraints that all the situations in both sets of the nodes have. This allows to know from two situations that are happening, which situations can be reached by the production system: situations that satisfy the smaller number of constraints between the two situations that are happening (supremum) or situations that satisfy the greater number of constraints in common between the two situations that are happening (plus some other constraint(s)) (infimum).

Theorem 1 (L , ) is a lattice.

Proof:

The proof is done in two parts. In the first part, it is proved that (L , ) is a partially ordered set. In the second part, it is proved that for any two elements of the lattice they have a unique supremum and a unique infimum.

Part 1

For (L , ) to be a partially ordered set, must be reflexive, anti-symmetric and transitive.

• First it is proven that is reflexive, i.e.

∀(X

, Y ) ∈ L | (X , Y ) (X , Y ). By the definition of , (X , Y ) (X , Y ) ⇔ X ⊆ X ∧ Y ⊆ Y
Since each set is included in itself, is reflexive.

• Now we prove that is anti-symmetric, i.e.

∀(X

, Y ), (X , Y ) ∈ L | (X , Y ) (X , Y ) ∧ (X , Y ) (X , Y ) ⇒ (X , Y ) = (X , Y ) Let two pairs (X , Y ), (X , Y ) belong to L , and (X , Y ) (X , Y ) and (X , Y ) (X , Y ).
Applying the definition of on both terms of the conjunction we obtain respectively:

X ⊆ X ∧ Y ⊆ Y and X ⊆ X ∧ Y ⊆ Y ,
Thus, on the one hand we have X ⊆ X and X ⊆ X which means that X = X , and on the other hand

Y ⊆ Y and Y ⊆ Y which means that Y = Y .
As X = X and Y = Y , we conclude that (X , Y ) = (X , Y ). Therefore, is anti symmetric.

• Finally, we show that is transitive, i.e.

(X , Y ) (X , Y ) ∧ (X , Y ) (X , Y ) ⇒ (X , Y ) (X , Y ).
Let (X , Y ), (X , Y ), (X , Y ) belong to L , and consider that (X , Y ) (X , Y ) and (X , Y ) (X , Y ). Now, if we apply the definition of on both terms of the conjunction we get,

X ⊆ X ∧ Y ⊆ Y and X ⊆ X ∧ Y ⊆ Y ,
respectively. Considering sets X , X , and X we have

X ⊆ X and X ⊆ X which means that X ⊆ X because ⊆ is transitive. Similarly, Y ⊆ Y and Y ⊆ Y which means that Y ⊆ Y .
As X ⊆ X and Y ⊆ Y then we conclude that (X , Y ) (X , Y ). Therefore, is transitive.
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The proof of (2) is written below,

Y ⊆ Y --→ L. 2 Y ⊆ Y Y ⊆ Y --→ L.2 Y ⊆ Y      ⇒ Y ⊆ Y ∪ Y --→ L.3 Y ⊆ Y ∪ Y --→ L.2 Y ∪ Y ⊆ Y
Therefore, we proved that any common child of (X , Y ) and (X , Y ) is also a child of (X , Y ) ∧ (X , Y ).

The proof of uniqueness is done by supposing that there are two different infimums and then concluding that they are the same by applying the fact that is anti-symmetric.

Similarly, (X , Y ) ∨ (X , Y ) is greater than both (X , Y ) and (X , Y ), and it is a child of any common parent of these two pairs. Only the proof for the infimum is developed here since the proof for the supremum is similar.

Case study for lattice interpretation and exploitation

An illustrative case study is described in this section to highlight how the lattice can be used and the advantages it offers to support decisions that need to be made when an abnormal situation is detected in an industrial framework.

The case study is based on a manufacturing production line composed of several machines. These machines are equipped with sensors on different components. The sensors collect data on the properties described in Table 7.2.

Several abnormal situations that could lead to failures in this scenario are defined by experts. Each of them is expressed as a set of constraints. In this case study, we focus on situations covering the following types of failures: hydraulic oil leakage, cooling system filter obstructions, converter and rotor malfunctions and global malfunctions of the production line. The defined abnormal situations are shown in Table 7.3, with a short description of what they represent. The constraints concerned by the abnormal situations are described along the associated properties in Table 7.2.

Some situations represent conditions that can lead to the same potential failure, indicating different levels of severity. For example, situations s 1 and s 2 both represent situations that could lead to the same failure but s 2 indicates a higher severity since the temperature threshold is higher than the temperature threshold for s 1 . In this case, higher impact actions should be taken.

The lattice resulting from the scenario described above is shown in Figure 7.3. By observing the hierarchy of situations, in the upper part of the lattice the constraints which are involved in most of the situations are verified. Further down in the lattice, the situations are more specific as they include more constraints. The most specific constraints are close to the bottom of the diagram, meaning that these situations embed those that appear higher up in the lattice.

The lattice provides a structure that represents the order in which the situations may arise according to which constraints are verified. Considering that certain actions can modify the value of a property and thus change the state of the industrial system, either Since this node includes all the constraints (C ), it may be that two constraints cannot be satisfied at the same time because they are exclusive, such as constraints c 6 and c 7 .

However, this node is necessary for the hierarchy to be a lattice. If this happens in another node of the lattice that it is not the minimum, then it denotes a problem in the definition of the R or the T relations, since it would be a situation that could never be satisfied because it concerns constraints that cannot be satisfied at the same time.

For each node defined as (X , Y ), all situations in X are at least partially occurring, i.e. a part of their constraints is satisfied. 

Conclusion

This chapter presents an approach that uses the lattice theory to represent an order among situations that can lead to potential failures. This lattice is automatically built from existing knowledge coming from experts and from the ontological model. The lattice represents a road-map of all the situations that can be reached from a given one, desirable or not. This allows the identification of the actions that can be taken to correct a certain abnormal behavior of the process.

Although the case study presented in section 7.3 comes from the Industry 4.0 context, the proposed approach can be applied to other application domains, where real time monitoring is needed. In fact, in any monitoring application, the notions of normal or abnormal situations exist. Expert knowledge allows the description of these situations enabling then the building of the hierarchy for further use.

It is also to be remarked that in the presented case study, the T relation represents a hierarchy between the constraints in the sense that one constraint may be more specific than another, so that when the last one is satisfied, the more general constraint is also satisfied. The T relation can also represent another type of relationship between the constraints, such as the fact that two different properties have a physical link, meaning that the values of one directly affect the values of the other. In the previous chapters of Part II, the components of the proposed framework have been introduced. In Chapter 5, an ontological model is developed to represent the industrial domain and it is used as the foundation of a smart system. In Chapter 6, an hybrid semantic approach is proposed to automate abnormal situation detection, based on the combined use of classic reasoning and stream reasoning. In Chapter 7, a lattice-based approach is presented to represent a road-map of all the situations that can lead to potential failures, in order to support decision making tasks.

In order to apply our approach, we have developed a software prototype. The software uses deductive approaches, domain ontologies and ontology reasoning, and stream reasoning to analyze industrial data and to detect abnormal situations that can lead to failures.

This chapter is organized as follows. Section 8.1 describes the proposed framework design and implementation. The technologies and tools used for the development of the proposed framework are introduced as well as the implementation of the core functionalities of it. A proof of concept is presented in section 8.2 through an illustrative case study from the industrial domain. Section 8.3 describes the limits of the prototype and it also presents some concluding remarks.

Implementation of the framework components

For the development of each component of the proposed framework, several software and tools are used. As mentioned in Chapter 4, the proposed framework is a smart system in which each component can also be seen as a smart system. Figure 8.1 shows the core components and technologies used to implement the aforementioned framework.

The proposed framework is implemented in Java 1. MAX, MIN and AVG. The static parts are loaded into relations, and the continuous queries are executed by processing the stream data against these relations.

Different SSN-based domain ontologies can be loaded in the prototype as well as the appropriate C-SPARQL queries and SWRL rules. Furthermore, different SPARQL-like query processing engines coupled with different rule languages such as CQELS can be integrated.

The system is open source and can be found here4 .

The Ontological model implementation

In this section, we briefly describe the technologies used to implement the ontological model. It is composed by:

• The classes, properties and constraints that define the domain concepts,

• A set of ontological assertion axioms that describe the instances for particular applications,

• A set of if-then rules to infer new facts.

The ontology is written in OWL2, a sound and complete language with a formal semantic based in SROIQ Description Logic (presented in section 2.2.2) and is available here 5 . The OWLAPI is used to write the ontological statements. Rules expressed as OWL axioms are limited by some restrictions that enable the language to be decidable. Thus, SWRL has been considered to formulate the rules, and SWRLAPI is used to implement them in the ontological model. In addition, Protégé 6 and VOWL 7 are used for visualiza-CHAPTER 8. IMPLEMENTATION OF THE PROPOSED FRAMEWORK tion of the ontology.

The Monitoring component implementation

The Monitoring component, in charge of situation detection, is composed of the following modules:

Translation module

This module contains two sub-modules called Stream Generator and Instance creator.

These sub-modules are used to convert the data collected from the sensors into RDF streams and insert them into the ontological model as instances.

• RdfQuadruple q = new RdfQuadruple("Sensor", "madeObservation", "O", System.currentTimeMillis()); this.put(q); q = new RdfQuadruple("O","observedProperty","Temp", System.currentTimeMillis()); this.put(q); q = new RdfQuadruple("O","hasSimpleResult", v + "^^http://www.w3.org/2001/XMLSchema#integer", System.currentTimeMillis()); this.put(q); Listing 8.1 -Code to generate RDF streams. 

The Diagnosis component implementation

The Cause Determination is the only module of the Diagnosis component. The goal of this component is to identify the possible causes that generated an abnormal situation detected by the previous component.

Cause Determination module

In order to determine the possible cause(s) that lead to a certain abnormal situation, this module contains two sub-modules, one dedicated to real-time cause determination, and the other to be used when the cause(s) are not known in advance.

• The Stream Reasoner sub-module is implemented using C-SPARQL. This module explores the situations streams generated by the Monitoring component to identify the causes associated to those situations. This sub-module can be used to identify situation cause(s) in real-time, when situations can be generated at high frequency.

Queries to identify the causes of the detected situations are registered and executed by the C-SPARQL engine over the situation streams.

• The Reasoner sub-module is used over the ontology to infer the causes associated to the detected situation (in this case, the situation is an instance in the ontology).

This option can be used when it is not necessary to determine causes in real-time.

For example, it is possible that some situations do not have identified causes in a real scenario or that certain facts that are necessary for the determination of causes are not explicitly expressed in the ontology, in which case the Cause Determination module notifies that the causes are unknown. In order to determine the possible causes of a detected situation, this sub-module offers classic reasoning mechanisms that provide other characteristics to those provided by the Stream Reasoner sub-module, such as the Open World Assumption.

Identifying the causes of a detected situation can include the call of SWRLAPI methods for doing SWRL-based reasoning and the execution of SPARQL queries on the ontology. For example, a query could be: "Has the filter of a machine been changed?"

If the change of the filter is explicitly represented in the ontological model then it is known that the change was made. In case the change is not explicitly represented in the ontological model, the query returns unknown. Therefore, we can not assure whether the change was made or not. Thus, the non-change of the filter may be the cause of the detected situation. the production line including hydraulic oil leakage and cooling system filter obstructions.

The abnormal situations are briefly describe below:

• The S1 situation is associated with an oil leak on the M1 machine. This situation happens when the constraints OilTemp > 40 • C (c 1 ), T_temp > 45 • C (c 3 ), C_temp > 40 • C (c 4 ), G_current > 800 A (c 5 ) and P_temp < 35 • C (c 6 ) are satisfied at least once in a 20 second period of time.

• The S2 situation is a more severe form of S1, also associated with an oil leak on the M1 machine. The S2 situation happens when the constraints OilTemp > 60 • C (c 2 ), T_temp > 45 • C (c 3 ), C_temp > 40 • C (c 4 ), G_current > 800 A (c 5 ) and P_temp < 35 • C (c 6 ) are satisfied at least once in a 20 second period of time. S2 is more severe than S1 because the oil temperature exceeds 60 • C. More urgent actions are required to avoid the failure of the M1 machine.

• The S3 situation is associated with an increase in the oil temperature of the M2 machine. This situation happens when the constraints P_temp (c 11 ) are satisfied at least once in a 25 second period of time. S5 is more severe than S3 and S4 because the GB temperature exceeds 60 • C and the platform temperature exceeds 40 • C. Due to its degree of severity, drastic actions must be taken to avoid the failure of the M2 machine.

• The S6 situation is associated with a cooling system failure of the M3 machine. This situation happens when the constraints C_Wtemp > 60 • C (c 15 ), TG_temp < 35 • C (c 17 ) and G_temp > 45 • C (c 18 ) are satisfied at least once in a 15 second period of time.

• As the S6 situation, the S7 situation is associated with a cooling system failure of the M3 machine. The S7 situation happens when the constraints C_Wtemp > 80 • C (c 16 ), TG_temp < 35 • C (c 17 ) and G_temp > 45 • C (c 18 ) are satisfied at least once in a 15 second period of time. S7 is more severe than S6 because the converter water temperature exceeds 80 • C. In the same way, that the most severe situations above the actions to take must be prompt to avoid in this case the failure of the cooling system of the M3 machine.

• The S8 situation is associated with a malfunction of the M3 machine. This situation happens when the constraints P_temp • The S10 situation is associated with a malfunction of the M3 machine as the two previous situations. The S10 situation happens when the constraints C_Wtemp > 80 In order to avoid a failure of M3, immediate actions must be taken.

• The S11 situation is associated with a malfunction of the M4 machine. This situation happens when the constraints PowerOutput > 2000 KW (c 12 ), R_speed < 200 rpm (c 21 ) and R_Pangle < 5 • (c 23 ) are satisfied at least once in a 30 second period of time.

• The S12 situation is associated with the same malfunction as the S11 situation. The S12 situation happens when the constraints PowerOutput > 2000 KW (c 12 ), R_speed < 100 rpm (c 22 ) and R_Pangle < 5 • (c 23 ) are satisfied in least once in a 30 second period of time. S12 is more severe than S11 because the rotor speed of the M4 machine is lower than 100 rpm. It requires immediate action to prevent the failure of the M4 machine.

• The S13 situation is associated with a global malfunction of the PL1 production line. This situation happens when the constraints PowerOutput < 500 KW (c 13 ), R_speed < 200 rpm (c 21 ) and R_Pangle < 5 • (c 23 ) are satisfied at least once in a 35 second period of time.

• As the S13 situation, the S14 situation is also associated with a malfunction of the PL1 production line. The S14 situation happens when the constraints PowerOutput < 200 KW (c 14 ), R_speed < 200 rpm (c 21 ) and R_Pangle < 5 • (c 23 ) are satisfied at least once in a 35 second period of time. S14 is more severe version of S13 because the power output of the PL1 production line is lower than 200 KW.

Abnormal situation detection and cause determination

As mentioned in the section 8.1.2, the situations defined above are detected through C-SPARQL queries. In this section, we describe a particular query and see the effect it has on the ontological model when the situation is detected.

We must emphasize that for this case study all the data streams of the properties (ObservableProperties) defined in table 8.1 are generated using the RDFStream class provided by C-SPARQL to generate RDF streams. Queries can also be executed on data streams that are generated and published by other systems or users, however it is necessary to know the structure of the RDF stream to be able to execute queries on them. Once the situation is detected, it is added as an instance to the ontology as well as the relationships representing the resources concerned by this situation. Figure 8.7 shows a part (relevant to this case) of the ontological model before and after the detection of the S6 situation. The next step is to determine the possible cause(s) of the S6 situation. The S6 situation is associated with a failure of the cooling system of the M3 machine. By expert knowledge we know that this situation can be caused by polluted filters in the cooling system. Therefore, the following rule is used to add this fact to the ontology. Figure 8.8 shows the added cause associated with the detected situation.

Situation-S6(?sit) ⇒ hasCause(?sit,:PollutedFilters)

It is worth mentioning that in case the cause is not known beforehand, it can be added to the ontological model. Thus, the next time the situation is detected the cause is automatically determined.

Once the situation and its possible cause(s) have been detected, the next step is to make a decision to avoid the failure associated with the situation. To determine what action to make, we use the approach proposed in Chapter 7 to build the hierarchy of situations, based on the constraints on which the situations rely. The figure 8.9 shows the hierarchy of situations defined in the case study. Having the situation detected and its possible cause, the Decision making component can use both to build a strategy to correct the abnormal behavior. For example, one action could be to replace the polluted filters which would lead to the constraints associated with the S6 situation no longer being met, i.e. correction of the abnormal behavior. In case this action cannot be carried out, the system or the operators can decide that the production line continues with the execution of its processes. This could lead to the S7 situation, satisfying the C_Wtemp > 80 • C (c 16 ) constraint, and thus requiring more urgent actions since the M3 machine would be closer to a failure. By observing the hierarchy, we can see that the behavior of the M3 machine could get even worse, since the S10 situation could also be reached if the Conv_temp > 60 • C (c 19 ) constraint is also satisfied. Unlike situation S6 and S7 which are associated with a failure of the M3 machine's cooling system, situation S10 indicates that the M3 machine is having a global malfunction. So the strategy to follow could be more drastic as for example stopping the execution of the processes of the M3 machine, halting also the production of the whole production line (PL1).

Our approach provides the Decision making component with high level information such as situations and their possible causes from raw data. In addition, the hierarchy of situations allows visualizing the possible intermediate situations that the production system can reach. In this way, it is sought that the Decision making component takes appropriate actions to maintain the reliability and availability of the production line.

Conclusion

This chapter presents the implementation of the proposed framework. The technologies and tools used for the development are introduced as well as the implementation of the core functionalities of it.

An illustrative case study from the industrial domain is presented to demonstrate the application of the framework. The goal is to show the interaction between the different components and how they modify the semantic model, making it evolve for the representation of what happens in the real factory. The results obtained by our proof of concept using simulated data are encouraging. Unfortunately, it has not been possible to validate the whole approach on real industrial data, even off-line.

Ideally, it would also be interesting to test our proposal in a real production line. This would allow to verify if the decisions made based on the use of our proposal would improve its efficiency and reliability.

Conclusion & Future Work

In the following, we present a summary of these thesis works with their corresponding contributions. Afterwards, some perspectives and possible lines of future work are also presented.

Conclusion

As already evoked all along this manuscript, the management of heterogeneous industrial data is a challenging task in the framework of condition monitoring. Additionally, as the structure and behavior of production systems get more and more complex, the volume of data grows significantly. This is why manufacturing companies search for solutions to handle this heterogeneous industrial data efficiently and perform monitoring and diagnosis tasks in a smart way.

In this framework, there is a need of well-defined models for managing heterogeneous data and exploiting it together with expert knowledge. To develop such a model, domain knowledge of manufacturing has to be structured in a machine-interpretable way and usable by the monitoring system. Furthermore, as the manufacturing domain becomes more knowledge-intensive, a uniform knowledge representation of physical resources and reasoning capabilities is needed to automate the decision-making processes.

These decision-making processes include abnormal situation detection and cause determination, maintenance scheduling, and process adaptation. To achieve these objectives, semantic technologies have shown promising results when formalizing knowledge about condition monitoring tasks in several industrial applications.

Existing ontological models to represent the manufacturing domain do not allow the representation of concepts and relationships that evolve over time, such as the different situations under which a manufacturing resource can perform its tasks. These existing ontological models are suitable for information that does not change or changes very little in time. However, the manufacturing domain is highly-dynamic and a production system should be able to adapt itself to changing situations. This requires the ontological model to cope with the dynamic change of knowledge. Different sets of actions can be selected for correcting the abnormal behavior according to the specific physical context of the operating machine. This ensures that production continues without the need to stop it if the abnormal situation is not severe.

To resolve all of the above, taking into account the requirements indicated in the introduction of this manuscript, a novel semantic framework is proposed to address the evo- In Chapter 5, an ontology-based approach for context modeling in the industrial domain is proposed. The ontological model satisfies the Industry 4.0 requirements with special emphasis on temporal and spatial relations among resources and processes in order to represent particular situations of interest in an industrial scenario. Furthermore, our ontological model provides a way to capture the dynamic changes and the evolution of concepts in time. The proposed ontology is generic and extensible and its modular architecture allows the description of the capabilities of manufacturing resources at different levels of granularity.

In Chapter 6, the components of our proposed framework are detailed (the Monitoring, the Diagnosis, the Abnormal Situation Refinement and the Decision Making components). The use of stream reasoning allows the integration of data from different data sources, with different underlying meanings, different temporal resolutions as well as the processing of these data in real-time. Data collected from sensors are enriched with contextual information to allow real-time situation detection. Furthermore, our proposal also uses classic reasoning approaches to complete the determination of causes that could not be obtained by stream reasoning.

In Chapter 7, an approach that uses the lattice theory to represent a hierarchy of situ-
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ations that can lead to potential failures is presented. The hierarchy of situations is built automatically considering the constraints they rely on. The hierarchy allows the representation of situations that occur partially, i.e. when only some of their constraints are satisfied. The proposed approach can be applied to other application domains, where real time monitoring is needed.

Finally, in Chapter 8, the technologies and tools used for the development of the proposed framework are introduced as well as the implementation of the core functionalities of it. An illustrative case study from the industrial domain is presented to demonstrate the application of the proposed framework. Unfortunately, it has not been possible to validate the whole approach on real industrial data. However, the results obtained by our proof of concept using simulated data are encouraging.

Future Work

The contributions presented in this thesis enable to identify several research perspectives.

Future works can be oriented to the enrichment of the proposed semantic model. New types of relations can be explored aside from the spatial and temporal ones addressed in this thesis, in order to allow the representation of richer contextual information. For example, representing the relationship that two production lines execute the same process could be used to divert the production from one production line to the other if the first one is behaving abnormally. Another possibility can be the representation of relations between production lines and work orders, so that depending on whether the production line is close to finishing a work order and whether the deadline is coming up, the decision to continue the production until the order is finished or to stop the production line can be made.

Since the manufacturing domain is highly-dynamic, how to process real-time and heterogeneous data streams is a crucial concern. In order to test scalability and complexity issues to detect situations in real-time, a broader case study with more complex situations, involving more properties observations that are temporal and spatially related, has to be explored. Different implementations of stream reasoning engines should be evaluated in terms of efficiency and scalability, considering also the size of the semantic model.

Another interesting direction to investigate is the identification of causality patterns that could enable the definition of generic queries for certain types of anomalies. These generic queries could be reused in different cases, and perform complex operations among the sensed values.

Regarding the refinement and identification of new situations, it can be interesting to apply machine learning methods to exploit the data stored in the semantic model. As seen in this thesis, the queries are executed during certain time windows every certain intervals of time, therefore the application of machine learning methods can help to determine the duration of the time windows in which a query needs to be executed. In addition, it would also be interesting to dynamically adapt the duration of the time windows.

There are also perspectives associated to the construction of the hierarchy of situa-
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tions from real industrial data. Firstly, this construction also raises scalability and complexity issues to build the lattice. Therefore, tests need to be performed with different variations of Algorithm 1 to evaluate their relative efficiency. In addition, another possible future work is to investigate how to add new situations or the refined ones without having to rebuild the hierarchy from scratch.

Finally, a more exhaustive and detailed study can be made on the constraints implications that represent dependencies among constraints for the identification of new situations or the refinement of existing ones. In this way, different hierarchies of situations can be obtained according to the chosen T relation, that can be used alone or combined with others, allowing different strategies for decision making.
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 1 SYNTHÈSE DE LA THÈSE EN FRANÇAIS répondent pas à la dynamique des processus de fabrication. Pour que le modèle puisse représenter les situations dans lesquelles les processus sont exécutés, il est nécessaire que le modèle sémantique évolue afin de représenter ce qui se passe dans le monde réel. Le modèle sémantique peut évoluer pour différentes raisons. La première est liée à un changement dans la structure du modèle lui-même, c'est-à-dire l'ajout ou la suppression de concepts et de relations. Ce type de changement est étudié dans le domaine de l'évolution des ontologies [SMMS02, Sto04, NK04, PDTC07] et n'est pas abordé dans cette thèse. La deuxième possibilité est liée à l'ajout d'instances à des concepts déjà définis et à l'ajout de relations sur des instances existantes. Un exemple peut être l'ajout d'une ressource physique à l'usine qui serait reflétée comme une nouvelle instance du concept de ressource correspondant dans le modèle sémantique. Un autre exemple peut être l'ajout d'une situation détectée et le fait qu'une certaine ressource est impliquée dans cette situation (c'est-à-dire un nouveau lien entre deux instances à travers une relation existante). Les situations d'intérêt dans le domaine industriel dépendent des données des capteurs et de la connaissance du domaine. Outre les informations statiques sur les entités industrielles, des informations dynamiques, telles que la manière dont les processus industriels sont exécutés, doivent être décrites. Par conséquent, les données collectées par les capteurs déployés dans une usine doivent être explicitement représentées pour décrire l'état du processus. C'est la première exigence pour que le modèle sémantique soit construit. Une autre exigence est la représentation des relations temporelles entre les processus et des relations spatiales entre les entités et les emplacements dans l'usine. Ces relations sont utilisées pour identifier différentes situations d'intérêt. Cela implique de traiter des informations qui évoluent dans le temps, comme les changements de situation(s) qu'une machine peut traverser ou les changements de valeurs d'un paramètre de la machine en fonction des différentes décisions prises. Par conséquent, le modèle sémantique doit fournir suffisamment d'expressivité pour saisir des connaissances de haut niveau, telles que des situations, à partir de données annotées dans le temps provenant de capteurs. Plus précisément, les exigences auxquelles le modèle sémantique doit répondre sont les suivantes : Intégration de données. L'intégration des informations provenant de différentes sources est une caractéristique essentielle. De plus, l'intégration de données provenant de capteurs (flux de données) avec des connaissances de base décrivant le domaine d'application est également nécessaire (par exemple, les données de flux collectées par une machine sont combinées avec des connaissances de base sur les différentes contraintes qui indiquent un comportement anormal). Représentation temporelle. Le temps joue un rôle central dans cette thèse. Cela exige une représentation adéquate du temps, où les données peuvent être annotées avec leur heure d'occurrence et leur validité. Outre le traitement des données en continu, il est également nécessaire de gérer des données historiques, c'est-à-dire des informations annotées dans le temps sur les états précédents de la ressource analysée (par exemple, l'historique des relevés de température d'une certaine machine). Ces informations peu-CHAPTER 1. SYNTHÈSE DE LA THÈSE EN FRANÇAIS vent être utilisées, par exemple, pour identifier des tendances, pour extraire des statistiques ou pour comparer des informations antérieures et actuelles afin d'identifier de nouveaux types d'anomalies ou de situations.
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  ilaire à celle d'un expert, par exemple faire des conclusions basées sur le cas courant et adopter la bonne stratégie pour résoudre le problème; ils peuvent traiter des informations incomplètes en demandant des informations complémentaires; ils disposent d'une interface utilisateur qui leur permet de faire des demandes d'information appropriées et d'expliquer comment ils sont parvenus à leurs réponses; et enfin ils peuvent être développés en réutilisant des structures, des règles et des méthodes de résolution de problèmes génériques. Dans la suite, nous présentons les fondements théoriques et les concepts de base des systèmes intelligents à l'aide de l'architecture KREM (Knowledge, Rules, Experience, and Meta-Knowledge) [ZM15]. Les quatre composantes du KREM sont : La composante Connaissance (Knowledge) La composante Knowledge contient des connaissances sur un certain domaine au moyen d'un modèle conceptuel formel. Parmi les modèles conceptuels existants, les ontologies ont été largement utilisées pour formaliser la connaissance d'un domaine. En informatique, la définition la plus citée d'une ontologie est la suivante: Une ontologie est une spécification formelle et explicite d'une conceptualisation partagée d'un domaine d'intérêt [Gru93]. Le Web sémantique est une initiative du World Wide Web Consortium 2 (W3C) pour une nouvelle génération du web mondial. L'idée a été présentée à l'origine par Tim Berners-Lee comme une solution pour améliorer l'exploitation des connaissances stockées sur le CHAPTER 1. SYNTHÈSE DE LA THÈSE EN FRANÇAIS web. Les technologies du web sémantique offrent un ensemble de solutions pour gérer la sémantique des données. Dans le web sémantique, les ontologies sont utilisées comme modèles de représentation des connaissances et le langage utilisé pour écrire ces modèles est le Web Ontology Language (OWL). OWL est basé sur le Resource Description Framework (RDF) et le Resource Description Framework Schema (RDFS), qui sont superposés au langage de balisage extensible (XML). OWL fournit un vocabulaire supplémentaire ainsi qu'une sémantique formelle pour faciliter une meilleure interprétation automatique du contenu Web que celle supportée par XML, RDF et RDF Schema [MVH + 04].

  teurs sont un exemple de données en flux continu qui changent rapidement. Ces données doivent être rapidement consommées et traitées. Par exemple, si les valeurs d'une propriété particulière baissent par rapport à son seuil autorisé, ces informations doivent être récupérées rapidement et une décision appropriée doit être prise. Pour combler cette lacune, un certain nombre de travaux récents proposent d'unifier le raisonnement et le traitement des flux, ce qui a donné naissance au domaine de recherche du raisonnement sur les flux de données (Stream Reasoning -SR). La composante Expérience (Experience) La composante Experience permet la capitalisation et la réutilisation des connaissances antérieures. Elle améliore le modèle de connaissance en le complétant progressivement avec l'expérience acquise lors des interventions des experts humains. CHAPTER 1. SYNTHÈSE DE LA THÈSE EN FRANÇAIS La composante Méta-Connaissance (Meta-Knowledge) La composante Meta-Knowledge comprend les connaissances sur les trois autres composantes, selon l'application. Les méta-connaissances sont des connaissances sur la connaissance du domaine, sur les règles et sur l'expérience. Cette composante fournit notamment une représentation formelle du contexte, afin d'identifier celui dans lequel les actions doivent être prises. Dans le domaine industriel, la méta-connaissance peut contrôler le déclenchement de différents ensembles d'actions ou de règles en fonction de différents contextes. Par exemple, les règles de détection de l'écart de température d'une machine au-dessus de son seuil peuvent changer en fonction de l'humidité de l'environnement de la machine. De cette manière, l'utilisation de la méta-connaissance peut orienter l'exécution de systèmes intelligents. Le contexte a été étudié dans des domaines tels que les systèmes basés sur la connaissance et omniprésents, soit pour traiter dynamiquement des connaissances complexes [GMD12], soit pour fournir des interfaces humaines intelligentes [DAS01]. Il existe diverses représentations du contexte dans différents domaines de recherche. Selon [SAW94b], la connaissance du contexte est la capacité d'un système à rassembler des informations sur son contexte ou son environnement à un moment donné et à adapter son comportement en conséquence en fournissant des services appropriés. La définition du contexte la plus largement citée est la suivante : le contexte est toute information pouvant être utilisée pour caractériser la situation d'une entité. Une entité est un utilisateur, un lieu, ou un objet physique ou informatique qui est considéré comme pertinent pour l'interaction entre une entité et une application, y compris l'entité et l'application ellesmêmes (traduit de [DA00]). Ces entités et applications sont capables de réagir spécifiquement à leur emplacement actuel, au temps et à d'autres attributs de l'environnement et d'adapter leur comportement sans intervention explicite de l'utilisateur, visant ainsi à accroître la convivialité et l'efficacité. Dans cette section, nous étudions les modèles existants pour le traitement du contexte et analysons leurs avantages et inconvénients par rapport aux exigences de la version 4.0 de l'industrie. Conclusion La façon dont la connaissance du domaine est formalisée détermine la manière dont les règles sont exprimées. L'expérience vient compléter les connaissances et les règles disponibles. Enfin, la méta-connaissance interagit directement avec les règles et l'expérience pour indiquer quelles règles doivent être executées en fonction du contexte du problème à résoudre. Les méta-connaissances sont des connaissances sur la connaissance du domaine, sur les règles ou sur l'expérience. Cette méta-connaissance peut prendre la forme d'un contexte, d'une culture ou de protocoles. Le contexte est l'information qui caractérise une situation en relation avec l'interaction entre les êtres humains, les applications et leur environnement [DA99]. Dans cette section, nous donnons un aperçu des fondements théoriques des systèmes intelligents. Nous encadrons notre approche par l'architecture KREM, qui comporte qua-CHAPTER 1. SYNTHÈSE DE LA THÈSE EN FRANÇAIS tre composantes. Dans la composante Knowledge, le concept d'ontologie est introduit ainsi que les concepts clés du Web sémantique et les technologies associées utilisées dans cette thèse. Dans la description du composant Rules, nous présentons la notion de raisonnement dans des scénarios statiques et dynamiques. SWRL est un langage puissant pour le raisonnement hors ligne, qui est devenu le langage de règles standard de facto dans le Web sémantique. Le raisonnement sur les flux de données, qui combine le traitement continu des flux de données et le raisonnement avec de riches connaissances de fond, peut être utilisé pour traiter des domaines dynamiques tels que l'Industrie 4.0. Cette thèse ne traite pas de la composante Experience de KREM. Dans la section sur la composante Meta-knowledge, la définition du contexte est présentée. La représentation du contexte et le raisonnement contextuel dans le domaine de l'Industrie 4.0 peuvent être traités par les technologies sémantiques. Dans la section suivante, nous passons en revue les approches existantes pour la surveillance de l'état des processus dans l'Industrie 4.0. Nous accordons une attention particulière à celles qui utilisent les technologies du web sémantique pour faciliter les tâches de maintenance prédictive dans l'industrie. 1.2.2 Approches existantes pour la surveillance de l'état du système dans l'Industrie 4.0 La surveillance est une activité cruciale dans l'industrie. Toute défaillance imprévue d'une machine peut dégrader ou même interrompre les processus de fabrication d'une entreprise. Il est donc fondamental de développer une stratégie de surveillance efficace pour prévenir les arrêts de production imprévus, améliorer la fiabilité et réduire les coûts d'exploitation. Dans cette section, nous présentons les connaissances de base sur l'Industrie 4.0, en détaillant ses quatre éléments clés : l'Internet des objets (IoT), les systèmes cyberphysiques (CPS), l'informatique ubiquitaire (Cloud Computing), et les technologies d'analyse de grandes données (Big Data). Ensuite, nous décrivons les stratégies de maintenance existantes dans le domaine industriel en mettant l'accent sur les stratégies de maintenance prédictive pour l'Industrie 4.0. Les approches basées d'apprentissage automatique, et les approches basées sur la connaissance des experts pour la surveillance de l'état du système sont également discutées. Nous nous concentrons particulièrement sur les modèles fondés sur les ontologies et leurs extensions basées sur des règles qui sont pertinentes pour la surveillance des processus de fabrication. Éléments principaux de l'Industrie 4.0 L'Industrie 4.0 suit et étend la notion de technologie d'automatisation introduite lors de la troisième révolution industrielle en appliquant un ensemble de technologies pour l'échange et le traitement automatique de données dans les usines de fabrication [WSJ17]. Les systèmes cyberphysiques, l'internet des objets, le cloud computing et les tech-CHAPTER 1. SYNTHÈSE DE LA THÈSE EN FRANÇAIS niques d'analyse des grandes données sont les éléments clés de l'Industrie 4.0. Ils permettent l'interconnexion automatique et l'échange de données entre les entités manufacturières. La collecte et l'analyse de ces données peuvent améliorer la productivité et la fiabilité des systèmes de production [LBK15]. L'Industrie 4.0 vise à transformer les usines de fabrication traditionnelles en "usines intelligentes" (smart factories) en équipant l'usine de capteurs, d'actionneurs et de systèmes autonomes [DGP19]. De cette façon, les machines de fabrication peuvent atteindre des niveaux élevés d'auto-optimisation et d'automatisation. L'utilisation conjointe des IoT, CPS, Cloud Computing et technologies de Big Data peut aider les systèmes de production à accéder eux-mêmes à leur état pour prendre des décisions intelligentes afin d'éviter des défaillances potentielles [ZTL15].

  grâce à l'utilisation de la gestion des pannes. La maintenance préventive a le coût de réparation le plus faible en raison d'un temps d'arrêt bien planifié, tandis que la maintenance prédictive peut réaliser un compromis entre le coût de réparation et le coût de prévention. Idéalement, la maintenance prédictive permet de réduire au maximum la fréquence de maintenance afin d'éviter une maintenance réactive non planifiée, sans encourir les coûts associés à une maintenance préventive trop importante.
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  Figure 1.9 -Knowledge Hierarchy (taken from [Row07])
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 111 Figure 1.11 -Structure of the thesis.

Figure 2

 2 Figure 2.1 -Knowledge-based system architecture (adapted from [Mil08])

  knowledge. In particular, Knowledge representation is the fundamental task involved in the development of any information system. The choice of the objects and attributes of the real world that are captured by the program and the way they are represented are what determines what operations the system can perform and what queries it will be able to answer. In summary, a smart system contains a conceptual yet executable model of an application domain. It is made machine-interpretable by means of knowledge representation techniques and can therefore be used by applications to base decisions on reasoning about domain knowledge. Smart systems do not always provide satisfactory results when solving a problem. It suffers of several drawbacks: • Incompleteness of the knowledge models for their implementation: Usually it is difficult to determine what knowledge needs to be captured to provide an appropriate solution to a real-world problem;

Figure 2

 2 Figure 2.2 -The KREM architecture with its four components (taken from [ZMS19])

•

  First Order Logic (FOL). They represent the ontological categories that are relevant in the domain of interest. Some concepts that contain individuals are shown in Figure 2.3. There are three concepts in the figure: Person, Country and Animal. The concept Animal has a sub-concept called Mammal, which represents the animals that are mammals. Relations semantically connect concepts, as well as instances, specifying their relations. They map to binary predicates in First Order Logic. Two examples are the generalization-specialization relation "is a" and the composition relation "is part of ". Relations are also called properties or roles. Figure 2.3 shows relations (arrows) that link individuals. The names of these relations are livesIn and hasPet.

Figure 2

 2 Figure 2.3 -An example of three concepts (Person, Country and Animal) and relations (livesIn and hasPet) among instances.
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  4. Documentation: to enable knowledge sharing.
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 24 Figure 2.4 -Methodology for developing ontologies [UG96].

Figure 2 .

 2 Figure 2.5 represents an inclusion hierarchy: the lower ontologies inherit and specialize concepts and relations from the upper ones. The lower ontologies are more specific and have thus a narrower application scope, whereas the upper ones have a broader potential for reuse.
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 25 Figure 2.5 -Types of Ontologies.

Figure 2 .

 2 Figure 2.6 shows the Semantic Web "layer cake" proposed by Tim Berners-Lee [BLF00]. This figure shows the hierarchy of the Semantic Web languages mentioned above, within the Semantic Web stack. OWL is based on Resource Description Framework (RDF) and Resource Description Framework Schema (RDFS), which are layered on the top of the Extensible Markup Language (XML). OWL provides additional vocabulary along with formal semantics to facilitates greater machine interpretability of Web content than that supported by XML, RDF, and RDF Schema [MVH + 04]. The main languages are described below.

Figure 2

 2 Figure 2.6 -Semantic Web Stack [BLF00].

  Framework (RDF) is a generic data model for interchanging data in the Web recommended by the W3C. In RDF, data is represented as triplets consisting of subjects, predicates, and objects. Formally, an RDF triplet is defined as follows:Definition 2 Let I, B, L be disjoint infinite sets of URIs 2 , blank nodes, and literals, respectively. A tuple (s,p,o) ∈ (I ∪ B) × I × (I ∪ B ∪ L) is denominated an RDF triple, where s is called the subject, p the predicate, and o the object.An example RDF graph is shown in Figure2.7. It expresses the fact that "John is the father of Maria". Despite the fact that RDF provides an open language to express knowledge, it does not make assumptions or define the semantics about any particular application domain (e.g. "Fathers are male").
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 2 Figure 2.7 -RDF graph example.

Figure 2

 2 Figure 2.8 shows a conceptual view of a stream reasoning system as envisioned in [DVCB + 08]. The system takes multiple data streams as well as multiple static or infre-
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 28 Figure 2.8 -Stream Reasoning (from [SCDV + 19])
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 2 Figure 2.9 -The CBR architecture (adapted from [AP94])
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 2 Figure 2.10 -A set of experience knowledge structure.
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 11 Figure 2.11 -The SOEKS ontology object properties.

  Logic Based models[START_REF] Mccarthy | Notes on formalizing context[END_REF][START_REF] Mccarthy | Formalizing context (expanded notes)[END_REF] use First Order Logic for context modeling with its associated reasoning capabilities. It provides much more expressive richness compared to the other models discussed previously. Reasoning is possible up to a certain level. Lack of standardisation reduces the re-usability and applicability.• Ontology Based models [SLPF03b, SLPF03a, ÖA97, DB03] can flexibly describe abstract information, logic inferences and represented instances. The context is organised into ontologies using semantic technologies. A number of different standards and reasoning capabilities are available to be used depending on the requirement. A wide range of ontology development tools and reasoning engines are also available.These context modeling techniques require the task of context reasoning to deduce contexts of high abstraction level from simpler low abstraction level contexts. This task may also deal with some basic functionalities such as validating the context values, filling in missing values, checking context inconsistencies and applying some processing or calculations to obtain new values. Popular reasoning methods include, in addition to those mentioned in the data-driven approaches section.

  Experience component section presents Cased-based Reasoning and Set of Experience Knowledge Structures, which are two complementary approaches for the capitalization of experience. This thesis does not deal with this component of KREM. In the Metaknowledge component section, the definition of context as well as the main approaches for context handling are discussed. Both context representation and context reasoning in the Industry 4.0 domain can be handled through semantic technologies. All the concepts Key elements of Industry 4.0 . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2 Maintenance strategies in the industrial context . . . . . . . . . . . . . . 3.2.1 Data-driven approaches to condition monitoring . . . . . . . . . . . 3.2.2 Knowledge-based approaches to condition monitoring . . . . . . . 3.3 Ontological models for the manufacturing domain . . . . . . . . . . . . . 3.4 Ontological models for context modeling . . . . . . . . . . . . . . . . . . . 3.5 Modeling knowledge that evolves in time . . . . . . . . . . . . . . . . . . . 3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CHAPTER 3. EXISTING APPROACHES FOR CONDITION MONITORING IN INDUSTRY 4.0

Industry 4. 0

 0 Industry 4.0 follows and extends the notion of automation technology that is introduced in the third industrial revolution by applying a set of technologies for automatic data exchange and processing in manufacturing factories [WSJ17]. Cyber-Physical Systems (CPS), the Internet of Things (IoT), Cloud Computing and Big Data analysis techniques are key elements of Industry 4.0. They allow the automatic interconnection and data exchange among manufacturing entities. Collecting and analyzing this data can improve the productivity and reliability of production systems [LBK15]. Industry 4.0 aims at transforming traditional manufacturing factories into "smart factories" by equipping manufacturing with sensors, actuators and autonomous systems [DGP19]. In this way, manufacturing machines can achieve high levels of self-optimization and automation. The key elements of Industry 4.0 are detailed below. Internet of Things (IoT). IoT refers to the network of physical objects that are embedded with sensors and software for the purpose of connecting and exchanging data with other devices and systems [XYWV12]. The combined use of IoT and industrial applications gave rise to the Industrial Internet of Things (IIoT) [LFK + 14]. In IIoT, industrial objects are equipped with electronics and smart devices. They provide identification and communication capabilities for industrial objects. This facilitates access to industrial data thus enabling monitoring of the manufacturing entities in a factory [WSJ17, CBS + 17]. CHAPTER 3. EXISTING APPROACHES FOR CONDITION MONITORING IN INDUSTRY 4.0

  Big Data technologies allow to analyze enormous volume of information that is generated in an Industry 4.0 production ecosystem. These technologies enables to assess the state and operation of the machines involved in manufacturing processes [YK15]. The analysis of data for condition monitoring reduces inefficiencies and costs, anticipating equipment failures and allowing better responses to emergent situations caused by different factors such as high humidity, high temperature CHAPTER 3. EXISTING APPROACHES FOR CONDITION MONITORING IN INDUSTRY 4.0 or exposure to gases. In summary, big data technologies allow to extract valuable information based on the intelligent use of data. The joint use of IoT, CPS, Cloud Computing and Big Data technologies can help production systems to self-access their health conditions to perform smart decisions to avoid potential failures [ZTL15].

  Preventive Maintenance (PM) [Mob02, WTL + 17, Ger13] schedules regular maintenance activities on specific equipment to reduce the likelihood of failures. The maintenance is executed even when the machine is still working and under normal operation so that the unexpected breakdowns with the associated downtime and costs are avoided. Almost all Preventive maintenance management programs are time-driven[START_REF] Mobley | An introduction to predictive maintenance[END_REF][START_REF] Ahmad | An overview of time-based and condition-based maintenance in industrial application[END_REF]. In other word, maintenance activities are based on elapsed time. The general process of Preventive maintenance can be presented in two steps: The first step is to statistically investigate the failure characteristics of the equipment based on the set of time series data collected. The second step is to decide the optimal maintenance policies that maximize the system reliability and availability at the lowest maintenance costs. Preventive maintenance reduces the repair costs and unplanned downtime, but might results in unnecessary repairs if it is conducted to soon or failures if it conducted too late.• Predictive Maintenance (PdM), a.k.a. Condition-based Maintenance[START_REF] John H Williams | Condition-based maintenance and machine diagnostics[END_REF], aims to predict when the equipment is likely to fail and decide which maintenance activity should be performed such that a good trade-off between maintenance frequency and cost can be achieved. Predictive maintenance uses the actual operating condition of systems and components to optimize the production. The predictive analysis is based on data collected from sensors connected to machines and tools, such as vibration data, ultrasonic data, operation availability, etc. The model processes the information through predictive algorithms, discovers trends and identifies when the equipment should be repaired. Rather than running a piece of equipment or CHAPTER 3. EXISTING APPROACHES FOR CONDITION MONITORING IN INDUSTRY 4.0 a component to failure, or replacing it when it still has useful life, predictive maintenance helps companies to optimize their strategies by conducting maintenance activities only when completely necessary. However, compared with Reactive maintenance and Preventive maintenance, the cost of the condition monitoring devices (e.g., sensors) needed for Predictive maintenance is often high. Another issue is that the Predictive maintenance system is becoming more and more complex due to data collection, data analysis and decision making.

Figure 3 .

 3 Figure 3.1 summarizes the maintenance plans of each of the three possible types of maintenance. Reactive Maintenance has the lowest prevention cost due to using runto-failure management. Preventive Maintenance has the lowest repair cost due to well scheduled downtime while Predictive Maintenance can achieve the best trade-off between repair cost and prevention cost. Ideally, Predictive maintenance allows the maintenance frequency to be as low as possible to prevent unplanned Reactive maintenance, without incurring costs associated with doing too much Preventive maintenance.
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 31 Figure 3.1 -Maintenance strategies in industry(RM -PM -PdM)
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 3 EXISTING APPROACHES FOR CONDITION MONITORING IN INDUSTRY 4.0 data, machine learning and deep learning techniques have been regarded as powerful solutions. The models obtained by applying those techniques perform like a black box that learn the behavior of physical assets directly from their operation data [JGZ17]. They have the ability for feature learning, fault classification and fault prediction. Within a data-driven approach, knowledge about machines are extracted internally from machine operation data, instead of externally from domain experts. In the following, we present works that are representative of the domain. In [SAB03], the authors present an ANN-based fault diagnosis for rolling element bearings using time-domain features. Five vibration signals from sensors are used to extract five time-domain features as the input of the designed ANN. The experimental results show that the accuracy can reach 62.5%-100%. Benkercha et al. [BM18] propose an approach based on the building of a Decision Tree to detect and diagnose the faults in grid connected photovoltaic system (GCPVS). The features used include temperature, irradiation and power ratio, and the class labels contains free fault, string fault, short circuit fault or line-line fault. Experimental results indicate that the diagnosis accuracy can reach 99.80%. In [SMZ14], Soualhi et al. apply the Hilbert-Huang transform (HHT)[GP07] to extract health indicator from vibration signals and utilized SVM to achieve fault classification of bearings. A method based on the evidential k-NN (EKNN) rule in the framework of evidence theory to achieve a condition monitoring and early warning in power plants is developed and presented in [CWHZ18]. Several surveys on different data-driven approaches for fault detection and diagnosis exist. Zhao et al. [ZYC + 19] provide an overview of Deep Learning based machine health monitoring systems. All the systems presented are aimed at fault identification and classification. In addition, a series of survey papers focus on the fault diagnosis for a specific type of components, e.g., bearing, rotating machinery, wind turbines [BLDdO18]. In [ZZWH19], Zhang et al. systematically summarize the existing literature employing machine learning (ML) and data mining techniques for bearing fault diagnosis. Liu et al.[LYZC18] provide a comprehensive review of AI algorithms in rotating machinery fault diagnosis from the perspectives of theories and industrial applications.The aforementioned works have given interesting contributions related to the field of fault detection and diagnosis, but most of them are equipment specific. They monitor the behavior of different properties of a machine. They are suitable and efficient when consuming data streams to detect abnormal patterns in the values of a machine's property (e.g. temperature, vibration, etc.). However, they have two drawbacks: (i) the need, in advance, for huge amount of annotated data for model training; and (ii) the lack of explicit model to explain decisions. This make it difficult to interpret the data and it also complicates the interoperability and re-usability of the models.
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 3 EXISTING APPROACHES FOR CONDITION MONITORING IN INDUSTRY 4.0 and relationships that exist in the industrial domain. Different ontologies have been built for monitoring tasks such as predictive maintenance and health assessment systems [NB18]. As evoked in section 2.2.1, ontology-based modeling allows: (1) knowledge sharing between computational entities by having a common set of concepts, (2) logic inference by exploiting various existing logic reasoning mechanisms to deduce high-level concepts from raw data, and (3) knowledge reuse by reusing well-defined ontologies of different domains. Ontologies can be employed to represent different machinery systems and devices, and can be combined with various existing rule-based reasoning algorithms to achieve monitoring and fault diagnosis. This is done based upon the evaluation of online monitored data according to a set of rules which is pre-determined by expert knowledge. Usually, rules are expressed in the form: IF 〈antecedent〉 THEN 〈consequence〉.

[KMS + 19 ]

 19 , Kharlamov et al. design a rule-based language for equipment diagnosis in ontology mediated data integration scenarios such as industrial IoT. Its advantages include the easy formulation of diagnosis programs with hundreds of pieces of complex equipment. Berredjem et al. [BB18] propose a fuzzy expert system to localize bearing faults diagnosis as well as distributed faults. The fuzzy rules are automatically induced from numerical data using an improved range overlaps method. Other approaches use data mining and machine learning methods to extract diagnosis knowledge or mine rules from databases in a smart system. These approaches include the works of Martinez et. al. that uses an artificial neural network based expert system for detecting the status of several components in agroindustrial machines using a single vibration signal [MGGGGRG15]; the works of Liu et. al. that use support vector machines and rule-based decision trees for fault diagnosis of water quality monitoring devices [LXL + 18] and the works of Antomarioni et. al. which use association rule mining in maintenance [Gra20] to minimize the probability of breakages in an oil refinery [APP + 19]. Although these approaches could be considered as data-driven, data mining technologies are here used to elicitate knowledge that will be exploited later. Another rule-based model named Adaptive Neuro-Fuzzy Interference Systems (AN-FIS) is applied for monitoring wind turbine SCADA (Supervisory Control and Data Acquisition) signals in [SS14, SSA13]. In order to obtain turbine condition statements, the authors implement rules given by an expert who is familiar with the behavior of the turbine, typical faults and their root causes. There are two types of rules: generic rules used to highlight anomalies, and specific rules providing specific condition or potential root cause. Schmidt et al. [SWG17] develop a semantic framework, using an ontology-based approach for data aggregation, to support cloud-enabled maintenance of manufacturing assets. Xu et al. [XLC + 18] propose an ontology-based fault diagnosis model to integrate, share and reuse fault diagnosis knowledge for loaders. A loader is a self-propelled heavy CHAPTER 3. EXISTING APPROACHES FOR CONDITION MONITORING IN INDUSTRY 4.0 machinery having for main function to push and lift (load) ground pieces.

  vides a semantic layer to business, design and manufacturing product-related information. ONTO-PDM harmonizes the product-related knowledge and standards, and this harmonization has shown positive results in solving the interoperability problems among different enterprises and applications. Other works in this direction are: OntoSTEP (ON-TOlogy of Standard for the Exchange of Product model data) [BKR + 12], which allows the description of product information mainly related to geometry; and MCCO (Manufacturing Core Concepts Ontology) [UYC + 11] that focuses on interoperability across the production and design domains of product life-cycle. It provides some core classes in categories such as ManufacturingProcess, ManufacturingFacility, ManufacturingResource and Feature.Like ONTO-PDM, the Process Specification Language (PSL) ontology[START_REF] Grüninger | Using the PSL Ontology[END_REF] is another notable development work in the area of product information modelling. The PSL ontology covers several domains such as manufacturing, engineering and business processes. In this section we only focus on the manufacturing domain. Even though it mainly focuses on fundamental concepts for representing manufacturing processes, the ontology also provides a basis for the formal description of elements and entities that constitute a Process. The foundational elements of the core of the PSL ontology are four primitive classes (Activity, Activity-occurrence, Timepoint, Object), three primitive relations (participates-in, before, occurrence-of) and two primitive functions CHAPTER 3. EXISTING APPROACHES FOR CONDITION MONITORING IN INDUSTRY 4.0

  [START_REF] Lemaignan | MA-SON: A proposal for an ontology of manufacturing domain[END_REF] and the ADACOR [BL07] ontological models are considered as pertinent. The MASON ontology presents a detailed conceptualization mainly focused on the products because it was used for cost estimation of the production of mechanical parts. MASON is an upper ontology for representing what the authors consider the core concepts of the manufacturing domain: products, processes and resources. As a result, the main classes of MASON are Entity, for specifying the product; Operation, for describing all processes linked to manufacturing; and Resource, for representing concepts regarding machines, tools, human resources and geographic resources. The ADACOR Ontology, developed as a part of the ADACOR architecture, provides a refined conceptualization to model operations, production plans and work orders regarding customer orders. The ontology is not openly available. Hence to be applied outside of the ADACOR project, the ontology has to be rebuilt with the information provided in the documentation. The SIMPM (Semantically Integrated Manufacturing Planning Model) ontology[ŠS19] is an upper ontology that is also focused on the representation of production plans. It models the fundamental constraints of manufacturing process planning: manufacturing activities and resources, time and aggregation.
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 303 Figure 3.2 -The CoBrA Ontology [CFJ03]
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 3 Figure 3.3 -The SOUPA ontology [CPFJ04].

However, it cannot

  specify how these concepts can be used to represent properties of objects changing in time and it does not propose inference rules to automatically infer new temporal data. Ontology languages such as OWL and RDF are all based on binary relations that complicate representation of temporal properties, since a property holding for a specific time instant or interval is a relation involving three objects (an object, a subject and a time instant or interval). Binary relations can simply represent the relation between two instances without any temporal information. Dynamic features representation calls for mechanisms that allow uniform representation of the notions of time (and of properties varying in time) within a single ontology. Existing methods for achieving this include, among others, Temporal Description Logics (TDLs) [AF01], Concrete Domains [Lut03], Temporal RDF [GHV05], Named Graphs [TB09], Versioning [KF01], N-ary relations [NA06] CHAPTER 3. EXISTING APPROACHES FOR CONDITION MONITORING IN INDUSTRY 4.0 and the 4D-fluents (or perdurantist) approach [WF06]. All result in more complex ontologies compared with their static counterparts where relations do not change in time. Temporal Description Logics (TDLs) [AF01] extend standard description logics (DLs)

  Versioning[KF01] suggests that the ontology has different versions. When a change takes place, a new version is created. Versioning has two main disadvantages: (i) changes even on single attributes require that a new version of the ontology is created, leading to information redundancy and (ii) searching for events occurred at time instances or during time intervals requires exhaustive searches in multiple versions of the ontology.Using an improved form of reification, the N-ary relations approach[START_REF] Noy | Defining n-ary relations on the semantic web[END_REF] suggests representing a n-ary relation as two properties each related with a new object (rather than as the object of a property).The 4D-fluents approach[START_REF] Welty | A reusable ontology for fluents in owl[END_REF] shows how temporal information and the evolution of temporal concepts can be represented in OWL. Concepts in time are represented as 4dimensional objects with the 4th dimension being the time (timeslices). Time instances and time intervals are represented as instances of a TimeInterval class, which in turn is related with concepts varying in time. Changes occur on the properties of the temporal part of the ontology keeping the entities of the static part unchanged. The 4D-fluents approach suffers from proliferation of objects since it introduces two additional objects for each temporal relation (instead of one in the case of N-ary relations). The N-ary relations approach requires only one additional object for every temporal relation, maintains property semantics but, compared to the 4D-fluents approach, it suffers from data redundancy in the case of inverse and symmetric properties (e.g., the inverse of a relation is added explicitly twice instead of once as in 4D-fluents). In the case of transitive properties additional triples are introduced as well.The Named Graphs approach [TB09] represents the temporal context of a property by the inclusion of a triple representing the property in a named graph (i.e. a subgraph into the RDF graph of the ontology specified by a distinct name). The main RDF graph contains definitions of interval beginning and ending bounds for each named graph, thus a property is stored in a named graph with beginning and ending bounds corresponding to the time interval that the property holds. Named graphs are not part of the OWL specification (i.e. there are not OWL constructs translated into named graphs) and they are not supported by OWL reasoners[START_REF] Batsakis | SOWL: A framework for handling spatio-temporal information in OWL 2.0[END_REF].
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 42 Figure 4.2 -The main components of the proposed framework.

  The semantic model for Industry 4.0 is a foundation of our approach. It is a virtual representation of the real factory, as shown in Figure4.3. It represents the elements of the real factory, such as machines, processes and sensors, with special emphasis on modeling the context of operation of these elements. Relevant situations representing abnormal behaviors as well as expert knowledge and rules handling process management are also represented in the model.
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 43 Figure 4.3 -Virtual representation of a real factory.

  Figure 4.4 -Semantic model evolution over time.

  is introduced. Its components are: (1) the Monitoring component, which is in charge of detecting abnormal behaviors of the production system; (2) the Diagnosis component, which identifies the possible cause(s) that generate an abnormal behavior; and (3) the Decision making component, which determines the adaptation strategies that are needed to correct abnormal behaviors of the production system. They all rely on a formal model to semantically enrich data representation and processing. Each of the components operates as an expert does. They can be seen as smart systems to solve complex problems by reasoning. Each one uses the semantic model to perform its functions and also makes the semantic model evolve by introducing the corresponding changes in it. In this way, the tasks of each component are performed considering the updated semantic model which is a virtual representation of what happens in the real factory. The following chapters explain each of the components and the semantic model in more detail. The proposed ontological model . . . . . . . . . . . . . . . . . . . . . . . . 94 5.1.1 The Resource module . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 5.1.2 The Process module . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 5.1.3 The Sensor module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 5.1.4 The Location module . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5.1.5 The Time module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.1.6 The Situation module . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.1.7 Integration of all the modules . . . . . . . . . . . . . . . . . . . . . . . 5.2 Ontology alignment with a foundational ontology . . . . . . . . . . . . . 5.3 Ontology evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . As mentioned in Chapter 2, the development of a smart system requires that the domain knowledge is represented in a formal way. To achieve this objective, ontologies have been widely used to formalize knowledge about the industrial domain [PC09, XLC + 18].

CHAPTER 5 .Figure 5

 55 Figure 5.1 -The Context Ontology for Industry 4.0 (COInd4).

  shown in Figure 5.1. This ontological model is composed of six modules: (1) the Resource module aims to provide a comprehensive representation of manufacturing products and resources which are physical objects used for executing a set of operations during the manufacturing processes; (2) the Process module gives a formal representation of processes related to manufacturing, such as cutting, drilling, milling, among others; (3) the Sensor module considers knowledge about sensors and the observations generated by them; (4) the Location module provides concepts and relations that allow representing the abstraction of physical spatial places; (5) the Time module enables a consistent representation of temporal information in the industrial system; and (6) the Situation module aims at representing relevant states of affairs associated to a particular scenario of interest and can consist of resources, observations and processes. These modules are described in detail in the following subsections. The main concepts of each module are defined using Description Logics (DL) [BCM + 03] and some examples are provided in a simplified syntax based on the Semantic Web Rule Language (SWRL 2 ).
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 5 SEMANTIC MODEL FOR CONTEXT MODELING IN INDUSTRY 4.0 nents, and also contains a collection of equipment categories in the domain of production automation and manufacturing technology. A functional decomposition of a production line is performed:

  tions. The Process class is sub-categorized into LogisticOperation, HumanOperation and ManufacturingProcess. This last kind of process includes cutting, drilling, milling, among others. The DL axiom used for defining the Process class is: Process (LogisticOperation HumanOperation ManufacturingProcess) ∃performsProcess -1 .Resource ∃hasDuration.time:TimeInterval
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  ontology[START_REF] Perry | Ogc geosparql -a geographic query language for rdf data[END_REF] is used. It provides a flexible framework that is complete enough for geo-spatial objects representation as well as spatial relationships among geo-spatial objects. The geo:SpatialObject class contains two sub-classes called geo:Feature and geo:Geometry. The geo:Feature class represents 3D-objects or 2D-areas and can be assigned geometries that describe them through the geo:hasGeometry property. The GeoSPARQL ontology also implements spatial operators to compute the topology between two geometries. They allow to model different characteristics such as orientation and distance. GeoSPARQL uses the Region Connection Calculus, introduced in [RCC92]. More specifically, it uses RCC-8 (the version with eight relations) that is well-known for representing mereo-topological relationships between spatial regions. RCC-8 consists of 8 basic relations (Figure 5.2) that are possible between two regions: disconnected (DC), externally connected (EC), equal (EQ), partially overlapping (PO), tangential proper part (TPP), tangential proper part inverse (TPPi), non-tangential proper part (NTPP), nontangential proper part inverse (NTPPi). From these primitives relations, more complex combinations can be built. For example, a proper part (PP) is the union of TPP and NTPP. Given two relational facts R(a, b) and S (b, c), where R and S are two RCC-8 relationships, the possible relation between a and c can be computed. The composition based CHAPTER 5. SEMANTIC MODEL FOR CONTEXT MODELING IN INDUSTRY 4.0 X
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  ProcessingMachine(:pm1) ∧ ManufacturingProcess(:p1) ∧ ProcessingMachine(:pm2) ∧ ManufacturingProcess(:p2) ∧ performsProcess(:pm1,:p1) ∧ performsProcess(:pm2,:p2) ∧ hasDuration(:p1,:iP1) ∧ hasDuration(:p2,:iP2) ∧ time:during(:iP1,:iP2) ∧ geo:SpatialObject(:l4) ∧ sosa:Sensor(:s1) ∧ locatedIn(:s1,:l4) ∧ sosa:Observation(:senseT) ∧ ssn:Property(:temp) ∧ sosa:madeObservation(:s1,:senseT) ∧ observes(:s1,:temp) ∧ sosa:hasTime(:senseT,:tObs) ∧ swrlto:during(:tObs,:iP1) ∧ sosa:hasSimpleResult(:senseT,:v) ∧ swrlb:greaterThan(:v,TEMP-MAX) (5.3) CHAPTER 5. SEMANTIC MODEL FOR CONTEXT MODELING IN INDUSTRY 4.0 HighTemp2Proc(:htS) ∧ situationTime(:htS,:htS-time) ∧ involvedInSituation(:pm1,:htS) ∧ concernedBySituation(:p1,:htS) ∧ involvedInSituation(:pm2,:htS) ∧ concernedBySituation(:p2,:htS) ∧ hasObservation(:htS,:senseT) ∧ hasConstraint(:htS,:highTemp) ∧ hasDescription(:htS,"High temp in l4 sector"^^xsd:String) (5.4)

Finally, the (

 the Situation module is linked to the Resource module, the Process module and the Sensor module as described above. It is also linked to the Time module and the Location module. • The Situation module is linked with the Time module through the situationTime relation. This relation links a Situation with a temporal:ValidPeriod. It is used to assert the duration of a situation. Furthermore, the Situation class is a subclass of the temporal:Fact class, since a situation occurs over an interval of time CHAPTER 5. SEMANTIC MODEL FOR CONTEXT MODELING IN INDUSTRY 4.0 Situation temporal:Fact), therefore, it has a valid time. As mentioned in the description of the Situation module, in the industrial domain there are relations

  The main concepts of the ontological model are aligned with the DOLCE+DnS Ultralite (DUL) ontology, a simplified version of DOLCE (Descriptive Ontology for Linguistic and Cognitive Engineering) introduced in [MBG + 03]. The choice of DUL for the alignment is based on the fact that it is a recognized ontology that covers several domains and research fields. Therefore, it favours integration and reuse in other environments. It has a rigorous conceptualization that facilitates the interpretation of the domain primitives.
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 5 SEMANTIC MODEL FOR CONTEXT MODELING IN INDUSTRY 4.0 the ones from DUL.

  sosa:Observation dul:Situation (5.9) sosa:Result dul:InformationObject (5.10) sosa:FeatureOfInterest dul:Event dul:Object (5.11) sosa:Property dul:Quality (5.12)

Figure 5

 5 Figure 5.4 -Screenshot of the proposed ontology evaluation results by OOPS!

  consider. As discussed in Chapter 2, Semantic Web technologies are increasingly used to improve the interoperability in scenarios where data is heterogeneous. However, current solutions for reasoning on RDF or OWL data are not appropriate for the dynamic nature of data in an industrial scenario, where the manufacturing processes are executed over time and under different contexts. To deal with this issue, a recent research field called stream reasoning propose to unify reasoning and stream processing. Stream reasoning, presented in section 2.3.2, is based on the continuous processing of data streams together with rich background knowledge to support decision systems [SCDV+ 19].

  .1. The modules to detect situations in real time are Translation and Temporal relations. These two are part of the Monitoring component and they are explained in detail below in section 6.1.1. The Diagnosis component has only one module called Cause Determination, it is introduced in section 6.1.2. Although the Monitoring and Diagnosis components perform different tasks, we have decided to explain them together since, as mentioned in Chapter 4, their tasks are closely related. In addition, Figure 6.1 also shows the Situation refinement component and the Decision making component. The first one contains the
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 6 Figure 6.3 -Representation of the scenario presented in the case study using our model.

  Figure 6.3 shows the instantiation of the ontological model after reasoning.
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 6 STREAM REASONING FOR ABNORMAL SITUATION DETECTION AND DIAGNOSIS tions modules to detect abnormal situations in real-time; (2) the Diagnosis component, that has only one module called Cause Determination, to determine the possible cause(s) that generate an abnormal situation; (3) the Situation refinement component, that contains the Update/Create situation module that helps experts in refining already defined situations or in identifying new ones; and (4) the Decision Making component, which is not part of the task of detecting situations or determining the possible causes, but exploits this information to support decision making. All these components rely on the ontological model described in Chapter 5 to semantically enrich data representation and processing.
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 7 SITUATION HIERARCHIES FOR SUPPORTING DECISION MAKING from the ontology research field, in [TBDV + 17] the authors present a syntax for Description Logic Event Processing (DELP), permitting reasoning.Other approaches to define, structurally, the event type composition in cyber-physical systems (CPS) adopt the theory of concept lattice[START_REF] Wille | Formal Concept Analysis as Mathematical Theory of Concepts and Concept Hierarchies[END_REF]. In [TVG + 10], a concept latticebased event model for CPS is presented. With this model, a CPS event is uniformly represented by three components: the event type, its internal attributes, and its external attributes. The internal and external attributes together characterize the event type. The model allows events to be composed across different components and devices within and among both the cybernetic and physical domains.Other approach proposes the use of rule-based models such as Adaptive Neuro Fuzzy Interference Systems (ANFIS) models for monitoring wind turbine SCADA (Supervisory Control and Data Acquisition) signals[SS14,[START_REF] Schlechtingen | Wind turbine condition monitoring based on scada data using normal behavior models. part 1: System description[END_REF]

  The sets S and C correspond to the Situation class and the Constraint class of our ontological model (see Chapter 5), respectively. The association between a situation and its constraints is represented through the hasConstraint relation in the ontological model, represented by the binary relation R. The example below is used to illustrate the definition of the structure and the operators. Let us consider the following sets of constraints and of situations, with six constraints and six situations, respectively: C = {c 1 , c 2 , c 3 , c 4 , c 5 , c 6 } and S = {s 1 , s 2 , s 3 , s 4 , s 5 , s 6 }. The corresponding R relation, built from S and C , is shown in the first two columns of

Figure 7 . 1 -Definition 4

 714 Figure 7.1 -Situations with constraints (R) and implications among the constraints (T ).

  Figure 7.1 and Table 7.1, if the set of situations S and the set of constraints C are given as input to the algorithm, then the output are the nodes of the lattice shown in Figure 7.2. Let us note that since the situations are predefined, the search for all pairs can be done offline. If a situation needs to be added, it is either added Algorithm 1 Calculate all the pairs (X , Y ) where X ⊆ S , Y ⊆ C , X = Y and Y = X (set o f Pai r s) Require: a set of Situations S and a set of Constraints C

  Pai r s ← set o f Pai r s ∪ {( O , O )} 21: end for to a node or a new node is created. The addition of a new situation to the hierarchy has an impact on the structure of the hierarchy.
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 72 Figure 7.2 -Lattice representing the hierarchy of situations (the situations defined exactly by all the constraints of the second component of the pair in the node are shown in bold face)

  and the following binary relation defined over it: Definition 6 Let (X , Y ) and (X , Y ) be two pairs where X , X are sets of situations and Y , Y are sets of constraints. The situations in X are reachable from X if the constraints in

Figure 7 . 3 -

 73 Figure 7.3 -Hierarchy of the situations defined in the illustrative case study.

  The Stream Generator sub-module streams out semantic enriched data streams that are then consumed by the Stream Reasoner. The output streams are RDF streams. The semantic enrichment of the acquired data is done by using the concepts and relations among them as defined in the ontological model. The C-SPARQL engine provides methods to generate streams. For this sub-module we focus on a default stream generator that produces simulated sensor observations for different parameters such as temperature, speed and vibration. The flow of observations begins by generating new observations at the desired frequency, which is indicated by a parameter. Listing 8.1 shows the code to generate the streams of the RDF graph shown in Figure 8.2 and the results are shown in Listing 8.2.
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 8 Figure 8.2 -RDF graph example.

  < 35 • C (c 6 ), GB_temp > 40 • C (c 8 ), G_speed < 500 rpm (c 10 ) and E_temp < 25 • C (c 11 ) are satisfied at least once in a 25 second period of time. • As with S1 and S2, the S4 situation is a more severe version of S3. The S4 situation happens when the constraints P_temp < 35 • C (c 6 ), GB_temp > 60 • C (c 9 ), G_speed < 500 rpm (c 10 ) and E_temp < 25 • C (c 11 ) are satisfied at least once in a 25 second period of time. Since the GB temperature exceeds 60 • C, immediate actions are required to avoid the failure of the M2 machine. • The S5 situation is an even more severe situation. It happens when the constraints P_temp > 40 • C (c 7 ), GB_temp > 60 • C (c 9 ), G_speed < 500 rpm (c 10 ) and E_temp < 25 • C CHAPTER 8. IMPLEMENTATION OF THE PROPOSED FRAMEWORK

  < 35 • C (c 6 ), TG_temp < 35 • C (c 17 ) and Conv_temp > 60 • C (c 19 ) are satisfied at least once in a 20 second period of time. • The S9 situation is more severe than S8. The S9 situation happens when the constraints P_temp < 35 • C (c 6 ), TG_temp < 35 • C (c 17 ) and Conv_temp > 80 • C (c 20 ) are satisfied in at least once in a 20 second period of time. In this case, as the converter temperature exceeds 80 • C, more urgent actions are required to avoid the failure of the M3 machine.

  The C-SPARQL query presented in Listing 8.6 has the purpose of detecting the situation S6, defined previously. The query name is registered on line 1 and prefixes used in the query are declared on lines 2 and 3. The query is executed on RDF streams that correspond to the properties C_Wtemp, TG_temp and G_temp in the time frame of 15 seconds, sliding the window by 5 seconds (line 5-7). The chosen time frame is arbitrary and can be changed as desired. It produces pairs of values (line 4): the machine name (?m) and the production line of which it is a part of (?pl). In order to obtain the production line to which the machine belongs, we indicate in the query that the C-SPARQL engine must use our ontological model as background knowledge (line 8). Line 10 enables to obtain the production line to which the machine belongs, as shown in Figure8.6. To get the observation's values, ?o1, ?o2 and ?o3 individuals are respectively bound with the data values ?v1, ?v2 and ?v3 through the appropriate properties (sosa:madeObservation and sosa:hasSimpleResult) (line[START_REF]UYC +[END_REF][START_REF] Bkr + | [END_REF][13][START_REF] Lfk + | [END_REF][15][16][17][18][19]. Finally, the list of output pairs are filtered out to include only the ones where the observation's values satisfy the restrictions in the FILTER clause (line 20-23).
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 86 Figure 8.6 -Background knowledge and streaming data for S6 situation detection.
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 887 Figure 8.7 -Part of the ontological model: (a) before detecting the S6 situation; and (b) after detecting it.
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 88 Figure 8.8 -Part of the ontological model after cause determination.
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 89 Figure 8.9 -Hierarchy of the situations defined in the illustrative case study.

  CONCLUSION & FUTURE WORKlution of semantic models in Industry 4.0. The proposed framework allows to automate and facilitate condition monitoring and diagnosis, and support decision-making in the manufacturing domain. To this end, firstly we propose an ontological model for the manufacturing domain that represents the resources and processes that are part of a factory, with special emphasis on modeling the context of these resources and processes. Relevant situations that combine sensor observations with domain knowledge are also represented in the model. The proposed framework enriches data collected from sensors with contextual information using the ontological model and uses stream reasoning to allow abnormal situation detection in real-time. Furthermore, it also uses classical reasoning approaches to compensate for possible non-detection of the causes by the stream reasoning method. Through the detection of these situations and their causes, appropriate decisions can be made to avoid the interruption of the monitored process. In addition, to support decision-making the proposed framework provides a hierarchy of situations that represents a road-map of the situations that can be reached from a given one, desirable or undesirable. This allows the identification of the actions to take to correct the abnormal behavior, by avoiding or minimizing in this way the interruption of the manufacturing processes.The contributions of this thesis are summarized below.In Chapter 4, an overview of the proposed framework to address the evolution of semantic models in Industry 4.0 is introduced. The components of the proposed framework are: (1) the Monitoring component; (2) the Diagnosis component; and (3) the Decision making component. Each of the components operates as an expert does. Each one uses the semantic model to perform its functions and makes it evolve by introducing the corresponding changes. In this way, the tasks of each component are performed considering the updated semantic model which is a virtual representation of what happens in the real factory.

  

  CHAPTER 1. SYNTHÈSE DE LA THÈSE EN FRANÇAIS fectuée de manière à obtenir un bon compromis entre la fréquence et le coût de la maintenance. La maintenance prédictive utilise l'état de fonctionnement réel des systèmes et des composants pour optimiser la production. L'analyse prédictive est basée sur les données collectées par des capteurs connectés aux machines et aux outils, telles que les données de vibration, les données ultrasoniques, la disponibil-

	ité opérationnelle, etc. Le modèle traite les informations par des algorithmes pré-
	dictifs, découvre des tendances et identifie le moment où l'équipement doit être
	réparé. Plutôt que de faire fonctionner un équipement ou un composant jusqu'à
	ce qu'il tombe en panne, ou de le remplacer lorsqu'il a encore une durée de vie
	utile, la maintenance prédictive aide les entreprises à optimiser leurs stratégies en
	n'effectuant des activités de maintenance qu'en cas de nécessité absolue. Cepen-
	dant, comparé à la maintenance réactive et à la maintenance préventive, le coût
	des dispositifs de surveillance de l'état (par exemple, les capteurs) nécessaires à la

• La Maintenance Réactive

[START_REF] Mobley | An introduction to predictive maintenance[END_REF][START_REF] Swanson | Linking maintenance strategies to performance[END_REF] 

est une méthode de gestion de la maintenance en cas de panne. L'action de maintenance pour la réparation d'un équipement n'est effectuée que lorsque l'équipement est en panne. Une entreprise qui utilise la maintenance réactive ne dépense pas d'argent pour la maintenance tant qu'une machine ou un système ne fonctionne pas. Cependant, le coût de réparation ou de remplacement d'un composant serait potentiellement supérieur à la valeur de production obtenue en le faisant fonctionner jusqu'à la panne. De plus, lorsque les composants commencent à vibrer, à surchauffer et à se casser, des dommages supplémentaires peuvent survenir sur l'équipement, ce qui peut entraîner d'autres réparations coûteuses.

• La Maintenance Préventive [Mob02, WTL + 17, Ger13] prévoit des activités de maintenance régulières sur des équipements spécifiques afin de réduire la probabilité de défaillances. La maintenance est effectuée même lorsque la machine fonctionne encore et dans des conditions normales de fonctionnement, de manière à éviter les pannes imprévues avec les temps d'arrêt et les coûts qui y sont associés. Presque tous les programmes de gestion de maintenance préventive sont fondés sur le temps

[START_REF] Mobley | An introduction to predictive maintenance[END_REF][START_REF] Ahmad | An overview of time-based and condition-based maintenance in industrial application[END_REF]

. Le processus général de maintenance préventive peut être présenté en deux étapes : La première étape consiste à étudier statistiquement les caractéristiques de défaillance de l'équipement en se basant sur l'ensemble des données chronologiques collectées. La deuxième étape consiste à décider des politiques de maintenance optimales qui maximisent la fiabilité et la disponibilité du système aux coûts de maintenance les plus bas. La maintenance préventive réduit les coûts de réparation et les temps d'arrêt imprévus, mais peut entraîner des réparations inutiles si elle est effectuée trop tôt ou des pannes si elle est effectuée trop tard.

• La Maintenance Prédictive

[START_REF] John H Williams | Condition-based maintenance and machine diagnostics[END_REF] 

vise à prévoir quand l'équipement est susceptible de tomber en panne et à décider quelle activité de maintenance doit être ef-maintenance prédictive est souvent élevé. Un autre problème est que le système de maintenance prédictive devient de plus en plus complexe en raison de la collecte de données, de l'analyse des données et de la prise de décision.

La Figure

1

.4 résume les plans de maintenance de chacun des trois types de maintenance possibles. La maintenance réactive présente le coût de prévention le plus faible

basées sur les données pour la surveillance de l'état du système

  Au cours des dernières décennies, de nombreux efforts de recherche ont été entrepris pour développer différents modèles de maintenance prédictive industrielle, en utilisant les éléments clés de l'Industrie 4.0.Dans ce qui suit, nous décrivons les deux principales approches pour mettre en oeuvre la maintenance prédictive : les approches fondées sur les données et les approches fondées sur la représentation des connaissances.Avec le développement des techniques liées aux grandes données et la disponibilité toujours croissante des données, la maintenance prédictive basée sur les données est devenue de plus en plus attrayante. Pour extraire des connaissances utiles et aider à pren-Les ontologies peuvent être utilisées pour représenter différents systèmes et dispositifs de machines, et peuvent être combinées avec divers algorithmes de raisonnement à base de règles existants pour réaliser la surveillance et le diagnostic des erreurs. Cela se fait sur la base de l'évaluation des données collectées en temps réel selon un ensemble de règles prédéterminées par des connaissances d'experts.En général, les règles sont exprimées sous la forme IF 〈antécédent〉 THEN 〈conséquence〉.Après avoir examiné les modèles ontologiques existants, aucun d'entre eux ne fournit une représentation satisfaisante de la connaissance des cinq sous-domaines requis. Certains de ces modèles de connaissance se concentrent sur un domaine restreint, comme la planification des ressources de fabrication et les bons de travail, et ils ne formalisent pas les concepts liés au contexte, comme l'activité et le lieu. En outre, aucune des ontologies existantes ne permet de représenter des connaissances qui évoluent dans le temps.
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	Approches De cette façon, la conséquence peut apporter des changements qui affectent le système qui est surveillé, si les conditions de l'antécédent sont remplies. Cause Monitoring and Diagnosis Pour effectuer une surveillance intelligente de l'état du système, la base de connais-Situation sances doit contenir non seulement des connaissances interprétables par les machines
	Les ontologies fournissent un moyen d'intégrer, de partager et de réutiliser les con-pour caractériser les entités ou les processus de fabrication qui sont surveillés, mais aussi
	naissances du domaine, mais d'autres méthodes de raisonnement doivent être intégrées aux ontologies pour parvenir à une maintenance prédictive. Le raisonnement basé sur des règles peut être utilisé pour réaliser le suivi et le diagnostic. Ces règles sont constru-IoT les connaissances sur les situations anormales qui sont associées aux défaillances. Ceci motive le développement d'un modèle ontologique plus expressif et plus complet qui Sensor fournit une représentation riche des connaissances du domaine dans les domaines de
	ites à partir de connaissances d'experts, ou sont extraites de l'analyse de grands ensem-time Change over la fabrication en considérant la notion de contexte.
	Context	Identity Activity Time Location															
	Manufacturing	Product Process Resource															
		Ontologies	MASON	ADACOR	PSL	MSDL	SIMPM	MaRCO	ONTO-PDM	P-PSO	MCCO	[CZX + 16]	OntoSTEP	CoBrA-Ont	SOUPA	CONON	SAWA	Situation Ont.

décision. En d'autres termes, la maintenance prédictive 4.0 applique une surveillance en temps réel de l'état des machines, et des alertes sont données sur la base de règles CHAPTER 1. SYNTHÈSE DE LA THÈSE EN FRANÇAIS préétablies ou de niveaux critiques. dre des décisions appropriées à partir d'une grande quantité de données, l'apprentissage automatique et les techniques d'apprentissage profond sont considérés comme des solutions puissantes. Les modèles obtenus en appliquant ces techniques fonctionnent comme une boîte noire qui apprend le comportement des machines physiques directement à partir de leurs données d'exploitation [JGZ17]. Ils ont la capacité d'apprendre des caractéristiques, de classer et de prédire les défauts. Dans le cadre d'une approche guidée par les données, les connaissances sur les machines sont extraites en interne des données de fonctionnement des machines, plutôt qu'en externe par des experts du domaine. Les travaux ont apporté des contributions intéressantes dans le domaine de la détection et du diagnostic des défauts, mais la plupart d'entre elles sont spécifiques à des équipements précis. Ces travaux surveillent le comportement des différentes propriétés d'une machine particulière. Ils sont adaptés et efficaces lors de la consommation de flux de données pour détecter des modèles anormaux dans les valeurs des propriétés d'une machine (par exemple, la température, les vibrations, etc.). Cependant, ils présentent deux inconvénients : (i) la nécessité, à l'avance, d'une grande quantité de données annotées pour l'apprentissage du modèle ; et (ii) l'absence de modèle explicite pour expliquer les décisions. Cela rend difficile l'interprétation des données et complique également l'interopérabilité et la réutilisation des modèles. Approches basées sur la connaissance pour la surveillance de l'état du système De nombreux systèmes de surveillance des processus de fabrication et de diagnostic des défauts font appel à des connaissances d'experts a priori et à des processus de raisonnement déductif [PDZ10]. La connaissance experte est exploitée pour construire une ontologie qui décrit formellement les concepts et les relations qui existent dans le domaine industriel. Différentes ontologies ont été construites pour des tâches de surveillance telles que la maintenance prédictive et les systèmes d'évaluation en santé [NB18]. La modélisation basée sur les ontologies permet : (1) le partage des connaissances entre entités informatiques en ayant un ensemble commun de concepts, (2) l'inférence logique en exploitant divers mécanismes de raisonnement logique existants pour déduire des concepts de haut niveau à partir de données brutes, et (3) la réutilisation des connaissances en réutilisant des ontologies bien CHAPTER 1. SYNTHÈSE DE LA THÈSE EN FRANÇAIS définies de différents domaines. bles de données, comme mentionné ci-dessus. Cependant, les deux approches ont des difficultés à traiter de nouvelles failles (inconnues des experts et non vues dans les données). Il est donc nécessaire d'acquérir des connaissances complètes pour construire un ensemble de règles fiables. Nous résumons la couverture du domaine des ontologies existantes dans le tableau 1.1. Nous évaluons la couverture du domaine et les portées de ces modèles de connaissance en examinant si les concepts clés requis pour la surveillance de l'état du système dans l'industrie 4.0 existent et sont formellement décrits. Nous avons classé ces concepts clés en cinq sous-domaines : Fabrication, Contexte, Évolution dans le temps, IoT, et Surveillance et Diagnostic. Pour le sous-domaine Fabrication, les concepts clés sont le produit, le processus et la ressource. Pour le sous-domaine Contexte, les concepts clés sont l'identité, l'activité, le temps et le lieu. Pour le sous-domaine IoT, les concepts clés sont le capteur et l'observation. Pour le sous-domaine Monitoring et Diagnosis, les concepts clés sont situation et cause. Ces concepts sont les colonnes du tableau 1.1, et les modèles ontologiques sont les lignes. Si une coche est placée dans le tableau, alors le concept existe dans l'ontologie correspondante. Sinon, une croix est attribuée.

Table 1.1 -Comparaison entre les ontologies du domaine de la fabrication celles sur la modélisation du contexte. De plus, les modèles ontologiques des systèmes intelligents sont statiques. Comme décrit dans l'introduction, les machines exécutent des processus de fabrication dans différents contextes et ces contextes changent au fil du temps. Selon le contexte dans lequel un processus de fabrication est exécuté, les règles qui gèrent le processus peuvent changer. Afin de représenter ces contextes et le fait qu'une machine exécute un processus dans ces contextes, le modèle sémantique doit évoluer dans le temps pour représenter cette connaissance changeante.

Le composant Abnormal Situation Refinement

  Le premier contient le module Update/Create situation qui vise à affiner les situations déjà définies ou à en définir de nouvelles. Le composant Decision making ne fait pas partie de la tâche de détection des situations ou de détermination des causes possibles, mais il exploite ces informations pour soutenir les tâches de prise de décision. Lorsque ce module détecte des situations, celles-ci peuvent être converties en flux RDF et être renvoyées en sortie, c'est-à-dire que ce module produit des flux de situations en sortie. Cette sortie alimente un autre raisonneur sur flux de données dans le module Cause determination. De cette façon, le module Temporal Relations lui-même peut être considéré comme un capteur avancé capable de produire des données de haut niveau. De plus, les situations détectées sont stockées dans le modèle ontologique indiquant également les ressources impliquées dans cette situation.
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	Comme mentionné dans la sous-section précédente, le module Translation, en plus de
	générer les flux de données, alimente l'ontologie avec des données sémantiquement en-
	richies. L'objectif principal du module Update/Create situations est d'exploiter les don-
	nées historiques stockées en tant qu'instances dans le modèle ontologique, d'affiner les
	situations déjà définies et, éventuellement, d'en trouver de nouvelles. Ceci peut être ac-
	compli (i) en raisonnant sur l'ontologie pour en tirer des connaissances implicites, et (ii)
	en interagissant avec l'ontologie en émettant des requêtes ponctuelles. Ces requêtes peu-
	vent être exécutées pour vérifier la fréquence à laquelle une situation se produit ou pour
	vérifier la tendance des valeurs de certaines propriétés afin d'affiner les contraintes qui
	leur sont imposées et ainsi affiner les situations associées à ces contraintes. Ce module utilise un raisonnement classique et non un raisonnement sur flux de don-nées car le raisonnement est appliqué aux données statiques stockées dans le modèle on-tologique et non aux flux de données. Le composant Decision Making Compte tenu des situations et de leurs causes, il est possible d'appuyer les tâches de prise de décision pour déterminer les actions à lancer pour corriger le comportement des ma-chines et éviter les pannes. Les actions déclenchables sont de natures diverses. Par ex-emple, certaines tâches de maintenance peuvent être lancées à distance et effectuées par les machines elles-mêmes ou le système intelligent peut émettre une alerte pour avertir Le Le Le raisonnement sur flux de données est plus adapté aux données hautement dy-l'opérateur le plus proche de la machine afin qu'il l'inspecte, si une action humaine est
	namiques que les approches de raisonnement classiques. Ainsi, dans le cas où les causes nécessaire.
	doivent être déterminées en temps réel, le module Stream reasoner est utilisé pour identi-Chaque application peut effectuer un raisonnement et un traitement plus avancés
	fier les causes. Les associations entre les situations et leurs causes possibles sont stockées sur les données reçues afin de déterminer les stratégies d'adaptation nécessaires pour
	dans le modèle ontologique et sont exploitées par ce module pour les restituer. Cepen-améliorer le comportement du système industriel. Ces stratégies peuvent inclure des
	dant, il est possible que certaines situations n'aient pas de causes identifiées dans un scé-modifications des paramètres de fonctionnement d'une machine ou le lancement d'une
	nario réel, auquel cas le système notifie que les causes sont inconnues. tâche de maintenance.
	Par conséquent, afin de déterminer les causes possibles d'une situation, des approches
	de raisonnement classiques peuvent être utilisées. Elles fournissent d'autres inférences qui peuvent aider à déterminer les causes d'une situation. Des requêtes plus complexes 1.3
	peuvent être effectuées sur le modèle ontologique afin d'extraire des informations utiles
	pour la détermination des causes. Par exemple, il peut être nécessaire de considérer
	l'hypothèse du monde ouvert, qui stipule que l'absence d'une déclaration ne peut pas
	être utilisée seule pour déduire que la déclaration est fausse. Dans ce cas, le Reasoner
	peut également être utilisé sur l'ontologie pour déduire les causes, si l'exigence de temps
	réel n'est pas nécessaire. Cette dernière option présente certains avantages par rapport à
	la précédente. Si la cause est identifiée ultérieurement, elle est ajoutée comme instance
	au modèle ontologique et liée à la situation pour une utilisation future.
	Dans les deux cas, la composante Diagnosis fournit à la composante Decision mak-
	ing la situation identifiée ainsi que les causes possibles déduites par le(s) raisonneur(s).
	L'association entre la situation et les causes est également ajoutée au modèle ontologique.

Certaines situations qui peuvent conduire à des défaillances de machines peuvent être détectées en interprétant les observations dans leur contexte. Par exemple, si une observation a une valeur anormale, c'est peut-être parce qu'un autre paramètre a également des valeurs anormales. Considérons le cas où la température d'une machine et la température d'un de ses composants sont surveillées. On sait qu'une augmentation de la température de la machine peut être due à une augmentation de la température de son composant, ou vice versa. Cela permet d'exploiter les connaissances des experts sur les relations entre les valeurs de certains paramètres des machines, des processus et de leur contexte pour interpréter les observations. Grâce à la détection précoce des situations, le programme de maintenance peut être adapté ou des mesures peuvent être prises pour éviter des arrêts imprévus de la production. CHAPTER 1. SYNTHÈSE DE LA THÈSE EN FRANÇAIS Les principaux composants du cadre que nous proposons sont présentées dans la figure 1.5. Les modules permettant de détecter les situations en temps réel sont la traduction (Translation) et les relations temporelles ( Temporal relations). Ces deux modules font partie de la surveillance. Le composant de diagnostic ne comporte qu'un seul module appelé détermination des causes (Cause Determination). Les composants de surveillance et diagnostic effectuent des tâches différentes mais leurs tâches sont étroitement liées. En outre, la figure 1.5 montre également le composant de raffinement des situations (Situation Refinement et le composant de prise de décision (Decision making. composant Monitoring Les modules impliqués dans la détection des situations sont Translation et Temporal Relations. Les deux sous-sections suivantes expliquent et décrivent l'interaction entre eux ainsi qu'avec le modèle ontologique. Le module Translation Ce module est responsable (i) de la conversion des données acquises par les capteurs en flux RDF, et (ii) de leur insertion en tant qu'instances dans l'ontologie. Ces deux tâches sont effectuées respectivement par les sous-modules Stream Generator et Instance creator. Le sous-module Stream Generator effectue l'enrichissement sémantique des données acquises, en utilisant les concepts et les relations entre eux tels que définis dans le modèle ontologique. Cela permet au module de diffuser des flux de données enrichis sémantiquement qui sont ensuite consommés par le Stream Reasoner. Les flux de sortie sont des flux RDF. Un flux RDF est une séquence ordonnée de paires, où chaque paire est constituée d'un triplet RDF et de son horodatage t , (<Subject,Predicate,Object>,t). Le sous-module Instance creator crée des instances à partir des données reçues et les insère dans l'ontologie, c'est-à-dire qu'il est chargé de remplir le modèle ontologique avec les observations et leurs métadonnées correspondantes, telles que le(s) capteur(s) qui a(ont) fait l'observation, la propriété observée et l'horodatage. Le module Temporal Relations Une fois que les données des sources de données distribuées et hétérogènes sont disponibles dans une représentation homogène, contextualisée et ordonnée dans le temps, les flux peuvent être explorés pour générer de nouvelles connaissances. Un ensemble de requêtes, qui combine les connaissances de base extraites de l'ontologie et certaines parties pertinentes des flux, est enregistré et exécuté par le raisonneur sur les flux de données. Ces requêtes représentent des situations particulières à identifier et CHAPTER 1. SYNTHÈSE DE LA THÈSE EN FRANÇAIS elles incluent principalement des dépendances temporelles entre les observations (qui peuvent être des situations normales ou des anomalies). composant Diagnosis Ce composant ne dispose que d'un seul module appelé Cause Determination pour déterminer les causes possibles qui ont provoqué une situation anormale. Le module Cause Determination L'objectif du module Cause Determination est d'identifier les causes possibles qui ont généré une situation détectée par le module Temporal Relation. Pour cela, deux éléments sont utilisés séparément : un raisonneur sur flux de données Stream Reasoner, et un raisonneur classique Reasoner.

.3 Hiérarchies de situation pour soutenir la prise de décision
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	Ces situations anormales peuvent avoir différents niveaux de gravité, et peuvent être
	imbriquées de différentes manières. Pour comprendre et gérer les relations entre les situ-
	ations, une approche efficace pour les organiser est nécessaire. C'est pourquoi il est pro-
	posé une méthode permettant de construire un treillis pour ordonner les situations pos-
	sibles associées à un processus de fabrication, en fonction des contraintes sur lesquelles
	elles reposent. Ce treillis représente une feuille de route de toutes les situations qui peu-
	vent être atteintes à partir d'une situation donnée. Cette feuille de route aide à la prise de
	décision, en permettant l'identification des actions qui peuvent être prises pour corriger
	l'anomalie. Par conséquent, la composante Decision making utilise à la fois le modèle sé-
	mantique et le treillis pour déterminer les actions à déclencher pour corriger la situation
	anormale.
	1.3
	Une fois qu'une situation anormale et ses causes ont été détectées, la composante Deci-
	sion making est chargée de déterminer et d'appliquer les stratégies d'adaptation néces-
	saires pour améliorer le comportement du système de production. Ces stratégies peuvent
	inclure des modifications des paramètres de fonctionnement d'une machine ou le lance-
	ment d'une tâche de maintenance.
	Le choix de la (des) action(s) à lancer est effectué par le composant Decision making.
	Ce composant utilise également le modèle sémantique pour déterminer les actions qu'il
	est possible d'exécuter pour améliorer les conditions de fonctionnement.
	Comme la détection de situations anormales peut déclencher des actions pour adapter
	le comportement du processus, cette modification du comportement du processus peut
	conduire à la génération de nouvelles situations.

.4 Mise en oeuvre du cadre proposé

  

	Dans les sections précédentes, les composants du cadre proposé ont été introduits. Un
	modèle ontologique est développé pour représenter le domaine industriel et il est util-
	isé comme base d'un système intelligent. Une approche sémantique hybride est pro-
	posée pour automatiser la détection de situations anormales, basée sur l'utilisation com-
	binée du raisonnement classique et du raisonnement sur flux de données. Une approche
	fondée sur un treillis est présentée pour représenter une feuille de route de toutes les sit-
	uations qui peuvent conduire à des défaillances potentielles, afin de soutenir les tâches
	de prise de décision.
	Afin d'appliquer notre approche, nous avons développé un prototype de logiciel. Le
	logiciel utilise des approches déductives, des ontologies de domaine et des raisonnements
	ontologiques, ainsi que des raisonnements sur flux de données pour analyser les données
	industrielles et détecter les situations anormales qui peuvent conduire à des défaillances.
	Les technologies et les outils utilisés pour le développement du cadre proposé sont
	présentés ainsi que la mise en oeuvre des fonctionnalités de base de celui-ci. Une preuve
	de concept est également présentée à travers une étude de cas illustrative du domaine
	industriel. L'objectif est de montrer l'interaction entre les différents composants et com-
	ment ils modifient le modèle sémantique, le faisant évoluer pour la représentation de ce
	qui se passe dans l'usine réelle. Les résultats obtenus par notre preuve de concept à l'aide
	de données simulées sont encourageants. Malheureusement, il n'a pas été possible de
	valider l'ensemble de l'approche sur des données industrielles réelles, même hors ligne.
	Dans l'idéal, il serait également intéressant de tester notre proposition dans une chaîne
	de production réelle. Cela permettrait de vérifier si les décisions prises sur la base de
	l'utilisation de notre proposition améliorent effectivement son efficacité et sa fiabilité.
	1.4

Conclusions et Travaux Futurs
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	Conclusions anormales en temps réel. En outre, il utilise également des approches de raisonnement ment du cadre proposé ainsi que la mise en oeuvre des fonctionnalités de base de celui-conséquent, des tests doivent être effectués avec différentes variations de l'algorithme 1
	classiques pour compenser la non-détection éventuelle des causes par la méthode du ci. Une étude de cas illustrative du domaine industriel est présentée pour démontrer pour évaluer leur efficacité relative. En outre, une autre perspective consiste à étudier
	Comme évoqué au long de ce manuscrit, la gestion de données industrielles hétérogènes raisonnement sur flux de données. Grâce à la détection de ces situations et de leurs l'application du cadre proposé. Malheureusement, il n'a pas été possible de valider l'en-comment ajouter de nouvelles situations ou des situations affinées sans avoir à recon-
	est une tâche difficile dans le cadre de la surveillance de l'état du système. De plus, causes, des décisions appropriées peuvent être prises pour éviter l'interruption du pro-semble de l'approche sur des données industrielles réelles. Cependant, les résultats obte-struire complètement la hiérarchie.
	comme la structure et le comportement des systèmes de production deviennent de plus cessus surveillé. Enfin, pour soutenir la prise de décision, le cadre proposé fournit une nus par notre preuve de concept en utilisant des données simulées sont encourageants. Enfin, une étude plus exhaustive et plus détaillée peut être réalisée sur les dépen-
	en plus complexes, le volume de données augmente considérablement. C'est pourquoi hiérarchie de situations qui représente une feuille de route des situations, souhaitable ou dances entre les contraintes pour l'identification de nouvelles situations ou le raffinement
	les entreprises industrielles recherchent des solutions pour traiter efficacement ces don-nées hétérogènes et effectuer des tâches de surveillance et de diagnostic de manière in-non, auxquelles on peut parvenir à partir d'une situation donnée. Cela permet d'identifier les actions à prendre pour corriger le comportement anormal, en évitant ou en min-de celles qui existent déjà. De cette manière, il est possible d'obtenir différentes hiérar-Travaux Futurs chies de situations en fonction de la relation T choisie, qui peuvent être utilisées seules
	telligente. imisant de cette façon l'interruption des processus de fabrication. Les contributions présentées dans cette thèse permettent d'identifier plusieurs perspec-ou combinées avec d'autres, permettant ainsi différentes stratégies de prise de décision.
	Dans ce cadre, il est nécessaire de disposer de modèles bien définis pour gérer les Les contributions de cette thèse sont résumées ci-dessous. tives de recherche.
	données hétérogènes et les exploiter, ainsi que de connaissances expertes. Pour dévelop-Dans le Chapitre 4, une vue d'ensemble du cadre proposé pour traiter l'évolution des Les travaux futurs peuvent être orientés vers l'enrichissement du modèle sémantique
	per un tel modèle, la connaissance du domaine de la fabrication doit être structurée de modèles sémantiques dans l'Industrie 4.0 est introduit. Les composantes de ce cadre sont proposé. De nouveaux types de relations peuvent être explorés en dehors des relations
	manière à être interprétable par les machines et utilisable par le système de surveillance. les suivantes : (1) la composante Monitoring ; (2) la composante Diagnosis ; et (3) la com-spatiales et temporelles abordées dans cette thèse, afin de permettre la représentation
	En outre, comme le domaine de l'industrie devient de plus en plus axé sur la connais-posante Decision making. Chacune de ces composantes fonctionne comme un expert. d'informations contextuelles plus riches. Par exemple, la représentation de la relation
	sance, une représentation uniforme des ressources physiques et des capacités de raison-Elles utilisent toutes le modèle sémantique pour remplir leurs fonctions et le font évoluer selon laquelle deux lignes de production exécutent le même processus pourrait être util-
	nement est nécessaire pour automatiser les processus décisionnels. Ces processus de dé-en introduisant les changements correspondants. De cette façon, les tâches de chaque isée pour détourner la production d'une ligne de production à l'autre si la première se
	cision comprennent la détection des situations anormales et la détermination des causes, composant sont exécutées en tenant compte du modèle sémantique mis à jour qui est comporte anormalement. Une autre possibilité peut être la représentation des relations
	la programmation de la maintenance et l'adaptation des processus. Pour atteindre ces une représentation virtuelle de ce qui se passe dans l'usine réelle. entre les lignes de production et les bons de travail, de sorte que, selon si la ligne de pro-
	objectifs, les technologies sémantiques ont montré des résultats prometteurs en formal-duction est proche de la fin d'un bon de travail et que la date limite approche, la décision
	isant les connaissances sur les tâches de surveillance de l'état dans plusieurs applications de poursuivre la production jusqu'à ce que la commande soit terminée ou d'arrêter la
	industrielles. ligne de production puisse être prise.
	Les ontologies existantes pour représenter le domaine de la production ne permettent Comme le domaine de la fabrication est très dynamique, la manière de traiter les flux
	pas de représenter des concepts et des relations qui évoluent dans le temps, comme les de données hétérogènes en temps réel est une préoccupation cruciale. Afin de tester les
	différents contextes dans lesquels une ressource de fabrication peut accomplir ses tâches. questions d'extensibilité et de complexité pour détecter les situations en temps réel, il
	Ces modèles ontologiques existants conviennent pour des informations qui ne changent faut explorer une étude de cas plus large avec des situations plus complexes, impliquant
	pas ou très peu dans le temps. Cependant, le domaine de l'industrie traite de données davantage d'observations de propriétés qui sont liées dans le temps et dans l'espace. Dif-
	très dynamiques et un système de production devrait être capable de s'adapter à des situ-férentes implémentations de moteurs de raisonnement de flux devraient être évaluées en
	ations changeantes. Pour cela, le modèle ontologique doit pouvoir faire face à l'évolution termes d'efficacité et d'extensibilité, en tenant compte également de la taille du modèle
	des connaissances. Différents ensembles d'actions peuvent être sélectionnés pour cor-sémantique.
	riger le comportement anormal en fonction du contexte physique spécifique de la ma-Une autre direction intéressante à explorer est l'identification de modèles de causalité
	chine en fonctionnement. Cela permet de garantir que la production continue sans qu'il qui pourraient permettre la définition de requêtes génériques pour certains types d'ano-
	soit nécessaire de l'arrêter si la situation anormale n'est pas grave. malies. Ces requêtes génériques pourraient être réutilisées dans différents cas, et ef-
	Pour répondre à ces problématiques, un nouveau cadre sémantique est proposé pour fectuer des opérations complexes parmi les valeurs détectées.
	aborder l'évolution des modèles sémantiques dans l'Industrie 4.0. Le cadre proposé per-En ce qui concerne l'affinement et l'identification de nouvelles situations, il peut être
	met d'automatiser et de faciliter la surveillance et le diagnostic de l'état du système, et de intéressant d'appliquer des méthodes d'apprentissage automatique pour exploiter les don-
	soutenir la prise de décision dans le domaine de l'industrie. nées stockées dans le modèle sémantique. Les requêtes étant exécutées pendant cer-
	À cette fin, nous proposons tout d'abord un modèle ontologique qui représente les taines fenêtres temporelles à des intervalles de temps donnés, l'application des méthodes
	ressources et les processus qui font partie d'une usine, en mettant particulièrement l'accent d'apprentissage automatique peut aider à déterminer la durée des fenêtres temporelles
	sur la modélisation du contexte de ces ressources et processus. Les situations pertinentes dans lesquelles une requête doit être exécutée. De plus, il serait également intéressant
	qui combinent les observations des capteurs avec la connaissance du domaine sont égale-d'adapter dynamiquement la durée des fenêtres temporelles.
	Dans cette section, nous présentons un résumé de ces travaux de thèse avec leurs con-ment représentées dans le modèle. Le cadre proposé enrichit les données collectées par Il existe également des perspectives associées à la construction de la hiérarchie des sit-
	tributions correspondantes. Ensuite, quelques perspectives de travaux futurs sont égale-les capteurs avec des informations contextuelles en utilisant le modèle ontologique et uations à partir de données industrielles réelles. Tout d'abord, cette construction soulève
	ment présentées. utilise le raisonnement sur flux de données pour permettre la détection de situations également des questions d'extensibilité et de complexité pour construire le treillis. Par
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CHAPTER 2. SMART SYSTEMS OVERVIEW

In the last decade, a growing number of companies have realized that a tool that effectively enables the capture, representation, retrieval, and reuse of knowledge is the key to supporting various organizational decisions

[START_REF] Ouertani | Traceability and management of dispersed product knowledge during design and manufacturing[END_REF][START_REF] Leistner | Mastering organizational knowledge flow[END_REF]

. However, large parts of useful knowledge are hidden and not readily available. Knowledge Technologies are computer-based techniques and tools that provide a rich and intelligent use of information. They combine ideas and applications from a number of fields: Psychology, Philosophy, Artificial Intelligence, Engineering, Business Studies, Computer Science and Web

  Ontology Language [MVH + 04, MR07] is an expressive ontology language based on Description Logics with sound and complete reasoning algorithms [BCM + 03].OWL is built on top of RDF Schema. To summarize, XML is the basis, RDF is a dialect of XML for describing and sharing web resources; RDF Schema is a set of RDF constructions;

and OWL is a form of RDF Schema for building ontologies. Compared to RDF, OWL offers a richer set of operators to define the elements of the ontology (e.g. classes, properties, etc.). It also possesses a formal semantics that allows reasoning.

  Query Language. SPARQL 3 (a recursive acronym for SPARQL Protocol and RDF Query Language) is a query language able to retrieve and manipulate data stored in RDF. SPARQL query consists of triple patterns, conjunctions, disjunctions, and optional patterns. Triple patterns are similar to RDF triples where the subject, predicate, and object may be variables. In a query, the variables act like placeholders which are bound with RDF terms to build the solutions. In general, a SPARQL query consists of four main parts

	as described below
	• Prefix declarations allow the definition of IRI (Internationalized Resource Identi-
	fier) prefixes that can be used for shortcuts later in the query.
	• Result clause allows for specifying what type of SPARQL query is being executed,

SPARQL is based on the RDF Turtle serialization syntax 4 and on graph pattern matching.

A graph pattern is an RDF triplet containing variables, as evoked earlier. SPARQL is inspired by the Structured Query Language (SQL), thus many of its features are similar to CHAPTER 2. SMART SYSTEMS OVERVIEW it. A

Table 2 .

 2 1 -Comparison of RSP engines.

	RSP engines	Input Model	Time Model	Reasoning	Background Knowledge
	C-SPARQL	Triplet streams Time points RDFS subset	Yes
	CQELS	Triplet streams Time points	No	Yes
	Straming SPARQL	Triplet streams Time points	No	Yes
	Sparkwave	Triplet streams Time points RDFS subset	Yes
	streams. It supports time-stamped RDF triplets as input and uses a periodic execution
	strategy to continuously execute queries over these RDF streams. It has the capability
	of integrating both RDF streams and static background knowledge represented as RDF
	triples. Given that streams are intrinsically infinite, data are usually read through time

windows using the CQL window concept

[START_REF] Arasu | CQL: A Language for Continuous Queries over Streams and Relations[END_REF]

. Queries are executed on all the triplets that are received during a given time interval. In C-SPARQL, continuous queries are divided into static and dynamic parts and streaming data is transformed into non-streaming data within a specified window in order to apply standard algebraic operations, such as aggregate functions like COUNT, COUNT DISTINCT, MAX, MIN and AVG. The static parts are loaded into relations, and the continuous queries are executed by processing the stream data against these relations. CQELS (Continuous Query Evaluation over Linked Stream)

[START_REF] Danh | A native and adaptive approach for unified processing of linked streams and linked data[END_REF] 

is another language that combines static and streaming data in RDF format. Similar to C-SPARQL, it provides windowing and relational operators together with ad-hoc operators for generating new streams from the obtained results. CQELS queries deal with triplets in an element-based window (a given number of triplets). The main difference with C-SPARQL is that CQELS offers a processing model in which query evaluation is not periodic, but triggered by the arrival of new triples. These different execution methods lead to the possibility of having different query results produced for the same query and input data.

Table 2

 2 

.1 summarizes various features of existing RSP engines described above. All these RSP engines use simple streams, each incoming item consisting of a triplets associated with its timestamp. From the reasoning aspect, C-SPARQL and Sparkwave support a subset of RDFS rules to infer information from streams. CQELS does not provide reasoning features. All the RSP engines support integration of domain knowledge in the querying process, but reasoning capabilities on streaming data are limited.

  KREM architecture incorporates the Experience component, which allows the capitalization and reuse of prior knowledge. When the knowledge models, constructed in the Knowledge component, suffer from incompleteness (described in section 2.1.1), the Experience component performs as a complementary model to deal with this issue. The Experience component improves the knowledge model by progressively completing it with the experience acquired from the interventions of human experts. Furthermore, the reasoning process in the Rules component enables the evolution of the initial set of rules with experience, as proposed by [TSC+ 12]. More precisely, every time the native reasoner is executed, the system stores both the output of the reasoner and the final decision, if any, made by the expert. Decisions that do not follow the proposition of the reasoner produce an evolution of the set of experience rules. This process is termed as experience capital-

ization

[START_REF] Zanni-Merk | Krem: A generic knowledge-based framework for problem solving in engineering[END_REF]

.

This section presents Cased-based Reasoning (CBR) and Set of Experience Knowledge Structure (SOEKS), two complementary approaches for the capitalization of experience.

  CHAPTER 2. SMART SYSTEMS OVERVIEW Table2.2 -Data-driven and Knowledge-driven approaches for context handling.

	Approaches	Advantages	Disadvantages
		• Semantic reasoning	• Representation can be complex
		• Explicit representation of context • Resource intensive (processing, storage, time)
	Knowledge-	• Strong validation	• Data model in a compatible format (OWL, RDF)
	driven	• Application independent	
		• Allows sharing	
		• Strong support by standards	
		• Fairly accurate	• Training data required
	Data-	• Different models are available	• Resource intensive (processing, storage, time)
	driven		• Models can be complex
			• Difficult to capture existing knowledge
	To design a specific application, the selection of the appropriate modelling and rea-
	soning technique should be made carefully considering the requirements of the applica-
	tion.		

• Ontology-Based Reasoning. As described in section 2.2.2, it is based on description logic. This technique applies logical reasoning over low-level, explicit context to derive high-level, implicit context. Ontological reasoning is mainly supported by two common representations of semantic web languages: RDF(S) and OWL. SWRL is one of the available solutions to add rules in OWL (see section 2.3.1). This technique is applied in

[START_REF] Wang | Ontology based context modeling and reasoning using OWL[END_REF]

.

  ManufacturingService is seen as a service that is provided by a Supplier and that has some ManufacturingCapability, which is enabled by some ManufacturingResource and delivered by some ManufacturingProcess.integrates four ontologies: (1) the device ontology, with concepts such as Machine; (2) the process ontology, with a taxonomy of the different Operations performed by the technical equipment; (3) the parameter ontology, with concepts such as QualityofService;

	CHAPTER 3. EXISTING APPROACHES FOR CONDITION MONITORING IN INDUSTRY
	4.0
	The MSDL
	(Manufacturing Service Description Language) ontology [AD06] allows to describe man-
	ufacturing services. More precisely, a An-
	other ontology with similar purposes to MSDL is MaRCO (Manufacturing Resource Capa-

bility Ontology)

[START_REF] Järvenpää | The development of an ontology for describing the capabilities of manufacturing resources[END_REF]

, that defines capabilities of manufacturing resources. Its main class is Capability, which is specialized to cover both simple capabilities (e.g. Fixturing, SpinningTool) and combined capabilities (those that require a combination of two or more simple capabilities, e.g. PickAndPlace, which requires Finger-Grasping or Vacuum Grasping, Moving and Releasing). Another interesting work is the one presented in [CZX

+ 16]

. It proposes a base ontology to represent a production line. The base ontology

  Awareness Assistant) [MKB + 05], from the military domain, uses an upper ontology for situation awareness introduced in [MKB + 06]. This ontology can be

	CHAPTER 3. EXISTING APPROACHES FOR CONDITION MONITORING IN INDUSTRY
	4.0
	the supported top-level concepts presented by SOUPA, they are not general enough to
	describe industrial entities in a clear and precise way. Furthermore, situations of interest
	are not explicitly anchored by SOUPA.
	adapted to handle domain-specific situations by extending the core vocabulary. Situa-
	tions are represented as objects, since the situation concept is derived from the object
	concept. SAWA has the same limitations as CONON. Qualitative approaches to the rep-
	resentation of time and space are not provided. Furthermore, the PhysicalEntity con-
	cept, which is derived from Object, is incomplete, as a definition for non-physical objects
	is missing.

The situation ontology in

[START_REF] Stephen | Hierarchical situation modeling and reasoning for pervasive computing[END_REF]

, from the field of pervasive computing, incorporates situations as well as contexts. Situations are classified into atomic and composite situations; they are not composed of objects. They are directly (atomic) or indirectly (composite) represented by contexts. This ontology does not provide any explicit relations, roles, or events; only the situation concept is present. Furthermore, space, time and situation

Table 3 .

 3 2 -Comparison of some approaches for representing temporal data in ontology.

	Approaches Reasoning	Quantitative data	Qualitative data	Advantages (+) Disadvantages (-)
					(-) Require extending OWL or RDF(S).
	TDLs	Yes	Yes	Yes	(+) Retain decidability.
					(+) Do not suffer data redundancy.
	Concrete Domains	Yes	Yes	Yes	(-) Require extending OWL or RDF(S).
	Versioning	No	Yes	Yes	(-) Suffers from data redundancy. (-) Searching in all created versions.
	N-ary relations	Yes	Yes	Yes	(-) Suffers from data redundancy.
	4D-fluents	Yes	Yes	Yes	(-) Suffers from data redundancy. (+) Philosophical support.
	Named Graphs	No	Yes	No	(-) Do not offer reasoning support.
	Temporal RDF	No	Yes	No	(-) Require extending OWL or RDF(S). (-) Less expressiveness than OWL.

Temporal RDF

[START_REF] Gutierrez | Temporal RDF[END_REF] 

proposes extending RDF by the annotation of properties with data about the time interval they hold on. It uses only RDF triples and requires extending the RDF syntax. Therefore, it does not have all the expressiveness of OWL. For instance, it is not possible to employ qualitative relations. A number of temporal representations are based on this approach. Table

3

.2 compares the approaches previously discussed for representing knowledge that evolves over time in ontologies. These approaches are compared in terms of the following semantic web standards: the compatibility with querying and reasoning support, and the supported temporal data (quantitative/qualitative). Most of the approaches allow only representing time intervals and associated qualitative relations. In other words, they are not intended to handle time points or qualitative relations between a time interval and a time point or even two time points. The temporal description logics, concrete domain, temporal RDF and named graphs approaches do not support OWL constructs. A

  Table 3.3 -Comparison of manufacturing ontologies and context ontologies.
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	TPPi	DC,EC,PO, TPPi,NTPPi	EC,PO, TPPi,NTPPi	PO,TPPi, NTPPi	PO,TPP, TPPi,EQ	PO,TPP, NTPP	TPPi,NTPPi	NTPPi	TPPi
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.1 gives the composition table of the RCC-8 relations. This table first appeared in

[START_REF] Cui | Qualitative and topological relationships in spatial databases[END_REF] 

and is known as the RCC-8 composition table (RCC-8 CT for short). Table 5.1 -Composition table for RCC-8 relations (* stands for all eight RCC-8 relations)

  is reused as a temporal model. It provides a simple and efficient solution to operate with temporal information in queries and rules. This ontology has a main class named temporal:ValidTime, which has two sub-classes, temporal:ValidInstant and temporal:ValidInterval. The temporal:ValidInstant class denotes a point on a timeline (an instant) and the temporal:ValidInterval class models the time between two instants. These are declared by two data properties, swrlto:hasStartTime and swrlto:hasFinishTime. Besides, the

swrlto:Granularity class describes the unit of measurement of the time reference (e.g., months, days, hours).

  texts. First, the illustrative case study with two properties whose values have a causal relationship in time is formally described. Second, the illustrative case study is instantiated in an industrial scenario with two sensors deployed in a machine.
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	Figure 6.2 -Example of a relevant situation involving two properties and an action triggered to
	correct the values.					

  As already discussed, detecting situations can trigger actions to adapt the process behavior, and this change in behavior can lead to the generation of new situations. These situations can have different levels of severity, and can be nested in different ways. Knowing what potential situations may arise after application of a certain action can help to support decision making. Therefore, the following chapter presents a method to build a hierarchy of all the possible situations depending on the constraints they rely on. Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.2.2 The lattice construction . . . . . . . . . . . . . . . . . . . . . . . . . . 7.2.3 Lattice proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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	graded conditions without being completely stopped. Expert knowledge enables to de-
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	other situations that represent a risk of major interruption of the manufacturing process
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  Table 7.1. For example, the fourth line in this table indicates that situation s 4 happens (first column) if constraints c 2 and c 5 are satisfied (second column). Another way to show relation R is depicted in Figure 7.1. In this figure, we can observe how different situations Table 7.1 -Example of situations and associated constraints (in bold face the constraints that are implied by other constraints) of the constraints in their definition. For example, s 1 and s 2 share constraints c 1 and c 6 . Some constraints can be more general than others, i.e. include others. Such is the case with, for example, constraints c 1 and c 2 defined as MC1_Temp < 40 • C and MC1_Temp

	Situations Constraints	T Constraints
	s 1	c 1 , c 3 , c 6	c 1 , c 2 , c 3 , c 4 , c 5 , c 6
	s 2	c 1 , c 4 , c 6	c 1 , c 2 , c 4 , c 5 , c 6
	s 3	c 2 , c 4 , c 6	c 2 , c 4 , c 5 , c 6
	s 4	c 2 , c 5	c 2 , c 5
	s 5	c 3 , c 6	c 3 , c 4 , c 5 , c 6
	s 6	c 1 , c 6	c 1 , c 2 , c 6
	share a part		

Table 7
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		.1 (third column). This allows to associate both explicit and
	implicit (implied) constraints to a situation.			
	. c 1	. c 2	. c 3	. c 4	. c 5	. c 6
	.	.	.	.	.	.
	s 1	s 2	s 3	s 4	s 5	s 6

Table 7

 7 Conv. water temp. > 60 • C M 3 Cv c 16 Conv. water temp. > 80 • C M 3 Cv c 17 Trans. grid temp. < 35 • C M 3 T c 18 Generator temp. Cv c 20 Converter temp.by satisfying another constraint or on the contrary by not satisfying a constraint anymore, the lattice allows the analysis of the actions to take. It implies, from the decision support point of view, reaching a node situated lower in the lattice if new constraints are satisfied, or higher in the other case.For example, if constraints c 15 , c 17 and c 18 are satisfied, it means that the situation s 6 is happening, i.e. there is a cooling filter obstruction in machine M 3 . The lattice, and in particular, its node ({s 6 , s 7 , s 10 }, {c 15 , c 17 , c 18 }), shows that situation s 7 , more critical than s 6 , is reachable if no action is taken or if the action only imply the satisfaction of c 16 . In general, the actions aim at correcting the abnormal property values causing them to return to normal values. In this case, a filter change action in the cooling system can make the values of properties Converter water temp. Cv 1 malfunction s 9 c 6 ,c 17 ,c 19 ,c 20 M 3 Cv 1 malfunction s 10 c 15 ,c 16 ,c 17 ,c 18 ,c 19 M 3 Cv 1 malfunction s 11 c 12 ,c 21 ,c 23 M 4 R 1 malfunction s 12 c 12 ,c 21 ,c 22 ,c 23 M 4 R 1 malfunction s 13 c 13 ,c 21 ,c 23 PL global malfunction s 14 c 13 ,c 14 ,c 21 ,c 23

		.2 -Constraints definition.	
		Set of constraints C	
	ID Properties	Restriction Device
	c 1	Oil temp.	> 40 • C	M
	c 2	Oil temp.	> 60 • C	M
	c 3	Transformer temp.	> 45 • C	M 1 T
	c 4	Controller temp.	> 40 • C	M 1 Ct
	c 5	Generator curr.	< 800 A	M 1 G
	c 6	Platform temp.	< 35 • C	PL
	c 7	Platform temp.	> 40 • C	PL
	c 8	Gearbox temp.	> 40 • C	M 2 GB
	c 9	Gearbox temp.	> 60 • C	M 2 GB
	c 10 Generator speed	< 500 rpm	M 2 G
	c 11 Environment temp.	< 25 • C	PL
	c 12 Power output	> 2000 kW	PL
	c 13 Power output	< 500 kW	PL
	c 14 Power output	< 200 kW	PL
	c 15 > 80 • C	M 3 Cv
	c 21 Rotor speed	< 200 rpm	M 4 R
	c 22 Rotor speed	< 100 rpm	M 4 R
	c 23 Rotor Pitch angle	< 5 •	M 4 R

> 45 • C M 3 G c 19 Converter temp. > 60 • C M 3 and Generator temp. decrease below the respective thresholds, i.e. the constraints c 15 and c 18 would no longer be satisfied. This would lead the process at node ({s 6 , s 7 , s 8 , s 9 , s 10 }, {c 17 }) where only constraint c 17 is satisfied leading to a new state of the production system. Ideally, it is always intended to go up in the lattice to node (S , {}), where none of the constraints are satisfied, meaning that no abnormal situation is present or partially present. PL global malfunction A node in the lattice represents a possible state of the industrial system. It should be noted that the minimum of the lattice, node ({}, C ), may represent an unreachable state:

  When one of the situations in X involves exactly all the constraints in Y and no other, this means that this situation is happening. This is For example, ({s 6 , s 7 , s 10 }, {c 15 , c 17 , c 18 }) = {s 6 } means that situation s 6 happens in node ({s 6 , s 7 , s 10 }, {c 15 , c 17 , c 18 }) because it only involves constraints c 15 , c 17 and c 18 . {s 1 ,s 3 ,s 2 ,s 5 ,s 4 ,s 7 ,s 6 ,s 9 ,s 8 ,s 12 ,s 11 ,s 14 ,s 13 ,s10 },{ }) ,{c 1 ,c 3 ,c 2 ,c 5 ,c 4 ,c 7 ,c 6 ,c 9 ,c 8 ,c 12 ,c 11 ,c 14 ,c 13 ,c 10 ,c 15 ,c 16 ,c 17 ,c 18 ,c 19 ,c 20 ,c 21 ,c 22 ,c 23 })

				({s 7 ,s 6 ,s 9 ,s 8 ,s 10 },{c 17 })
	({s 3 ,s 5 ,s 4 },{c 11 ,c 8 ,c 10 })		({s 9 ,s 8 ,s 10 },{c 19 ,c 17 })	({s 12 ,s 11 ,s 14 ,s 13 },{c 23 ,c 21 })
		({s 1 ,s 3 ,s 2 ,s 4 ,s 9 ,s 8 },{c 6 })	({s 7 ,s 6 ,s 10 },{c 15 ,c 17 ,c 18 })
	({s 5 ,s 4 },{c 9 ,c 11 ,c 8 ,c 10 })	({s 1 ,s 2 },{c 1 ,c 3 ,c 5 ,c 4 ,c 6 })	({s 7 ,s 10 },{c 16 ,c 15 ,c 17 ,c 18 })	({s 14 ,s 13 },{c 13 ,c 23 ,c 21 })
	({s 3 ,s 4 },{c 6 ,c 11 ,c 8 ,c 10 })	({s 9 ,s 8 },{c 19 ,c 17 ,c 6 })	({s 12 ,s 11 },{c 12 ,c 23 ,c 21 })
	({s 5 },{c 7 ,c 9 ,c 11 ,c 8 ,c 10 })	({s 2 },{c 1 ,c 2 ,c 3 ,c 5 ,c 4 ,c 6 })	({s 10 },{c 18 ,c 15 ,c 16 ,c 17 ,c 19 })	({s 14 },{c 14 ,c 13 ,c 23 ,c 21 })
	({s 4 },{c 9 ,c 6 ,c 11 ,c 8 ,c 10 })	({s 9 },{c 20 ,c 19 ,c 17 ,c 6 })	({s 12 },{c 22 ,c 12 ,c 23 ,c 21 })
	({ }			
	formally addressed in Definition 7 (these situations appear in bold face in Figures 7.2 and
	7.3).			

Definition 7 For a pair (X , Y ), X ⊆ S and Y ⊆ C , let

(X , Y ) := {s ∈ X |∀y ∈ Y : sR y ∧ c ∈ C -Y : sRc }

Regarding the nodes where (X , Y ) is empty, this means that situations in X are partially occurring, so that they are potential situations that the system could reach. The discovery of these combinations of constraints in common among certain situations can give rise to the definition of new situations that allow the early stage detection of certain relevant situations, allowing preventive decisions to be made. (
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Table 8 .

 8 1 -Sensors attached to each Resource and their respective Observable properties.

	Resource	Sensor ObservableProperty
	PL1	S_P_temp	P_temp
		S_E_temp	E_temp
		S_PowerOutput	PowerOutput
	M1	S_G_current	G_current
		S_C_temp	C_temp
		S_T_temp	T_temp
		S_OilTemp	OilTemp
	M2	S_GB_temp	GB_temp
		S_G_speed	G_speed
	M3	S_C_Wtemp	C_Wtemp
		S_TG_temp	TG_temp
		S_G_temp	G_temp
		S_Conv_temp	Conv_temp
	M4	S_R_speed	R_speed
		S_R_Pangle	R_Pangle

  • C (c 16 ), TG_temp < 35 • C (c 17 ), G_temp < 45 • C (c 18 ) and Conv_temp > 60 • C (c 19 ) are satisfied at least once in a 20 second period of time. S10 is more severe than S8 and S9 because the GB temperature exceeds 60 • C and the platform temperature exceeds 40 • C.

  Listing 8.6 -C-SPARQL query to detect the S6 situation.

		:S_TG_temp sosa:madeObservation ?o2 .
	16	?o2	sosa:hasSimpleResult ?v2 .
	17	?m	sosa:hosts	sosa:S_G_temp .
	18	:S_G_temp sosa:madeObservation ?o3 .
	19	?o3	sosa:hasSimpleResult ?v3 .
	20 FILTER (		
	21	?v1 > 60.0 &&	
	22	?v2 < 35.0 &&	
	23	?v3 > 45.0 ) .	
	24 }		
	1 REGISTER QUERY S6-detection AS	
	2 PREFIX : <http://semanticweb.org/STEaMINg/ContextOntology-COInd4#>
	3 PREFIX sosa: <http://www.w3.org/ns/sosa/>
	4 SELECT ?m ?pl		
	5 FROM STREAM <Stream_C_Wtemp> [RANGE 15s STEPS 5s]
	6 FROM STREAM <Stream_TG_temp> [RANGE 15s STEPS 5s]
	7 FROM STREAM <Stream_G_temp> [RANGE 15s STEPS 5s]
	8 FROM <http://semanticweb.org/STEaMINg/ContextOntology-COInd4#>
	9 WHERE {		
	10	?m	:isPartOf	?pl .
	11	?m	sosa:hosts	sosa:S_C_Wtemp .
	12	:S_C_Wtemp sosa:madeObservation ?o1 .
	13	?o1	sosa:hasSimpleResult ?v1 .
	14	?m	sosa:hosts	sosa:S_TG_temp .

  8. IMPLEMENTATION OF THE PROPOSED FRAMEWORK ({s 1 ,s 3 ,s 2 ,s 5 ,s 4 ,s 7 ,s 6 ,s 9 ,s 8 ,s 12 ,s 11 ,s 14 ,s 13 ,s 10 },{ }) ({s 3 ,s 5 ,s 4 },{c 11 ,c 8 ,c 10 }) ({s 1 ,s 3 ,s 2 ,s 4 ,s 9 ,s 8 },{c 6 }) ({s 7 ,s 6 ,s 9 ,s 8 ,s 10 },{c 17 }) ({s 12 ,s 11 ,s 14 ,s 13 },{c 23 ,c 21 }) ({s 5 ,s 4 },{c 9 ,c 11 ,c 8 ,c 10 }) ({s 3 ,s 4 },{c 6 ,c 11 ,c 8 ,c 10 }) ({s 5 },{c 7 ,c 9 ,c 11 ,c 8 ,c 10 }) ({s 4 },{c 9 ,c 6 ,c 11 ,c 8 ,c 10 }) ({s 1 ,s 2 },{c 1 ,c 3 ,c 5 ,c 4 ,c 6 }) ({s 2 },{c 1 ,c 2 ,c 3 ,c 5 ,c 4 ,c 6 }) ({s 9 ,s 8 },{c 19 ,c 17 ,c 6 }) ({s 9 },{c 20 ,c 19 ,c 17 ,c 6 }) ({s 9 ,s 8 ,s 10 },{c 19 ,c 17 }) ({s 10 },{c 18 ,c 15 ,c 16 ,c 17 ,c 19 }) ({s 7 ,s 6 ,s 10 },{c 15 ,c 17 ,c 18 }) ({s 7 ,s 10 },{c 16 ,c 15 ,c 17 ,c 18 }) ({s 12 ,s 11 },{c 12 ,c 23 ,c 21 }) ({s 14 ,s 13 },{c 13 ,c 23 ,c 21 }) ({s 12 },{c 22 ,c 12 ,c 23 ,c 21 }) ({s 14 },{c 14 ,c 13 ,c 23 ,c 21 }) ({ },{c 1 ,c 3 ,c 2 ,c 5 ,c 4 ,c 7 ,c 6 ,c 9 ,c 8 ,c 12 ,c 11 ,c 14 ,c 13 ,c 10 ,c 15 ,c 16 ,c 17 ,c 18 ,c 19 ,c 20 ,c 21 ,c 22 ,c 23 })

adapté de: https://www.i-scoop.eu/industry-4-0/

https://www.w3.org/

https://jess.sandia.gov/

https://jena.apache.org/

https://www.drools.org/

https://en.wikipedia.org/wiki/Data-flow_diagram

Dans le Chapitre 5, une ontologie pour la modélisation du contexte dans le domaine industriel est proposée. Le modèle ontologique répond aux exigences de l'Industrie 4.0, en mettant l'accent sur les relations temporelles et spatiales entre les ressources et les processus afin de représenter des situations particulières d'intérêt dans un scénario industriel. En outre, notre modèle ontologique permet de saisir les changements dynamiques et l'évolution des concepts dans le temps. L'ontologie proposée est générique et extensible et son architecture modulaire permet la description des capacités des ressources de fabrication à différents niveaux de granularité. Dans le Chapitre 6, les composants de notre cadre proposé sont détaillés: les composants Monitoring, Diagnosis, Situation Refinement et Decision making. L'utilisation de méthodes de raisonnement sur les flux de données permet l'intégration de données provenant de différentes sources, avec différentes significations sous-jacentes, différentes résolutions temporelles ainsi que le traitement de ces données en temps réel. Les données collectées par les capteurs sont enrichies d'informations contextuelles pour permettre la détection de la situation en temps réel. En outre, notre proposition utilise également des approches de raisonnement classique pour compléter la détermination des causes qui n'ont pas pu être obtenues par la première méthode. Dans le Chapitre 7, une approche qui utilise la théorie des treillis pour représenter une hiérarchie de situations pouvant conduire à des défaillances potentielles est présentée. La hiérarchie des situations est construite automatiquement en tenant compte des contraintes sur lesquelles elles reposent. La hiérarchie permet de représenter des situations qui se produisent partiellement, c'est-à-dire lorsque seules certaines de leurs contraintes sont satisfaites. L'approche proposée peut être appliquée à d'autres domaines d'application, où une surveillance en temps réel est nécessaire. Enfin, le Chapitre 8 présente les technologies et les outils utilisés pour le développe-
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Uniform Resource Identifiers (URIs) are used to uniquely identify each resource in the web.
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A Key Performance Indicator is a measurable value that demonstrates how effectively a company is achieving key business objectives.
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In the next chapter, we review the existing approaches for condition monitoring in Industry 4.0. We pay special attention to those that use Semantic Web Technologies to facilitate condition monitoring tasks in industry. types, are not represented in the ontology. Also, the possibility of representing situations as objects is very complex.

Additionally, there are several context-aware frameworks that use ontologies as underlying context models in the industrial domain.

In [START_REF] Kamal Uddin | Context-sensitive optimisation of the key performance indicators for fms[END_REF], an ontology-based context model for real-time decision making is proposed to optimise the Key Performance Indicators 3 of flexible manufacturing systems. In [START_REF] Zhu | A context-aware augmented reality assisted maintenance system[END_REF], the authors proposed an authoring system to create context-aware augmented reality (AR) applications for the maintenance of a system that uses an ontology for context modelling. In [START_REF] Nieto | Enhancement of industrial monitoring systems by utilizing context awareness[END_REF], a context-aware industrial monitoring system is presented that provides information to users at the right time in the right modality. In [AMX + 16], the authors present a context-aware information distribution system to support users in an industrial environment. The system aims at using data collected from sensors located at a shop-floor in order to increase the visibility of shop-floor processes by providing the right information, to the right people, at the right time.

In all the works mentioned in the previous paragraph, there is no notion of situation that can be treated as an object. Instead, they represent events which can lead to a waterfall of events, i.e. these events can be caused as a consequence of one another. This does not facilitate a global interpretation of each event considering the others. In addition, they do not provide an explicit description of the sensors and observations. All the discussed ontologies provide common knowledge concepts and statements, which facilitate knowledge sharing and interoperability. However, they do not meet all the requirements mentioned at the beginning of this section. • The Application layer comprises different applications that exploit the semantic enriched information, such as Business Information Systems (BIS) or Enterprise Resource Planning (ERP) software, that can also provide data to the previous layer.

The contributions presented in this thesis are framed in the Semantic Enhanced CPS Representation layer. This layer makes use of all its components to go from raw sensor readings combined with expert knowledge to the detection of relevant situations to support decision making tasks in the Application layer.

Overview of the proposed framework

The main components of our proposal are shown in Listing 6.3 -C-SPARQL query considering the average of Py. The reasoning is the same for the set of situations X .

Conclusion

Lemma 2 Let Y , Y be sets of constraints and X , X be sets of situations, then

This is for all b ∈ X , and by hypothesis X ⊆ X . Therefore,

The same reasoning can be applied to prove

This lemma shows that the more constraints are required, the fewer situations involve all of them. Conversely, the more situations we consider, the fewer constraints they have in common.

Lemma 3 Let Y , Y be sets of constraints and X , X be sets of situations, then The same reasoning can be applied to prove X ∪ X ≡ X ∪ X .

Having defined the three lemmas and their respective proofs, we continue with the proof of the second part of the theorem.

For any two pairs (X , Y ) and (X , Y ) we obtain:

• the infimum of (X , Y ) and (X ,

To prove the existence of the unique infimum, we have to show that (X , Y ) ∧ (X , Y ) is smaller than both (X , Y ) and (X , Y ), and any other common child of (X , Y ) and

By the definition of , we have

Lemma 1 expresses that Y ⊆ Y . Thus, combining the last two statements we conclude that

The same method can be used to prove that (X ∩ X , Y ∪ Y ) (X , Y ) Now we prove that any other common child of (X , Y ) and (X , Y ) is also a child of (X , Y ) ∧ (X , Y ). Let us consider (X , Y ) a child of (X , Y ) and (X , Y ). Then, by the definition of we have

The proof of (1) is trivial since by hypothesis we have X ⊆ X and X ⊆ X , then

Listing 8.3 -Code to add an observation and its metadata into the ontology.

Temporal Relations module

This module contains the Stream Reasoner sub-module which is implemented using C-SPARQL. This module explores the data streams to generate new information. For the engine to process data streams, they must be registered in the engine. This is done using the registerStream(stream) method provided by the C-SPARQL engine.

A set of queries, which represent particular situations, are registered and executed by the C-SPARQL engine over the data streams. This is done using the registerQuery(query) method provided by the C-SPARQL engine. These queries combine background knowledge extracted from the ontology and some parts of the streams that are relevant. They include mainly temporal dependencies between observations and anomalies. C-SPARQL represents queries as query graphs, with query evaluation performed through graph pattern matching over the graphs formed by the incoming data streams. It offers two types of processing models: either the query evaluation is periodic through windows of time, or the query evaluation is not periodic but triggered by the arrival of new triplets.

A simple C-SPARQL query is shown in Listing 8.4. The query name is registered on line CHAPTER 8. IMPLEMENTATION OF THE PROPOSED FRAMEWORK 1 and prefixes used in the query are declared on lines 2 and 3. The query runs against the input RDF streams in the time frame of 15 seconds, sliding the window by 5 seconds (line 5). The chosen time frame is arbitrary and can be changed as desired. It produces pairs of values (line 4): the sensor name (?s) and the average value of the observations (?avg).

To get the observation's value, ?o individuals are bound with the data value ?v through sosa:hasSimpleResult property (line 7-8). The query uses aggregate functions such as AVG (line 4) to calculate the average value of observations which are grouped by sensor name (line 10). Finally, the list of output pairs are filtered out to include only the ones where the average of the observation's values is greater than T (line 11). The Stream Reasoner sub-module produces situations streams as output. This output feeds another stream reasoner in the Cause determination module and the detected situations are stored in the ontology together with other relevant information, for example the resources concerned by the detected situation. As evoked in section 2.3.2, C-SPARQL supports closed-world and time-aware reasoning on stream data. However, it is not intended to have any effect on the underlying ontology. Therefore, in order to store the detected situation together with other relevant information, this sub-module invokes OWLAPI constructs for asserting new OWL individuals holding all situation information. Listing 8.5 shows an example of the OWLAPI constructors used to add to the ontology the facts that two machines (M1 and M2) are concerned by a detected situation (SIT). 
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If the cause is identified later, it can be added to the ontology and linked to the situation for future use.

In both cases, the module provides the Decision Making component with the detected situation together with the possible causes in case they are known. The association between the situation and the causes is also added to the Ontology.

The Decision making component implementation

For this component, the algorithm 1 presented in section 7.2.2 was implemented in the Java language and is available here 8 . Furthermore, the operators . and . (defined in section 7.2.1) were implemented in order to implement the algorithm. The situation hierarchy is returned in the DOT 9 format file, which is a graph description language. For this, the jgrapht 10 package was used. Various programs can process DOT files, allowing the quick visualization of the situation hierarchy.

Proof of concept of the proposed framework

An illustrative case study is described in this section to highlight how the proposed framework can be used and the advantages it offers to support decisions that need to be made when an abnormal situation is detected in an industrial framework.

Case study description

The case study is based on a manufacturing production line (Figure 8.4), named PL1, composed of four machines: M1, M2, M3 and M4. These machines and the production line are equipped with sensors. The sensors collect data on the properties described in Table 8.1. This scenario is formally represented using the ontological model introduced in Chapter 5 and it is shown in Figure 8.5. Several abnormal situations that leads to failures in this scenario are defined by experts. Each of them is expressed as a set of constraints. We focus on situations covering the following types of failures: machines malfunctions and global malfunctions of