
HAL Id: tel-03181432
https://theses.hal.science/tel-03181432

Submitted on 25 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

STEaMINg : semantic time evolving models for industry
4.0

Franco Giustozzi

To cite this version:
Franco Giustozzi. STEaMINg : semantic time evolving models for industry 4.0. Computation and
Language [cs.CL]. Normandie Université, 2020. English. �NNT : 2020NORMIR13�. �tel-03181432�

https://theses.hal.science/tel-03181432
https://hal.archives-ouvertes.fr

THÈSE

Pour obtenir le diplôme de doctorat

Spécialité Informatique

Préparée au sein de l’Institut National des Sciences Appliquées Rouen Normandie

STEaMINg
Semantic Time Evolving Models for Industry 4.0

Présentée et soutenue par
Franco Giustozzi

Thèse soutenue publiquement le 14 décembre 2020
devant le jury composé de

Anne HÅKANSSON Professeure, UiT The Arctic University of Norway Rapportrice

Davy MONTICOLO Professeur, ERPI, Université de Lorraine Rapporteur

Nathalie PERNELLE Professeure, LIPN, Université Sorbonne Paris Nord Examinatrice

Edward SZCZERBICKI Professeur, Gdansk University of Technology Examinateur

Habib ABDULRAB Professeur, LITIS, INSA Rouen Normandie Examinateur

Julien SAUNIER Maître de conférences, LITIS, INSA Rouen Normandie Co-encadrant

Cecilia ZANNI-MERK Professeure, LITIS, INSA Rouen Normandie Directrice de thèse

Thèse dirigée par Cecilia Zanni-Merk et Julien Saunier

Abstract

Industry 4.0 aims to improve the production and associated services through the digi-
talization and automation of manufacturing processes. A key characteristic of factories
in Industry 4.0 is that assets and machines in plants are equipped with sensors which
collect data for effective equipment condition based monitoring. This monitoring of all
the equipment involved in a manufacturing process allows early detection of undesir-
able behaviors or situations that could lead to failures, which affect the performance,
energy-use and reliability of manufacturing processes. Through the early detection of
these situations, proactive decisions can be made to avoid production downtime. In or-
der to detect these situations the data collected by the sensors must be interpreted. This
is a challenging task as it requires the integration and processing of heterogeneous data
coming from different sources, with different temporal resolutions and different under-
lying meanings. Moreover, to create added value out of these data, it must be combined
with domain knowledge containing resource specification and planning information. In
this context, semantic web technologies are increasingly considered as key technologies
to improve data integration. In particular, ontologies emerge as a pertinent method to
represent knowledge of manufacturing in a machine-interpretable way through the con-
struction of semantic models. These models provide a virtual representation of the re-
sources as well as the modeling of relevant situations from expert knowledge. In a real
factory resources execute their tasks over time and under different conditions (contexts).
It is necessary that the model represents in which situation(s) the resource is performing
its tasks to allow a more informed decision making, since the actions to take and rules that
manage the task may vary according to the current situation. In other words, the model
must evolve in order to represent in which situation(s) the resource is concerned during
the execution of its tasks.

The main objective of this thesis is to address the evolution of semantic models in In-
dustry 4.0. To this end, firstly we propose a semantic model (ontology) for the manufac-
turing domain that represents the resources and processes that are part of a factory, with
special emphasis on modeling the context of these resources and processes. Relevant sit-
uations that combine sensor observations with domain knowledge are also represented
in the model. Secondly, an approach that uses stream reasoning to detect these situa-
tions that lead to potential failures is introduced. This approach enriches data collected
from sensors with contextual information using the proposed semantic model. The use of
stream reasoning facilitates the integration of data from different data sources, different
temporal resolutions as well as the processing of these data in real time. This allows to
derive high-level situations from lower-level context and sensor information. Detecting
situations can trigger actions to adapt the process behavior, and in turn, this change in
behavior can lead to the generation of new contexts leading to new situations. These sit-
uations can have different levels of severity, and can be nested in different ways. Dealing
with the rich relations among situations requires an efficient approach to organize them.
Therefore, we propose a method to build a lattice, ordering those situations depending
on the constraints they rely on. This lattice represents a road-map of all the situations
that can be reached from a given one, desirable or undesirable. This helps in decision
support, by allowing the identification of the actions that can be taken to correct the ab-
normality avoiding in this way the interruption of the manufacturing processes. Finally,
an industrial application scenario for the proposed approach is described. Through it, we
verify that (1) the proposed semantic model is generic and extensible to accommodate a
wide spectrum of manufacturing processes. Furthermore, its modular architecture allows

i

to describe manufacturing capabilities of manufacturing resources in different levels of
modularity; (2) the use of stream reasoning together with classical reasoning approaches
allow to detect abnormal situations as well as their possible causes in a suitable way; and
(3) the exploitation of the lattice helps in decision making tasks, by allowing the identifi-
cation of the actions that can be taken to correct the abnormality.

Keywords: Semantic Technologies; Ontology; Context Modeling; Industry 4.0; Stream Rea-
soning; Condition Monitoring.

ii

Résumé

L’Industrie 4.0 vise à améliorer la production et les services associés grâce à la numérisa-
tion et à l’automatisation des processus de fabrication. Une caractéristique clé des usines
de Industry 4.0 est que les actifs et les machines des usines sont équipés de capteurs qui
collectent des données pour une surveillance efficace basée sur l’état des équipements.
Cette surveillance de tous les équipements impliqués dans un processus de fabrication
permet la détection précoce de comportements indésirables ou de situations pouvant
conduire à des défaillances, qui affectent les performances, la consommation d’énergie
et la fiabilité des processus de fabrication. Grâce à la détection précoce de ces situa-
tions, des décisions proactives peuvent être prises pour éviter les arrêts de production.
Afin de détecter ces situations, les données recueillies par les capteurs doivent être inter-
prétées. C’est une tâche difficile car elle nécessite l’intégration et le traitement de don-
nées hétérogènes provenant de différentes sources, avec des résolutions temporelles et
des significations sous-jacentes différentes. De plus, pour créer une valeur ajoutée à par-
tir de ces données, il faut les combiner avec des connaissances de domaine contenant
des informations sur la spécification et la planification des ressources. Dans ce contexte,
les technologies du web sémantique sont de plus en plus considérées comme des tech-
nologies clés pour améliorer l’intégration des données. En particulier, les ontologies ap-
paraissent comme une méthode pertinente pour représenter la connaissance de la fabri-
cation d’une manière interprétable par les machines grâce à la construction de modèles
sémantiques. Ces modèles fournissent une représentation virtuelle des ressources ainsi
que la modélisation de situations pertinentes à partir de connaissances d’experts. Dans
une usine réelle, les ressources exécutent leurs tâches au fil du temps et dans différentes
conditions (contextes). Il est nécessaire que le modèle représente dans quelle(s) situa-
tion(s) la ressource exécute ses tâches pour permettre une prise de décision plus éclairée,
car les actions à entreprendre et les règles qui gèrent la tâche peuvent varier en fonction
de la situation actuelle. En d’autres termes, le modèle doit évoluer afin de représenter
dans quelle(s) situation(s) la ressource est concernée lors de l’exécution de ses tâches.

L’objectif principal de cette thèse est d’aborder l’évolution des modèles sémantiques
dans l’industrie 4.0. À cette fin, nous proposons tout d’abord un modèle sémantique (on-
tologie) pour le domaine de la fabrication qui représente les ressources et les processus
qui font partie d’une usine, en mettant particulièrement l’accent sur la modélisation du
contexte de ces ressources et processus. Les situations pertinentes qui combinent les ob-
servations des capteurs avec la connaissance du domaine sont également représentées
dans le modèle. Ensuite, une approche qui utilise le raisonnement par flux pour dé-
tecter ces situations qui conduisent à des défaillances potentielles est introduite. Cette
approche enrichit les données collectées par les capteurs avec des informations con-
textuelles en utilisant le modèle sémantique proposé. L’utilisation du raisonnement en
flux facilite l’intégration de données provenant de différentes sources, de différentes ré-
solutions temporelles ainsi que le traitement de ces données en temps réel. Cela permet
de dériver des situations de haut niveau à partir d’informations contextuelles et de cap-
teurs de niveau inférieur. La détection de situations peut déclencher des actions pour
adapter le comportement du processus, et à son tour, ce changement de comportement
peut conduire à la génération de nouveaux contextes conduisant à de nouvelles situ-
ations. Ces situations peuvent avoir différents niveaux de gravité et peuvent être im-
briquées de différentes manières. La gestion des relations riches entre les situations né-
cessite une approche efficace pour les organiser. C’est pourquoi nous proposons une
méthode pour construire un treillis, en ordonnant ces situations en fonction des con-

iii

traintes sur lesquelles elles reposent. Ce treillis représente une feuille de route de toutes
les situations qui peuvent être atteintes à partir d’une situation donnée, souhaitable ou
indésirable. Cela aide à l’aide à la décision, en permettant l’identification des actions
qui peuvent être prises pour corriger l’anomalie en évitant ainsi l’interruption des pro-
cessus de fabrication. Enfin, un scénario d’application industrielle pour l’approche pro-
posée est décrit. À travers celui-ci, nous vérifions que (1) le modèle sémantique pro-
posé est générique et extensible pour s’adapter à un large éventail de procédés de fab-
rication. De plus, son architecture modulaire permet de décrire les capacités de fabri-
cation des ressources de fabrication à différents niveaux de modularité ; (2) l’utilisation
du raisonnement en flux avec les approches de raisonnement classiques permet de dé-
tecter les situations anormales ainsi que leurs causes possibles de manière appropriée ;
et (3) l’exploitation du treillis aide à la prise de décision, en permettant l’identification des
actions qui peuvent être prises pour corriger l’anomalie.

Mots-clés : Technologies sémantiques ; Ontologie ; Modélisation du contexte ; Industrie
4.0 ; Raisonnement en flux ; Surveillance des Processus.

iv

To my sister and my parents.

Acknowledgements

In these lines I would like to express my most sincere gratitude to all those people who

have supported me and helped me in the development of this thesis.

I would like to thank the reviewers for the care with which they have evaluated this

manuscript and the consideration they have given to my thesis work. Their constructive

comments and questions have provided me with new and very insightful perspectives on

my research works.

I wish to express my deepest appreciation to my thesis supervisors Cecilia and Julien

for their patience, dedication, guidance and motivation. They convincingly guided and

encouraged me to face every challenge that arose during the development of this thesis

even when the road got tough. It has been a privilege to be able to count on their guid-

ance and help. Not only have they helped me in my research work by giving me advice,

inspiring ideas and enriching feedback but they have also contributed a lot to my personal

development.

I would also like to pay my special regards to all the staff at LITIS and INSA Rouen

for the friendly and comfortable atmosphere. It is a pleasure to work in such an envi-

ronment. I want to thank Brigitte, Sandra, Fabienne and Mathieu for their patience and

always willing to help me with all the administrative tasks and paperwork. I also want to

thank all my colleagues. I am sure I am forgetting someone, but thanks to Jean Baptiste,

Antoine, Benjamin, Rachel, Usman, Mathieu, Caterine, Qiu, Sandratra, Maël, Cyprien, Is-

maila, Henrique and Marwa. During these years we have shared many great moments

and have certainly made the everyday life more enjoyable. With many of them a great

friendship was born. A special thanks to Jean Baptiste for receiving me in France. His

support was fundamental for me to integrate and adapt to the daily life in Rouen. I also

want to thank Antoine, who helped me during my first year in France.

I also want to extend my thanks to the people who have accompanied me outside the

professional environment.

I wish to express my deepest gratitude to Manon and her family. Their friendship and

kindness was a fundamental support for me. They have welcomed me into their home

and always treated me with great kindness. They have made me feel at home.

Moreover, my appreciation goes to Sofia for her support and understanding. Beyond

the constant distance that always separates us and the dynamism of life she has been an

inexhaustible source of strength and admiration.

Last but not least, I want to express my heartfelt thanks to my family. I would like to

recognize the invaluable and unconditional support that they all provided over the years

and in every decision I have made. They have always encouraged me to pursue my goals.

This achievement would not have been possible without them.

Thank you. Merci. Gracias.

vii

viii

Table of Contents

List of Figures xiii

List of Tables xv

1 Synthèse de la thèse en français 1
1.1 Introduction . 1
1.2 État de l’art . 7
1.3 Contributions de cette thèse . 16
1.4 Conclusions et Travaux Futurs . 22

Introduction 27

I Related Work 37

2 Smart Systems overview 39
2.1 Smart Systems architecture . 40

2.1.1 The Classic architecture . 40
2.1.2 The KREM architecture . 42

2.2 The Knowledge component . 43
2.2.1 Concept of Ontology . 43
2.2.2 Semantic Web Technologies . 48

2.3 The Rules component . 52
2.3.1 SWRL - The Semantic Web Rule Language 53
2.3.2 RDF Stream reasoning . 54

2.4 The Experience component . 57
2.4.1 Case-based reasoning . 57
2.4.2 SOEKS - Set of Experience Knowledge Structure 58

2.5 The Meta-Knowledge component . 60
2.5.1 Data-driven approaches for context handling 61
2.5.2 Knowledge-driven approaches for context handling 61

2.6 Conclusion . 63

3 Existing approaches for Condition Monitoring in Industry 4.0 65
3.1 Key elements of Industry 4.0 . 66
3.2 Maintenance strategies in the industrial context 68

3.2.1 Data-driven approaches to condition monitoring 69
3.2.2 Knowledge-based approaches to condition monitoring 70

3.3 Ontological models for the manufacturing domain 72
3.4 Ontological models for context modeling . 74

ix

TABLE OF CONTENTS

3.5 Modeling knowledge that evolves in time . 78
3.6 Conclusion . 80

II Contributions 83

4 Proposed framework overview 85
4.1 General architecture for Industry 4.0 . 86
4.2 Overview of the proposed framework . 87

4.2.1 The Semantic Model for Industry 4.0 88
4.2.2 The Monitoring component . 88
4.2.3 The Diagnosis component . 89
4.2.4 The Decision Making component . 90

4.3 Conclusion . 90

5 Semantic Model for Context Modeling in Industry 4.0 93
5.1 The proposed ontological model . 94

5.1.1 The Resource module . 96
5.1.2 The Process module . 97
5.1.3 The Sensor module . 98
5.1.4 The Location module . 99
5.1.5 The Time module . 101
5.1.6 The Situation module . 103
5.1.7 Integration of all the modules . 105

5.2 Ontology alignment with a foundational ontology 107
5.3 Ontology evaluation . 109
5.4 Conclusion . 111

6 Stream Reasoning for Abnormal Situation Detection and Diagnosis 113
6.1 Relevant situation detection and cause determination 114

6.1.1 The Monitoring component . 116
6.1.2 The Diagnosis component . 117
6.1.3 The Abnormal Situation Refinement component 118
6.1.4 The Decision Making component . 118

6.2 An Illustrative case study with two properties 118
6.3 Conclusion . 121

7 Situation Hierarchies for supporting Decision Making 123
7.1 Related work . 124
7.2 Situation hierarchy . 125

7.2.1 Definitions . 126
7.2.2 The lattice construction . 128
7.2.3 Lattice proof . 130

7.3 Case study for lattice interpretation and exploitation 134
7.4 Conclusion . 137

8 Implementation of the proposed framework 139
8.1 Implementation of the framework components 140

8.1.1 The Ontological model implementation 141
8.1.2 The Monitoring component implementation 142
8.1.3 The Diagnosis component implementation 145

x

TABLE OF CONTENTS

8.1.4 The Decision making component implementation 146
8.2 Proof of concept of the proposed framework 146

8.2.1 Case study description . 146
8.2.2 Abnormal situation detection and cause determination 150

8.3 Conclusion . 154

Conclusions & Future Work 155

Bibliography 159

xi

TABLE OF CONTENTS

xii

List of Figures

2.1 Knowledge-based system architecture (adapted from [Mil08]) 41
2.2 The KREM architecture with its four components (taken from [ZMS19]) . . . 42
2.3 An example of three concepts (Person, Country and Animal) and relations

(livesIn and hasPet) among instances. 45
2.4 Methodology for developing ontologies [UG96]. 46
2.5 Types of Ontologies. 47
2.6 Semantic Web Stack [BLF00]. 48
2.7 RDF graph example. 49
2.8 Stream Reasoning (from [SCDV+19]) . 55
2.9 The CBR architecture (adapted from [AP94]) 58
2.10 A set of experience knowledge structure. 59
2.11 The SOEKS ontology object properties. 59

3.1 Maintenance strategies in industry(RM - PM - PdM) 69
3.2 The CoBrA Ontology [CFJ03] . 75
3.3 The SOUPA ontology [CPFJ04]. 76
3.4 CONON Ontology [WDTP04] . 77

4.1 The general architecture for Industry 4.0. 87
4.2 The main components of the proposed framework. 88
4.3 Virtual representation of a real factory. 89
4.4 Semantic model evolution over time. 89

5.1 The Context Ontology for Industry 4.0 (COInd4). 95
5.2 RCC-8 basic relations . 100
5.3 Allen’s Operators . 103
5.4 Screenshot of the proposed ontology evaluation results by OOPS! 111

6.1 Main components and workflow of the proposed framework. 115
6.2 Example of a relevant situation involving two properties and an action trig-

gered to correct the values. 119
6.3 Representation of the scenario presented in the case study using our model. 120

7.1 Situations with constraints (R) and implications among the constraints (T). 127
7.2 Lattice representing the hierarchy of situations (the situations defined ex-

actly by all the constraints of the second component of the pair in the node
are shown in bold face) . 129

7.3 Hierarchy of the situations defined in the illustrative case study. 137

8.1 Implementation technology for the proposed framework. 141
8.2 RDF graph example. 142

xiii

LIST OF FIGURES

8.3 Part of the ontological model before detecting SIT (a) and after detecting
SIT (b). 144

8.4 Production line. 146
8.5 Representation of the scenario using our semantic model. 147
8.6 Background knowledge and streaming data for S6 situation detection. . . . 151
8.7 Part of the ontological model: (a) before detecting the S6 situation; and (b)

after detecting it. 152
8.8 Part of the ontological model after cause determination. 152
8.9 Hierarchy of the situations defined in the illustrative case study. 153

xiv

List of Tables

2.1 Comparison of RSP engines. 56
2.2 Data-driven and Knowledge-driven approaches for context handling. 63

3.1 Comparison of context ontologies. 78
3.2 Comparison of some approaches for representing temporal data in ontology. 80
3.3 Comparison of manufacturing ontologies and context ontologies. 82

5.1 Composition table for RCC-8 relations (* stands for all eight RCC-8 relations) 100

7.1 Example of situations and associated constraints (in bold face the constraints
that are implied by other constraints) . 127

7.2 Constraints definition. 135
7.3 Situations and their concerned constraints (the constraints that are implied

by other constraints are in bold face) . 136

8.1 Sensors attached to each Resource and their respective Observable properties.148

xv

LIST OF TABLES

xvi

Chapter 1

Synthèse de la thèse en français

1.1 Introduction

Contexte

Historiquement, les révolutions industrielles ont changé la façon dont la société vit et tra-

vaille. La première révolution industrielle (du 18ème au 19ème siècle) a utilisé l’énergie de

l’eau et de la vapeur pour mécaniser la production [DD79]. La deuxième révolution indus-

trielle (1870 à 1914) a utilisé l’énergie électrique pour permettre la production de masse de

biens [Mok98]. La troisième révolution industrielle (1980 à 2010) a utilisé l’électronique

et les technologies de l’information pour automatiser la production [Rif11]. Aujourd’hui,

une quatrième révolution industrielle, également connue sous le nom d’Industrie 4.0,

s’appuie sur la troisième. L’industrie 4.0 se caractérise par une fusion des technologies

qui brouille les lignes entre les sphères physique et numérique. Parmi ces technologies,

on trouve l’intelligence artificielle (IA), la robotique, l’Internet des objets (IoT) et les sys-

tèmes cyberphysiques. La figure 1.8 illustre ces révolutions industrielles et les technolo-

gies clés associées à chacune d’entre elles.
L’objectif principal de l’industrie 4.0 est donc d’améliorer la production et les services

associés par l’utilisation de technologies innovantes [SMB+17, WWLZ16]. Pour garantir

une productivité, une disponibilité et une efficacité élevées des processus de fabrication,

la détection de situations anormales dans les lignes de production est une question cru-

ciale pour les fabricants [Has11]. Afin de résoudre ce problème, les usines s’appuient

sur la surveillance de l’état du système (condition monitoring). Il s’agit de surveiller tous

les équipements impliqués dans un processus de fabrication afin de détecter rapidement

les comportements ou situations indésirables qui pourraient conduire à des anomalies,

qui affectent leurs performances, leur consommation d’énergie ou leur fiabilité. Grâce à

la détection précoce de ces situations, des décisions proactives peuvent être prises pour

éviter les arrêts de production. Ces décisions peuvent impliquer, par exemple, de modi-

fier les paramètres du processus pour en adapter le comportement.

Une caractéristique importante de la production industrielle dans l’industrie 4.0 est

que les éléments physiques tels que les capteurs, les actionneurs et les machines de l’entre-

prise sont connectés entre eux et à l’internet. Dans cet environnement, les capteurs

1

CHAPTER 1. SYNTHÈSE DE LA THÈSE EN FRANÇAIS

Figure 1.1 – Histoire des révolutions industrielles.1

génèrent une quantité croissante de données qui peuvent être utilisées pour une surveil-

lance efficace de l’état des équipements. Afin de détecter des situations anormales, les

données collectées par les capteurs doivent être interprétées. C’est une tâche difficile

car elle nécessite l’intégration et le traitement de données hétérogènes provenant de dif-

férentes sources, avec des résolutions temporelles et des significations sous-jacentes dif-

férentes. De plus, un point essentiel à considérer est que la surveillance des proces-

sus industriels devrait dépendre non seulement de leur état interne et des interactions

des utilisateurs, mais aussi du contexte de leur exécution. La prise en compte du con-

texte des processus industriels permet de fournir des informations à valeur ajoutée pour

améliorer leurs performances. Le contexte est toute information qui peut être utilisée

pour caractériser la situation d’une entité [DA00]. Il est généralement considéré comme

un mélange de données géospatiales, de capteurs environnementaux, de descriptions de

services, entre autres. Dans le contexte de l’industrie, un modèle de contexte dynamique

doit non seulement prendre en compte le contexte des outils, des machines, des pièces

et des produits, mais aussi la planification des processus de fabrication, la spécification

des ressources et la configuration du système de contrôle. Les données contextuelles sont

soumises à des changements constants et peuvent être très hétérogènes.

Les technologies du web sémantique ont prouvé leur efficacité pour traiter la ques-

tion de l’intégration des données. Le web sémantique est une extension du web mondial

qui combine l’ingénierie de la connaissance et les méthodes d’IA pour représenter, in-

tégrer et raisonner sur des données et des connaissances à travers des ontologies et des

règles. En informatique, une ontologie est considérée comme une spécification explicite

d’une conceptualisation pour un domaine d’intérêt. Les ontologies apparaissent comme

une méthode pertinente pour représenter les connaissances de toute nature (en parti-

1adapté de: https://www.i-scoop.eu/industry-4-0/

2

CHAPTER 1. SYNTHÈSE DE LA THÈSE EN FRANÇAIS

culier, les connaissances de fabrication) d’une manière interprétable par les machines.

Les modèles sémantiques ainsi construits fournissent une représentation virtuelle des

ressources d’une usine de fabrication ainsi que des situations pertinentes qui leur sont

associées. De plus, le raisonnement sur les ontologies, grâce à ses extensions basées sur

des règles, permet de transformer les observations brutes collectées par les capteurs en

abstractions de plus haut niveau, telles que des situations d’intérêt, qui sont significatives

pour les humains et permettent de mieux comprendre le monde physique pour soutenir

les tâches de prise de décision. Par exemple, les observations des capteurs peuvent être

utilisées pour optimiser la consommation d’énergie dans une chaîne de production afin

d’éviter les pannes. Ce processus de transformation des données est illustré à l’aide de la

célèbre "hiérarchie des connaissances" [Row07] illustrée dans la Figure 1.9.

Figure 1.2 – Hiérarchie de la connaissance (pris de [Row07])

Les solutions actuelles de raisonnement sur les ontologies ont été traditionnellement

développées pour des données statiques ou à évolution lente. La nature hautement dy-

namique des données dans le domaine industriel introduit de nouvelles questions. Pour y

faire face, un certain nombre de travaux récents proposent d’unifier le raisonnement et le

traitement des flux de données, donnant naissance au domaine de recherche du raison-

nement sur les flux de données (stream reasoning). Ce domaine s’intéresse aux systèmes

de décision basés sur le traitement continu des flux de données ainsi que sur des connais-

sances de fond riches [SCDV+19].

Dans ces circonstances, le modèle sémantique lui-même doit évoluer afin de représen-

ter dans quelle(s) situation(s) se trouve(nt) la ou les ressources pendant l’exécution de ses

tâches pour soutenir la prise de décision.

Par conséquent, cette thèse étudie l’utilisation des méthodes de représentation des

connaissances, en particulier les technologies du web sémantique, pour construire un

modèle sémantique évolutif qui représente le domaine industriel, en mettant l’accent sur

la modélisation du contexte pour fournir la notion de situation.

Motivation

Comme mentionné dans la section précédente, les modèles sémantiques sont utiles pour

la représentation des connaissances sur un domaine particulier, en l’occurrence l’industrie

4.0. Cependant, ces modèles sémantiques sont plutôt statiques, ce qui signifie qu’ils ne

3

CHAPTER 1. SYNTHÈSE DE LA THÈSE EN FRANÇAIS

répondent pas à la dynamique des processus de fabrication. Pour que le modèle puisse

représenter les situations dans lesquelles les processus sont exécutés, il est nécessaire que

le modèle sémantique évolue afin de représenter ce qui se passe dans le monde réel.

Le modèle sémantique peut évoluer pour différentes raisons. La première est liée à

un changement dans la structure du modèle lui-même, c’est-à-dire l’ajout ou la suppres-

sion de concepts et de relations. Ce type de changement est étudié dans le domaine de

l’évolution des ontologies [SMMS02, Sto04, NK04, PDTC07] et n’est pas abordé dans cette

thèse. La deuxième possibilité est liée à l’ajout d’instances à des concepts déjà définis

et à l’ajout de relations sur des instances existantes. Un exemple peut être l’ajout d’une

ressource physique à l’usine qui serait reflétée comme une nouvelle instance du concept

de ressource correspondant dans le modèle sémantique. Un autre exemple peut être

l’ajout d’une situation détectée et le fait qu’une certaine ressource est impliquée dans

cette situation (c’est-à-dire un nouveau lien entre deux instances à travers une relation

existante).

Les situations d’intérêt dans le domaine industriel dépendent des données des cap-

teurs et de la connaissance du domaine. Outre les informations statiques sur les entités

industrielles, des informations dynamiques, telles que la manière dont les processus in-

dustriels sont exécutés, doivent être décrites. Par conséquent, les données collectées par

les capteurs déployés dans une usine doivent être explicitement représentées pour décrire

l’état du processus. C’est la première exigence pour que le modèle sémantique soit con-

struit.

Une autre exigence est la représentation des relations temporelles entre les processus

et des relations spatiales entre les entités et les emplacements dans l’usine. Ces relations

sont utilisées pour identifier différentes situations d’intérêt. Cela implique de traiter des

informations qui évoluent dans le temps, comme les changements de situation(s) qu’une

machine peut traverser ou les changements de valeurs d’un paramètre de la machine

en fonction des différentes décisions prises. Par conséquent, le modèle sémantique doit

fournir suffisamment d’expressivité pour saisir des connaissances de haut niveau, telles

que des situations, à partir de données annotées dans le temps provenant de capteurs.

Plus précisément, les exigences auxquelles le modèle sémantique doit répondre sont

les suivantes :

Intégration de données. L’intégration des informations provenant de différentes sources

est une caractéristique essentielle. De plus, l’intégration de données provenant de cap-

teurs (flux de données) avec des connaissances de base décrivant le domaine d’application

est également nécessaire (par exemple, les données de flux collectées par une machine

sont combinées avec des connaissances de base sur les différentes contraintes qui in-

diquent un comportement anormal).

Représentation temporelle. Le temps joue un rôle central dans cette thèse. Cela ex-

ige une représentation adéquate du temps, où les données peuvent être annotées avec

leur heure d’occurrence et leur validité. Outre le traitement des données en continu, il

est également nécessaire de gérer des données historiques, c’est-à-dire des informations

annotées dans le temps sur les états précédents de la ressource analysée (par exemple,

l’historique des relevés de température d’une certaine machine). Ces informations peu-

4

CHAPTER 1. SYNTHÈSE DE LA THÈSE EN FRANÇAIS

vent être utilisées, par exemple, pour identifier des tendances, pour extraire des statis-

tiques ou pour comparer des informations antérieures et actuelles afin d’identifier de

nouveaux types d’anomalies ou de situations.

Efficience. En ce qui concerne la détection des situations, l’efficacité du traitement est

liée à la capacité de faire face à une grande quantité de données collectées pour générer

de nouveaux résultats en temps utile (par exemple, les situations anormales doivent être

détectées rapidement pour permettre des actions de résolution).

Aide à la décision. Une fois qu’une situation susceptible de conduire à des défaillances

est détectée, une action doit être entreprise pour la contrer. Les actions modifient l’état

du système et conduisent à d’autres situations. Afin d’aider à la prise de décision et de

choisir l’action la plus appropriée, il est nécessaire de comprendre les relations entre les

situations.

Ces exigences motivent la proposition d’un nouveau cadre pour traiter l’évolution des

modèles sémantiques dans l’industrie 4.0. Le cadre proposé utilise les technologies sé-

mantiques pour représenter le domaine de la fabrication en mettant l’accent sur la mod-

élisation du contexte des ressources impliquées dans une usine. il vise à détecter les situ-

ations qui peuvent conduire les processus de fabrication dans l’industrie 4.0 à des défail-

lances et leurs causes possibles. Grâce à la détection de ces situations et de leurs causes,

des décisions appropriées peuvent être prises pour éviter l’interruption des processus de

fabrication.

Contributions

Cette thèse propose un cadre pour aborder l’évolution des modèles sémantiques dans

l’industrie 4.0. Un aperçu du cadre est présenté dans la figure 1.10, les rectangles en

pointillés bleus représentent les principales contributions de cette thèse qui sont décrites

ci-dessous.

La première contribution est liée au développement du modèle sémantique ; et les

autres contributions sont liées à la gestion de l’évolution du modèle sémantique.

• Un modèle de connaissance ontologique pour le domaine de l’industrie est pro-

posé pour fournir une représentation déclarative et abstraite des ressources, des

processus, des capteurs et des relations entre eux. En outre, le modèle est forte-

ment orienté vers la modélisation du contexte des ressources impliquées dans un

processus de fabrication. Les situations pertinentes qui combinent les observations

des capteurs et la connaissance du domaine y sont également représentées.

• Une approche qui utilise le raisonnement par flux pour détecter les situations perti-

nentes qui conduisent à des défaillances potentielles est introduite. Cette approche

enrichit les données collectées par les capteurs avec des informations contextuelles

en utilisant le modèle sémantique proposé. L’utilisation du raisonnement sur les

flux de données facilite l’intégration de données provenant de différentes sources,

de différentes résolutions temporelles ainsi que le traitement de ces données en

5

CHAPTER 1. SYNTHÈSE DE LA THÈSE EN FRANÇAIS

Monitoring Diagnosis
Decision
Makingsituation situation/cause

Real Factory

raw data actions

Semantic
model

represents

Chapter 6

Chapter 5

Chapter 7

Figure 1.3 – Aperçu du schéma proposé.

temps réel. Cela permet d’identifier des situations à partir de flux de données con-

textuelles et de capteurs de bas niveau combinés à des connaissances de fond. En

outre, notre proposition utilise des approches de raisonnement classiques pour

déterminer les causes possibles qui génèrent la situation lorsque les résultats du

raisonnement sur les flux ne sont pas suffisants.

• Les situations détectées peuvent déclencher des actions visant à adapter le com-

portement du processus, et ce changement de comportement peut à son tour en-

traîner la création de nouveaux contextes conduisant à de nouvelles situations. Pour

organiser les situations en fonction des contraintes sur lesquelles elles reposent, la

construction d’un treillis est proposée. Ce treillis représente une feuille de route de

toutes les situations, désirables ou non, qui peuvent être atteintes à partir d’une sit-

uation donnée. Cela aide à l’aide à la décision, en permettant l’identification des

actions qui peuvent être prises pour corriger le comportement du processus.

Enfin, un scénario d’application industrielle pour l’approche proposée est étudié. Au

moyen de celui-ci, nous vérifions que (i) le modèle sémantique proposé est générique

et extensible pour s’adapter à un large spectre de processus de fabrication, et que son

architecture modulaire permet la description de ressources de fabrication avec différents

niveaux de modularité ; (ii) l’utilisation du raisonnement en flux avec les approches de

raisonnement classiques permet la détection de situations anormales ainsi que de leurs

causes possibles de manière appropriée ; et (iii) l’exploitation du treillis aide à la prise de

décision, en permettant l’identification des actions qui peuvent être prises pour corriger

le comportement anormal du processus.

6

CHAPTER 1. SYNTHÈSE DE LA THÈSE EN FRANÇAIS

1.2 État de l’art

Dans cette section, la première sous-section présente les concepts de base des systèmes

intelligents. L’architecture KREM est décrite ainsi que ses quatre composantes. La deux-

ième sous-section décrit les approches existantes pour la surveillance de l’état des sys-

tèmes dans l’Industrie 4.0. Nous nous concentrons en particulier sur les modèles on-

tologiques et leurs extensions basées sur des règles qui sont pertinentes pour la surveil-

lance du système. Enfin, à la fin de chaque sous-section, un résumé est présenté ainsi que

quelques conclusions pertinentes.

1.2.1 Aperçu des systèmes intelligents

Un système intelligent est un programme informatique qui utilise des techniques d’intelli-

gence artificielle pour résoudre des problèmes complexes qui seraient normalement trai-

tés par une personne ayant une expertise [Mil08]. Ces systèmes ont un modèle de calcul

d’un certain domaine d’intérêt dans laquelle les symboles servent de substituts aux arte-

facts du domaine du monde réel, tels que les objets, événements et relations, etc [Sow99].

Une base de connaissances stocke ces symboles et le système effectue un raisonnement

en manipulant ces symboles.

Les applications peuvent fonder leurs décisions sur des questions posées à la base de

connaissances. Elles sont programmées pour résoudre des problèmes de manière sim-

ilaire à celle d’un expert, par exemple faire des conclusions basées sur le cas courant et

adopter la bonne stratégie pour résoudre le problème; ils peuvent traiter des informa-

tions incomplètes en demandant des informations complémentaires; ils disposent d’une

interface utilisateur qui leur permet de faire des demandes d’information appropriées et

d’expliquer comment ils sont parvenus à leurs réponses; et enfin ils peuvent être dévelop-

pés en réutilisant des structures, des règles et des méthodes de résolution de problèmes

génériques.

Dans la suite, nous présentons les fondements théoriques et les concepts de base des

systèmes intelligents à l’aide de l’architecture KREM (Knowledge, Rules, Experience, and

Meta-Knowledge) [ZM15]. Les quatre composantes du KREM sont :

La composante Connaissance (Knowledge)

La composante Knowledge contient des connaissances sur un certain domaine au moyen

d’un modèle conceptuel formel. Parmi les modèles conceptuels existants, les ontologies

ont été largement utilisées pour formaliser la connaissance d’un domaine. En informa-

tique, la définition la plus citée d’une ontologie est la suivante: Une ontologie est une

spécification formelle et explicite d’une conceptualisation partagée d’un domaine d’intérêt

[Gru93].

Le Web sémantique est une initiative du World Wide Web Consortium 2 (W3C) pour

une nouvelle génération du web mondial. L’idée a été présentée à l’origine par Tim Berners-

Lee comme une solution pour améliorer l’exploitation des connaissances stockées sur le

2https://www.w3.org/

7

CHAPTER 1. SYNTHÈSE DE LA THÈSE EN FRANÇAIS

web. Les technologies du web sémantique offrent un ensemble de solutions pour gérer la

sémantique des données. Dans le web sémantique, les ontologies sont utilisées comme

modèles de représentation des connaissances et le langage utilisé pour écrire ces modèles

est le Web Ontology Language (OWL). OWL est basé sur le Resource Description Frame-

work (RDF) et le Resource Description Framework Schema (RDFS), qui sont superposés

au langage de balisage extensible (XML). OWL fournit un vocabulaire supplémentaire

ainsi qu’une sémantique formelle pour faciliter une meilleure interprétation automatique

du contenu Web que celle supportée par XML, RDF et RDF Schema [MVH+04].

La composante Règles (Rules)

La composante Rules d’un système intelligent permet différents types de raisonnement

sur les instances des ontologies contenues dans la composante Knowledge. Nous consid-

érons le raisonnement comme la capacité à générer des conclusions non triviales à partir

de prémisses ou d’hypothèses [ARFS12]. Les faits affirmés connus sont appelés connais-

sances explicites, tandis que les faits déduits sont des connaissances implicites. Le Se-

mantic Web Rule Language (SWRL) étend les axiomes OWL avec des règles similaires à

IF-THEN. Ces règles logiques sont exécutées par un raisonneur, qui est un logiciel capa-

ble de déduire des conséquences logiques à partir d’un ensemble de faits ou d’axiomes

affirmés [Abb12]. Certains des moteurs de règles les plus connus dans la communauté du

web sémantique sont Jess3, Jena4 et Drools5.

Les solutions actuelles de raisonnement sur les ontologies ont été développées pour

des données statiques ou à évolution lente, ce qui n’est pas le cas pour la nature dy-

namique des données dans le domaine de l’Industrie 4.0 où les machines de fabrication

sont équipées de capteurs qui collectent des données en continu. Les données des cap-

teurs sont un exemple de données en flux continu qui changent rapidement. Ces données

doivent être rapidement consommées et traitées. Par exemple, si les valeurs d’une pro-

priété particulière baissent par rapport à son seuil autorisé, ces informations doivent être

récupérées rapidement et une décision appropriée doit être prise.

Pour combler cette lacune, un certain nombre de travaux récents proposent d’unifier

le raisonnement et le traitement des flux, ce qui a donné naissance au domaine de recher-

che du raisonnement sur les flux de données (Stream Reasoning - SR).

La composante Expérience (Experience)

La composante Experience permet la capitalisation et la réutilisation des connaissances

antérieures. Elle améliore le modèle de connaissance en le complétant progressivement

avec l’expérience acquise lors des interventions des experts humains.

3https://jess.sandia.gov/
4https://jena.apache.org/
5https://www.drools.org/

8

CHAPTER 1. SYNTHÈSE DE LA THÈSE EN FRANÇAIS

La composante Méta-Connaissance (Meta-Knowledge)

La composante Meta-Knowledge comprend les connaissances sur les trois autres com-

posantes, selon l’application. Les méta-connaissances sont des connaissances sur la con-

naissance du domaine, sur les règles et sur l’expérience. Cette composante fournit no-

tamment une représentation formelle du contexte, afin d’identifier celui dans lequel les

actions doivent être prises. Dans le domaine industriel, la méta-connaissance peut con-

trôler le déclenchement de différents ensembles d’actions ou de règles en fonction de

différents contextes. Par exemple, les règles de détection de l’écart de température d’une

machine au-dessus de son seuil peuvent changer en fonction de l’humidité de l’environne-

ment de la machine. De cette manière, l’utilisation de la méta-connaissance peut orienter

l’exécution de systèmes intelligents. Le contexte a été étudié dans des domaines tels que

les systèmes basés sur la connaissance et omniprésents, soit pour traiter dynamiquement

des connaissances complexes [GMD12], soit pour fournir des interfaces humaines intel-

ligentes [DAS01].

Il existe diverses représentations du contexte dans différents domaines de recherche.

Selon [SAW94b], la connaissance du contexte est la capacité d’un système à rassembler

des informations sur son contexte ou son environnement à un moment donné et à adapter

son comportement en conséquence en fournissant des services appropriés. La définition

du contexte la plus largement citée est la suivante : le contexte est toute information pou-

vant être utilisée pour caractériser la situation d’une entité. Une entité est un utilisateur,

un lieu, ou un objet physique ou informatique qui est considéré comme pertinent pour

l’interaction entre une entité et une application, y compris l’entité et l’application elles-

mêmes (traduit de [DA00]).

Ces entités et applications sont capables de réagir spécifiquement à leur emplacement

actuel, au temps et à d’autres attributs de l’environnement et d’adapter leur comporte-

ment sans intervention explicite de l’utilisateur, visant ainsi à accroître la convivialité et

l’efficacité. Dans cette section, nous étudions les modèles existants pour le traitement du

contexte et analysons leurs avantages et inconvénients par rapport aux exigences de la

version 4.0 de l’industrie.

Conclusion

La façon dont la connaissance du domaine est formalisée détermine la manière dont

les règles sont exprimées. L’expérience vient compléter les connaissances et les règles

disponibles. Enfin, la méta-connaissance interagit directement avec les règles et l’expé-

rience pour indiquer quelles règles doivent être executées en fonction du contexte du

problème à résoudre. Les méta-connaissances sont des connaissances sur la connais-

sance du domaine, sur les règles ou sur l’expérience. Cette méta-connaissance peut pren-

dre la forme d’un contexte, d’une culture ou de protocoles. Le contexte est l’information

qui caractérise une situation en relation avec l’interaction entre les êtres humains, les ap-

plications et leur environnement [DA99].

Dans cette section, nous donnons un aperçu des fondements théoriques des systèmes

intelligents. Nous encadrons notre approche par l’architecture KREM, qui comporte qua-

9

CHAPTER 1. SYNTHÈSE DE LA THÈSE EN FRANÇAIS

tre composantes. Dans la composante Knowledge, le concept d’ontologie est introduit

ainsi que les concepts clés du Web sémantique et les technologies associées utilisées dans

cette thèse. Dans la description du composant Rules, nous présentons la notion de raison-

nement dans des scénarios statiques et dynamiques. SWRL est un langage puissant pour

le raisonnement hors ligne, qui est devenu le langage de règles standard de facto dans

le Web sémantique. Le raisonnement sur les flux de données, qui combine le traitement

continu des flux de données et le raisonnement avec de riches connaissances de fond,

peut être utilisé pour traiter des domaines dynamiques tels que l’Industrie 4.0. Cette thèse

ne traite pas de la composante Experience de KREM. Dans la section sur la composante

Meta-knowledge, la définition du contexte est présentée. La représentation du contexte

et le raisonnement contextuel dans le domaine de l’Industrie 4.0 peuvent être traités par

les technologies sémantiques.

Dans la section suivante, nous passons en revue les approches existantes pour la surveil-

lance de l’état des processus dans l’Industrie 4.0. Nous accordons une attention partic-

ulière à celles qui utilisent les technologies du web sémantique pour faciliter les tâches de

maintenance prédictive dans l’industrie.

1.2.2 Approches existantes pour la surveillance de l’état du système dans

l’Industrie 4.0

La surveillance est une activité cruciale dans l’industrie. Toute défaillance imprévue d’une

machine peut dégrader ou même interrompre les processus de fabrication d’une entrepri-

se. Il est donc fondamental de développer une stratégie de surveillance efficace pour

prévenir les arrêts de production imprévus, améliorer la fiabilité et réduire les coûts d’ex-

ploitation.

Dans cette section, nous présentons les connaissances de base sur l’Industrie 4.0,

en détaillant ses quatre éléments clés : l’Internet des objets (IoT), les systèmes cyber-

physiques (CPS), l’informatique ubiquitaire (Cloud Computing), et les technologies d’ana-

lyse de grandes données (Big Data). Ensuite, nous décrivons les stratégies de mainte-

nance existantes dans le domaine industriel en mettant l’accent sur les stratégies de main-

tenance prédictive pour l’Industrie 4.0. Les approches basées d’apprentissage automa-

tique, et les approches basées sur la connaissance des experts pour la surveillance de l’état

du système sont également discutées.

Nous nous concentrons particulièrement sur les modèles fondés sur les ontologies et

leurs extensions basées sur des règles qui sont pertinentes pour la surveillance des pro-

cessus de fabrication.

Éléments principaux de l’Industrie 4.0

L’Industrie 4.0 suit et étend la notion de technologie d’automatisation introduite lors de la

troisième révolution industrielle en appliquant un ensemble de technologies pour l’échan-

ge et le traitement automatique de données dans les usines de fabrication [WSJ17].

Les systèmes cyberphysiques, l’internet des objets, le cloud computing et les tech-

10

CHAPTER 1. SYNTHÈSE DE LA THÈSE EN FRANÇAIS

niques d’analyse des grandes données sont les éléments clés de l’Industrie 4.0. Ils per-

mettent l’interconnexion automatique et l’échange de données entre les entités manu-

facturières. La collecte et l’analyse de ces données peuvent améliorer la productivité et la

fiabilité des systèmes de production [LBK15].

L’Industrie 4.0 vise à transformer les usines de fabrication traditionnelles en ”usines

intelligentes” (smart factories) en équipant l’usine de capteurs, d’actionneurs et de sys-

tèmes autonomes [DGP19]. De cette façon, les machines de fabrication peuvent attein-

dre des niveaux élevés d’auto-optimisation et d’automatisation. L’utilisation conjointe

des IoT, CPS, Cloud Computing et technologies de Big Data peut aider les systèmes de

production à accéder eux-mêmes à leur état pour prendre des décisions intelligentes afin

d’éviter des défaillances potentielles [ZTL15].

Stratégies de maintenance dans le contexte industriel.

Les stratégies de maintenance dans le domaine industriel entrent généralement dans

l’une des trois catégories suivantes, chacune avec ses problèmes et ses avantages :

• La Maintenance Réactive [Mob02, Swa01] est une méthode de gestion de la mainte-

nance en cas de panne. L’action de maintenance pour la réparation d’un équipement

n’est effectuée que lorsque l’équipement est en panne. Une entreprise qui utilise la

maintenance réactive ne dépense pas d’argent pour la maintenance tant qu’une

machine ou un système ne fonctionne pas. Cependant, le coût de réparation ou

de remplacement d’un composant serait potentiellement supérieur à la valeur de

production obtenue en le faisant fonctionner jusqu’à la panne. De plus, lorsque

les composants commencent à vibrer, à surchauffer et à se casser, des dommages

supplémentaires peuvent survenir sur l’équipement, ce qui peut entraîner d’autres

réparations coûteuses.

• La Maintenance Préventive [Mob02, WTL+17, Ger13] prévoit des activités de main-

tenance régulières sur des équipements spécifiques afin de réduire la probabilité de

défaillances. La maintenance est effectuée même lorsque la machine fonctionne

encore et dans des conditions normales de fonctionnement, de manière à éviter les

pannes imprévues avec les temps d’arrêt et les coûts qui y sont associés. Presque

tous les programmes de gestion de maintenance préventive sont fondés sur le temps

[Mob02, AK12]. Le processus général de maintenance préventive peut être présenté

en deux étapes : La première étape consiste à étudier statistiquement les carac-

téristiques de défaillance de l’équipement en se basant sur l’ensemble des données

chronologiques collectées. La deuxième étape consiste à décider des politiques de

maintenance optimales qui maximisent la fiabilité et la disponibilité du système

aux coûts de maintenance les plus bas. La maintenance préventive réduit les coûts

de réparation et les temps d’arrêt imprévus, mais peut entraîner des réparations

inutiles si elle est effectuée trop tôt ou des pannes si elle est effectuée trop tard.

• La Maintenance Prédictive [WDD94] vise à prévoir quand l’équipement est suscep-

tible de tomber en panne et à décider quelle activité de maintenance doit être ef-

11

CHAPTER 1. SYNTHÈSE DE LA THÈSE EN FRANÇAIS

fectuée de manière à obtenir un bon compromis entre la fréquence et le coût de la

maintenance. La maintenance prédictive utilise l’état de fonctionnement réel des

systèmes et des composants pour optimiser la production. L’analyse prédictive est

basée sur les données collectées par des capteurs connectés aux machines et aux

outils, telles que les données de vibration, les données ultrasoniques, la disponibil-

ité opérationnelle, etc. Le modèle traite les informations par des algorithmes pré-

dictifs, découvre des tendances et identifie le moment où l’équipement doit être

réparé. Plutôt que de faire fonctionner un équipement ou un composant jusqu’à

ce qu’il tombe en panne, ou de le remplacer lorsqu’il a encore une durée de vie

utile, la maintenance prédictive aide les entreprises à optimiser leurs stratégies en

n’effectuant des activités de maintenance qu’en cas de nécessité absolue. Cepen-

dant, comparé à la maintenance réactive et à la maintenance préventive, le coût

des dispositifs de surveillance de l’état (par exemple, les capteurs) nécessaires à la

maintenance prédictive est souvent élevé. Un autre problème est que le système de

maintenance prédictive devient de plus en plus complexe en raison de la collecte

de données, de l’analyse des données et de la prise de décision.

La Figure 1.4 résume les plans de maintenance de chacun des trois types de mainte-

nance possibles. La maintenance réactive présente le coût de prévention le plus faible

grâce à l’utilisation de la gestion des pannes. La maintenance préventive a le coût de

réparation le plus faible en raison d’un temps d’arrêt bien planifié, tandis que la main-

tenance prédictive peut réaliser un compromis entre le coût de réparation et le coût de

prévention. Idéalement, la maintenance prédictive permet de réduire au maximum la

fréquence de maintenance afin d’éviter une maintenance réactive non planifiée, sans en-

courir les coûts associés à une maintenance préventive trop importante.

Figure 1.4 – Stratégies de maintenance dans l’industrie (RM - PM - PdM)

L’utilisation des technologies associées à l’Industrie 4.0 rend la maintenance prédic-

tive plus efficace et plus flexible [CBL+18, Wan16]. C’est ce qu’on appelle la maintenance

prédictive 4.0. Elle utilise une analyse avancée et en ligne des données collectées pour

la détection précoce de l’apparition d’éventuelles défaillances de machines, et soutient

les techniciens lors des interventions de maintenance en leur fournissant une aide à la

décision. En d’autres termes, la maintenance prédictive 4.0 applique une surveillance

en temps réel de l’état des machines, et des alertes sont données sur la base de règles

12

CHAPTER 1. SYNTHÈSE DE LA THÈSE EN FRANÇAIS

préétablies ou de niveaux critiques. Au cours des dernières décennies, de nombreux ef-

forts de recherche ont été entrepris pour développer différents modèles de maintenance

prédictive industrielle, en utilisant les éléments clés de l’Industrie 4.0.

Dans ce qui suit, nous décrivons les deux principales approches pour mettre en œu-

vre la maintenance prédictive : les approches fondées sur les données et les approches

fondées sur la représentation des connaissances.

Approches basées sur les données pour la surveillance de l’état du système

Avec le développement des techniques liées aux grandes données et la disponibilité tou-

jours croissante des données, la maintenance prédictive basée sur les données est dev-

enue de plus en plus attrayante. Pour extraire des connaissances utiles et aider à pren-

dre des décisions appropriées à partir d’une grande quantité de données, l’apprentissage

automatique et les techniques d’apprentissage profond sont considérés comme des solu-

tions puissantes. Les modèles obtenus en appliquant ces techniques fonctionnent comme

une boîte noire qui apprend le comportement des machines physiques directement à par-

tir de leurs données d’exploitation [JGZ17]. Ils ont la capacité d’apprendre des caractéris-

tiques, de classer et de prédire les défauts. Dans le cadre d’une approche guidée par les

données, les connaissances sur les machines sont extraites en interne des données de

fonctionnement des machines, plutôt qu’en externe par des experts du domaine.

Les travaux ont apporté des contributions intéressantes dans le domaine de la dé-

tection et du diagnostic des défauts, mais la plupart d’entre elles sont spécifiques à des

équipements précis. Ces travaux surveillent le comportement des différentes propriétés

d’une machine particulière. Ils sont adaptés et efficaces lors de la consommation de flux

de données pour détecter des modèles anormaux dans les valeurs des propriétés d’une

machine (par exemple, la température, les vibrations, etc.). Cependant, ils présentent

deux inconvénients : (i) la nécessité, à l’avance, d’une grande quantité de données an-

notées pour l’apprentissage du modèle ; et (ii) l’absence de modèle explicite pour expli-

quer les décisions. Cela rend difficile l’interprétation des données et complique égale-

ment l’interopérabilité et la réutilisation des modèles.

Approches basées sur la connaissance pour la surveillance de l’état du système

De nombreux systèmes de surveillance des processus de fabrication et de diagnostic des

défauts font appel à des connaissances d’experts a priori et à des processus de raison-

nement déductif [PDZ10].

La connaissance experte est exploitée pour construire une ontologie qui décrit formelle-

ment les concepts et les relations qui existent dans le domaine industriel. Différentes

ontologies ont été construites pour des tâches de surveillance telles que la maintenance

prédictive et les systèmes d’évaluation en santé [NB18]. La modélisation basée sur les on-

tologies permet : (1) le partage des connaissances entre entités informatiques en ayant un

ensemble commun de concepts, (2) l’inférence logique en exploitant divers mécanismes

de raisonnement logique existants pour déduire des concepts de haut niveau à partir de

données brutes, et (3) la réutilisation des connaissances en réutilisant des ontologies bien

13

CHAPTER 1. SYNTHÈSE DE LA THÈSE EN FRANÇAIS

définies de différents domaines. Les ontologies peuvent être utilisées pour représenter

différents systèmes et dispositifs de machines, et peuvent être combinées avec divers al-

gorithmes de raisonnement à base de règles existants pour réaliser la surveillance et le

diagnostic des erreurs. Cela se fait sur la base de l’évaluation des données collectées en

temps réel selon un ensemble de règles prédéterminées par des connaissances d’experts.

En général, les règles sont exprimées sous la forme IF 〈antécédent〉 THEN 〈conséquence〉.
De cette façon, la conséquence peut apporter des changements qui affectent le système

qui est surveillé, si les conditions de l’antécédent sont remplies.

Les ontologies fournissent un moyen d’intégrer, de partager et de réutiliser les con-

naissances du domaine, mais d’autres méthodes de raisonnement doivent être intégrées

aux ontologies pour parvenir à une maintenance prédictive. Le raisonnement basé sur

des règles peut être utilisé pour réaliser le suivi et le diagnostic. Ces règles sont constru-

ites à partir de connaissances d’experts, ou sont extraites de l’analyse de grands ensem-

bles de données, comme mentionné ci-dessus. Cependant, les deux approches ont des

difficultés à traiter de nouvelles failles (inconnues des experts et non vues dans les don-

nées). Il est donc nécessaire d’acquérir des connaissances complètes pour construire un

ensemble de règles fiables.

Nous résumons la couverture du domaine des ontologies existantes dans le tableau

1.1. Nous évaluons la couverture du domaine et les portées de ces modèles de connais-

sance en examinant si les concepts clés requis pour la surveillance de l’état du système

dans l’industrie 4.0 existent et sont formellement décrits. Nous avons classé ces con-

cepts clés en cinq sous-domaines : Fabrication, Contexte, Évolution dans le temps, IoT,

et Surveillance et Diagnostic. Pour le sous-domaine Fabrication, les concepts clés sont

le produit, le processus et la ressource. Pour le sous-domaine Contexte, les concepts clés

sont l’identité, l’activité, le temps et le lieu. Pour le sous-domaine IoT, les concepts clés

sont le capteur et l’observation. Pour le sous-domaine Monitoring et Diagnosis, les con-

cepts clés sont situation et cause. Ces concepts sont les colonnes du tableau 1.1, et les

modèles ontologiques sont les lignes. Si une coche est placée dans le tableau, alors le

concept existe dans l’ontologie correspondante. Sinon, une croix est attribuée.

14

CHAPTER 1. SYNTHÈSE DE LA THÈSE EN FRANÇAIS

Ta
b

le
1.

1
–

C
o

m
p

ar
ai

so
n

en
tr

e
le

s
o

n
to

lo
gi

es
d

u
d

o
m

ai
n

e
d

e
la

fa
b

ri
ca

ti
o

n
ce

lle
s

su
r

la
m

o
d

él
is

at
io

n
d

u
co

n
te

xt
e.

M
an

u
fa

ct
u

ri
n

g
C

o
n

te
xt

C
h

an
ge

ov
er

ti
m

e
Io

T
M

o
n

it
o

ri
n

g
an

d
D

ia
gn

o
si

s

O
n

to
lo

gi
es

P
ro

d
u

ct
P

ro
ce

ss
R

es
o

u
rc

e
Id

en
ti

ty
A

ct
iv

it
y

T
im

e
L

o
ca

ti
o

n
Se

n
so

r
Si

tu
at

io
n

C
au

se
M

A
SO

N
X

X
X

X
X

7
7

7
7

7
7

A
D

A
C

O
R

X
X

X
X

X
7

7
7

7
7

7

P
SL

7
X

X
X

X
X

7
7

7
7

7

M
SD

L
7

X
X

X
X

X
X

7
7

7
7

SI
M

P
M

7
X

X
X

X
7

X
7

7
7

7

M
aR

C
O

7
X

X
X

X
7

X
7

7
7

7

O
N

T
O

-P
D

M
X

X
X

X
X

X
X

7
7

7
7

P-
P

SO
7

X
7

X
X

X
7

7
7

7
7

M
C

C
O

X
X

X
X

X
X

7
7

7
7

7

[C
Z

X
+ 16

]
X

X
X

X
X

X
X

7
7

7
7

O
n

to
ST

E
P

X
7

7
X

7
7

7
7

7
7

7

C
o

B
rA

-O
n

t
7

7
7

X
X

X
X

7
7

7
7

SO
U

PA
7

7
7

X
X

X
X

7
7

7
7

C
O

N
O

N
7

7
7

X
X

7
X

7
7

X
X

SA
W

A
7

7
7

X
X

7
7

7
7

X
X

Si
tu

at
io

n
O

n
t.

7
7

7
X

X
7

7
7

7
X

7

15

CHAPTER 1. SYNTHÈSE DE LA THÈSE EN FRANÇAIS

Après avoir examiné les modèles ontologiques existants, aucun d’entre eux ne fournit

une représentation satisfaisante de la connaissance des cinq sous-domaines requis. Cer-

tains de ces modèles de connaissance se concentrent sur un domaine restreint, comme la

planification des ressources de fabrication et les bons de travail, et ils ne formalisent pas

les concepts liés au contexte, comme l’activité et le lieu. En outre, aucune des ontologies

existantes ne permet de représenter des connaissances qui évoluent dans le temps.

Pour effectuer une surveillance intelligente de l’état du système, la base de connais-

sances doit contenir non seulement des connaissances interprétables par les machines

pour caractériser les entités ou les processus de fabrication qui sont surveillés, mais aussi

les connaissances sur les situations anormales qui sont associées aux défaillances. Ceci

motive le développement d’un modèle ontologique plus expressif et plus complet qui

fournit une représentation riche des connaissances du domaine dans les domaines de

la fabrication en considérant la notion de contexte.

De plus, les modèles ontologiques des systèmes intelligents sont statiques. Comme

décrit dans l’introduction, les machines exécutent des processus de fabrication dans dif-

férents contextes et ces contextes changent au fil du temps. Selon le contexte dans lequel

un processus de fabrication est exécuté, les règles qui gèrent le processus peuvent changer.

Afin de représenter ces contextes et le fait qu’une machine exécute un processus dans ces

contextes, le modèle sémantique doit évoluer dans le temps pour représenter cette con-

naissance changeante.

1.3 Contributions de cette thèse

Les principaux éléments de notre proposition sont présentés dans la Figure 1.5 en util-

isant la notation classique du diagramme de flux6. Il s’agit (1) de la composante de surveil-

lance (Monitoring), (2) de la composante de diagnostique (Diagnosis) et (3) de la com-

posante de décision (Decision making). Chacune des composantes fonctionne comme

un système intelligent permettant de résoudre des problèmes complexes par le raison-

nement, comme le fait un expert.

Ils s’appuient tous sur un modèle formel pour enrichir sémantiquement la représen-

tation et le traitement des données. Les sections suivantes expliquent chacun de ces élé-

ments.

1.3.1 Modèle sémantique pour la modélisation du contexte dans l’Indus-

trie 4.0

Le modèle sémantique pour l’Industrie 4.0 est au fondement de notre approche. Il s’agit

d’une représentation virtuelle de l’usine réelle, comme l’illustre la figure 1.6. Il représente

les éléments de l’usine, tels que les machines, les processus et les capteurs, en mettant

particulièrement l’accent sur la modélisation du contexte de fonctionnement de ces élé-

ments. Des situations pertinentes représentant des comportements anormaux ainsi que

6https://en.wikipedia.org/wiki/Data-flow_diagram

16

CHAPTER 1. SYNTHÈSE DE LA THÈSE EN FRANÇAIS

Figure 1.5 – Principaux composants et flux de travail du cadre proposé.

des connaissances d’experts et des règles de gestion des processus sont également repré-

sentées dans le modèle.

Dans une usine réelle, les ressources (telles que les machines et les lignes de produc-

tion) exécutent leurs tâches au fil du temps et dans différentes situations. Le modèle

représente dans quelle(s) situation(s) la ressource exécute ses tâches pour permettre une

prise de décision plus éclairée, puisque les actions à prendre et les règles qui gèrent les

17

CHAPTER 1. SYNTHÈSE DE LA THÈSE EN FRANÇAIS

Figure 1.6 – Représentation virtuelle d’une usine réelle.

processus de fabrication peuvent varier en fonction de la situation identifiée. En d’autres

termes, le modèle sémantique doit évoluer pour pouvoir représenter la(les) situation(s)

dans laquelle (lesquelles) une certaine ressource se trouve pendant l’exécution de ses

tâches. Cette évolution est illustrée graphiquement dans la Figure 1.7.

Figure 1.7 – Évolution du modèle sémantique dans le temps.

1.3.2 Raisonnement sur les flux de données pour la détection et le di-

agnostic des situations anormales

Certaines situations qui peuvent conduire à des défaillances de machines peuvent être

détectées en interprétant les observations dans leur contexte. Par exemple, si une obser-

vation a une valeur anormale, c’est peut-être parce qu’un autre paramètre a également

des valeurs anormales. Considérons le cas où la température d’une machine et la tem-

pérature d’un de ses composants sont surveillées. On sait qu’une augmentation de la

température de la machine peut être due à une augmentation de la température de son

composant, ou vice versa. Cela permet d’exploiter les connaissances des experts sur les

relations entre les valeurs de certains paramètres des machines, des processus et de leur

contexte pour interpréter les observations. Grâce à la détection précoce des situations,

le programme de maintenance peut être adapté ou des mesures peuvent être prises pour

éviter des arrêts imprévus de la production.

18

CHAPTER 1. SYNTHÈSE DE LA THÈSE EN FRANÇAIS

Les principaux composants du cadre que nous proposons sont présentées dans la fig-

ure 1.5. Les modules permettant de détecter les situations en temps réel sont la traduction

(Translation) et les relations temporelles (Temporal relations). Ces deux modules font

partie de la surveillance. Le composant de diagnostic ne comporte qu’un seul module

appelé détermination des causes (Cause Determination). Les composants de surveillance

et diagnostic effectuent des tâches différentes mais leurs tâches sont étroitement liées.

En outre, la figure 1.5 montre également le composant de raffinement des situations (Sit-

uation Refinement et le composant de prise de décision (Decision making. Le premier

contient le module Update/Create situation qui vise à affiner les situations déjà définies

ou à en définir de nouvelles. Le composant Decision making ne fait pas partie de la tâche

de détection des situations ou de détermination des causes possibles, mais il exploite ces

informations pour soutenir les tâches de prise de décision.

Le composant Monitoring

Les modules impliqués dans la détection des situations sont Translation et Temporal Re-

lations. Les deux sous-sections suivantes expliquent et décrivent l’interaction entre eux

ainsi qu’avec le modèle ontologique.

Le module Translation

Ce module est responsable (i) de la conversion des données acquises par les capteurs en

flux RDF, et (ii) de leur insertion en tant qu’instances dans l’ontologie. Ces deux tâches

sont effectuées respectivement par les sous-modules Stream Generator et Instance cre-

ator.

Le sous-module Stream Generator effectue l’enrichissement sémantique des données

acquises, en utilisant les concepts et les relations entre eux tels que définis dans le mod-

èle ontologique. Cela permet au module de diffuser des flux de données enrichis séman-

tiquement qui sont ensuite consommés par le Stream Reasoner. Les flux de sortie sont

des flux RDF. Un flux RDF est une séquence ordonnée de paires, où chaque paire est con-

stituée d’un triplet RDF et de son horodatage t , (<Subject,Predicate,Object>,t).

Le sous-module Instance creator crée des instances à partir des données reçues et les

insère dans l’ontologie, c’est-à-dire qu’il est chargé de remplir le modèle ontologique avec

les observations et leurs métadonnées correspondantes, telles que le(s) capteur(s) qui

a(ont) fait l’observation, la propriété observée et l’horodatage.

Le module Temporal Relations

Une fois que les données des sources de données distribuées et hétérogènes sont disponi-

bles dans une représentation homogène, contextualisée et ordonnée dans le temps, les

flux peuvent être explorés pour générer de nouvelles connaissances.

Un ensemble de requêtes, qui combine les connaissances de base extraites de l’ontolo-

gie et certaines parties pertinentes des flux, est enregistré et exécuté par le raisonneur sur

les flux de données. Ces requêtes représentent des situations particulières à identifier et

19

CHAPTER 1. SYNTHÈSE DE LA THÈSE EN FRANÇAIS

elles incluent principalement des dépendances temporelles entre les observations (qui

peuvent être des situations normales ou des anomalies).

Lorsque ce module détecte des situations, celles-ci peuvent être converties en flux

RDF et être renvoyées en sortie, c’est-à-dire que ce module produit des flux de situations

en sortie. Cette sortie alimente un autre raisonneur sur flux de données dans le module

Cause determination. De cette façon, le module Temporal Relations lui-même peut être

considéré comme un capteur avancé capable de produire des données de haut niveau. De

plus, les situations détectées sont stockées dans le modèle ontologique indiquant égale-

ment les ressources impliquées dans cette situation.

Le composant Diagnosis

Ce composant ne dispose que d’un seul module appelé Cause Determination pour déter-

miner les causes possibles qui ont provoqué une situation anormale.

Le module Cause Determination

L’objectif du module Cause Determination est d’identifier les causes possibles qui ont

généré une situation détectée par le module Temporal Relation. Pour cela, deux élé-

ments sont utilisés séparément : un raisonneur sur flux de données Stream Reasoner, et

un raisonneur classique Reasoner.

Le raisonnement sur flux de données est plus adapté aux données hautement dy-

namiques que les approches de raisonnement classiques. Ainsi, dans le cas où les causes

doivent être déterminées en temps réel, le module Stream reasoner est utilisé pour identi-

fier les causes. Les associations entre les situations et leurs causes possibles sont stockées

dans le modèle ontologique et sont exploitées par ce module pour les restituer. Cepen-

dant, il est possible que certaines situations n’aient pas de causes identifiées dans un scé-

nario réel, auquel cas le système notifie que les causes sont inconnues.

Par conséquent, afin de déterminer les causes possibles d’une situation, des approches

de raisonnement classiques peuvent être utilisées. Elles fournissent d’autres inférences

qui peuvent aider à déterminer les causes d’une situation. Des requêtes plus complexes

peuvent être effectuées sur le modèle ontologique afin d’extraire des informations utiles

pour la détermination des causes. Par exemple, il peut être nécessaire de considérer

l’hypothèse du monde ouvert, qui stipule que l’absence d’une déclaration ne peut pas

être utilisée seule pour déduire que la déclaration est fausse. Dans ce cas, le Reasoner

peut également être utilisé sur l’ontologie pour déduire les causes, si l’exigence de temps

réel n’est pas nécessaire. Cette dernière option présente certains avantages par rapport à

la précédente. Si la cause est identifiée ultérieurement, elle est ajoutée comme instance

au modèle ontologique et liée à la situation pour une utilisation future.

Dans les deux cas, la composante Diagnosis fournit à la composante Decision mak-

ing la situation identifiée ainsi que les causes possibles déduites par le(s) raisonneur(s).

L’association entre la situation et les causes est également ajoutée au modèle ontologique.

20

CHAPTER 1. SYNTHÈSE DE LA THÈSE EN FRANÇAIS

Le composant Abnormal Situation Refinement

Comme mentionné dans la sous-section précédente, le module Translation, en plus de

générer les flux de données, alimente l’ontologie avec des données sémantiquement en-

richies. L’objectif principal du module Update/Create situations est d’exploiter les don-

nées historiques stockées en tant qu’instances dans le modèle ontologique, d’affiner les

situations déjà définies et, éventuellement, d’en trouver de nouvelles. Ceci peut être ac-

compli (i) en raisonnant sur l’ontologie pour en tirer des connaissances implicites, et (ii)

en interagissant avec l’ontologie en émettant des requêtes ponctuelles. Ces requêtes peu-

vent être exécutées pour vérifier la fréquence à laquelle une situation se produit ou pour

vérifier la tendance des valeurs de certaines propriétés afin d’affiner les contraintes qui

leur sont imposées et ainsi affiner les situations associées à ces contraintes.

Ce module utilise un raisonnement classique et non un raisonnement sur flux de don-

nées car le raisonnement est appliqué aux données statiques stockées dans le modèle on-

tologique et non aux flux de données.

Le composant Decision Making

Compte tenu des situations et de leurs causes, il est possible d’appuyer les tâches de prise

de décision pour déterminer les actions à lancer pour corriger le comportement des ma-

chines et éviter les pannes. Les actions déclenchables sont de natures diverses. Par ex-

emple, certaines tâches de maintenance peuvent être lancées à distance et effectuées par

les machines elles-mêmes ou le système intelligent peut émettre une alerte pour avertir

l’opérateur le plus proche de la machine afin qu’il l’inspecte, si une action humaine est

nécessaire.

Chaque application peut effectuer un raisonnement et un traitement plus avancés

sur les données reçues afin de déterminer les stratégies d’adaptation nécessaires pour

améliorer le comportement du système industriel. Ces stratégies peuvent inclure des

modifications des paramètres de fonctionnement d’une machine ou le lancement d’une

tâche de maintenance.

1.3.3 Hiérarchies de situation pour soutenir la prise de décision

Une fois qu’une situation anormale et ses causes ont été détectées, la composante Deci-

sion making est chargée de déterminer et d’appliquer les stratégies d’adaptation néces-

saires pour améliorer le comportement du système de production. Ces stratégies peuvent

inclure des modifications des paramètres de fonctionnement d’une machine ou le lance-

ment d’une tâche de maintenance.

Le choix de la (des) action(s) à lancer est effectué par le composant Decision making.

Ce composant utilise également le modèle sémantique pour déterminer les actions qu’il

est possible d’exécuter pour améliorer les conditions de fonctionnement.

Comme la détection de situations anormales peut déclencher des actions pour adapter

le comportement du processus, cette modification du comportement du processus peut

conduire à la génération de nouvelles situations.

21

CHAPTER 1. SYNTHÈSE DE LA THÈSE EN FRANÇAIS

Ces situations anormales peuvent avoir différents niveaux de gravité, et peuvent être

imbriquées de différentes manières. Pour comprendre et gérer les relations entre les situ-

ations, une approche efficace pour les organiser est nécessaire. C’est pourquoi il est pro-

posé une méthode permettant de construire un treillis pour ordonner les situations pos-

sibles associées à un processus de fabrication, en fonction des contraintes sur lesquelles

elles reposent. Ce treillis représente une feuille de route de toutes les situations qui peu-

vent être atteintes à partir d’une situation donnée. Cette feuille de route aide à la prise de

décision, en permettant l’identification des actions qui peuvent être prises pour corriger

l’anomalie. Par conséquent, la composante Decision making utilise à la fois le modèle sé-

mantique et le treillis pour déterminer les actions à déclencher pour corriger la situation

anormale.

1.3.4 Mise en œuvre du cadre proposé

Dans les sections précédentes, les composants du cadre proposé ont été introduits. Un

modèle ontologique est développé pour représenter le domaine industriel et il est util-

isé comme base d’un système intelligent. Une approche sémantique hybride est pro-

posée pour automatiser la détection de situations anormales, basée sur l’utilisation com-

binée du raisonnement classique et du raisonnement sur flux de données. Une approche

fondée sur un treillis est présentée pour représenter une feuille de route de toutes les sit-

uations qui peuvent conduire à des défaillances potentielles, afin de soutenir les tâches

de prise de décision.

Afin d’appliquer notre approche, nous avons développé un prototype de logiciel. Le

logiciel utilise des approches déductives, des ontologies de domaine et des raisonnements

ontologiques, ainsi que des raisonnements sur flux de données pour analyser les données

industrielles et détecter les situations anormales qui peuvent conduire à des défaillances.

Les technologies et les outils utilisés pour le développement du cadre proposé sont

présentés ainsi que la mise en œuvre des fonctionnalités de base de celui-ci. Une preuve

de concept est également présentée à travers une étude de cas illustrative du domaine

industriel. L’objectif est de montrer l’interaction entre les différents composants et com-

ment ils modifient le modèle sémantique, le faisant évoluer pour la représentation de ce

qui se passe dans l’usine réelle. Les résultats obtenus par notre preuve de concept à l’aide

de données simulées sont encourageants. Malheureusement, il n’a pas été possible de

valider l’ensemble de l’approche sur des données industrielles réelles, même hors ligne.

Dans l’idéal, il serait également intéressant de tester notre proposition dans une chaîne

de production réelle. Cela permettrait de vérifier si les décisions prises sur la base de

l’utilisation de notre proposition améliorent effectivement son efficacité et sa fiabilité.

1.4 Conclusions et Travaux Futurs

Dans cette section, nous présentons un résumé de ces travaux de thèse avec leurs con-

tributions correspondantes. Ensuite, quelques perspectives de travaux futurs sont égale-

ment présentées.

22

CHAPTER 1. SYNTHÈSE DE LA THÈSE EN FRANÇAIS

Conclusions

Comme évoqué au long de ce manuscrit, la gestion de données industrielles hétérogènes

est une tâche difficile dans le cadre de la surveillance de l’état du système. De plus,

comme la structure et le comportement des systèmes de production deviennent de plus

en plus complexes, le volume de données augmente considérablement. C’est pourquoi

les entreprises industrielles recherchent des solutions pour traiter efficacement ces don-

nées hétérogènes et effectuer des tâches de surveillance et de diagnostic de manière in-

telligente.

Dans ce cadre, il est nécessaire de disposer de modèles bien définis pour gérer les

données hétérogènes et les exploiter, ainsi que de connaissances expertes. Pour dévelop-

per un tel modèle, la connaissance du domaine de la fabrication doit être structurée de

manière à être interprétable par les machines et utilisable par le système de surveillance.

En outre, comme le domaine de l’industrie devient de plus en plus axé sur la connais-

sance, une représentation uniforme des ressources physiques et des capacités de raison-

nement est nécessaire pour automatiser les processus décisionnels. Ces processus de dé-

cision comprennent la détection des situations anormales et la détermination des causes,

la programmation de la maintenance et l’adaptation des processus. Pour atteindre ces

objectifs, les technologies sémantiques ont montré des résultats prometteurs en formal-

isant les connaissances sur les tâches de surveillance de l’état dans plusieurs applications

industrielles.

Les ontologies existantes pour représenter le domaine de la production ne permettent

pas de représenter des concepts et des relations qui évoluent dans le temps, comme les

différents contextes dans lesquels une ressource de fabrication peut accomplir ses tâches.

Ces modèles ontologiques existants conviennent pour des informations qui ne changent

pas ou très peu dans le temps. Cependant, le domaine de l’industrie traite de données

très dynamiques et un système de production devrait être capable de s’adapter à des situ-

ations changeantes. Pour cela, le modèle ontologique doit pouvoir faire face à l’évolution

des connaissances. Différents ensembles d’actions peuvent être sélectionnés pour cor-

riger le comportement anormal en fonction du contexte physique spécifique de la ma-

chine en fonctionnement. Cela permet de garantir que la production continue sans qu’il

soit nécessaire de l’arrêter si la situation anormale n’est pas grave.

Pour répondre à ces problématiques, un nouveau cadre sémantique est proposé pour

aborder l’évolution des modèles sémantiques dans l’Industrie 4.0. Le cadre proposé per-

met d’automatiser et de faciliter la surveillance et le diagnostic de l’état du système, et de

soutenir la prise de décision dans le domaine de l’industrie.

À cette fin, nous proposons tout d’abord un modèle ontologique qui représente les

ressources et les processus qui font partie d’une usine, en mettant particulièrement l’accent

sur la modélisation du contexte de ces ressources et processus. Les situations pertinentes

qui combinent les observations des capteurs avec la connaissance du domaine sont égale-

ment représentées dans le modèle. Le cadre proposé enrichit les données collectées par

les capteurs avec des informations contextuelles en utilisant le modèle ontologique et

utilise le raisonnement sur flux de données pour permettre la détection de situations

23

CHAPTER 1. SYNTHÈSE DE LA THÈSE EN FRANÇAIS

anormales en temps réel. En outre, il utilise également des approches de raisonnement

classiques pour compenser la non-détection éventuelle des causes par la méthode du

raisonnement sur flux de données. Grâce à la détection de ces situations et de leurs

causes, des décisions appropriées peuvent être prises pour éviter l’interruption du pro-

cessus surveillé. Enfin, pour soutenir la prise de décision, le cadre proposé fournit une

hiérarchie de situations qui représente une feuille de route des situations, souhaitable ou

non, auxquelles on peut parvenir à partir d’une situation donnée. Cela permet d’identifier

les actions à prendre pour corriger le comportement anormal, en évitant ou en min-

imisant de cette façon l’interruption des processus de fabrication.

Les contributions de cette thèse sont résumées ci-dessous.

Dans le Chapitre 4, une vue d’ensemble du cadre proposé pour traiter l’évolution des

modèles sémantiques dans l’Industrie 4.0 est introduit. Les composantes de ce cadre sont

les suivantes : (1) la composante Monitoring ; (2) la composante Diagnosis ; et (3) la com-

posante Decision making. Chacune de ces composantes fonctionne comme un expert.

Elles utilisent toutes le modèle sémantique pour remplir leurs fonctions et le font évoluer

en introduisant les changements correspondants. De cette façon, les tâches de chaque

composant sont exécutées en tenant compte du modèle sémantique mis à jour qui est

une représentation virtuelle de ce qui se passe dans l’usine réelle.

Dans le Chapitre 5, une ontologie pour la modélisation du contexte dans le domaine

industriel est proposée. Le modèle ontologique répond aux exigences de l’Industrie 4.0,

en mettant l’accent sur les relations temporelles et spatiales entre les ressources et les pro-

cessus afin de représenter des situations particulières d’intérêt dans un scénario indus-

triel. En outre, notre modèle ontologique permet de saisir les changements dynamiques

et l’évolution des concepts dans le temps. L’ontologie proposée est générique et extensi-

ble et son architecture modulaire permet la description des capacités des ressources de

fabrication à différents niveaux de granularité.

Dans le Chapitre 6, les composants de notre cadre proposé sont détaillés: les com-

posants Monitoring, Diagnosis, Situation Refinement et Decision making. L’utilisation

de méthodes de raisonnement sur les flux de données permet l’intégration de données

provenant de différentes sources, avec différentes significations sous-jacentes, différentes

résolutions temporelles ainsi que le traitement de ces données en temps réel. Les données

collectées par les capteurs sont enrichies d’informations contextuelles pour permettre la

détection de la situation en temps réel. En outre, notre proposition utilise également des

approches de raisonnement classique pour compléter la détermination des causes qui

n’ont pas pu être obtenues par la première méthode.

Dans le Chapitre 7, une approche qui utilise la théorie des treillis pour représenter

une hiérarchie de situations pouvant conduire à des défaillances potentielles est présen-

tée. La hiérarchie des situations est construite automatiquement en tenant compte des

contraintes sur lesquelles elles reposent. La hiérarchie permet de représenter des situa-

tions qui se produisent partiellement, c’est-à-dire lorsque seules certaines de leurs con-

traintes sont satisfaites. L’approche proposée peut être appliquée à d’autres domaines

d’application, où une surveillance en temps réel est nécessaire.

Enfin, le Chapitre 8 présente les technologies et les outils utilisés pour le développe-

24

CHAPTER 1. SYNTHÈSE DE LA THÈSE EN FRANÇAIS

ment du cadre proposé ainsi que la mise en œuvre des fonctionnalités de base de celui-

ci. Une étude de cas illustrative du domaine industriel est présentée pour démontrer

l’application du cadre proposé. Malheureusement, il n’a pas été possible de valider l’en-

semble de l’approche sur des données industrielles réelles. Cependant, les résultats obte-

nus par notre preuve de concept en utilisant des données simulées sont encourageants.

Travaux Futurs

Les contributions présentées dans cette thèse permettent d’identifier plusieurs perspec-

tives de recherche.

Les travaux futurs peuvent être orientés vers l’enrichissement du modèle sémantique

proposé. De nouveaux types de relations peuvent être explorés en dehors des relations

spatiales et temporelles abordées dans cette thèse, afin de permettre la représentation

d’informations contextuelles plus riches. Par exemple, la représentation de la relation

selon laquelle deux lignes de production exécutent le même processus pourrait être util-

isée pour détourner la production d’une ligne de production à l’autre si la première se

comporte anormalement. Une autre possibilité peut être la représentation des relations

entre les lignes de production et les bons de travail, de sorte que, selon si la ligne de pro-

duction est proche de la fin d’un bon de travail et que la date limite approche, la décision

de poursuivre la production jusqu’à ce que la commande soit terminée ou d’arrêter la

ligne de production puisse être prise.

Comme le domaine de la fabrication est très dynamique, la manière de traiter les flux

de données hétérogènes en temps réel est une préoccupation cruciale. Afin de tester les

questions d’extensibilité et de complexité pour détecter les situations en temps réel, il

faut explorer une étude de cas plus large avec des situations plus complexes, impliquant

davantage d’observations de propriétés qui sont liées dans le temps et dans l’espace. Dif-

férentes implémentations de moteurs de raisonnement de flux devraient être évaluées en

termes d’efficacité et d’extensibilité, en tenant compte également de la taille du modèle

sémantique.

Une autre direction intéressante à explorer est l’identification de modèles de causalité

qui pourraient permettre la définition de requêtes génériques pour certains types d’ano-

malies. Ces requêtes génériques pourraient être réutilisées dans différents cas, et ef-

fectuer des opérations complexes parmi les valeurs détectées.

En ce qui concerne l’affinement et l’identification de nouvelles situations, il peut être

intéressant d’appliquer des méthodes d’apprentissage automatique pour exploiter les don-

nées stockées dans le modèle sémantique. Les requêtes étant exécutées pendant cer-

taines fenêtres temporelles à des intervalles de temps donnés, l’application des méthodes

d’apprentissage automatique peut aider à déterminer la durée des fenêtres temporelles

dans lesquelles une requête doit être exécutée. De plus, il serait également intéressant

d’adapter dynamiquement la durée des fenêtres temporelles.

Il existe également des perspectives associées à la construction de la hiérarchie des sit-

uations à partir de données industrielles réelles. Tout d’abord, cette construction soulève

également des questions d’extensibilité et de complexité pour construire le treillis. Par

25

CHAPTER 1. SYNTHÈSE DE LA THÈSE EN FRANÇAIS

conséquent, des tests doivent être effectués avec différentes variations de l’algorithme 1

pour évaluer leur efficacité relative. En outre, une autre perspective consiste à étudier

comment ajouter de nouvelles situations ou des situations affinées sans avoir à recon-

struire complètement la hiérarchie.

Enfin, une étude plus exhaustive et plus détaillée peut être réalisée sur les dépen-

dances entre les contraintes pour l’identification de nouvelles situations ou le raffinement

de celles qui existent déjà. De cette manière, il est possible d’obtenir différentes hiérar-

chies de situations en fonction de la relation T choisie, qui peuvent être utilisées seules

ou combinées avec d’autres, permettant ainsi différentes stratégies de prise de décision.

26

Introduction

Context

Historically, industrial revolutions have changed the way society lives and works. The first

industrial revolution (18th to 19th century) used water and steam power to mechanize

production [DD79]. The second industrial revolution (1870 to 1914) used electric power

to enable mass production of goods [Mok98]. The third industrial revolution (1980 to

2010) used electronics and information technology to automate production [Rif11]. Now

a fourth industrial revolution, also known as Industry 4.0, is building on the third one.

Industry 4.0 is characterized by a fusion of technologies that is blurring the lines between

the physical and digital spheres. Among these technologies there are Artificial Intelligence

(AI), Robotics, the Internet of Things (IoT) and Cyber Physical Systems (CPS). Figure 1.8

shows these industrial revolutions and the key technologies associated with each of them.

Figure 1.8 – History of industrial revolution.7

The main objective of Industry 4.0 is, then, to improve the production and associ-

ated services through the use of the innovative technologies just mentioned [SMB+17,

WWLZ16]. To ensure high productivity, availability, and efficiency of manufacturing pro-

7adapted from: https://www.i-scoop.eu/industry-4-0/

27

INTRODUCTION

cesses, the detection of abnormal conditions of production lines is a crucial issue for man-

ufacturers [Has11]. In order to tackle this issue, factories rely on condition monitoring.

This is the task of monitoring all the equipment involved in a manufacturing process for

early detection of undesirable behaviors or situations that could lead to anomalies, which

affect its performance, energy-use or reliability. Through the early detection of these situ-

ations, proactive decisions can be made to avoid production downtime. These decisions

can imply, for example, changing the process parameters to adapt the processes behavior.

An important characteristic for industrial production in Industry 4.0 is that physical

items such as sensors, actuators, machines and enterprise assets are connected to each

other and to the Internet. In this environment, devices and sensors generate an increasing

amount of data that can be used for effective equipment condition monitoring. In order

to detect abnormal situations, the data collected by the sensors must be interpreted. This

is a challenging task as it requires the integration and processing of heterogeneous data

coming from different sources, with different temporal resolutions and different under-

lying meanings. Moreover, a key point to consider is that the monitoring of industrial

processes should depend not only on their internal state and on user interactions but

also on the context of their execution. Making industrial processes context-aware allows

to provide added-value information to improve their performance. Context is any infor-

mation that can be used to characterize the situation of an entity [DA00]. It is usually

considered as a mixture of geospatial data, environmental sensor inputs, service descrip-

tions, among others. In manufacturing, a dynamic context model should not only take

into account the context of tools, machines, parts and products, but also the planning of

the manufacturing processes, the specification of resources and the control system con-

figuration. Context data is subject to constant change and can be highly heterogeneous.

Semantic Web technologies have proved their efficiency to deal with this data inte-

gration issue. The Semantic Web is an extension of the World Wide Web that combines

knowledge engineering and AI methods to represent, integrate, and reason upon data and

knowledge through ontologies and rules. In computer science, an ontology is considered

as ”an explicit specification of a conceptualization for a domain of interest” [Gru93]. On-

tologies emerge as a pertinent method to represent knowledge of any kind (in particular,

manufacturing knowledge) in a machine-interpretable way. The semantic models built

in this way provide a virtual representation of the resources of a manufacturing plant as

well as of the relevant situations associated to them. Furthermore, reasoning on ontolo-

gies through its rule-based extensions allows transforming raw observations collected by

sensors into higher-level abstractions, such as situations of interest, that are meaningful

for humans and provide a better understanding about the physical world to support deci-

sion making tasks. For example, observations from sensors can be used to optimize power

consumption in a production line to avoid failures. This data transformation process is

illustrated using the well known ”knowledge hierarchy” [Row07] shown in Figure 1.9.

Current solutions for reasoning on ontologies were traditionally developed for static

or slow changing data. The highly dynamic nature of data in the industrial domain intro-

duces new issues. To tackle these, a number of recent works propose to unify reasoning

and stream processing, giving rise to the research field of stream reasoning. Stream rea-

28

INTRODUCTION

Figure 1.9 – Knowledge Hierarchy (taken from [Row07])

soning supports decision systems based on the continuous processing of data streams

together with rich background knowledge [SCDV+19].

Under these circumstances, the semantic model itself must evolve in order to repre-

sent in which situation(s) the resource(s) is during the execution of its tasks to support

decision-making.

Therefore, this thesis investigates the use of tractable Knowledge Representation &

Reasoning (KRR) methods, in particular Semantic Web technologies, for building an evolv-

ing semantic model that represents the industrial domain, making emphasis on context

modeling to provide the notion of situation.

Motivation

As mentioned in the previous section, semantic models are useful for the representation

of knowledge about a particular domain, in this case Industry 4.0. However, these seman-

tic models are rather static, meaning that they do not meet the dynamics of manufactur-

ing processes. For the model to represent in which situations the processes are executed,

it is necessary that the semantic model evolves in order to represent what happens in the

real world.

The semantic model can evolve due to different reasons. The first possibility is related

to a change in the structure of the model itself, i.e. addition/removal of concepts and

relations. This type of change is studied in the field of ontology evolution [SMMS02, Sto04,

NK04, PDTC07] and is not addressed in this thesis. The second possibility is related to the

addition of instances to concepts already defined and to the addition of relations over

existing instances. One example can be the addition of a physical resource to the factory

that would be reflected as a new instance of the corresponding resource concept in the

semantic model. Another example can be the addition of a detected situation and the

fact that a certain resource is involved in that situation (meaning a new link between two

instances through an existing relation).

Situations of interest in the industrial domain depend on sensor data and domain

knowledge. Besides the static information about industrial entities, dynamic information,

such as the way the industrial processes are executed, has to be described. Therefore, the

29

INTRODUCTION

data collected from the sensors deployed in a factory needs to be explicitly represented

to describe the process state. This is the first requirement for the semantic model to be

build.

Another requirement is the representation of temporal relations among processes and

of spatial relations between entities and locations in the factory. These relations are used

to identify different situations of interest. This implies handling information that evolves

in time, such as the changes of situation(s) a machine can go through or the changes in the

values of a machine parameter according to the different decisions made. Consequently,

the semantic model must provide enough expressiveness to capture high level knowledge,

such as situations, from time annotated data coming from sensors.

More specifically, the requirements that the semantic model must meet are:

Data Integration. The integration of information that comes from different sources is a

key requirement. Moreover, the integration of data coming from sensors (data streams)

with background knowledge that describes the application domain is also required (e.g.,

the streaming data collected from a machine is combined with background knowledge

about different constraints that indicate abnormal behavior).

Time representation. Time plays a central role in this thesis. This demands for a suitable

representation of time, where data can be annotated with their time of occurrence and

validity. Beside processing streaming data, it is also required to manage historical data, i.e.

time annotated information about previous states of the resource under analysis (e.g., the

history of temperature readings from a certain machine). This can be used, for example,

to identify trends, to extract statistics, or to compare previous and current information to

identify new types of anomalies or situations.

Efficiency. Regarding situation detection, processing efficiency is related to the ability

to cope with large amount of data being collected to timely generate new results (e.g.

abnormal situations need to be promptly detected for enabling counter actions).

High level decision support. Once a situation that may lead to failures is detected, an

action needs to be undertaken to counter-act it. Actions change the state of the system

and lead to other situations. In order to help in decision making and choose the most

appropriate action, it is necessary to understand the relationships among situations.

These requirements motivate the proposal of a novel framework to deal with the evo-

lution of semantic models in Industry 4.0. The proposed framework uses semantic tech-

nologies to represent the manufacturing domain with special emphasis on modeling the

context of the resources involved in a factory. The proposed framework aims at detect-

ing situations that can lead manufacturing processes in Industry 4.0 to failures and their

possible causes. Through the detection of these situations and their causes, appropriate

decisions can be made to avoid the interruption of manufacturing processes.

Contributions

A framework to address the evolution of semantic models in Industry 4.0 is proposed in

this thesis. An overview of the framework is shown in Figure 1.10, the blue-dotted rectan-

30

INTRODUCTION

gles represent the main contributions of this thesis that are described below.

The first contribution is related to the development of the semantic model; and the

other ones are related to the management of the evolution of the semantic model.

Monitoring Diagnosis
Decision
Makingsituation situation/cause

Real Factory

raw data actions

Semantic
model

represents

Chapter 6

Chapter 5

Chapter 7

Figure 1.10 – Proposed framework overview.

• An ontological knowledge model for the manufacturing domain is proposed to pro-

vide a declarative, abstract representation of the resources, processes, sensors and

the relationships among them. Furthermore, the model is strongly oriented towards

modelling the context of the resources involved in a manufacturing process. Rele-

vant situations that combine sensor observations with domain knowledge are also

represented in it.

• An approach that uses stream reasoning to detect relevant situations that lead to

potential failures is introduced. This approach enriches data collected from sen-

sors with contextual information using the proposed semantic model. The use of

stream reasoning facilitates the integration of data from different data sources, dif-

ferent temporal resolutions as well as the processing of these data in real time. This

allows to identify situations from low-level context and sensor data streams com-

bined with background knowledge. Furthermore, our proposal uses classical rea-

soning approaches for determining the possible causes that generate the situation

when stream reasoning results are not sufficient.

• Detected situations can trigger actions to adapt the process behavior, and in turn,

this change in behavior can lead to the generation of new contexts leading to new

situations. To organize the situations based on the constraints they rely on, the

building of a lattice is proposed. This lattice represents a road-map of all the sit-

uations that can be reached from a given one, desirable or undesirable. This helps

31

INTRODUCTION

in decision support, by allowing the identification of the actions that can be taken

to correct the process behavior.

Finally, an industrial application scenario for the proposed approach is studied. By

means of it, we verify that (i) the proposed semantic model is generic and extensible to

accommodate a wide spectrum of manufacturing processes, and that its modular archi-

tecture allows the description of manufacturing resources with different levels of modu-

larity; (ii) the use of stream reasoning together with classical reasoning approaches allows

the detection of abnormal situations as well as of their possible causes in a suitable way;

and (iii) the exploitation of the lattice helps in decision making, by allowing the identifi-

cation of the actions that can be taken to correct the abnormal behavior of the process.

Road-map of the Thesis

This manuscript is composed of two parts. The first part introduces the theoretical foun-

dations and gives a comprehensive review of existing research works to frame our work. It

is structured into two chapters. The second part presents the contributions of this thesis.

It consists of five chapters. Figure 1.11 shows the structure of this thesis. The content of

each chapter is briefly described below.

Chapter 2. This chapter gives the theoretical foundations and basic concepts of smart

systems (also known as knowledge-based systems). First, the classic architecture of smart

systems is described. Then, the KREM architecture, a novel and generic knowledge-based

framework for problem-solving in engineering disciplines, is exposed to frame our pro-

posal. The concept of ontology is introduced as well as the key concepts and the associ-

ated technologies of the Semantic Web. The concepts of classical reasoning and stream

reasoning are also presented. Finally, the notion of context and the main approaches for

context handling are described.

Chapter 3. This chapter presents the related works about condition monitoring in In-

dustry 4.0. The key elements of Industry 4.0, including Cyber-Physical Systems (CPS), the

Internet of Things (IoT), Cloud Computing and Big Data analysis techniques are briefly

described. Some of the existing maintenance strategies in the industrial domain are also

introduced. The existing approaches for condition monitoring are reviewed. We classify

the existing works for condition monitoring into data-driven approaches and knowledge-

based approaches. The advantages and disadvantages of each approach are also dis-

cussed. In the review of approaches for condition monitoring, we pay special attention to

the ontological models and their rule-based extensions that are relevant to represent the

manufacturing domain as well as the existing ontological models for context modeling.

Approaches for handling the representation of knowledge that change over time are also

described in this chapter.

32

INTRODUCTION

Chapter 4. This chapter provides a global introduction to the proposed framework. A

general architecture of Industry 4.0, coming from the literature, is introduced. This gen-

eral architecture permits a clear positioning of each of our contributions. An overview

of the components of the proposed framework is presented as well as the interactions

among them.

Chapter 5. In this chapter an ontology-based approach for context modeling in the in-

dustrial domain is proposed. The ontological model for the representation of the enti-

ties involved in a manufacturing process, emphasizing the modeling of the context, is

described. The conceptual modules that shape the proposed ontological model are pre-

sented. An evaluation of the proposed ontological model is performed according to dif-

ferent ontology evaluation criteria such as structure, function and usability.

Chapter 6. This chapter presents an approach that combines stream and classical rea-

soning methods to detect certain situations that can lead to potential failures and their

causes. The proposed approach enriches data collected from sensors with contextual in-

formation to allow real-time situation detection.

Chapter 7. This chapter presents an approach to establish an order among relevant sit-

uations, depending on how their constraints are related to each other. In this way, it is

possible to identify the actions that can be taken to correct the abnormal situation, con-

sidering that certain actions can lead to other situations than can be also abnormal. The

proposed approach uses the lattice theory to provide an expressive formalization of the

hierarchy of situations by considering how the situation’s constraints are related to each

other.

Chapter 8. This chapter describes the design and implementation of the proposed frame-

work. The technologies and tools used for this development are introduced as well as the

implementation of the core functionalities of it. An illustrative case study from the indus-

trial domain is presented as a proof of concept.

Finally, some concluding remarks about the issues tackled in this thesis are presented

as well as some perspectives for future work.

33

INTRODUCTION

Figure 1.11 – Structure of the thesis.

Publications

The following research works were published during the development of this thesis:

Peer-reviewed journal papers

• Silva de Oliveira C., Giustozzi F., Zanni-Merk C., Sanin C. and Szczerbicki E., (2020),

“Stream Reasoning to Improve Decision-Making in Cognitive Systems”. Cybernetics

and Systems, 51:2, 214-231, DOI: 10.1080/01969722.2019.1705553

• Cao Q., Giustozzi F., Zanni-Merk C., de Bertrand de Beuvron F. and Reich C., (2019),

“Smart Condition Monitoring for Industry 4.0 Manufacturing Processes: An Ontolo-

gy-based Approach”. Cybernetics and Systems, 50:2, 82-96, DOI: 10.1080/0196972-

2.2019.1565118.

Peer-reviewed international conference papers

• Giustozzi F., Saunier J., Zanni-Merk C., “Towards the use of Situation Hierarchies for

supporting Decision Making: A Formal Lattice-Based Approach”. In Proceedings of

34

INTRODUCTION

the 14th International Rule Challenge (RuleML+RR 2020) as part of Declarative AI

2020, Jun 2020, Oslo, Norway. pp.73-86.

• Giustozzi F., Saunier J. and Zanni-Merk C., “Abnormal Situations Interpretation in

Industry 4.0 using Stream Reasoning”. In International Conference on Knowledge

Based and Intelligent Information and Engineering Systems, KES-2019, 4-6 Septem-

ber 2019, Budapest, Hungary.

• Giustozzi F., Saunier J. and Zanni-Merk C., “Context Modeling for Industry 4.0: An

Ontology-based Proposal”. In International Conference on Knowledge Based and

Intelligent Information and Engineering Systems, KES-2018, 3-5 September 2018,

Belgrade, Serbia.

35

INTRODUCTION

36

Part I

Related Work

37

Chapter 2

Smart Systems overview

Contents
2.1 Smart Systems architecture . 40

2.1.1 The Classic architecture . 40

2.1.2 The KREM architecture . 42

2.2 The Knowledge component . 43

2.2.1 Concept of Ontology . 43

2.2.2 Semantic Web Technologies . 48

2.3 The Rules component . 52

2.3.1 SWRL - The Semantic Web Rule Language 53

2.3.2 RDF Stream reasoning . 54

2.4 The Experience component . 57

2.4.1 Case-based reasoning . 57

2.4.2 SOEKS - Set of Experience Knowledge Structure 58

2.5 The Meta-Knowledge component . 60

2.5.1 Data-driven approaches for context handling 61

2.5.2 Knowledge-driven approaches for context handling 61

2.6 Conclusion . 63

39

CHAPTER 2. SMART SYSTEMS OVERVIEW

In the last decade, a growing number of companies have realized that a tool that ef-

fectively enables the capture, representation, retrieval, and reuse of knowledge is the key

to supporting various organizational decisions [OBGM11, Lei10]. However, large parts

of useful knowledge are hidden and not readily available. Knowledge Technologies are

computer-based techniques and tools that provide a rich and intelligent use of informa-

tion. They combine ideas and applications from a number of fields: Psychology, Philos-

ophy, Artificial Intelligence, Engineering, Business Studies, Computer Science and Web

Technologies [Mil08].

A smart system is a computer program that uses Artificial Intelligence techniques to

solve complex problems that would normally be performed by a person who has a specific

expertise [Mil08]. These systems have a computational model of some domain of interest

in which symbols serve as surrogates for real world domain artifacts, such as physical

objects, events and relationships, etc [Sow99]. A knowledge base stores those symbols in

form of statements and the system performs reasoning by manipulating these symbols.

Applications can base their decisions on domain questions posed to the knowledge base.

They are programmed to solve problems in a similar way to that of an expert, e.g. make

inferences based on the current case and adopt the right strategy to solve the problem;

they can deal with incomplete information by making requests for further information;

they have a user interface that makes intelligent requests for information and can explain

how it has arrived at its answers; and finally, they can be developed by reusing generic

structures, rules and problem-solving methods.

In this chapter, the basic concepts of smart systems are introduced. Two architec-

tures are described: first, the classic architecture of smart systems and then the KREM

architecture. In subsequent sections, the four components of the KREM architecture are

described in detail. Finally, in the last section, a summary of the chapter is presented as

well as some relevant conclusions.

2.1 Smart Systems architecture

In this section, two smart system architectures are presented. First, the basic components

of the classic smart systems architecture are described. Second, the KREM components

that provide the framework for structuring our work are detailed.

2.1.1 The Classic architecture

Normally, the classic architecture of a smart system consists of the following components.

Figure 2.1 shows this architecture and the interaction among its components.

• Knowledge Base (KB): It contains domain-specific information, structures and rules.

One of its components is a formal conceptual model of the domain of interest.

Among the existing formal conceptual models, ontologies are formal representa-

tions of vocabularies that are specific to a certain area [Gru93]. The concept of on-

tology is detailed in section 2.2.1.

40

CHAPTER 2. SMART SYSTEMS OVERVIEW

Figure 2.1 – Knowledge-based system architecture (adapted from [Mil08])

• Reasoner (Inference or Reasoning Engine): The reasoner establishes the mecha-

nisms that operate on the facts and rules to comply with some objective statement.

For this, the inference engine implements a reasoning algorithm.

• In addition, some smart systems incorporate a series of interfaces for users or other

systems to access knowledge and editors that facilitate the maintenance of the knowl-

edge base.

The development of a smart system is a complex task that relies on the application

of methods and tools specially designed to support the acquisition and management of

knowledge. In particular, Knowledge representation is the fundamental task involved in

the development of any information system. The choice of the objects and attributes of

the real world that are captured by the program and the way they are represented are

what determines what operations the system can perform and what queries it will be able

to answer.

In summary, a smart system contains a conceptual yet executable model of an ap-

plication domain. It is made machine-interpretable by means of knowledge representa-

tion techniques and can therefore be used by applications to base decisions on reasoning

about domain knowledge.

Smart systems do not always provide satisfactory results when solving a problem. It

suffers of several drawbacks:

• Incompleteness of the knowledge models for their implementation: Usually it is dif-

ficult to determine what knowledge needs to be captured to provide an appropriate

solution to a real-world problem;

• Difficulty in knowledge elicitation: Most of the knowledge an expert operates is

tacit, making that often, the set of elicited rules cannot accurately describe the prob-

lem solving process [Sla91]. This situation is known as the ”knowledge elicitation

bottleneck” [HRWL83];

• Lack of efficiency: rule-based systems do not remember previously solved prob-

lems. Every time there is a new problem to be solved, the rule-based system has to

execute rules from the beginning;

• Lack of robustness: if the current problem does not match any of the rules, the

smart system will fail in providing a solution.

41

CHAPTER 2. SMART SYSTEMS OVERVIEW

2.1.2 The KREM architecture

In [ZMS19] the authors proposed a novel architecture called KREM (Knowledge, Rules,

Experience and Meta-Knowledge) to manage the complexity of developing smart systems.

Its main goal is to solve the problems associated with knowledge acquisition from experts

or from data and to incorporate the capitalization of experience with the aim of improving

decision-making.

The four components of KREM are (Figure 2.2):

• The Knowledge component that contains the domain knowledge.

• The Rules component that allows different types of reasoning (monotone, spatial,

temporal, fuzzy, or other) depending on the application.

• The Experience component that allows the capitalization and reuse of prior knowl-

edge.

• The Meta-knowledge component that includes knowledge about the other three

components, depending on the application.

Figure 2.2 – The KREM architecture with its four components (taken from [ZMS19])

The way domain knowledge is formalized shapes the way in which the rules are ex-

pressed. Experience comes to complete the available knowledge and rules. Finally, meta-

knowledge directly interacts with the rules and the experience to indicate which rules

need to be launched according to the context of the problem to solve. Meta-knowledge

is knowledge about domain knowledge, about rules or about experience. This meta-

knowledge can take the form of context, culture or protocols. Context is information

that characterizes a situation in relation to interaction among human-beings, applica-

tions and their environment [DA99].

Unlike a traditional smart system, a KREM-based system is able to deal with incom-

plete expert knowledge models, by progressively completing them, learning with experi-

ence. The use of meta-knowledge, to formally represent the context of the decision to be

made, can steer its execution more efficiently. The KREM model has already been suc-

cessfully used in several applications: the semantic analysis of urban satellite images, the

diagnosis in small and medium enterprises and the formalization of the Lean enterprise

[ZMS19].

42

CHAPTER 2. SMART SYSTEMS OVERVIEW

In the following, each component as well as different technologies for implementing

the components of the KREM architecture are explained. We use this decomposition in

four components to guide the review of related works in the following sections.

2.2 The Knowledge component

The knowledge component contains knowledge about a certain domain by means of a

formal conceptual model. Among the existing conceptual models, ontologies have been

widely used to formalize domain knowledge. This section introduces the concept of on-

tology. Then, semantic web technologies to develop ontologies are described.

2.2.1 Concept of Ontology

The notion of ”ontology” originally denotes the study of existence in philosophy. In se-

mantic technologies, ontologies are conceptual models of what ”exists” in some domain,

brought into machine-interpretable form by means of knowledge representation tech-

niques.

Ontologies have been explored from different points of view, and there exist several

definitions of what an ontology is. In computer science, the most cited definition of an

ontology is the following.

Definition 1 An ontology is a formal, explicit specification of a shared conceptualization

of a domain of interest [Gru93].

This definition captures several characteristics of an ontology as a specification of do-

main knowledge:

• Formal refers to the fact that the specification of domain knowledge in an ontol-

ogy is machine readable and is interpreted in a well-defined way, which excludes

natural language;

• Explicit means that the concepts and the constraints on their use are explicitly de-

fined;

• Shared reflects the notion that an ontology captures consensual knowledge, that is,

not private to some individual but accepted by a group; and,

• A conceptualization refers to an abstract model of some phenomenon in the world

built by identification of the relevant concepts associated to it. Moreover, an ontol-

ogy describes a conceptualization in general terms. Instead of making statements

about a specific situation involving particular individuals, an ontology tries to cover

as many situations as possible, that can potentially occur.

There are several reasons to develop and use ontologies according to [Noy01, WDTP04].

Some of the most common ones are: (1) to share a common understanding of the struc-

ture of information among people or software agents, (2) to analyse domain knowledge,

43

CHAPTER 2. SMART SYSTEMS OVERVIEW

(3) to separate domain knowledge from operational knowledge, (4) to enable reuse of do-

main knowledge, (5) to infer high-level knowledge, and (6) to make domain assumptions

explicit.

In the following subsections, the ontology-related background knowledge is intro-

duced, including ontology components, common ontology development methods and

the different types of ontologies.

Components of an ontology

The main components of an ontology are the following.

• Concepts (also called classes, categories or types) are abstract representations that

reflect some aspects of a domain (e.g. physical objects, ideas, tasks, people, etc.).

They map to unary predicates in First Order Logic (FOL). They represent the onto-

logical categories that are relevant in the domain of interest. Some concepts that

contain individuals are shown in Figure 2.3. There are three concepts in the figure:

Person, Country and Animal. The concept Animal has a sub-concept called Mam-

mal, which represents the animals that are mammals.

• Relations semantically connect concepts, as well as instances, specifying their re-

lations. They map to binary predicates in First Order Logic. Two examples are the

generalization-specialization relation ”is a” and the composition relation ”is part

of”. Relations are also called properties or roles. Figure 2.3 shows relations (arrows)

that link individuals. The names of these relations are livesIn and hasPet.

• Instances (or individuals) represent the named and identifiable concrete objects in

the domain of interest, i.e. the particular individuals belonging to each concept.

They map to constants in First Order Logic. Figure 2.3 shows a set of instances that

represent the concepts of Person, Country and Animal.

• Axioms are statements that allow to structure the domain. There are two funda-

mental types of axioms: integrity and derivation axioms. Integrity axioms define the

relationships among the different concepts in the domain, along with their eventual

restrictions. These restrictions may be static (e.g. ”A waiter is a man who is also a

waiter”) or cardinal (e.g. ”A person is a parent if and only if has at least one child”).

Derivation axioms model the domain rules that permit to deduce new facts from

stored knowledge. They are expressions like IF {conditions} THEN {consequences}.

Consequences are deduced as long as conditions are met.

Ontology development

Building an ontology is a complex task mainly because there is no single way to model

the knowledge about a domain. Consequently, it usually results in an iterative process.

It is advisable to follow some basic design criteria (called ontological principles). These

principles are described by [Gru93, GPFLCGP04]:

44

CHAPTER 2. SMART SYSTEMS OVERVIEW

France

Spain

Italy

Argentina

Uruguay
Mark

Victor

Lucie

Manon

Rick

livesIn

livesIn

livesIn

Person Country

Maria

Dog

Turtle

Crocodile

Cat
Lion

hasPet

Animal

Mammal

Figure 2.3 – An example of three concepts (Person, Country and Animal) and relations (livesIn and
hasPet) among instances.

• Clarity, the model must represent the desired meaning of the terms in a clear way.

• Coherence, the model must allow only inferences that are consistent (not contra-

dictory).

• Interoperability, the model must have well-defined semantics so that multiple en-

tities in different environments can understand and inter-operate with each other

correctly.

• Re-usability, the model needs to support the reuse of its modules to reduce the

information needed to be transferred and processed.

• Extensibility, the model should be extensible for developing new functions and

support extension of domain specific knowledge based on existing vocabulary.

• Modularity, the model needs to capture different structural knowledge to decrease

the complexity of the model and simplify the development phase.

Several methodologies can be found in the literature to develop an ontology [Noy01,

UG96]. In [UG96], the authors highlight a series of elementary steps to build an ontology.

These steps are described below and are shown in Figure 2.4:

1. Identification of the purpose and the scope: It is important to be clear about why

the ontology is being built and what its intended uses are. In particular, ”com-

petency questions” should be answered at this step. ”Competency questions” are

user-oriented questions that allow to scope the ontology. They are questions that

must be answered through exploring and querying the ontology.

2. Construction of the Ontology.

45

CHAPTER 2. SMART SYSTEMS OVERVIEW

(a) Ontology capture:

i. identification of the key concepts and relationships in the domain of in-

terest;

ii. production of precise unambiguous text definitions for such concepts and

relationships;

iii. identification of terms to refer to such concepts and relationships;

iv. all the designers need to agree on all of the above.

(b) Coding: explicit representation in a formal language of the conceptualization

captured in the previous step.

(c) Integration of existing ontologies: how and whether to use (all or part of) on-

tologies that already exist.

3. Evaluation: technical assessment of the ontologies with respect to the requirements

specification, the competency questions, and/or the real world is done.

4. Documentation: to enable knowledge sharing.

Figure 2.4 – Methodology for developing ontologies [UG96].

Type of Ontologies

A categorization of ontologies can be made according to their level of conceptualization.

Different types of ontologies exhibit different potentials for reuse. The most prominent

insights in this respect have been published in [Gua97]. There are different ways to char-

acterize an ontology:

• Depending on the level of abstraction and scope of conceptualization we can dis-

tinguish among:

46

CHAPTER 2. SMART SYSTEMS OVERVIEW

– Upper Ontologies (also called Foundational Ontologies) define general pur-

pose concepts such as time, states, qualities, regions, etc., that are indepen-

dent of a particular problem or domain. Among the most recognized top-level

ontologies are DOLCE [GGM+02], SUMO [NP01] and BFO [SKB05].

– Domain and Task Ontologies describe respectively the general knowledge about

a certain domain (such as Medicine or Industry) or a generic activity (such as

diagnosis or control). Their entities are usually obtained by specialization of

the concepts of an upper ontology.

– Application Ontologies provide the concepts that are required for a particular

application. They are built by specializing the concepts of domain and task

ontologies.

Figure 2.5 represents an inclusion hierarchy: the lower ontologies inherit and spe-

cialize concepts and relations from the upper ones. The lower ontologies are more

specific and have thus a narrower application scope, whereas the upper ones have

a broader potential for reuse.

Figure 2.5 – Types of Ontologies.

• Depending on the semantic richness of the conceptualization, an ontology can be

distinguished between:

– Light-weight Ontologies are taxonomies of related concepts that do not in-

clude axiomatic definitions that formally define the semantics of their ele-

ments. Due to their simple design, they are sometimes not considered as on-

tologies.

– Heavy-weight Ontologies model the semantics of the domain, including a rich

axiomatization to clarify the meaning of their concepts.

There are several modeling approaches to support the development of formal ontolo-

gies through different formalizations. Some of the best known are Description Logic (DL)

[BCM+03], First Order Logic (FOL) [Hod01] and the Frames approach [Min74]. Each of

47

CHAPTER 2. SMART SYSTEMS OVERVIEW

these paradigms is supported by several languages, which differ in terms of expressive-

ness and computational tractability. In particular, Description Logic is the paradigm cho-

sen by the Semantic Web community, and also the most used in the development of on-

tologies, by means of the Web Ontology Language (OWL) [BHS05].

2.2.2 Semantic Web Technologies

The Semantic Web is an initiative of the World Wide Web Consortium1 (W3C) for a new

generation of the Word Wide Web. The idea was originally presented by Tim Berners-Lee

as a solution to improve the exploitation of knowledge stored on the web. Its goal was to

give meaning to the content of traditional websites, allowing that knowledge content to

be interpreted by software systems.

Semantic Web technologies offer a set of solutions to capture and manage the seman-

tics of data. In the Semantic Web, ontologies are used as knowledge representation mod-

els and the language for writing such models is the Web Ontology Language (OWL).

Figure 2.6 shows the Semantic Web ”layer cake” proposed by Tim Berners-Lee [BLF00].

This figure shows the hierarchy of the Semantic Web languages mentioned above, within

the Semantic Web stack. OWL is based on Resource Description Framework (RDF) and

Resource Description Framework Schema (RDFS), which are layered on the top of the Ex-

tensible Markup Language (XML). OWL provides additional vocabulary along with formal

semantics to facilitates greater machine interpretability of Web content than that sup-

ported by XML, RDF, and RDF Schema [MVH+04]. The main languages are described

below.

Figure 2.6 – Semantic Web Stack [BLF00].

1https://www.w3.org/

48

CHAPTER 2. SMART SYSTEMS OVERVIEW

XML. Extensible Markup Language is a markup language that defines a set of rules for

encoding documents in a format that is both human and machine-readable [BPSM+00].

Users creates their own data-model and then they create the corresponding XML docu-

ment with their defined entity tags and values. In order to use the information embedded

in the document users must follow their own data-model. In addition, XML does not

provide any logic relationship among different structures inside the users’ data-model,

which makes it difficult to express complex knowledge and relationships with XML alone.

Therefore, an upper layer is needed to express this knowledge. RDF addresses this issue.

RDF. The Resource Description Framework (RDF) is a generic data model for interchang-

ing data in the Web recommended by the W3C. In RDF, data is represented as triplets con-

sisting of subjects, predicates, and objects. Formally, an RDF triplet is defined as follows:

Definition 2 Let I, B, L be disjoint infinite sets of URIs2, blank nodes, and literals, respec-

tively. A tuple (s,p,o) ∈ (I ∪ B) × I × (I ∪ B ∪ L) is denominated an RDF triple, where s

is called the subject, p the predicate, and o the object.

An example RDF graph is shown in Figure 2.7. It expresses the fact that ”John is the father

of Maria”. Despite the fact that RDF provides an open language to express knowledge,

it does not make assumptions or define the semantics about any particular application

domain (e.g. ”Fathers are male”).

Figure 2.7 – RDF graph example.

RDF Schema. RDFS extends RDF by allowing to define a particular vocabulary (i.e. the

terms) to be used in an RDF graph. RDFS is used to indicate that specific kinds or classes

of resources are described, and specific properties are used to describe those resources.

RDFS is a simple ontology definition language (compared with other languages such as

OWL). It only allows to define taxonomies and do some basic inference about them.

RDFS defines several classes which allow to identify the various concepts that need to

be described in a particular domain. A class in RDFS corresponds to the generic con-

cept of a type or category. In RDFS, a class C is defined by a triple of the form C rdf:type

rdfs:Class. For example, we can define the class Animals (Animals rdf:type rdfs:Class)

to represent animals.

Essentially, RDFS provides modelling primitives for describing how properties and classes

are intended to be used together in RDF data. Some of the most important ones are

rdfs:Class, rdfs:subClassOf (relating a class to one of its superclasses; all instances

2Uniform Resource Identifiers (URIs) are used to uniquely identify each resource in the web.

49

CHAPTER 2. SMART SYSTEMS OVERVIEW

of a class are instances of its superclass), rdfs:subPropertyOf (relating a property to

one of its superproperties), rdfs:domain (indicating that a particular property applies to

instances of a designated class; i.e. defining the domain of the property), rdfs:range

(indicating that the values of a particular property are instances of a designated class; i.e.

defining the range of the property). Important annotation constructs are also added in

RDFS such as rdfs:label (associating human-friendly label, a name, with a resource)

and rdfs:comment (associating longer text with a resource). A complete list of all model-

ing primitives can be found at [AH04].

OWL. The Web Ontology Language [MVH+04, MR07] is an expressive ontology language

based on Description Logics with sound and complete reasoning algorithms [BCM+03].

OWL is built on top of RDF Schema. To summarize, XML is the basis, RDF is a dialect of

XML for describing and sharing web resources; RDF Schema is a set of RDF constructions;

and OWL is a form of RDF Schema for building ontologies. Compared to RDF, OWL offers

a richer set of operators to define the elements of the ontology (e.g. classes, properties,

etc.). It also possesses a formal semantics that allows reasoning.

The semantics of OWL addresses distributed knowledge representation scenarios where

complete knowledge about the domain cannot be assumed. OWL has two variants:

• OWL DL only has constructions that are supported by Description Logics. OWL 2

DL is based on the SROIQ logic [HKS06]. It retains computational completeness

and decidability. OWL DL includes all OWL language constructs, but they can be

used only under certain restrictions (e.g., while a class may be a subclass of many

classes, a class cannot be an instance of another class).

• OWL FULL supports a larger number of constructions than OWL DL, but these are

not supported by Description Logics and it is undecidable. The purpose of OWL

Full is to extend the vocabulary of the RDF Schema, but with no computational

guarantees. For example, in OWL FULL a class can be treated simultaneously as a

collection of individuals and as an individual.

OWL is based on the Open World Assumption (OWA). This assumption enables incom-

plete data to be used for reasoning. In a Closed World Assumption (CWA), such as in

entity-relationship databases, anything that is not explicitly expressed is considered as

false. Under the OWA, anything that is not declared as false may be true.

As described in section 2.2.1, an ontology is basically composed of individuals, classes

and properties. Individuals or instances represent the particular elements of the domain,

classes can be interpreted as sets of instances and properties are binary relationships over

those individuals.

Below are some of the main OWL characteristics definitions of properties and classes.

Each property has a domain and a range. There are three main types of properties:

• Object properties describe relationships between individuals.

• Data properties are relationships between individuals and data values. The range

of these properties is a Datatype, such as Integer, String, Float, among others.

50

CHAPTER 2. SMART SYSTEMS OVERVIEW

• Annotation properties are used to add metadata to classes, to individuals and to

object/data properties.

OWL has several constructions to specify the characteristics of the properties. Some of

the most relevant are:

• Inverse: a property p1 is inverse of a property p2 iff ∀x, y : p1(x, y) ⇔ p2(y, x).

• Functional: a property p is functional iff ∀x, y, z : p(x, y)∧p(x, z) ⇒ y = z.

• Symmetric: a property p is symmetric iff ∀x, y : p(x, y) ⇒ p(y, x).

• Anti-symmetric: a property p is anti-symmetric iff ∀x, y : p(x, y)∧p(y, x) ⇒ x = y .

• Reflexive: a property p is reflexive iff ∀x : p(x, x).

• Un-reflexive: a property p is un-reflexive iff ∀x, y : p(x, y) ⇒ x 6= y .

• Transitive: a property p is transitive iff ∀x, y, z : p(x, y)∧p(y, z) ⇒ p(x, z).

• Property chain: if a property p1 is defined as a composition of the properties p2

and p3, then ∀x, y, z : p2(x, y)∧p3(y, z) ⇒ p1(x, z)

In OWL, classes are defined by a set of restrictions. These restrictions set out the condi-

tions that an individual must meet in order to be a member of the class. Three types of

restrictions are available in OWL:

• Restrictions on Quantification OWL supports both existential (∃) and universal

(∀) quantifications. An existential restriction (someValueFrom axiom) applied to a

property describes the class of individuals who relates to, at least, a member of the

class defined as the range of that property. An universal restriction (allValuesFrom

axiom) applied to a property describes the class of individuals who, if they are in the

specified property then the individuals are only related with members of the class

defined as the range in the specified property.

• Cardinality restrictions allow to specify the minimum, maximum or exact number

of times each class member participates in a given relationship.

• Value restrictions (hasValue restriction) The hasValue axiom allows to define classes

based on the existence of specific values in their properties.

SPARQL Query Language. SPARQL3 (a recursive acronym for SPARQL Protocol and RDF

Query Language) is a query language able to retrieve and manipulate data stored in RDF.

SPARQL is based on the RDF Turtle serialization syntax4 and on graph pattern matching.

A graph pattern is an RDF triplet containing variables, as evoked earlier. SPARQL is in-

spired by the Structured Query Language (SQL), thus many of its features are similar to

3https://www.w3.org/TR/sparql11-query/
4https://www.w3.org/TR/turtle/

51

CHAPTER 2. SMART SYSTEMS OVERVIEW

it. A SPARQL query consists of triple patterns, conjunctions, disjunctions, and optional

patterns. Triple patterns are similar to RDF triples where the subject, predicate, and ob-

ject may be variables. In a query, the variables act like placeholders which are bound with

RDF terms to build the solutions. In general, a SPARQL query consists of four main parts

as described below

• Prefix declarations allow the definition of IRI (Internationalized Resource Identi-

fier) prefixes that can be used for shortcuts later in the query.

• Result clause allows for specifying what type of SPARQL query is being executed,

and what results should be returned.

• Query pattern allows for specifying the query patterns that are matched against the

data and used to generate the variable bindings of the defined variables in the query.

• Query modifiers allow for ordering and grouping the results.

Depending on the query type, the output of a query can be an RDF graph, a table, or a

Boolean value. Listing 2.1 shows an example of a select query using the FOAF vocabulary5

that returns all persons who know someone with the first name Maria.

#PREFIX DECLARATIONS

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

#RESULT CLAUSE

SELECT ?person

#QUERY PATTERN

WHERE {

?person foaf:knows ?p.

?p foaf:firstName "Maria".

}

Listing 2.1 – SPARQL query example (comment lines are prefixed with ’#’)

2.3 The Rules component

The Rules component of a KREM smart system allows different types of reasoning over

the individuals of the ontologies contained in the Knowledge component. We consider

reasoning as the ability to generate non-trivial conclusions from premises or assumptions

[ARFS12]. The known asserted facts are called explicit knowledge, while the inferred ones

as implicit knowledge.

In the following section we describe, the Semantic Web Rule Language (SWRL) that

extends OWL axioms with IF-THEN like rules. These logical rules are executed by a rea-

soner, which is a piece of software able to infer logical consequences from a set of asserted

5http://xmlns:com/foaf/spec/

52

CHAPTER 2. SMART SYSTEMS OVERVIEW

facts or axioms [Abb12]. Some of the most known rules engines in the Semantic Web com-

munity are Jess6, Jena7 and Drools8.

Current solutions for reasoning on ontologies were developed for static or slow chang-

ing data which is not the case for the dynamic nature of the data in the domain of Industry

4.0 where the manufacturing machines are equipped with sensors that collect data con-

tinuously. Sensor data are an example of stream data which are rapidly changing data.

These data need to be quickly consumed and reasoned over. For example, if the values

from a particular property drops from its allowed threshold then this information needs

to be consumed quickly and an appropriate decision should be made.

To bridge this gap, a number of recent works propose to unify reasoning and stream

processing, giving rise to the research field of Stream Reasoning (SR). The notion of stream

reasoning is explained in section 2.3.2.

2.3.1 SWRL - The Semantic Web Rule Language

The Semantic Web Rule Language is a standard language based on OWL DL and on the

Rule Markup Language (RuleML) [HPSB+04]. SWRL allows to define rule expressions

involving OWL concepts, thus enabling more powerful deductive reasoning than OWL

alone.

SWRL extends OWL axioms with Horn-like rules [Hor51]. A Horn clause is a disjunc-

tion of literals with at most one positive; i.e. ¬p ∨¬q ∨ . . .∨u. This clause is equivalent to

p∧q∧ . . . ⇒ u. The rules are composed in the form of implication between an antecedent

(body) and a consequent (head).

antecedent → consequent

The intended meaning can be read as: whenever the conditions specified in the an-

tecedent hold, then the conditions specified in the consequent must also hold.

Both the rule’s body and head consist of zero or more atoms. Atoms on these rules are

OWL concepts: C(x) and P(x, y), where C is an OWL class, P is an OWL property and x, y

are variables, OWL individuals or OWL data values. Moreover, predicates sameAs(x, y),

differentFrom(x, y) and operator(r, x, ...) are added to the language to include

the semantics of interpreting same and different objects and SWRL operators libraries,

respectively.

Although SWRL extends OWL, it has some limitations. For example, ”SWRL rules can-

not be used to modify existing information in an ontology” [RBBSD11]. Indeed, SWRL rules

are able to create new knowledge, i.e. new properties between existing instances, but they

cannot create new instances ”on the fly”, nor change the value of an instance property.

SWRL, which has become the standard rule language in Semantic Web, is not used in

stream data applications. Its nature makes SWRL unsuitable for doing continuous infer-

ence over stream data. For example, using aggregate functions on a particular window of

6https://jess.sandia.gov/
7https://jena.apache.org/
8https://www.drools.org/

53

CHAPTER 2. SMART SYSTEMS OVERVIEW

time over data streams cannot be expressed in SWRL, nor the frequency with which a rule

should be executed.

2.3.2 RDF Stream reasoning

In many real-world applications data take the form of continuous streams instead of the

form of finite data sets stored in a traditional repository. This is the case for monitoring of

network traffic, for telecommunications management, for manufacturing, for sensor net-

works, and for many other domains. In such applications, instead of classical "one-shot"

queries, continuously running queries, which return new results as new data arrive on the

streams are needed. A data stream is a sequence of items received continuously and in

real-time, ordered either implicitly, by arrival time, or explicitly, by means of timestamps.

A number of Data Stream Management Systems (DSMSs) have been developed in the

last decade to tackle the challenges raised by dynamic and high-velocity data streams.

To take advantage of the collected data streams, integration with domain knowledge

containing resource specification and planning information is important. Reasoning on

this information can infer new knowledge of the resources’ current condition. Well inte-

grated and aggregated information helps to monitor the resources and allows informed

decisions.

However, the issues of handling heterogeneity, integration, and interpretation of data

streams at semantic level are not addressed by DSMSs. The Semantic Web community,

through its standards and technologies, provide answers to these issues, while employing

ontologies and RDF data models. The integration of DSMSs and Semantic Web technolo-

gies has led to the semantically-enabled stream processing, usually called RDF Stream

Reasoning [BBC+10]. The novelty of this approach is in extending incremental reasoning

techniques with the notions of time window and continuous processing.

Time window. Traditional reasoning is based on the idea that all the information avail-

able should be taken into account when solving a problem. In stream reasoning, this prin-

ciple is set aside and reasoning is restricted to a certain window of concern which consists

of a subset of statement recently observed. This is necessary for several reasons. First of

all, ignoring older statements allows to save computing resources in terms of memory and

processing time to react to important events in real time. Secondly, in many real-time ap-

plications there is a silent assumption that older information becomes irrelevant at some

point.

Continuous Processing Traditional reasoning approaches are based on the idea that the

reasoning process has a well defined beginning (when a request is made to the reasoner)

and end (when the result is delivered by the reasoner). In stream reasoning, requests are

registered at the reasoner and continuously evaluated against a knowledge base that is

constantly changing.

Figure 2.8 shows a conceptual view of a stream reasoning system as envisioned in

[DVCB+08]. The system takes multiple data streams as well as multiple static or infre-

54

CHAPTER 2. SMART SYSTEMS OVERVIEW

quently changing knowledge models as input. Users can register reasoning tasks (or queries)

at a stream reasoner. Tasks consist of a predicate that is to be instantiated. The definition

of this predicate as well as the additional information necessary to perform derivations

can be considered as static knowledge models that are given to the system. The stream

reasoner finds instantiations of the different predicates by applying a reasoning method

and outputs either static or stream data. A static output is a variable binding that can be

further processed by any reasoner. As an alternative, the stream reasoner can produce

a stream as a result itself. In this case, instantiations of the goal predicates are added to

the output stream as they are derived. Such a streaming answer is appropriate for further

processing by other stream reasoners.

Figure 2.8 – Stream Reasoning (from [SCDV+19])

RDF Stream Processing engines

SPARQL (see section 2.2.2) is designed for one-shot queries. A number of RDF Stream

Processing (RSP) languages are proposed to extend SPARQL with operators that take into

account the streaming nature of RDF streams. These languages, similar to Continuous

Query Language (CQL) [ABW04], integrate temporal windows and the FROM STREAM oper-

ator to define query graphs over a set of RDF streams, and to process them continuously.

In this section, we describe existing approaches aiming to perform reasoning over data

streams and present a comparison among them.

All these approaches use RDF to represent RDF streams, that are ordered sequences

of pairs, where each pair is constituted by a RDF triplet and its timestamp t: (<Sub-

ject,Predicate,Object>,t).

Streaming SPARQL [BGJ08] is one of the first language extensions to SPARQL for pro-

cessing RDF data streams. The contribution of the model in the RSP field can be regarded

as primarily theoretical. The first work on defining an algebra for a streaming version

of SPARQL [GGKL07] was also theoretical, although it did provide an initial comparison

with a purely static approach. Both approaches have been used as inspiration for later

approaches.

C-SPARQL (Continuous SPARQL) [BBC+10] proposes a query language to process RDF

55

CHAPTER 2. SMART SYSTEMS OVERVIEW

Table 2.1 – Comparison of RSP engines.

RSP engines
Input
Model

Time
Model

Reasoning
Background
Knowledge

C-SPARQL Triplet streams Time points RDFS subset Yes
CQELS Triplet streams Time points No Yes
Straming
SPARQL

Triplet streams Time points No Yes

Sparkwave Triplet streams Time points RDFS subset Yes

streams. It supports time-stamped RDF triplets as input and uses a periodic execution

strategy to continuously execute queries over these RDF streams. It has the capability

of integrating both RDF streams and static background knowledge represented as RDF

triples. Given that streams are intrinsically infinite, data are usually read through time

windows using the CQL window concept [ABW04]. Queries are executed on all the triplets

that are received during a given time interval. In C-SPARQL, continuous queries are di-

vided into static and dynamic parts and streaming data is transformed into non-streaming

data within a specified window in order to apply standard algebraic operations, such as

aggregate functions like COUNT, COUNT DISTINCT, MAX, MIN and AVG. The static parts are

loaded into relations, and the continuous queries are executed by processing the stream

data against these relations.

CQELS (Continuous Query Evaluation over Linked Stream) [PDTPH11] is another lan-

guage that combines static and streaming data in RDF format. Similar to C-SPARQL,

it provides windowing and relational operators together with ad-hoc operators for gen-

erating new streams from the obtained results. CQELS queries deal with triplets in an

element-based window (a given number of triplets). The main difference with C-SPARQL

is that CQELS offers a processing model in which query evaluation is not periodic, but

triggered by the arrival of new triples. These different execution methods lead to the pos-

sibility of having different query results produced for the same query and input data.

Finally, another possible approach is Sparkwave [KCF12] that is an RSP implementa-

tion that supports continuous reasoning over RDF data streams and time-based windows.

Preliminary evaluations of the execution engine have shown that it can provide higher

throughput than both C-SPARQL and CQELS under certain conditions. However, the ex-

periments were based on an adaptation of the Berlin SPARQL Benchmark [BS09], which

is designed to evaluate the performance of RDF stores, and contained no queries that

required more than a single data stream. Sparkwave has some known limitations with

respect to the size of the background knowledge that can be supported efficiently, and it

provides only limited reasoning functionalities [MUVHB14].

Table 2.1 summarizes various features of existing RSP engines described above. All

these RSP engines use simple streams, each incoming item consisting of a triplets associ-

ated with its timestamp. From the reasoning aspect, C-SPARQL and Sparkwave support a

subset of RDFS rules to infer information from streams. CQELS does not provide reason-

ing features. All the RSP engines support integration of domain knowledge in the querying

process, but reasoning capabilities on streaming data are limited.

56

CHAPTER 2. SMART SYSTEMS OVERVIEW

2.4 The Experience component

The KREM architecture incorporates the Experience component, which allows the capi-

talization and reuse of prior knowledge. When the knowledge models, constructed in the

Knowledge component, suffer from incompleteness (described in section 2.1.1), the Expe-

rience component performs as a complementary model to deal with this issue. The Expe-

rience component improves the knowledge model by progressively completing it with the

experience acquired from the interventions of human experts. Furthermore, the reason-

ing process in the Rules component enables the evolution of the initial set of rules with

experience, as proposed by [TSC+12]. More precisely, every time the native reasoner is

executed, the system stores both the output of the reasoner and the final decision, if any,

made by the expert. Decisions that do not follow the proposition of the reasoner produce

an evolution of the set of experience rules. This process is termed as experience capital-

ization [ZM15].

This section presents Cased-based Reasoning (CBR) and Set of Experience Knowledge

Structure (SOEKS), two complementary approaches for the capitalization of experience.

2.4.1 Case-based reasoning

CBR is regarded as a way to solve problems based on the retrieval and adaptation of cases,

which are episodic descriptions of problems and their associated solutions [All94]. The

CBR approach is used to capture experience by reproducing problem solving process of

experts, at the psychological level, experts go back to previous problems they have solved

and try to adapt the previous solution to solve the new problem.

The CBR approach can deal with the following situations:

• The elicitation of knowledge becomes a task of gathering typical cases and identi-

fying features of the attributes, so that creating an explicit knowledge model of the

domain is no longer necessary [WM94];

• A CBR system is able to access or manage large volumes of information [Rie88], thus

giving available candidate solutions to new problems from analogies of past cases;

• A CBR systems can learn by acquiring new knowledge as cases [HH92], thus making

maintenance easier [WM94] without raising logical incoherence.

From the beginning of the development of CBR, applications aiming at exploiting

knowledge from experience in different domains have appeared; some examples are ap-

plications in law [AR88], civil engineering [WA94], marketing [CL05] and decision making

[Kol91].

Case-based reasoning is suitable for experience capitalization in two aspects: experi-

ence collection and reuse. On the one hand, the main component of a CBR-based system

is the case base that contains previous experiences of problem solving. Therefore, a suit-

able way to represent cases is vital. On the other hand, solving a new problem consists in

finding old problems similar to the new one and constructing a solution either by reusing

57

CHAPTER 2. SMART SYSTEMS OVERVIEW

old solutions or by adapting them. It is made possible by going through a cyclic process

with four activities [AP94] (2.9):

1. retrieving the most similar case (i.e. most useful) to the new problem;

2. analyzing the possibility of reusing directly the solution of this case;

3. adapting the proposed solution if necessary; and

4. retaining the new case by updating the case base.

Figure 2.9 – The CBR architecture (adapted from [AP94])

Two crucial aspects are to be considered when applying a CBR approach, (1) in which

way a case is represented and (2) in which way similarity between cases is calculated for

retrieval purposes.

To deal with both aspects, SOEKS is presented below as a case representation frame-

work and the similarity calculation measures for DDNA [STH+12] are used for case re-

trieval.

2.4.2 SOEKS - Set of Experience Knowledge Structure

Set of Experience Knowledge Structure (SOEKS) is a knowledge structure for represent-

ing experience. It can store uncertain and incomplete information for further knowl-

edge processing [SS09, SST07]. SOEKS can be shaped in a language such as XML or OWL

[SMASC09].

The experience collected by SOEKS can assists organizations in making precise deci-

sions, predictions, and recommendations [SS09]. SOEKS is a dynamic structure that is

dependent on the information and data that it has received.

A SOEKS contains four components [SS09] (Figure 2.10):

• Variables usually involve representing knowledge using an attribute-value language.

This is the traditional frames approach [Min74] in knowledge representation.

• Functions describe associations among variables. Therefore, the set of experience

uses functions and establishes links among the variables constructing multi objec-

tive goals.

58

CHAPTER 2. SMART SYSTEMS OVERVIEW

• Constraints are another form expressing relationships among the variables. A con-

straint is a restriction of the feasible solutions in a decision problem and limits the

performance of a system with respect to its goals.

• Finally, rules are suitable for representing inferences or for associating actions with

conditions under which the actions should be performed. They are conditional re-

lationships of the universe of variables.

Figure 2.10 – A set of experience knowledge structure.

Each formal decision event can be stored in a combined structure of those four com-

ponents of the SOEKS. Figure 2.11 shows part of the object properties in the SOEKS con-

cept hierarchy with the four components involved in decision making events: variables,

functions, constraints and rules.

Figure 2.11 – The SOEKS ontology object properties.

A set of experience makes up a decisional chromosome, which stores decisional strate-

gies for that category. Collection of these decisional chromosomes establishes an entire

inference tool to offer a blueprint of knowledge inside a system, machine, or organization

[SMASC09]. It is called DDNA (Decisional DNA) of the organization. In this way, DDNA is

a knowledge repository that is designed to capture decisional fingerprints inside organi-

zations through the use of SOEKS [SMASC09], making it also shareable and transportable

[SST07]. Therefore, SOEKS is used as a case representation framework and the similarity

calculation measures for DDNA [STH+12] are used for case retrieval.

59

CHAPTER 2. SMART SYSTEMS OVERVIEW

2.5 The Meta-Knowledge component

Meta-knowledge is knowledge about domain knowledge, about rules and about expe-

rience. In particular, this component provides a formal representation of the context,

to identify the one in which actions should be taken. In the industrial domain, meta-

knowledge can control the firing of different sets of actions or rules according to different

contexts, e.g. the rules for detecting the deviation of a machine temperature above its

threshold may change according to the humidity of the machine’s environment. In this

way, the use of meta-knowledge can steer the execution of smart systems.

Context has been studied in areas like knowledge-based and ubiquitous systems, ei-

ther for handling complex knowledge dynamically [GMD12] or for providing smart hu-

man interfaces [DAS01]. Diverse representations of context exist in different research ar-

eas.

According to [SAW94b], context-awareness is the capability of a system to gather in-

formation about its context or environment at any given time and to adapt its behavior

accordingly by providing suitable services. The most widely referenced definition of con-

text is the following.

Definition 3 Context is any information that can be used to characterize the situation of

an entity. An entity is a user, a place, or a physical or computational object that is considered

relevant to the interaction between an entity and an application, including the entity and

the application themselves [DA00].

Such entities and applications are capable of specifically reacting to their current lo-

cation, time and other environment attributes and adapt their behavior without explicit

user intervention, thus aiming at increasing usability and effectiveness. In this section, we

study the existing models for context handling and analyze their advantages and draw-

backs with respect to the requirements of Industry 4.0.

There has been some research regarding context information management methods.

A complete survey of them is presented in [PZCG13]. According to these authors, the

context information life-cycle is composed of four phases:

• Acquisition: context needs to be acquired from various sources. The sources can

be physical or virtual sensors.

• Modelling: the collected data needs to be modelled and represented meaningfully.

• Reasoning: modelled data needs to be processed to derive high-level context infor-

mation from low-level raw sensor data.

• Dissemination: both high-level and low-level context have to be distributed to the

consumers who are interested in it.

In our work, we focus on context modeling and reasoning. Approaches for context

handling can be divided into: Data-driven approaches and Knowledge-driven approaches.

60

CHAPTER 2. SMART SYSTEMS OVERVIEW

2.5.1 Data-driven approaches for context handling

The data-driven approaches learn the context models from datasets collected from di-

verse sensors via data mining and machine learning techniques [BBRC09, CNW12]. Among

classical machine learning approaches, we can cite Decision trees, Bayesian networks,

Neural networks, support-vector machines (SVM), among others. Decision tree is a tech-

nique that builds a tree from a dataset that can be used to classify data. This technique

has been used in [HWCH08] for context handling in a learning environment. Bayesian

networks is a technique based on probabilistic reasoning concepts [MN07]. Entities and

relationships among them are represented by directed acyclic graphs and probabilities.

Bayesian networks are commonly used in combining uncertain information from a large

number of sources and deducing higher-level contexts [KK08], [POC11]. Artificial neural

networks is a technique inspired from the biological neuron system. They are typically

used to model complex relationships between inputs and outputs or to find patterns in

data. It has been applied in [KK10] for pervasive healthcare monitoring. Support vector

machines are widely used for pattern recognition in context-aware systems. It has been

used to detect activity recognition of patients in the healthcare domain [DMT+07] and to

learn situations in a smart home environment [BCR09].

Data-driven approaches have advantages such as a better handling of uncertain knowl-

edge and the possibility to capture knowledge about temporal dependencies. However,

they suffer from the cold start problem, since large datasets are needed to train the model

for each activity. They also lack features regarding interoperability and re-usability.

2.5.2 Knowledge-driven approaches for context handling

In contrast to the Data-driven approaches, in Knowledge-driven approaches the differ-

ence between context modeling and context reasoning phases is clearer. Therefore, first

we discuss the different techniques for context modeling and then we address the differ-

ent context reasoning techniques.

In the context acquisition phase, data in multiple formats is obtained. To use it, it is

necessary to store it in a machine readable and processable form, hereby all data should

be converted into a unified format such that the context can be understood and shared.

This can be achieved by the use of knowledge representation approaches, classified by

the scheme of the used data structures to represent and exchange contextual information.

Some of them may be classified in more than one category. The most relevant approaches

are:

• Key-value models [SAW94a] use key-value pairs to represent information in a sim-

ple way, but that cannot embed complex structuring information.

• Markup Scheme models [W3C, HBS02, IRRH03] use XML or RDF/S (described in

section 2.2.2) and describe information with markup tags. Examples such as Com-

posite Capabilities/Preferences Profiles (CC/PP) allow a user to describe their de-

vices with some predefined functionalities [W3C]. However, it is not flexible and

61

CHAPTER 2. SMART SYSTEMS OVERVIEW

requires to use only the defined unambiguous attributes, and is limited in terms of

expressivity of complex relationships.

• Graphical models [HIR03, HIR02, HM10, BKE03], such as the Unified Modeling

Language (UML), allow the user to visually represent the classes and relationships

in a particular domain. The key limitation of these Graphical models is that they

only allow static specification of specialization and generalization of classes and re-

lationships.

• Object Oriented models [SBG99] allow the user to design the abstract model of the

context as well as the instances in it. These object oriented models are flexible but

they do not provide complex logic inference . Logic defines the conditions and can

derive related conclusions.

• Logic Based models [McC93, MB97] use First Order Logic for context modeling with

its associated reasoning capabilities. It provides much more expressive richness

compared to the other models discussed previously. Reasoning is possible up to a

certain level. Lack of standardisation reduces the re-usability and applicability.

• Ontology Based models [SLPF03b, SLPF03a, ÖA97, DB03] can flexibly describe ab-

stract information, logic inferences and represented instances. The context is or-

ganised into ontologies using semantic technologies. A number of different stan-

dards and reasoning capabilities are available to be used depending on the require-

ment. A wide range of ontology development tools and reasoning engines are also

available.

These context modeling techniques require the task of context reasoning to deduce

contexts of high abstraction level from simpler low abstraction level contexts. This task

may also deal with some basic functionalities such as validating the context values, filling

in missing values, checking context inconsistencies and applying some processing or cal-

culations to obtain new values. Popular reasoning methods include, in addition to those

mentioned in the data-driven approaches section.

• Case-Based Reasoning. In this method, context knowledge is deduced from previ-

ous similar cases [MKP04]. However, it is difficult to accurately calculate the simi-

larity of different cases.

• Rule-Based Reasoning. This reasoning method infers high level information on the

basis of predefined rules [GVCF07]. A limitation of this method is the definition of

the rules in advance, as these rules can be complex to define.

• Ontology-Based Reasoning. As described in section 2.2.2, it is based on descrip-

tion logic. This technique applies logical reasoning over low-level, explicit context

to derive high-level, implicit context. Ontological reasoning is mainly supported by

two common representations of semantic web languages: RDF(S) and OWL. SWRL

is one of the available solutions to add rules in OWL (see section 2.3.1). This tech-

nique is applied in [WDTP04].

62

CHAPTER 2. SMART SYSTEMS OVERVIEW

Table 2.2 – Data-driven and Knowledge-driven approaches for context handling.

Approaches Advantages Disadvantages

Knowledge-
driven

• Semantic reasoning • Representation can be complex
• Explicit representation of context • Resource intensive (processing, storage, time)
• Strong validation • Data model in a compatible format (OWL, RDF)
• Application independent
• Allows sharing
• Strong support by standards

Data-
driven

• Fairly accurate • Training data required
• Different models are available • Resource intensive (processing, storage, time)

• Models can be complex
• Difficult to capture existing knowledge

To design a specific application, the selection of the appropriate modelling and rea-

soning technique should be made carefully considering the requirements of the applica-

tion.

The ontology-based approach is particularly suitable for context modeling due to its

powerful representation capabilities and reasoning methods for handling heterogeneous

sensor data [SLP04]. However, this approach needs expert knowledge to build the initial

model. Contextual knowledge is interpreted and evaluated by means of ontology reason-

ing. This allows to infer new and more complex context characteristics.

Table 2.2 presents a summary of the advantages and disadvantages of the data-driven

approaches and knowledge driven approaches for context handling discussed in this sec-

tion. Due to the requirements of condition monitoring in Industry 4.0, we choose to use

the ontology-based approach for context modeling.

2.6 Conclusion

In this Chapter, we provide an overview of the theoretical foundations of smart systems.

It starts with an introduction of the classic and the KREM architecture for the develop-

ment of this kind of system. We frame our approach through the KREM architecture, that

has four components. In the Knowledge component section, the concept of ontology is

introduced as well as the key concepts of Semantic Web and the associated technologies

used in this thesis. In the Rules component description, we present the notion of reason-

ing in static and dynamic scenarios. SWRL is a powerful language for offline reasoning,

which has become the de facto standard rule language in the Semantic Web. Stream rea-

soning, that combines continuous processing of data streams with reasoning with rich

background knowledge, can be used to deal with dynamic domains such as Industry 4.0.

The Experience component section presents Cased-based Reasoning and Set of Experi-

ence Knowledge Structures, which are two complementary approaches for the capitaliza-

tion of experience. This thesis does not deal with this component of KREM. In the Meta-

knowledge component section, the definition of context as well as the main approaches

for context handling are discussed. Both context representation and context reasoning in

the Industry 4.0 domain can be handled through semantic technologies. All the concepts

63

CHAPTER 2. SMART SYSTEMS OVERVIEW

presented in this chapter provide a crucial background to our work.

In the next chapter, we review the existing approaches for condition monitoring in

Industry 4.0. We pay special attention to those that use Semantic Web Technologies to

facilitate condition monitoring tasks in industry.

64

Chapter 3

Existing approaches for Condition
Monitoring in Industry 4.0

Contents
3.1 Key elements of Industry 4.0 . 66

3.2 Maintenance strategies in the industrial context 68

3.2.1 Data-driven approaches to condition monitoring 69

3.2.2 Knowledge-based approaches to condition monitoring 70

3.3 Ontological models for the manufacturing domain 72

3.4 Ontological models for context modeling 74

3.5 Modeling knowledge that evolves in time 78

3.6 Conclusion . 80

65

CHAPTER 3. EXISTING APPROACHES FOR CONDITION MONITORING IN INDUSTRY
4.0

Monitoring is a crucial activity in industry. Any unexpected machine failure can de-

grade or even interrupts the manufacturing processes of a company. Therefore, it is fun-

damental to develop a well-implemented and efficient monitoring strategy to prevent un-

planned stoppages of production, improve reliability and reduce operating costs.

This chapter describes existing approaches for condition monitoring in Industry 4.0.

We focus particularly on the ontological models and their rule-based extensions that are

relevant to condition monitoring. The remainder of the chapter is organized as follows:

in section 3.1, we introduce the key elements of Industry 4.0. In section 3.2, the main ex-

isting maintenance strategies are described. This section also reviews related approaches

for fault detection and diagnosis in condition monitoring systems. These approaches can

be categorized into data-driven approaches and knowledge-based approaches. In sec-

tion 3.3 some of the most relevant ontologies to model the manufacturing domain are

reviewed. We analyse them highlighting their advantages as well as their drawbacks ac-

cording to the requirements presented in the introduction of this thesis. In section 3.4, we

describe a number of widely accepted and reusable ontologies to model context knowl-

edge across different applications. In section 3.5 we present the approaches for handling

the representation of knowledge that change over time. Finally, section 3.6 summarizes

the chapter.

3.1 Key elements of Industry 4.0

Industry 4.0 follows and extends the notion of automation technology that is introduced

in the third industrial revolution by applying a set of technologies for automatic data ex-

change and processing in manufacturing factories [WSJ17].

Cyber-Physical Systems (CPS), the Internet of Things (IoT), Cloud Computing and Big

Data analysis techniques are key elements of Industry 4.0. They allow the automatic inter-

connection and data exchange among manufacturing entities. Collecting and analyzing

this data can improve the productivity and reliability of production systems [LBK15].

Industry 4.0 aims at transforming traditional manufacturing factories into ”smart fac-

tories” by equipping manufacturing with sensors, actuators and autonomous systems

[DGP19]. In this way, manufacturing machines can achieve high levels of self-optimization

and automation.

The key elements of Industry 4.0 are detailed below.

Internet of Things (IoT). IoT refers to the network of physical objects that are embedded

with sensors and software for the purpose of connecting and exchanging data with other

devices and systems [XYWV12]. The combined use of IoT and industrial applications gave

rise to the Industrial Internet of Things (IIoT) [LFK+14]. In IIoT, industrial objects are

equipped with electronics and smart devices. They provide identification and commu-

nication capabilities for industrial objects. This facilitates access to industrial data thus

enabling monitoring of the manufacturing entities in a factory [WSJ17, CBS+17].

66

CHAPTER 3. EXISTING APPROACHES FOR CONDITION MONITORING IN INDUSTRY
4.0

Cyber-Physical Systems (CPS). CPS is the basic technology platform for IoT and IIoT,

therefore the main enabler to connect physical machines. CPS integrates elements of the

physical world (such as sensors and machines) with software, providing abstractions and

analysis techniques, thus transferring the physical world into the virtual one. CPS have

been widely adopted in a variety of production processes.

Lee et al. proposed the 5C architecture for utilizing CPS in manufacturing process [LBK15].

It consists of 5 levels, namely the Connection, Conversion, Cyber, Cognition, and Con-

figuration levels. This architecture covers the steps from acquiring industrial data until

generating meaningful information and decision-making for the end system. Below we

briefly describe each of the levels.

• the Connection level acquires data from machines in an accurate and reliable way;

• the Conversion level derives useful information from data collected by the previous

level;

• the Cyber level applies specific analytics to extract additional information and pro-

vides a better understanding of the state of physical assets in physical space;

• the Cognition level provides a proper presentation of the acquired knowledge to

expert users to support decision making tasks. It transfers the acquired knowledge

to the users.

• the Configuration level provides feedback from cyber space to physical space. Cor-

rective and preventive actions are triggered in the physical space, based in the feed-

back.

To summarize, a CPS provides (1) the connectivity that allows real-time data collection

and communication between the physical space and the cyber space; and (2) intelligent

data processing and analytics that are capable of supporting decision making tasks in the

cyber space.

Cloud Computing. Cloud Computing allows the storage of large amounts of data. This

is important to store the data generated during a whole production process, consider-

ing that the machines and sensors produce more data than an operator. Likewise, cloud

computing reduces investment in technological resources, allowing the storage space and

processing capacity, which provides flexibility and adaptability [TS16].

Big Data analysis technologies Big Data technologies allow to analyze enormous vol-

ume of information that is generated in an Industry 4.0 production ecosystem. These

technologies enables to assess the state and operation of the machines involved in man-

ufacturing processes [YK15]. The analysis of data for condition monitoring reduces in-

efficiencies and costs, anticipating equipment failures and allowing better responses to

emergent situations caused by different factors such as high humidity, high temperature

67

CHAPTER 3. EXISTING APPROACHES FOR CONDITION MONITORING IN INDUSTRY
4.0

or exposure to gases. In summary, big data technologies allow to extract valuable infor-

mation based on the intelligent use of data.

The joint use of IoT, CPS, Cloud Computing and Big Data technologies can help pro-

duction systems to self-access their health conditions to perform smart decisions to avoid

potential failures [ZTL15].

3.2 Maintenance strategies in the industrial context

Maintenance strategies in the industrial domain generally fall into one of the three fol-

lowing categories, each with its issues and benefits:

• Reactive Maintenance (RM) [Mob02, Swa01] is a run-to-failure maintenance man-

agement method. The maintenance action for repairing equipment is performed

only when the equipment has broken down. A company using run-to-failure man-

agement does not spend any money on maintenance until a machine or system fails

to operate. However, the cost of repairing or replacing a component would poten-

tially be more than the production value received by running it to failure. Moreover,

as components begin to vibrate, overheat and break, additional equipment damage

can occur, potentially resulting in further costly repairs.

• Preventive Maintenance (PM) [Mob02, WTL+17, Ger13] schedules regular main-

tenance activities on specific equipment to reduce the likelihood of failures. The

maintenance is executed even when the machine is still working and under nor-

mal operation so that the unexpected breakdowns with the associated downtime

and costs are avoided. Almost all Preventive maintenance management programs

are time-driven [Mob02, AK12]. In other word, maintenance activities are based on

elapsed time. The general process of Preventive maintenance can be presented in

two steps: The first step is to statistically investigate the failure characteristics of

the equipment based on the set of time series data collected. The second step is to

decide the optimal maintenance policies that maximize the system reliability and

availability at the lowest maintenance costs. Preventive maintenance reduces the

repair costs and unplanned downtime, but might results in unnecessary repairs if it

is conducted to soon or failures if it conducted too late.

• Predictive Maintenance (PdM), a.k.a. Condition-based Maintenance [WDD94], aims

to predict when the equipment is likely to fail and decide which maintenance activ-

ity should be performed such that a good trade-off between maintenance frequency

and cost can be achieved. Predictive maintenance uses the actual operating condi-

tion of systems and components to optimize the production. The predictive analy-

sis is based on data collected from sensors connected to machines and tools, such as

vibration data, ultrasonic data, operation availability, etc. The model processes the

information through predictive algorithms, discovers trends and identifies when

the equipment should be repaired. Rather than running a piece of equipment or

68

CHAPTER 3. EXISTING APPROACHES FOR CONDITION MONITORING IN INDUSTRY
4.0

a component to failure, or replacing it when it still has useful life, predictive main-

tenance helps companies to optimize their strategies by conducting maintenance

activities only when completely necessary. However, compared with Reactive main-

tenance and Preventive maintenance, the cost of the condition monitoring devices

(e.g., sensors) needed for Predictive maintenance is often high. Another issue is

that the Predictive maintenance system is becoming more and more complex due

to data collection, data analysis and decision making.

Figure 3.1 summarizes the maintenance plans of each of the three possible types of

maintenance. Reactive Maintenance has the lowest prevention cost due to using run-

to-failure management. Preventive Maintenance has the lowest repair cost due to well

scheduled downtime while Predictive Maintenance can achieve the best trade-off be-

tween repair cost and prevention cost. Ideally, Predictive maintenance allows the main-

tenance frequency to be as low as possible to prevent unplanned Reactive maintenance,

without incurring costs associated with doing too much Preventive maintenance.

Figure 3.1 – Maintenance strategies in industry(RM - PM - PdM)

The use of the technologies associated to Industry 4.0 makes predictive maintenance

more efficient and flexible [CBL+18, Wan16]. This is called Predictive Maintenance 4.0. It

employs advanced and online analysis of collected data for the early detection of the oc-

currence of possible machine failures, and supports technicians during the maintenance

interventions by providing decision support. In other words, Predictive maintenance 4.0

applies real-time condition monitoring to machines, and alerts are given based on pre-

established rules or critical levels. Over the last decades, a considerable amount of re-

search efforts has been undertaken to address the development of different models for

industrial predictive maintenance, using the key elements of Industry 4.0.

In the following, we describe the two main approaches to implement Predictive main-

tenance: data-driven approaches and knowledge-based approaches.

3.2.1 Data-driven approaches to condition monitoring

With the development of big data related techniques and the ever-increasing availability

of data, data-driven predictive maintenance is becoming more and more attractive. To

extract useful knowledge and help to make appropriate decisions from huge amount of

69

CHAPTER 3. EXISTING APPROACHES FOR CONDITION MONITORING IN INDUSTRY
4.0

data, machine learning and deep learning techniques have been regarded as powerful

solutions. The models obtained by applying those techniques perform like a black box

that learn the behavior of physical assets directly from their operation data [JGZ17]. They

have the ability for feature learning, fault classification and fault prediction. Within a

data-driven approach, knowledge about machines are extracted internally from machine

operation data, instead of externally from domain experts. In the following, we present

works that are representative of the domain.

In [SAB03], the authors present an ANN-based fault diagnosis for rolling element bear-

ings using time-domain features. Five vibration signals from sensors are used to extract

five time-domain features as the input of the designed ANN. The experimental results

show that the accuracy can reach 62.5%-100%. Benkercha et al. [BM18] propose an ap-

proach based on the building of a Decision Tree to detect and diagnose the faults in grid

connected photovoltaic system (GCPVS). The features used include temperature, irradia-

tion and power ratio, and the class labels contains free fault, string fault, short circuit fault

or line-line fault. Experimental results indicate that the diagnosis accuracy can reach

99.80%. In [SMZ14], Soualhi et al. apply the Hilbert-Huang transform (HHT)[GP07] to

extract health indicator from vibration signals and utilized SVM to achieve fault classifi-

cation of bearings. A method based on the evidential k-NN (EKNN) rule in the framework

of evidence theory to achieve a condition monitoring and early warning in power plants

is developed and presented in [CWHZ18].

Several surveys on different data-driven approaches for fault detection and diagnosis

exist. Zhao et al. [ZYC+19] provide an overview of Deep Learning based machine health

monitoring systems. All the systems presented are aimed at fault identification and clas-

sification. In addition, a series of survey papers focus on the fault diagnosis for a spe-

cific type of components, e.g., bearing, rotating machinery, wind turbines [BLDdO18]. In

[ZZWH19], Zhang et al. systematically summarize the existing literature employing ma-

chine learning (ML) and data mining techniques for bearing fault diagnosis. Liu et al.

[LYZC18] provide a comprehensive review of AI algorithms in rotating machinery fault

diagnosis from the perspectives of theories and industrial applications.

The aforementioned works have given interesting contributions related to the field of

fault detection and diagnosis, but most of them are equipment specific. They monitor

the behavior of different properties of a machine. They are suitable and efficient when

consuming data streams to detect abnormal patterns in the values of a machine’s prop-

erty (e.g. temperature, vibration, etc.). However, they have two drawbacks: (i) the need,

in advance, for huge amount of annotated data for model training; and (ii) the lack of ex-

plicit model to explain decisions. This make it difficult to interpret the data and it also

complicates the interoperability and re-usability of the models.

3.2.2 Knowledge-based approaches to condition monitoring

Many traditional condition monitoring systems and fault diagnosis systems make use of

a priori expert knowledge and deductive reasoning processes [PDZ10].

Expert knowledge is exploited to build an ontology that formally describes concepts

70

CHAPTER 3. EXISTING APPROACHES FOR CONDITION MONITORING IN INDUSTRY
4.0

and relationships that exist in the industrial domain. Different ontologies have been

built for monitoring tasks such as predictive maintenance and health assessment sys-

tems [NB18]. As evoked in section 2.2.1, ontology-based modeling allows: (1) knowledge

sharing between computational entities by having a common set of concepts, (2) logic

inference by exploiting various existing logic reasoning mechanisms to deduce high-level

concepts from raw data, and (3) knowledge reuse by reusing well-defined ontologies of

different domains. Ontologies can be employed to represent different machinery systems

and devices, and can be combined with various existing rule-based reasoning algorithms

to achieve monitoring and fault diagnosis. This is done based upon the evaluation of on-

line monitored data according to a set of rules which is pre-determined by expert knowl-

edge. Usually, rules are expressed in the form: IF 〈antecedent〉 THEN 〈consequence〉. In

this way, the consequence can make changes that affect the system that is being moni-

tored, if the conditions in the antecedent are met.

In the following, we make a review on several knowledge-based approaches for con-

dition monitoring.

Recently, Gul et al. [GC18] propose a condition monitoring based approach for risk

assessment in a rail transportation system by using a fuzzy rule-based expert system. In

[KMS+19], Kharlamov et al. design a rule-based language for equipment diagnosis in on-

tology mediated data integration scenarios such as industrial IoT. Its advantages include

the easy formulation of diagnosis programs with hundreds of pieces of complex equip-

ment. Berredjem et al. [BB18] propose a fuzzy expert system to localize bearing faults

diagnosis as well as distributed faults. The fuzzy rules are automatically induced from

numerical data using an improved range overlaps method.

Other approaches use data mining and machine learning methods to extract diagnosis

knowledge or mine rules from databases in a smart system. These approaches include the

works of Martinez et. al. that uses an artificial neural network based expert system for de-

tecting the status of several components in agroindustrial machines using a single vibra-

tion signal [MGGGGRG15]; the works of Liu et. al. that use support vector machines and

rule-based decision trees for fault diagnosis of water quality monitoring devices [LXL+18]

and the works of Antomarioni et. al. which use association rule mining in maintenance

[Gra20] to minimize the probability of breakages in an oil refinery [APP+19]. Although

these approaches could be considered as data-driven, data mining technologies are here

used to elicitate knowledge that will be exploited later.

Another rule-based model named Adaptive Neuro-Fuzzy Interference Systems (AN-

FIS) is applied for monitoring wind turbine SCADA (Supervisory Control and Data Ac-

quisition) signals in [SS14, SSA13]. In order to obtain turbine condition statements, the

authors implement rules given by an expert who is familiar with the behavior of the tur-

bine, typical faults and their root causes. There are two types of rules: generic rules used

to highlight anomalies, and specific rules providing specific condition or potential root

cause. Schmidt et al. [SWG17] develop a semantic framework, using an ontology-based

approach for data aggregation, to support cloud-enabled maintenance of manufacturing

assets. Xu et al. [XLC+18] propose an ontology-based fault diagnosis model to integrate,

share and reuse fault diagnosis knowledge for loaders. A loader is a self-propelled heavy

71

CHAPTER 3. EXISTING APPROACHES FOR CONDITION MONITORING IN INDUSTRY
4.0

machinery having for main function to push and lift (load) ground pieces.

Ontologies provide a way to integrate, share and reuse of domain knowledge, but other

reasoning methods have to be integrated with ontologies to achieve predictive mainte-

nance. Rule-based reasoning can be employed in order to achieve monitoring and diag-

nosis. These rules are built from expert knowledge, or are extracted from the analysis of

large data sets, as mentioned above. However, knowledge-based approaches have diffi-

culties in dealing with new (unknown by experts) faults and acquires complete knowledge

to build a reliable set of rules.

3.3 Ontological models for the manufacturing domain

We gave a review of the existing knowledge-based predictive maintenance systems in the

previous section. In this section, we give an overview on the development and usage of

ontologies in the manufacturing domain. These ontologies were defined with distinct

purposes and, therefore, describe different types of information related to that area.

The development of a knowledge-based predictive maintenance system requires do-

main knowledge about manufacturing processes to be represented in a formal way, thus

making this knowledge usable by the system. To achieve this goal, semantic technologies,

especially ontologies with their rule-based extensions, have shown promising capabilities

for formalizing knowledge about predictive tasks in various domains [PC09, SWWP10].

A typical manufacturing system can be characterized according to three main notions:

Product, Process and Resource [MD03].

In [PDT12], authors have developed a product ontology, named ONTO-PDM. It pro-

vides a semantic layer to business, design and manufacturing product-related informa-

tion. ONTO-PDM harmonizes the product-related knowledge and standards, and this

harmonization has shown positive results in solving the interoperability problems among

different enterprises and applications. Other works in this direction are: OntoSTEP (ON-

TOlogy of Standard for the Exchange of Product model data) [BKR+12], which allows the

description of product information mainly related to geometry; and MCCO (Manufactur-

ing Core Concepts Ontology) [UYC+11] that focuses on interoperability across the pro-

duction and design domains of product life-cycle. It provides some core classes in cat-

egories such as ManufacturingProcess, ManufacturingFacility, ManufacturingRe-

source and Feature.

Like ONTO-PDM, the Process Specification Language (PSL) ontology [Grü09] is an-

other notable development work in the area of product information modelling. The PSL

ontology covers several domains such as manufacturing, engineering and business pro-

cesses. In this section we only focus on the manufacturing domain. Even though it mainly

focuses on fundamental concepts for representing manufacturing processes, the ontol-

ogy also provides a basis for the formal description of elements and entities that con-

stitute a Process. The foundational elements of the core of the PSL ontology are four

primitive classes (Activity, Activity-occurrence, Timepoint, Object), three primi-

tive relations (participates-in, before, occurrence-of) and two primitive functions

72

CHAPTER 3. EXISTING APPROACHES FOR CONDITION MONITORING IN INDUSTRY
4.0

(beginof, endof). From the manufacturing product point of view, the notion Product

could be deemed as a sub-concept under the core concept Object in the ontology. The

PSL ontology provides a robust semantic foundation for modelling manufacturing prod-

uct information. Furthermore, as indicated by the name, the PSL ontology is a powerful

approach for the representation of manufacturing processes.

Other ontologies have been developed to enhance the performance of product infor-

mation modeling in the manufacturing domain. As the PSL ontology, these ontologies

include the notions of resource and process. Among them, the MASON [LSDS06] and

the ADACOR [BL07] ontological models are considered as pertinent. The MASON on-

tology presents a detailed conceptualization mainly focused on the products because it

was used for cost estimation of the production of mechanical parts. MASON is an upper

ontology for representing what the authors consider the core concepts of the manufactur-

ing domain: products, processes and resources. As a result, the main classes of MASON

are Entity, for specifying the product; Operation, for describing all processes linked to

manufacturing; and Resource, for representing concepts regarding machines, tools, hu-

man resources and geographic resources. The ADACOR Ontology, developed as a part

of the ADACOR architecture, provides a refined conceptualization to model operations,

production plans and work orders regarding customer orders. The ontology is not openly

available. Hence to be applied outside of the ADACOR project, the ontology has to be

rebuilt with the information provided in the documentation. The SIMPM (Semantically

Integrated Manufacturing Planning Model) ontology [ŠS19] is an upper ontology that is

also focused on the representation of production plans. It models the fundamental con-

straints of manufacturing process planning: manufacturing activities and resources, time

and aggregation.

Besides the ontologies presented above, there exist other ontologies that are more fo-

cused on modeling manufacturing processes and resources. The P-PSO (Politecnico di

Milano Production Systems) ontology [GF12] considers three aspects in the manufac-

turing domain: the physical aspect (the material definition of the system), the techno-

logical aspect (the operational view of the system) and the control aspect (the manage-

ment activities), for information exchange, design, control, simulation and other applica-

tions. Thus, its main classes are Component, Operation and Controller, which model

the aforementioned three aspects, as well as part, Operator and Subsystem. The MSDL

(Manufacturing Service Description Language) ontology [AD06] allows to describe man-

ufacturing services. More precisely, a ManufacturingService is seen as a service that is

provided by a Supplier and that has some ManufacturingCapability, which is enabled

by some ManufacturingResource and delivered by some ManufacturingProcess. An-

other ontology with similar purposes to MSDL is MaRCO (Manufacturing Resource Capa-

bility Ontology) [JSHL19], that defines capabilities of manufacturing resources. Its main

class is Capability, which is specialized to cover both simple capabilities (e.g. Fixtur-

ing, SpinningTool) and combined capabilities (those that require a combination of two

or more simple capabilities, e.g. PickAndPlace, which requires Finger-Grasping or Vac-

uum Grasping, Moving and Releasing). Another interesting work is the one presented in

[CZX+16]. It proposes a base ontology to represent a production line. The base ontology

73

CHAPTER 3. EXISTING APPROACHES FOR CONDITION MONITORING IN INDUSTRY
4.0

integrates four ontologies: (1) the device ontology, with concepts such as Machine; (2) the

process ontology, with a taxonomy of the different Operations performed by the tech-

nical equipment; (3) the parameter ontology, with concepts such as QualityofService;

(4) the product ontology, with the product information.

The presented ontologies define terms and relations for modeling the manufacturing

domain, such as machine, process and the possible relations between them. The ontolo-

gies previously described do not allow representing the sensors attached to the company’s

resources and the properties they measure which are also fundamental for anomaly de-

tection on production lines and reflect the correctness of mechanical system conditions.

In addition, they do not allow the representation of the context of the machines and pro-

cesses. This is important to determine whether the observations collected by sensors rep-

resent abnormal behavior or not.

As mentioned in section 3.1, IoT is a key element of Industry 4.0. Nowadays, it is pos-

sible to use sensor networks to detect and identify a wide variety of observations, from

simple phenomena to complex events and situations. However, the lack of integration

between these sensor networks often isolates important or relevant data. To deal with

this issue, the Semantic Sensor Web (SSW) approach provides tools that allow the inte-

gration of data from multiple data sources [SHS08]. It introduces semantic annotations

for describing: (1) the data produced by the sensors, introducing spatial, temporal, or

situation/context semantics; and (2) the sensors and the sensor networks that provide

such data. Furthermore, there are also works on defining suitable ontologies for data and

sensors to enable both the integration of data from multiple sensor networks and exter-

nal sources, and reasoning on such data. As an example, the W3C Semantic Sensor Net-

work Incubator Group [HJC+19] developed an ontology to describe sensors and sensor

networks, the Semantic Sensor Network Ontology (SSN). Another work in this direction

is SAREF4INMA [dRFID+19], that pursues interoperability with industry standards. The

SSN ontology is further detailed in section 5.1.3, which describes its use in this thesis.

To deal with context modelling in the industrial domain, the following section dis-

cusses the main ontologies in the literature for context modelling.

3.4 Ontological models for context modeling

A context modeling approach must satisfy two types of requirements: (1) those concern-

ing the ontology design principles, mentioned in section 2.2.1, and (2) those concerning

the application domain, in our case Industry 4.0.

The requirements from the application domain focuses on specific tasks from the in-

dustrial domain. The model must support the description of industrial entities (users,

devices, sensors, etc) and the integration of entities which are not known at design-time.

Besides, the static information about an entity, it is also necessary to have some dynamic

information associated to the processes the entity is involved in. Data collected from var-

ious sensors deployed in a factory need to be explicitly represented in order to describe

that process. Also in the application domain, the representation of (a) temporal relations

74

CHAPTER 3. EXISTING APPROACHES FOR CONDITION MONITORING IN INDUSTRY
4.0

Figure 3.2 – The CoBrA Ontology [CFJ03]

among processes and of (b) spatial relations between entities and locations in the fac-

tory is required. These relations are used to identify different situations of interest that

represent specific states of an industrial process or an industrial entity. This involves han-

dling information that evolves in time, such as the changes of situation a machine can

go through or the changes in the values of a property according to the different decisions

made.

There exist a number of widely accepted and reusable ontologies to model context

knowledge across different applications, that are presented below.

CoBrA-Ont is an ontology, proposed in [CFJ03], to describe the attributes and rela-

tionships related to people, location and activities. It is specially focused on smart meet-

ing places. Its main concepts and relations are shown in Figure 3.2. Although CoBrA-Ont

offers concepts to represent the context according to Dey’s definition of context [DA00].

It does not offer the spatial and temporal reasoning that is necessary for Industry 4.0.

As an extension of the previous work, the authors of CoBrA-Ont have presented SOUPA

(Standard Ontology for Ubiquitous and Pervasive Applications) [CPFJ04] shown in Figure

3.3. It is a general ontology for pervasive applications, with two parts: a core ontology

and user extensions. The core ontology contains the following concepts: person, agent,

belief-desire-intention (BDI), action, policy, time, space and event. Users can create their

own ontology as an extension of SOUPA for specific pervasive applications. SOUPA reuses

terms in different domain ontologies, such as FOAF1, DAML-Time2, OpenCyc [MWCD06]

and CoBrA-Ont [CFJ03]. SOUPA is a very general and complex ontology, lacking features

needed for our aims, such as spatio-temporal reasoning.

1http://xmlns.com/foaf/spec/
2https://www.cs.rochester.edu/ ferguson/daml/

75

CHAPTER 3. EXISTING APPROACHES FOR CONDITION MONITORING IN INDUSTRY
4.0

Figure 3.3 – The SOUPA ontology [CPFJ04].

The CONtext ONtology (CONON) [WDTP04] is designed to model context in pervasive

computing environments. The ontology is shown in Figure 3.4. CONON defines generic

concepts regarding context and provides extensibility for adding domain specific con-

cepts. It can be separated into two parts: an upper and several domain specific ontolo-

gies. The upper ontology is a high-level ontology which captures general features of basic

contextual entities, such as CompEntity, Location, Person and Activity. The domain spe-

cific ontologies define concepts and their features in different sub-domains. In CONON,

context is classified into direct and indirect context. The former includes facts that can

be either sensed by the physical objects or defined by a human-being, while the latter

is obtained by interpreting direct context through aggregation and reasoning processes.

CONON also contains rules to reason about the context. CONON does not provide a way

to represent temporal data and the evolution of concepts in time. As SOUPA, this ontology

is very general, which makes it difficult to apply it directly to a particular domain, such as

industry.

SAWA (Situation Awareness Assistant) [MKB+05], from the military domain, uses an

upper ontology for situation awareness introduced in [MKB+06]. This ontology can be

adapted to handle domain-specific situations by extending the core vocabulary. Situa-

tions are represented as objects, since the situation concept is derived from the object

concept. SAWA has the same limitations as CONON. Qualitative approaches to the rep-

resentation of time and space are not provided. Furthermore, the PhysicalEntity con-

cept, which is derived from Object, is incomplete, as a definition for non-physical objects

is missing.

The situation ontology in [YL06], from the field of pervasive computing, incorporates

situations as well as contexts. Situations are classified into atomic and composite situa-

tions; they are not composed of objects. They are directly (atomic) or indirectly (compos-

ite) represented by contexts. This ontology does not provide any explicit relations, roles,

or events; only the situation concept is present. Furthermore, space, time and situation

76

CHAPTER 3. EXISTING APPROACHES FOR CONDITION MONITORING IN INDUSTRY
4.0

Figure 3.4 – CONON Ontology [WDTP04]

types, are not represented in the ontology. Also, the possibility of representing situations

as objects is very complex.

Additionally, there are several context-aware frameworks that use ontologies as un-

derlying context models in the industrial domain.

In [UPML15], an ontology-based context model for real-time decision making is pro-

posed to optimise the Key Performance Indicators3 of flexible manufacturing systems. In

[ZON15], the authors proposed an authoring system to create context-aware augmented

reality (AR) applications for the maintenance of a system that uses an ontology for con-

text modelling. In [LL13], a context-aware industrial monitoring system is presented that

provides information to users at the right time in the right modality. In [AMX+16], the

authors present a context-aware information distribution system to support users in an

industrial environment. The system aims at using data collected from sensors located at a

shop-floor in order to increase the visibility of shop-floor processes by providing the right

information, to the right people, at the right time.

In all the works mentioned in the previous paragraph, there is no notion of situation

that can be treated as an object. Instead, they represent events which can lead to a water-

fall of events, i.e. these events can be caused as a consequence of one another. This does

not facilitate a global interpretation of each event considering the others. In addition,

they do not provide an explicit description of the sensors and observations.

All the discussed ontologies provide common knowledge concepts and statements,

which facilitate knowledge sharing and interoperability. However, they do not meet all

the requirements mentioned at the beginning of this section. Table 3.1 shows the require-

ments covered and those not covered by the different ontologies described above. Except

for SOUPA, they provide no or little support for spatio-temporal modeling. But, exploring

3A Key Performance Indicator is a measurable value that demonstrates how effectively a company is
achieving key business objectives.

77

CHAPTER 3. EXISTING APPROACHES FOR CONDITION MONITORING IN INDUSTRY
4.0

the supported top-level concepts presented by SOUPA, they are not general enough to

describe industrial entities in a clear and precise way. Furthermore, situations of interest

are not explicitly anchored by SOUPA.

There is a need to put together concepts of these ontologies, concepts about sensors

and the observations made by them, concepts about situations of interest, concepts about

time and space, as well as the relationships between these concepts to aspire to build an

ontology that allows the representation of the context in the domain of Industry 4.0.

Some of the concepts and relations of the ontologies previously presented are reused

in this thesis and are explained in Chapter 5.

Table 3.1 – Comparison of context ontologies.

Ontologies
Situation
as objects

Situation
types

Space and
Time

Change
over time

CoBra-Ont - - X -
SOUPA - - X -
ConOn - - - -
SAWA Ontology X - - -
Situation Ontology X - - -

The presented ontologies do not provide a way to capture the dynamic changes and

the evolution of concepts in time, such as the different situations a machine can go through

or the changes in the values of a property according to the different decisions made. This

is a key point to deal with the dynamics of manufacturing processes as mentioned in the

introduction to this thesis. In the following section, different approaches to deal with this

issue are discussed.

3.5 Modeling knowledge that evolves in time

Representing knowledge that evolves in time through ontologies is a challenging prob-

lem. Temporal concepts can be represented by an ontology called OWL-Time [CL17]. It

provides rich descriptions of temporal intervals, instants, durations, and calendar terms.

However, it cannot specify how these concepts can be used to represent properties of ob-

jects changing in time and it does not propose inference rules to automatically infer new

temporal data.

Ontology languages such as OWL and RDF are all based on binary relations that com-

plicate representation of temporal properties, since a property holding for a specific time

instant or interval is a relation involving three objects (an object, a subject and a time

instant or interval). Binary relations can simply represent the relation between two in-

stances without any temporal information. Dynamic features representation calls for

mechanisms that allow uniform representation of the notions of time (and of properties

varying in time) within a single ontology. Existing methods for achieving this include,

among others, Temporal Description Logics (TDLs) [AF01], Concrete Domains [Lut03],

Temporal RDF [GHV05], Named Graphs [TB09], Versioning [KF01], N-ary relations [NA06]

78

CHAPTER 3. EXISTING APPROACHES FOR CONDITION MONITORING IN INDUSTRY
4.0

and the 4D-fluents (or perdurantist) approach [WF06]. All result in more complex ontolo-

gies compared with their static counterparts where relations do not change in time.

Temporal Description Logics (TDLs) [AF01] extend standard description logics (DLs)

with additional constructs such as ”always in the past”, ”eventually in the future”. TDLs of-

fer additional expressive capabilities over non temporal DLs and retain decidability (with

an appropriate selection of allowed constructs) but they require extending the OWL syn-

tax and semantics with the additional temporal constructs. Unfortunately, it is not possi-

ble to represent that a predicate holds in a particular time interval of time but only over

past and future times.

Versioning [KF01] suggests that the ontology has different versions. When a change

takes place, a new version is created. Versioning has two main disadvantages: (i) changes

even on single attributes require that a new version of the ontology is created, leading to

information redundancy and (ii) searching for events occurred at time instances or during

time intervals requires exhaustive searches in multiple versions of the ontology.

Using an improved form of reification, the N-ary relations approach [NA06] suggests

representing a n-ary relation as two properties each related with a new object (rather than

as the object of a property).

The 4D-fluents approach [WF06] shows how temporal information and the evolution

of temporal concepts can be represented in OWL. Concepts in time are represented as 4-

dimensional objects with the 4th dimension being the time (timeslices). Time instances

and time intervals are represented as instances of a TimeInterval class, which in turn is

related with concepts varying in time. Changes occur on the properties of the temporal

part of the ontology keeping the entities of the static part unchanged. The 4D-fluents

approach suffers from proliferation of objects since it introduces two additional objects

for each temporal relation (instead of one in the case of N-ary relations). The N-ary rela-

tions approach requires only one additional object for every temporal relation, maintains

property semantics but, compared to the 4D-fluents approach, it suffers from data re-

dundancy in the case of inverse and symmetric properties (e.g., the inverse of a relation is

added explicitly twice instead of once as in 4D-fluents). In the case of transitive properties

additional triples are introduced as well.

The Named Graphs approach [TB09] represents the temporal context of a property by

the inclusion of a triple representing the property in a named graph (i.e. a subgraph into

the RDF graph of the ontology specified by a distinct name). The main RDF graph con-

tains definitions of interval beginning and ending bounds for each named graph, thus a

property is stored in a named graph with beginning and ending bounds corresponding to

the time interval that the property holds. Named graphs are not part of the OWL specifi-

cation (i.e. there are not OWL constructs translated into named graphs) and they are not

supported by OWL reasoners [BP11].

Concrete Domains [Lut03] introduce datatypes and operators based on an underlying

domain. This approach requires extending OWL or RDFS. TOWL [FMK10] is an approach

combining the concrete domains and 4D-fluents approaches. However, it does not sup-

port qualitative temporal relations. Furthermore, it is not compatible with existing OWL

editing, reasoning and querying tools.

79

CHAPTER 3. EXISTING APPROACHES FOR CONDITION MONITORING IN INDUSTRY
4.0

Table 3.2 – Comparison of some approaches for representing temporal data in ontology.

Approaches Reasoning
Quantitative

data
Qualitative

data
Advantages (+) Disadvantages (-)

TDLs Yes Yes Yes
(−) Require extending OWL or RDF(S).
(+) Retain decidability.
(+) Do not suffer data redundancy.

Concrete
Domains

Yes Yes Yes (−) Require extending OWL or RDF(S).

Versioning No Yes Yes
(−) Suffers from data redundancy.
(−) Searching in all created versions.

N-ary
relations

Yes Yes Yes (−) Suffers from data redundancy.

4D-fluents Yes Yes Yes
(−) Suffers from data redundancy.
(+) Philosophical support.

Named
Graphs

No Yes No (−) Do not offer reasoning support.

Temporal
RDF

No Yes No
(−) Require extending OWL or RDF(S).
(−) Less expressiveness than OWL.

Temporal RDF [GHV05] proposes extending RDF by the annotation of properties with

data about the time interval they hold on. It uses only RDF triples and requires extending

the RDF syntax. Therefore, it does not have all the expressiveness of OWL. For instance, it

is not possible to employ qualitative relations. A number of temporal representations are

based on this approach.

Table 3.2 compares the approaches previously discussed for representing knowledge

that evolves over time in ontologies. These approaches are compared in terms of the fol-

lowing semantic web standards: the compatibility with querying and reasoning support,

and the supported temporal data (quantitative/qualitative). Most of the approaches al-

low only representing time intervals and associated qualitative relations. In other words,

they are not intended to handle time points or qualitative relations between a time inter-

val and a time point or even two time points. The temporal description logics, concrete

domain, temporal RDF and named graphs approaches do not support OWL constructs. A

basic design decision in our work is to choose an approach which relies on existing OWL

constructs. Thus, we exclude the temporal description logics, the concrete domain, the

named graphs and temporal RDF approaches. Based on this analysis, we have decided to

use the N-Ary relation approach, that is further explained in section 5.1.3.

3.6 Conclusion

In this chapter, we introduce background knowledge about Industry 4.0, by detailing its

four key elements: IoT, CPS, Cloud Computing, and Big Data analysis technologies. Then,

we describe the existing maintenance strategies in the industrial domain emphasizing

the predictive maintenance strategies for Industry 4.0. Data-driven approaches, based

on annotated data, and knowledge-based approaches, based on expert knowledge, for

condition monitoring are also discussed.

80

CHAPTER 3. EXISTING APPROACHES FOR CONDITION MONITORING IN INDUSTRY
4.0

We have reviewed the existing ontologies and their rule-based extensions for knowledge-

based condition monitoring systems. First, we reviewed the ontological models for the

manufacturing domain. We analyse them highlighting their advantages and drawbacks

according to the requirements for these works. Second, a survey about widely accepted

and reusable ontologies to model context knowledge across different applications is pre-

sented. We analyzed them considering their application in the Industry 4.0 domain.

We summarize the domain coverage of the existing ontologies in Table 3.3. We eval-

uate the domain coverage and scopes of these knowledge models by examining whether

the key concepts required for condition monitoring in Industry 4.0 exist and are formally

described. We categorized these key concepts into five sub-domains: Manufacturing,

Context, Change over time, IoT, and Monitoring and Diagnosis. For the Manufactur-

ing sub-domain, the key concepts are Product, Process and Resource. For the Context

sub-domain, the key concepts are Identity, Activity, Time, and Location. For the IoT sub-

domain, Sensor and Observation are the key concepts. For the Monitoring and Diagnosis

sub-domain, the key concepts are Situation and Cause. These concepts are the columns

of Table 3.3, and the ontological models are the rows. If a check mark is placed in the

table then the concept exists in the corresponding ontology. Otherwise, a cross mark is

assigned.

After reviewing the ontological models mentioned previously, we recognize that none

of them provides a satisfactory knowledge representation of the five required sub-domains.

Some of these knowledge models focus on a narrow field, such as manufacturing resource

planning and work orders, and they do not formalize context-related concepts, e.g., Ac-

tivity and Location. Also, none of the existing ontologies provides a way of representing

knowledge that evolve in time. To perform smart condition monitoring, the knowledge

base should contain not only the machine-interpretable knowledge for characterizing the

manufacturing entities or processes which are being monitored but also the knowledge

about abnormal situations that are associated to failures. This motivates us to develop a

more expressive and complete ontological model that provides a rich representation of

the domain knowledge in the fields of manufacturing considering the notion of context.

In addition, the ontological models of the smart systems reviewed in this chapter are

static. As described in the introduction, machines perform manufacturing processes in

different contexts and these contexts change over time. According to the context in which

a manufacturing process is executed, the rules that manage the process can change. In

order to represent these contexts and the fact that a machine is performing a process in

these contexts, the semantic model needs to evolve in time to represent this changing

knowledge.

81

CHAPTER 3. EXISTING APPROACHES FOR CONDITION MONITORING IN INDUSTRY
4.0

Ta
b

le
3.

3
–

C
o

m
p

ar
is

o
n

o
fm

an
u

fa
ct

u
ri

n
g

o
n

to
lo

gi
es

an
d

co
n

te
xt

o
n

to
lo

gi
es

.

M
an

u
fa

ct
u

ri
n

g
C

o
n

te
xt

C
h

an
ge

ov
er

ti
m

e
Io

T
M

o
n

it
o

ri
n

g
an

d
D

ia
gn

o
si

s

O
n

to
lo

gi
es

P
ro

d
u

ct
P

ro
ce

ss
R

es
o

u
rc

e
Id

en
ti

ty
A

ct
iv

it
y

T
im

e
L

o
ca

ti
o

n
Se

n
so

r
Si

tu
at

io
n

C
au

se
M

A
SO

N
X

X
X

X
X

7
7

7
7

7
7

A
D

A
C

O
R

X
X

X
X

X
7

7
7

7
7

7

P
SL

7
X

X
X

X
X

7
7

7
7

7

M
SD

L
7

X
X

X
X

X
X

7
7

7
7

SI
M

P
M

7
X

X
X

X
7

X
7

7
7

7

M
aR

C
O

7
X

X
X

X
7

X
7

7
7

7

O
N

T
O

-P
D

M
X

X
X

X
X

X
X

7
7

7
7

P-
P

SO
7

X
7

X
X

X
7

7
7

7
7

M
C

C
O

X
X

X
X

X
X

7
7

7
7

7

[C
Z

X
+ 16

]
X

X
X

X
X

X
X

7
7

7
7

O
n

to
ST

E
P

X
7

7
X

7
7

7
7

7
7

7

C
o

B
rA

-O
n

t
7

7
7

X
X

X
X

7
7

7
7

SO
U

PA
7

7
7

X
X

X
X

7
7

7
7

C
O

N
O

N
7

7
7

X
X

7
X

7
7

X
X

SA
W

A
7

7
7

X
X

7
7

7
7

X
X

Si
tu

at
io

n
O

n
t.

7
7

7
X

X
7

7
7

7
X

7

82

Part II

Contributions

83

Chapter 4

Proposed framework overview

Contents
4.1 General architecture for Industry 4.0 . 86

4.2 Overview of the proposed framework . 87

4.2.1 The Semantic Model for Industry 4.0 88

4.2.2 The Monitoring component . 88

4.2.3 The Diagnosis component . 89

4.2.4 The Decision Making component . 90

4.3 Conclusion . 90

85

CHAPTER 4. PROPOSED FRAMEWORK OVERVIEW

This chapter provides a global overview of the proposed framework that encompasses

the contributions of this thesis. The goal of the proposed framework is to address the

evolution of semantic models in Industry 4.0, as explained in the introduction of this

manuscript where the goals of this thesis were exposed.

The remainder of the chapter is structured as follows: Section 4.1 introduces the gen-

eral architecture of Industry 4.0, according to the literature. This general architecture al-

lows positioning each of our contributions, that are developed in the following chapters.

In section 4.2, the components of the proposed framework are introduced as well as the

interaction among them. Each of the components is detailed in the following chapters.

Finally in section 4.3 some conclusions are presented.

4.1 General architecture for Industry 4.0

In [TBP15] the authors focus on the conceptual model, architecture and key elements

needed for the support and enhancement of Industry 4.0 with smart systems. They em-

phasize that contextual knowledge, user experience and semantics involved in manufac-

turing and production processes should be taken into consideration if a company aims

at improving the equipment and production systems safety and availability, to reduce the

number of unnecessary maintenance tasks and to optimize production costs.

In order to interpret raw sensor readings combined with contextual knowledge for the

detection of certain situations that may lead to failures, our proposal relies on an adapta-

tion of this framework. This adaptation is depicted in Figure 4.1 and is described below.

• The Sensors and Actuators layer contains the sensors and actuators that are de-

ployed in the machines and in their environment. A sensor is a device that detects

and responds to some type of input from the physical environment. Some exam-

ples are pressure sensors, accelerometers for measuring vibration, acoustic sensors

for detecting leaks and temperature detectors. The output is a signal that can be

converted to human-readable format or transmitted electronically over a network

for reading or further processing. An actuator is a component of a machine that

is responsible for moving and controlling a mechanism or system, for example by

opening a valve. It can be activated by electric voltage or hydraulic pressure, or

even human power. When it is activated the actuator converts the signal’s energy

into mechanical movement.

• The Communication layer is in charge of pre-processing the data coming from

the Sensors and Actuators layer through processes such as filling missing values,

smoothing noisy data, etc. Furthermore, data can be normalized and/or aggre-

gated as required. This layer is also able to divide and distribute information and

must ensure security and anonymity where necessary.

• The Semantic Enhanced CPS Representation layer contains the reasoning pro-

cesses and modules that allow the semantic enrichment of raw data coming from

sensors. The Reasoner module uses First Order Logic (FOL) under the Open World

86

CHAPTER 4. PROPOSED FRAMEWORK OVERVIEW

Sensors and Actuators

Communication

Semantic Enhaced CPS Representation

Stream Reasoner Reasoner Ontology Expert Knowledge

Applications

Figure 4.1 – The general architecture for Industry 4.0.

Assumption (OWA), as mentioned in section 2.2. In this layer, we propose to com-

plement the Reasoner with a Stream Reasoner to process data in real-time. This

module executes queries continuously over data streams coming from sensors. The

Reasoner and the Stream Reasoner are not only fed with data streams but also with

rules provided by domain experts. The Expert Knowledge module is in charge of

storing these rules. It may also encompass data from other external sources.

• The Application layer comprises different applications that exploit the semantic en-

riched information, such as Business Information Systems (BIS) or Enterprise Re-

source Planning (ERP) software, that can also provide data to the previous layer.

The contributions presented in this thesis are framed in the Semantic Enhanced CPS

Representation layer. This layer makes use of all its components to go from raw sensor

readings combined with expert knowledge to the detection of relevant situations to sup-

port decision making tasks in the Application layer.

4.2 Overview of the proposed framework

The main components of our proposal are shown in Figure 4.2 using the classic Data Flow

Diagram notation1. They are (1) the Monitoring component, (2) the Diagnosis compo-

nent and (3) the Decision making component. Each of the components operates as a

smart system to solve complex problems by reasoning, like an expert does. They all rely

on a formal model to semantically enrich data representation and processing.

1https://en.wikipedia.org/wiki/Data-flow_diagram

87

CHAPTER 4. PROPOSED FRAMEWORK OVERVIEW

Figure 4.2 – The main components of the proposed framework.

4.2.1 The Semantic Model for Industry 4.0

The semantic model for Industry 4.0 is a foundation of our approach. It is a virtual rep-

resentation of the real factory, as shown in Figure 4.3. It represents the elements of the

real factory, such as machines, processes and sensors, with special emphasis on model-

ing the context of operation of these elements. Relevant situations representing abnormal

behaviors as well as expert knowledge and rules handling process management are also

represented in the model.

In a real factory, resources (such as machines and production lines) execute their tasks

over time and under different situations. It is therefore necessary that the model repre-

sents in which situation(s) the resource is performing its tasks to allow a more informed

decision making, since the actions to take and the rules that manage the manufacturing

processes may vary according to the identified situation. In other words, the semantic

model must evolve to be able to represent the situation(s) a certain resource is in during

the execution of its tasks. This evolution is graphically shown in Figure 4.4. The semantic

model is described in detail in Chapter 5.

4.2.2 The Monitoring component

The Monitoring component is responsible for collecting data from sensors in order to de-

tect abnormal situations. It both uses the semantic model and modifies it. This compo-

88

CHAPTER 4. PROPOSED FRAMEWORK OVERVIEW

Figure 4.3 – Virtual representation of a real factory.

nent mainly uses the model for enriching data collected from sensors with contextual in-

formation. This allows to derive situations from context and sensor information of lower-

level abstraction. Once an abnormal situation is detected, the situation together with the

resources and the processes involved in it are added to the model; so that the model also

represents which resources and processes are involved in the situation. This allows the

model to continuously represent what is happening in the real process. The Monitoring

component is explained in detail in Chapter 6.

4.2.3 The Diagnosis component

The Diagnosis component is responsible for determining the possible causes of the ab-

normal behavior. The crucial difference between monitoring and diagnosis relies on the

nature of the output [SAA+00]. Monitoring observes a discrepancy between the expected

and detected behavior without exploration of the cause or fault underlying it. However, in

many domains such as Industry 4.0, monitoring and diagnosis are tightly coupled tasks:

when monitoring observes an anomaly in the behavior, a diagnosis task is started, using

the monitored information as input.

As the monitoring component, the Diagnosis component both uses the semantic model

and modifies it. This component mainly uses the model to determine the cause(s) of a

detected abnormal situations. The association between the causes and the abnormal sit-

Figure 4.4 – Semantic model evolution over time.

89

CHAPTER 4. PROPOSED FRAMEWORK OVERVIEW

uations are obtained from expert knowledge. Once the possible cause(s) associated to the

detected abnormal situation are identified, these cause(s) are linked to the detected situa-

tion in the semantic model. This allows the model to represent which are the causes of an

abnormal situation detected from the real manufacturing process. The Diagnosis com-

ponent is explained in detail in Chapter 6 together with the Monitoring component since

the tasks performed by these two components are tightly coupled, as previously evoked.

4.2.4 The Decision Making component

Once an abnormal situation an its causes have been detected, the Decision making com-

ponent is responsible for determining and applying the adaptation strategies that are

needed to improve the behavior of the production system. These strategies may include

changes to the operation parameters of a machine or the launching of a maintenance task

by the Application layer of Figure 4.1.

The choice of which action(s) to launch is made by the Decision making component.

This component also uses the semantic model to determine which actions are possible to

execute to improve the operating conditions.

Since detecting abnormal situations can trigger actions to adapt the process behavior,

this change in the behavior of the process can lead to the generation of new situations.

These abnormal situations can have different levels of severity, and can be nested in

different ways. To understand and manage the relations among situations, an efficient

approach to organize them is needed. Therefore, Chapter 7 proposes a method to build

a lattice to order the possible situations associated to a process, depending on the con-

straints they rely on. This lattice represents a road-map of all the situations that can be

reached from a given one. This helps in decision support, by allowing the identification of

the actions that can be taken to correct the abnormality. Therefore, the Decision making

component uses both the semantic model and the lattice to determine which actions to

trigger to correct the abnormal situation.

4.3 Conclusion

In this chapter we presented the general architecture of Industry 4.0, presented in the

literature. This general architecture allows us to position our contributions.

The proposed framework to address the evolution of semantic models in Industry 4.0

is introduced. Its components are: (1) the Monitoring component, which is in charge

of detecting abnormal behaviors of the production system; (2) the Diagnosis component,

which identifies the possible cause(s) that generate an abnormal behavior; and (3) the De-

cision making component, which determines the adaptation strategies that are needed to

correct abnormal behaviors of the production system. They all rely on a formal model to

semantically enrich data representation and processing. Each of the components oper-

ates as an expert does. They can be seen as smart systems to solve complex problems by

reasoning. Each one uses the semantic model to perform its functions and also makes the

semantic model evolve by introducing the corresponding changes in it. In this way, the

90

CHAPTER 4. PROPOSED FRAMEWORK OVERVIEW

tasks of each component are performed considering the updated semantic model which

is a virtual representation of what happens in the real factory.

The following chapters explain each of the components and the semantic model in

more detail.

91

CHAPTER 4. PROPOSED FRAMEWORK OVERVIEW

92

Chapter 5

Semantic Model for Context Modeling in
Industry 4.0

Contents
5.1 The proposed ontological model . 94

5.1.1 The Resource module . 96

5.1.2 The Process module . 97

5.1.3 The Sensor module . 98

5.1.4 The Location module . 99

5.1.5 The Time module . 101

5.1.6 The Situation module . 103

5.1.7 Integration of all the modules . 105

5.2 Ontology alignment with a foundational ontology 107

5.3 Ontology evaluation . 109

5.4 Conclusion . 111

93

CHAPTER 5. SEMANTIC MODEL FOR CONTEXT MODELING IN INDUSTRY 4.0

As mentioned in Chapter 2, the development of a smart system requires that the do-

main knowledge is represented in a formal way. To achieve this objective, ontologies have

been widely used to formalize knowledge about the industrial domain [PC09, XLC+18].

However, as indicated in the sate of the art, most of these existing ontological models fo-

cus on a very specific field and sometimes lack a formal representation of context. This is

why it is needed to develop a new ontological model to describe the ”Smart Factory” in-

dustrial domain with special emphasis on modelling the context of the components that

constitute a real factory.

Therefore, this chapter proposes an ontology-based approach for context modeling in

the industrial domain, suitable for Industry 4.0. The motivation for this ontological model

lies on the fact that an isolated sensed value has to be interpreted in the context in which

it is measured to become information that is relevant for decision making. Context is any

information that can be used to characterize the situation of an entity. It is usually con-

sidered as a combination of geo-spatial data, environmental sensor inputs and service

descriptions, among others. Context data is subject to constant change and can be highly

heterogeneous. In manufacturing, a dynamic context model not only has to take into ac-

count the context of tools, machines, parts and products, but also information regarding

the planning of manufacturing processes.

The remainder of the chapter is structured as follows: In section 5.1 the conceptual

modules that compose the proposed ontological model are presented. In section 5.2 a

complete description of the semantic alignment among ontologies is presented, based

on the foundational concepts of DUL1 (DOLCE Ultra Lite) for obtaining a rigorous con-

ceptualization. DUL is an upper-level ontology providing general concepts and relations

at a high abstraction level. The proposed approach is evaluated according to several on-

tology evaluation criteria such as structure, function and usability in Section 5.3. Finally,

some concluding remarks are given in Section 5.4.

5.1 The proposed ontological model

This section describes the modules that constitute the proposed model, called Context

Ontology for Industry 4.0 (COInd4). The goal of this semantic model is to represent the

concepts and relations in the industrial domain to enable context representation and rea-

soning.

The notion of context is based on Dey’s definition of context [DA00], presented in sec-

tion 2.5. Location, identity, time, and activity are the primary context types for charac-

terizing the situation of a particular entity. These context types not only help to answer

the classic "W-questions" (Where, who, when and what), but also allow to deduce other

contextual information. For example, with the location of an entity, it is possible to ap-

ply spatial reasoning and determine which other objects or people are located near that

entity.

For building the ontological model, the criteria for ontology designed (also called "on-

1http://ontologydesignpatterns.org/wiki/Ontology:DOLCE%2BDnS_Ultralite

94

CHAPTER 5. SEMANTIC MODEL FOR CONTEXT MODELING IN INDUSTRY 4.0

Figure 5.1 – The Context Ontology for Industry 4.0 (COInd4).

95

CHAPTER 5. SEMANTIC MODEL FOR CONTEXT MODELING IN INDUSTRY 4.0

tological principles", described in section 2.2.1) were followed: clarity, coherence, inter-

operability, re-usability, extensibility and modularity. The ontology development process

is based on the methodology proposed by [UG96], also presented in section 2.2.1. We first

define the purpose and scope of the ontological model; then we capture domain knowl-

edge, conceptualize and formalize the ontologies and align them with existing ontologies,

vocabularies and standards. In line with these best practices, we followed an iterative and

incremental development process, i.e. the ontological model was continuously improved

by a better understanding of the domain. The ontology is written in OWL and is developed

with two specific APIs for Java, OWLAPI [HB11] and the SWRLAPI [ODSM+08].

Several ontologies, described in Chapter 3, were considered and reused. These ontolo-

gies can be classified, according to [GPFLCGP04], as core ontologies, domain ontologies

and application ontologies based on the subject of their conceptualization (see section

2.2.1).

An overview of the classes and properties from the proposed ontological model is

shown in Figure 5.1. This ontological model is composed of six modules: (1) the Resource

module aims to provide a comprehensive representation of manufacturing products and

resources which are physical objects used for executing a set of operations during the

manufacturing processes; (2) the Process module gives a formal representation of pro-

cesses related to manufacturing, such as cutting, drilling, milling, among others; (3) the

Sensor module considers knowledge about sensors and the observations generated by

them; (4) the Location module provides concepts and relations that allow representing

the abstraction of physical spatial places; (5) the Time module enables a consistent repre-

sentation of temporal information in the industrial system; and (6) the Situation module

aims at representing relevant states of affairs associated to a particular scenario of interest

and can consist of resources, observations and processes. These modules are described in

detail in the following subsections. The main concepts of each module are defined using

Description Logics (DL) [BCM+03] and some examples are provided in a simplified syntax

based on the Semantic Web Rule Language (SWRL2).

5.1.1 The Resource module

The Resource module describes human entities and assets with attributes characterizing

spatio-temporal features. In this section, global concepts are introduced to represent the

resources of a factory. The ManufacturingFacility concept represents the machines

and physical assets of a company. The Staff concept refers to all the people involved in

industrial activities of a company who operates a ManufacturingFacility, such as op-

erators and technicians. The Product concept aims to provide a representation of manu-

facturing products and product components.

Traditionally, machines used in manufacturing were monolithic pieces of equipment.

The need for flexibility and reconfiguration as well as time and cost pressures has led to

developing machines from modular subsystems which provide different operations. The

Resource module contains concepts for different types of devices and hardware compo-

2https://www.w3.org/Submission/SWRL/

96

CHAPTER 5. SEMANTIC MODEL FOR CONTEXT MODELING IN INDUSTRY 4.0

nents, and also contains a collection of equipment categories in the domain of production

automation and manufacturing technology. A functional decomposition of a production

line is performed:

• Machine is a device that performs a task by itself or by human intervention;

• Workstation is a small integrated physical groupings of machines;

• Cell is a set of combined workstations for a particular complex task; and

• Line is a group of cells.

This decomposition enables to represent different Industry 4.0 processing sequences

and flexible or re-configurable production lines. Another relevant point is that by using

this taxonomy, it is possible to describe the context of a ManufacturingFacility at dif-

ferent nested levels (e.g. characterising the context of a Line and depicting the context of

a Workstation that belongs to that Line). The DL axioms for defining the Resource class

and the ManufacturingFacility class are:

Resource≡ManufacturingFacilitytStafftProduct

ManufacturingFacilityv∃operates−1.Staff

u(LinetCelltWorkSationtMachine)

As an example of how to represent resources, the following expression stands for a

Line :l which contains a Cell :c with one WorkStation :ws composed by two ma-

chines: an AssemblingMachine :am operated by an Operator :o and a ProcessingMa-

chine :pm.

AssemblingMachine(:am) ∧ ProcessingMachine(:pm) ∧ WorkSation(:ws) ∧
contains(:ws,:am) ∧ contains(:ws,:pm) ∧ Cell(:c) ∧ isPartOf(:ws,:c) ∧

Line(:l) ∧ isPartOf(:c,:l) ∧ Operator(:o) ∧ operates(:o,:am)

5.1.2 The Process module

A Process represents a task or a set of tasks performed by one or more resources and is

specified with its contextual information, e.g. occurring time, place and related resources.

The domain concepts given in the Process module represent a taxonomy of manufactur-

ing processes. For example, processes include control operations and assembly opera-

tions. The Process class is sub-categorized into LogisticOperation, HumanOperation

and ManufacturingProcess. This last kind of process includes cutting, drilling, milling,

among others. The DL axiom used for defining the Process class is:

97

CHAPTER 5. SEMANTIC MODEL FOR CONTEXT MODELING IN INDUSTRY 4.0

Processv(LogisticOperationtHumanOperationtManufacturingProcess)

u∃performsProcess−1.Resource

u∃hasDuration.time:TimeInterval

The hasSubProcess property allows the representation of process composition. The

spatio-temporal relationships among processes are expressed using spatial and temporal

logic.

The following expression indicates that a WorkStation :ws performs a Manufactur-

ingProcess :mp that lasts for an interval of time :intTP.

WorkSation(:ws) ∧ ManufacturingProcess(:mp) ∧
performsProcess(:ws,:mp) ∧ hasDuration(:mp,:intTP)

5.1.3 The Sensor module

All the sensors in a factory generate a stream of heterogeneous data. The lack of a for-

malized representation of these data would lead to weak interoperability among different

systems and low re-usability. Therefore, the main goal of the Sensor module is to enrich

the heterogeneous sensor data with a formalized semantics. This is done by adding meta-

data about contextual information (such as locations or timestamps).

The conceptualization of sensor measurements related to the sensing activity itself

and to observations come from the Semantic Sensor Network3 (SSN) ontology presented

in [HJC+19]. The aim of SSN is to provide a formal representation of sensor character-

istics, observable properties, observations and measurement processes that can be in-

terpreted automatically. This allows to manage, interpret, query and control sensor net-

works using high-level specifications. The SSN ontology has been applied to a wide range

of applications and use cases, such as satellite imagery, industrial infrastructures and the

Internet of Things. The most relevant SSN concepts and relations that were re-used for

the development of our ontological model are described below.

A sosa:Sensor is a device that detects and responds to some type of input from the

physical environment. To do this, sensors implement a specific method that results in the

calculation of the value of the observed property (sosa:ObservableProperty class).

The sosa:Observation class provides the structure to represent a single observa-

tion. Therefore, an instance of sosa:Observation is related to a single measurement

(sosa:Result class) performed by a given sensor (sosa:Sensor class) on a single prop-

erty of some entity (sosa:ObservableProperty and sosa:FeatureOfInterest classes,

respectively).

The sosa:FeatureOfInterest class represents real-world phenomena and objects.

When measuring the height of a building, the height is the observed property, and the

building is the sosa:FeatureOfInterest.

3available at: http://www.w3.org/ns/ssn/

98

CHAPTER 5. SEMANTIC MODEL FOR CONTEXT MODELING IN INDUSTRY 4.0

The ssn:Property class is defined as an attribute of an entity than can be measured

(e.g. temperature). The sosa:ObservableProperty is a subclass of ssn:Property.

The sosa:Result class is the result of the observation: a value together with the unit

(e.g. ”26◦C”, ”1000 mph”, ”1000 rpm”). To store the result value of an observation, the

sosa:hasSimpleResult property can be used.

To specify the observation time, SSN has the sosa:resultTimedatatype property that

relates a sosa:Observation to a time instant. It indicates the time at which the observa-

tion was made.

One limitation of the SSN ontology is that it does not provide a way to represent the

location of a sensor. In order to overcome this limitation, a new property is defined. The

locatedIn property is used to assert that a sensor is deployed in a location.

The example below makes use of the previous properties to describe that a Machine

:pm has a Sensor :vs which measures its vibration :pm_vibration.

Machine(:pm) ∧ WorkSation(:ws) ∧ isPartOf(:ws,:pm) ∧ Cell(:c) ∧
isPartOf(:ws,:c) ∧ Line(:l) ∧ isPartOf(:c,:l) ∧ Sensor(:vs) ∧
ssn:Property(:pm_vibration) ∧ hasProperty(:pm,:pm_vibration) ∧

observes(:vs,pm_vibration) ∧ hasSensor(:pm,:vs)

5.1.4 The Location module

Many of the concepts that are represented in this ontological model are entities that can

be located in space such as machines or sensors, and processes that can be located via

their participating entities. The Location module provides concepts and relations that al-

low representing physical spatial places and the relations among them (e.g. a machine

is located in a particular sector, and two sectors share a wall). To do so, the GeoSPARQL

ontology [PH12] is used. It provides a flexible framework that is complete enough for

geo-spatial objects representation as well as spatial relationships among geo-spatial ob-

jects. The geo:SpatialObject class contains two sub-classes called geo:Feature and

geo:Geometry. The geo:Feature class represents 3D-objects or 2D-areas and can be

assigned geometries that describe them through the geo:hasGeometry property.

The GeoSPARQL ontology also implements spatial operators to compute the topology

between two geometries. They allow to model different characteristics such as orientation

and distance. GeoSPARQL uses the Region Connection Calculus, introduced in [RCC92].

More specifically, it uses RCC-8 (the version with eight relations) that is well-known for

representing mereo-topological relationships between spatial regions. RCC-8 consists of

8 basic relations (Figure 5.2) that are possible between two regions: disconnected (DC),

externally connected (EC), equal (EQ), partially overlapping (PO), tangential proper part

(TPP), tangential proper part inverse (TPPi), non-tangential proper part (NTPP), non-

tangential proper part inverse (NTPPi). From these primitives relations, more complex

combinations can be built. For example, a proper part (PP) is the union of TPP and NTPP.

Given two relational facts R(a,b) and S (b,c), where R and S are two RCC-8 relation-

ships, the possible relation between a and c can be computed. The composition based

99

CHAPTER 5. SEMANTIC MODEL FOR CONTEXT MODELING IN INDUSTRY 4.0

X Y

X DC Y

X Y

X EC Y

X Y

X PO Y

X
Y

X EQ Y

X

Y

Y TPP X

Y

X

Y TPPi X

X

Y

Y NTPP X

Y

X

Y NTPPi X

Figure 5.2 – RCC-8 basic relations

technique provides an efficient inference mechanism for a wide class of theories in the

field of Artificial Intelligence, such as Qualitative Spatial Reasoning (QSR).

For any two RCC-8 relations R, S in that set, their composition CT(R,S) is de-

fined to be the unique smallest subset {T1, . . . ,Tn} of the set of eight relations such that

(∀x∀y∀z)[R(x, y)∧S (y, z) ⇒ (T1(x, z)∨ . . .∨Tn(x, z))] is a theorem in RCC.

Thus, CT(R,S) is the disjunction of all possible base relations which could hold be-

tween a and c provided that R(a,b) and S (b,c) hold. Table 5.1 gives the composition

table of the RCC-8 relations. This table first appeared in [CCR93] and is known as the

RCC-8 composition table (RCC-8 CT for short).

Table 5.1 – Composition table for RCC-8 relations (* stands for all eight RCC-8 relations)

o DC EC PO TPP NTPP TPPi NTPPi EQ

DC *
DC,EC,PO,
TPP,NTPP

DC,EC,PO,
TPP,NTPP

DC,EC,PO,
TPP,NTPP

DC,EC,PO,
TPP,NTPP

DC DC DC

EC
DC,EC,PO,
TPPi,NTPPi

DC,EC,PO,
TPP,TPPi,EQ

DC,EC,PO,
TPP,NTPP

EC,PO,
TPP,NTPP

PO,TPP,
NTPP

DC,EC DC EC

PO
DC,EC,PO,
TPPi,NTPPi

DC,EC,PO,
TPPi,NTPPi

*
PO,TPP,
NTPP

PO,TPP,
NTPP

DC,EC,PO,
TPPi,NTPPi

DC,EC,PO,
TPPi,NTPPi

PO

TPP DC DC,EC
DC,EC,PO,
TPP,NTPP

TPP,NTPP NTPP
DC,EC,PO,

TPP,TPPi,EQ
DC,EC,PO,
TPPi,NTPPi

TPP

NTPP DC DC
DC,EC,PO,
TPP,NTPP

NTPP NTPP
DC,EC,PO,
TPP,NTPP

* NTPP

TPPi
DC,EC,PO,
TPPi,NTPPi

EC,PO,
TPPi,NTPPi

PO,TPPi,
NTPPi

PO,TPP,
TPPi,EQ

PO,TPP,
NTPP

TPPi,NTPPi NTPPi TPPi

NTPPi
DC,EC,PO,
TPPi,NTPPi

PO,TPPi,
NTPPi

PO,TPPi,
NTPPi

PO,TPPi,
NTPPi

PO,TPP,NTPP,
TPPi,NTPPi,EQ

NTPPi NTPPi NTPPi

EQ DC EC PO TPP NTPP TPPi NTPPi EQ

The following expression uses the EC relation to express that the geo:SpatialObject

:l1 is externally connected with the geo:SpatialObject :l2 (e.g. both locations share

a wall).

geo:SpatialObject(:l1) ∧ geo:SpatialObject(:l2) ∧
spatial:rcc8ec(:l1,:l2)

100

CHAPTER 5. SEMANTIC MODEL FOR CONTEXT MODELING IN INDUSTRY 4.0

5.1.5 The Time module

A suitable temporal model should allow a consistent representation of temporal infor-

mation in the industrial system. Temporal modelling is key in the manufacturing domain

because both sensor measurements and process representations need to be positioned in

a temporal dimension so that they can be correctly interpreted by the industrial system.

This module provides a way to represent temporal entities (e.g. time instants and time pe-

riods) as well as to interpret temporal relations (e.g. before, after, during, etc.). The Time

module comprises all information related to the current time and allows time-stamping

all the context information that may change over time.

The SWRL Temporal Ontology4 (SWRLTO) proposed in [OD11] is reused as a temporal

model. It provides a simple and efficient solution to operate with temporal information

in queries and rules. This ontology has a main class named temporal:ValidTime, which

has two sub-classes, temporal:ValidInstant and temporal:ValidInterval. The tem-

poral:ValidInstant class denotes a point on a timeline (an instant) and the tempo-

ral:ValidInterval class models the time between two instants. These are declared by

two data properties, swrlto:hasStartTime and swrlto:hasFinishTime. Besides, the

swrlto:Granularity class describes the unit of measurement of the time reference (e.g.,

months, days, hours).

Another interesting class is temporal:Fact. It models an entity that can extend over

time and that is associated to the temporal:hasValidTime property, indicating the time

period during which the associated information is true. Values of this property belong to

the temporal:ValidTime class.

Regarding temporal reasoning and querying, SWRLTO implements a series of predi-

cates embedded in SWRL that allows operating with temporal relations. Most of them are

based on Allen’s time algebra [All94]. Although this algebra was not originally designed

to relate an interval to an instant, nor was it designed to relate two instants to each other,

SWRLTO includes specific operators to allow this. In addition, SWRLTO offers some SWRL

operators to perform granularity conversions and duration calculations in different time

units. The possible values are: Years, Months, Days, Hours, Minutes, Seconds, and Mil-

liseconds. If no granularity is specified, the finest granularity supported by the library

(i.e., Milliseconds) is used. The most common temporal operators are described below:

• durationLessThan(duration,startDate,endDate,granularity): This predi-

cate is satisfied if the first argument is less than the difference between two XML

Schema date or date Time, specified by the startDate and endDate arguments, at

the granularity specified by the final argument.

• durationEqualTo(duration,startDate,endDate,granularity): This predicate

is satisfied if the first argument is equal to the difference between two XML Schema

date or date Time, specified by the startDate and endDate arguments, at the gran-

ularity specified by the final argument.

4http://swrl.stanford.edu/ontologies/built-ins/3.3/temporal.owl

101

CHAPTER 5. SEMANTIC MODEL FOR CONTEXT MODELING IN INDUSTRY 4.0

• durationGreaterThan(duration,startDate,endDate,granularity): This pred-

icate is satisfied if the first argument is greater than the difference between two XML

Schema date or date Time, specified by the startDate and endDate arguments, at

the granularity specified by the final argument.

• notdurationLessThan, notdurationEqualTo, notdurationGreaterThan: These

implement the inverse of the aforementioned duration operators.

• Allen’s Temporal operators (Figure 5.3)

For example, let us suppose we have three machines :pm1, :pm2 and :pm3 which exe-

cute respectively three processes :p1, :p2 and :p3. The duration intervals of each process

are :iP1, :iP2 and :iP3, respectively. We know that the execution of :p2 starts when the

execution of :p1 is finished and that the whole execution of :p3 is performed during :p2,

as shown in (5.1), but we do not know the ending point of :p2, or the starting point of

:p3. Even if the information about start and ending points is incomplete, it is possible to

infer that the execution of :p3 must be after the execution of :p1 (i.e. :iP3 must be after

:iP1, as expressed in (5.2)), because the whole execution of :p3 is performed during :p2

(:iP2 contains :iP3).

ProcessingMachine(:pm1) ∧ ProcessingMachine(:pm2) ∧
ProcessingMachine(:pm3) ∧ ManufacturingProcess(:p1) ∧

ManufacturingProcess(:p2) ∧ ManufacturingProcess(:p3) ∧
performsProcess(:pm1,:p1) ∧ performsProcess(:pm2,:p2) ∧

performsProcess(:pm3,:p3) ∧ hasTime(:p1,:iP1) ∧
hasTime(:p2,:iP2) ∧ hasTime(:p3,:iP3) ∧

swrlto:meets(:iP1,:iP2) ∧ swrlto:contains(:iP2,:iP3)

(5.1)

swrlto:after(:iP3,:iP1) (5.2)

Another example is a WorkStation :ws which is composed by a Machine :pm which

performs a process :mpp whose duration is :iMPP, and a Machine :am which performs a

process :mpa whose duration is :iMPA.

Machine(:am) ∧ Machine(:pm) ∧ WorkStation(:ws) ∧ isPartOf(:ws,:am) ∧
isPartOf(:ws,:pm) ∧ ManufacturingProcess(:mpp) ∧
performsProcess(:pm,:mpp) ∧ hasTime(:mpp,:iMPP) ∧

ManufacturingProcess(:mpa) ∧ performsProcess(:am,:mpa) ∧
hasTime(:mpa,:iMPA)

There are no specific spatio-temporal built-ins, however the combination of spatial

and temporal operators allows a spatio-temporal analysis. The following expressions com-

bines the use of spatial and temporal operators to show their straight integration. There

are again three machines :pm1, :pm2 :pm3 which execute three processes :p1, :p2 and

:p3, respectively. Process :p1 meets :p2 and :p2 contains :p3. The :pm1 and :pm2

102

CHAPTER 5. SEMANTIC MODEL FOR CONTEXT MODELING IN INDUSTRY 4.0

p1 before p2 – p2 after p1
p1 p2

p1 meets p2 – p2 metBy p1
p1 p2

p1 overlaps p2 – p2 overlapsBy p1
p1 p2

p1 starts p2 – p2 startsBy p1
p1 p2

p1 during p2 – p2 contains p1
p1 p2

p1 finishes p2 – p2 finishesBy p1
p1p2

p1 equals p2
p1

p2

Ti me

Figure 5.3 – Allen’s Operators

machines are located in sector :l1 which is externally connected with sector :l2 where

the :pm3 machine is located.

Machine(:pm1) ∧ Machine(:pm2) ∧ Machine(:pm3) ∧
ManufacturingProcess(:p1) ∧ ManufacturingProcess(:p2) ∧
ManufacturingProcess(:p3) ∧ performsProcess(:pm1,:p1) ∧
performsProcess(:pm2,:p2) ∧ performsProcess(:pm3,:p3) ∧

hasTime(:p1,:iP1) ∧ hasTime(:p2,:iP2) ∧ hasTime(:p3,:iP3) ∧
time:meets(:iP1,:iP2) ∧ time:contains(:iP2,:iP3) ∧
geo:SpatialObject(:l1) ∧ geo:SpatialObject(:l2) ∧
spatial:rcc8ec(:l1,:l2) ∧ isInLocation(:pm1,:l1) ∧
isInLocation(:pm2,:l1) ∧ isInLocation(:pm3,:l2)

5.1.6 The Situation module

This module aims at representing relevant situations associated to abnormal behaviors

in the industrial system. Therefore, first of all, we introduce the notion of situation. As

evoked before, a situation defines an abstract state of affairs associated to a particular

scenario of interest.

In this case, a situation is a specific scenario in which the system state shows a par-

ticular combination of sensed values for its attributes (observations) that are not desir-

able and could lead to a failure. Thus, a situation describes "intermediate" or "abnor-

mal" manufacturing conditions that are described with expert knowledge, in the form of

constraints. Consequently, from a conceptual point of view, a situation involves a com-

bination of at least, one resource, eventually associated to its location, and at least one

sensor measurement, fulfilling the constraints set by the expert. The whole can be linked

through spatial, temporal and/or spatio-temporal relationships.

103

CHAPTER 5. SEMANTIC MODEL FOR CONTEXT MODELING IN INDUSTRY 4.0

It should be noted, that a situation is actually a general description (concept) about

a specific scenario and there may be several instances (individuals) of these situations

occurring at different points in time. For example, an abnormal behavior of a particular

machine can be represented by a situation. This situation can happen more than once on

the same machine or even on another machine of the same type; i.e. which means that

there can be different instances of the abnormal situation in the ontology. These situa-

tions take place over a period of time, and their duration is represented by the property

situationTime.

The Cause class represents the possible causes that provoke a situation. A situation is

linked to its causes through the hasCauses property. The Action concept represents ac-

tions (preventive or reactive) needed to mitigate the situation or its severity. The actions

can be diverse, such as tasks performed by operators or remote changes in the operating

parameters of the machines. They are linked to a situation through the requiredAc-

tion property. In both cases, the link between a situation and its causes and the required

actions is obtained from expert knowledge. The Constraint concept represents defined

restrictions on certain observable properties, such as a maximum threshold for one value.

As a situation is expressed as a combination of constraints, this is represented through the

associatedConstraints relation. Considering the concepts defined above, the concept

of situation is formally defined by the following DL axiom.

Situationv∃hasConstraint.Constraint
u∃hasObservation.Observation
u∃situationTime.time:TemporalEntity
u∃involvedInSituation−1.Resource

For example, a situation can be ”the temperature in sector :l4 exceeds TEMP-MAX dur-

ing the execution of process :p1 while process :p2 is also in execution, and both take

place in the same sector”. This is represented by the HighTemp2Proc class, depicted in

the expression (5.3). The expression (5.4) shows the resources and processes involved in

the situation.

ProcessingMachine(:pm1) ∧ ManufacturingProcess(:p1) ∧
ProcessingMachine(:pm2) ∧ ManufacturingProcess(:p2) ∧

performsProcess(:pm1,:p1) ∧ performsProcess(:pm2,:p2) ∧
hasDuration(:p1,:iP1) ∧ hasDuration(:p2,:iP2) ∧
time:during(:iP1,:iP2) ∧ geo:SpatialObject(:l4) ∧

sosa:Sensor(:s1) ∧ locatedIn(:s1,:l4) ∧
sosa:Observation(:senseT) ∧ ssn:Property(:temp) ∧

sosa:madeObservation(:s1,:senseT) ∧ observes(:s1,:temp) ∧
sosa:hasTime(:senseT,:tObs) ∧ swrlto:during(:tObs,:iP1) ∧

sosa:hasSimpleResult(:senseT,:v) ∧ swrlb:greaterThan(:v,TEMP-MAX)

(5.3)

104

CHAPTER 5. SEMANTIC MODEL FOR CONTEXT MODELING IN INDUSTRY 4.0

HighTemp2Proc(:htS) ∧ situationTime(:htS,:htS-time) ∧
involvedInSituation(:pm1,:htS) ∧ concernedBySituation(:p1,:htS) ∧
involvedInSituation(:pm2,:htS) ∧ concernedBySituation(:p2,:htS) ∧
hasObservation(:htS,:senseT) ∧ hasConstraint(:htS,:highTemp) ∧

hasDescription(:htS,"High temp in l4 sector"^^xsd:String)
(5.4)

5.1.7 Integration of all the modules

The ontological modules described above reuse others ontologies that have been devel-

oped to address specific needs in different domains and following different approaches.

Therefore, it is necessary to semantically integrate them in order to have an ontological

model that allows context modelling in the Industry 4.0 domain.

The integration among the modules is done mainly through the use of relationships

(object properties, equivalence (≡) and subsumption (v)) that link concepts from one

module with concepts from other modules. First, the integration of the Resource module

with the rest of the modules is done:

• The Resource module is linked with the Sensor module through the sosa:hosts re-

lation. This relation links a Resource with a sosa:Sensor. It is used to assert that

one or more sensors are attached to a Resource in order to measure certain prop-

erties of it.

• The Resource module is linked with the Process module through the performsPro-

cess relation. This relation links a Resourcewith a Process. It is used to assert that

a resource performs one or more processes.

• The Resource module is linked with the Location module through the isInLocation

relation. This relation links a Resource with a geo:SpatialObject. It is used to

assert that a resource is located in a specific location.

• The Resource module is linked with the Situation module through the involvedIn-

Situation relation. This relation links a Resource with one or more Situations.

It is used to assert that a resource is involved in one or more particular situation(s).

The Process module is linked to the Resource module as previously presented. Further-

more, it is also linked to the Time module, the Location module and the Situation module

as described below:

• The Process module is linked with the Time module through the hasDuration re-

lation. This relation links a Process with a temporal:ValidPeriod. It is used to

assert the duration of a process.

105

CHAPTER 5. SEMANTIC MODEL FOR CONTEXT MODELING IN INDUSTRY 4.0

• The Process module is linked with the Location module through the happensIn re-

lation. This relation links a Process with a geo:SpatialObject. It is used to assert

the location where a process occurs. It is worth highlighting that the location where

a process occurs can be inferred from the location of the resources that execute that

process.

• The Process module is linked with the Situation module through the concerned-

BySituation relation. This relation links a Process with one or more Situations.

It is used to assert that a process is concerned by one or more situation(s). Similarly

to the previous item, the fact that a situation concerns a process can be inferred

from the fact that the situation involves the resource that executes that process.

The Sensor module is linked to the Resource module as previously presented. Further-

more, it is also linked to the Time module, the Location module and the Situation module

as described below:

• The Sensor module is linked with the Time module through the hasTime relation.

This relation links an Observationwith a temporal:ValidTime. It is used to assert

the time when an observation was made.

• The Sensor module is linked with the Location module through the locatedIn re-

lation. One limitation of the existing SSN ontology is that it does not provide a way

to represent the location of a sensor. In order to overcome this limitation, a new

property is defined. The locatedIn property is used to assert that a sensor is de-

ployed in a certain location. It is worth highlighting that the location where a sensor

is located can be inferred from the location of the resource that hosts that sensor (if

any).

• The Sensor module is linked with the Situation module through two relations, the

definedOn relation and the hasObservation relation. The first one links a Con-

straint with a sosa:ObservableProperty. It is used to assert that a constraint

is defined on a particular property. The second one links one or more Situation

with one or more Observation. It is used to assert that a situation has one or more

observations. From the observations we can obtain the necessary information to

determine the resources involved in a situation as well as the processes concerned

by the situation, its location and its time.

Finally, the Situation module is linked to the Resource module, the Process module

and the Sensor module as described above. It is also linked to the Time module and the

Location module.

• The Situation module is linked with the Time module through the situationTime

relation. This relation links a Situation with a temporal:ValidPeriod. It is used

to assert the duration of a situation. Furthermore, the Situation class is a sub-

class of the temporal:Fact class, since a situation occurs over an interval of time

106

CHAPTER 5. SEMANTIC MODEL FOR CONTEXT MODELING IN INDUSTRY 4.0

(Situation v temporal:Fact), therefore, it has a valid time. As mentioned in the

description of the Situation module, in the industrial domain there are relations

among different concepts that evolve or change over time, such is the case of a re-

source involved in a situation that happens over a period of time. Therefore, the

property that asserts that a resource is in a certain situation (involvedInSitua-

tion) holds during the interval in which the situation occurs.

• The Situation module is linked with the Location module through the occursIn

relation. This relation links a Situation with one or more geo:SpatialObject.

It is used to assert the location or locations where a situation occurs. It is worth

highlighting that the location(s) where a situation occurs can be inferred from the

location of the resource that are involved by the situation.

All modules are linked together in one way or another as described above. This inte-

gration provides a way to represent situations of interest that take into account the context

of the resources.

5.2 Ontology alignment with a foundational ontology

In order to further obtain a rigorous conceptualization of the proposed semantic model,

we semantically align it with a foundational ontology. Ontology alignment is defined as a

set of correspondences between two ontologies [SE05]. As already mentioned in the sec-

tion where all the conceptual modules are integrated (section 5.1.7), a correspondence

establishes a sustained relationship between two entities, one of each ontology, such as:

equivalence (≡), subsumption (v) and disjointedness (⊥). In an ontological alignment,

a foundational ontology acts as an external source of common knowledge since the con-

cepts defined or reused in the proposed ontology are a specialization of general concepts

shared by different domains. This semantic technique allows to relate concepts from dif-

ferent ontologies based on the analysis of their interpretations. This technique is less am-

biguous and more rigorous than those based on the names of the entities as it happens

with the syntactic matching methods.

The main concepts of the ontological model are aligned with the DOLCE+DnS Ultra-

lite (DUL) ontology, a simplified version of DOLCE (Descriptive Ontology for Linguistic

and Cognitive Engineering) introduced in [MBG+03]. The choice of DUL for the align-

ment is based on the fact that it is a recognized ontology that covers several domains and

research fields. Therefore, it favours integration and reuse in other environments. It has a

rigorous conceptualization that facilitates the interpretation of the domain primitives.

The SSN ontology, one of the most important components of our ontology is already

aligned with DUL5. The alignment among the concepts of SSN and DUL is shown in the

equations 5.8, 5.9, 5.10, 5.11 and 5.12.

It is important to note that the whole alignment is not trivial and therefore there is not

a unique way to align the concepts of our semantic model (or any semantic model) with

5https://www.w3.org/TR/vocab-ssn/#DUL_Alignment

107

CHAPTER 5. SEMANTIC MODEL FOR CONTEXT MODELING IN INDUSTRY 4.0

the ones from DUL.

Since SSN and DUL are aligned, the second step is the alignment between the SWRLTO

and GeoSPARQL ontologies with DUL. The entities defined in these ontologies are at a

similar level of abstraction. However, the SWRLTO and DUL ontologies consider differ-

ent representations of temporal information. DOLCE (and therefore DUL) adopts the 4D

fluent approach while SWRLTO is based on a reification approach.

In the 4D-fluent approach, time concepts are represented as 4-dimensional objects

where the fourth dimension is time. It divides the world into two categories:

• the endurants, that represent entities that can be perceived in a complete way at

any instant of time or, in other words, it is information that does not change over

time; and

• the perdurants, that represent entities that extend in time accumulating different

temporal parts. The changes occur in the properties of the temporal part, while the

properties of the static part do not change.

Although SWRLTO is based on a reification approach, it has no restrictions regarding

its use with other schemes. Indeed, the meaning of dolce:Perdurant is consistent with

the definition of the swrlto:Fact concept, since it represents entities that can be ex-

tended in time. For this reason, an equivalence relationship is established between them

(equation 5.6). Another alignment of concepts to emphasize is the one defined between

the swrlto:ValidTime and dul:Time Interval classes (equation 5.5). Intuitively, it ap-

pears that swrlto:ValidTime is more general than dul:Time Interval since it involves

instants and intervals of time while dul:Time Interval is defined as ”any region in a di-

mensional space whose purpose is the representation of time” in DUL.

The geo:SpatialObject class represents everything that can have a spatial represen-

tation. This definition is consistent with that of the dul:PhysicalPlace concept of DUL,

that is "any object that has a proper space region". Therefore, we align these concepts as

shown in equation 5.7.

As a result of the alignment between the SWRLTO and GeoSPARQL ontologies with

DUL, it can be highlighted that any domain ontology based on DUL can incorporate

temporal and spatial reasoning capabilities. Furthermore, since the alignment operates

on top level concepts, this does not alter the domain ontologies. This means that each

member of dolce:perdurant with a particular dul:Time Interval is interpreted as a

swrlto:Fact with a swrlto:ValidTime. Therefore, the functions embedded in SWRLTO

can be used in rules and queries to reason about time. Similarly, each member of dul:Phy-

sicalPlace is interpreted as geo:SpatialObject. Therefore, the operators embedded

in GeoSPARQL can be used to reason about spatial aspects.

Finally, we present the alignments of the Resource, Process and Situation modules with

DUL. From these modules, the main concepts are aligned with DUL.The Situation con-

cept is defined as a sub-class of the temporal:Fact concept that is already aligned with

DUL (equation 5.14). The Resource concept is interpreted as the dul:Object concept

108

CHAPTER 5. SEMANTIC MODEL FOR CONTEXT MODELING IN INDUSTRY 4.0

of DUL since a dul:Object is defined as ”any physical, social, or mental object” (equa-

tion 5.13). The Process concept is interpreted as the dul:Method concept of DUL since a

dul:Method is ”a description that defines or uses concepts in order to guide the carrying

out of actions aimed at accomplishing a task” (equation 5.15).

Alignment of classes

swrlto:ValidTime≡ dul/dolce:Time Interval (5.5)

swrlto:Fact≡ dolce:Perdurant (5.6)

geo:SpatialObject≡ dul:PhysicalPlace (5.7)

sosa:Sensorv dul:PhysicalObject (5.8)

sosa:Observationv dul:Situation (5.9)

sosa:Resultv dul:InformationObject (5.10)

sosa:FeatureOfInterestv dul:Eventtdul:Object (5.11)

sosa:Propertyv dul:Quality (5.12)

Resourcev dul:Object (5.13)

Situationv swrlto:Fact (5.14)

Processv dul:Method (5.15)

Alignment of object properties

swrlto:hasValidTimew dul:is observable at (5.16)

swrlto:hasGranularityv dul/dolce:has region (5.17)

Alignment of data properties

swrlto:hasStartTimew dul:has interval date (5.18)

swrlto:hasFinishTimew dul:has interval date (5.19)

swrlto:hasTimew dul:has interval date (5.20)

5.3 Ontology evaluation

Finally, we evaluate the ontology to check that it does not contain pitfalls and that it covers

all the requirements identified in section 3.4. In order to detect common mistakes done

when developing ontologies we have used OOPS! [PVGPSF14]. In OOPS!, ontology pitfalls

are classified into three categories: structural, functional, and usability-profiling. Under

each category, fine-grained classification criteria are provided to cope with specific types

of mistakes. The ontology is evaluated according to the following three categories:

109

CHAPTER 5. SEMANTIC MODEL FOR CONTEXT MODELING IN INDUSTRY 4.0

• Structural dimension focuses on mistakes detection on syntax and formal seman-

tics. This category is composed of five criteria:

– modeling decisions, which evaluates whether users use the ontology imple-

mentation language in a correct way;

– real-world modeling or common sense, which evaluates the completeness of

the domain knowledge formalized by the ontology;

– no inference, which checks whether the desired knowledge can be inferred

through ontology reasoning;

– wrong inference, which refers to the detection of inference that leads to erro-

neous or invalid knowledge; and

– ontology language, which assesses the correctness of the ontology develop-

ment language.

• Functional dimension considers the intended use and functionality of the pro-

posed ontology. Under this category, two specific criteria are used to evaluate our

proposal:

– requirement completeness, which evaluates coverage of the domain knowl-

edge that is formalized by the ontology;

– application context, which evaluates the adequacy of the ontology for a given

use case or application.

• Usability-profiling dimension evaluates the level of ease of communication when

different users use the same ontology. Within this category, two specific criteria are

applied for ontology evaluation:

– ontology understanding, which evaluates the quality of information or knowl-

edge that is provided to users;

– ontology clarity, which assesses the quality of ontology elements for being

easily recognized and understood by users. This criteria are commonly used

to check the quality of ontologies when users do not have sufficient domain

knowledge.

The evaluation of COInd4 with OOPS! has yield some minor pitfalls, that do not affect

the consistency, reasoning or applicability of the ontology.

A first issue mainly regards ”missing domain or range” errors inherited from the SSN

ontology. The documentation of SSN states that not adding the domain or range to certain

properties is a design decision not to be restrictive with them. However, we have decided

to add the missing range and domains. Another minor issue is the case of the ”recursive

definitions”. In our case, it was needed to define several recursive relations, such as ”A

production equipment can contain another production equipment”. Therefore, we have

not considered this pitfall as a mistake.

The final evaluation of the COInd4 ontology by OOPS! appears in Figure 5.4.

110

CHAPTER 5. SEMANTIC MODEL FOR CONTEXT MODELING IN INDUSTRY 4.0

Figure 5.4 – Screenshot of the proposed ontology evaluation results by OOPS!

5.4 Conclusion

This chapter presents an ontology-based approach for context modeling in the industrial

domain. The proposal combines existing ontologies with two main goals: (1) to obtain a

model that satisfies our requirements with special emphasis on temporal and spatial rela-

tions among resources and processes; and (2) to represent particular situations of interest

in an industrial scenario. Situations of interest in the industrial domain depend on sensor

data, domain knowledge on environments and resources. The ontological model consists

of six modules, named the Resource module, the Process module, the Sensor module, the

Location module, the Time module and the Situation module. The proposed model is

written in OWL DL, a standard language with formal semantics based on logic [BHS05].

Furthermore, our ontological model provides a way to capture the dynamic changes

and the evolution of knowledge in time, such as the different situations a machine can go

through or the changes in the values of one of its parameters according to the different de-

cisions made. This is a key point to deal with the dynamics of manufacturing processes as

mentioned in the introduction to this manuscript. The proposed ontology is generic and

extensible to cover a wide spectrum of manufacturing services. Its modular architecture

also allows the description of the capabilities of manufacturing resources at different lev-

els of modularity namely, Machine, Workstation, Cell and Line. Some examples about

how the industrial domain can be represented through our ontological model were given

throughout the chapter.

The ontological model is aligned with the DUL foundational ontology, for obtaining

a rigorous conceptualization. The proposed approach is evaluated according to different

ontology evaluation criteria such as structure, function and usability.

111

CHAPTER 5. SEMANTIC MODEL FOR CONTEXT MODELING IN INDUSTRY 4.0

112

Chapter 6

Stream Reasoning for Abnormal
Situation Detection and Diagnosis

Contents
6.1 Relevant situation detection and cause determination 114

6.1.1 The Monitoring component . 116

6.1.2 The Diagnosis component . 117

6.1.3 The Abnormal Situation Refinement component 118

6.1.4 The Decision Making component . 118

6.2 An Illustrative case study with two properties 118

6.3 Conclusion . 121

113

CHAPTER 6. STREAM REASONING FOR ABNORMAL SITUATION DETECTION AND
DIAGNOSIS

According to the metrics of Lean manufacturing [CBI], as measured by Overall Equip-

ment Effectiveness (OEE), world-class manufacturing factories are working at 85% of their

theoretical capacity, while medium-sized ones are at around 60%. Some of the reasons for

this are detailed in [Has11]. The main ones are the launching of unnecessary maintenance

tasks and, despite this, the breakdown of equipment. This leads to increased maintenance

costs and production stoppages. In order to tackle these issues, as evoked in Chapter 4,

factories rely on condition monitoring, which is the task of monitoring all the equipment

involved in a manufacturing process for early detection of anomalies. In particular, in In-

dustry 4.0 factories, machines and other plant resources are equipped with sensors that

collect data continuously. These data can be exploited for condition monitoring.

In this chapter, the focus is on the real-time use of data collected from sensors at-

tached to resources and the environment to detect situations that may lead to failures

disrupting production processes, and to determine their possible causes. A situation,

as defined in section 5.1.6, can be seen as a combination of one or several sensor mea-

surements linked through spatial, temporal or spatio-temporal relationships, along with

constraints given by experts. The detection of these situations requires the interpreta-

tion of observations considering the observations context (for example, other spatially or

temporally related observations). These observations are generated from heterogeneous

data sources. Therefore, data integration for observations interpretation is a key point to

consider. As discussed in Chapter 2, Semantic Web technologies are increasingly used to

improve the interoperability in scenarios where data is heterogeneous. However, current

solutions for reasoning on RDF or OWL data are not appropriate for the dynamic nature

of data in an industrial scenario, where the manufacturing processes are executed over

time and under different contexts. To deal with this issue, a recent research field called

stream reasoning propose to unify reasoning and stream processing. Stream reasoning,

presented in section 2.3.2, is based on the continuous processing of data streams together

with rich background knowledge to support decision systems [SCDV+19].

This chapter describes in detail the components in charge of Monitoring and Diagno-

sis introduced in Chapter 4. An approach that uses stream reasoning and classical reason-

ing methods (1) to detect situations that potentially lead to failures; and (2) to identify the

possible causes that generated those situations is presented in this chapter. Knowing the

causes helps choosing the most appropriate decision to avoid the interruption of man-

ufacturing processes. The proposed approach enriches the data collected from sensors

with contextual information by using the semantic model introduced in Chapter 5.

The remainder of the chapter is structured as follows: section 6.1 provides a detailed

description of the Monitoring and the Diagnosis components for situation detection and

cause determination. In section 6.2, an illustrative case study is introduced. Finally, in

section 6.3 some conclusions are presented.

6.1 Relevant situation detection and cause determination

Certain situations that may lead to machine failures can be detected by interpreting ob-

servations in their contexts, for example, if an observation has an abnormal value it may

114

CHAPTER 6. STREAM REASONING FOR ABNORMAL SITUATION DETECTION AND
DIAGNOSIS

Figure 6.1 – Main components and workflow of the proposed framework.

115

CHAPTER 6. STREAM REASONING FOR ABNORMAL SITUATION DETECTION AND
DIAGNOSIS

be because another parameter is having abnormal values too. Let us consider the case

where the temperature of a machine and the temperature of one of its components are

being monitored. It is known that an increase in the temperature of the machine may

be due to an increase in the temperature of its component, or vice versa. This allows the

exploitation of expert knowledge about relationships between the values of certain pa-

rameters from the machines, from the processes and from their context for interpreting

observations. Through the early detection of situations, the maintenance schedule can

be adapted or further measures to prevent unexpected downtime can be taken.

The main components of our proposed framework are shown in Figure 6.1. The mod-

ules to detect situations in real time are Translation and Temporal relations. These two

are part of the Monitoring component and they are explained in detail below in section

6.1.1. The Diagnosis component has only one module called Cause Determination, it is

introduced in section 6.1.2. Although the Monitoring and Diagnosis components per-

form different tasks, we have decided to explain them together since, as mentioned in

Chapter 4, their tasks are closely related. In addition, Figure 6.1 also shows the Situation

refinement component and the Decision making component. The first one contains the

Update/Create situation module that aims at refining already defined situations or defin-

ing new ones. This module is explained in section 6.1.3. The Decision Making component

is not part of the task of detecting situations or determining the possible causes, but it ex-

ploits this information to support decision making tasks. It is described in section 6.1.4.

6.1.1 The Monitoring component

The modules involved in situation detection are Translation and Temporal Relations. The

following two subsections explain both and describe the interaction among them as well

as with the ontological model.

The Translation module

This module is responsible for (i) converting acquired data from sensors to RDF streams,

and (ii) inserting them as instances into the ontology. Both tasks are performed respec-

tively by the Stream Generator and the Instance creator sub-modules.

The Stream Generator sub-module performs semantic enrichment of the acquired

data, using the concepts and relations among them as defined in the ontological model.

This allows the module to stream out semantically enriched data streams that are then

consumed by the Stream Reasoner. The output streams are RDF streams. An RDF stream

is an ordered sequence of pairs, where each pair is constituted by an RDF triplet and its

timestamp t , (<Subject,Predicate,Object>,t) as defined in section 2.3.2.

The Instance creator sub-module creates instances from the received data and inserts

them in the ontology, i.e. it is in charge of populating the ontological model with obser-

vations and their corresponding metadata, such as the sensor(s) which made the obser-

vation(s), the observed property and the timestamp.

116

CHAPTER 6. STREAM REASONING FOR ABNORMAL SITUATION DETECTION AND
DIAGNOSIS

The Temporal Relations module

Once the data from the distributed and heterogeneous data sources are available in a

homogeneous, contextualized and temporally ordered representation, the streams can

be explored to generate new knowledge.

A set of queries, which combine background knowledge extracted from the ontology

and some relevant parts of the streams, is registered and executed by the Stream Reasoner

over the data streams. These queries represent particular situations to be identified and

they include mainly temporal dependencies between observations (that can be normal

ones or anomalies). There are several possibilities for the implementation of this module.

Some of them were discussed in section 2.3.2.

When this module detects situations, they can be converted into RDF streams and be

returned as output, i.e. this module produces streams of situations as output. This output

feeds another stream reasoner in the Cause determination module. In this way, the Tem-

poral Relations module itself can be seen as an advanced sensor able to produce high level

data. Furthermore, the detected situations are stored in the ontological model indicating

also the resources involved in that situation. This is represented by the involvedInSit-

uation relation explained in section 5.1.7 of Chapter 5.

6.1.2 The Diagnosis component

This component has only one module called Cause Determination to determine the pos-

sible causes that caused an abnormal situation.

The Cause Determination module

The purpose of the Cause Determination module is to identify the possible causes that

generated a situation detected by the Temporal Relation module. For this, two compo-

nents are used separately: a Stream Reasoner and a Reasoner.

Stream reasoning is more suitable to highly dynamic data than classical reasoning ap-

proaches. Thus, in the case where causes need to be determined in real-time, the Stream

Reasoner is used to identify the causes. The association between the situations and their

possible causes are stored in the ontological model and they are exploited by this module

to return them. However, it is possible that some situations do not have identified causes

in a real scenario, in which case the system notifies that the causes are unknown.

Therefore, in order to determine the possible causes of a situation classical reasoning

approaches can be used. They provide other inferences that can help in determining the

causes of a situation. More complex queries can be performed to the ontological model in

order to extract information useful for cause determination. For example, it can be neces-

sary to consider the Open World Assumption, which states that the absence of a statement

alone cannot be used to infer that the statement is false. In this case, the Reasoner can be

also used over the ontology to infer the causes, if the real-time requirement is not needed.

This last option has some advantages over the previous one. If the cause is identified later,

117

CHAPTER 6. STREAM REASONING FOR ABNORMAL SITUATION DETECTION AND
DIAGNOSIS

it is added as an instance to the ontological model and linked to the situation for future

use.

In both cases, the Diagnosis component provides the Decision Making component

with the identified situation together with the possible causes inferred by the reasoner(s).

The association between the situation and the causes is also added to the ontological

module.

6.1.3 The Abnormal Situation Refinement component

As mentioned in the previous subsection, the Translation module, in addition to generat-

ing the data streams, populates the ontology with semantically enriched data. The main

purpose of the Update/Create situations module is to exploit the historical data stored as

instances in the ontological model, to refine the already defined situations and eventually

to find new ones. This can be accomplished by (i) reasoning over the ontology to derive

implicit knowledge, and (ii) interacting with the ontology by issuing one-time queries.

These queries can be executed to check how often a situation happens or to check the

trend of the values of certain properties to refine the constraints on them and thus refine

the situations associated with those constraints.

This module uses a classic reasoner and not a stream reasoner because reasoning is

applied to static data stored in the ontological model and not to the data streams.

6.1.4 The Decision Making component

Considering the situations and their causes, it is possible to support decision making tasks

to determine what actions to launch to correct the behavior of the machines and avoid

breakdowns. The actions to be triggered are diverse. For example, certain maintenance

tasks can be launched remotely and performed by the machines themselves or the smart

system can issue an alert to notify the operator closest to the machine to inspect it, if

human action is needed.

Each application can perform more advanced reasoning and processing on the re-

ceived data in order to determine the adaptation strategies that are needed to improve

the behavior of the industrial system. These strategies may include changes to the oper-

ation parameters of a machine or the launching of a maintenance task, that are launched

by the Application layer (Figure 4.1).

6.2 An Illustrative case study with two properties

In this section, a case study is presented to illustrate the application of our approach and

the advantages of detecting abnormal situations by interpreting observations in their con-

texts. First, the illustrative case study with two properties whose values have a causal re-

lationship in time is formally described. Second, the illustrative case study is instantiated

in an industrial scenario with two sensors deployed in a machine.

118

CHAPTER 6. STREAM REASONING FOR ABNORMAL SITUATION DETECTION AND
DIAGNOSIS

t i met0 tr tj ta tn tm

PX,PY

TX

TY

situation

w

Figure 6.2 – Example of a relevant situation involving two properties and an action triggered to
correct the values.

The formal description of the case study (Figure 6.2) is the following: Consider two

properties PX and PY. At time tr property PX exceeds its threshold TX indicating a positive

deviation from its normal values. At time tj property PY exceeds its threshold TY also

indicating a positive deviation from its normal values. This deviation is a consequence

resulting from the increase of the values of PX. At time ta an action is triggered to correct

the behavior of PX and at time tn, property PX is under TX. Then at tm, property PY also falls

under TY. In this case, the sensed value of PY at tj is interpreted in the context of property

PX exceeding its threshold, since tr. The action launched at ta is decided considering this

interpretation.

Let us consider the following industrial scenario with a machine M1 as a part of a pro-

duction line in a company. This machine has a main component M2, on which the opera-

tion of the machine depends. Both the machine and its component have sensors, called

SensorTM1 and SensorTM2, which measure respectively the temperature of the machine

and of its component. The goal is to monitor the temperature of the machine and of its

component. Formally, PY and PX are the temperature properties of the machine and its

component.

As shown in Figure 6.2, during the execution of the task performed by the machine,

an increase in the M2 temperature is observed. Let us assume that this is due to dirty

filters in the cooling system. The M2 temperature deviates from its normal behavior at

tr, while PY is normal. The observation made by SensorTM2 at time tr is represented in

the RDF format using the structure of our ontology in Listing 6.1. Later, at time tj the M1

temperature also exceeds its threshold.

:obsTempM2 a sosa:Observation ;

sosa:observedProperty :Px ;

sosa:madeBySensor :SensorTM2 ;

sosa:hasSimpleResult Tx^^xsd:float ;

:hasTime tr .

Listing 6.1 – Example of an observation in RDF using the structure of our ontology.

119

CHAPTER 6. STREAM REASONING FOR ABNORMAL SITUATION DETECTION AND
DIAGNOSIS

Figure 6.3 – Representation of the scenario presented in the case study using our model.

This deviation is a consequence of the increased M2 temperature, as M2 is the main heat

source in M1. Consequentially, a higher M2 temperature leads to a higher M1 temperature.

Our approach allows to exploit this knowledge about the link between the two temper-

ature values. Through this interpretation of the anomaly in PY, it is possible to detect

situation AbnormalT-M1M2.

The C-SPARQL query shown in Listing 6.2 detects this situation and selects the ob-

servations and the resources relevant to the situation of interest. Once the situation is

detected, an instance (AbnormalT-M1M2) is added to the ontological model, as well as the

relations with the corresponding observations (obsTempM1 and obsTempM2). Figure 6.3

shows the instantiation of the ontological model after reasoning.

The detection of this situation and its interpretation avoids a general inspection of M1

due to its high temperature. Only the state of its component M2 has to be verified. This

allows to take action to correct the behavior of PY considering its context. At time ta, an

action is taken about M2 (cleaning or replacement of the cooling system filters) that solves

the problem, which enables the temperature of M2 to decrease. After some time, this leads

to a decrease in the temperature of M1.

Although the case study presented in this section involves only two properties, it shows

the advantages of interpreting an observation in its context and the exploitation of back-

ground knowledge. In real cases, more complex situations can be detected using the pro-

posed approach: for example, as an extension to the previous case, it is possible to in-

terpret the anomaly of temperature PY regarding the average of the values of temperature

PX measured during a certain time window w, instead of only considering if one of these

values is greater than the threshold TX. The corresponding C-SPARQL query is displayed

in Listing 6.3.

120

CHAPTER 6. STREAM REASONING FOR ABNORMAL SITUATION DETECTION AND
DIAGNOSIS

REGISTER QUERY sit-AbnormalT-M1M2 AS

PREFIX :<http://semanticweb.org/STEaMINg/ContextOntology-COInd4#>

PREFIX f: <http://larkc.eu/csparql/sparql/jena/ext#>

SELECT ?o1 ?o2 ?m1 ?m2

FROM STREAM <Stream-sensorTM1> [RANGE 5s 1s]

FROM STREAM <Stream-sensorTM2> [RANGE 5s 1s]

WHERE {

:sensorTM1 :isHostedBy ?m1 .

:sensorTM1 :madeObservation ?o1 .

?o1 :hasSimpleResult ?res1 .

?o1 :hasTime ?t1 .

?s2 :isHostedBy ?m2 .

?s2 :madeObservation ?o2 .

?o2 :hasSimpleResult ?res2 .

?o2 :hasTime ?t2 .

FILTER (

f:timestamp(:sensorTM1,:madeObservation,?o1)

< f:timestamp(?s2,:madeObservation,?o2)

&& ?res1 >= Ty

&& ?res2 >= Tx

&& ?s2 != sensorTM1

&& ?m1 = M1

&& ?m2 = M2) .

} ;

Listing 6.2 – C-SPARQL query to detect the described situation.

REGISTER QUERY sit-AbnormalT-M1M2-avg AS

PREFIX :<http://semanticweb.org/STEaMINg/ContextOntology-COInd4#>

SELECT ?o1 ?o2 ?m1 ?m2

FROM STREAM <Stream-sensorTM1> [RANGE 5s 1s]

FROM STREAM <Stream-sensorTM2> [RANGE 5s 1s]

WHERE {

:sensorTM1 :isHostedBy ?m1 .

:sensorTM1 :madeObservation ?o1 .

?o1 :hasSimpleResult ?res1 .

?o1 :hasTime ?t1 .

?s2 :isHostedBy ?m2 .

?s2 :madeObservation ?o2 .

{ SELECT ?s2 (avg(?p2) AS ?average)

WHERE {

?s2 :madeObservation ?o2 .

?o2 :hasSimpleResult ?res2 .

?o2 :hasTime ?t2 .

}

GROUP BY ?s2

HAVING (avg(?res2) >= Tx)

}

FILTER (

?res1 >= Ty

&& ?s2 != :sensorTM1) .

} ;

Listing 6.3 – C-SPARQL query considering the average of Py.

6.3 Conclusion

This chapter describes the framework introduced in Chapter 4. The main components

of it are: (1) the Monitoring component that contains the Translation and Temporal rela-

121

CHAPTER 6. STREAM REASONING FOR ABNORMAL SITUATION DETECTION AND
DIAGNOSIS

tions modules to detect abnormal situations in real-time; (2) the Diagnosis component,

that has only one module called Cause Determination, to determine the possible cause(s)

that generate an abnormal situation; (3) the Situation refinement component, that con-

tains the Update/Create situation module that helps experts in refining already defined

situations or in identifying new ones; and (4) the Decision Making component, which is

not part of the task of detecting situations or determining the possible causes, but ex-

ploits this information to support decision making. All these components rely on the

ontological model described in Chapter 5 to semantically enrich data representation and

processing.

Our approach uses stream reasoning to detect situations that could lead to failures

timely, to make the most appropriate decision to avoid the interruption of the manufac-

turing processes. The use of stream reasoning allows the integration of data from different

data sources, with different underlying meanings, different temporal resolutions as well as

the processing of these data in real-time. Furthermore, our proposal also uses classic rea-

soning approaches to complete the determination of causes that could not be obtained

by stream reasoning.

The main limitation of the proposed approach is that not all situations associated with

failures are known in advance. Therefore, if these failures happen they are not detected.

It is thus required to consult domain experts for decisions about these undetected fail-

ures. The domain experts asses the current state of the production system and provide

appropriate decisions that can be further capitalized.

In this way, new queries capitalizing the experts’ experience need to be registered to

the stream reasoner to update the initial set of queries. Thus, when in the future a similar

situation needs to be detected, the updated set of queries will detect that situation. The

abnormal situation refinement component helps the experts in the creation of these new

queries that represent the identified situations, as explained in this chapter.

To summarize, an approach that allows to detect high-level situations from low-level

context and sensor information is proposed in this chapter. As already discussed, detect-

ing situations can trigger actions to adapt the process behavior, and this change in behav-

ior can lead to the generation of new situations. These situations can have different levels

of severity, and can be nested in different ways. Knowing what potential situations may

arise after application of a certain action can help to support decision making. Therefore,

the following chapter presents a method to build a hierarchy of all the possible situations

depending on the constraints they rely on.

122

Chapter 7

Situation Hierarchies for supporting
Decision Making

Contents
7.1 Related work . 124

7.2 Situation hierarchy . 125

7.2.1 Definitions . 126

7.2.2 The lattice construction . 128

7.2.3 Lattice proof . 130

7.3 Case study for lattice interpretation and exploitation 134

7.4 Conclusion . 137

123

CHAPTER 7. SITUATION HIERARCHIES FOR SUPPORTING DECISION MAKING

As mentioned in Chapter 4, manufacturing processes are not always executed under

optimal conditions. Nevertheless, they can sometimes continue their execution in de-

graded conditions without being completely stopped. Expert knowledge enables to de-

scribe these ”intermediate” manufacturing conditions. The associated abnormal situa-

tions can have different levels of severity, and be nested in different ways. They can im-

pact other processes or resources that participate in these processes and they can trigger

other situations that represent a risk of major interruption of the manufacturing process

or a risk of accident.

Once a situation that may lead to failures is detected, decisions must be made, such as

whether the process should be interrupted or continued under sub-optimal conditions.

In order to support the Decision making component of our approach, it is relevant to

consider which other situations can be reached from the current situation, to choose the

most appropriate action.

As mentioned in section 5.1.6, a situation is expressed as a combination of constraints.

In this chapter we propose an approach to establish an order among the situations. The

order among the situations is a hierarchy that depends on how situations’ constraints

are correlated. This order represents a road-map of all the situations, desirable or unde-

sirable, that can be reached from a given one. In this way, it is possible to identify the

actions that can be taken to correct the abnormality, considering that certain actions can

modify the value of a property and thus change the state of the system, either by satisfying

another constraint or, on the contrary, by not satisfying constraints anymore.

The proposed approach uses the lattice theory [Nat98, Dav02, Gra11] to provide an

expressive formalization to order the situations in a taxonomic way. In this way, the hi-

erarchy of situations is formally extracted from the situations definitions. The remainder

of the chapter is structured as follows: section 7.1 extends the state of the art described

in Chapter 3, it presents related work for situation ordering. In section 7.2, the approach

for building the lattice is introduced, providing the definitions for the construction of the

hierarchy of situations. In section 7.3, the interpretation and exploitation of the lattice

to support the decision making is detailed. In Section 7.4, we present some concluding

remarks.

7.1 Related work

In this section, we extend the literature review, presented in Chapter 3, with focus on other

approaches and research fields that are related to the notion of order among situations of

interest.

Most of the proposals coming from the Complex Event Processing (CEP) commu-

nity [CM12, BDG+07, WDR06] offer relatively simple languages for representing complex

events. However, these modeling proposals do not support the definition of complex

events hierarchies. To overcome this limitation, TESLA [CM10], an event specification

language for CEP, supports content-based event filtering and allows to capture relations

among temporally related patterns of events. With the same goal as TESLA but coming

124

CHAPTER 7. SITUATION HIERARCHIES FOR SUPPORTING DECISION MAKING

from the ontology research field, in [TBDV+17] the authors present a syntax for Descrip-

tion Logic Event Processing (DELP), permitting reasoning.

Other approaches to define, structurally, the event type composition in cyber-physical

systems (CPS) adopt the theory of concept lattice [Wil05]. In [TVG+10], a concept lattice-

based event model for CPS is presented. With this model, a CPS event is uniformly rep-

resented by three components: the event type, its internal attributes, and its external at-

tributes. The internal and external attributes together characterize the event type. The

model allows events to be composed across different components and devices within and

among both the cybernetic and physical domains.

Other approach proposes the use of rule-based models such as Adaptive Neuro Fuzzy

Interference Systems (ANFIS) models for monitoring wind turbine SCADA (Supervisory

Control and Data Acquisition) signals [SS14, SSA13]. In order to obtain turbine condition

statements, the authors implement rules given by an expert who is familiar with the be-

havior of the turbine, typical faults and their root causes. There are two types of rules:

generic rules used to highlight anomalies, and specific rules providing specific condition

or potential root causes. In this case, it is possible to determine whether one antecedent

is contained in another or not. However, there is not a direct way to determine that an

antecedent or situation is partially occurring or that other constraints must be satisfied

for another situation to occur.

Understanding the relations among situations, with an order among them, allows the

choice of the most effective actions to overcome the effects of abnormal situations. In

most of the solutions mentioned above and in section 3.2.2, it is possible to observe a

hierarchy of events in the sense that complex events are composed of simple ones, but

this hierarchy does not directly provide the information that certain complex events may

occur partially in other complex events or that they share certain simple events or not. To

the best of our knowledge, no works have been published to establish a formal represen-

tation of a hierarchy among (abnormal) situations.

The approach presented in this chapter is a method that allows to order not only the

complex events already defined based on the simple events that compose them, but also

to order certain combinations of simple events that do not completely compose a com-

plex event. Additionally, it is possible to consider occurrences of simple events that imply

the occurrence of other simple events for the construction of the situation hierarchy.

7.2 Situation hierarchy

As evoked before, analysing the relations among situations, with an order among them,

allows the choice of the most effective actions to overcome the effects of abnormal situa-

tions. These actions can, in fine, adapt the maintenance schedule or lead to take further

measures to prevent unexpected downtime. The idea driving this proposal is to formally

represent a hierarchy among situations leading to failures.

In this section, we firstly introduce the definitions that are necessary for the construc-

tion of the hierarchy of situations, and secondly, we describe the steps to automatically

125

CHAPTER 7. SITUATION HIERARCHIES FOR SUPPORTING DECISION MAKING

build this hierarchy from the situations definitions and its associated lattice.

7.2.1 Definitions

In order to formally represent a hierarchy of situations, let us consider the following struc-

ture 〈S ,C ,R,T 〉 where:

• S = {s1, s2, s3, . . . , sn} is the set of all the situations,

• C = {c1,c2,c3, . . . ,cm} is the set of all the constraints,

• R ⊆S ×C is a binary relation that links a situation with a constraint, and

• T ⊆C ×C is a binary relation that links a constraint with another constraint.

It is worth mentioning again two aspects about situations that were defined in section

5.1.6. The first one is that a situation defines an abstract state of affairs that represents a

particular scenario of interest and involves observations linked through spatio-temporal

relationships, resources and processes. The second one is that situations are abstract,

meaning that there may be different instances of a given situation. Instances of the same

situation can happen during different periods of time and involve several resources, but

they all satisfy the same constraints.

Set C contains all the constraints that are associated with one or more situations in

the set of situations S . These constraints concern properties of the processes, machines,

resources and of the environment in which the tasks are executed. For example, if we

consider variables MC1_Temp and MC2_Temp, corresponding to the temperature of a com-

ponent of a machine and the temperature of another component of the same machine,

then MC1_Temp < 40◦C and MC1_Temp>MC2_Temp are constraints defined on them.

The binary relation R is used to establish that a constraint is involved in a situation.

We write s1Rc1 to indicate that the constraint c1 is involved in the situation s1. The R re-

lation is therefore built from the relationships between the situations and the constraints

that are extracted from expert knowledge.

The sets S and C correspond to the Situation class and the Constraint class of

our ontological model (see Chapter 5), respectively. The association between a situation

and its constraints is represented through the hasConstraint relation in the ontological

model, represented by the binary relation R.

The example below is used to illustrate the definition of the structure and the opera-

tors. Let us consider the following sets of constraints and of situations, with six constraints

and six situations, respectively:

C = {c1, c2, c3, c4, c5, c6} and S = {s1, s2, s3, s4, s5, s6}.

The corresponding R relation, built from S and C , is shown in the first two columns

of Table 7.1. For example, the fourth line in this table indicates that situation s4 happens

(first column) if constraints c2 and c5 are satisfied (second column). Another way to show

relation R is depicted in Figure 7.1. In this figure, we can observe how different situations

126

CHAPTER 7. SITUATION HIERARCHIES FOR SUPPORTING DECISION MAKING

Table 7.1 – Example of situations and associated constraints (in bold face the constraints that are
implied by other constraints)

Situations Constraints T Constraints

s1 c1, c3, c6 c1, c2, c3, c4, c5, c6

s2 c1, c4, c6 c1, c2, c4, c5, c6

s3 c2, c4, c6 c2, c4, c5, c6

s4 c2, c5 c2, c5

s5 c3, c6 c3, c4, c5, c6

s6 c1, c6 c1, c2, c6

share a part of the constraints in their definition. For example, s1 and s2 share constraints

c1 and c6.

Some constraints can be more general than others, i.e. include others. Such is the

case with, for example, constraints c1 and c2 defined as MC1_Temp < 40◦C and MC1_Temp

< 60◦C, respectively. If c1 is satisfied, then c2 is necessarily also satisfied. Furthermore,

some constraints may imply other constraints due to physical properties extracted from

expert knowledge or observations. For this reason, the T relation is defined to indicate

that if a constraint is satisfied, then another one is also satisfied. We write c1T c2.

Consider the implications among the constraints from the set of all constraints C

shown in Figure 7.1 (arrows labeled with T). These implications are inferred from the

order relations (<,>,≤,≥), from observations, or extracted from expert knowledge. Tak-

ing into account these relations, the constraints associated with each situation are estab-

lished as shown in Table 7.1 (third column). This allows to associate both explicit and

implicit (implied) constraints to a situation.

.
c1 .

c2 .
c3

.
c4 .

c5
.

c6

.
s1

.
s2

.
s3

.
s4

.
s5

.
s6

T T T

T

R

Figure 7.1 – Situations with constraints (R) and implications among the constraints (T).

In order to extend the formalization between a situation and a constraint to a set of

situations and a set of constraints, two operators are defined below, based on the use of

both R and T relations. These operators are defined on a set of situations or constraints

because each situation can involve several constraints, and several situations can have

constraints in common.

127

CHAPTER 7. SITUATION HIERARCHIES FOR SUPPORTING DECISION MAKING

The first operator dX e enables the retrieval of the set of constraints associated to a set

of situations.

Definition 4 For a situation set X , X ⊆S , let

dX e := {c ∈C |∀x ∈X : xRc ∨∃c ′ ∈C : xRc ′∧ c ′T c}

Considering situations s1 and s2 of the example presented above, the constraints related

to both situations are d{s1, s2}e = {c1,c2,c4,c5,c6}.

The second operator bY c conversely enables the retrieval of the set of situations in-

volving a set of constraints Y .

Definition 5 For a constraint set Y , Y ⊆C , let

bY c := {s ∈S |∀y ∈Y : sRy ∨∃c ′ ∈C : sRc ′∧ c ′T c}

This operator retrieves all the situations involving at least all the constraints in the set

Y . Therefore, considering the example presented above, if the constraints c2 and c5 are

considered, then the situations involving those constraints are b{c2,c5}c = {s1, s2, s3, s4}. Let

us note that these situations may involve other constraints, e.g. s3 with c4 and c6.

7.2.2 The lattice construction

Using the elements of the structure 〈S ,C ,R,T 〉 and the two operators d.e and b.c pre-

viously defined, the construction of the lattice representing the hierarchy of situations is

detailed below.

In our approach, we group situations and their constraints as ordered pairs (X ,Y)

where X is a set of situations and Y is a set of constraints such that dX e =Y and bY c =
X . The first component of the pair is a set including all the situations that share all the

constraints belonging to the second component. The second component is therefore the

set including all the common constraints among the situations of the first component.

In order to find all the pairs and thus the nodes of the lattice, given a set of situations

S , a set of constraints C , and relations R and T , Algorithm 1 is applied. Firstly, d{s}e
is computed for each situation s ∈ S (lines 3-5). Then, for any two sets in this set of

sets (consSet), their intersection is calculated. If this intersection is not yet contained in

consSet , it is added to it (lines 6-12). This step is repeated until no new sets are generated.

If set C of all the constraints and the empty set ({}) are not in consSet , they are also added

to it (lines 13-18). These two sets yield the minimum and maximum nodes of the lattice,

respectively. Finally, for every set O in consSet , bOc is computed (lines 19-21). In the end,

set (seto f Pai r s) of all the (X ,Y) pairs that satisfy dX e =Y and bY c =X is obtained.

Considering the example in Figure 7.1 and Table 7.1, if the set of situations S and the

set of constraints C are given as input to the algorithm, then the output are the nodes of

the lattice shown in Figure 7.2. Let us note that since the situations are predefined, the

search for all pairs can be done offline. If a situation needs to be added, it is either added

128

CHAPTER 7. SITUATION HIERARCHIES FOR SUPPORTING DECISION MAKING

Algorithm 1 Calculate all the pairs (X ,Y) where X ⊆S , Y ⊆C , dX e =Y and bY c =X

(seto f Pai r s)

Require: a set of Situations S and a set of Constraints C

Ensure: {(X ,Y)|X ⊆S ∧Y ⊆C ∧dX e =Y ∧bY c =X }
1: consSet ← {} //consSet i s a set o f constr ai nt set s
2: seto f Pai r s ← {}
3: for all s ∈S do
4: consSet ← consSet ∪ {d{s}e}
5: end for
6: for all O1 ∈ consSet do
7: for all O2 ∈ consSet do
8: if O1 ∩O2 6∈ consSet then
9: consSet ← consSet ∪ {{O1 ∩O2}}

10: end if
11: end for
12: end for
13: if C 6∈ consSet then
14: consSet ← consSet ∪ {C }
15: end if
16: if {} 6∈ consSet then
17: consSet ← consSet ∪ {{}}
18: end if
19: for all O ∈ consSet do
20: seto f Pai r s ← seto f Pai r s ∪ {(bOc,O)}
21: end for

to a node or a new node is created. The addition of a new situation to the hierarchy has

an impact on the structure of the hierarchy.

Once all the pairs are found, the next step is to order them in a lattice to build the

hierarchy of situations.

({s
1
,s

2
,s

3
,s

4
,s

5
,s

6
},{ })

({s
1
,s

2
,s

3
,s

4
,s

6
},{c

2
 }) ({s

1
,s

2
,s

3
,s

4
,s

5
},{c

5
 }) ({s

1
,s

2
,s

3
,s

5
,s

6
},{c

6
 })

({s
1
,s

2
,s

3
,s

6
},{c

2
,c

6
}) ({s

1
,s

2
,s

3
,s

5
},{c

4
,c

5
,c

6
 })({s

1
,s

2
,s

3
,s
4
},{c

2
,c

5
 })

({s
1
,s

2
,s
3
},{c

2
,c

4
,c

5
,c

6
 }) ({s

1
,s
5
},{c

3
,c

4
,c

5
,c

6
 })({s

1
,s

2
,s
6
},{c

1
,c

2
,c

6
})

({s
1
,s
2

},{c
1
,c

2
,c

4
,c

5
,c

6
 })

({s
1
},{c

1
,c

2
,c

3
,c

4
,c

5
,c

6
 })

Figure 7.2 – Lattice representing the hierarchy of situations (the situations defined exactly by all
the constraints of the second component of the pair in the node are shown in bold face)

129

CHAPTER 7. SITUATION HIERARCHIES FOR SUPPORTING DECISION MAKING

A lattice is an algebraic structure that consists of a partially ordered set in which ev-

ery two elements have a unique supremum (also called least upper bound or join) and a

unique infimum (also called greatest lower bound or meet). A partial order is a pair (P ,¹)

where P is a set and ¹ is a binary relation over P where ¹ is reflexive, anti-symmetric

and transitive.

For our lattice, we consider L = {(X ,Y)|X ⊆S ∧Y ⊆C ∧dX e =Y ∧bY c =X } and

the following binary relation defined over it:

Definition 6 Let (X ,Y) and (X ′,Y ′) be two pairs where X , X ′ are sets of situations and

Y , Y ′ are sets of constraints. The situations in X ′ are reachable from X if the constraints

in Y ∩Y ′ are satisfied, noted as (X ,Y) ¹ (X ′,Y ′) ⇔X ⊆X ′∧Y ′ ⊆Y .

7.2.3 Lattice proof

The fact that the hierarchy is a lattice allows us to know the situations that can be reached

from the current situation, knowing also the intermediate situations (this is inherited

from the fact that a lattice is a partial order).

In addition, let us suppose that two situations are happening simultaneously and

these situations are represented in two different nodes of the lattice. Each set of situa-

tions from those nodes have a larger common set of situations with the constraints that

are common to all situations in both sets of the two nodes. Dually, each set of situations

have a smaller common subset of situations, which comprises all the constraints that all

the situations in both sets of the nodes have. This allows to know from two situations that

are happening, which situations can be reached by the production system: situations that

satisfy the smaller number of constraints between the two situations that are happening

(supremum) or situations that satisfy the greater number of constraints in common be-

tween the two situations that are happening (plus some other constraint(s)) (infimum).

Theorem 1 (L ,¹) is a lattice.

Proof: The proof is done in two parts. In the first part, it is proved that (L ,¹) is a partially

ordered set. In the second part, it is proved that for any two elements of the lattice they

have a unique supremum and a unique infimum.

Part 1

For (L ,¹) to be a partially ordered set, ¹ must be reflexive, anti-symmetric and transitive.

• First it is proven that ¹ is reflexive, i.e.

∀(X ,Y) ∈L | (X ,Y) ¹ (X ,Y).

By the definition of ¹,

(X ,Y) ¹ (X ,Y) ⇔X ⊆X ∧Y ⊆Y

130

CHAPTER 7. SITUATION HIERARCHIES FOR SUPPORTING DECISION MAKING

Since each set is included in itself, ¹ is reflexive.

• Now we prove that ¹ is anti-symmetric, i.e.

∀(X ,Y), (X ′,Y ′) ∈L | (X ,Y) ¹ (X ′,Y ′)∧ (X ′,Y ′) ¹ (X ,Y) ⇒ (X ,Y) = (X ′,Y ′)

Let two pairs (X ,Y), (X ′,Y ′) belong to L , and

(X ,Y) ¹ (X ′,Y ′) and (X ′,Y ′) ¹ (X ,Y).

Applying the definition of ¹ on both terms of the conjunction we obtain respec-

tively:

X ⊆X ′∧Y ′ ⊆Y and X ′ ⊆X ∧Y ⊆Y ′,

Thus, on the one hand we have

X ⊆X ′ and X ′ ⊆X

which means that X =X ′, and on the other hand

Y ′ ⊆Y and Y ⊆Y ′

which means that Y =Y ′.

As X = X ′ and Y = Y ′, we conclude that (X ,Y) = (X ′,Y ′). Therefore, ¹ is anti

symmetric.

• Finally, we show that ¹ is transitive, i.e.

(X ,Y) ¹ (X ′,Y ′)∧ (X ′,Y ′) ¹ (X ′′,Y ′′) ⇒ (X ,Y) ¹ (X ′′,Y ′′).

Let (X ,Y), (X ′,Y ′), (X ′′,Y ′′) belong to L , and consider that

(X ,Y) ¹ (X ′,Y ′) and (X ′,Y ′) ¹ (X ′′,Y ′′).

Now, if we apply the definition of ¹ on both terms of the conjunction we get,

X ⊆X ′∧Y ′ ⊆Y and X ′ ⊆X ′′∧Y ′′ ⊆Y ′,

respectively. Considering sets X , X ′, and X ′′ we have

X ⊆X ′ and X ′ ⊆X ′′

which means that X ⊆X ′′ because ⊆ is transitive. Similarly,

Y ′′ ⊆Y ′ and Y ′ ⊆Y

which means that Y ′′ ⊆Y .

As X ⊆X ′′ and Y ′′ ⊆Y then we conclude that (X ,Y) ¹ (X ′′,Y ′′). Therefore, ¹ is

transitive.

131

CHAPTER 7. SITUATION HIERARCHIES FOR SUPPORTING DECISION MAKING

Part 2

For (L ,¹) to be a lattice, any two elements of the lattice must have a unique supremum

and a unique infimum. Firstly, three lemmas are introduced:

Lemma 1 Let Y be a set of constraints and X a set of situations, then

Y ⊆ dbY ce and X ⊆ bdX ec.

Proof: bY c includes all the situations involving the constraints in set Y and the situ-

ations involving constraints that are included by the constraints in set Y . Then, dbY ce
includes all the constraints associated with the set of situations bY c. Therefore, the set of

constraints Y is contained in dbY ce.

The reasoning is the same for the set of situations X . �

Lemma 2 Let Y ,Y ′ be sets of constraints and X ,X ′ be sets of situations, then

Y ⊆Y ′ ⇒bY ′c ⊆ bY c and X ⊆X ′ ⇒dX ′e ⊆ dX e.

Proof: We prove that dX ′e⊆dX e. By definition of d.e on X ′,

dX ′e = {c ∈C |∀x ∈X ′ : xRc ∨∃c ′ ∈C : xRc ′∧ c ′T c}

This is for all b ∈X ′, and by hypothesis X ⊆X ′. Therefore,

dX ′e = {c ∈C |∀x ∈X ′ : xRc ∨∃c ′ ∈C : xRc ′∧ c ′T c}

⊆ {c ∈C |∀x ∈X : xRc ∨∃c ′ ∈C : xRc ′∧ c ′T c} = dX e

The same reasoning can be applied to prove Y ⊆Y ′ ⇒bY ′c ⊆ bY c.

This lemma shows that the more constraints are required, the fewer situations involve all

of them. Conversely, the more situations we consider, the fewer constraints they have in

common. �

Lemma 3 Let Y ,Y ′ be sets of constraints and X ,X ′ be sets of situations, then

bY c∪bY ′c ≡ bY ∪Y ′c and dX e∪dX ′e ≡ dX ∪X ′e.

Proof: Let us consider y ∈ bY c∪bY ′c, we prove that y ∈ bY ∪Y ′c.

As mentioned before, if y ∈ bY c∪bY ′c, then y ∈ bY c∨ y ∈ bY ′c. Applying the definition of

b.c to both terms of the disjunction, we obtain

y ∈ {s ∈S |∀y ∈Y : sRy ∨∃c ′ ∈C : sRc ′∧ c ′T c} ∨
y ∈ {s ∈S |∀y ∈Y ′ : sRy ∨∃c ′ ∈C : sRc ′∧ c ′T c}

By the definition of the disjunction, we can rewrite the statement above as follows

y ∈ {s ∈S |∀y ∈Y ∪Y ′ : sRy ∨∃c ′ ∈C : sRc ′∧ c ′T c}

132

CHAPTER 7. SITUATION HIERARCHIES FOR SUPPORTING DECISION MAKING

Applying the definition of b.c to the statement above, we get

y ∈ bY ∪Y ′c

Therefore, we can conclude that dY e∪dY ′e ⊆ dY ∪Y ′e.

Similarly, we can prove dY ∪Y ′e ⊆ dY e∪dY ′e considering that y ∈ bY ∪Y ′c and conclud-

ing that y ∈ bY c∪bY ′c.

The same reasoning can be applied to prove dX e∪dX ′e ≡ dX ∪X ′e. �

Having defined the three lemmas and their respective proofs, we continue with the proof

of the second part of the theorem.

For any two pairs (X ,Y) and (X ′,Y ′) we obtain:

• the infimum of (X ,Y) and (X ′,Y ′) as (X ,Y)∧ (X ′,Y ′) := (X ∩X ′,dbY ∪Y ′ce)

• the supremum of (X ,Y) and (X ′,Y ′) as (X ,Y)∨ (X ′,Y ′) := (bdX ∪X ′ec,Y ∩Y ′)

To prove the existence of the unique infimum, we have to show that (X ,Y)∧ (X ′,Y ′)
is smaller than both (X ,Y) and (X ′,Y ′), and any other common child of (X ,Y) and

(X ′,Y ′) is also a child of (X ,Y)∧ (X ′,Y ′).

First we prove that

(X ∩X ′,dbY ∪Y ′ce) ¹ (X ,Y).

By the definition of ¹, we have

X ∩X ′ ⊆X and Y ⊆ dbY ∪Y ′ce

From Y ⊆ Y ∪Y ′ applying Lemma 2 twice we obtain dbY ce ⊆ dbY ∪Y ′ce. In addition,

Lemma 1 expresses that Y ⊆ dbY ce. Thus, combining the last two statements we conclude

that

Y ⊆ dbY ce ⊆ dbY ∪Y ′ce.

The same method can be used to prove that (X ∩X ′,dbY ∪Y ′ce) ¹ (X ′,Y ′)
Now we prove that any other common child of (X ,Y) and (X ′,Y ′) is also a child of

(X ,Y)∧ (X ′,Y ′). Let us consider (X ′′,Y ′′) a child of (X ,Y) and (X ′,Y ′). Then, by the

definition of ¹ we have

(X ′′,Y ′′) ¹ (X ,Y) ⇒X ′′ ⊆X ∧Y ⊆Y ′′

(X ′′,Y ′′) ¹ (X ′,Y ′) ⇒X ′′ ⊆X ′∧Y ′ ⊆Y ′′.

(X ′′,Y ′′) is a child of (X ,Y)∧ (X ′,Y ′) iff (1) X ′′ ⊆X ∩X ′ and (2) dbY ∪Y ′ce ⊆Y ′′.
The proof of (1) is trivial since by hypothesis we have X ′′ ⊆X and X ′′ ⊆X ′, then

X ′′ ⊆X ∩X ′.

133

CHAPTER 7. SITUATION HIERARCHIES FOR SUPPORTING DECISION MAKING

The proof of (2) is written below,

Y ⊆Y ′′ −−→
L. 2

bY ′′c ⊆ bY c
Y ′ ⊆Y ′′ −−→

L.2
bY ′′c ⊆ bY ′c

⇒bY ′′c ⊆ bY c∪bY ′c −−→
L.3

bY ′′c ⊆ bY ∪Y ′c −−→
L.2

dbY ∪Y ′ce ⊆ dbY ′′ce

Therefore, we proved that any common child of (X ,Y) and (X ′,Y ′) is also a child of

(X ,Y)∧ (X ′,Y ′).

The proof of uniqueness is done by supposing that there are two different infimums

and then concluding that they are the same by applying the fact that ¹ is anti-symmetric.

Similarly, (X ,Y)∨ (X ′,Y ′) is greater than both (X ,Y) and (X ′,Y ′), and it is a child

of any common parent of these two pairs. Only the proof for the infimum is developed

here since the proof for the supremum is similar. �

7.3 Case study for lattice interpretation and exploitation

An illustrative case study is described in this section to highlight how the lattice can be

used and the advantages it offers to support decisions that need to be made when an

abnormal situation is detected in an industrial framework.

The case study is based on a manufacturing production line composed of several ma-

chines. These machines are equipped with sensors on different components. The sensors

collect data on the properties described in Table 7.2.

Several abnormal situations that could lead to failures in this scenario are defined by

experts. Each of them is expressed as a set of constraints. In this case study, we focus

on situations covering the following types of failures: hydraulic oil leakage, cooling sys-

tem filter obstructions, converter and rotor malfunctions and global malfunctions of the

production line. The defined abnormal situations are shown in Table 7.3, with a short de-

scription of what they represent. The constraints concerned by the abnormal situations

are described along the associated properties in Table 7.2.

Some situations represent conditions that can lead to the same potential failure, indi-

cating different levels of severity. For example, situations s1 and s2 both represent situa-

tions that could lead to the same failure but s2 indicates a higher severity since the tem-

perature threshold is higher than the temperature threshold for s1. In this case, higher

impact actions should be taken.

The lattice resulting from the scenario described above is shown in Figure 7.3. By ob-

serving the hierarchy of situations, in the upper part of the lattice the constraints which

are involved in most of the situations are verified. Further down in the lattice, the situ-

ations are more specific as they include more constraints. The most specific constraints

are close to the bottom of the diagram, meaning that these situations embed those that

appear higher up in the lattice.

The lattice provides a structure that represents the order in which the situations may

arise according to which constraints are verified. Considering that certain actions can

modify the value of a property and thus change the state of the industrial system, either

134

CHAPTER 7. SITUATION HIERARCHIES FOR SUPPORTING DECISION MAKING

Table 7.2 – Constraints definition.

Set of constraints C

ID Properties Restriction Device

c1 Oil temp. > 40◦C M1
c2 Oil temp. > 60◦C M1
c3 Transformer temp. > 45◦C M1T1
c4 Controller temp. > 40◦C M1Ct1
c5 Generator curr. < 800 A M1G1
c6 Platform temp. < 35◦C PL1
c7 Platform temp. > 40◦C PL1
c8 Gearbox temp. > 40◦C M2GB1
c9 Gearbox temp. > 60◦C M2GB1
c10 Generator speed < 500 rpm M2G1
c11 Environment temp. < 25◦C PL1
c12 Power output > 2000 kW PL1
c13 Power output < 500 kW PL1
c14 Power output < 200 kW PL1
c15 Conv. water temp. > 60◦C M3Cv1
c16 Conv. water temp. > 80◦C M3Cv1
c17 Trans. grid temp. < 35◦C M3T1
c18 Generator temp. > 45◦C M3G1
c19 Converter temp. > 60◦C M3Cv1
c20 Converter temp. > 80◦C M3Cv1
c21 Rotor speed < 200 rpm M4R1
c22 Rotor speed < 100 rpm M4R1
c23 Rotor Pitch angle < 5◦ M4R1

by satisfying another constraint or on the contrary by not satisfying a constraint anymore,

the lattice allows the analysis of the actions to take. It implies, from the decision support

point of view, reaching a node situated lower in the lattice if new constraints are satisfied,

or higher in the other case.

For example, if constraints c15, c17 and c18 are satisfied, it means that the situation s6

is happening, i.e. there is a cooling filter obstruction in machine M3. The lattice, and in

particular, its node ({s6, s7, s10}, {c15,c17,c18}), shows that situation s7, more critical than

s6, is reachable if no action is taken or if the action only imply the satisfaction of c16. In

general, the actions aim at correcting the abnormal property values causing them to re-

turn to normal values. In this case, a filter change action in the cooling system can make

the values of properties Converter water temp. and Generator temp. decrease be-

low the respective thresholds, i.e. the constraints c15 and c18 would no longer be satisfied.

This would lead the process at node ({s6, s7, s8, s9, s10}, {c17}) where only constraint c17 is

satisfied leading to a new state of the production system. Ideally, it is always intended to

go up in the lattice to node (S , {}), where none of the constraints are satisfied, meaning

that no abnormal situation is present or partially present.

135

CHAPTER 7. SITUATION HIERARCHIES FOR SUPPORTING DECISION MAKING

Table 7.3 – Situations and their concerned constraints (the constraints that are implied by other
constraints are in bold face)

Set of situations S

Sit. Const. (T) Description

s1 c1,c3,c4,c5,c6 M1 oil leakage
s2 c1,c2,c3,c4,c5,c6 M1 oil leakage
s3 c6,c8,c10,c11 Increase M2 oil temp.
s4 c6,c8,c9,c10,c11 Increase M2 oil temp.
s5 c7,c8,c9,c10,c11 Increase M2 oil temp.
s6 c15,c17,c18 M3 filter obstruction
s7 c15,c16,c17,c18 M3 filter obstruction
s8 c6,c17,c19 M3Cv1 malfunction
s9 c6,c17,c19,c20 M3Cv1 malfunction
s10 c15,c16,c17,c18,c19 M3Cv1 malfunction
s11 c12,c21,c23 M4R1 malfunction
s12 c12,c21,c22,c23 M4R1 malfunction
s13 c13,c21,c23 PL global malfunction
s14 c13,c14,c21,c23 PL global malfunction

A node in the lattice represents a possible state of the industrial system. It should be

noted that the minimum of the lattice, node ({},C), may represent an unreachable state:

Since this node includes all the constraints (C), it may be that two constraints cannot

be satisfied at the same time because they are exclusive, such as constraints c6 and c7.

However, this node is necessary for the hierarchy to be a lattice. If this happens in another

node of the lattice that it is not the minimum, then it denotes a problem in the definition

of the R or the T relations, since it would be a situation that could never be satisfied

because it concerns constraints that cannot be satisfied at the same time.

For each node defined as (X ,Y), all situations in X are at least partially occurring,

i.e. a part of their constraints is satisfied. When one of the situations in X involves exactly

all the constraints in Y and no other, this means that this situation is happening. This is

formally addressed in Definition 7 (these situations appear in bold face in Figures 7.2 and

7.3).

Definition 7 For a pair (X ,Y), X ⊆S and Y ⊆C , let

‖(X ,Y)‖ := {s ∈X |∀y ∈Y : sRy ∧@c ′ ∈C −Y : sRc ′}

For example, ‖({s6, s7, s10}, {c15,c17,c18})‖ = {s6} means that situation s6 happens in node

({s6, s7, s10}, {c15,c17,c18}) because it only involves constraints c15, c17 and c18.

Regarding the nodes where ‖(X ,Y)‖ is empty, this means that situations in X are

partially occurring, so that they are potential situations that the system could reach. The

discovery of these combinations of constraints in common among certain situations can

give rise to the definition of new situations that allow the early stage detection of certain

relevant situations, allowing preventive decisions to be made.

136

CHAPTER 7. SITUATION HIERARCHIES FOR SUPPORTING DECISION MAKING

({s
1
,s

3
,s

2
,s

5
,s

4
,s

7
,s

6
,s

9
,s

8
,s

12
,s

11
,s

14
,s

13
,s

10
},{ })

({s
3
,s

5
,s

4
},{c

11
,c

8
,c

10
})

({s
1
,s

3
,s

2
,s

4
,s

9
,s

8
},{c

6
})

({s
7
,s

6
,s

9
,s

8
,s

10
},{c

17
})

({s
12

,s
11

,s
14

,s
13

},{c
23

,c
21

})

({s
5
,s

4
},{c

9
,c

11
,c

8
,c

10
})

({s
3
,s

4
},{c

6
,c

11
,c

8
,c

10
})

({s
5
},{c

7
,c

9
,c

11
,c

8
,c

10
})

({s
4
},{c

9
,c

6
,c

11
,c

8
,c

10
})

({s
1
,s

2
},{c

1
,c

3
,c

5
,c

4
,c

6
})

({s
2
},{c

1
,c

2
,c

3
,c

5
,c

4
,c

6
})

({s
9
,s

8
},{c

19
,c

17
,c

6
})

({s
9
},{c

20
,c

19
,c

17
,c

6
})

({s
9
,s

8
,s

10
},{c

19
,c

17
})

({s
10

},{c
18

,c
15

,c
16

,c
17

,c
19

})

({s
7
,s

6
,s

10
},{c

15
,c

17
,c

18
})

({s
7
,s

10
},{c

16
,c

15
,c

17
,c

18
})

({s
12

,s
11

},{c
12

,c
23

,c
21

})

({s
14

,s
13

},{c
13

,c
23

,c
21

})

({s
12

},{c
22

,c
12

,c
23

,c
21

})

({s
14

},{c
14

,c
13

,c
23

,c
21

})

({ },{c
1
,c

3
,c

2
,c

5
,c

4
,c

7
,c

6
,c

9
,c

8
,c

12
,c

11
,c

14
,c

13
,c

10
,c

15
,c

16
,c

17
,c

18
,c

19
,c

20
,c

21
,c

22
,c

23
})

Figure 7.3 – Hierarchy of the situations defined in the illustrative case study.

7.4 Conclusion

This chapter presents an approach that uses the lattice theory to represent an order among

situations that can lead to potential failures. This lattice is automatically built from exist-

ing knowledge coming from experts and from the ontological model. The lattice repre-

sents a road-map of all the situations that can be reached from a given one, desirable or

not. This allows the identification of the actions that can be taken to correct a certain

abnormal behavior of the process.

Although the case study presented in section 7.3 comes from the Industry 4.0 context,

the proposed approach can be applied to other application domains, where real time

monitoring is needed. In fact, in any monitoring application, the notions of normal or

abnormal situations exist. Expert knowledge allows the description of these situations

enabling then the building of the hierarchy for further use.

It is also to be remarked that in the presented case study, the T relation represents a

hierarchy between the constraints in the sense that one constraint may be more specific

than another, so that when the last one is satisfied, the more general constraint is also

satisfied. The T relation can also represent another type of relationship between the

constraints, such as the fact that two different properties have a physical link, meaning

that the values of one directly affect the values of the other.

137

CHAPTER 7. SITUATION HIERARCHIES FOR SUPPORTING DECISION MAKING

138

Chapter 8

Implementation of the proposed
framework

Contents
8.1 Implementation of the framework components 140

8.1.1 The Ontological model implementation 141

8.1.2 The Monitoring component implementation 142

8.1.3 The Diagnosis component implementation 145

8.1.4 The Decision making component implementation 146

8.2 Proof of concept of the proposed framework 146

8.2.1 Case study description . 146

8.2.2 Abnormal situation detection and cause determination 150

8.3 Conclusion . 154

139

CHAPTER 8. IMPLEMENTATION OF THE PROPOSED FRAMEWORK

In the previous chapters of Part II, the components of the proposed framework have

been introduced. In Chapter 5, an ontological model is developed to represent the indus-

trial domain and it is used as the foundation of a smart system. In Chapter 6, an hybrid

semantic approach is proposed to automate abnormal situation detection, based on the

combined use of classic reasoning and stream reasoning. In Chapter 7, a lattice-based ap-

proach is presented to represent a road-map of all the situations that can lead to potential

failures, in order to support decision making tasks.

In order to apply our approach, we have developed a software prototype. The soft-

ware uses deductive approaches, domain ontologies and ontology reasoning, and stream

reasoning to analyze industrial data and to detect abnormal situations that can lead to

failures.

This chapter is organized as follows. Section 8.1 describes the proposed framework

design and implementation. The technologies and tools used for the development of the

proposed framework are introduced as well as the implementation of the core functional-

ities of it. A proof of concept is presented in section 8.2 through an illustrative case study

from the industrial domain. Section 8.3 describes the limits of the prototype and it also

presents some concluding remarks.

8.1 Implementation of the framework components

For the development of each component of the proposed framework, several software and

tools are used. As mentioned in Chapter 4, the proposed framework is a smart system in

which each component can also be seen as a smart system. Figure 8.1 shows the core

components and technologies used to implement the aforementioned framework.

The proposed framework is implemented in Java 1.8. The main technologies used are

C-SPARQL1, OWLAPI2 and SWRLAPI3. The OWLAPI is a Java API for creating, manipulat-

ing and serialising OWL Ontologies. The SWRLAPI is also a Java API for working with the

SWRL language. The SWRLAPI uses the OWLAPI to manage OWL ontologies and provides

a Drools-based SWRL rule engine implementation to execute SWRL rules. C-SPARQL is

both a query language to process RDF streams and an engine that provides continuous

query capabilities. It supports timestamped RDF triplets as input and uses a periodic

execution strategy to continuously execute queries over these RDF streams. It has the

capability of integrating both RDF streams and static background knowledge, also repre-

sented as RDF triplets. Given that streams are intrinsically infinite, data are usually read

through time windows using the CQL window concept [ABW04]: queries are executed on

all the triplets which happen during a given time interval.

In C-SPARQL, continuous queries are divided into static and dynamic parts and streaming

data is transformed into non-streaming data within a specified window in order to apply

standard algebraic operations, such as aggregate functions like COUNT, COUNT DISTINCT,

1http://streamreasoning.org/resources/c-sparql
2https://github.com/owlcs/owlapi
3https://github.com/protegeproject/swrlapi

140

CHAPTER 8. IMPLEMENTATION OF THE PROPOSED FRAMEWORK

Technologies

Smart
Systems

Proposed
framework

Ontological
 model

SWRL API

Monitoring
component

Diagnosis
component

Decision making
component

OWL API Drools C-SPARQLOWL SWRL

Knowledge Base Inference Engine Interface

SPARQL

Figure 8.1 – Implementation technology for the proposed framework.

MAX, MIN and AVG. The static parts are loaded into relations, and the continuous queries

are executed by processing the stream data against these relations.

Different SSN-based domain ontologies can be loaded in the prototype as well as

the appropriate C-SPARQL queries and SWRL rules. Furthermore, different SPARQL-like

query processing engines coupled with different rule languages such as CQELS can be

integrated. The system is open source and can be found here4.

8.1.1 The Ontological model implementation

In this section, we briefly describe the technologies used to implement the ontological

model. It is composed by:

• The classes, properties and constraints that define the domain concepts,

• A set of ontological assertion axioms that describe the instances for particular ap-

plications,

• A set of if-then rules to infer new facts.

The ontology is written in OWL2, a sound and complete language with a formal se-

mantic based in SROIQ Description Logic (presented in section 2.2.2) and is available

here 5. The OWLAPI is used to write the ontological statements. Rules expressed as OWL

axioms are limited by some restrictions that enable the language to be decidable. Thus,

SWRL has been considered to formulate the rules, and SWRLAPI is used to implement

them in the ontological model. In addition, Protégé 6 and VOWL 7 are used for visualiza-

4https://gitlab.insa-rouen.fr/fgiustozzi/STEaMINg-SR_SitDet
5https://gitlab.insa-rouen.fr/fgiustozzi/STEaMINg-Ontology
6https://protege.stanford.edu/
7http://vowl.visualdataweb.org/webvowl.html

141

CHAPTER 8. IMPLEMENTATION OF THE PROPOSED FRAMEWORK

tion of the ontology.

8.1.2 The Monitoring component implementation

The Monitoring component, in charge of situation detection, is composed of the follow-

ing modules:

Translation module

This module contains two sub-modules called Stream Generator and Instance creator.

These sub-modules are used to convert the data collected from the sensors into RDF

streams and insert them into the ontological model as instances.

• The Stream Generator sub-module streams out semantic enriched data streams that

are then consumed by the Stream Reasoner. The output streams are RDF streams.

The semantic enrichment of the acquired data is done by using the concepts and

relations among them as defined in the ontological model. The C-SPARQL engine

provides methods to generate streams. For this sub-module we focus on a default

stream generator that produces simulated sensor observations for different param-

eters such as temperature, speed and vibration. The flow of observations begins by

generating new observations at the desired frequency, which is indicated by a pa-

rameter. Listing 8.1 shows the code to generate the streams of the RDF graph shown

in Figure 8.2 and the results are shown in Listing 8.2.

RdfQuadruple q = new RdfQuadruple("Sensor", "madeObservation", "O",

System.currentTimeMillis());

this.put(q);

q = new RdfQuadruple("O","observedProperty","Temp", System.currentTimeMillis());

this.put(q);

q = new RdfQuadruple("O","hasSimpleResult", v + "^^http://www.w3.org/2001/XMLSchema#integer",

System.currentTimeMillis());

this.put(q);

Listing 8.1 – Code to generate RDF streams.

Figure 8.2 – RDF graph example.

Sensor madeObservation O . (1599636552842)

O observedProperty Temp . (1599636552911)

O hasSimpleResult v^^http://www.w3.org/2001/XMLSchema#integer . (1599636552968)

Listing 8.2 – RDF stream example (RDF triplet . timestamp).

142

CHAPTER 8. IMPLEMENTATION OF THE PROPOSED FRAMEWORK

• The Instance creator uses the OWLAPI to interact with the ontological model. This

sub-module populates the ontological model with observations and their corre-

sponding metadata, such as the sensors which made the observation, the observed

property and the timestamp. Listing 8.3 shows the methods, from the OWLAPI, to

add the instances and relations from the Figure 8.2 to the ontology. First, the in-

stances (Sensor, O, Temp) are obtained from the ontology, or created in case they

do not exist in the ontology. Second, it is indicated to which class of the ontology

they belong. Third, the corresponding relationships between the instances are es-

tablished. Finally, the above-mentioned is added to the ontology.

OWLIndividual sensor = factory.getOWLNamedIndividual(IRI.create(ns,"Sensor"));

OWLIndividual o = factory.getOWLNamedIndividual(IRI.create(ns,"O"));

OWLIndividual p = factory.getOWLNamedIndividual(IRI.create(ns,"Temp"));

OWLClassAssertionAxiom sensorType = factory.getOWLClassAssertionAxiom(Sensor, sensor);

OWLClassAssertionAxiom oType = factory.getOWLClassAssertionAxiom(Observation, o);

OWLClassAssertionAxiom pType = factory.getOWLClassAssertionAxiom(ObservableProperty, p);

OWLObjectPropertyAssertionAxiom madeobs =

factory.getOWLObjectPropertyAssertionAxiom(madeObservation, sensor, o);

OWLObjectPropertyAssertionAxiom oP =

factory.getOWLObjectPropertyAssertionAxiom(observedProperty,o,p);

OWLDataPropertyAssertionAxiom ohasSimpleR =

factory.getOWLDataPropertyAssertionAxiom(hasSimpleResult,o,

v+"^^http://www.w3.org/2001/XMLSchema#double");

ontology.add(sensorType);

ontology.add(obsType);

ontology.add(pType);

ontology.add(madeobs);

ontology.add(oP);

ontology.add(ohasSimpleR);

Listing 8.3 – Code to add an observation and its metadata into the ontology.

Temporal Relations module

This module contains the Stream Reasoner sub-module which is implemented using C-

SPARQL. This module explores the data streams to generate new information. For the

engine to process data streams, they must be registered in the engine. This is done using

the registerStream(stream) method provided by the C-SPARQL engine.

A set of queries, which represent particular situations, are registered and executed by

the C-SPARQL engine over the data streams. This is done using the registerQuery(query)

method provided by the C-SPARQL engine. These queries combine background knowl-

edge extracted from the ontology and some parts of the streams that are relevant. They

include mainly temporal dependencies between observations and anomalies. C-SPARQL

represents queries as query graphs, with query evaluation performed through graph pat-

tern matching over the graphs formed by the incoming data streams. It offers two types

of processing models: either the query evaluation is periodic through windows of time, or

the query evaluation is not periodic but triggered by the arrival of new triplets.

A simple C-SPARQL query is shown in Listing 8.4. The query name is registered on line

143

CHAPTER 8. IMPLEMENTATION OF THE PROPOSED FRAMEWORK

1 and prefixes used in the query are declared on lines 2 and 3. The query runs against the

input RDF streams in the time frame of 15 seconds, sliding the window by 5 seconds (line

5). The chosen time frame is arbitrary and can be changed as desired. It produces pairs

of values (line 4): the sensor name (?s) and the average value of the observations (?avg).

To get the observation’s value, ?o individuals are bound with the data value ?v through

sosa:hasSimpleResult property (line 7-8). The query uses aggregate functions such as

AVG (line 4) to calculate the average value of observations which are grouped by sensor

name (line 10). Finally, the list of output pairs are filtered out to include only the ones

where the average of the observation’s values is greater than T (line 11).

1 REGISTER QUERY reasoning AS

2 PREFIX : <http://semanticweb.org/STEaMINg/ContextOntology-COInd4#>

3 PREFIX sosa: <http://www.w3.org/ns/sosa/>

4 SELECT ?s (avg(?v) AS ?avg)

5 FROM STREAM <Stream> [RANGE 15s STEPS 5s]

6 WHERE {

7 ?s sosa:madeObservation ?o .

8 ?o sosa:hasSimpleResult ?v .

9 }

10 GROUP BY ?s

11 HAVING (avg(?v) > T)

Listing 8.4 – Code to link M1 and M2 with SIT.

The Stream Reasoner sub-module produces situations streams as output. This out-

put feeds another stream reasoner in the Cause determination module and the detected

situations are stored in the ontology together with other relevant information, for exam-

ple the resources concerned by the detected situation. As evoked in section 2.3.2, C-

SPARQL supports closed-world and time-aware reasoning on stream data. However, it

is not intended to have any effect on the underlying ontology. Therefore, in order to store

the detected situation together with other relevant information, this sub-module invokes

OWLAPI constructs for asserting new OWL individuals holding all situation information.

Listing 8.5 shows an example of the OWLAPI constructors used to add to the ontology the

facts that two machines (M1 and M2) are concerned by a detected situation (SIT). Figure

8.3 (a) shows the relevant part of the ontology for this example before detecting the situ-

ation, while Figure 8.3 (b) shows the ontology with the instance of the detected situation

as well as the machines concerned by that situation.

Figure 8.3 – Part of the ontological model before detecting SIT (a) and after detecting SIT (b).

144

CHAPTER 8. IMPLEMENTATION OF THE PROPOSED FRAMEWORK

OWLObjectProperty involvedIn = factory.getOWLObjectProperty(IRI.create(ns + "involvedInSituation"));

OWLObjectPropertyAssertionAxiom invM1 = factory.getOWLObjectPropertyAssertionAxiom(involvedIn,M1,SIT);

ontology.add(invM1);

OWLObjectPropertyAssertionAxiom invM2 = factory.getOWLObjectPropertyAssertionAxiom(involvedIn,M2,SIT);

ontology.add(invM2);

Listing 8.5 – Code to link M1 and M2 with SIT.

8.1.3 The Diagnosis component implementation

The Cause Determination is the only module of the Diagnosis component. The goal of

this component is to identify the possible causes that generated an abnormal situation

detected by the previous component.

Cause Determination module

In order to determine the possible cause(s) that lead to a certain abnormal situation, this

module contains two sub-modules, one dedicated to real-time cause determination, and

the other to be used when the cause(s) are not known in advance.

• The Stream Reasoner sub-module is implemented using C-SPARQL. This module

explores the situations streams generated by the Monitoring component to identify

the causes associated to those situations. This sub-module can be used to identify

situation cause(s) in real-time, when situations can be generated at high frequency.

Queries to identify the causes of the detected situations are registered and executed

by the C-SPARQL engine over the situation streams.

• The Reasoner sub-module is used over the ontology to infer the causes associated

to the detected situation (in this case, the situation is an instance in the ontology).

This option can be used when it is not necessary to determine causes in real-time.

For example, it is possible that some situations do not have identified causes in a

real scenario or that certain facts that are necessary for the determination of causes

are not explicitly expressed in the ontology, in which case the Cause Determina-

tion module notifies that the causes are unknown. In order to determine the pos-

sible causes of a detected situation, this sub-module offers classic reasoning mech-

anisms that provide other characteristics to those provided by the Stream Reasoner

sub-module, such as the Open World Assumption.

Identifying the causes of a detected situation can include the call of SWRLAPI meth-

ods for doing SWRL-based reasoning and the execution of SPARQL queries on the

ontology. For example, a query could be: ”Has the filter of a machine been changed?”

If the change of the filter is explicitly represented in the ontological model then it is

known that the change was made. In case the change is not explicitly represented

in the ontological model, the query returns unknown. Therefore, we can not assure

whether the change was made or not. Thus, the non-change of the filter may be the

cause of the detected situation.

145

CHAPTER 8. IMPLEMENTATION OF THE PROPOSED FRAMEWORK

If the cause is identified later, it can be added to the ontology and linked to the

situation for future use.

In both cases, the module provides the Decision Making component with the detected

situation together with the possible causes in case they are known. The association be-

tween the situation and the causes is also added to the Ontology.

8.1.4 The Decision making component implementation

For this component, the algorithm 1 presented in section 7.2.2 was implemented in the

Java language and is available here8. Furthermore, the operators b.c and d.e (defined in

section 7.2.1) were implemented in order to implement the algorithm. The situation hi-

erarchy is returned in the DOT9 format file, which is a graph description language. For

this, the jgrapht10 package was used. Various programs can process DOT files, allowing

the quick visualization of the situation hierarchy.

8.2 Proof of concept of the proposed framework

An illustrative case study is described in this section to highlight how the proposed frame-

work can be used and the advantages it offers to support decisions that need to be made

when an abnormal situation is detected in an industrial framework.

8.2.1 Case study description

The case study is based on a manufacturing production line (Figure 8.4), named PL1,

composed of four machines: M1, M2, M3 and M4. These machines and the production line

are equipped with sensors. The sensors collect data on the properties described in Ta-

ble 8.1. This scenario is formally represented using the ontological model introduced in

Chapter 5 and it is shown in Figure 8.5.

Figure 8.4 – Production line.

Several abnormal situations that leads to failures in this scenario are defined by ex-

perts. Each of them is expressed as a set of constraints. We focus on situations cover-

ing the following types of failures: machines malfunctions and global malfunctions of

8https://gitlab.insa-rouen.fr/fgiustozzi/STEaMINg-SituationHierarchy
9https://en.wikipedia.org/wiki/DOT_(graph_description_language)

10https://jgrapht.org/javadoc-1.1.0/org/jgrapht/package-summary.html

146

CHAPTER 8. IMPLEMENTATION OF THE PROPOSED FRAMEWORK

Figure 8.5 – Representation of the scenario using our semantic model.

147

CHAPTER 8. IMPLEMENTATION OF THE PROPOSED FRAMEWORK

Table 8.1 – Sensors attached to each Resource and their respective Observable properties.

Resource Sensor ObservableProperty

PL1 S_P_temp P_temp

S_E_temp E_temp

S_PowerOutput PowerOutput

M1 S_G_current G_current

S_C_temp C_temp

S_T_temp T_temp

S_OilTemp OilTemp

M2 S_GB_temp GB_temp

S_G_speed G_speed

M3 S_C_Wtemp C_Wtemp

S_TG_temp TG_temp

S_G_temp G_temp

S_Conv_temp Conv_temp

M4 S_R_speed R_speed

S_R_Pangle R_Pangle

the production line including hydraulic oil leakage and cooling system filter obstructions.

The abnormal situations are briefly describe below:

• The S1 situation is associated with an oil leak on the M1machine. This situation hap-

pens when the constraints OilTemp> 40◦C (c1), T_temp> 45◦C (c3), C_temp> 40◦C
(c4), G_current> 800 A (c5) and P_temp< 35◦C (c6) are satisfied at least once in a 20

second period of time.

• The S2 situation is a more severe form of S1, also associated with an oil leak on the

M1 machine. The S2 situation happens when the constraints OilTemp> 60◦C (c2),

T_temp> 45◦C (c3), C_temp> 40◦C (c4), G_current> 800 A (c5) and P_temp< 35◦C
(c6) are satisfied at least once in a 20 second period of time. S2 is more severe than

S1 because the oil temperature exceeds 60◦C. More urgent actions are required to

avoid the failure of the M1 machine.

• The S3 situation is associated with an increase in the oil temperature of the M2 ma-

chine. This situation happens when the constraints P_temp< 35◦C (c6), GB_temp>
40◦C (c8), G_speed< 500 rpm (c10) and E_temp< 25◦C (c11) are satisfied at least once

in a 25 second period of time.

• As with S1 and S2, the S4 situation is a more severe version of S3. The S4 situation

happens when the constraints P_temp< 35◦C (c6), GB_temp> 60◦C (c9), G_speed<
500 rpm (c10) and E_temp< 25◦C (c11) are satisfied at least once in a 25 second period

of time. Since the GB temperature exceeds 60◦C, immediate actions are required to

avoid the failure of the M2 machine.

• The S5 situation is an even more severe situation. It happens when the constraints

P_temp> 40◦C (c7), GB_temp> 60◦C (c9), G_speed< 500 rpm (c10) and E_temp< 25◦C

148

CHAPTER 8. IMPLEMENTATION OF THE PROPOSED FRAMEWORK

(c11) are satisfied at least once in a 25 second period of time. S5 is more severe than

S3 and S4 because the GB temperature exceeds 60◦C and the platform temperature

exceeds 40◦C. Due to its degree of severity, drastic actions must be taken to avoid

the failure of the M2 machine.

• The S6 situation is associated with a cooling system failure of the M3 machine. This

situation happens when the constraints C_Wtemp> 60◦C (c15), TG_temp< 35◦C (c17)

and G_temp> 45◦C (c18) are satisfied at least once in a 15 second period of time.

• As the S6 situation, the S7 situation is associated with a cooling system failure of the

M3 machine. The S7 situation happens when the constraints C_Wtemp> 80◦C (c16),

TG_temp< 35◦C (c17) and G_temp> 45◦C (c18) are satisfied at least once in a 15 sec-

ond period of time. S7 is more severe than S6 because the converter water tem-

perature exceeds 80◦C. In the same way, that the most severe situations above the

actions to take must be prompt to avoid in this case the failure of the cooling system

of the M3 machine.

• The S8 situation is associated with a malfunction of the M3 machine. This situ-

ation happens when the constraints P_temp< 35◦C (c6), TG_temp< 35◦C (c17) and

Conv_temp> 60◦C (c19) are satisfied at least once in a 20 second period of time.

• The S9 situation is more severe than S8. The S9 situation happens when the con-

straints P_temp< 35◦C (c6), TG_temp< 35◦C (c17) and Conv_temp> 80◦C (c20) are

satisfied in at least once in a 20 second period of time. In this case, as the converter

temperature exceeds 80◦C, more urgent actions are required to avoid the failure of

the M3 machine.

• The S10 situation is associated with a malfunction of the M3machine as the two pre-

vious situations. The S10 situation happens when the constraints C_Wtemp> 80◦C
(c16), TG_temp< 35◦C (c17), G_temp< 45◦C (c18) and Conv_temp> 60◦C (c19) are sat-

isfied at least once in a 20 second period of time. S10 is more severe than S8 and S9

because the GB temperature exceeds 60◦C and the platform temperature exceeds

40◦C. In order to avoid a failure of M3, immediate actions must be taken.

• The S11 situation is associated with a malfunction of the M4machine. This situation

happens when the constraints PowerOutput> 2000 KW (c12), R_speed< 200 rpm (c21)

and R_Pangle< 5◦ (c23) are satisfied at least once in a 30 second period of time.

• The S12 situation is associated with the same malfunction as the S11 situation. The

S12 situation happens when the constraints PowerOutput> 2000 KW (c12), R_speed
< 100 rpm (c22) and R_Pangle< 5◦ (c23) are satisfied in least once in a 30 second pe-

riod of time. S12 is more severe than S11 because the rotor speed of the M4 machine

is lower than 100 rpm. It requires immediate action to prevent the failure of the M4

machine.

• The S13 situation is associated with a global malfunction of the PL1 production line.

This situation happens when the constraints PowerOutput< 500 KW (c13), R_speed

149

CHAPTER 8. IMPLEMENTATION OF THE PROPOSED FRAMEWORK

< 200 rpm (c21) and R_Pangle< 5◦ (c23) are satisfied at least once in a 35 second

period of time.

• As the S13 situation, the S14 situation is also associated with a malfunction of the

PL1 production line. The S14 situation happens when the constraints PowerOutput
< 200 KW (c14), R_speed< 200 rpm (c21) and R_Pangle< 5◦ (c23) are satisfied at least

once in a 35 second period of time. S14 is more severe version of S13 because the

power output of the PL1 production line is lower than 200 KW.

8.2.2 Abnormal situation detection and cause determination

As mentioned in the section 8.1.2, the situations defined above are detected through C-

SPARQL queries. In this section, we describe a particular query and see the effect it has

on the ontological model when the situation is detected.

We must emphasize that for this case study all the data streams of the properties

(ObservableProperties) defined in table 8.1 are generated using the RDFStream class

provided by C-SPARQL to generate RDF streams. Queries can also be executed on data

streams that are generated and published by other systems or users, however it is neces-

sary to know the structure of the RDF stream to be able to execute queries on them.

The C-SPARQL query presented in Listing 8.6 has the purpose of detecting the situa-

tion S6, defined previously. The query name is registered on line 1 and prefixes used in

the query are declared on lines 2 and 3. The query is executed on RDF streams that cor-

respond to the properties C_Wtemp, TG_temp and G_temp in the time frame of 15 seconds,

sliding the window by 5 seconds (line 5-7). The chosen time frame is arbitrary and can

be changed as desired. It produces pairs of values (line 4): the machine name (?m) and

the production line of which it is a part of (?pl). In order to obtain the production line

to which the machine belongs, we indicate in the query that the C-SPARQL engine must

use our ontological model as background knowledge (line 8). Line 10 enables to obtain

the production line to which the machine belongs, as shown in Figure 8.6. To get the ob-

servation’s values, ?o1, ?o2 and ?o3 individuals are respectively bound with the data val-

ues ?v1, ?v2 and ?v3 through the appropriate properties (sosa:madeObservation and

sosa:hasSimpleResult) (line 11-19). Finally, the list of output pairs are filtered out to

include only the ones where the observation’s values satisfy the restrictions in the FILTER

clause (line 20-23).

1 REGISTER QUERY S6-detection AS

2 PREFIX : <http://semanticweb.org/STEaMINg/ContextOntology-COInd4#>

3 PREFIX sosa: <http://www.w3.org/ns/sosa/>

4 SELECT ?m ?pl

5 FROM STREAM <Stream_C_Wtemp> [RANGE 15s STEPS 5s]

6 FROM STREAM <Stream_TG_temp> [RANGE 15s STEPS 5s]

7 FROM STREAM <Stream_G_temp> [RANGE 15s STEPS 5s]

8 FROM <http://semanticweb.org/STEaMINg/ContextOntology-COInd4#>

9 WHERE {

10 ?m :isPartOf ?pl .

11 ?m sosa:hosts sosa:S_C_Wtemp .

12 :S_C_Wtemp sosa:madeObservation ?o1 .

13 ?o1 sosa:hasSimpleResult ?v1 .

14 ?m sosa:hosts sosa:S_TG_temp .

150

CHAPTER 8. IMPLEMENTATION OF THE PROPOSED FRAMEWORK

15 :S_TG_temp sosa:madeObservation ?o2 .

16 ?o2 sosa:hasSimpleResult ?v2 .

17 ?m sosa:hosts sosa:S_G_temp .

18 :S_G_temp sosa:madeObservation ?o3 .

19 ?o3 sosa:hasSimpleResult ?v3 .

20 FILTER (

21 ?v1 > 60.0 &&

22 ?v2 < 35.0 &&

23 ?v3 > 45.0) .

24 }

Listing 8.6 – C-SPARQL query to detect the S6 situation.

sosa:S_C_Wtemp

C_Wtemp

sosa:observes

sosa:hosts

sosa:On

55

sosa:hasSimpleResult

sosa:madeObservation

Streaming Data:

Background knowledge:

M3

sosa:S_TG_temp

TG_temp

sosa:observes
sosa:hosts

sosa:S_C_Wtemp

C_Wtemp

sosa:observes

sosa:hosts

PL1 isPartOf

…….…..

sosa:Or

30

sosa:hasSimpleResult

sosa:Ot

40

sosa:hasSimpleResult………………….

…

sosa:On+m

62

sosa:hasSimpleResult

sosa:Or+s

30

sosa:hasSimpleResult

sosa:Ot+u

50

sosa:hasSimpleResult

…...…...…...…

sosa:madeObservation

sosa:madeObservation

sosa:madeObservation sosa:madeObservation

…...…...…...…

…...…...…...…

… …..…..…

…

 … …. … …...…….

sosa:madeObservation

W=15s ---> S6 detected

Figure 8.6 – Background knowledge and streaming data for S6 situation detection.

Once the situation is detected, it is added as an instance to the ontology as well as the

relationships representing the resources concerned by this situation. Figure 8.7 shows a

part (relevant to this case) of the ontological model before and after the detection of the

S6 situation.

The next step is to determine the possible cause(s) of the S6 situation. The S6 situation

is associated with a failure of the cooling system of the M3 machine. By expert knowledge

we know that this situation can be caused by polluted filters in the cooling system. There-

fore, the following rule is used to add this fact to the ontology. Figure 8.8 shows the added

cause associated with the detected situation.

Situation-S6(?sit) ⇒ hasCause(?sit,:PollutedFilters)

It is worth mentioning that in case the cause is not known beforehand, it can be added

to the ontological model. Thus, the next time the situation is detected the cause is auto-

matically determined.

Once the situation and its possible cause(s) have been detected, the next step is to

make a decision to avoid the failure associated with the situation. To determine what

151

CHAPTER 8. IMPLEMENTATION OF THE PROPOSED FRAMEWORK

sosa:S_C_Wtemp

C_Wtemp

sosa:observes

sosa:hosts M3

sosa:S_TG_temp

TG_temp

sosa:observes

sosa:hosts

sosa:S_C_Wtemp

C_Wtemp

sosa:observes

sosa:hosts

PL1

isPartOf

sit-S6

involvedInSituation

involvedInSituation

Situation

LineMachine

Resource

IsPartOf

involvedInSituation

io

io

io

sosa:S_C_Wtemp

C_Wtemp

sosa:observes

sosa:hosts M3

sosa:S_TG_temp

TG_temp

sosa:observes

sosa:hosts

sosa:S_C_Wtemp

C_Wtemp

sosa:observes

sosa:hosts

PL1

isPartOf

Situation

LineMachine

Resource

IsPartOf

involvedInSituation

io

io

(a)

(b)

Figure 8.7 – Part of the ontological model: (a) before detecting the S6 situation; and (b) after de-
tecting it.

sosa:S_C_Wtemp

C_Wtemp

sosa:observes

sosa:hosts M3

sosa:S_TG_temp

TG_temp

sosa:observes

sosa:hosts

sosa:S_C_Wtemp

C_Wtemp

sosa:observes

sosa:hosts

PL1

isPartOf

sit-S6

involvedInSituation

involvedInSituation

Situation

LineMachine

Resource

IsPartOf

involvedInSituation

io

io

io

PollutedFilters hasCause

Figure 8.8 – Part of the ontological model after cause determination.

action to make, we use the approach proposed in Chapter 7 to build the hierarchy of sit-

uations, based on the constraints on which the situations rely. The figure 8.9 shows the

hierarchy of situations defined in the case study.

152

CHAPTER 8. IMPLEMENTATION OF THE PROPOSED FRAMEWORK

({s
1
,s

3
,s

2
,s

5
,s

4
,s

7
,s

6
,s

9
,s

8
,s

12
,s

11
,s

14
,s

13
,s

10
},{ })

({s
3
,s

5
,s

4
},{c

11
,c

8
,c

10
})

({s
1
,s

3
,s

2
,s

4
,s

9
,s

8
},{c

6
})

({s
7
,s

6
,s

9
,s

8
,s

10
},{c

17
})

({s
12

,s
11

,s
14

,s
13

},{c
23

,c
21

})

({s
5
,s

4
},{c

9
,c

11
,c

8
,c

10
})

({s
3
,s

4
},{c

6
,c

11
,c

8
,c

10
})

({s
5
},{c

7
,c

9
,c

11
,c

8
,c

10
})

({s
4
},{c

9
,c

6
,c

11
,c

8
,c

10
})

({s
1
,s

2
},{c

1
,c

3
,c

5
,c

4
,c

6
})

({s
2
},{c

1
,c

2
,c

3
,c

5
,c

4
,c

6
})

({s
9
,s

8
},{c

19
,c

17
,c

6
})

({s
9
},{c

20
,c

19
,c

17
,c

6
})

({s
9
,s

8
,s

10
},{c

19
,c

17
})

({s
10

},{c
18

,c
15

,c
16

,c
17

,c
19

})

({s
7
,s

6
,s

10
},{c

15
,c

17
,c

18
})

({s
7
,s

10
},{c

16
,c

15
,c

17
,c

18
})

({s
12

,s
11

},{c
12

,c
23

,c
21

})

({s
14

,s
13

},{c
13

,c
23

,c
21

})

({s
12

},{c
22

,c
12

,c
23

,c
21

})

({s
14

},{c
14

,c
13

,c
23

,c
21

})

({ },{c
1
,c

3
,c

2
,c

5
,c

4
,c

7
,c

6
,c

9
,c

8
,c

12
,c

11
,c

14
,c

13
,c

10
,c

15
,c

16
,c

17
,c

18
,c

19
,c

20
,c

21
,c

22
,c

23
})

Figure 8.9 – Hierarchy of the situations defined in the illustrative case study.

Having the situation detected and its possible cause, the Decision making component

can use both to build a strategy to correct the abnormal behavior. For example, one action

could be to replace the polluted filters which would lead to the constraints associated

with the S6 situation no longer being met, i.e. correction of the abnormal behavior. In

case this action cannot be carried out, the system or the operators can decide that the

production line continues with the execution of its processes. This could lead to the S7

situation, satisfying the C_Wtemp> 80◦C (c16) constraint, and thus requiring more urgent

actions since the M3 machine would be closer to a failure. By observing the hierarchy, we

can see that the behavior of the M3 machine could get even worse, since the S10 situation

could also be reached if the Conv_temp> 60◦C (c19) constraint is also satisfied. Unlike

situation S6 and S7which are associated with a failure of the M3machine’s cooling system,

situation S10 indicates that the M3machine is having a global malfunction. So the strategy

to follow could be more drastic as for example stopping the execution of the processes of

the M3 machine, halting also the production of the whole production line (PL1).

Our approach provides the Decision making component with high level information

such as situations and their possible causes from raw data. In addition, the hierarchy

of situations allows visualizing the possible intermediate situations that the production

system can reach. In this way, it is sought that the Decision making component takes

appropriate actions to maintain the reliability and availability of the production line.

153

CHAPTER 8. IMPLEMENTATION OF THE PROPOSED FRAMEWORK

8.3 Conclusion

This chapter presents the implementation of the proposed framework. The technologies

and tools used for the development are introduced as well as the implementation of the

core functionalities of it.

An illustrative case study from the industrial domain is presented to demonstrate the

application of the framework. The goal is to show the interaction between the different

components and how they modify the semantic model, making it evolve for the represen-

tation of what happens in the real factory. The results obtained by our proof of concept

using simulated data are encouraging. Unfortunately, it has not been possible to validate

the whole approach on real industrial data, even off-line.

Ideally, it would also be interesting to test our proposal in a real production line. This

would allow to verify if the decisions made based on the use of our proposal would im-

prove its efficiency and reliability.

154

Conclusion & Future Work

In the following, we present a summary of these thesis works with their corresponding

contributions. Afterwards, some perspectives and possible lines of future work are also

presented.

Conclusion

As already evoked all along this manuscript, the management of heterogeneous industrial

data is a challenging task in the framework of condition monitoring. Additionally, as the

structure and behavior of production systems get more and more complex, the volume

of data grows significantly. This is why manufacturing companies search for solutions to

handle this heterogeneous industrial data efficiently and perform monitoring and diag-

nosis tasks in a smart way.

In this framework, there is a need of well-defined models for managing heterogeneous

data and exploiting it together with expert knowledge. To develop such a model, do-

main knowledge of manufacturing has to be structured in a machine-interpretable way

and usable by the monitoring system. Furthermore, as the manufacturing domain be-

comes more knowledge-intensive, a uniform knowledge representation of physical re-

sources and reasoning capabilities is needed to automate the decision-making processes.

These decision-making processes include abnormal situation detection and cause deter-

mination, maintenance scheduling, and process adaptation. To achieve these objectives,

semantic technologies have shown promising results when formalizing knowledge about

condition monitoring tasks in several industrial applications.

Existing ontological models to represent the manufacturing domain do not allow the

representation of concepts and relationships that evolve over time, such as the different

situations under which a manufacturing resource can perform its tasks. These existing

ontological models are suitable for information that does not change or changes very little

in time. However, the manufacturing domain is highly-dynamic and a production system

should be able to adapt itself to changing situations. This requires the ontological model

to cope with the dynamic change of knowledge. Different sets of actions can be selected

for correcting the abnormal behavior according to the specific physical context of the op-

erating machine. This ensures that production continues without the need to stop it if the

abnormal situation is not severe.

To resolve all of the above, taking into account the requirements indicated in the intro-

duction of this manuscript, a novel semantic framework is proposed to address the evo-

155

CONCLUSION & FUTURE WORK

lution of semantic models in Industry 4.0. The proposed framework allows to automate

and facilitate condition monitoring and diagnosis, and support decision-making in the

manufacturing domain. To this end, firstly we propose an ontological model for the man-

ufacturing domain that represents the resources and processes that are part of a factory,

with special emphasis on modeling the context of these resources and processes. Rele-

vant situations that combine sensor observations with domain knowledge are also repre-

sented in the model. The proposed framework enriches data collected from sensors with

contextual information using the ontological model and uses stream reasoning to allow

abnormal situation detection in real-time. Furthermore, it also uses classical reasoning

approaches to compensate for possible non-detection of the causes by the stream rea-

soning method. Through the detection of these situations and their causes, appropriate

decisions can be made to avoid the interruption of the monitored process. In addition, to

support decision-making the proposed framework provides a hierarchy of situations that

represents a road-map of the situations that can be reached from a given one, desirable or

undesirable. This allows the identification of the actions to take to correct the abnormal

behavior, by avoiding or minimizing in this way the interruption of the manufacturing

processes.

The contributions of this thesis are summarized below.

In Chapter 4, an overview of the proposed framework to address the evolution of se-

mantic models in Industry 4.0 is introduced. The components of the proposed framework

are: (1) the Monitoring component; (2) the Diagnosis component; and (3) the Decision

making component. Each of the components operates as an expert does. Each one uses

the semantic model to perform its functions and makes it evolve by introducing the cor-

responding changes. In this way, the tasks of each component are performed considering

the updated semantic model which is a virtual representation of what happens in the real

factory.

In Chapter 5, an ontology-based approach for context modeling in the industrial do-

main is proposed. The ontological model satisfies the Industry 4.0 requirements with spe-

cial emphasis on temporal and spatial relations among resources and processes in order

to represent particular situations of interest in an industrial scenario. Furthermore, our

ontological model provides a way to capture the dynamic changes and the evolution of

concepts in time. The proposed ontology is generic and extensible and its modular archi-

tecture allows the description of the capabilities of manufacturing resources at different

levels of granularity.

In Chapter 6, the components of our proposed framework are detailed (the Monitor-

ing, the Diagnosis, the Abnormal Situation Refinement and the Decision Making com-

ponents). The use of stream reasoning allows the integration of data from different data

sources, with different underlying meanings, different temporal resolutions as well as the

processing of these data in real-time. Data collected from sensors are enriched with con-

textual information to allow real-time situation detection. Furthermore, our proposal also

uses classic reasoning approaches to complete the determination of causes that could not

be obtained by stream reasoning.

In Chapter 7, an approach that uses the lattice theory to represent a hierarchy of situ-

156

CONCLUSION & FUTURE WORK

ations that can lead to potential failures is presented. The hierarchy of situations is built

automatically considering the constraints they rely on. The hierarchy allows the repre-

sentation of situations that occur partially, i.e. when only some of their constraints are

satisfied. The proposed approach can be applied to other application domains, where

real time monitoring is needed.

Finally, in Chapter 8, the technologies and tools used for the development of the pro-

posed framework are introduced as well as the implementation of the core functionalities

of it. An illustrative case study from the industrial domain is presented to demonstrate

the application of the proposed framework. Unfortunately, it has not been possible to

validate the whole approach on real industrial data. However, the results obtained by our

proof of concept using simulated data are encouraging.

Future Work

The contributions presented in this thesis enable to identify several research perspectives.

Future works can be oriented to the enrichment of the proposed semantic model. New

types of relations can be explored aside from the spatial and temporal ones addressed in

this thesis, in order to allow the representation of richer contextual information. For ex-

ample, representing the relationship that two production lines execute the same process

could be used to divert the production from one production line to the other if the first

one is behaving abnormally. Another possibility can be the representation of relations

between production lines and work orders, so that depending on whether the production

line is close to finishing a work order and whether the deadline is coming up, the decision

to continue the production until the order is finished or to stop the production line can

be made.

Since the manufacturing domain is highly-dynamic, how to process real-time and het-

erogeneous data streams is a crucial concern. In order to test scalability and complexity

issues to detect situations in real-time, a broader case study with more complex situa-

tions, involving more properties observations that are temporal and spatially related, has

to be explored. Different implementations of stream reasoning engines should be evalu-

ated in terms of efficiency and scalability, considering also the size of the semantic model.

Another interesting direction to investigate is the identification of causality patterns

that could enable the definition of generic queries for certain types of anomalies. These

generic queries could be reused in different cases, and perform complex operations among

the sensed values.

Regarding the refinement and identification of new situations, it can be interesting to

apply machine learning methods to exploit the data stored in the semantic model. As seen

in this thesis, the queries are executed during certain time windows every certain intervals

of time, therefore the application of machine learning methods can help to determine the

duration of the time windows in which a query needs to be executed. In addition, it would

also be interesting to dynamically adapt the duration of the time windows.

There are also perspectives associated to the construction of the hierarchy of situa-

157

CONCLUSION & FUTURE WORK

tions from real industrial data. Firstly, this construction also raises scalability and com-

plexity issues to build the lattice. Therefore, tests need to be performed with different

variations of Algorithm 1 to evaluate their relative efficiency. In addition, another possi-

ble future work is to investigate how to add new situations or the refined ones without

having to rebuild the hierarchy from scratch.

Finally, a more exhaustive and detailed study can be made on the constraints impli-

cations that represent dependencies among constraints for the identification of new sit-

uations or the refinement of existing ones. In this way, different hierarchies of situations

can be obtained according to the chosen T relation, that can be used alone or combined

with others, allowing different strategies for decision making.

158

Bibliography

[Abb12] Sunitha Abburu. A survey on ontology reasoners and comparison. Inter-
national Journal of Computer Applications, 57:33–39, 2012. 8, 53

[ABW04] Arvind Arasu, Shivnath Babu, and Jennifer Widom. CQL: A Language
for Continuous Queries over Streams and Relations. In Georg Lausen
and Dan Suciu, editors, Database Programming Languages, pages 1–19,
Berlin, Heidelberg, 2004. Springer Berlin Heidelberg. 55, 56, 140

[AD06] Farhad Ameri and Debasish Dutta. An upper ontology for manufactur-
ing service description. In Proceedings of the ASME Design Engineering
Technical Conference, 2006. 73

[AF01] Alessandro Artale and Enrico Franconi. A survey of temporal extensions
of description logics. Annals of Mathematics and Artificial Intelligence,
30(1–4):171–210, March 2001. 78, 79

[AH04] Grigoris Antoniou and Frank Harmelen. A Semantic Web primer. 01 2004.
50

[AK12] Rosmaini Ahmad and Shahrul Kamaruddin. An overview of time-based
and condition-based maintenance in industrial application. Computers
& industrial engineering, 63(1):135–149, 2012. 11, 68

[All94] Bradley P Allen. Case-based reasoning: Business applications. Commu-
nications of the ACM, 37(3):40–43, 1994. 57, 101

[AMX+16] Kosmas Alexopoulos, Sotiris Makris, Vangelis Xanthakis, Konstantinos
Sipsas, and George Chryssolouris. A concept for context-aware com-
puting in manufacturing: the white goods case. International Journal
of Computer Integrated Manufacturing, 29(8):839–849, 2016. 77

[AP94] Agnar Aamodt and Enric Plaza. Case-based reasoning: Foundational is-
sues, methodological variations, and system approaches. AI communi-
cations, 7(1):39–59, 1994. xiii, 58

[APP+19] Sara Antomarioni, Ornella Pisacane, Domenico Potena, Maurizio
Bevilacqua, Filippo Emanuele Ciarapica, and Claudia Diamantini. A pre-
dictive association rule-based maintenance policy to minimize the prob-
ability of breakages: application to an oil refinery. The International Jour-
nal of Advanced Manufacturing Technology, 105(9):3661–3675, 2019. 71

[AR88] Kevin D Ashley and Edwina L Rissland. A case-based approach to mod-
eling legal expertise. IEEE Intelligent Systems, (3):70–77, 1988. 57

159

BIBLIOGRAPHY

[ARFS12] Darko Anicic, Sebastian Rudolph, Paul Fodor, and Nenad Stojanovic.
Stream reasoning and complex event processing in etalis. Semantic web,
3(4):397–407, 2012. 8, 52

[BB18] Toufik Berredjem and Mohamed Benidir. Bearing faults diagnosis using
fuzzy expert system relying on an improved range overlaps and similarity
method. Expert Systems with Applications, 108:134–142, 2018. 71

[BBC+10] Davide Francesco Barbieri, Daniele Braga, Stefano Ceri, Emanuele
Della Valle, and Michael Grossniklaus. C-SPARQL: a continuous query
language for RDF data streams. International Journal of Semantic Com-
puting, 4(01):3–25, 2010. 54, 55

[BBRC09] Yazid Benazzouz, Philippe Beaune, Fano Ramparany, and Laure Chotard.
Context data-driven approach for ubiquitous computing applications.
In 2009 Fourth International Conference on Digital Information Manage-
ment, pages 1–6, 2009. 61

[BCM+03] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi,
and Peter F. Patel-Schneider, editors. The Description Logic Handbook:
Theory, Implementation, and Applications. Cambridge University Press,
USA, 2003. 47, 50, 96

[BCR09] O. Brdiczka, J. L. Crowley, and P. Reignier. Learning situation models in a
smart home. IEEE Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics), 39(1):56–63, 2009. 61

[BDG+07] Lars Brenna, Alan Demers, Johannes Gehrke, Mingsheng Hong, Joel
Ossher, Biswanath Panda, Mirek Riedewald, Mohit Thatte, and Walker
White. Cayuga: A high-performance event processing engine. 01 2007.
124

[BGJ08] Andre Bolles, Marco Grawunder, and Jonas Jacobi. Streaming sparql-
extending sparql to process data streams. In European Semantic Web
Conference, pages 448–462. Springer, 2008. 55

[BHS05] Franz Baader, Ian Horrocks, and Ulrike Sattler. Description Logics as On-
tology Languages for the Semantic Web, pages 228–248. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2005. 48, 111

[BKE03] Joseph Bauer, Ralf-Detlef Kutsche, and Rudiger Ehrmanntraut. Identi-
fication and modeling of contexts for different information scenarios in
air traffic. Technische Universität Berlin, Diplomarbeit, 2003. 62

[BKR+12] Raphael Barbau, Sylvere Krima, Sudarsan Rachuri, Anantha Narayanan,
Xenia Fiorentini, Sebti Foufou, and Ram D. Sriram. OntoSTEP: Enriching
product model data using ontologies. CAD Computer Aided Design, 2012.
72

[BL07] Stefano Borgo and Paulo Leitão. Foundations for a Core Ontology of
Manufacturing, 2007. 73

160

BIBLIOGRAPHY

[BLDdO18] Sérgio Baltazar, Chuan Li, Helder Daniel, and José Valente de Oliveira.
A review on neurocomputing based wind turbines fault diagnosis and
prognosis. In 2018 Prognostics and System Health Management Confer-
ence (PHM-Chongqing), pages 437–443. IEEE, 2018. 70

[BLF00] T. Berners-Lee and M. Fischetti. Weaving the Web: The Past, Present and
Future of the World Wide Web by Its Inventor. Texere, 2000. xiii, 48

[BM18] Rabah Benkercha and Samir Moulahoum. Fault detection and diagno-
sis based on c4. 5 decision tree algorithm for grid connected pv system.
Solar Energy, 173:610–634, 2018. 70

[BP11] Sotiris Batsakis and Euripides G.M. Petrakis. SOWL: A framework for han-
dling spatio-temporal information in OWL 2.0. In Lecture Notes in Com-
puter Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), 2011. 79

[BPSM+00] Tim Bray, Jean Paoli, C Michael Sperberg-McQueen, Eve Maler, Franois
Yergeau, et al. Extensible markup language (xml) 1.0, 2000. 49

[BS09] Christian Bizer and Andreas Schultz. The berlin sparql benchmark. In-
ternational Journal on Semantic Web and Information Systems (IJSWIS),
5(2):1–24, 2009. 56

[CBI] CBINSIGHTS: https://www.cbinsights.com/research/future-factory-
manufacturing-tech-trends/. (accessed March 2, 2019). 114

[CBL+18] Ana Cachada, Jose Barbosa, Paulo Leitño, Carla AS Gcraldcs, Leonel
Deusdado, Jacinta Costa, Carlos Teixeira, João Teixeira, António HJ Mor-
eira, Pedro Miguel Moreira, et al. Maintenance 4.0: Intelligent and
predictive maintenance system architecture. In 2018 IEEE 23rd Inter-
national Conference on Emerging Technologies and Factory Automation
(ETFA), volume 1, pages 139–146. IEEE, 2018. 12, 69

[CBS+17] Federico Civerchia, Stefano Bocchino, Claudio Salvadori, Enrico Rossi,
Luca Maggiani, and Matteo Petracca. Industrial internet of things moni-
toring solution for advanced predictive maintenance applications. Jour-
nal of Industrial Information Integration, 7:4 – 12, 2017. Enterprise mod-
elling and system integration for smart manufacturing. 66

[CCR93] Zhan Cui, Anthony G Cohn, and David A Randell. Qualitative and topo-
logical relationships in spatial databases. In International Symposium on
Spatial Databases, pages 296–315. Springer, 1993. 100

[CFJ03] Harry Chen, Tim Finin, and Anupam Joshi. An ontology for context-
aware pervasive computing environments. The Knowledge Engineering
Review, 18(3):197–207, 2003. xiii, 75

[CL05] S Wesley Changchien and Ming-Chin Lin. Design and implementation of
a case-based reasoning system for marketing plans. Expert systems with
applications, 28(1):43–53, 2005. 57

[CL17] S. J. D. Cox and C. Little. Time ontology in OWL. W3C Recommendation.
2017. 78

161

BIBLIOGRAPHY

[CM10] Gianpaolo Cugola and Alessandro Margara. Tesla: A formally defined
event specification language. In Proceedings of the Fourth ACM Inter-
national Conference on Distributed Event-Based Systems, DEBS ’10, page
50–61, New York, NY, USA, 2010. Association for Computing Machinery.
124

[CM12] Gianpaolo Cugola and Alessandro Margara. Processing flows of infor-
mation: From data stream to complex event processing. ACM Comput.
Surv., 44(3), June 2012. 124

[CNW12] L. Chen, C. D. Nugent, and H. Wang. A Knowledge-Driven Approach to
Activity Recognition in Smart Homes. IEEE Transactions on Knowledge
and Data Engineering, 24(6):961–974, 2012. 61

[CPFJ04] Harry Chen, Filip Perich, Tim Finin, and Anupam Joshi. SOUPA: Stan-
dard ontology for ubiquitous and pervasive applications. In Proceedings
of MOBIQUITOUS 2004 - 1st Annual International Conference on Mobile
and Ubiquitous Systems: Networking and Services, pages 258–267, 2004.
xiii, 75, 76

[CWHZ18] Xiao-long Chen, Pei-hong Wang, Yong-sheng Hao, and Ming Zhao. Evi-
dential knn-based condition monitoring and early warning method with
applications in power plant. Neurocomputing, 315:18–32, 2018. 70

[CZX+16] Haibo Cheng, Peng Zeng, Lingling Xue, Zhao Shi, Peng Wang, and Haibin
Yu. Manufacturing ontology development based on industry 4.0 demon-
stration production line. pages 42–47, 09 2016. 15, 73, 82

[DA99] Anind K. Dey and Gregory D. Abowd. Towards a better understanding
of context and context-awareness. In HUC ’99: Proceedings of the 1st in-
ternational symposium on Handheld and Ubiquitous Computing, pages
304–307. Springer-Verlag, 1999. 9, 42

[DA00] A.K. Dey and G.D. Abowd. Towards a better understanding of context and
context-awareness. Proceedings of the CHI 2000 Workshop on The What,
Who, Where, When and How of Context Awareness, 4:1–6, 2000. 2, 9, 28,
60, 75, 94

[DAS01] Anind K Dey, Gregory D Abowd, and Daniel Salber. A conceptual frame-
work and a toolkit for supporting the rapid prototyping of context-aware
applications. Human–Computer Interaction, 16(2-4):97–166, 2001. 9, 60

[Dav02] H. A. Davey, B. A. Priestley. Introduction to Lattices and Order. Cambridge
University Press, 2 edition, 2002. 124

[DB03] Jos De Bruijn. Using ontologies. enabling knowledge sharing and reuse
on the semantic web. Digital Enterprise Research Institute (DERI) Tech-
nical Report, 2003. 62

[DD79] Phyllis M Deane and Phyllis M Deane. The first industrial revolution.
Cambridge University Press, 1979. 1, 27

[DGP19] Uday Kumar Diego Galar Pascual, Pasquale Daponte. The Industry 4.0
Architecture and Cyber-Physical Systems. CRC Press, 2019. 11, 66

162

BIBLIOGRAPHY

[DMT+07] Charalampos Doukas, Ilias Maglogiannis, Philippos Tragas, Dimitris Li-
apis, and Gregory Yovanof. Patient fall detection using support vector
machines. In Christos Boukis, Aristodemos Pnevmatikakis, and Lazaros
Polymenakos, editors, Artificial Intelligence and Innovations 2007: from
Theory to Applications, pages 147–156, Boston, MA, 2007. Springer US.
61

[dRFID+19] Mike de Roode, Alba Fernández-Izquierdo, Laura Daniele, María Poveda-
Villalón, and Raúl García-Castro. Saref4inma: a saref extension for the
industry and manufacturing domain. 2019. 74

[DVCB+08] Emanuele Della Valle, Stefano Ceri, Davide Francesco Barbieri, Daniele
Braga, and Alessandro Campi. A first step towards stream reasoning. In
Future Internet Symposium, pages 72–81. Springer, 2008. 54

[FMK10] Flavius Frasincar, Viorel Milea, and Uzay Kaymak. TOWL: Integrating
time in OWL. In Semantic Web Information Management: A Model-Based
Perspective. 2010. 79

[GC18] Muhammet Gul and Erkan Celik. Fuzzy rule-based fine–kinney risk as-
sessment approach for rail transportation systems. Human and Ecologi-
cal Risk Assessment: An International Journal, 24(7):1786–1812, 2018. 71

[Ger13] Ilya Gertsbakh. Reliability theory: with applications to preventive main-
tenance. Springer, 2013. 11, 68

[GF12] M. Garetti and L. Fumagalli. P-PSO ontology for manufacturing systems.
In IFAC Proceedings Volumes (IFAC-PapersOnline), 2012. 73

[GGKL07] Sven Groppe, Jinghua Groppe, Dirk Kukulenz, and Volker Linnemann.
A sparql engine for streaming rdf data. In 2007 Third International
IEEE Conference on Signal-Image Technologies and Internet-Based Sys-
tem, pages 167–174. IEEE, 2007. 55

[GGM+02] Aldo Gangemi, Nicola Guarino, Claudio Masolo, Alessandro Oltramari,
and Luc Schneider. Sweetening ontologies with dolce. In Interna-
tional Conference on Knowledge Engineering and Knowledge Manage-
ment, pages 166–181. Springer, 2002. 47

[GHV05] Claudio Gutierrez, Carlos Hurtado, and Alejandro Vaisman. Temporal
RDF. In Lecture Notes in Computer Science, 2005. 78, 80

[GMD12] Fausto Giunchiglia, Vincenzo Maltese, and Biswanath Dutta. Domains
and context: first steps towards managing diversity in knowledge. Jour-
nal of web semantics, 12:53–63, 2012. 9, 60

[GP07] D. Guo and Z.K. Peng. Vibration analysis of a cracked rotor using
hilbert–huang transform. Mechanical Systems and Signal Processing,
21(8):3030 – 3041, 2007. 70

[GPFLCGP04] Asunción Gómez-Pérez, Mariano Fernández-López, Oscar Corcho, and
a Gomez-Perez. Ontological Engeenering. 2004. 44, 96

[Gra11] George Gratzer. Lattice Theory: Foundation. 01 2011. 124

163

BIBLIOGRAPHY

[Gra20] Bernard Grabot. Rule mining in maintenance: Analysing large knowl-
edge bases. Computers & Industrial Engineering, 139:105501, 2020. 71

[Gru93] Thomas R. Gruber. A translation approach to portable ontology specifi-
cations. Knowledge Acquisition, 5(2):199–220, 1993. 7, 28, 40, 43, 44

[Grü09] Michael Grüninger. Using the PSL Ontology. In Handbook on Ontologies.
2009. 72

[Gua97] Nicola Guarino. Semantic matching: Formal ontological distinctions for
information organization, extraction, and integration. In International
Summer School on Information Extraction, pages 139–170. Springer,
1997. 46

[GVCF07] Laurent-Walter Goix, Massimo Valla, Laura Cerami, and Paolo Falcarin.
Situation inference for mobile users: a rule based approach. In 2007
International Conference on Mobile Data Management, pages 299–303.
IEEE, 2007. 62

[Has11] H. M. Hashemian. State-of-the-Art Predictive Maintenance Techniques.
IEEE Transactions on Instrumentation and Measurement, 60(1):226–236,
Jan 2011. 1, 28, 114

[HB11] Matthew Horridge and Sean Bechhofer. The owl api: A java api for owl
ontologies. Semant. web, 2(1):11–21, January 2011. 96

[HBS02] Albert Held, Sven Buchholz, and Alexander Schill. Modeling of context
information for pervasive computing applications. Proceedings of SCI,
pages 167–180, 2002. 61

[HH92] Daniel Hennessy and David Hinkle. Applying case-based reasoning to
autoclave loading. IEEE expert, 7(5):21–26, 1992. 57

[HIR02] Karen Henricksen, Jadwiga Indulska, and Andry Rakotonirainy. Mod-
eling context information in pervasive computing systems. In Inter-
national Conference on Pervasive Computing, pages 167–180. Springer,
2002. 62

[HIR03] Karen Henricksen, Jadwiga Indulska, and Andry Rakotonirainy. Generat-
ing context management infrastructure from high-level context models.
In In 4th International Conference on Mobile Data Management (MDM)-
Industrial Track. Citeseer, 2003. 62

[HJC+19] Armin Haller, Krzysztof Janowicz, Simon JD Cox, Maxime Lefrançois,
Kerry Taylor, Danh Le Phuoc, Joshua Lieberman, Raúl García-Castro, Rob
Atkinson, and Claus Stadler. The modular ssn ontology: A joint w3c
and ogc standard specifying the semantics of sensors, observations, sam-
pling, and actuation. Semantic Web, 10(1):9–32, 2019. 74, 98

[HKS06] Ian Horrocks, Oliver Kutz, and Ulrike Sattler. The even more irre-
sistible <i>sroiq</i>. In Proceedings of the Tenth International Conference
on Principles of Knowledge Representation and Reasoning, KR’06, page
57–67. AAAI Press, 2006. 50

164

BIBLIOGRAPHY

[HM10] Terry Halpin and Tony Morgan. Information modeling and relational
databases. Morgan Kaufmann, 2010. 62

[Hod01] Wilfrid Hodges. Elementary predicate logic. In Handbook of philosophi-
cal logic, pages 1–129. Springer, 2001. 47

[Hor51] Alfred Horn. On sentences which are true of direct unions of algebras.
The Journal of Symbolic Logic, 16(1):14–21, 1951. 53

[HPSB+04] Ian Horrocks, Peter F Patel-Schneider, Harold Boley, Said Tabet, Ben-
jamin Grosof, Mike Dean, et al. Swrl: A semantic web rule language com-
bining owl and ruleml. W3C Member submission, 21(79):1–31, 2004. 53

[HRWL83] Frederick Hayes-Roth, Donald A Waterman, and Douglas B Lenat. Build-
ing expert system. 1983. 41

[HWCH08] S. Huang, T. Wu, H. Chu, and G. Hwang. A decision tree approach to
conducting dynamic assessment in a context-aware ubiquitous learning
environment. In Fifth IEEE International Conference on Wireless, Mo-
bile, and Ubiquitous Technology in Education (wmute 2008), pages 89–
94, 2008. 61

[IRRH03] Jadwiga Indulska, Ricky Robinson, Andry Rakotonirainy, and Karen Hen-
ricksen. Experiences in using cc/pp in context-aware systems. In In-
ternational Conference on Mobile Data Management, pages 247–261.
Springer, 2003. 61

[JGZ17] Kamran Javed, Rafael Gouriveau, and Noureddine Zerhouni. State of
the art and taxonomy of prognostics approaches, trends of prognostics
applications and open issues towards maturity at different technology
readiness levels. Mechanical Systems and Signal Processing, 94:214–236,
09 2017. 13, 70

[JSHL19] Eeva Järvenpää, Niko Siltala, Otto Hylli, and Minna Lanz. The develop-
ment of an ontology for describing the capabilities of manufacturing re-
sources. Journal of Intelligent Manufacturing, 2019. 73

[KCF12] Srdjan Komazec, Davide Cerri, and Dieter Fensel. Sparkwave: continu-
ous schema-enhanced pattern matching over rdf data streams. In Pro-
ceedings of the 6th ACM International Conference on Distributed Event-
Based Systems, pages 58–68, 2012. 56

[KF01] Michel Klein and Dieter Fensel. Ontology versioning on the semantic
web. In Proceedings of the First International Conference on Semantic
Web Working, SWWS’01, page 75–91, Aachen, DEU, 2001. CEUR-WS.org.
78, 79

[KK08] Kwang-Eun Ko and Kwee-Bo Sim. Development of context aware sys-
tem based on bayesian network driven context reasoning method and
ontology context modeling. In 2008 International Conference on Control,
Automation and Systems, pages 2309–2313, 2008. 61

[KK10] Barbara Korel and Simon Koo. A survey on context-aware sensing for
body sensor networks. Wireless Sensor Network, 2:571–583, 01 2010. 61

165

BIBLIOGRAPHY

[KMS+19] Evgeny Kharlamov, Gulnar Mehdi, Ognjen Savković, Guohui Xiao,
Elem Güzel Kalaycı, and Mikhail Roshchin. Semantically-enhanced rule-
based diagnostics for industrial internet of things: The sdrl language and
case study for siemens trains and turbines. Journal of Web Semantics,
56:11–29, 2019. 71

[Kol91] Janet L Kolodneer. Improving human decision making through case-
based decision aiding. AI magazine, 12(2):52–52, 1991. 57

[LBK15] Jay Lee, Behrad Bagheri, and Hung-An Kao. A cyber-physical systems
architecture for industry 4.0-based manufacturing systems. Manufac-
turing letters, 3:18–23, 2015. 11, 66, 67

[Lei10] Frank Leistner. Mastering organizational knowledge flow. Wiley Online
Library, 2010. 40

[LFK+14] Heiner Lasi, Peter Fettke, Hans-Georg Kemper, Thomas Feld, and
Michael Hoffmann. Industry 4.0. Business & Information Systems
Engineering: The International Journal of WIRTSCHAFTSINFORMATIK,
6(4):239–242, 2014. 66

[LL13] Angelica Nieto Lee and Jose Luis Martinez Lastra. Enhancement of in-
dustrial monitoring systems by utilizing context awareness. In 2013 IEEE
International Multi-Disciplinary Conference on Cognitive Methods in Sit-
uation Awareness and Decision Support (CogSIMA), pages 277–284. IEEE,
2013. 77

[LSDS06] Séverin Lemaignan, A Siadat, Jean-Yves Dantan, and A Semenenko. MA-
SON: A proposal for an ontology of manufacturing domain. 2006:195–
200, 2006. 73

[Lut03] Carsten Lutz. Description Logics with Concrete Domains – A Survey. Ad-
vances in Modal Logic, 2003. 78, 79

[LXL+18] Shuangyin Liu, Longqin Xu, Qiucheng Li, Xuehua Zhao, and Daoliang
Li. Fault diagnosis of water quality monitoring devices based on multi-
class support vector machines and rule-based decision trees. IEEE Ac-
cess, 6:22184–22195, 2018. 71

[LYZC18] Ruonan Liu, Boyuan Yang, Enrico Zio, and Xuefeng Chen. Artificial intel-
ligence for fault diagnosis of rotating machinery: A review. Mechanical
Systems and Signal Processing, 108:33–47, 2018. 70

[MB97] John McCarthy and Sasa Buvac. Formalizing context (expanded notes).
1997. 62

[MBG+03] Claudio Masolo, Stefano Borgo, Aldo Gangemi, Nicola Guarino, and
Alessandro Oltramari. Wonderweb deliverable d18 ontology library.
2003. 107

[McC93] John McCarthy. Notes on formalizing context. 1993. 62

166

BIBLIOGRAPHY

[MD03] Patrick Martin and Alain D’Acunto. Design of a production system:
an application of integration product-process. International Journal of
Computer Integrated Manufacturing, 16(7-8):509–516, 2003. 72

[MGGGGRG15] Víctor Martínez, Francisco Javier Gomez-Gil, Jaime Gomez-Gil, and
Ruben Ruiz-Gonzalez. An artificial neural network based expert system
fitted with genetic algorithms for detecting the status of several rotary
components in agroindustrial machines using a single vibration signal.
Expert Systems with Applications, 42(17-18):6433–6441, 2015. 71

[Mil08] Nick R Milton. Knowledge technologies, volume 3. Polimetrica sas, 2008.
xiii, 7, 40, 41

[Min74] Marvin Minsky. A framework for representing knowledge. 1974. 47, 58

[MKB+05] Christopher Matheus, Mieczyslaw Kokar, Kenneth Baclawski, Jerzy
Letkowski, Catherine Call, Michael Hinman, John Salerno, and Douglas
Boulware. Sawa: An assistant for higher-level fusion and situation aware-
ness. Proceedings of SPIE - The International Society for Optical Engineer-
ing, 5813, 03 2005. 76

[MKB+06] Christopher J Matheus, Mieczyslaw M Kokar, Kenneth Baclawski, Jerzy a
Letkowski, Catherine Call, Michael Hinman, John Salerno, and Dou-
glas Boulware. SAWA: An assistant for higher-level fusion and situation
awareness. Proceedings of SPIE, 5813:75–85, 2006. 76

[MKP04] Marius Mikalsen and Anders Kofod-Petersen. Representing and reason-
ing about context in a mobile environment. In Proceedings of the First In-
ternational Workshop on Modeling and Retrieval of Context. CEUR Work-
shop Proceedings, volume 114, pages 25–35, 2004. 62

[MN07] Marco Mamei and Radhika Nagpal. Macro programming through
bayesian networks: Distributed inference and anomaly detection. In
Fifth Annual IEEE International Conference on Pervasive Computing and
Communications (PerCom’07), pages 87–96. IEEE, 2007. 61

[Mob02] R Keith Mobley. An introduction to predictive maintenance. Elsevier,
2002. 11, 68

[Mok98] Joel Mokyr. The second industrial revolution, 1870-1914. Storia
dell’economia Mondiale, 21945, 1998. 1, 27

[MR07] Boris Motik and Riccardo Rosati. A faithful integration of description log-
ics with logic programming. In IJCAI, volume 7, pages 477–482, 2007. 50

[MUVHB14] Alessandro Margara, Jacopo Urbani, Frank Van Harmelen, and Henri Bal.
Streaming the web: Reasoning over dynamic data. Journal of Web Se-
mantics, 25:24–44, 2014. 56

[MVH+04] Deborah L McGuinness, Frank Van Harmelen, et al. Owl web ontology
language overview. W3C recommendation, 10(10):2004, 2004. 8, 48, 50

167

BIBLIOGRAPHY

[MWCD06] Cynthia Matuszek, Michael Witbrock, John Cabral, and John DeOliveira.
An introduction to the syntax and content of cyc. UMBC Computer Sci-
ence and Electrical Engineering Department Collection, 2006. 75

[NA06] Noy N. and Rector A. Defining n-ary relations on the semantic web. In
W3C Working Group Note, April 2006. 78, 79

[Nat98] James B Nation. Notes on lattice theory, 1998. 124

[NB18] David Lira Nuñez and Milton Borsato. Ontoprog: An ontology-based
model for implementing prognostics health management in mechani-
cal machines. Advanced Engineering Informatics, 38:746–759, 2018. 13,
71

[NK04] Natalya F Noy and Michel Klein. Ontology evolution: Not the same as
schema evolution. Knowledge and information systems, 6(4):428–440,
2004. 4, 29

[Noy01] Natasha Noy. Ontology development 101: A guide to creating your first
ontology. 2001. 43, 45

[NP01] Ian Niles and Adam Pease. Towards a standard upper ontology. In Pro-
ceedings of the international conference on Formal Ontology in Informa-
tion Systems-Volume 2001, pages 2–9, 2001. 47

[ÖA97] Pinar Öztürk and Agnar Aamodt. Towards a model of context for case-
based diagnostic problem solving. Context, 99:198–208, 1997. 62

[OBGM11] Mohamed-Zied Ouertani, Salah Baïna, Lilia Gzara, and Gérard Morel.
Traceability and management of dispersed product knowledge during
design and manufacturing. Computer-Aided Design, 43(5):546–562,
2011. 40

[OD11] Martin J. O’Connor and Amar K. Das. A method for representing and
querying temporal information in owl. In Ana Fred, Joaquim Filipe, and
Hugo Gamboa, editors, Biomedical Engineering Systems and Technolo-
gies, pages 97–110, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.
101

[ODSM+08] Martin O’Connor, Ravi D. Shankar, Mark Musen, Amar Das, and Csongor
Nyulas. The swrlapi: A development environment for working with swrl
rules., 01 2008. 96

[PC09] Panagiotis Papadopoulos and Liana Cipcigan. Wind turbines’ condition
monitoring: an ontology model. In 2009 International Conference on Sus-
tainable Power Generation and Supply, pages 1–4. IEEE, 2009. 72, 94

[PDT12] Hervé Panetto, Michele Dassisti, and Angela Tursi. Onto-pdm: Product-
driven ontology for product data management interoperability within
manufacturing process environment. Advanced Engineering Informat-
ics, 26(2):334–348, 2012. 72

168

BIBLIOGRAPHY

[PDTC07] Peter Plessers, Olga De Troyer, and Sven Casteleyn. Understanding ontol-
ogy evolution: A change detection approach. Journal of Web Semantics,
5(1):39–49, 2007. 4, 29

[PDTPH11] Danh Le Phuoc, Minh Dao-Tran, Josiane Xavier Parreira, and Manfred
Hauswirth. A native and adaptive approach for unified processing of
linked streams and linked data. In International Semantic Web Confer-
ence, 2011. 56

[PDZ10] Ying Peng, Ming Dong, and Ming Jian Zuo. Current status of machine
prognostics in condition-based maintenance: a review. The Interna-
tional Journal of Advanced Manufacturing Technology, 50(1-4):297–313,
2010. 13, 70

[PH12] M. Perry and J. Herring. Ogc geosparql - a geographic query language for
rdf data. OGC Implementation Standard, Sept, 2012. 99

[POC11] Han-Saem Park, Keunhyun Oh, and Sung-Bae Cho. Bayesian network-
based high-level context recognition for mobile context sharing in cyber-
physical system. International Journal of Distributed Sensor Networks,
7(1):650387, 2011. 61

[PVGPSF14] María Poveda-Villalón, Asunción Gómez-Pérez, and Mari Carmen
Suárez-Figueroa. OOPS! (OntOlogy Pitfall Scanner!): An On-line Tool for
Ontology Evaluation. International Journal on Semantic Web and Infor-
mation Systems (IJSWIS), 10(2):7–34, 2014. 109

[PZCG13] Charith Perera, Arkady Zaslavsky, Peter Christen, and Dimitrios Geor-
gakopoulos. Context aware computing for the internet of things: A sur-
vey. IEEE communications surveys & tutorials, 16(1):414–454, 2013. 60

[RBBSD11] Ana Rossello-Busquet, Lukasz J Brewka, José Soler, and Lars Dittmann.
Owl ontologies and swrl rules applied to energy management. In 2011
UkSim 13th International Conference on Computer Modelling and Simu-
lation, pages 446–450. IEEE, 2011. 53

[RCC92] David A. Randell, Zhan Cui, and Anthony G. Cohn. A Spatial Logic based
on Regions and Connection. 3rd International Conference On Knowledge
Representation And Reasoning, pages 165–176, 1992. 99

[Rie88] C Riesbeck. An interface for case-based knowledge acquisition. In Pro-
ceedings of the DARPA Case-Based Reasoning Workshop, pages 312–326.
Morgan Kaufmann Publishers, Inc, 1988. 57

[Rif11] Jeremy Rifkin. The third industrial revolution. how lateral power is trans-
forming energy, the economy, and the world. 2011. 1, 27

[Row07] Jennifer Rowley. The wisdom hierarchy: representations of the dikw hi-
erarchy. Journal of Information Science, 33(2):163–180, 2007. 3, 28, 29

[SAA+00] G Schreiber, H Akkermans, A Anjewierden, R De Hoog, N R Shadbolt,
and Bob Wielinga. Knowledge Engineering and Management: The Com-
monKADS Methodology, volume 99. 2000. 89

169

BIBLIOGRAPHY

[SAB03] B Samanta and KR Al-Balushi. Artificial neural network based fault di-
agnostics of rolling element bearings using time-domain features. Me-
chanical systems and signal processing, 17(2):317–328, 2003. 70

[SAW94a] Bill Schilit, Norman Adams, and Roy Want. Context-aware computing
applications. In 1994 First Workshop on Mobile Computing Systems and
Applications, pages 85–90. IEEE, 1994. 61

[SAW94b] Bill N. Schilit, N. Adams, and R. Want. Context-aware computing applica-
tions. In IEEE Workshop on Mobile Computing Systems and Applications,
pages 85–90, 1994. 9, 60

[SBG99] Albrecht Schmidt, Michael Beigl, and Hans-W Gellersen. There is more
to context than location. Computers & Graphics, 23(6):893–901, 1999. 62

[SCDV+19] Heiner Stuckenschmidt, S Ceri, Emanuele Della Valle, Frank Harmelen,
and P Milano. Towards expressive stream reasoning. Proceedings of the
Dagstuhl Seminar on Semantic Aspects of Sensor Networks, 03 2019. xiii,
3, 29, 55, 114

[SE05] Pavel Shvaiko and Jérôme Euzenat. A survey of schema-based matching
approaches. In Stefano Spaccapietra, editor, Journal on Data Semantics
IV, pages 146–171, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.
107

[SHS08] Amit Sheth, Cory Henson, and Satya S. Sahoo. Semantic Sensor Web.
IEEE Internet Computing, 12(4):78–83, July 2008. 74

[SKB05] Barry Smith, Anand Kumar, and Thomas Bittner. Basic Formal Ontology
for Bioinformatics. IFOMIS Reports, 2005. 47

[Sla91] Stephen Slade. Case-based reasoning: A research paradigm. AI maga-
zine, 12(1):42–42, 1991. 41

[SLP04] Thomas Strang and Claudia Linnhoff-Popien. A Context Modeling Sur-
vey. In Workshop on Advanced Context Modelling, Reasoning and Man-
agement, UbiComp 2004 - The Sixth International Conference on Ubiqui-
tous Computing, volume Workshop o, pages 1–8, 2004. 63

[SLPF03a] Thomas Strang, Claudia Linnhoff-Popien, and Korbinian Frank. Appli-
cations of a context ontology language. Proceedings of SoftCOM 2003,
pages 14–18, 2003. 62

[SLPF03b] Thomas Strang, Claudia Linnhoff-Popien, and Korbinian Frank. Cool: A
context ontology language to enable contextual interoperability. In IFIP
International Conference on Distributed Applications and Interoperable
Systems, pages 236–247. Springer, 2003. 62

[SMASC09] Cesar Sanín, Leonardo Mancilla-Amaya, Edward Szczerbicki, and Paul
CayfordHowell. Application of a multi-domain knowledge structure: the
decisional dna. In Intelligent systems for knowledge management, pages
65–86. Springer, 2009. 58, 59

170

BIBLIOGRAPHY

[SMB+17] C. Santos, A. Mehrsai, A.C. Barros, M. Araújo, and E. Ares. Towards indus-
try 4.0: an overview of european strategic roadmaps. Procedia Manufac-
turing, 13:972 – 979, 2017. Manufacturing Engineering Society Interna-
tional Conference 2017, MESIC 2017, 28-30 June 2017, Vigo (Pontevedra),
Spain. 1, 27

[SMMS02] Ljiljana Stojanovic, Alexander Maedche, Boris Motik, and Nenad Sto-
janovic. User-driven ontology evolution management. In Interna-
tional Conference on Knowledge Engineering and Knowledge Manage-
ment, pages 285–300. Springer, 2002. 4, 29

[SMZ14] Abdenour Soualhi, Kamal Medjaher, and Noureddine Zerhouni. Bear-
ing health monitoring based on hilbert–huang transform, support vec-
tor machine, and regression. IEEE Transactions on Instrumentation and
Measurement, 64(1):52–62, 2014. 70

[Sow99] John F Sowa. Knowledge representation: logical, philosophical and com-
putational foundations. Brooks/Cole Publishing Co., 1999. 7, 40

[SS09] Cesar Sanin and Edward Szczerbicki. Experience-based knowledge rep-
resentation: Soeks. Cybernetics and Systems: an international journal,
40(2):99–122, 2009. 58

[SS14] Meik Schlechtingen and Ilmar Ferreira Santos. Wind turbine condition
monitoring based on scada data using normal behavior models. part 2:
Application examples. Applied Soft Computing, 14:447 – 460, 2014. 71,
125

[ŠS19] Dušan Šormaz and Arkopaul Sarkar. SIMPM – Upper-level ontology
for manufacturing process plan network generation. Robotics and
Computer-Integrated Manufacturing, 2019. 73

[SSA13] Meik Schlechtingen, Ilmar Ferreira Santos, and Sofiane Achiche. Wind
turbine condition monitoring based on scada data using normal be-
havior models. part 1: System description. Applied Soft Computing,
13(1):259 – 270, 2013. 71, 125

[SST07] Cesar Sanin, Edward Szczerbicki, and Carlos Toro. An owl ontology of set
of experience knowledge structure. J. UCS, 13(2):209–223, 2007. 58, 59

[STH+12] Cesar Sanin, Carlos Toro, Zhang Haoxi, Eider Sanchez, Edward Szczer-
bicki, Eduardo Carrasco, Wang Peng, and Leonardo Mancilla-Amaya.
Decisional dna: A multi-technology shareable knowledge structure for
decisional experience. Neurocomputing, 88:42–53, 2012. 58, 59

[Sto04] Ljiljana Stojanovic. Methods and tools for ontology evolution. 2004. 4,
29

[Swa01] Laura Swanson. Linking maintenance strategies to performance. Inter-
national journal of production economics, 70(3):237–244, 2001. 11, 68

171

BIBLIOGRAPHY

[SWG17] Bernard Schmidt, Lihui Wang, and Diego Galar. Semantic framework
for predictive maintenance in a cloud environment. In 10th CIRP Con-
ference on Intelligent Computation in Manufacturing Engineering, CIRP
ICME’16, Ischia, Italy, 20-22 July 2016, volume 62, pages 583–588. Else-
vier, 2017. 71

[SWWP10] J Schwarzenbach, L Wilkinson, M West, and M Pilling. Mapping the
remote condition monitoring architecture. Research Programme. Rail
Safety and Standards Boards (RSSB) LTD. RSSB Core Report, 2010. 72

[TB09] Jonas Tappolet and Abraham Bernstein. Applied temporal RDF: Efficient
temporal querying of rdf data with SPARQL. In Lecture Notes in Com-
puter Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), 2009. 78, 79

[TBDV+17] Riccardo Tommasini, Pieter Bonte, Emanuele Della Valle, Erik Mannens,
Filip Turck, and Femke Ongenae. Towards ontology-based event process-
ing. pages 115–127, 02 2017. 125

[TBP15] Carlos Toro, Iñigo Barandiaran, and Jorge Posada. A Perspective on
Knowledge Based and Intelligent Systems Implementation in Industrie
4.0. Procedia Computer Science, 60:362 – 370, 2015. Knowledge-Based
and Intelligent Information & Engineering Systems 19th Annual Confer-
ence, KES-2015, Singapore. 86

[TS16] Lane Thames and Dirk Schaefer. Software-defined cloud manufactur-
ing for industry 4.0. Procedia CIRP, 52:12 – 17, 2016. The Sixth Inter-
national Conference on Changeable, Agile, Reconfigurable and Virtual
Production (CARV2016). 67

[TSC+12] Carlos Toro, Eider Sanchez, Eduardo Carrasco, Leonardo Mancilla-
Amaya, Cesar Sanín, Edward Szczerbicki, Manuel Graña, Patricia
Bonachela, Carlos Parra, Gloria Bueno, et al. Using set of experience
knowledge structure to extend a rule set of clinical decision support sys-
tem for alzheimer’s disease diagnosis. Cybernetics and Systems, 43(2):81–
95, 2012. 57

[TVG+10] Ying Tan, Mehmet C. Vuran, Steve Goddard, Yue Yu, Miao Song, and
Shangping Ren. A concept lattice-based event model for cyber-physical
systems. In Proceedings of the 1st ACM/IEEE International Conference on
Cyber-Physical Systems, ICCPS ’10, page 50–60, New York, NY, USA, 2010.
Association for Computing Machinery. 125

[UG96] Michael Uschold and Michael Grüninger. Ontologies: Principles, meth-
ods and applications. The Knowledge Engineering Review, 11, 01 1996.
xiii, 45, 46, 96

[UPML15] Mohammad Kamal Uddin, Juha Puttonen, and Jose Luis Martinez Las-
tra. Context-sensitive optimisation of the key performance indicators
for fms. International Journal of Computer Integrated Manufacturing,
28(9):958–971, 2015. 77

172

BIBLIOGRAPHY

[UYC+11] Zahid Usman, Robert Ian Marr Young, Nitishal Chungoora, Claire
Palmer, Keith Case, and Jenny Harding. A manufacturing core concepts
ontology for product lifecycle interoperability. In Lecture Notes in Busi-
ness Information Processing, 2011. 72

[W3C] W3C. Composite capabilities / preferences profile (cc/pp).
http://www.w3.org/Mo-bile/CCPP. 61

[WA94] Ian Watson and Salha Abdullah. Developing case-based reasoning sys-
tems: a case study in diagnosing building defects. In IEE Colloquium on
Case Based Reasoning: Prospects for Applications (Digest No. 1994/057),
pages 1–1. IET, 1994. 57

[Wan16] K Wang. Intelligent predictive maintenance (ipdm) system–industry 4.0
scenario. WIT Transactions on Engineering Sciences, 113:259–268, 2016.
12, 69

[WDD94] John H Williams, Alan Davies, and Paul R Drake. Condition-based main-
tenance and machine diagnostics. Springer Science & Business Media,
1994. 11, 68

[WDR06] Eugene Wu, Yanlei Diao, and Shariq Rizvi. High-performance complex
event processing over streams. In Proceedings of the 2006 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’06, page
407–418, New York, NY, USA, 2006. Association for Computing Machin-
ery. 124

[WDTP04] X.H. Wang, Da Qing Zhang, Tao Gu, and H.K. Pung. Ontology based con-
text modeling and reasoning using OWL. IEEE Annual Conference on Per-
vasive Computing and Communications Workshops, 2004. Proceedings of
the Second, pages 18–22, 2004. xiii, 43, 62, 76, 77

[WF06] Chris Welty and Richard Fikes. A reusable ontology for fluents in owl. In
Proceedings of the 2006 Conference on Formal Ontology in Information
Systems: Proceedings of the Fourth International Conference (FOIS 2006),
page 226–236, NLD, 2006. IOS Press. 79

[Wil05] Rudolf Wille. Formal Concept Analysis as Mathematical Theory of Con-
cepts and Concept Hierarchies, pages 1–33. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2005. 125

[WM94] Ian Watson and Farhi Marir. Case-based reasoning: A review. Knowledge
Engineering Review, 9(4):327–354, 1994. 57

[WSJ17] M. Wollschlaeger, T. Sauter, and J. Jasperneite. The future of indus-
trial communication: Automation networks in the era of the internet of
things and industry 4.0. IEEE Industrial Electronics Magazine, 11(1):17–
27, 2017. 10, 66

[WTL+17] Jiafu Wan, Shenglong Tang, Di Li, Shiyong Wang, Chengliang Liu, Haider
Abbas, and Athanasios V Vasilakos. A manufacturing big data solution
for active preventive maintenance. IEEE Transactions on Industrial In-
formatics, 13(4):2039–2047, 2017. 11, 68

173

BIBLIOGRAPHY

[WWLZ16] Shiyong Wang, Jiafu Wan, Di Li, and Chunhua Zhang. Implementing
smart factory of industrie 4.0: An outlook. International Journal of Dis-
tributed Sensor Networks, 12(1):3159805, 2016. 1, 27

[XLC+18] Feixiang Xu, Xinhui Liu, Wei Chen, Chen Zhou, and Bingwei Cao.
Ontology-based method for fault diagnosis of loaders. Sensors, 18(3):729,
2018. 71, 94

[XYWV12] Feng Xia, Laurence T. Yang, Lizhe Wang, and Alexey Vinel. Internet of
things. International Journal of Communication Systems, 25(9):1101–
1102, 2012. 66

[YK15] S. Yin and O. Kaynak. Big data for modern industry: Challenges and
trends [point of view]. Proceedings of the IEEE, 103(2):143–146, 2015. 67

[YL06] Stephen S Yau and Junwei Liu. Hierarchical situation modeling and rea-
soning for pervasive computing. In The Fourth IEEE Workshop on Soft-
ware Technologies for Future Embedded and Ubiquitous Systems, and
the Second International Workshop on Collaborative Computing, Integra-
tion, and Assurance (SEUS-WCCIA’06), pages 6–pp. IEEE, 2006. 76

[ZM15] Cecilia Zanni-Merk. Krem: A generic knowledge-based framework for
problem solving in engineering. In KEOD, pages 381–388, 2015. 7, 57

[ZMS19] Cecilia Zanni-Merk and Edward Szczerbicki. Building collective intelli-
gence through experience: a survey on the use of the krem model. Jour-
nal of Intelligent & Fuzzy Systems, 37(6):7141–7153, 2019. xiii, 42

[ZON15] J Zhu, Soh-Khim Ong, and Andrew YC Nee. A context-aware augmented
reality assisted maintenance system. International Journal of Computer
Integrated Manufacturing, 28(2):213–225, 2015. 77

[ZTL15] K. Zhou, Taigang Liu, and Lifeng Zhou. Industry 4.0: Towards future in-
dustrial opportunities and challenges. In 2015 12th International Con-
ference on Fuzzy Systems and Knowledge Discovery (FSKD), pages 2147–
2152, 2015. 11, 68

[ZYC+19] Rui Zhao, Ruqiang Yan, Zhenghua Chen, Kezhi Mao, Peng Wang, and
Robert X Gao. Deep learning and its applications to machine health
monitoring. Mechanical Systems and Signal Processing, 115:213–237,
2019. 70

[ZZWH19] Shen Zhang, Shibo Zhang, Bingnan Wang, and Thomas G Habetler.
Machine learning and deep learning algorithms for bearing fault
diagnostics-a comprehensive review. arXiv preprint arXiv:1901.08247,
2019. 70

174

	List of Figures
	List of Tables
	Synthèse de la thèse en français
	Introduction
	État de l’art
	Aperçu des systèmes intelligents
	Approches existantes pour la surveillance de l'état du système dans l'Industrie 4.0

	Contributions de cette thèse
	Modèle sémantique pour la modélisation du contexte dans l'Industrie 4.0
	Raisonnement sur les flux de données pour la détection et le diagnostic des situations anormales
	Hiérarchies de situation pour soutenir la prise de décision
	Mise en œuvre du cadre proposé

	Conclusions et Travaux Futurs

	Introduction
	I Related Work
	Smart Systems overview
	Smart Systems architecture
	The Classic architecture
	The KREM architecture

	The Knowledge component
	Concept of Ontology
	Semantic Web Technologies

	The Rules component
	SWRL - The Semantic Web Rule Language
	RDF Stream reasoning

	The Experience component
	Case-based reasoning
	SOEKS - Set of Experience Knowledge Structure

	The Meta-Knowledge component
	Data-driven approaches for context handling
	Knowledge-driven approaches for context handling

	Conclusion

	Existing approaches for Condition Monitoring in Industry 4.0
	Key elements of Industry 4.0
	Maintenance strategies in the industrial context
	Data-driven approaches to condition monitoring
	Knowledge-based approaches to condition monitoring

	Ontological models for the manufacturing domain
	Ontological models for context modeling
	Modeling knowledge that evolves in time
	Conclusion

	II Contributions
	Proposed framework overview
	General architecture for Industry 4.0
	Overview of the proposed framework
	The Semantic Model for Industry 4.0
	The Monitoring component
	The Diagnosis component
	The Decision Making component

	Conclusion

	Semantic Model for Context Modeling in Industry 4.0
	The proposed ontological model
	The Resource module
	The Process module
	The Sensor module
	The Location module
	The Time module
	The Situation module
	Integration of all the modules

	Ontology alignment with a foundational ontology
	Ontology evaluation
	Conclusion

	Stream Reasoning for Abnormal Situation Detection and Diagnosis
	Relevant situation detection and cause determination
	The Monitoring component
	The Diagnosis component
	The Abnormal Situation Refinement component
	The Decision Making component

	An Illustrative case study with two properties
	Conclusion

	Situation Hierarchies for supporting Decision Making
	Related work
	Situation hierarchy
	Definitions
	The lattice construction
	Lattice proof

	Case study for lattice interpretation and exploitation
	Conclusion

	Implementation of the proposed framework
	Implementation of the framework components
	The Ontological model implementation
	The Monitoring component implementation
	The Diagnosis component implementation
	The Decision making component implementation

	Proof of concept of the proposed framework
	Case study description
	Abnormal situation detection and cause determination

	Conclusion

	Conclusions & Future Work
	Bibliography

