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École doctorale n◦580 Sciences et technologies
de l’information et de la communication (STIC)
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A B S T R A C T

Time series are becoming ubiquitous in modern life, and given their sizes, their
analysis is becoming increasingly challenging. Time series analysis involves tasks
such as pattern matching, anomaly detection, frequent pattern identification, and
time series clustering or classification. These tasks rely on the notion of time series
similarity. The data-mining community has proposed several techniques, including
many similarity measures (or distance measure algorithms), for calculating the
distance between two time series, as well as corresponding indexing techniques
and algorithms, in order to address the scalability challenges during similarity
search.

To effectively support their tasks, analysts need interactive visual analytics sys-
tems that combine extremely fast computation, expressive querying interfaces, and
powerful visualization tools. We identified two main challenges when considering
the creation of such systems: (1) similarity perception and (2) progressive similar-
ity search. The former deals with how people perceive similar patterns and what
the role of visualization is in time series similarity perception. The latter is about
how fast we can give back to users updates of progressive similarity search results
and how good they are, when system response times are long and do not support
real-time analytics in large data series collections. The goal of this thesis, that lies
at the intersection of Databases and Visualization/Human-Computer Interaction,
is to answer and give solutions to the above challenges.

In the first part of the thesis, we studied whether different visual representations
(Line Charts, Horizon Graphs, and Color Fields) alter time series similarity percep-
tion. We tried to understand if automatic similarity search results are perceived in
a similar manner, irrespective of the visualization technique; and if what people
perceive as similar with each visualization aligns with different automatic similar-
ity measures and their similarity constraints. Our findings indicate that Horizon
Graphs promote as invariant local variations in temporal position or speed, and as
a result they align with measures that allow variations in temporal shifting or scal-
ing (i.e., dynamic time warping). On the other hand, Horizon Graphs do not align
with measures that allow amplitude and y-offset variations (i.e., measures based
on z-normalization), because they exaggerate these differences, while the inverse
seems to be the case for Line Charts and Color Fields. Overall, our work indicates
that the choice of visualization affects what temporal patterns humans consider as
similar, i.e., the notion of similarity in time series is visualization-dependent.

In the second part of the thesis, we focused on progressive similarity search in
large data series collections. We investigated how fast first approximate and then
updates of progressive answers are detected, while we execute similarity search
queries. Our findings indicate that there is a gap between the time the final an-
swer (best answer) is found, and the time when the search algorithm terminates,
resulting in inflated waiting times without any improvement. Computing prob-
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abilistic estimates of the final answer could help users decide when to stop the
search process. We developed and experimentally evaluated using benchmarks,
a new probabilistic learning-based method that computes quality guarantees (er-
ror bounds) for progressive k-Nearest Neighbour (k-NN) similarity search results.
Our approach learns from a set of queries and builds prediction models based on
two observations: (i) similar queries have similar answers; and (ii) progressive best-
so-far (bsf) answers returned by the state-of-the-art data series indexes are good
predictors of the final k-NN answer. We provide both initial and incrementally
improved estimates of the final answer.
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R É S U M É

Les séries temporelles deviennent omniprésentes dans la vie moderne et leur anal-
yse de plus en plus difficile compte tenu de leur taille. L’analyse des grandes séries
de données implique des tâches telles que l’appariement de modèles (motifs), la dé-
tection d’anomalies, l’identification de modèles fréquents, et la classification ou le
regroupement (clustering). Ces tâches reposent sur la notion de similarité. La com-
munauté scientifique a proposé de plusieurs techniques, y compris de nombreuses
mesures de similarité pour calculer la distance entre deux séries temporelles, ainsi
que des techniques et des algorithmes d’indexation, afin de relever les défis de
l’évolutivité lors de la recherche de similarité.

Les analystes, afin de s’acquitter efficacement de leurs tâches, ont besoin de
systèmes d’analyse visuelle interactifs, extrêmement rapides, et puissants. Lors
de la création de tels systèmes, nous avons identifié deux principaux défis: (1) la
perception de similarité et (2) la recherche progressive de similarité. Le premier
traite de la façon dont les gens perçoivent des modèles similaires et du rôle de la
visualisation dans la perception de similarité. Le dernier point concerne la rapidité
avec laquelle nous pouvons redonner aux utilisateurs des mises à jour des résultats
progressifs, lorsque les temps de réponse du système sont longs et non interactifs.
Le but de cette thèse est de répondre et de donner des solutions aux défis ci-dessus.

Dans la première partie, nous avons étudié si différentes représentations vi-
suelles (Graphiques en courbes, Graphiques d’horizon et Champs de couleur)
modifiaient la perception de similarité des séries temporelles. Nous avons essayé
de comprendre si les résultats de recherche automatique de similarité sont perçus
de manière similaire, quelle que soit la technique de visualisation; et si ce que
les gens perçoivent comme similaire avec chaque visualisation s’aligne avec dif-
férentes mesures de similarité. Nos résultats indiquent que les Graphes d’horizon
s’alignent sur des mesures qui permettent des variations de décalage temporel ou
d’échelle (i.e., ils promeuvent la déformation temporelle dynamique). En revanche,
ils ne s’alignent pas sur des mesures autorisant des variations d’amplitude et de dé-
calage vertical (ils ne promeuvent pas des mesures basées sur la z-normalisation).
L’inverse semble être le cas pour les Graphiques en courbes et les Champs de
couleur. Dans l’ensemble, nos travaux indiquent que le choix de la visualisation
affecte les schémas temporels que l’homme considère comme similaires. Donc, la
notion de similarité dans les séries temporelles est dépendante de la technique de
visualisation.

Dans la deuxième partie, nous nous sommes concentrés sur la recherche progres-
sive de similarité dans de grandes séries de données. Nous avons étudié la rapidité
avec laquelle les premières réponses approximatives et puis des mises à jour des
résultats progressifs sont détectées lors de l’exécuton des requêtes progressives.
Nos résultats indiquent qu’il existe un écart entre le moment où la réponse finale
s’est trouvée et le moment où l’algorithme de recherche se termine, ce qui entraîne
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des temps d’attente gonflés sans amélioration. Des estimations probabilistes pour-
raient aider les utilisateurs à décider quand arrêter le processus de recherche, i.e.,
quand l’amélioration de la réponse finale est improbable. Nous avons développé
et évalué expérimentalement une nouvelle méthode probabiliste qui calcule les
garanties de qualité des résultats progressifs de k-plus proches voisins (k-NN).
Notre approche apprend d’un ensemble de requêtes et construit des modèles de
prédiction basés sur deux observations: (i) des requêtes similaires ont des réponses
similaires; et (ii) des réponses progressives renvoyées par les indices de séries de
données sont de bons prédicteurs de la réponse finale. Nous fournissons des esti-
mations initiales et progressives de la réponse finale.
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Toute science est une connaissance certaine et évidente.

– René Descartes
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1
I N T R O D U C T I O N

T he development of sensor technologies in a wide range of domains, such
as neuroscience, genome sequencing, earth observation, and astronomy,
has led to an explosion in monitoring activities. Based on these tech-

nology advances, we are able to record large amounts of data values. These
sequences of values are called data series. Formally, a data series T = (p1, ...pn)
is defined as an ordered sequence of points pi = (vi, di), where each point is
associated with a value vi in the dimension di, and n is the size (or length) of the
series [89, 90]. When the dimension of ordering is time, we call them time series
(Figure 1.1). Though, a data series can also be defined over other dimensions
(e.g., angle in radial profiles in astronomy, mass in mass spectroscopy, frequency
in infrared spectroscopy, position in genome sequences, etc.) [90]. In the rest of
this dissertation, we use the terms time series, data series, and sequences inter-
changeably.

It is not unusual for data series collections across many different domains
to grow in the order of multiple terabytes (TBs) in size. Analysts need to in-
teractively explore and analyze these large data series collections, formulate so-
phisticated queries to test predictions and rough hypotheses about emerging
patterns in the data, visually assess their results, and progressively refine their
hypotheses in an iterative manner. Their data exploration and analysis involve
tasks such as pattern matching, anomaly detection, frequent pattern identifica-
tion, and time series clustering or classification. These tasks rely on the notion
of time series similarity [90]. Database and data-mining research has developed
a wide range of techniques to automate such tasks [46]. These techniques are
based on automatic similarity search algorithms, which measure the similarity
between time series, and are called similarity measures.

To effectively support their tasks that require similarity search, analysts need
interactive visual analytics systems that combine extremely fast computation,
expressive querying interfaces, and powerful visualization tools. This thesis ad-
dresses two main challenges when considering the creation of such systems:

500 1000 1500 2000 2500 3000 3500 4000

Figure 1.1.: An electrocardiogram (ECG) is a time series. It is a measurement of the elec-
trical activity of the heart using sensors placed on the skin. The image shows
the recorded values of a patient’s ECG for a period of 4000 milliseconds (ms).
(Image courtesy of E. Keogh)
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(1) time series similarity perception and (2) progressive similarity search. In the next
section, we present these two challenges and give two example scenarios that
motivate them.

1.1 challenges

Before addressing the challenges of this thesis, it is worth mentioning the prob-
lems that feed them and why they are challenging.

Visual Assessment of Similarity Search Results. We demonstrate the first prob-
lem with a scenario in clinical neuroscience. Neuroscientists are looking for tools
to improve the detection of abnormal epileptiform patterns [112]. They capture
electroencephalography (EEG) signals from their patients using many sensors
at different areas of the brain (Figure 1.2). These signals are time series data,
i.e., sequences of values ordered along the dimension of time. In order to detect
abnormal patterns, they often visually inspect these large data series collections
and compare patterns. Although automatic solutions based on machine learn-
ing algorithms exist for this problem, the neuroscientists do not trust them (see
Section 3.2), as they yield too many false positives, which makes their task even
harder. Unfortunately, identifying and characterizing whether two patterns are
similar requires a lot of experience, thus some of their decisions remain subjec-
tive. The way such patterns are shown to users may affect their decisions, so
there is a more general research question that previous work has not yet ad-
dressed. Do different time series visualizations affect human similarity perception and
how?

Challenge 1: Time Series Similarity Perception. In particular, we ask the
question whether different visualizations change what patterns humans view as
similar. If yes, how does each visualization communicate the similarity between
patterns? Do some visualizations favor or penalize the results of similarity search
algorithms? We answer all these questions in Chapter 3 by conducting a user
study in the lab consisted of two main experiments and one follow-up. In this
study, we compared three different visualization techniques and the results of
three similarity search algorithms.

Progressive Similarity Search. We explain and motivate the second problem
with a scenario from astronomy research. The scenario is inspired by a real anal-
ysis task as described by an astronomer in a design workshop* that we organized
back in 2016 [91]. An astronomer needs to explore and analyze streams of data
collected from several detectors over a period of a couple of years, amounting to
several TBs of data series [23]. These data, which are photon counts as a function
of time, represent space-time deformation or "strain" (Figure 1.3). Her goal is to
look for gravitational-wave signals in the strain data, i.e., specific patterns in the
strain created by the motion of very dense astrophysical objects (for instance,
black-holes). She has simulated data series from the output of noise-free simula-
tions of gravitational-wave signals (Figure 1.4). The astronomer wants to discover

* Questionnaire filled in by an astronomer during a design workshop [91], December 2016, Ap-
pendix A
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Figure 1.2.: Neuroscientists often visually inspect large collections of EEG signals, which
are time series data. Vertical lines indicate manual annotations of epilepti-
form discharges (abnormal patterns) that neuroscientists have detected on
different sensors. The particular discharges are highlighted in a red oval.
Neuroscientists characterized these discharges as similar giving them the
same name TOext2.

whether the simulated (predicted) signals are present in the strain. She accom-
plishes her task by performing pattern matching, the full analysis of which can
take minutes (for the fastest algorithms making strong simplifying assumptions
for the sake of speed) to months (for the slowest, most complex and computa-
tionally expensive analyses).

Therefore, she needs tools that first provide fast and approximate similarity
search results and then give back updates of progressive results. Progressive re-
sults may not be precise, but gradually improve as the algorithm is executed
(Figure 1.5). Such results should come with probabilistic error bounds that indi-
cate how close they are to the exact solutions. The astronomer could then judge
these "rough" results based on their probabilistic error bounds and other user-
defined bounds of domain-specific parameters, such as the position of the signal
in the sky. But two challenges arise: (i) how fast we can give back to users first
approximate results (e.g., in the order of milliseconds, seconds, or minutes) and
how good they are (i.e., how close to the final result); and (ii) how we can effi-
ciently and effectively compute quality guarantees (probabilistic error bounds)
of progressive results and communicate them to users.

Challenge 2: Quality Guarantees of Progressive Results. How to com-
pute progressive results and estimates of probabilistic distance bounds, in order
to help users decide when to stop the search process, is an open research ques-
tion. In particular, we examine the quality of progressive query answering and
what probabilistic guarantees we can provide users. In Chapter 4, we demon-
strate through experiments using several large data series datasets (synthetic
and real) and the state-of-the-art data series indexing techniques that we are
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Figure 1.3.: The plot shows a stretch (0.6 sec) of noisy strain data collected from a de-
tector. They are plotted as a function of time in seconds. They are usually
filtered to remove the noisy low and high frequency content. (Image source:
www.ligo.org)

Figure 1.4.: Three noise-free simulated gravitational-wave series of length 0.6 sec. These
signals are specific patterns in the strain created by the motion of very dense
(for instance, black-holes) astrophysical objects. The astronomers’ goal is to
look for these patterns in the strain data (Figure 1.3). (Image source: www.
ligo.org)

able to give back to users first approximate results almost immediately (in the
order of milliseconds), and then updates of progressive results that fast converge
to the final solution. Next, we develop and present a new probabilistic method
for efficient and effective computation of distance distributions and error bounds
of progressive similarity search results. We leave for future work the still open
challenge of how to communicate visually and statistically such probabilistic er-
ror bounds to users without misleading them and misguiding them to wrong
decisions.

www.ligo.org
www.ligo.org
www.ligo.org
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Query 

Progressive 
Result 1

Progressive 
Result 2

Progressive 
Result 3

Figure 1.5.: Example of progressive results, which are not the final and exact ones, but
are getting better (closer to the query) as progressive similarity search is
executed.

This PhD thesis lies at the intersection of different research areas of Computer
Science: Database Management Systems, Human-Computer Interaction, and Data Vi-
sualization.

1.2 thesis statement and overview of contributions

The thesis main contributions are:

• The first investigation of whether different time series visualizations affect
similarity perception. We studied which visualizations promote or penal-
ize results from similarity search algorithms, and provided guidelines on
visualizations to use according to domain-dependent definition and notion
of similarity.

• An investigation of the quality of early progressive results through a set of
computational benchmarks using large data series datasets, both synthetic
and real.

• The introduction of a scalable probabilistic method that provides quality
guarantees (error bounds) for progressive similarity search query answer-
ing in massive data series collections, by building prediction models; and
the comparison of different such models when it comes to their speed and
quality.

In the next Chapters, we provide details of the results of this dissertation with
respect to the above points.

1.3 outline of the thesis

The rest of the dissertation is organized as follows. In Chapter 2, we present
background material and prior work on data series visualizations and analyt-
ics that span from user studies related to time series perception to similarity
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search algorithms, database management systems for fast similarity search in
large data series collections, querying interfaces for interactive similarity search,
and progressive visual analytics solutions. In Chapter 3, we present our work on
similarity perception under different time series visualizations; we present the
two main experiments of this study (experimental design, results), as well as the
results of a follow-up experiment. In Chapter 4, we focus on progressive similar-
ity search; in particular, we demonstrate through experiments why progressive
similarity search is useful (and necessary) in large data series collections and
how fast we can provide first approximate results to users, and then updates of
progressive results. We propose a new probabilistic method for computing qual-
ity guarantees (error bounds) for progressive similarity search results. Finally, in
Chapter 5, we offer concluding remarks and future insights on the next steps of
data series visualizations and analytics.





2
R E L AT E D W O R K

W e discuss now previous work on time series visualizations, similar-
ity search, and perception, in particular with respect to time series
similarity. We start off by introducing existing time series visual-

izations and studies that have been done with them investigating perceptual
aspects. Next, we present research from the data mining community on data se-
ries similarity search. Data mining research has developed plethora of similarity
search algorithms to measure time series similarity. The choice of the right mea-
sure depends on the data domain, which defines sometimes roughly and other
times rigorously the similarity between patterns. All these works compose the
background material for our time series perceptual study, which we present in
Chapter 3.

In the second half of the chapter, we discuss previous work on database man-
agement systems for fast similarity search, interactive querying interfaces for
interactive similarity search, and progressive visual analytics systems for pro-
gressive query answering. In particular, the database community has developed
advanced techniques (e.g., indexes) for fast similarity search in large data se-
ries collections. Many querying interfaces take advantage of these back-end so-
lutions. They combine interactive interfaces of time series visualizations with
effective back-end techniques for fast and interactive similarity search. However,
these systems cannot support the analysis and visualization of massive data se-
ries collections without the adoption of progressive technologies. The last section
is devoted to progressive query answering and progressive visualizations, which
are widely called progressive visual analytics. These last sections compose the
background material for our work on data series progressive similarity search,
which we present in Chapter 4.

2.1 time series visualizations

Time series are sequences of values changing over time. Line Charts [117] are
the first visualization for time-varying data dating back to 18th century, when
Lambert and Playfair started using them (Figure 2.1). Today, Line Charts are
widely known and established as the simplest and most common visualization
for time series. They usually map time to the horizontal x-axis, and value to the
vertical y-axis, and utilize position to place connected-by-line points in a two-
dimensional (2-D) Cartesian coordinate system. However, Line Charts are not the
only visualization for time series. Several visualizations have been introduced to
plot data as a function of time (see [2, 84] for an overview of time oriented
visualizations).

In particular, different visualizations serve different characteristics of the data
(abstract or spatial, univariate or multivariate), of the time (linear or cyclic, in-
stant or interval), and of the visual representation itself (static or dynamic, 2D

8
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Figure 2.1.: Playfair’s trade-balance time-series chart between England and North Amer-
ica in the 18th century, Plate 5, Commercial and Political Atlas and Statistical
Breviary, 1786.

or 3D) [2]. In this thesis, the main focus is given on linear, multivariate data and
2D time series visualizations. This is the kind of data that come from multiple
sensors placed on the scalp (neuroscience), or earth and space observation detec-
tors (astronomy), that neuroscientists and astronomers explore in 2D linear plots
(see Chapter 1). Nonetheless, other visualizations would also be of interest for
this kind of data, e.g., visualizations that communicate the periodical nature of
the data using spirals [13, 115, 127] (Figure 2.2). Through these visual represen-
tations neuroscientists might be able to spot periodical epileptiform abnormal
patterns or astronomers periodical events in the sky, but they don’t use them,
because they do not scale well for large cardinalities of series.

Figure 2.2.: (a) A time series in a spiral (cyclic) view. Color is used for the encoding
of values. No periodical patterns are visible. (b) The same time series in a
spiral with different cycle length. The example shows that with the right
parameterization periodical patterns are disclosed. (Image source: Tominski
et al., Enhanced Interactive Spiral Display, 2008)

https://pdfs.semanticscholar.org/430c/87c32ccc1d1fd1a2ccfc0ed28c6a40273bcf.pdf
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Figure 2.3.: VizTree. A tree-based clustering visualization of similar patterns. The image
shows the differences in pattern distributions of two ECG datasets (blue and
green). The surprising/abnormal patterns are highlighted in red. Clicking
on the branch ranked 1, the anomalous heartbeat in the green time series is
shown (also highlighted in the time series window). (Image source: https:
//cs.gmu.edu/~jessica/viztree.htm)

Scalability is one aspect that has received considerable attention in time series
visualizations. Some visualizations aggregate points of long time series (e.g., [12,
67]), others aggregate multiple time series or their segments trough clustering
(e.g., [74, 76, 120]), and yet others focus on examining how to interactively ex-
plore and compare a set or a subset of time series (e.g., [132, 133]) (Figure 2.3).
One of the oldest visualization approaches is to present Line Charts in small mul-
tiples [117] or sparklines [80], i.e., small time series charts embedded in tables,
text, or other graphs. More recent approaches extend the Line Chart representa-
tion itself. For example, the two-tone pseudo coloring and Horizon Graphs [93,
99, 102] split the vertical range of values in a Line Chart into a few horizontal
bands, that are then colored and superimposed (Figure 2.4). This representation
saves vertical space, while maintaining the overall line shape. Others address
scalability using color-based representations, often referred to as heatmaps or
Color Fields (Figure 2.5). Instead of using position to encode the range of values
over time (as is done in Line Charts), these visualizations use vertical color strips,
whose color saturation or brightness encodes value. This approach is seen in
many systems [3, 32, 86, 102] and scales well as multiple such sequences of small
height can be stacked together [69, 111]. For example, Line Graph Explorer [69]
(Figure 2.6) colors Line Charts based on their y-value and allows users to focus
on some of them, while the rest are each collapsed into Color Fields colored
based on the y-value at any point. As remarked by Javed et al. [63], in order to
represent multiple time series, the above representations split the space (mainly

https://cs.gmu.edu/~jessica/viztree.htm
https://cs.gmu.edu/~jessica/viztree.htm
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vertically) and attempt to optimize the vertical footprint of each individual time
series.

Figure 2.4.: The development of Horizon Graph. (a) The Line Chart is divided into neg-
ative (blue) and positive (red) values. (b) 6 horizontal, same-width bands (3
negative and 3 positive) split the Line Chart, that are then colored from light
to darker saturations for the extreme low and high values. (c) The negative
bands are mirrored above the x-axis, and (d) all bands are superimposed.
The final Horizon Graph occupies 1/6 of the original Line Chart’s vertical
space, offering a compact visualization for time series. (Image source: Perin
et al., Interactive Horizon Graphs: Improving the Compact Visualization of
Multiple Time Series, 2013)

Alternatively, multiple visualizations can occupy the same space [63]. Multiple
Line Charts, often of different colors, can be superimposed or can be replaced
by variations of area charts that attempt to optimize space (e.g., stacked [18]
or braided [63] graphs). For example, stacked graphs or their variation stream-
graphs [18, 56] (Figure 2.7a) are colored area graphs that do not use a common
baseline, instead each time series is drawn using the previous series as a baseline.
The series are displaced around a central axis resulting in a flowing (river) shape.
Braided graphs [63] (Figure 2.7b) are area graphs with a common baseline, that
ensure that all curves are visible by sorting the curves so that the highest values
are rendered at the back, resulting in a braiding effect. The majority of these
space sharing techniques do not scale well for a large number of time series
due to clutter. Moreover, the stacked variations, which do not have a common
baseline, could complicate comparison tasks such as determining similarity. We
focused on techniques that split space, as our motivating scenario for similarity
search and similarity perception (see Section 3.2) revealed that it is important to
be able to see a large number of time series together.

https://dl.acm.org/citation.cfm?id=2470654.2466441
https://dl.acm.org/citation.cfm?id=2470654.2466441
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Figure 2.5.: A time series visualized as a Color Field, where y-values are encoded as
colors. The color mapping is based on a continuous, usually interpolated,
color scale of one, two, or multiple colors. In the example, the 3-tone color
scale goes from blue for the lowest to red for the highest values utilizing yel-
low shades for the median values. (Image source: Correll et al., Comparing
Averages in Time Series Data, 2012)

Figure 2.6.: Line Graph Explorer. Gene data visualized as heatmaps or Color Fields. Line
Charts are colored based on their y-value, allowing users to focus on some
of them, while the rest are each collapsed into Color Fields colored based
on the y-value at each point. The expanding area shows four open Line
Charts. Thousands of time series are visualized utilizing the minimum pos-
sible space. (Image source: Kincaid & Lam, Line Graph Explorer: Scalable
Display of Line Graphs using Focus+Context, 2006)

2.2 studies on time series perception

A number of perception studies have compared different time series visualiza-
tions under a variety of tasks, in particular visualizations that use positional

https://dl.acm.org/citation.cfm?id=2208556
https://dl.acm.org/citation.cfm?id=2208556
https://dl.acm.org/citation.cfm?id=1133265.1133348
https://dl.acm.org/citation.cfm?id=1133265.1133348
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(a)

(b)

Figure 2.7.: Shared-space techniques for the visualization of multiple time series. (a)
Stacked graphs or streamgraphs are colored area graphs disturbed around
a central axis resulting in a flowing (river) shape. The image shows Twitter
keyword trends over a period of time. (Image source: Ronan Lyons, 2009) (b)
Braided graphs are area graphs with a common baseline. Areas are cut at
points where the curves change hierarchy and are sorted with the highest
values rendered first in the back, ensuring that all curves are visible. (Image
source: Javed et al., Graphical Perception of Multiple Time Series, 2010)

vs. color encodings, linear vs. cyclic settings, and shared-space vs. split-space
techniques.

Position vs. Color. Correll et al. [32] investigated the efficiency of represen-
tations using either position (Line Charts) or color (Color Fields) when estimat-
ing averages. They found that people are better at estimating high-level statisti-
cal overview tasks, such as averages, when using Color Fields. Albers et al. [3]
compared eight different time series visualisations that used both positional and
color encodings (among other variations). They found that positional visualiza-
tions like Line Charts were more efficient for tasks requiring point comparisons
(e.g., minima, maxima, range), whereas color once again performed better for
summary comparisons (e.g., averages, spreads from average). On the other hand,
Heer et al. [57] compared Line Charts with variations of Horizon Graphs for a
value comparison and estimation task. In particular, subjects were comparing
two points, a point on one graph to a point on another of the same-type graph,
reporting which point represented the greater value and then estimating the ab-
solute difference between the two. Heer et al. focused mainly on the effects of
chart size and layering and found that Horizon Graphs performed better than
Line Charts for small chart sizes. Later, Perin et al. [93] improved the efficiency
of Horizon Graphs for maxima, value comparison, and series identification tasks
by allowing an interactive adjustment of the band baseline.

Linear vs. Cyclic. Adnan et al. [1] compared the effectiveness of three time
series visualisations that utilize position, color, and area for the encoding of time
series. They tested the same visual encodings in both linear and polar (cyclic) lay-
outs (see Figure 2.8). Their results, which agree with previous study results [3],

http://www.ronanlyons.com/2009/02/03/so-long-recession-for-a-day-at-least-streamgraphing-irelands-twitter-news/
https://dl.acm.org/citation.cfm?id=1907971
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Figure 2.8.: Three visualizations that utilize (a) position, (c) color, and (e) area to visu-
alize time series in both linear (a, c, e) and polar (cyclic) (b, d, f) layouts –
tested for maxima, minima, trend detection, and aggregate estimation tasks.
(Image source: Adnan et al., Investigating Time Series Visualisations to Im-
prove the User Experience, 2016)

indicate that for point comparison tasks, such as maxima, minima, and trend
detection, positional visual encodings are more effective, while for aggregate es-
timation tasks, area visual encodings perform better than the previous-studied
color visual encodings. They also found that linear settings are generally com-
parable or more effective than the polar ones. Several works have also consid-
ered tasks on multiple time series. Fuchs et al. [47] studied glyphs, presented in
small multiples (see Figure 2.9). Position/length and color were among the vari-
ations used for the different glyph designs for the encoding of data values. For
temporal-location encoding, radial (cyclic) vs. linear layouts were considered.
They did not test aggregation tasks, but they found that for peak and trend
detection tasks, line glyphs worked best. On the other hand, radial encodings
were better for discrimination tasks (i.e., comparing values at specific temporal
locations).

Shared-space vs. Split-space. Javed et al. [63] compared visualization tech-
niques which split (small multiples, horizon graphs) or share the same space
(line graphs, braided graphs) using color to differentiate the different series.
They tested them under peak, trend, and discrimination (value comparison)
tasks. They found that while shared-space (superimposed) techniques worked
well for small numbers of time series, they did not scale well due to both clut-

https://dl.acm.org/citation.cfm?id=2858300
https://dl.acm.org/citation.cfm?id=2858300
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Figure 2.9.: Four different visualizations in small multiples – tested for peak, trend, and
discrimination (value comparison) tasks. Upper row: position/length encod-
ings, lower row: color encodings, left column: linear settings, right column:
radial (cyclic) settings. (Image source: Fuchs et al., Evaluation of alternative
glyph designs for time series data in a small multiple setting, 2013)

ter and difficulty in color disambiguation. On the other hand, split-space ones
worked better for large numbers. Horizon Graphs were faster than Line Charts
for discrimination tasks, but slower for peak and trend detection tasks. Table 2.1
summarizes the tasks and the characteristics of the best performing visualiza-
tions according to the previous studies.

(a)   Simple line graph

(c)   Small multiples

(b)   Braided graph

(d)   Horizon graphs

Figure 2.10.: Shared-space (a, b) vs. split-space (c, d) techniques – tested for peak, trend,
and discrimination (value comparison) tasks. (Image source: Javed et al.,
Graphical perception of multiple time series, 2010)

https://dl.acm.org/citation.cfm?id=2466443
https://dl.acm.org/citation.cfm?id=2466443
https://dl.acm.org/citation.cfm?id=1907971
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Table 2.1.: Time series perception: Tasks and best-performing visualizations.

Task Best-performing visualizations

Peak detection (maxima, minima) position (Line Charts) [1, 3, 47, 63]

Trend detection (range) position (Line Charts) [1, 3, 47, 63]

Discrimination (value comparison) position and color (Horizon Graphs) [57, 63, 93]

Aggregate estimation color (Color Fields) [3, 32]

Similarity search likely involves both point comparisons, such as finding maxima
and minima, and overview comparisons, such as comparing the overall shape
of patterns. It is thus unclear if position or color-based visualizations are best
suited for similarity tasks. In Chapter 3, we focus on three linear, split-space
visualization techniques that rely on position (Line Charts), color (Color Fields),
or both (Horizon Graphs). These techniques can also scale well to multiple time
series when presented as small multiples, supporting our motivating domain
(neuroscience).

2.3 time series similarity

Analysts often define a subsequence of interest as query and use automated tools
to search for similar patterns. We discuss now data-mining research on similarity
search algorithms, and then visualization research on how to specify similarity
between queries and evaluated results. We highlight the few studies that per-
form subjective user evaluation of similarity search results.

2.3.1 Similarity Measures

Data-mining research has proposed a plethora of algorithms (distance measures)
that assess the distance between time series. Each one computes similarity be-
tween patterns in a different way according to the data-domain definition of
similarity. The difference lies on how the algorithm treats signal deformations
when measuring for similarity. For example, measures are considered to be in-
variant to one or more signal characteristics (e.g., amplitude), when they match
patterns by eliminating these signal variations. Ding et al. [35] group them in
four categories:

Lock-step: Lock-step measures, such as the Euclidean Distance (ED) [42], per-
form point-by-point value comparison between two time series comparing the
i-th point of one series to the i-th point of another (Figure 2.11). ED treats signals
without distorting them and any variation between them adds in their distance;
thus ED is a non-invariant measure. On the other hand, ED can be combined
with data normalization, often called z-normalization [52], which transforms time
series into new ones of the same length that have zero mean and standard devi-
ation one. ED with z-normalization considers as similar, patterns that may vary
in amplitude and y-offset (Figure 2.12). As a result, ED with z-normalization
becomes invariant to amplitude and y-offset.
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Figure 2.11.: Euclidean distance: point-by-point value comparison between time series C
and Q. (Image source: Batista et al., CID: an efficient complexity-invariant
distance for time series, 2014)

Figure 2.12.: Euclidean distance with z-normalization eliminates amplitude and y-offset
variations by transforming time series into new ones that have zero mean
and standard deviation one. (Image courtesy of E. Keogh)

Elastic: Elastic measures compare one-to-many or one-to-none points be-
tween two time series. For example, Dynamic Time Warping (DTW) [11] allows
local, horizontal "stretching" and/or "compression" of time series patterns when
searching for similar ones (Figure 2.13). DTW accounts for similar sequences
that may vary in speed or are shifted temporally; thus DTW supports temporal-
warping invariance. In contrast to the local temporal scaling of DTW, there is
another measure for global scaling, which is called uniform scaling. Uniform
scaling aligns two time series by stretching or compressing uniformly the entire
series altering their size.

Threshold-based: Threshold-based measures are less common and more spe-
cialized. For example, TQuEST [7] transforms time series into a sequence of time
intervals which cross a given threshold. Then, similarity is measured by treating
these time intervals as points in a two dimensional space, where the starting
time and ending time constitute the two dimensions.

Pattern-based: Pattern-based measures, e.g., SpADe [26], look for matching
patterns (subsequences) between two time series within their entire length. They
focus on the shape of the patterns allowing both temporal shifting and ampli-
tude scaling. It can be considered that they are a combination of DTW and z-
normalization.

https://dl.acm.org/citation.cfm?id=2582974
https://dl.acm.org/citation.cfm?id=2582974
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Figure 2.13.: Dynamic time warping eliminates speed or temporal shift variations by
stretching and/or compressing time series’ patterns. (Image source: Batista
et al., CID: an efficient complexity-invariant distance for time series, 2014)

Even more specialized similarity measures eliminate variations in phase, com-
plexity, or differences due to missing values supporting invariance to those sig-
nal characteristics.

To evaluate similarity measures, Ding et al. [35] performed a nearest neighbor
classification (1-NN) by using distances of nine different similarity measures
that belong to the above categories. Then they compared their classification ac-
curacy in pre-labeled datasets coming from different domains [25]. Based on
their analysis, they concluded that there is no superior measure, as their classi-
fication accuracy depends on the dataset and its domain. Among their findings
is that, in small datasets, DTW can be significantly more accurate than ED, but,
as the size of the dataset increases their accuracies converge. In our similarity
perception work (see Chapter 3), we focus on ED, DTW and its variations be-
cause: (i) they are the most commonly used measures in the visualization and
data-mining literature; (ii) they are efficient [31, 35]; and (iii) they are appropri-
ate for our motivating domain (see Section 3.2). In our progressive similarity
search work (Chapter 4), we use only the ED because [35, 39]: (i) it is fast; and
(ii) it leads to efficient solutions for large datasets. (We plan to examine other
measures, e.g., DTW, in our future work.)

2.3.2 Studies on Similarity Perception

Few studies have investigated subjective user evaluation of similarity search re-
sults. TimeSketch [41] proposed a crowdsource procedure where crowdworkers
ranked time series with regards to their similarity to a small set of sketched
queries (Figure 2.14). The goal was to produce a human-generated ranking and
then compare it to the ranking of similarity algorithms. They found DTW to
be the closest to human ranking, with ED performing worse or similarly, and
SpADe performing badly for small queries. This procedure helps derive human-
driven similarity measures and provides insights about how close they are to
algorithmic measures, but it is unclear how it can apply to non-sketched queries.
Mannino and Abouzied [79] compared their own matching algorithm with ED
and DTW by using again simplified query patterns sketched by hand (Fig-
ure 2.15). Their algorithm tolerates local distortion errors in amplitude and scale
of the sketched queries made by hand, by rescaling the hand-drawn patterns.

https://dl.acm.org/citation.cfm?id=2582974


2.4 similarity search and interactive querying 19

Their studies showed that the results of their scale-free, matching algorithm
were ranked higher than those of DTW (and ED), but focused on a small set of
sketched queries rather than a large set of real time series patterns as is our case.
Correll and Gleicher [31] in turn examined whether similarity perception is in-
variant [10] to signal deformations, in the same way that similarity measures are
invariant to them. In particular, they examined how humans rated the similarity
between a simplified pattern (the query) and a target that was the original query
transformed in different ways (e.g., different levels of amplitude, noise, size, tem-
poral position) (see Figure 2.16 for the full list of signal deformations they tested).
They also used three similarity measures to rate automatically the similarity be-
tween the original patterns and the transformed ones. The algorithms they used
were the ED, DTW, and a pattern-based measure. Their results indicated that no
single algorithm could match human judgements and that multiple algorithms
are required. This work again used Line Chart visualizations, while we consider
similarity across different visual representations. We explain finer differences to
this study in Section 3.4.6.

Figure 2.14.: Example of a sketched query and a human-annotated ranking created by
crowdworkers. (Image source: Eichmann and Zgraggen, Evaluating Subjec-
tive Accuracy in Time Series Pattern-Matching Using Human-Annotated
Rankings, 2015)

2.4 similarity search and interactive querying

2.4.1 Similarity Search

While similarity measures calculate similarity between time series, advanced
data series similarity search techniques need to enable scalability. The database
community has optimized time series similarity search by developing index
structures [19, 29, 125, 135], or by directly optimizing sequential scans [97]. Re-

https://dl.acm.org/citation.cfm?id=2701379
https://dl.acm.org/citation.cfm?id=2701379
https://dl.acm.org/citation.cfm?id=2701379
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Figure 2.15.: First row: Original queries. Second row: Samples of sketched queries drawn
by crowdworkers based on the original queries. The authors ran their own
matching algorithm (Qetch) and DTW to measure the similarity between
the original queries and the sketched ones. Third row: Sketched queries
that have high similarity to the original ones with Qetch algorithm, but
low with DTW. Last row: Sketched queries that have high similarity to the
original ones with DTW, but low with Qetch. Note: We observe that the
sketched queries of the third row look more similar to the original queries,
while only a few sketches from the last row are similar to those, i.e., Qetch
performs better. (Image source: Mannino and Abouzied, Expressive Time
Series Querying with Hand-Drawn Scale-Free Sketches, 2018)

cently, Echihabi et al. [39] compared these methods in terms of efficiency under a
single, unified experimental framework. They ran 1-NN similarity search queries
and assessed index scalability and efficiency by measuring the wall clock time
and the number of random disk accesses (one random disk access corresponds
to one leaf access in the index tree). Their work indicates that there is no single
best method that outperforms all the rest. The dataset size, time series length,
disk-resident or in-memory search determine which method performs better. In
our progressive similarity search work (Chapter 4), we use the state-of-the-art
ADS [135] and DSTree [125] indices, which provide high-quality approximate
answers almost immediately, and then updates of progressive results that con-
verge fast to the exact answer. Next, a brief description of the ADS and DSTree
approaches follows.

The ADS [135] index organizes the data in a tree structure, where the leaf
nodes contain the raw data and each internal node contains summarized data
series under the Symbolic Aggregate Approximation (SAX) [75] representation.
SAX splits the data series into equi-length segments, and using Piecewise Aggre-
gate Approximation (PAA) [68], associates each segment with the mean value of
its points. Then, SAX discretizes the time series and minimizes their footprint
by representing the mean values of each segment with a discrete set of symbols
(see Figure 2.17a).

Similarly to ADS, the DSTree [125] is also a tree-based index that stores raw
data in the leaves and summaries in internal nodes. The main difference with
ADS is that DSTree does not support bulk loading, continues to segment the
data in both dimensions (horizontally and vertically) while indexing, and uses
Extended Adaptive Piecewise Approximation (EAPCA) [125] instead of SAX.

https://dl.acm.org/citation.cfm?id=3173962
https://dl.acm.org/citation.cfm?id=3173962
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Figure 2.16.: List of the original queries (left column) and examples of signal transfor-
mations they applied (right column). They tested three different levels of
signal transformation, adding noise to the rest of the series. (Image source:
Correll and Gleicher, The semantics of sketch: Flexibility in visual query
systems for time series data, 2016)

EAPCA splits the data series into varying-length segments, and using Adaptive
Piecewise Constant Approximation (APCA) [22], each segment is represented
with the mean and standard deviation values of its points (see Figure 2.17b).

Index search with both the ADS [135] and DSTree [125] indices works by
traversing a single path of the tree structure to visit the most promising leaf (i.e.,
the leaf that is more likely to contain the final answer). The search continues with
the next most promising leaf, while a pruning algorithm decides which leaves
will be visited and in what order. Each time there is an answer closer (more
similar) to the query, we update the progressive results. On the other hand, op-
timized sequential scan [97] cannot guarantee high-quality approximate results,
because the updates depend on the position of random series in the dataset
and how early they are accessed. Note that in our progressive similarity search
study, we are focusing on the popular centralized solutions. Nevertheless, our
results naturally extend to parallel and distributed solutions that have recently
appeared in the literature [92, 129], since these solutions are based on the same
principles and mechanisms as their centralized counterparts.

https://ieeexplore.ieee.org/abstract/document/7883519
https://ieeexplore.ieee.org/abstract/document/7883519
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Figure 2.17.: (a) SAX representation (used by the ADS index) splits the data series into
equi-length segments and each segment is represented with a discrete set
of symbols. (b) EAPCA representation (used by the DSTree index) splits the
data series into varying-length segments and each segment is represented
with its mean and standard deviation values. (Image source: Echihabi et
al., The Lernaean Hydra of Data Series Similarity Search: An Experimental
Evaluation of the State of the Art, 2018)

2.4.2 Interactive Querying

The human-computer interaction community focuses on the interactive visual
exploration and querying of data series. There has been a growing research
interest in this direction. In particular, they are interested in how to form interac-
tive similarity search queries. Existing querying approaches on top of Line Chart
visualizations rely either on the interactive selection of part of an existing time
series [16, 17] (Figure 2.18), or on sketching of patterns to search for [31, 79, 105,
126, 134] (Figure 2.19). Other examples express queries through visual filtering.
For example, TimeSearcher [59] allows users to specify their queries through
"time box" selections (rectangle regions), which filter the time series and keep
only those that go through all the time boxes (Figure 2.20). In Querylines [101],
instead of boxes, users can create line segments to define the constraints for
the queries that need to be filtered (Figure 2.21). Yet others allow refinement and
interactive adjustment of the tolerance around the query (e.g., [60]) (Figure 2.22).

Most selection- and sketch-based systems use ED [16, 60], but more recent
works [31, 79, 105, 134] have considered additional similarity measures. Later
approaches focus on algorithmic similarity based on visual cues, for example
through the automatic detection of specific "motifs", simple shapes such as spikes
or sinks that users can combine to form queries [53]. Others [85] examine how
to automatically extract a grammar to express time series approximately and
simplify the search of matches to a sketched query. These works mainly perform
visual matching of series. Zoumpatianos et al. have focused on algorithmic per-

https://dl.acm.org/citation.cfm?id=3302536
https://dl.acm.org/citation.cfm?id=3302536
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Figure 2.18.: Interactive pattern selection as a query (red-highlighted pattern in the red
box). (Image source: Buono et al., Interactive Pattern Search in Time Series,
2005)

Figure 2.19.: RINSE: an interactive query-sketching system for similarity search in large
data series collections. Red line: the sketched query, blue area graph: the
1-NN answer. (Image source: Zoumpatianos et al., RINSE: interactive data
series exploration with ADS+, 2015)

formance and scalability aspects of similarity search (millions of data series) in
their query-sketching system using ED-, DTW- with or without z-normalization
as similarity measures [134, 135]. Recently, Qetch [79] presented a sketch-based
querying system and a similarity algorithm that is scale independent. Qetch al-
gorithm works by diminishing local distortion errors in the hand-drawn query
patterns. With few exceptions [79, 134], these approaches have not been evalu-
ated through user studies and have not been tested for their scalability to mil-
lions of data series.

All the above works rely on Line Chart visual representations. While we do
not study mechanisms of querying, this line of work motivates our similarity
perception research work (see Chapter 3), as we want to understand how people
assess similarity in the results of their queries. This line of work is also orthogo-
nal to our progressive similarity search approach (see Chapter 4), that considers
approximate and progressive results from these queries when interactive search
times are not possible.

https://www.spiedigitallibrary.org/conference-proceedings-of-spie/5669/0000/Interactive-pattern-search-in-time-series/10.1117/12.587537.short
https://dl.acm.org/citation.cfm?id=2824032.2824099
https://dl.acm.org/citation.cfm?id=2824032.2824099
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(b)

(a)

Figure 2.20.: TimeSearcher: an interactive time-series filtering system. Time boxes filter
time series and keep only those that go through them. Three time boxes (b)
are a stricter filter than two (a). (Image source: Hochheiser and Shneider-
man, Dynamic query tools for time series data sets: timebox widgets for
interactive exploration, 2004)

(a) (b)

(c) (d)

Figure 2.21.: QueryLines: Instead of boxes, lines are used to filter time series. (a) All
the series share the same space. (b) Two "hard" lines (green and yellow)
define "strict" max and min filtered criteria for specific time intervals. (c) A
more relaxed query that gives approximate matches, e.g., time series with
an upward trend in the given time interval. (d) A peak-shaped query asks
for time series with a peak in the query-defined space. (Image source: Ryall
et al., QueryLines: Approximate Query for Visual Browsing, 2005)

https://dl.acm.org/citation.cfm?id=993177
https://dl.acm.org/citation.cfm?id=993177
https://dl.acm.org/citation.cfm?id=1057017
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Figure 2.22.: Users can refine a query and adjust the tolerance of specific points (bottom
part of the screen). Tolerances are visualized as circles. For a match, all
corresponding points need to lie within the circles. (Image source: Holz
and Feiner, Relaxed selection techniques for querying time-series graphs,
2009)

2.5 progressive visual analytics

A recent research direction studies the problem of how we can support inter-
active, real-time visual analytics when back-end computations cannot be per-
formed instantaneously, as is the case of our work in Chapter 4. To this effect we
can use progressive and iterative methods in order to produce fast, but approx-
imate, computational results and visualizations, that are refined over time with
increasing precision. Fekete and Primet [43] provide a summary of the features
of a progressive system. Here we focus on a subset, namely how to provide: (i)
progressively improved answers; (ii) feedback about the state and costs of the
computation; and (iii) guarantees of time and error bounds for progressive and
final results. We address these features in Chapter 4.

The state-of-the-art in big data exploration takes advantage of the power of
distributed systems, indexing, and sampling methods, and different works uti-
lize one or more of these techniques in order to provide progressive results for
different kinds of queries and data. Zenvisage [105] defines a new query lan-
guage that allows the execution of multiple aggregate queries for the visual
exploration of large datasets, taking advantage of the inherent parallelism in
database systems. Falcon [82] optimizes brushing and linking actions over ag-
gregate visualizations by utilizing indexing and data prefetching. IncVisage [96]
incrementally improves trendline and heatmap visualizations by progressively
splitting and sampling revealing salient features first (Figure 2.23). Very recently,
PANENE [66] was proposed to progressively index (batches of data points) and
query for approximate k-Nearest Neighbors, enabling users to access results

https://dl.acm.org/citation.cfm?id=1622217
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in interactive times, while the index is still being built/updated. This work fo-
cuses on approximate query answering algorithms for in-memory data, while
the focus of our current work is on exact query answering algorithms for out-of-
memory data.

Figure 2.23.: IncVisage: An incremental visualization system for line chart and heatmap
visualizations. At each time point, the algorithm samples new data with the
most prominent features revealed first. (Image source: Rahman et al., I’ve
seen "enough": incrementally improving visualizations to support rapid
decision making, 2017)

Figure 2.24.: Width and color indicate high confidence about the convergence of incre-
mental aggregate estimates. (Image source: Fisher et al., Exploratory Visual-
ization Involving Incremental, Approximate Database Queries and Uncer-
tainty, 2012)

Systems that provide progressive results and incremental visualizations are
appreciated by users due to their quick feedback [8, 130]. Nevertheless, there
are some caveats. Users can be mislead into believing false patterns [83, 118]
with early progressive results. It is thus important to communicate the progress

https://dl.acm.org/citation.cfm?id=3137637
https://dl.acm.org/citation.cfm?id=3137637
https://dl.acm.org/citation.cfm?id=3137637
https://ieeexplore.ieee.org/document/6180153
https://ieeexplore.ieee.org/document/6180153
https://ieeexplore.ieee.org/document/6180153
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Figure 2.25.: Above: Approximate histogram visualization of a group-by query. Below:
The precise result for the same chart. Blue bars show the exact values, or-
ange lines show the approximate results, and highlighted bars, at the end,
show results that were missing from the approximation. (Image source:
Moritz et al., Trust, but Verify: Optimistic Visualizations of Approximate
Queries for Exploring Big Data, 2017)

of ongoing computations [5, 103], including the uncertainty and convergence of
results [5] and guarantees on time and error bounds [43]. Previous work has
attempted to provide such uncertainty and guarantees in relational databases
and aggregation type of queries [58, 64, 128]. In the human-computer interac-
tion community, Fisher et al. [45] studied if analysts trust data that come from
incremental samples with added statistical measures such as means and con-
fidence intervals built on top of a standard SQL database. They explored two
different ways of visualizing confidence: (a) width and (b) saturation (color). In
Figure 2.24 they combine both, with the wider and darker areas of the bars to
indicate largely converged aggregate estimates of high confidence. Later, Moritz
et al. [83] used an existing algorithm [34] which also exploits sampling methods
for incremental, approximate query processing of multiple aggregate database
queries at the same time. In that work, they communicated errors and confidence

https://dl.acm.org/citation.cfm?id=3025453.3025456
https://dl.acm.org/citation.cfm?id=3025453.3025456
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intervals by presenting approximate visualizations of bar charts and heatmaps
(Figure 2.25). At the end of each query, users could compare those approximate
visualizations with the precise and final ones.

Closer to the context of data series and similarity search, Ciaccia and Patella [28]
studied progressive similarity search queries over general multi-dimensional
spaces and proposed a probabilistic approach for computing the uncertainty
of partial similarity search results. Their approach is based on sampling meth-
ods. Their query-independent method [29] draws pairwise distance distributions
between sampled vectors of a multi-dimensional space. Their query-sensitive
method [27] draws distance distributions between the query and sampled vec-
tors. However, large samples of distances are required for credible probabilistic
distance estimates of the final results. They tested their approach with a few
thousands of series (up to 20K) and dimensionality between 2-64 points. How-
ever, their approach does not scale to the dataset sizes and number of dimensions
that we target. We discuss their approach in detail in Chapter 4.

We focus on very large collections (i.e., in the order of GBs) of data series
(where the dimensionality of each series is in the order of hundreds to thou-
sands), and how we can develop approaches to support progressive visual analy-
sis in a fully interactive system. Our ultimate goal is to study how users decide to
terminate a search that is progressive in nature (and thus reduce waiting times),
when they are provided with approximate answers and information about their
uncertainty. We are interested in the quality of approximate answers and how to
communicate to users when no improvement is expected to be obtained even if
the search algorithm is still running.

2.6 summary

We presented prior work on data series visualizations and analytics. We saw
that there are many different ways to visually encode data series values, such as
color, position, or both, in linear or cyclic time settings. For multiple time series,
glyph and small multiple techniques split the space devoting a different area to
each data sequence, while shared-space techniques place sequences on the same
axes. The research literature has previously studied all these visual representa-
tions of data series with regards to human perception when subjects (humans)
perform common analysis tasks, such as finding maxima and minima, detecting
trends, comparing different values, and estimating aggregates. However, a com-
mon challenge faced by many domain experts who visually inspect their data
is how to compare similar patterns. Although previous work has tested tasks
that require similarity comparison – for results of different similarity measures –
under Line Chart visualizations, it has never considered alternative visual encod-
ings. Chapter 3 presents a series of studies that investigate similarity perception
under different time series visualizations.

Data mining has developed a plethora of similarity measures for automatic
similarity search and comparison between data series, that satisfy different sim-
ilarity constraints. Similarity search is a fundamental task in data series analyt-
ics. Database researchers have focused on fast similarity search by developing
techniques, such as indexes, that enable scalability. On the other hand, human-
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computer interaction researchers have focused on interactive querying interfaces
for the creation and definition of similarity search queries. Existing systems deal-
ing with large data series try to combine both fast, back-end computations and
expressive querying interfaces backed up by powerful visualizations. However,
due to the increasing volumes of data series data, existing solutions cannot
support interactive similarity-search query answering. Therefore, for real-time
analytics, state-of-the-art approaches seek progressive query- answering mech-
anisms that are built on top of indexing structures, distributed systems, and
sampling methods. Such approaches provide approximate, progressive results,
that progressively converge to the final answer.

Progressive results should come with quality guarantees (error bounds) of
how close they are to the final answer. Visual analytics systems need to efficiently
compute and visually communicate such bounds to users. Prior work has stud-
ied the computation and visual communication of error bounds for progressive
aggregate query results. For approximate similarity results in data series, prior
work computes distance bounds based on samples of distance distributions, but
is not scalable to millions of high-dimensional data series, while there is no prior
work on how to visualize such distance bounds to communicate uncertainty of
similarity measures. In Chapter 4, we present a new probabilistic method for
the efficient computation of progressive estimates that scales to millions of data
series.





3
C O M PA R I N G S I M I L A R I T Y P E R C E P T I O N I N T I M E S E R I E S
V I S U A L I Z AT I O N S

A common challenge faced by many domain experts such as neuroscien-
tists working with time series data is how to identify and compare sim-
ilar patterns. This operation is fundamental in high-level tasks, such

as detecting recurring phenomena or creating clusters of similar temporal se-
quences. While automatic measures exist to compute time series similarity, hu-
man intervention is often required to visually inspect these automatically gener-
ated results. The visualization literature has examined similarity perception and
its relation to automatic similarity measures for Line Charts, but has not yet con-
sidered if alternative visual representations, such as Horizon Graphs and Color
Fields, alter this perception. It is thus unclear whether the role of visualization
has an impact on how people perceive similar patterns. Do people give more at-
tention to the slopes, the extreme points (i.e., peaks and valleys), or the general
shape of the patterns when they compare for similar series? Does their focus
and their degree of attention to different characteristics of the signal depend on
the visualization technique? We note that similarity measures work by amplify-
ing or diminishing different signal characteristics (e.g., time warping, amplitude
scale, y-offset, etc.) when computing for similarity. Thus, we seek to understand
if visualizations have the same effect on similarity perception.

In particular, we seek to understand if the time series results returned from au-
tomatic similarity measures are perceived in a similar manner, irrespective of the
visualization technique; and if what people perceive as similar with each visual-
ization aligns with different automatic measures and their similarity constraints.
Our findings indicate that Horizon Graphs align with similarity measures that
allow local variations in temporal position or speed (i.e., dynamic time warping)
more than the two other techniques. On the other hand, Horizon Graphs do
not align with measures that allow variations in y-offset and amplitude scaling
(i.e., measures based on z-normalization), but the inverse seems to be the case
for Line Charts and Color Fields. Overall, our work indicates that the choice of
visualization affects what temporal patterns humans consider as similar, i.e., the
notion of similarity in time series is visualization-dependent. We published the
results of this study at IEEE VIS 2018 [49].

In the last section, we also report the results of a follow-up experiment, which
we published as an INRIA technical report [48]. In this follow-up, we studied
whether different color interpolation techniques (the linear RGB and the more
perceptually uniform CIE L*a*b*) in visual encodings that utilize color maps,
such as Color Fields, affect time series similarity perception. For the patterns we
tested, we didn’t find any statistically significant differences between these two
color interpolation techniques on data series similarity perception.

31
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3.1 introduction

Time series derive from measurements and recordings of a range of natural pro-
cesses (e.g., seismic activity per ms), human functions and activities (e.g., systolic
and diastolic blood pressure per hour, number of steps per day), and tracking of
mechanical and technological equipment (e.g., temperature of an airplane engine
per second). Large time series collections are becoming increasingly common-
place [89], and users need to analyze them in order to extract useful knowledge.
Their analysis involves a diverse range of tasks, such as searching for pattern
templates or anomalies, identifying reoccurring waveforms, or classifying time
series subsequences into clusters of similar patterns, all of which involve the
notion of similarity between time series. Data-mining research has developed a
wide range of techniques to automate such tasks [46].

In many situations however, automated techniques fail to produce satisfactory
results, thus experts rely on visual analytic tools to perform their tasks. For
example, in EEG data, comparing time series to identify epileptiform discharges
is difficult [65]. These temporal patterns take a variety of different forms that are
very specific to individual patients, while very similar patterns appear in normal
background activity. Although several techniques claim to automatically detect
such patterns [61], medical experts still visually inspect the EEG data of their
patients. This process is especially time consuming, as experts need to visually
scan a large number of temporal signals recorded from multiple EEG sensors,
find, and compare these patterns.

In such scenarios, the use of visualization techniques that accurately and
effectively communicate similar patterns between time series becomes impor-
tant. Time series are commonly represented as Line Charts, but a considerable
amount of work in Information Visualization has examined alternative visual
encodings, such as Horizon Graphs [57, 63, 93, 99, 102] and Color Fields [3, 32,
86, 102, 111]. This literature has focused on elementary visual tasks that require
estimation, e.g., estimation of averages, or point comparison and discrimination
tasks. Visual pattern matching is a more complex task that requires the simulta-
neous comparison of a large number of features and likely incorporates many
of these previously mentioned tasks. Thus, previous results say very little about
how people access the similarity of two or more time series when using different
time-series visualizations.

In this Chapter, we examine how line- and color-encoding techniques affect
what time series humans perceive as similar. Specifically, we present the results
of two laboratory experiments that compare three representative techniques: (1)
Line Charts, (2) Horizon Graphs, and (3) Color Fields. In addition to task perfor-
mance, we assess the reliability (or subjectivity) of participants’ answers and ex-
amine whether the above techniques penalize or favor similarity invariances [10,
31, 41] that are often required by certain application domains. For example, two
patterns might be considered as similar, irrespective of their amplitudes (ampli-
tude invariance) or their stretching along the time dimension (time-scale invari-
ance). We want to understand whether the three visualizations exaggerate or de-
emphasize such deformations. To this end, we assess the perception of similarity
between time series, with respect to representative similarity distance measures
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that are well known to be invariant to certain properties of a time series [10].
Our first experiment investigates local time-scale (or time-warping) invariance by
contrasting similarity perception with Euclidean Distance (ED) and Dynamic
Time Warping (DTW). Our second experiment in turn investigates amplitude
and y-offset invariance by contrasting similarity perception with and without z-
normalization.

In contrast to previous studies, that used human sketched [41, 79] or artificially
generated [31] query patterns, the queries in our experiments are extracted from
annotated EEG data and express real patterns of interest. A major challenge is
how to derive patterns that are representative of real data and tasks, but that
also highlight the differences of the tested similarity measures. We address this
challenge by selecting query patterns for which the different distance similarity
measures produce clearly distinct answers. This enables us to assess whether
similarity perception with each visual encoding technique is invariant to warp-
ing as well as to amplitude and offset deformations in the signals.

To summarize, this study is the first to investigate how humans perceive simi-
larity between time series with both line- and color-encoding visualization tech-
niques. Our results answer two major questions: (1) how easy or difficult it is
to visually identify similar patterns with different visualization techniques; and
(2) whether similarity perception with these techniques is invariant to represen-
tative signal deformations.

3.2 motivation

Our motivation stems from a real problem presented to us by a team of neuro-
scientists, experts in the analysis of EEG recordings for the diagnosis of epileptic
events. Our experimental task is inspired by the user interfaces that such experts
use to visually analyze EEG data. The pool of our experimental data was also
provided directly by them. In two 1h sessions we met with two and three neu-
roscientists respectively from the MEG/EEG Center of the ICM Brain and Spine
Institute [114] in Paris. They are looking for tools to improve the detection of
"epileptiform discharges". These are abnormal patterns that have been linked to
various cognitive disruptions and reoccurrences of epileptic seizures [112]. They
are often not isolated cases but may appear as periodic patterns [88], whose
periodicity may vary significantly from one patient to another.

Epileptiform discharges are events which are characterized by a spike of 20-
70 milliseconds (ms) usually followed by a sharp wave lasting 70-200 ms [33,
107, 108]. As opposed to epileptic seizures that produce large disturbances in
the EEG signal of a patient, epileptiform discharges are especially hard to detect.
Although data-mining research has developed algorithms to automatically de-
tect their patterns [61], according to our experts, such algorithms result in many
false positives and are not useful in practice. Main reasons for this problem is
that epileptiform discharges take a range of different forms and often resemble
normal background activity due to regular artifacts such as pulses of the heart,
the eyes, or the muscles [65]. In addition, their patterns vary greatly across pa-
tients so machine-learning approaches cannot help.



3.2 motivation 34

Figure 3.1.: The Muse tool used by the neuroscientists of ICM [114] to visualize mea-
surements from 295 electrodes and sensors placed on patients’ scalps. Here
a neuroscientist has restricted the view to 6 groups of sensors (30 in total)
from one recording trial (trial10). Purple lines indicate manual annotations
of epileptiform discharges that neuroscientists have detected on different
sensors. The particular discharges are highlighted in a green oval for illus-
tration purposes only (these highlights are not part of the tool). The scroll
bar in the bottom indicates what time frame of the series is currently visible,
and is augmented with indications of where manual annotations exist (small
colored line segments).

For these reasons, medical experts do not trust automated techniques and
still visually scan the data to identify abnormal events, using tools such as the
one depicted in Figure 3.1. This can be a very tedious and complex task. Experts
need to visually inspect around 300 sensors and several thousand data points per
sensor (see Section 3.3.2). And even when they find candidate events, they often
need to consult additional resources (e.g., 3D representations of the location of
the electrodes placed on the scalp) to make their decisions and annotate their
data.

In an attempt to aid our users, we tried to understand if it would be possible
for them to first manually identify a small number of epileptiform discharges
and use them as patterns to automatically detect similar subsequences. The ex-
perts could then visually verify whether they are similar and decide if they are
also potential discharges. To this end, we requested information about what
types of variations or deformations in the patterns could indicate similar sig-
nals.

The experts were able to verbally describe roughly the signal they were look-
ing for. They explained that the duration of spikes and waves can vary and are
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not consistent even for a single patient, thus stressed or compressed signals are
of interest (invariant to time-warping). When asked, they also explained that the
height of the pattern can vary across patients (invariant to amplitude). But they
could not say to what extent the amplitude of the spikes and discharges is im-
portant, i.e., to what extent signals could be considered similar if they differed
in amplitude. In some cases we got the response that a spike can be too small
(i.e., in some cases amplitude may play a role) but this can only be determined
by looking at the background noise - the parts of the signal before and after the
spike. Or that to interpret a spike they needed access to views from other sensors.
The importance of context in detecting such discharges is well documented [33,
107, 108]. These are all very subtle properties that need to be evaluated case by
case, and in context, stressing further the need for human intervention.

As our experts explained, identifying these types of discharges requires a
lot of experience, and some of their decisions remain subjective. Past work
has shown that agreement even between different experts can be particularly
low [65]. While this task relies on extensive experience and involves substantial
domain knowledge, it still raises an interesting question. Do visualizations ac-
tually help viewers understand what temporal patterns are similar, or are there
aspects of the invariances of interest that are not communicated well? We set out
to investigate if different types of visualizations communicate or de-emphasize
invariances in a similar way, or if visualizations need to be chosen appropriately.

3.3 goals and research strategy

Given that users like neuroscientists rely on visualization tools to take decisions,
understanding how a visualization may affect what time series are perceived
as similar is important. The similarity criteria used by experts can be complex
and highly uncertain, and the extent to which signal deformations satisfy such
criteria often depends on thresholds that may vary from case to case. Thus, we
are especially interested in knowing which visual encodings are sensitive to de-
formations of a time series signal and which of them are ”invariant” to those
deformations. Such knowledge can help us design tools that better match the in-
variances required by different application domains. It can also help us support
users’ tasks by proposing alternative visualizations, as different visualizations
may emphasize (or de-emphasize) the perception of different deformations in
the signal.

3.3.1 Experimental Approach

As discussed in Chapter 2, previous work has studied deformation invariances
from an algorithmic perspective. Batista et al. [10] enumerate several types of in-
variance: temporal warping, uniform scaling, amplitude and offset, phase, trend,
complexity, etc. Correll and Gleicher [31] consider these types of invariances to
design a sketch-based query system that is flexible enough to accommodate algo-
rithms with different invariance characteristics. They then present the results of
an experiment that investigates how sensitive or invariant similarity perception
is with respect to different deformations when using Line Charts.
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Figure 3.2.: Overview of how the algorithms we used perform matching for similarity:
(a) Euclidean Distance computes the distance between all the corresponding
points of two time series of equal length. (b) DTW allows the matching of
points between two time series, even if these points are not aligned on the
time axis (invariant to time-warping). (c-d) Z-normalization transforms a time
series into a new series of the same length that has zero mean and standard
deviation (std) one. It enables similarity search independent of y-offset and
amplitude scaling (invariant to y-offset and amplitude). (Images courtesy of E.
Keogh)
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While inspired by this research, our goal is different. We are interested in
how different visualizations affect similarity perception, thus we treat the visual-
ization techniques as our primary experimental factor. Although we also seek
to understand how different techniques support invariances, the way we control
for invariances is different. In particular, our approach is based on the obser-
vation that signal deformations emerge naturally in real data, taking complex
forms that cannot be easily reproduced with artificially created patterns. Thus,
as opposed to Correll and Gleicher [31], we do not directly control signal de-
formations as experimental factors. In Correll and Gleicher’s experiment, the
patterns of interest take elementary forms (upward and downward lines, sine
waves, Perlin noise, etc.) and are transformed uniformly along the time dimen-
sion. This approach allows for stricter control and simplifies the experimental
design but does not capture the way people compare patterns in real data. For
example, when determining if two time series are similar, a user may have to
assess temporal stretches or vertical shifts that occur in small portions of the sig-
nal in combination with other deformations. In such scenarios, the perception of
similarity is likely to rely on a mix of very subtle signal characteristics.

Given these considerations, we decided to use real data to generate our exper-
imental tasks, based on the application domain and scenario that we described
in the previous section. We also decided to concentrate on the invariances that
are most relevant to these data.

3.3.2 Dataset

We used a real dataset provided to us by our collaborating neuroscientists (see
Section 3.2). The dataset contains measurements from 295 electrodes and sen-
sors placed on patients’ scalps: among them 151 signals come from Magneto-
Encephalo-Graphy (MEG), 33 from Electro-Encephalo-Graphy (EEG), and 39

from intracranial Electro-Encephalo-Graphy (iEEG) sensors. Measurements last
six seconds and are captured at a sampling rate of 1250 Hz. All our data come
from 154 such recordings of the same patient, that each contains 295 long time
series - 1 per sensor, of 7500 data-points each (∼ 341 million data points in total).
We used this dataset to generate experimental trials.

To understand similarity, we need to compare time series with interesting
temporal patterns. How to determine interesting patterns is a difficult problem.
Synthetic patterns can lead to artificially looking results, while randomly select-
ing ones from a real data set may result in empty or noisy patterns. How to
determine interesting query patterns is a difficult problem. Synthetic query pat-
terns can lead to artificial results while randomly selected patterns may result in
empty or noisy patterns. Eichmann and Zgraggen [41] addressed this problem
by collecting sketched patterns by non-expert people. However, this approach is
only appropriate for simplified human-generated patterns that may capture the
intricacies of real patterns in the data.

Our dataset allows for a better solution. Neuroscientists have manually anno-
tated this dataset by adding markers at time points that correspond to potential
interictal epileptiform discharges. Thus the dataset already contains real patterns
of interest. An interictal epileptiform discharge is a fast paroxysmal event that
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is characterized by a spike of length 20-70 milliseconds (ms) usually followed
by a sharp wave lasting 70-200 ms [33, 107, 108]. We used the area around these
annotated events as potential queries for our similarity search algorithms. The
dataset contains a total of 205 annotations.

3.3.3 Invariances

When considering time series to compare against the potential queries, we focus
on ones that contain deformations that are important to our experts. As they in-
dicated in Section 3.2, patterns that are invariant to - i.e., allow for variations in
(i) time warping and (ii) amplitude and y-offset are of interest. Time-warping invari-
ance is important since EEG signals often vary in transient or rhythmic activity
and speed [78], e.g., they may include slow delta waves with frequencies lower
than 4 Hz, as well as fast beta waves with frequencies greater than 13 Hz. Am-
plitude and offset invariance is important because experts are often interested
in clustering spikes based on their shape independently of their vertical height
or shift [100]. Other invariances, such as noise and trend, are usually unwanted.
Medical experts preprocess their data by applying filters that remove noise or
long additive trends in the signals. Finally, global invariances such as uniform
scaling are less interesting, as they can be supported by global-scaling tools that
are independent of visualization.

As we do not treat invariances as experimental factors, we do not directly vary
their levels. However, we control them by using similarity algorithms that are
well known to support them (see Figure 3.2). For time-warping invariance, we use
Dynamic Time Warping (DTW) [11]. This is a flexible distance measure that al-
lows the matching of points between two time series, even if these points are not
aligned on the x-axis, discovering similar patterns that may vary in speed. For
amplitude and y-offset invariance, we use z-normalization [52]. Z-normalization
transforms a time series into a new series of the same length, that has zero mean
and standard deviation one, and enables similarity search independent of scal-
ing and shifting.

Both algorithms are well established and widely used in the data-mining liter-
ature [10]. We do not consider Hough Transform [31], as it combines invariances
of both DTW and z-normalization. We contrast the results of the above algo-
rithms with the results of the simple Euclidean Distance (ED) by asking partic-
ipants to choose between them. We note that in the experiment participants see
the original time series and their values (not the deformed versions used by the
similarity algorithms).

This approach shares similarities with that of Eichmann and Zgraggen [41],
who compared how people rank the results of multiple algorithms that measure
similarity. For many queries, however, similarity algorithms may return identi-
cal or similar results. To deal with this constraint, we developed an automated
mechanism for selecting queries for which the algorithms produce distinct re-
sults. These cases are especially interesting because (i) they better capture the
differences of the algorithms, and (ii) they represent the most difficult cases, for
which careful visual inspection might be more critical. This approach also allows
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us to observe the effect of the underlying invariance assumptions more clearly
within an experimental setting.

Another differentiation of our approach compared to previous studies is that
we also measure how different participants agree on their assessments. Measur-
ing agreement is important for assessing similarity perception as it enables us
to evaluate the level of subjectivity and diversity in participants’ answers in an
objective way.

3.4 experiments

We conducted two experiments to study if using different time series visual-
izations, Line Charts (LC ), Horizon Graphs (HG ), and Color Fields (CF ),
changes whether time series are perceived as similar. And if invariances in the
data effect this perception. Exp-1 investigated time-warping invariance by asking
participants to compare the results of ED and DTW. Exp-2 investigated amplitude
and offset invariance by asking participants to compare the results of ED with

and without z-normalization. Aspects in the setup and procedure are com-
mon in both experiments, so we present them together unless explicitly stated.

3.4.1 Participants & Apparatus

A total of 36 volunteers, 23 to 42 years old (mean = 29, std = 5.6), participated
in the two experiments without monetary compensation. We recruited from a
local university mailing list 18 participants (seven women) for Exp-1 and 18 ad-
ditional participants (three women) for Exp-2. Our participants came from dif-
ferent scientific backgrounds, including students and researchers in Computer
Science, Electrical Engineering, Physics, and Finance. As our study is perceptual
in nature, we opted for a general pool of participants rather than experts. For
both experiments, we used a 24" DELL monitor set to 1920 × 1080 resolution
with mouse and keyboard as input. The user interface was implemented with
Javascript and D3.js and was set to full screen.

3.4.2 Visualization Techniques

Similarity search likely involves both point comparisons, such as finding max-
ima, and overview comparisons, such as identifying trends. It is thus unclear
how position- or color-based visualizations would affect it (see Chapter 2). We
thus focused on three visualization techniques that rely on position (Line Charts
- LC ), color (Color Fields - CF ), or both (Horizon Graphs - HG ). These vi-
sualizations can also scale when arranged in small multiples [69, 99, 102], e.g.,
in order to support context that is important for neuroscientists (see Section 3.2).
We explain how we represented time series with these visualizations.

Line Charts

Line Charts (LC ) map time to the horizontal axis, and value to the vertical,
placing points into particular positions in a 2-D Cartesian coordinate system.
These are the simplest and most common visualization for time series and are
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often seen in small multiples (e.g., in the MUSE tool that our experts use in
Figure 3.1). Cleveland and McGill [30] report that positional encodings, such as
Line Charts, are good for accurate values’ retrieval and comparison tasks (see
Section 2.2 for more details). In our implementation, the y-axis was not visible
to prevent participants from trying to read exact values. Nevertheless, all axes
had a common scale to aid participants compare time series. The zero value of
y-axis was at the middle of the area allocated to each time series. We chose the
line variation rather than filled area charts because it is commonly used by EEG
visualization tools [65] and our own experts. It has also been used in previous
studies on time series similarity [41, 79] and thus acts as a baseline.

Horizon Graphs

Horizon Graphs (HG ) use a combination of color and position encodings. This
representation saves vertical space using both mirroring and superimposition
of the bands, while maintaining the overall line shape. In that way, they utilize
space more efficiently with baselines that are specific to each time series, e.g.,
when the baseline is the average of the time series value range. Previous studies
(see Section 2.2) have shown that Horizon Graphs were faster than Line Charts
for discrimination tasks, but slower for peak and trend detection tasks [63]. Re-
garding the similarity task, different baselines would make comparisons for sim-
ilarity challenging, that is why we used a common baseline in our experiment
for all time series, set to zero. The performance of these graphs seems to dete-
riorate when increasing the number of bands [57], thus we used a variation of
two positive bands and two negative ones, similarly to previous studies [63]. We
also followed the convention of using variations of red (#ff9999 , #b30000 )
to indicate negative, and of blue (#bdd7e7 , #08519c ) to indicate positive val-
ues [57, 99], with darker hues assigned to the bands furthest form the baseline
(most negative and positive).

Color Fields

Color Fields (CF ) use color mapping to encode time series values [3, 32, 69].
Vertical color stripes at each time point are colored based on their values. As we
report in Section 2.2, this encoding can be used to create fairly dense displays
and has been shown to be a promising representation for overview tasks [32])
and take up less space [69], even though color is worse than position [30]. Pre-
vious works consider color scales of two [4, 86] or more colors [102]. We opted
for a simple two-color scale in our experiment to be in accordance with Horizon
Graph two-color encoding scheme. We again chose red tones (#ff0000 ) for the
most negative and blue (#0000ff ) for the most positive value. Pure tones were
used to maximize the distance between the two extreme colors. We used a lin-
ear RGB interpolation between the two tones. In a follow-up experiment (see
Section 3.8), we used the exact same tasks to compare linear to CIE L*a*b* inter-
polation. As Section 3.7 and Section 3.8 discuss, CIE L*a*b* interpolation might
be a worse choice.

It is worth noting that the three visualizations utilize space differently. For our
experiments, we allocated the same amount of y-axis height (vertical space) per
time series for all techniques, which is consistent with previous studies [63]. It
is important to first understand how humans’ similarity perception is affected
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by the actual visual encoding before considering additional factors, such as the
graph height or vertical space. As different visualizations utilize space differ-
ently, this is a topic worthy of future experimentation.

We chose a fairly large vertical size (60 pixels) to ensure that time series were
clearly visible in all visualizations. For LC , we fixed the position of the time
axis at the middle of its available space since our data includes both positive
and negative values. Due to their encoding, HG can utilize the vertical space
more efficiently, as they superimpose negative and positive values in the same
space. CF do not necessarily require as much vertical space [69], nevertheless
this size ensures that colors are large enough to be seen clearly [110].

We fixed the horizontal size of the time series to 501 pixels, encoding one
time point per pixel (all our time series were 501-point long – see Section 3.4.5).
In practice, users, e.g., medical experts, explore their data at different granu-
larities, by keeping the vertical space fixed and compressing or decompressing
the time axis. Nevertheless, we decided to avoid factors, such as over-plotting
and aggregation, that might also affect similarity perception. As this is a first
study comparing perceived similarity across visualizations, we have simplified
the experiment by not considering interaction (including no means to change
the baseline or bands in the Horizon Graphs).

3.4.3 Similarity Measures

Participants had to assess the similarity of time series extracted from the dataset
(Section 3.3.2). For each trial, we determine one time series that serves as the
query and four additional ones that serve as possible matches. These matches
were extracted from the data using automatic similarity search algorithms that
are sensitive or not to signal deformations, in other words, they consider or
not time series invariances which are important for our data domain (see Sec-
tion 3.3.3). Both experiments used the simple Euclidean Distance (ED) as con-
trol, but each investigated a different invariance.

Exp-1 (Time-Warping)

We examined time-warping invariance by contrasting ED to DTW. DTW supports time-
warping invariance, while ED not. A main parameter of DTW is the warping size,
i.e., the x-offset window size in which the algorithm searches for the best match-
ing point. According to Ding et al. [35], constraining the warping size increases
the speed of the algorithm by reducing the computation cost and enabling ef-
fective pruning. Depending on the domain, its accuracy remains the same or
further improves. We set the warping window size to 10% of the time series
length as this is the most common size used in the literature and larger sizes can
hurt accuracy results [98].

Exp-2 (Z-Normalization)

We examined amplitude and y-offset invariance by contrasting the results of Eu-
clidean Distance (ED) and Euclidean Distance in conjunction with z-normalization
(NormED) [52]. NormED supports y-offset and amplitude invariance, while ED not.
For this second case, time series are z-normalized to acquire similar amplitude
and y-offset, while maintaining the shape of their patterns. The new time se-
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Figure 3.3.: Experimental screen for the Horizon Graph condition. The answer vertical
order and horizontal shift was randomized across visualizations. From the
top, the series are: Query, Outsider-ED, Top-ED, Top-DTW, Outsider-DTW.

ries have zero mean and standard deviation (std) one. Then, ED computes the
distance between the two normalized time series.

Both the query and its resulting matches were visualized without any deforma-
tions, such as the ones the algorithms perform to access similarity. In that way,
participants had no idea how the given answers have been suggested.

3.4.4 Task

In both experiments participants had to make subjective similarity judgments
using one of the three visualizations. The goal was to determine if using differ-
ent visualizations alters which time series our users perceive as similar. Partici-
pants were shown five time series, one of which was marked as "Query". Their
task was to select which of the other four time series was the most similar to
the query (Figure 3.3). Those four possible choices were results returned from
the similarity measures presented above. In Exp-1, two choices came from ED,
and two choices came from DTW. In Exp-2, two choices came from ED, and two
choices came from NormED. Details on the trial generation are described in Sec-
tion 3.4.5. Participants gave their answer by clicking on the time series of their
choice, which became highlighted, and they rated their confidence on a 5-point
scale (”very low” to ”very high”). Although there was no time limit for the task,
we instructed participants to be as fast and accurate as possible.

Participants performed the same tasks across all visualizations, but we ran-
domized the vertical order of the five time sequences, so as to not favor one mea-
sure by presenting its results always closer to the query. We also ensured that
time series were not directly one below the other to ensure that certain similarity



3.4 experiments 43

measures, in particular DTW, were not penalized. This way participants could not
perform a low-level point-by-point comparison of horizontally aligned data se-
ries. Instead, they made a more high-level subjective judgement of whether the
time series were similar or not. The fact that the sequences were not vertically
nor horizontally aligned is consistent with the practices of our domain experts,
who often compare patterns across sensors or trials that appear in varying ver-
tical positions, and patterns that appear in different times (horizontal positions)
and at different frequencies for different patients.

Notice that the task was a subjective assessment of similarity, so there was
no correct or wrong answer. Our goal was to understand if some visualizations
favor some automatic similarity measures and their invariances in terms of per-
ceived similarity.

3.4.5 Trial Generation

All trials were generated from the annotated dataset described in Section 3.3.2.
For each trial, we had to extract a time series that serves as the query and four
additional sequences as possible matches. Two of these sequences were Top an-
swers of the two different algorithms that each experiment studied: ED vs DTW

(Exp-1), and ED vs NormED (Exp-2). The other two sequences were Outsiders that
resulted from the same two algorithms, but in a lower rank.

As discussed in Section 3.3.3, one challenge was how to differentiate between
the similarity search algorithms, given that they may return similar results. We
thus opted for a query-extraction process that ensures that the algorithms return
Top answers that are distinct.

Step 1: Creating Candidate Queries. We started from the manually annotated mark-
ers to extract possible queries. Epileptiform discharges last less than 250ms [107],
but we extracted a larger window of 401ms around each marker (200ms left and
right). This ensured that the full pattern of interest was included in the query,
and that the sequence includes background activity (context), which can be im-
portant for assessing similarity. The resulted time series of 401ms were 501 points
long in size, as recordings performed with sampling rate of 1250 values per sec-
ond. From 205 annotations, we extracted a pool of 202 candidate queries. We
excluded three that were very close to the beginning or the end of a recording
(and thus of smaller size).

Step 2: Finding Similar Subsequences. For each candidate query, we ran similarity
searches by using the two search algorithms of interest: ED vs DTW in Exp-1, and
ED vs NormED in Exp-2. We collected the first 100 Nearest Neighbor (NN) answers
for each algorithm. We focused our searches on the same iEEG sensors as the
query, but answers could be part of different recordings. We extended an opti-
mized sequential scan algorithm for early subsequence pruning [97] to support
k-NN instead of 1-NN similarity search. Its average time complexity for com-
paring two series of the same length (n points) is less than O(n) for all distance
measures and is the fastest sequential scan algorithm known in the literature.

Step 3: Selecting the Final Queries. We then checked if the best results returned
by each algorithm were unique. We considered the Top five answers of the two
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measures that we compared each time. Those were generally not the same: an
average of 62% of the Top five answers of the two measures was different in
Exp-1, and this percentage was 55% in Exp-2. We wanted to select answers that
clearly highlight the differences of the two measures. In addition, we had to
avoid biases that may arise when picking Top answers for one measure that are
also highly ranked for the other measure (and therefore more probable to be
selected). Thus, we looked at queries where the Top five answers of one measure
did not appear within the Top ten of the other. This resulted in a set of 30 queries
for Exp-1 and a different set of 31 queries for Exp-2, from which we randomly
picked 30 queries.

Step 4: Choosing the Answers to each Query. The experimental trials were formed
from those 30 queries. For each query, we had to determine the four candidate
answers to present to participants as choices for the task. Two of the four possi-
ble answers presented to participants were the highest ranked answers of each
algorithm from Step-3 (referred to as Top-ED, Top-DTW, and Top-NormED, respec-
tively for each algorithm). Another two answers were produced in a way similar
to Step-3, but looking at answers between the lower 20-30 rank of each algorithm
(we refer to them as Out-ED, Out-DTW, and Out-NormED). Outsiders were expected
to be perceived as less similar than Top answers, but were still valid answers
to the query. They provided a control for assessing the accuracy of participants’
answers with respect to the underlying algorithms, and acted as distractors to
make the task more realistic, given that analysts may search through many sub-
sequences to find a match.

3.4.6 Experimental Design

We followed a within-participants design – all participants were exposed to all
three visualization techniques. The order of appearance of the three techniques
was fully counterbalanced. For each technique, participants completed 5 practice
and 20 main trials.

For each experiment, we generated a different set of 30 distinct trials (see Sec-
tion 3.4.5). To make use of the full set of trials, we divided the trials in 3 bins of 10,
and each participant saw one bin during training and the other two during the
experiment (counterbalanced across participants). Overall, each trial was tested
by exactly 12 participants. Each participant performed the same 20 trials for all
three visualizations, but we randomized the vertical order and horizontal shift
of the five time sequences, including the query. This ensured that participants
could not recognize the queries or their choices between conditions.

In summary, each experiment consisted of:
18 participants

× 3 visualizations (LC , HG , CF )
× 20 query-answer trials
= 1080 trials per experiment
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3.4.7 Procedure

The experimental procedure was similar for both experiments. Before starting,
participants completed a short color blindness test using the Isihara plates. If
they failed the test, they were not be allowed to proceed. They then signed a
consent form and continued with a training session on how to read the respec-
tive visualization technique. Before the main experiment, participants had to
pass three readability tests, where they compared values of different points in a
time series.

As we were interested in participants’ intuitive perception of similarity across
visualizations, we gave no instructions about how to interpret similarity, did not
mention invariances, and did not provide any guidelines about how to assess
similarity with each technique. A similar approach was used by Correll and
Gleicher [31]. Furthermore, we did not explain what the data represented or
how the queries and their candidate answers were generated.

After the experiment, participants completed a questionnaire to provide back-
ground information and evaluate the three visualization techniques. The experi-
ment lasted from 45 to 80 minutes.

3.4.8 Experimental Measures

We use a mix of measures to evaluate the outcome of our experiments. These
measures assess the types of answers given by participants, their accuracy with
respect to the similarity algorithms that we tested, and their agreement among
participants. In addition, we measure participants’ confidence about their an-
swers, time performance, as well as their subjective assessment of the three visu-
alizations.

Type of Answers: We count the number of occurrences of each type of answer.
For Exp-1, we count Top-ED, Top-DTW, Out-ED, and Out-DTW. For Exp-2, we count
Top-ED, Top-NormED, Out-ED, and Out-NormED. Counts provide raw information
about participants’ choices and are used to construct our ratio measures (next).

DTW vs ED and NormED vs ED: We assess participants’ tendency to select the
Top answers of one similarity measure over the other by calculating the ratio of
their counts. For Exp-1, we take the ratio of the counts of Top-DTW to those of
Top-ED. A ratio greater than 1 indicates a preference for the Top answers of DTW.
For Exp-2, we take the ratio of the counts of Top-NormED to those of Top-ED. Here
a ratio greater than 1 indicates a preference for the Top answers of NormED. We
compare the difference of these ratios between techniques, a difference greater
or smaller than zero provides evidence that the techniques differ.

Outsider vs Top Answers: We assess the accuracy of participants’ answers with
respect to the answers of the similarity measures by calculating the ratio of the
counts of their Outsiders to the counts of their Top answers. A large ratio indicates
a relatively large number of Outsiders in participants’ choices.

Agreement: We assess the level of consensus in participants’ choices with agree-
ment coefficients, which are commonly used in the context of inter-rater reliabil-
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ity studies [55]. High agreement demonstrates low subjectivity in participants’
choices. In contrast, low agreement indicates high uncertainty when making de-
cisions. It may also imply that similarity perception is highly subjective.

We choose the κq coefficient of Brennan and Prediger [14]. The coefficient
assumes that all q categories are selected by chance with the same probability
pe = 1/q. This assumption is valid in our case, since the q = 4 alternative answers
were presented in a random order to participants, which avoided problems of
bias [116]. In addition to overall agreement, we assess agreement specific to cate-
gories [106]. This allows us to assess how agreement is divided across different
types of answers.

Time Performance: We measured the time it takes participants to complete a
task, from the moment the time series are shown on the screen to the moment
participants select their final answer and validate it. Although assessing time
performance was not a primary goal of our experiments, this measure allows
us to compare how easy or difficult it was to perform similarity tasks with each
visualization technique.

Subjective Measures: We recorded participants’ self-reported level of confidence
on their answers to each query. We use this measure of confidence in conjunction
with agreement measures. Participants rated their confidence on a 5-point scale
(”very low” to ”very high”). High confidence reflects certitude about the choice
of their answer, while low confidence implies incertitude about the properness
of their answer. In addition, at the end of each experiment, we collected subjec-
tive evaluation of the three visualizations from our users by asking them to fill in
a Questionnaire Google-Form. We recorded participants’ assessment across five
dimensions: visual perception (how easy or difficult it was to visually identify
patterns); cognitive effort (how easy or difficult it was to make decisions); accu-
racy (how accurate they think that their answers were); time performance (how
fast they think that they completed the tasks); and overall experience (how effec-
tive they think that each technique was for the given tasks). We used a 7-point
Likert scale to collect participants’ answers.

3.4.9 Expected Outcomes

LC are extensively used in practice, so one could expect that it is the most
appropriate technique for determining similarity of time series. HG and CF

have not been studied in the context of perceived similarity tasks before, thus
existing evidence about how they would perform compared to LC is limited.
Previous studies have shown that HG were faster than Line Charts for discrim-
ination tasks, but slower for peak and trend detection tasks [63]. Whereas CF

have been shown to be a promising representation for overview tasks [32]. Sim-
ilarity search likely requires both low-level (i.e., detecting peaks) and overview
tasks.

In terms of similarity measures, Dynamic Time Warping (DTW) is widely con-
sidered to give better results than Euclidean Distance (ED). For LC , Eichmann
and Zgraggen [41] found that DTW generally produce rankings that are closer
to human-annotated ranking, so we expected to find similar results. On the
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other hand, Z-normalization is a recommended practice for all similarity mea-
sures [35], thus one could predict that it would produce more similar answers.
However, we also expected that color encodings might be sensitive, i.e., non-
invariant, to y-offset and amplitude variations.

3.5 results

We present the results of the two experiments. Our statistical analysis is largely
based on interval estimation [36], as this approach better supports future repli-
cation efforts. All analyses reported were planned before data were collected.

(a)

(b)

Line Charts
Horizon Graphs
Colorfields

Figure 3.4.: Experiment 1: (a) Count of Top-ED vs. Top-DTW answers as selected by our
participants under each visualization technique. The horizontal black lines
show the average count. (b) Interval estimates comparing the mean ratios
of Top-DTW to Top-ED answers. Error bars represent 95% CIs. For mean ratio
differences, we also show (in red) CIs adjusted for three pairwise compar-
isons with Bonferroni correction. The dotted vertical lines show the values
of reference.

3.5.1 Invariances: Time-Warping and Z-Normalization

We first examine how the three visual encoding techniques affected participants’
choices in favor or against the two invariances of interest. Our analysis relies on
ratios of counts, where counts are not independent. The sampling distribution
of such measures can be complex and hard to approximate with analytical meth-
ods. We thus use bootstrapping methods to construct 95% confidence intervals
(CIs) of the mean. We apply Efron’s [40] bias-corrected and accelerated (BCa)
bootstrap method as implemented by R’s boot package [21]. For our analyses,
we construct confidence intervals with 10K bootstrap iterations.



3.5 results 48

(a)

(b)

Line Charts
Horizon Graphs
Colorfields

NormEDED

Figure 3.5.: Experiment 2: (a) Count of Top-ED vs. Top-NormED answers as selected by
our participants under each visualization technique. The horizontal black
lines show the average count. (b) Interval estimates comparing the mean
ratios of Top-NormED to Top-ED answers. Error bars represent 95% CIs. For
mean ratio differences, we also show (in red) CIs adjusted for three pairwise
comparisons with Bonferroni correction. The dotted vertical lines show the
values of reference.

Exp-1 (DTW vs ED): Figure 3.4a shows the number of Top-ED vs. Top-DTW an-
swers that participants selected under each visualization technique. Based on
these counts, we computed the ratios Top-DTW to Top-ED answers. Figure 3.4b
presents interval estimates for individual mean ratios (left) and their differences
between visualizations (right). Mean ratio greater than 1.0 indicates preference
for Top-DTW answers. For all three techniques, we observe that participants con-
sidered as more similar to the query the Top-DTW answers. This trend is however
different across visualization techniques. It is especially pronounced for HG ,
where Top-DTW answers were on average 2.64 (std = 1.49) times more frequent
than Top-ED answers. The mean ratio of Top-DTW to Top-ED answers drops to 1.87

(std = 0.80) for LC , and 1.23 (std = 0.48) for CF .

Exp-2 (NormED vs ED): Figure 3.5a shows the number of Top-ED vs. Top-NormED
answers that participants selected under each visualization technique. Based on
these counts, we computed the ratios Top-NormED to Top-ED answers. Figure 3.5b
presents interval estimates for both mean ratios (left) and their differences be-
tween visualizations (right). Mean ratio greater than 1.0 indicates preference for
Top-NormED answers. We observe a strong tendency in HG for participants to
not find as similar Top-NormED answers, where their mean ratio to Top-ED an-
swers is equal to 0.56 (std = 0.36). In contrast, with the other visualizations they
lean towards z-normalized answers, with mean ratios equal to 1.33 (std = 1.18)
for LC and 1.55 (std = 2.41) for CF . However, due to large variance, this trend
is not clearly supported by statistical evidence. We see that HG favor Top-ED



3.5 results 49

answers more than the other techniques, but we observe no clear difference be-
tween LC and CF .

3.5.2 Outsiders vs Top Query Answers

We further analyze the ratio of Outsiders to Top query answers by using a similar
analysis procedure. We based again our statistical analysis on BCa bootstrap
confidence intervals constructed with 10K bootstrap iterations.

Exp-1: Based on the counts of Outsiders vs. Top answers selected by our partic-
ipants, we computed the ratios Outsiders to Top query answers for Exp-1. Fig-
ure 3.6 shows interval estimates for these mean ratios (left) and their differences
for three pairwise comparisons of the visualization techniques (right). Mean ra-
tio greater than 1.0 indicates more Outsiders. Clearly, the Top answers of the
two algorithms dominated participants’ choices. However, in many cases, par-
ticipants perceived Outsiders as more similar than Top answers. Their ratio was
0.39 (std = .20) for HG , 0.49 (std = .22) for LC , and 0.63 (std = .36) for CF .
The difference is more evident between HG and CF . The latter resulted in a
relatively large number of Outsiders.

0.2 0.4 0.6 0.8 1.0 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1

Mean Ratio Difference

Line Charts

Horizon Graphs 

 Color�elds

Horizon Graphs - Line Charts

Horizon Graphs - Color�elds

Line Charts - Color�elds

Outsiders vs. Top Answers: Mean Ratio

  less Outsiders

Figure 3.6.: Experiment 1: Interval estimates comparing the mean ratios of Outsiders to
Top query answers. Error bars represent 95% CIs. Red extensions show the
adjustment for three pairwise comparisons.

Exp-2: Based again on the counts of Outsiders vs. Top answers selected by our
participants, we computed the ratios Outsiders to Top query answers for Exp-
2. Figure 3.7 presents interval estimates for these mean ratios (left) and their
differences for three pairwise comparisons of the visualization techniques (right).
Mean ratio greater than 1.0 indicates more Outsiders. Again, the Top answers
dominated participants’ choices. However, we now observe the opposite trend,
and differences between the techniques are less clear. The ratio of Outsiders to
Top answers was 0.40 (std = .27) for HG , 0.31 (std = .21) for LC , and 0.27

(std = .16) for CF . CF now resulted in a lower ratio than HG . Combined
with the results of Section 3.5.1, these results seem to suggest that CF are less
appropriate for DTW, while HG are less appropriate for z-normalized answers.
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Figure 3.7.: Experiment 2: Interval estimates comparing the mean ratios of Outsiders to
Top query answers. Error bars represent 95% CIs. Red extensions show the
adjustment for three pairwise comparisons.

3.5.3 Agreement

To construct confidence intervals for our agreement estimates, we use the jack-
knife technique [55, 116] by assuming that raters, i.e., participants, are randomly
sampled from a larger population, whereas the set of queries is fixed.

Exp-1: Table 3.1 summarizes the results of Exp-1. Overall, agreement is higher
than zero for all three techniques. This verifies that similarity perception was
not fully subjective and that participants’ choices were not random. However,
agreement values are generally low for HG and CF , which implies a higher
subjectivity of participants’ choices with these techniques. Overall, we observe
a higher agreement for the choice of Top-DTW answers. This is especially the
case for HG - this further shows the tendency of the technique towards DTW,
as Top-ED answers were chosen with no consistency among participants. We
observed a positive linear correlation between agreement values and the aver-
age confidence level reported by participants for each task (Pearson’s moment
correlation was r = .45, 95% CI = [.27, .60]). This result is not surprising – agree-
ment or disagreement is largely due to the confidence or uncertainty with which
participants make choices. The higher the confidence is, the more consistent par-
ticipants are in their choices (i.e., general agreement increases).

Exp-2: Table 3.2 summarizes the results of Exp-2. Again, overall agreement
is higher than zero for all techniques. Agreement values are now more bal-
anced across techniques. We note that HG resulted in low agreement values
for z-normalized answers. This further shows that the technique does not favor
z-normalization and as a result, may not promote amplitude and y-offset invari-
ance. For this experiment, Pearson’s moment correlation between participants’
self-reported confidence level and agreement was r = .59, 95% CI = [.43, .71].

3.5.4 Time Performance

Time measures are well-known to follow lognormal distributions [9, 73], thus
we log-transform time values and analyze them with standard parametric meth-
ods that assume normal distributions. According to this approach, comparisons
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Table 3.1.: Experiment 1: Specific and overall agreement values (Brennan-Prediger κq).
Brackets show 95% jackknife CIs.

Line Charts Horizon Graphs Color Fields

Top-ED: .42 [.22, .62] .04 [−.07, .16] .28 [.10, .47]

Top-DTW: .54 [.41, .68] .41 [.28, .55] .35 [.22, .49]

Outsider-ED: .14 [−.09, .36] −.06 [−.20, .07] .21 [.00, .42]

Outsider-DTW: .39 [.26, .52] −.01 [−.19, .17] .07 [−.07, .22]

Overall: .44 [.36, .52] .21 [.13, .29] .26 [.18, .33]

Table 3.2.: Experiment 2: Specific and overall agreement values (Brennan-Prediger κq).
Brackets show 95% jackknife CIs.

Line Charts Horizon Graphs Color Fields

Top-ED: .38 [.19, .57] .48 [.32, .63] .41 [.27, .55]

Top-NormED: .43 [.29, .57] .14 [.01, .27] .43 [.28, .59]

Outsider-ED: .03 [−.23, .29] −.03 [−.19, .12] −.01 [−.27, .24]

Outsider-NormED: .05 [−.09, .20] .06 [−.14, .25] .05 [−.12, .21]

Overall: .33 [.21, .45] .27 [.20, .35] .34 [.23, .45]

between techniques are based on the ratio of their median times rather than their
mean time differences [36].

Exp-1: Mean task-completion time was 20.5 sec (std = 13.9 sec) for LC , 23.7 sec
(std = 9.1 sec) for HG , and 15.6 sec (std = 7.5 sec) for CF . Figure 3.8a shows
the mean and median times, and interval estimates for median times (left) and
their ratios (right). We observe that CF was the fastest technique. And we have
some evidence that HG were on average 33.6% slower than LC .

Exp-2: Mean task-completion time was 21.1 sec (std = 12.6 sec) for LC , 28.8

sec (std = 15.8 sec) for HG , and 21.5 sec (std = 13.2 sec) for CF . Figure 3.8b
shows the mean and median times, and interval estimates for median times (left)
and their ratios (right). We found no evidence of a difference between LC and
CF . HG was again the slowest, on average 40% slower than the two other
techniques.

3.5.5 Subjective Evaluation

Figure 3.9 presents a summary of participants’ evaluation of the three techniques.
We combine the results of both experiments, as the overall trends were similar.
Overall, LC was rated high across all evaluation criteria, while HG received
the lowest ratings.
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(b)

(a)

Figure 3.8.: Interval estimates comparing the median task-completion time for each visu-
alization technique for (a) Exp-1 and (b) Exp-2. Error bars represent 95% CIs.
Red extensions (right) show adjustments for three pairwise comparisons.

3.6 discussion and design implications

Results from both experiments suggest that humans may perceive similarity dif-
ferently, depending on the visualization, and that different visual encodings are
invariant to specific signal parameters.

In Exp-1 participants preferred results returned by Dynamic Time Warping
(DTW), i.e., subsequences that can be shifted in the x-axis and locally stretched or
compressed. This finding corroborates previous evidence from both data-mining
and visualization communities [35, 41] that DTW is superior to Euclidean Distance
(ED). Nevertheless, this effect differs across visualization techniques. It is stronger
for Horizon Graphs, likely due to this technique’s double encoding. Color vari-
ations often communicate high-level patterns (spikes/valleys, positive/negative
ranges), while shape and position reveal details. Participants may have focused
on the high-level patterns in color to determine similarity, considering shape
and position (which encode warping and x-axis shifting) as secondary factors.
Line Charts favored DTW but to a lesser degree, and the trend was even weaker
for Color Fields. Color Fields aid the detection of ranges of similar color[3] so
it is probable that participants considered both the color of the spikes and the
width of the color ranges formed around them. Thus, they were likely to avoid
candidates that were too stretched or compressed. The example in Figure 3.10

demonstrates this issue.
In Exp-2 we observed a clear difference between Horizon Graphs and the

two other visualizations. Horizon Graphs strongly favored the answers of ED



3.6 discussion and design implications 53

Di�cult

100 50 0 50 100

Colorfields
Horizon Graphs

Line Charts

Colorfields
Horizon Graphs

Line Charts

Colorfields
Horizon Graphs

Line Charts

Colorfields
Horizon Graphs

Line Charts

Colorfields
Horizon Graphs

Line Charts

Visual Perception: How easy or di�cult was it to visually identify patterns?

Cognitive E�ort: How easy or di�cult was it to make decisions?

Accuracy: How accurate were your answers?

Time Performance: How  fast do you think you completed the tasks?

Overall Experience: How e�ective was the technique for the given tasks?

Di�cult

Easy

Easy

Not Accurate Accurate

Slow Fast

Not E�ective E�ective

Figure 3.9.: Summary of participants’ subjective evaluation of the techniques for both
experiments (N = 36). For all the evaluation criteria, there were seven levels
(1 = most negative to 7 = most positive).

without z-normalization. The opposite trend was observed for Line Charts
and Color Fields, which were more favorable to z-normalization, i.e., invari-
ant to amplitude scaling and y-offset shifts. The strategies mentioned before can
explain these results as well. In Horizon Graphs, small amplitude and y-offset
changes can fall on different sides of a band and have different colors. Thus,
if participants tried to match colors rather than shape, they likely disregarded
subsequences whose prominent characteristics fell on different bands (see Fig-
ure 3.11). For Line Charts and Color Fields, the exact amplitude and offset values
can be less critical, as people seem to focus on relative values and overall shapes.

Overall, agreement scores were lower in Horizon Graphs and time perfor-
mance was slower, which indicates this encoding can be difficult to visually
identify patterns and make decisions when using it.

In both experiments, participants tended to select the top answers of the al-
gorithms rather than their outsiders, irrespective of the visualization technique.
This confirms that the rankings of these algorithms capture real differences in
perceptual similarity.

Design Implications: Overall, our work indicates that the choice of visualiza-
tion affects what temporal patterns people consider as similar, i.e., the notion
of similarity in time series is not visualization independent. Visualization designers
need to consider what invariances are important in the data domain [35] and
suggest visualizations appropriately. Similarly, if designers use algorithmic dis-
tance measures, they should consider visualizations that match the invariances
of those measures, or viewers could lose confidence in their results.
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Figure 3.10.: Experiment 1: A query for which different visualizations resulted in differ-
ent choices. Boxes show the number of participants (out of 12) who chose
the specific answer. This example shows a strong preference for Top-DTW

under Line Charts and Horizon Graphs and a strong preference for Top-ED
under Color Fields. Overall, Color Fields can be more sensitive than Line
Charts and Horizon Graphs to stretching deformations along the time axis.

Figure 3.11.: Experiment 2: A query for which different visualizations resulted in differ-
ent choices. Boxes show the number of participants (out of 12) who chose
the specific answer. This example shows a strong preference for Top-NormED
under Line Charts and Color Fields and a strong preference for Top-ED

under Horizon Graphs. Overall, Horizon Graphs seem to exaggerate flat
signals and are more sensitive to deformations along the y-axis.

Our results suggest that Color Fields are less appropriate for domains that require
invariance to temporal warping, as they are sensitive to temporal warping and shift-
ing. Here, Horizon Graphs are a viable alternative to Line Charts, as they are less
sensitive to warping. Nevertheless, designers should consider the visual com-
plexity of time series visualizations. Agreement was lower for Horizon Graphs
and time performance was slower, while participants reported they found it
more difficult to visually identify patterns and make decisions when using it.

In turn, Horizon Graphs are less appropriate when amplitude and y-offset invariance
is important, as they are sensitive to value transformations along the y-axis due
to the explicit limits of their bands.

Finally, as in previous work using Line Charts [35, 41], our results support that
DTW, an algorithm that is invariant to temporal warping, is likely closer to what
we perceive as similar in temporal patterns, and thus DTW could be considered as
a good default unless otherwise indicated by the data domain [35].

3.7 limitations

There are several limitations to our work. First, we focused on a small number of
similarity measures. The data-mining literature has studied measures for other
types of invariance [10]. Future work needs to determine what visualizations
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best match such measures. Furthermore, our dataset consists of EEG data that
have specific pattern characteristics, such as spikes followed by rapid discharges.
Although we believe that our high-level results will hold for other types of sig-
nals, the sensitivity of visual perception to certain signal deformations may be
less or more pronounced. Further studies are needed to validate our findings in
a wider range of patterns and datasets from other domains.

Our implementation of Color Fields used a naive, linear RGB interpolation.
This approach leads to a color space that is not perceptually uniform, i.e., dif-
ferentiating variations may be harder for one of the two color extremes. On the
other hand, it may extend the differences near the central range of the color
space, in magenta tones which humans are more sensitive to [72]. This central
range is where low-amplitude variations and spikes (which might be impor-
tant for EEG signals) are located. We conducted a follow-up experiment (N =
18 participants) that compared linear RGB interpolation to a perceptually uni-
form CIE L*a*b color space (see Section 3.8 for details). Accuracy and agreement
scores were very similar for the two techniques, while most participants (10 vs
6) found that is was easier to identify patterns with linear RGB interpolation.
CIE L*a*b resulted in less pronounced differences between similarity measures,
but we found no statistically significantly differences between the two interpola-
tion techniques. We report the detailed results of this experiment in Section 3.8.
Nevertheless, it is possible that differences in these color mappings exist in other
types of temporal patterns. Moreover, in domains where similarity comparison
is the only task of interest, one could also consider dynamic mapping variations
(e.g., difference color maps, or ones based on equi-depth or equi-width binning
of time series values to provide wider color ranges for the most frequent values),
that nonetheless distort the original signals. The effect of color in time series
similarity is an exciting future research direction.

We focused on a small number of time series to compare, with a generous
vertical drawing area. While we hypothesize that our results will hold for larger
number of time series, their size might affect these results. For example, we
expect that Color Fields will scale well, but it is known that the choice of the
aspect ratio affects readability in Line Charts [113]. Thus, for Line Charts and
to a lesser degree for Horizon Graphs, a reduced vertical space could lead to
a loss of small patterns and reinforce large structures (peaks, valleys) altering
similarity perception.

Finally, we plan to compare additional visual encodings or variations of the
ones studied in this study, such as composite visualizations that go beyond Hori-
zon Graphs [62], and area charts with alternative designs, e.g., designs based on
single or dual fill color, and mirroring.

3.8 follow-up : color interpolation techniques

In our original study, our Color Fields implementation used a naive RGB color
interpolation between red and blue hues. This approach leads to a color space
that is not perceptually uniform, i.e., differentiating variations can be harder for
one of the two color extremes. On the other hand, it may extend the differences
near the central range of the color space (in magenta tones which humans are
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Figure 3.12.: Two color interpolation techniques for Color Field visualization (RGB left,
LAB right), compared in our experiment in order to understand whether
humans perceive similarity in a similar manner. This example shows a
query and two of the four possible answers participants had to choose
from. The answers here come from the ED and DTW automatic similarity
measures.

more sensitive to [72]). This central range is where low-amplitude variations and
spikes, which might be important for EEG signals, are located. Nevertheless, it is
unclear how this color mapping fairs against others that are more perceptually
uniform.

We thus conducted a follow-up experiment to study and compare the RGB
interpolation to one that is perceptually uniform (in our case CIE L*a*b*) (Fig-
ure 3.12). We wanted to see if the color interpolation used changes whether time
series are perceived as similar or not. As in our original study, we investigated
time-warping invariance by asking participants to compare the results of Eu-
clidean Distance (ED) [42] and Dynamic Time Warping (DTW) [11] (Exp-1 in
our original study); and amplitude and offset invariance by asking participants
to compare the results of ED with and without z-normalization [52] (Exp-2 in
our original study). Aspects in the setup and procedure are common in the ex-
periments of the original study and this follow-up, so we refer to the original
study for details unless differences are explicitly stated.

3.8.1 Experimental Design

Participants & Apparatus: A total of 18 volunteers (six women), 22 to 30 years
old (M = 25, SD = 2.4), participated in our follow-up study without monetary
compensation. We recruited them from a local university mailing list. None
of these participants had taken part in our previous studies. Our participants
came from different scientific backgrounds, including students and researchers
in Computer Science, Robotics, Material Engineering, and Physics.

The setup was identical to that of the original study. We used the same 24"
DELL monitor set to 1920 × 1080 resolution.

Tasks and Procedure: As in the original experiments, we followed a within-
participants design – all participants were exposed to both color interpolation
techniques. The order of appearance of the two techniques was fully counterbal-
anced. For each technique, participants completed 5 practice and 40 main trials.
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(a)

(b)

Figure 3.13.: (a) Experimental trial (stimulus) for the RGB condition. The answers come
from the ED and DTW similarity measures. The answer order and horizon-
tal shift was randomized across trials. Green annotations (indicating the
type of answer) are for illustration purposes only and were not visible in
the experiment. (b) The complete query-answer trial used to generate the
stimulus in (a), under both the RGB (left) and LAB (right) condition.

The main difference to the previous study procedure, was that participants
saw trials from both Exp-1 and Exp-2 of the original study (since the number of
trials was fairly small). We decided on this combination, since similarity judge-
ment is perceptual and subjective in nature, and the instructions we gave to our
participants (here and in the original study) do not make any mention of simi-
larity measures or invariances (the factors that are different across experiments
in our main study).

To make use of the full set of queries from the original study (60 queries in
total, 30 queries of Exp-1 and 30 queries of Exp-2), we divided the queries in
3 bins of 10 for each experiment, and each participant saw one bin from each
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(a)

(b)

Figure 3.14.: (a) Experimental trial (stimulus) for the LAB condition. The answers here
come from the ED and NormED similarity measures. The answer order
and horizontal shift was randomized across trials. Green annotations (in-
dicating the type of answer) are for illustration purposes only and were
not visible in the experiment. (b) The complete query-answer trial used
to generate the stimulus in (a), under both the RGB (left) and LAB (right)
condition.

experiment during training and the other two bins from each experiment during
the study (counterbalanced across participants). Overall, each query-answer trial
was tested by exactly 12 participants (same as in the original study). Each partic-
ipant performed the same 40 trials for both techniques, but we randomized the
horizontal shift and vertical order of the five time subsequences, including the
query (see Figure 3.13a and Figure 3.14a). For detailed justifications we refer the
reader to Section 3.4.

An example of an experimental trial (stimulus) and of the query and answers,
used to generate the stimulus, can be seen in Figure 3.13. The stimulus shown
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here is for the RGB condition, and the similarity measures used are ED and
DTW. Another example of experimental trial under LAB interpolation, where
the similarity measures are ED and ED based on z-normalization (NormED),
can be seen in Figure 3.14, together with the complete query-answer trial used
to generate the stimulus.

In summary, the follow-up study consisted of:
18 participants

× 2 color interpolations
× 40 query-answer trials
= 1440 trials

Color Interpolation Techniques: Previous work considers color scales of two [4,
86] or more colors [102]. We opted for a simple two-color scale in our experiment,
as we did in the original study. As in the original study, we chose red tone
(#ff0000 ) for the most negative and blue (#0000ff ) for the most positive
value for both interpolations. Pure tones were used to maximize the distance
between the two extreme colors.

RGB interpolation: In this condition we used a simple linear RGB interpolation
between the two pure red and blue tones*. An example of a generated trial under
this condition can be seen in Figure 3.13a.

LAB interpolation: In this condition we used a perceptually uniform interpo-
lation between the two pure red and blue tones, based on the CIE L*a*b* space†.
An example of a generated trial under this condition can be seen in Figure 3.14a.

Similarity Measures: These were identical to the ones used in the original study,
i.e., ED vs DTW and ED vs NormED.

3.8.2 Results

Invariances: Time-Warping and Z-Normalization

As in our original study, our analysis relies on ratios of counts. We use bootstrap-
ping methods to construct 95% confidence intervals (CI) of the mean. We apply
the bias-corrected and accelerated (BCa) bootstrap method as implemented by
R’s boot package [21]. We construct confidence intervals with 10000 bootstrap
iterations.

Figure 3.15 summarizes our results. We split our analysis into two parts. We
first compare the two color interpolation techniques for the trials for which an-
swers are given by ED and DTW algorithms (see Figure 3.15a). These trials come
from Exp-1 (see Section 3.4.3). We then compare them for the trials for which
answers are given by ED and NormED (see Figure 3.15b). These trials come from
Exp-2 (see Section 3.4.3).

For RGB interpolation, we observe that the results of this experiment are very
close to our previous experimental results (see Section 3.5). Again, top-DTW an-
swers were preferred to top-ED answers, in trials that compare answers returned

* D3 code for RGB interpolation comes from http://github.com/d3/d3-interpolate#

interpolateRgb

† D3 code for LAB interpolation comes from http://github.com/d3/d3-interpolate#

interpolateLab

http://github.com/d3/d3-interpolate#interpolateRgb
http://github.com/d3/d3-interpolate#interpolateRgb
http://github.com/d3/d3-interpolate#interpolateLab
http://github.com/d3/d3-interpolate#interpolateLab
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by the DTW and ED measures. When it comes to trials that compare ED with ED
based on z-normalization, we also observe a (non-statistically significant) trend
for top-NormED answers. For LAB, these trends disappear – this color interpola-
tion technique does not seem to favor any of the similarity measures that we
compared. However, any differences between RGB and LAB were not statistically
significant (α = .05).
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(a) Top-DTW vs. Top-ED: Mean Ratios
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Figure 3.15.: Interval estimates comparing the mean ratios of (a) Top-DTW vs. Top-ED
answers and (b) Top-NormED vs. Top-ED answers, for the two color inter-
polation techniques (RGB vs. LAB). In blue, we show interval estimates of
the mean ratio differences of the two techniques. Error bars represent 95%
CIs. The dotted vertical lines show the values of reference.

Outsiders vs Top Query Answers

We analyze the ratio of outsiders to top query answers by using a similar analysis
procedure as the original study. We observe that the top answers of the two
algorithms dominated participants’ choices in a similar way (Figure 3.16). This
indicates that choices were not made at random and that the rankings of the
algorithms capture real differences in perceptual similarity. We observe that the
ratio of outsiders is very similar for both color interpolation techniques – RGB

performs at least as well as LAB.
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Outsiders vs. Top: Mean Ratios
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Figure 3.16.: Interval estimates comparing the mean ratios of outsiders to top query
answers (a) for the ED vs. DTW trials and (b) for the ED vs. NormED trials.
In blue, we show interval estimates of the mean ratio differences of the two
color interpolation techniques (RGB vs. LAB). Error bars represent 95% CIs.
The dotted vertical lines show the values of reference.
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Agreement

We use the κq coefficient of Brennan and Prediger [14] to assess agreement
among participants. We also use the jackknife technique [55] to construct con-
fidence intervals by assuming that participants are randomly sampled from a
larger population, whereas the set of queries is fixed. Overall agreement values
are shown in Table 3.3. Agreement was above chance, while the two techniques
resulted in very similar scores. These values are again consistent with the values
of our previous experiments (see Section 3.5.3).

Table 3.3.: Overall agreement values (Brennan-Prediger κq). Brackets show 95% jack-
knife CIs.

RGB LAB

ED vs. DTW .22 [.12, .32] .22 [.14, .30]

ED vs. NormED .32 [.23, .41] .30 [.23, .38]

Time

Time measures are well-known to follow lognormal distributions [9, 73], thus we
log-transform time values and analyze them with standard parametric methods
that assume normal distributions. According to this approach, comparisons be-
tween techniques are based on the ratios of their median times rather than their
mean time differences [36].
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RGB / LAB

LAB fasterRGB faster

Medians and their 95% CIs
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Figure 3.17.: Interval estimates comparing the median task completion time for each
technique. Error bars represent 95% CIs. Red extensions (right) show ad-
justments for three pairwise comparisons.

Mean completion time were very close for RGB 20.5 sec (SD = 9.7 sec), and 19.7

sec (SD = 10.4 sec) for LAB. Figure 3.17 shows interval estimates for medians (left)
and ratios of median times (right). We observe no clear time difference across
interpolations.

User Preferences

Participants indicated in a 7-point Likert scale their preference for each tech-
nique. Lower score indicated higher preference. RGB was overall more preferred
(mean score 3.61) than LAB (mean score 4.22). Thus RGB was overall more pre-
ferred (as the lower the score, the more preferred the technique). In particular 10

of the 18 participants rated RGB higher, 2 same as LAB, and 6 rated LAB higher.
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3.8.3 Discussion

Our results show no statistical difference between RGB and LAB interpolations
in similarity perception for all our comparisons of similarity measures. As in
the original experiment, there is a trend to prefer DTW to ED for both color
interpolations. However, this trend seems to be less clear when LAB interpola-
tion is used. In trials comparing ED with NormED, participants tended to prefer
NormED to ED for RGB interpolation. However, as in the original experiment,
this trend is not statistically significant. In contrast, the LAB interpolation does
not seem to favor any of the two measures. Again, the difference between the two
color interpolations is non-statistically significant, so larger studies are required
to verify these effects. It is possible that participants could differentiate more de-
tails in the RGB interpolation, thus favoring slightly one distance measure (DTW
or NormED) over the other (ED).

Overall, the results for both interpolations are consistent with the findings
from our original experiments, and the variation of color interpolation does not
change our high-level results and recommendations. We can conclude that Color
Fields (irrespective of interpolation) are less adapted for DTW than Horizon
Graphs and Line Charts. Given the slightly different (non significant) trends
for NormED and ED, recommendations are not interpolation-blind in this case.
However, we can still conclude that Color Fields are better adapted to NormED
than Horizon Graphs, irrespective of which color interpolation is used.

As our study does not show any significant difference between the two en-
codings for our similarity perception tasks, this indicates our results are fairly
robust for our task and data (EEG signals). Nevertheless, this does not mean
that differences do not exist for other temporal patterns. Further research is re-
quired to investigate the effect of color mapping on similarity perception for
other subsequences with pattern characteristics other than EEG.

Moreover, due to our motivation domain (neuroscience), in both the main
study and this follow-up experiment, we assume that viewers are interested in
comparing time series but also in seeing the visualization of the raw values and
their context (see Section 3.2). In other domains where similarity comparison
is the only task of interest, one could also consider mapping variations that
exaggerate differences. For example, one could consider taking any color map
space and create an equi-depth binning of time series values. This could provide
a wider color range for the most frequent values, thus exaggerating the parts
of the time series with most variations. It is clear that further investigation on
the choice of color space is needed when it comes to similarity judgements. We
hope this work motivates future studies, and in this vain we provide our data
for replication.

3.9 conclusion

We presented two laboratory experiments that compare how three visualiza-
tions (Line Charts, Color Fields, and Horizon Graphs) affect how humans per-
ceive similarity in time series. Specifically, we studied if some deformations in
the data, detected by automatic similarity measures, are perceived in a differ-
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ent manner depending on the visualization. Our findings indicate that all three
visualizations, favor similarity results from algorithmic measures that allow flex-
ibility in local deformations in temporal position or speed (i.e., dynamic time
warping). This is the case most notably for Horizon Graphs. On the other hand,
this visualization does not promote results from algorithms that are invariant to
y-offset shifts and amplitude rescaling (i.e., z-normalization).

We also presented the results of a follow-up experiment. In this follow-up
study, we compared the simple RGB interpolation for color mapping in Color
Fields tested by our original study to one that is perceptually uniform (CIE
L*a*b*). We observed that the RGB results of the follow-up study are consis-
tent with the results from our original experiments, verifying our findings. In
addition, there are no statistically significant differences between the two color
interpolation techniques with regards to time series similarity perception. How-
ever, it does not mean that possible differences in these color mappings do not
exist in other types of temporal patterns.

Overall, our work provides evidence that the notion of time series similarity
is visualization dependent, and that when choosing visual representations, we
should consider what deformations the underlying data domain considers as
similar. This should be consistent with the similarity measures used in each
domain. Therefore, visual analytics systems should visualize similarity search
results with visualizations that effectively communicate the computed similarity.
In the future, we plan to investigate how choosing appropriate visualizations to
communicate similarity can affect agreement of what is similar among domain
experts, and if this increases trust on the results of similarity search algorithms.
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D ATA S E R I E S P R O G R E S S I V E S I M I L A R I T Y S E A R C H W I T H
P R O B A B I L I S T I C Q U A L I T Y G U A R A N T E E S

B efore systems visualize similarity search results, they need to compute
this similarity. Due to the increasing data series size, data series analysis
remains highly challenging in a wide range of human activities. Exist-

ing systems cannot guarantee interactive response times, even for fundamental
tasks such as similarity search. Therefore, in this work, we develop analytic ap-
proaches that support real-time data series exploration and decision making by
providing progressive similarity search results, before the final and exact ones
have been computed. We investigate how fast we can provide users with first
approximate, and then updates of progressive results. Our findings indicate that
there is a gap between the time the most similar answer is found and the time
when the search algorithm terminates. Probabilistic estimates of the final answer
could help users decide when to stop the search process, i.e., deciding when im-
provement is unlikely, thus eliminating waiting times. We published these pre-
liminary results in a vision paper at the BigVis workshop of the EDBT/ICDT
2019 joint conference [51]. In this workshop paper, we further developed two
open challenges we identified: (i) how to efficiently compute probabilistic error
estimates of progressive similarity search results in large data series collections
and (ii) how to communicate them to users.

Prior work has proposed different methods for computing probabilistic error
estimates of approximate similarity search results in multi-dimensional spaces.
However, these methods lack both efficiency and accuracy when applied to large-
scale data series collections. We developed, and experimentally evaluated using
benchmarks, a new probabilistic learning-based method that provides quality
guarantees for progressive k-Nearest Neighbour (k-NN) query answering re-
sults. Our approach learns from a set of queries and builds prediction models
based on two observations: (i) similar queries have similar answers; and (ii) pro-
gressive best-so-far (bsf) answers returned by the state-of-the-art data series in-
dexes are good predictors of the final k-NN answer. We provide both initial and
progressive estimates of the final answer that are getting better during the execu-
tion of similarity search. Our benchmark evaluation, with synthetic and diverse
real datasets, indicates that our prediction methods constitute the first practical
solution to the problem, significantly outperforming competing approaches. The
results of this work are currently under a second round of submission.
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4.1 introduction

In Chapter 3, we observed that time series similarity can be domain- and visuali-
zation-dependent [10, 49], and in many situations, analysts depend on time-
consuming manual analysis processes. For example, we saw that neuroscientists
manually inspect the EEG data of their patients, using visual analysis tools, so
as to identify patterns of interest [49, 65]. In such cases, it is of paramount impor-
tance to have techniques that can operate within interactive response times [87],
in order to enable analysts to complete their tasks easily and quickly.

In the past years, several visual analysis tools have combined visualizations
with advanced data management and analytics techniques (e.g., [71, 96]), albeit
not targeted to data series similarity search. Moreover, we note that even though
the focus of the data management community is on the scalability issues related
to the processing and analysis of very large data series collections, the state-of-
the-art indexes currently used for scalable data series processing [20, 70, 77, 125,
135] are still far from achieving interactive response times [39].

To allow for interactive response times when users analyze large data series
collections, we need to consider progressive and iterative visual analytic ap-
proaches [8, 118, 130]. Such approaches provide progressive answers to users’
requests [44, 83, 109], sometimes based on algorithms that return quick approx-
imate answers [28, 34, 43]. Their goal is to support exploration and decision
making by providing progressive (i.e., intermediate) results, before the final and
exact ones have been computed.

Most of the above techniques consider approximations of aggregate queries
in relational databases, with the exception of Ciaccia et al. [27, 28], who provide
a probabilistic method for assessing how far an approximate similarity search
answer is from the exact answer in multi-dimensional metric spaces. Neverthe-
less, none of these works has considered data series, which have the additional
characteristic of being high-dimensional: their dimensionality ranges from sev-
eral hundreds to several thousands*. We note that the framework of Ciaccia et
al. [27, 28] does not explicitly target progressive similarity search. Furthermore,
their approach has only been tested in datasets with up to 275K vectors with
dimensionality of a few dozen, while we are interested in hundreds of millions
of data series with dimensionality of a few hundreds. Our experiments show
that the probabilistic estimates that their methods provide [27, 28] are inaccurate
and cannot support progressive similarity search in large data series collections.

Proposed Approach. In our work, we develop the first progressive approaches
for data series similarity search with probabilistic quality guarantees, which are
scalable to very large data series collections. Our preliminary experiments show
that there is a gap between the time the 1st Nearest Neighbour (1-NN) is found
and the time when the search algorithm terminates. In other words, users of-
ten wait without any improvement in their answers. Our goal is to predict how
much improvement is expected when the search algorithm is still running. We
can then communicate this information to users, and they can decide to ter-
minate a progressive search in order to reduce waiting times. The challenge is

* The dimensionality of a data series is defined by its length [39], i.e., the number of points in the
series
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how to derive such predictions. Our experiments show that high-quality approx-
imate answers are found very early, e.g., in less than one second. If we further
inspect our results, we observe that although answers progressively improve,
improvements are not radical. This implies that approximate answers are gen-
erally not very far from the 1-NN. We show that this behavior is more general
and can be observed across different datasets and different similarity search al-
gorithms [125, 135]. Our approach consists in describing this behavior through
statistical models and then using these models to derive probabilistic guarantees
about the k-NN distance in the form of prediction intervals. We explore query-
sensitive models that can predict a probable range of the k-NN distance even
before the search algorithm starts, which can then be progressively improved as
approximate answers arrive.

Contributions. Our key contributions are as follows:
•We introduce the problem of progressive data series similarity search and formally
define it.
• We demonstrate the importance of progressive results for similarity search
operations in very large data series collections, and the potential benefits of such
an approach.
• We investigate a family of statistical methods for supporting progressive sim-
ilarity search. We show how to apply these methods to derive probabilistic dis-
tance (or distance error) bounds that improve over time.
•We perform an extensive experimental evaluation with both synthetic and real
datasets, comparing our solutions to existing baselines. The results demonstrate
that previous approaches cannot scale to the size and dimensionality of mod-
ern data series collections. In contrast, our solutions (each to a different extent)
provide high accuracies that fit well their nominal levels. Furthermore, their
probabilistic bounds become tight quickly, long before the search ends.

4.2 background : similarity search

Echihabi et al. [39] offer a common language to describe data series similarity
search. Our definitions are largely based on their terminology.

Data Series and Data Series Collections: A data series S(p1, p2, ..., p`) is an or-
dered sequence of points with length n. Similarly, a subsequence S[i : j] is the
sequence S(pi, pi+1, ..., pj−1, pj), where 1 6 i 6 j 6 `. A data series of length ` can
also be represented as a single point in an `-dimensional space. For this reason,
the values of a data series are often called dimensions, and its length ` is called
dimensionality.

We use S to denote a data series collection (or dataset). We refer to the size n = |S|

of a data series collection as cardinality. We focus on datasets that contain a very
large number of data series.

Distance Measures: A data series distance d(S1, S2) is a function that measures
the dissimilarity of two data series S1 and S2, or alternatively, the dissimilarity
of two data series subsequences. As mentioned in Section 2.3, we chose Eu-
clidean Distance (ED) as a measure due to its popularity and efficiency for large
datasets [35].
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Similarity Search Queries: Given a dataset S, a query series Q, and a distance
function d(·, ·), a k-Nearest-Neighbor (k-NN) query identifies the k series in the
dataset with the smallest distances to Q. The 1st Nearest Neighbor (1-NN) is the
series in the dataset with the smallest distance to Q.

Although other types of queries exist, such as r-range queries, we do not ad-
dress them here. We further simplify our presentation by focusing on whole-
matching queries. As Echihabi et al. [39] explain, subsequence-matching queries can
be trivially converted to whole matching queries.

Similarity search can be exact, when it produces answers that are always cor-
rect, or approximate, when there is no such strict guarantee. Echihabi et al. [39]
identify different flavors of approximate similarity search algorithms, based on
what types of ”soft” guarantees (probabilistic or relative distance error bounds)
they provide. In particular, a δ-ε-approximate algorithm guarantees that its dis-
tance results will have a relative error no more than ε with a probability of at
least δ. We note that only a couple of approaches [6, 28] provide such guaran-
tees. Furthermore, the accuracy of such approaches has never been tested in the
range of dimensions and dataset sizes that we examine here.

Similarity Search Methods: Most data series similarity search techniques [19,
29, 42, 70, 77, 92, 125, 129, 135] use an index, which enables scalability. The index
can offer quick approximate answers by traversing a single path of the index
structure to visit the single most promising leaf, from where we select the best-
so-far (bsf) answer: this is the candidate answer in the leaf that best matches (has
the smallest distance to) the query. The bsf may, or may not be the final, exact
answer: in order to verify, we need to either prune, or visit all the other leaves
of the index. In this process, having a good first bsf (i.e., a bsf very close to the
exact answer) leads to efficient pruning of the search space.

In the general case, approximate data series similarity search algorithms do
not provide guarantees about the quality of their answers. In our work, we il-
lustrate how we can efficiently and effectively provide such guarantees, with
probability bounds.

We focus on index-based approaches that support both quick approximate,
and slower but exact, similarity search results. In this work, we adapt the state-
of-the-art ADS index [135], which finds high-quality approximate answers al-
most immediately, and subsequently updates these answers that converge fast
to the final, exact answer. We also adapt the DSTree index [125], which has been
shown to answer queries very fast [39], and demonstrate the applicability of our
techniques to this index, as well.
Table 4.1 summarizes the symbols we use in this work.

4.3 progressive similarity search

We define progressive similarity search for k-NN queries.

Definition 4.1. Given a k-NN query Q, a data series collection S, and a time quantum
q, a progressive similarity-search algorithm produces results R(t1), R(t2), ..., R(tz)
at time points t1, t2, ..., tz, where ti+1 − ti 6 q, such that
d(Q,R(ti+1)) 6 d(Q,R(ti)).
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Table 4.1.: Table of symbols

Symbol Description

S data series

S[i : j] series subsequence from i to j

` length of a data series

S data series collection (or dataset)

n = |S| number of series in S

R(t) progressive answer at time t

Q query series

k-NN kth Nearest Neighbor of Q

dQ,R(t) distance between Q and R(t)

dQ,knn(t) distance between Q and k-NN

εQ(t) relative distance error of R(t) from k-NN
ˆ(•) estimate of •

IQ(t) information at time t

hQ,t(x) probability density function of Q’s distance

from its k-NN, given information IQ(t)

HQ,t(x) cumulative distribution function of Q’s distance

from its k-NN, given information IQ(t)

fQ(x) probability density function of Q’s distance

from a random series in S

FQ(x) cumulative distribution function of Q’s distance

from a random series in S

GQ,n(x) cumulative distribution function of Q’s distance

from its k-NN

W set of witness series

nw = |W | number of witnesses in |W |

We borrow the quantum q parameter from Fekete and Primet [43]. It is a
user-defined parameter that determines how frequently users require updates
about the progress of their search. Although there is no guarantee that distance
results will improve at every step of the progressive algorithm, the above defini-
tion states that a progressive distance will never deteriorate. This is an important
difference of progressive similarity search compared to other progressive com-
putation mechanisms, where results may fluctuate before they eventually con-
verge, which may lead users to making wrong decisions based on intermediate
results [24, 43, 54].

Clearly, progressive similarity search can be based on approximate similarity
search algorithms – a progressive result is simply an approximate (best-so-far)
answer that is updated over time. A progressive similarity search algorithm is
also exact if the following condition holds:

lim
t→∞

d(Q,R(t)) = d(Q, knn(Q)) (4.1)

where knn(Q) represents the k-NN of the query series Q.
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According to the above condition, the progressive algorithm will always find
an exact answer. However, there are generally no strong guarantees about how
long this can take. Next, we present some preliminary experiments which show
that a progressive similarity search algorithm will find good answers very fast,
e.g., within interactive times, and will also converge to the exact answer without
long delays. However, waiting for the algorithm to confirm that there is no better
answer and finish execution will take much longer burdening users with long
wasted times.

4.4 preliminary observations

We examine how early we can provide approximate answers, and how good
these answers are compared to the exact answers. To this end, we conducted
similarity search experiments in three real datasets with the state-of-the-art ADS
index [135], which can quickly provide good initial approximate results and can
potentially support progressive similarity search within interactive time thresh-
olds.

Scope. We examine approximate and exact 1-NN whole-matching† similarity
search queries [39]. (We cover k-NN queries later. We leave r-range queries and
subsequence matching for future work.)

Environment. We ran all experiments on a Dell T630 Rack Server with two Intel
Xeon E5-2643 v4 3.4Ghz CPUs, 512GB of RAM, and 3.6TB (2 x 1.8TB) HDD in
RAID0. The search algorithm is a single-core implementation.

Datasets. We tested diverse real datasets that have also been used in previous
studies [39, 135]. These datasets have the same overall size of 100GB, but con-
tain different number of series with different length (i.e., number of points) (Ta-
ble 4.4). The IRIS seismic dataset‡ consists of seismic instrument recordings from
several stations worldwide and contains 100 million series of length 256 points.
The neuroscience dataset, SALD§, consists of MRI data and contains 200 mil-
lion series of length 128 points. The image processing dataset, deep1B¶, consists
of vectors extracted from the last layers of a convolutional neural network and
contains 267 million series of size 96 points.

Table 4.2.: Experimental datasets

Name Description Cardinality TS Length

seismic seismic records 100M 256

SALD MRI data 200M 128

deep1B image descriptors 267M 96

Queries. All our query workloads include 100 query series. We generated the
query datasets by extracting random data series from the raw data. For the

† Query and all series in the dataset have the same length.
‡ http://ds.iris.edu/data/access/

§ http://fcon_1000.projects.nitrc.org/indi/retro/sald.html

¶ http://sites.skoltech.ru/compvision/noimi/

http://ds.iris.edu/data/access/
http://fcon_1000.projects.nitrc.org/indi/retro/sald.html
http://sites.skoltech.ru/compvision/noimi/
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deep1B dataset, we used a real query workload that came with the original
dataset.

Measures. For each similarity query, we recorded its overall completion time, the
time for each progressive answer, as well as the time passed until the algorithm
finds the exact answer to the query, i.e., the 1-NN. For each approximate and
exact answer, we also recorded its Euclidean distance from the query.

Results. Table 4.3 summarizes our results. For each dataset, we present the aver-
age, minimum, and maximum time (in seconds) for the 1-NN query answering
algorithm to first encounter the 1-NN answer (marked as 1-NN Time in Table 4.3),
and the corresponding times for the same algorithm to finish execution (marked
as Total Time). We observe that that total time waiting for a single query to finish
can be long, e.g., up to three minutes, which is beyond acceptable thresholds
for interactive data-analysis tasks [43]. Moreover, these delays are orders of mag-
nitude longer than the actual time needed to find the best answer (i.e., first
encounter of 1-NN). This means that for most queries, the greatest cost is not lo-
cating the 1-NN, but rather confirming that there is no better answer: this is why
the query answering algorithm finishes execution long after having retrieved the
1-NN value. This finding is consistent with results by Ciaccia and Patella [28],
who report that most of the time spent in an exact NN search is ”wasted time,
during which no improvement is obtained.”

Table 4.3.: Summary of experimental results

1-NN Time (sec) Total Time (sec)

Dataset Avg Min Max Avg Min Max

seismic 8.5 0.017 48.5 92 21.3 111

SALD 0.4 0.003 5.2 49 0.24 183

deep1B 0.2 0.001 2.8 76 0.05 189

The time needed to locate the 1-NN was especially fast for the SALD and
deep1B datasets, where average times were below 1 sec. However, times varied
greatly in the seismic dataset, ranging from a few milliseconds to 48.5 sec. For
28% of the queries, the delay was greater than 10 sec, which is considered as
a limit for keeping a user’s attention focused on a dialog [43]. We expect that
such delays will further increase in larger datasets, and for k-NN exact search.
In these cases, providing early approximate answers will also be crucial.

Figure 4.1 presents the progressive results for four example queries in the
seismic data. For these queries, the time to locate the 1-NN is relatively long (> 20

sec), while progressive answers (intermediate points in each curve) appear with
various frequencies and trends. For example, for the yellow and green queries,
results converge quickly (in the order of hundreds of milliseconds), and then
only slightly improve. For other queries, such as the purple line, convergence is
more progressive. We show the evolution of the progressive error as a percentage
of the exact 1-NN distance. We observe that the algorithm provides approximate
answers within a few milliseconds, and those answers gradually converge to the
exact answer, which is the distance of the query from the 1-NN. The error of
the first approximate answer is on average 16% (see gray line – average trend).
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Figure 4.1.: Progression of the 1-NN distance error (Euclidean distance) for 4 example
queries (seismic dataset), using the ADS index [135]. The points in each
curve represent approximate (intermediate points) or exact answers (last
point) given by the algorithm. The lines end when the similarity search ends.
The thick grey line represents the average trend over a random sample of 100

queries.

Interestingly, the 1-NN is often found in less than 1 sec (e.g., see yellow line), but
it takes the search algorithm much longer to verify that there is no better answer
and terminate.

Overall, our results indicate that (i) supporting interactive similarity search in
large time series datasets is feasible, and (ii) providing early progressive answers
to users could drastically reduce waiting times. The challenge is how to help
users assess the quality of such progressive answers and decide whether to trust
these answers, or wait for a better one.

4.5 progressive estimates

In the absence of information, users may not be able to trust a progressive result,
no matter how close it is to the exact answer. In our work, we investigate exactly
this problem: how to provide progressive estimates and quality guarantees about
how close a progressive answer is to the exact answer and help users assess the
quality of such progressive results.

Given a progressive answer R(t) to a k-NN query at time t, we are interested
in knowing how far from the k-NN this answer is. For simplicity, we will de-
note the exact k-NN distance to the query as dQ,knn and the distance between
R(t) and the query as dQ,R(t). Then, the relative distance error is εQ(t), where
dQ,R(t) = dQ,knn(1 + εQ(t)). Given that this error is not known, our goal is to find
an estimate ε̂Q(t). However, finding an estimate for the relative error is not any
simpler than finding an estimate d̂Q,knn(t) of the actual k-NN distance. We will
concentrate on this latter quantity for most of our analysis. Though, since the
distance dQ,R(t) is known, deriving the distance error estimate ε̂Q(t) from the
k-NN distance estimate d̂Q,knn(t) is straightforward:

ε̂Q(t) =
dQ,R(t)
d̂Q,knn(t)

− 1 (4.2)
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We return to this measure later (see Section 4.8) when we discuss about how to
communicate results to users.

We represent progressive similarity-search estimates as probability distribution
functions.

Definition 4.2. Given a k-NN query Q, a data series collection S, and a progressive
similarity-search algorithm, a progressive k-NN distance estimate d̂Q,knn(t) of the
actual k-NN distance at time t is represented by a probability density function:

hQ,t(x) = Pr{dQ,knn = x|IQ(t)} (4.3)

which expresses the conditional probability that dQ,knn is equal to x, given information
IQ(t).

We expect that progressive estimates will converge to the distance dQ,knn of
the exact answer (i.e., ε̂Q(t) will converge to zero). Evidently, the quality of an
estimate at time t largely depends on the information IQ(t) that is available at
this moment. In Section 4.6, we investigate different types of information, IQ(t),
that we can use in order to produce a probabilistic estimate.

Given the probability density function in Equation 4.3, we can derive a point
estimate that gives the expected k-NN distance, or an interval estimate in the form
of a prediction interval (PI). Like a confidence interval, a prediction interval is
associated with a confidence level. Given a confidence level 1− θ, we expect that
at least (1 − θ)× 100% of the prediction intervals that we construct will include
the true k-NN distance. We should note that although a confidence level can be
informally assumed as a probability (i.e., what is the likelihood that the interval
contains the true k-NN distance?), this assumption may or may not be strictly
correct. Our experiments evaluate the frequentist behavior of such intervals. Our
goal is to guarantee that for out of 100 queries that users, at most θ× 100 of the
intervals that we construct will fail to include the true k-NN distance.

To construct a prediction interval with confidence level 1 − θ over a density
distribution function hQ,t(·), we derive the cumulative distribution function:

HQ,t(x) = Pr{dQ,knn 6 x|IQ(t)} (4.4)

From this, we take the θ/2 and (1 − θ/2) quantiles that define the limits of the
interval.

The Problem of Sequential Tests: Presenting multiple progressive estimates to
users raises some concerns. Recent work on progressive visualization [81] dis-
cusses the problem of confirmation bias, where an analyst may use incomplete
results to confirm a ”preferred hypothesis.” For example, an analyst may choose
to stop the query execution as soon as the prediction interval of the 1-NN dis-
tance excludes a low threshold value. This is a well-studied problem in sequen-
tial analysis [122]. It relates to the multiple-comparisons problem [131] and is
known to increase the probability of a Type I error (false positive).

The easiest way to deal with this problem is to fix the maximum number of
progressive estimates that users can look at and use a generic method, such as
the Bonferroni correction, to adjust the confidence level of prediction intervals.
If the maximum number of updates is z = 5, then confident level need to be ad-
justed to (1− θ/5). In this case, in order to guarantee a 95% confidence level over
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Figure 4.2.: The three series in blue represent alternative answers to the same query (in
orange). All have the same distance to the query, but it is distributed differ-
ently along their length. For the first query, the distance is distributed in a
rather uniform manner. In the two other cases, differences are concentrated
around a smaller range.

all sequential tests, we need to set the level of all prediction intervals to 99%. Un-
fortunately, this approach may result in conservative (i.e., too wide) prediction
intervals. Alternative methods, such as the Pocock boundary [95], require less
radical adjustments and thus produce narrower intervals. However, they focus
on summary statistics (e.g., the mean) over progressively growing samples and
cannot generalize to our problem.

In this work, we evaluate how multiple sequential tests affect the accuracy of
our methods. We defer a detailed analysis and solution to this problem to future
work.

Estimates for Subsequences: An estimate of the distance error (see Equation 4.2)
may be insufficient by itself to evaluate a progressive answer as it provides no
information about how this error is distributed along the series length. The error
may be uniform across all the points of the series, or concentrate on specific parts
of the series (e.g., in the middle section) of great interest for the user. Likewise,
an estimate of the k-NN distance provides incomplete information about the
probable shapes of a k-NN (see Figure 4.2).

We can address this limitation by providing distance estimates about individ-
ual subsequences of the k-NN. For example, if the ending of a query series has
great interest for a task, estimating the local distance of the k-NN around this
part of the series can help the user decide whether waiting for a better answer,
e.g., better than the third series in Figure 4.2, is worth. As for the full series, our
goal again is to construct a probability density function hQ[i,j],t(·) that estimates
the distance between Q[i : j] and knn(Q)[i : j].

4.6 prediction methods

We investigate a range of statistical models and probabilistic estimation meth-
ods, where each considers a different amount of information. Some methods
consider constant information (IQ(t) = IQ). Such methods are especially useful
for providing an initial estimate before a similarity search starts. We distinguish
between query-sensitive methods, which take into account the query series Q,
and query-agnostic methods, which provide a common estimate irrespective of Q
(IQ = I). Other methods use information that is progressively updated during
the execution of a similarity search, and their predictions improve over time.
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IQ(t), t > 0
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Figure 4.3.: k-NN prediction methods that we study

Figure 4.3 presents a summary of all the methods that we study. To simplify
our analysis, we focus on 1-NN similarity search. Our analysis naturally extends
to k-NN search; a detailed study of this case is part of our future work.

4.6.1 Baseline Approaches

We first describe a probabilistic approach inspired by Ciaccia et al. [27–29]. The
approach was originally used to estimate the cost of similarity search in high-
dimensional spaces [27, 29]. It was further used to derive stopping conditions
for approximate similarity search with probabilistic quality guarantees [28]. De-
spite our different goals, adapting the approach to query-sensitive [27], or query-
agnostic [28] k-NN distance estimation in the context of progressive data-series
similarity search is straightforward.

Based on Ciaccia et al. [29], a dataset S (a data series collection in our case)
can be seen as a random sample drawn from a large (or infinite) population U

of points in a high-dimensional space. Being a random sample, a large dataset
is expected to be representative of the original population.

Given a query Q, let fQ(x) be the probability density function that gives the
relative likelihood that Q’s distance from a random series drawn from U is
equal to x. Likewise, let FQ(·) be its cumulative probability function. Based on
FQ(·), Ciaccia et al. [29] show how to derive the cumulative probability function
GQ,n(·) for Q’s k-NN distances in a dataset of size n = |S|. For 1-NN similarity
search, we have:

GQ,n(x) = 1 − (1 − FQ(x))n (4.5)

If we now assign this function to HQ,t(·) (see Equation 4.4), we have a way
to construct estimates for 1-NN distances. Such estimates remain static, since
GQ,n(·) is not updated during the execution of a progressive similarity search.
However, they are still valuable as they provide a reference that can help analysts
evaluate whether a progressive answer is close enough to a probable range for
the exact answers.
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Unfortunately, fQ(·), and thus FQ(·), are not known. Therefore, the challenge
is how to approximate them from a given dataset. We discuss two different
approximation methods:

1. Query-Agnostic Approximation. Ciaccia et al. [29] show that for multi-dimen-
sional spaces, a large enough sample from the overall distribution f(·) of pairwise
distances in a dataset provides a reasonable approximation for fQ(·). Ciaccia
and Patella [28] use this approximation to evaluate their probabilistic stopping-
conditions approach by taking sampling sizes between 10% and 1% (for larger
datasets).

2. Query-Sensitive Approximation. The first method does not take the query
into account. Ciaccia et al. [27] introduce an alternative query-sensitive approxi-
mation approach that is based on a training set of predefined reference queries,
called witnesses. Witnesses can be randomly drawn from the dataset, or selected
with the GNAT algorithm [15]. The GNAT algorithm identifies the nw points
that best cover a multidimensional (metric) space based on an initial random
sample of 3nw points.

Based on the rationale that close objects have similar distance distributions,
Ciaccia et al. [27] approximate fQ(·) by using the distance distribution of the
nearest witness to Q or the weighted average of the distance distributions of all
the witnesses. We concentrate on this second approach as it is a generalization
of the first.

Let W1,W2, ...,Wnw be the available set of witnesses and let d(Q,Wj) be the
distance between the jth witness and Q. Based on this, the normalized weight
aQ,j of the witness is:

aQ,j =
d(Q,Wj)−exp

nw∑
i=1

d(Q,Wi)−exp
(4.6)

Based on these weights, FQ(·) is approximated as follows:

FQ(x) '
nw∑
i=1

FWj
(x) · aQ,j (4.7)

where the cumulative probability function FWj
(·) can be directly derived from

the distribution of distances between Wj and the other points in the dataset,
with or without sampling. Ciaccia et al. [27] have experimented with a range
of exponent values to optimize the weighting function (see Equation 4.6) and
have also introduced an adaptive variant that determines exp as a function of the
distances between the witnesses and the query.

Unfortunately, the above methods have the following three major limitations:

(1) Since their 1-NN distance estimates are static, they are less appropriate for
progressive similarity search.

(2) A good approximation of FQ(·) does not necessarily lead to a good approxi-
mation of GQ,n(·). This is especially true for large datasets, as the exponent term
n in Equation 4.5 will inflate even tiny approximation errors. Note that GQ,n(·)
can be thought of as a scaled version of FQ(·) that zooms in on the range of
the lowest distance values. If this narrow range of distances is not accurately
approximated, the approximation of GQ,n(·) will also fail.
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Table 4.4.: Experimental datasets

name description number of series series length

synthetic random walks 100M 256

seismic [104] seismic records 100M 256

SALD [119] MRI data 200M 128

deep1B [121] image descriptors 267M 96

(3) Both methods require the pre-calculation of a large number of distances. In
large datasets, such pre-calculations can become prohibitively expensive. Sam-
pling the dataset can significantly reduce this cost. However, since the approx-
imation of GQ,n(·) is sensitive to errors in large datasets (see above), a rather
large number of samples is required in order to capture the frequency of the
very small distances. Thus, even with sampling, the computational cost of dis-
tance calculations remains a major problem.

The solutions that we present next address the above three problems. For illus-
tration purposes only, we will apply our prediction models to the four datasets
shown in Table 4.4. Note that we previously used the three real datasets in our
preliminary experiments (see Section 4.4).

4.6.2 Providing Initial Estimates

We first concentrate on how to approximate the distribution function hQ,0(x) (see
Equation 4.3), thus provide estimates before similarity search starts.

As Ciaccia et al. [27], we rely on witnesses, which are ”training” query series
that are randomly sampled from a dataset. Unlike their approach, however, we
do not use the distribution of raw pairwise distances FQ(·). Instead, for each wit-
ness, we execute 1-NN similarity queries with a fast state-of-the-art algorithm,
such as ADS [135], or DSTree [125]. This allows us to derive directly the distri-
bution of 1-NN distances and predict the 1-NN distance of new queries.

This approach has two main benefits. First, we use the tree structure of the
above algorithms to prune the search space and reduce pre-calculation costs.
Rather than calculating a large number of pairwise distances, we focus on the dis-
tribution of 1-NN distances with fewer distance calculations. Second, we achieve
reliable and high-quality approximation with a relatively small number of train-
ing queries (≈ 100 − 200) independently of the dataset size (we report and dis-
cuss these results in Section 4.7).

Query-Agnostic Model (Baseline). Let W = {Wj|j = 1..nw} be a set of nw =
|W | witnesses randomly drawn from the dataset. We execute a 1-NN similarity
search for each witness and build their 1-NN distance distribution. We then use
this distribution to approximate the overall (query-independent) distribution of
1-NN distances gn(·) and its cumulative probability function Gn(·). This method
is comparable to Ciaccia et al. [29] query-agnostic approximation method and
serves as a baseline.

Query-Sensitive Model. Intuitively, the smaller the distance between the query
and a witness, the better the 1-NN of this witness predicts the 1-NN of the
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Figure 4.4.: Linear models (red solid lines) predicting the real 1-NN distance dQ,1nn

based on the weighted witness 1-NN distance dwQ for exp = 5. All mod-
els have been based on 200 random witnesses and 500 queries. The blue
(dashed) lines show the range of their 95% prediction intervals.

query. We capture this relationship through a random variable that expresses
the weighted sum of the 1-NN distance of all nw witnesses:

dwQ =
nw∑
j=1

(aQ,j · dWi,1nn) (4.8)

where the weights aQ,j are derived from Equation 4.6. We use this variable as
predictor of the query’s real 1-NN distance dQ,1nn. We base our analysis on the
following linear model:

dQ,1nn = β · dwQ + c (4.9)

Figure 4.4 shows the parameters of this model for the three real datasets of
Table 4.4 with 100 witnesses (nw = 100) and 500 queries. We conduct linear re-
gressions by assuming that the distribution of residuals is normal (Gaussian)
and has equal variance. Our tests have shown optimal results for exponents (see
Equation 4.6) that are close to 5. For simplicity, we use exp = 5 for all our analy-
ses. Additional tests have shown that the fit of the model becomes consistently
worse if witnesses are selected with the GNAT algorithm [15, 27] (we omit these
results for brevity). Therefore, we only examine random witnesses here.

Since the model parameters (β and c) and the variance are dataset specific,
they have to be trained for each individual dataset. To train the model, we use
an additional random sample of nr training queries that is different from the
sample of witnesses. Based on the distance of each training query Qi from the
witnesses, we calculate dwQi

(see Equation 4.8). We also run similarity search
to find its 1-NN distance dQi,1nn. We then use all pairs (dwQi

, dQi,1nn), where
i = 1..nr, to build the model and predict the 1-NN distance of new queries.
The approach allows us to construct both point estimates (see Equation 4.8) and
prediction intervals (see Figure 4.4) that provide probabilistic guarantees about
the range of an 1-NN distance. We should note that the time required to train a
model is fully dominated by the time it takes to find the 1-NN distance of the
nw witnesses and the nr training queries.
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Figure 4.5.: Linear models (red/dark solid lines) predicting the real 1-NN distance
dQ,1nn based on distance of first approximate answer of ADS [135] and
DSTree [125]. All models trained with 200 queries. The 500 (orange) points
in each plot are queries out of the training set. The green (solid) lines (y = x)
are hard upper bounds, determined by the approximate answer. The blue
(dashed) lines show the range of 95% prediction intervals for which the
model provides tighter bounds than the hard ones.

4.6.3 Providing Progressive Estimates

So far, we have focused on initial 1-NN distance estimates. Those do not consider
any information about the partial results of a progressive similarity-search algo-
rithm. Now, given Definition 4.2, the distance of a progressive result d(Q,R(ti))
will never deteriorate and thus can act as an upper bound for the real 1-NN
distance. The challenge is how to provide probabilistic bounds that are tighter
than the obvious hard bound dQ,1nn ∈ [0, d(Q,R(ti))].

Our approach relies on the observation that the approximate answers of index-
based algorithms are generally close to the exact answers. Figure 4.5 illustrates
the relationship between the true 1-NN distance and the distance of the first pro-
gressive (approximate) answer returned by the ADS index [135] and the DSTree
index [125], which follows a completely different design from ADS. We observe
a strong linear relationship for both algorithms, especially for the DSTree index.
We can express it with a linear model and then derive probabilistic bounds in
the form of prediction intervals. As shown in Figure 4.5, the approach is par-
ticularly useful for constructing lower bounds. Those are clearly greater than
zero and provide valuable information about the extent to which a progressive
answer can be improved or not.

Since progressive answers improve over time and tend to converge to the 1-
NN distance, we could take such information into account to provide tighter
estimates as similarity search progresses. To this end, we examine different pro-
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gressive prediction methods. They are all based on the use of a dataset of nr
training queries that includes information about all progressive answers of a
similarity search algorithm to each query, including a timestamp and its dis-
tance.

Individual Linear Models. Let t1, t2, ..., tm be specific moments of interest (e.g.,
100ms, 1s, 3s, and 5s). Given ti, we can build a time-specific linear model:

dQ,1nn = βti · dQ,ti + cti (4.10)

where dQ,ti is the distance of Q from the best approximate answer at time ti.
The advantage of this method is the fact that it produces models that are well
adapted to each individual time point of interest. On the downside, it requires
the pre-specification of a discrete set of time points, which may not be desirable
for certain application scenarios. However, building such models from an exist-
ing training dataset is inexpensive, so reconfiguring the moments of interest at
use time is not a problem.

The above model can be enhanced with an additional term β · dwQ (see Equa-
tion 4.8) that takes witness information into account. However, this term results
in no measurable improvements in practice, so we do not discuss it further.

Common Linear Model. Alternatively, we use a common multivariate linear
model that has the following form:

dQ,1nn = β · dQ,t + γ · log(t) + δ · (dQ,t × log(t)) + c (4.11)

where dQ,t is again the distance of Q from the best approximate answer at time
t. The second term captures the main effect of time, while the third term cap-
tures its interaction with the best-so-far distance. We hypothesize that the longer
it takes to find an answer with a certain distance value, the larger the 1-NN
distance is expected to be.

This model has two advantages. First, it has at most four parameters (β, γ, δ,
and c) compared to a total of 2×m parameters (βti and cti , where i = 1 . . .m)
required by the previous method. Second, we can use it to predict the 1-NN
distance at any point in time. Nevertheless, this comes with a cost in terms of
precision (see Section 4.7).

So far, we have based our analysis on time. Nevertheless, time (expressed in
seconds) is not a reliable measure for training and applying models in practice.
The reason is that time largely depends on the available computation power,
which can vary greatly across different hardware settings. Our solution is to use
alternative measures that capture the progress of computation without being
affected by hardware and computation loads. One can use either the number of
series comparisons (i.e., the number of distance calculations), or the number of
visited leaves. Both measures can be easily extracted from the ADS index [135],
the DSTree [125], or other tree-based similarity-search algorithms. Given that
we are interested in logarithmic time scales, all our analyses are based on the
number of visited leaves (Leaves Visited). We should note that for a given number
of visited leaves, we only consider a single approximate answer, which is the
best-so-far answer after traversing the last leaf.

When we substitute t by the number of visited leaves, the second term in
Equation 4.11 has no influence (i.e., γ ' 0), so we omit it. Figure 4.6 shows how
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Figure 4.6.: Fit of the common temporal model (Equation 4.11). We compare the real to
the predicted 1-NN distance. All models were trained with 200 queries and
tested on a different sample of 500 queries.

the observed 1-NN distance values fit to the ones predicted by the model in this
case. The high R2 values demonstrate that the model can explain a large portion
of the overall variance.

Kernel Density Estimation. A main strength of the previous methods is their
simplicity. However, linearity is a strong assumption that may not always hold.
Other assumption violations, such as heteroscedasticity, can limit the accuracy of
linear regression models. As alternatives, we investigate non-parametric meth-
ods that approximate the density distribution function hQ,t(·) based on multi-
variate kernel density estimation [37, 123].

As for linear models, we rely on the functional relationship between progres-
sive and final answers. We represent this relationship as a 3-dimensional density
probability function kQ(x, y, t) that expresses the probability that the 1-NN dis-
tance from Q is x, given that Q’s distance from the progressive answer at time
t is y. From this function, we derive hQ,t(x) by setting y = dQ,t, where dQ,t is
Q’s distance from the progressive answer at time t. We use again the number of
visited leaves to measure time on a logarithmic scale.

We examine two approaches for constructing the function kQ(·, ·, ·). As for
individual linear models, we specify discrete moments of interest ti and then
use bivariate kernel density estimation [124] to construct an individual density
probability function kQ(·, ·, ti). Alternatively, we construct a common density
probability function by using 3-variate kernel density estimation. The accuracy
of kernel density estimation highly depends on the method that one uses to
smooth out the contribution of points (2D or 3D) in a training sample. We use
Gaussian kernels, but for each estimation approach, we select bandwidths with
a different technique. We found that the plug-in selector of Wand and Jones [124]
works best for our bivariate approach, while the smoothed cross-validation tech-
nique [37] works best for our 3-variate approach.



4.7 experimental benchmark evaluation 82

4.7 experimental benchmark evaluation

4.7.1 Setup

Environment. All experiments were run on a Dell T630 rack server with two
Intel Xeon E5-2643 v4 3.4Ghz CPUs, 512GB of RAM, and 3.6TB (2 x 1.8TB) HDD
in RAID0.

Implementation. Our estimation methods were implemented in R. We use the
R’s lm function to carry our linear regression and the ks library [38] for multivari-
ate kernel density estimation. We use a grid of 200× 200 points to approximate
a 2D density distribution and a grid of 60× 180× 180 points to approximate a
3D density distribution.

Datasets. We used one synthetic and three diverse real datasets from past stud-
ies [39, 135]. We used the real datasets in our preliminary experiments as well
(see Section 4.4 for a detailed description). The synthetic data series were gen-
erated as random walks (i.e., cumulative sums) of steps that follow a Gaussian
distribution (0,1). This type of data has been extensively used in the past [20, 42,
136] and is claimed to model the distribution of stock market prices [42].

Measures. We use the following measures to assess the estimation quality of
each method and compare their results:

1. Coverage Probability: It measures the proportion of the time that the prediction
intervals contain the true 1-NN distance. If the confidence level of the intervals
is 1 − θ, the coverage probability should be close to 1 − θ. A low coverage prob-
ability is problematic. In contrast, a coverage probability that is higher than its
nominal value (i.e., its confidence level) is acceptable but can hurt the intervals’
precision. In particular, a very wide interval that always includes the true 1-NN
distance (100% coverage) can be useless.

2. Prediction Intervals Width: It measures the size of the prediction intervals that
each method constructs. Tighter prediction intervals are better. However, this is
only true if the coverage probability of the tighter intervals is close to or higher
than their nominal confidence level.

3. Root-Mean-Squared Error (RMSE): It evaluates the quality of point (rather than
interval) estimates by measuring the standard deviation of the true 1-NN dis-
tance values from their expected (mean) values.

Validation Methodology. To evaluate the different methods, we use a Monte
Carlo cross-validation approach that consists of the following steps. For each
dataset, we randomly draw two disjoint sets of data series Wpool and Tpool and
pre-calculate all distances between the series of these two sets. The first set serves
as a pool for drawing random sets of witnesses (if applicable), while the second
set serves as a pool for randomly drawing training (if applicable) and testing
queries. At each iteration, we draw nw witnesses (nw = 50, 100, 200, or 500)
and/or nr training queries (nr = 50, 100, or 200) from Wpool and Tpool, respec-
tively. We also draw nt = 200 testing queries from Tpool such that they do not
overlap with the training queries. We train and test the evaluated methods and
then repeat the same procedure N = 100 times, where each time, we draw a
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Figure 4.7.: Distribution (over 100 queries) of the number of leaves visited (in log2 scale)
until finding the 1-NN (light blue) and competing the search (yellow). The
thick black lines represent medians.

new set of witnesses, training, and testing queries. Thus, for each method and
condition, our results are based on a total of N× nt = 100× 200 = 20000 test
measurements.

For all progressive methods, we test the accuracy of their estimates after the
similarity search algorithm has visited 1 (20), 4 (22), 16 (24), 64 (26), 256 (28),
and 1024 (210) leaves. Figure 4.7 shows the distributions of visited leaves for 100

random queries for all four datasets.

4.7.2 Results

Previous State-of-the-Art Methods. We first evaluate the query-agnostic and
query-sensitive approximation methods of Ciaccia et al. [27, 28]. To assess how
the two methods scale with and without sampling, we examine smaller datasets
with cardinalities of up to 1M data series (up to 100K for the query-agnostic
approach). Those datasets are derived from the initial datasets presented in Ta-
ble 4.4 through random sampling. Such smaller dataset sizes allow us to derive
the full distribution of distances without sampling errors, while they are suffi-
cient for demonstrating the behavior of the approximation methods as datasets
grow.

Figure 4.8 presents the coverage probabilities of the methods. The behavior of
query-agnostic approximation is especially poor. Even when the full dataset is
used to derive the distribution of distances, the coverage tends to drop below
10% for larger datasets (95% confidence level). This demonstrates that the ap-
proximated distribution of 1-NN distances completely fails to capture the real
one. Figure 4.9 compares the real to the approximated distributions for datasets
of 100K series. We observe that the method largely underestimates the 1-NN
distances for all four datasets.

Results for the query-sensitive method are better, but coverage is still below
acceptable levels. Figure 4.8 presents results for nw = 500 witnesses. Note that
our further tests have shown that larger numbers of witnesses result in no or
very little improvement, while Ciaccia et al. [27] had tested a maximum of 200

witnesses. To weight distances (see Equation 4.6), we tested the exponent values
exp = 3, 5, and 12, where the first two were also tested by Ciaccia et al. [27],
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Figure 4.9.: Real distribution of 1-NN distances and its query-agnostic approximation of
Ciaccia and Patella [28]. All datasets contain 100K series.

while we found that the third one gave better results for some datasets. We also
tested the authors’ adaptive technique. Figure 4.8 presents the best result for
each dataset, most often given by the adaptive technique.

We observe that the GNAT method results in clearly higher coverage probabil-
ities than the fully random method. This result is somehow surprising because
Ciaccia et al. [27] report that the GNAT method tends to become less accurate
than the random method in high-dimensional spaces with more than eight di-
mensions. Even so, the coverage probability of the GNAT method is largely
below its nominal level. In all cases, it tends to become less than 50% as the
cardinality of the datasets increases beyond 100K, while in some cases, it drops
below 20% (synthetic and seismic).

For much larger datasets (e.g., 100M data series), we expect the accuracy of the
above methods to become even worse. We conclude that they are not appropriate
for our purposes, thus we do not study them further.

Our Estimation Methods. We simplify our analysis by focusing on the ADS
index (we examine the DSTree index in the following subsection). We first ana-
lyze the coverage probability of our methods for confidence levels 95% (θ = .05)
and 99% (θ = .01). Figure 4.10 presents our results. The coverage of the Baseline
method reaches its nominal confidence level for nw = 200 to 500 witnesses. In
contrast, the Query-Sensitive method demonstrates a very good coverage even
for small numbers of witnesses (nw = 50) and training queries (nr = 50). How-
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(a) 95% Confidence Level

(b) 99% Confidence Level

Figure 4.10.: Coverage probabilities of our estimation methods for 95% and 99% con-
fidence levels. We show averages for the four datasets (synthetic, seismic,
SALD, deep1B) and for 50, 100, and 200 training queries. The results of the
temporal models are for the ADS index.
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method in relation to the number of witnesses and training queries.

ever, as Figure 4.11 shows, more witnesses increase the precision of prediction
intervals, i.e., intervals become tighter while they still cover the same proportion
of true 1-NN distances. Larger numbers of training queries also help but to a
lesser extent.

The coverage probabilities of individual linear models are generally stable and
very close to 95% for θ = .05. For θ = .01, the coverage is around 97− 98%, which
suggests that the approach is relatively less accurate at high confidence levels.
The 2D kernel density approach (individual kernel) results in higher coverage
for both confidence levels (expect for 2

10 = 1024 visited leaves). Results for the
common linear model are less satisfying, especially for the very first stages of the
progression algorithm (< 16 visited leaves), where coverage is low. Coverage
reaches very high levels (> 98% for a 95% confidence level) as more leaves are
visited. As we explained earlier, this behavior may not be desirable since a very
high coverage can be due to prediction intervals that are unnecessarily large. The
common kernel density estimation method results in improved coverage levels.
Coverage again tends to further increase as the number of visited leaves grows.
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Figure 4.12.: Violin plots showing the distribution of the width of 95% prediction inter-
vals (top) and the distribution of the RMSE of expected 1-NN distances (bot-
tom). We use nw = 500 (baseline and query-sensitive method) and nr = 100

(query-sensitive method and model for the first approximate answer de-
rived using the ADS index).

Figure 4.12 compares the two methods of initial estimates (Baseline and Query-
Sensitive) against estimation based on the 1st approximate answer of the ADS
index (see Figure 4.5). For this latter method, we construct individual linear mod-
els, where Leaves Visited = 1. For all comparisons, we set nw = 500 and nr = 100

because we know that for these parameters, the coverage probability of all meth-
ods is very close to 95%. We evaluate the width of their 95% prediction intervals
and RMSE. Both measures show similar trends. There is a clear advantage of
the query-sensitive method compared to the baseline. Estimation based on the
1st approximate answer works the best, leading to radical improvements for all
datasets.

As shown in Figure 4.13, our progressive methods result in further improve-
ments. The RMSE is very similar for all four methods. This means that they
are all equally good at providing point estimates. The common linear model
produces less accurate intervals though. We observe that their width improves
slowly, which explains the growing coverage of this method as search progresses
(see Figure 4.10). Both kernel density estimation methods provide a good bal-
ance between coverage and size but produce wider intervals than individual
linear models.

DSTree Index. We observe similar patterns with the DSTree index [125]. Fig-
ure 4.14 summarizes our experimental results for this algorithm. All methods
result in similar RMSE scores, but provide a different balance between coverage
and interval width. The individual linear models present a less variable coverage
probability that is very close to 95% and produce tighter intervals. Prediction in-
tervals constructed with a common linear model are again the worst with very
variable coverage levels. If we compare Figure 4.13 and Figure 4.14, we further
observe that the DSTree index produces more precise estimates than the ADS
index and very low errors at the very first leaves.
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Figure 4.13.: Progressive models: Mean width of 95% prediction intervals of the 1-NN
distance and its RMSE. Training is based on nr = 100 queries.

Table 4.5.: Coverage Probabilities for Subsequences

Dataset Full Series Subseq. (mean) Subseq. (min)

synthetic 95.2% 94.6% 94.1%

seismic 95.9% 94.0% 93.5%

SALD 94.4% 92.8% 92.1%

deep1B 95.0% 94.7% 94.3%

Overall 95.1% 94.0% 93.7%

Note: We report coverage probabilities (95% confidence level) for 16 data series
subsequences when estimating the sub-distance of the 1-NN from the 1st
approximate answer of the ADS index. All results are based on nr = 200

training queries.

Subsequences. We can apply the same approach to provide distance estimates
for the subsequences of the 1-NN (see Section 4.3). Table 4.5 reports the coverage
probability of 95% prediction intervals predicting the partial distance of 16 indi-
vidual segments of the 1-NN. Results are based on the fist approximate answer
(Visited Leaves = 1) of the ADS index and nr = 200 training queries when using a
individual linear model. Average coverage levels are slightly lower than nominal
levels (' 94% on average) but still acceptable.

A key question is whether distance estimation on individual subsequences
helps reduce uncertainty. Figure 4.15 shows the distribution of the lower and up-
per bounds of the 95% prediction intervals constructed for both full series and
their subsequences. We observe that the approach allows us to derive tighter
bounds for subsequences. In particular, the upper bounds are greatly lower than
the ones determined by the intervals that we construct for the full series dis-
tances. Likewise, for several queries, lower bounds are considerably greater than
zero, which is the hard lower bound that we get in the absence of other informa-
tion.

Sequential Tests. We assess how multiple sequential tests (refer to Section 4.3)
affect the coverage probability of 95% and 99% prediction intervals. We focus on
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Figure 4.14.: Coverage probability (95% confidence level), mean width of prediction in-
tervals, and RSME of progressive models for the DSTree index. All results
are based on nr = 100 training queries.

the ADS index and the three progressive estimation methods (individual linear,
individual kernel, and common kernel) that gave the best coverage results (see
Figure 4.10). We examine the effect of (i) three sequential tests when visiting 1,
16, and 256 leaves and (ii) five sequential tests when visiting 1, 4, 16, 64, and 256

leaves. For each test query, we count an error if at least one of the three or five
progressive prediction intervals do not include the true 1-NN distance.

Figure 4.16 summarizes our results. The two kernel methods present similar
trends. The coverage of their 95% prediction intervals drops from over 95% to
about 90% for five tests. Likewise, the coverage of their 99% prediction intervals
drops to a level that is slightly higher than 95%. In contrast, individual linear
models are more sensitive to sequential testing and result in lower coverage lev-
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Figure 4.15.: Violin plots showing the distributions of low (blue/left) and upper (yel-
low/right) bounds of the 95% prediction intervals (1st approximate answer
of ADS index) of the distance for the full 1-NN and for its 16 subsequences.
The thick black lines show medians. Training is based on nr = 200 queries.
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Figure 4.16.: Effect of multiple sequential tests on the coverage of 95% and 99% predic-
tion intervals. We evaluate three (for 1, 16, and 256 visited leaves) and five
sequential tests (for 1, 4, 16, 64, and 256 visited leaves).

els. In particular, the coverage of their 99% prediction intervals becomes clearly
lower than 95% for all but one dataset.

When sequential testing is an issue, we recommend using either of the two
kernel methods, as their coverage level is more stable across datasets. Adjusting
the confidence level to account for multiple sequential comparisons is still an
open question. Our results provide some rules of thumb (e.g., using a 95% level
to guarantee a 90% coverage in 5 sequential tests), but such rules may depend
on the estimation method and the steps at which estimates are made.
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Figure 4.17.: Time to process 100 training queries, varying dataset size: ADS (top),
DSTree (bottom).

Training Time. Finally, we evaluate the time that it takes to process a random
set of training queries, required by our methods. Figure 4.17 presents results
for ADS and DSTree for nr=100. Our results show that DSTree results in faster
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query completion, but for a higher indexing cost. Even though we report the
index creation cost, we note that we could train a model on an existing index,
paying only the query answering cost for the nr queries. Overall, we can train
our models in ∼50min for 100GB datasets (average DSTree query answering per-
formance), or ∼2hours for 250GB datasets, and then use these models to support
large numbers of progressive queries by multiple users with very high coverage
(see Figure 4.10 and Figure 4.14).

4.8 visualization examples

Our estimation methods can help users assess how far their current answer is
from the 1-NN. To this end, we provide estimates about two different measures:
(i) the true 1-NN distance, and (ii) the relative (percent) distance error of the
current answer (Equation 4.2). Figure 4.18 presents a query example and its pro-
gressive results. We use a variation of pirate plots [94] to communicate the 1-NN
distance estimate d̂Q,1nn(t) and the distance error estimate ε̂Q(t) by visualizing
their probability density distribution and their 95% prediction interval. We also
depict distance error estimates for the 4 subsequences (a,b,c,d) of progressive
answers.

We observe that the initial distance estimate is highly uncertain, but estimates
become precise at the early stages of the search. The upper bound of the full
error estimate drops below 10% within 1.1sec and below 3% within 3.8sec (total
query execution is 75.2sec). Such estimates can give confidence to the user that
the current answer is very close to the 1-NN. In this example, the 1-NN is found
within 1.1-3.8 sec. Note also that subsequences’ error estimates are wider: if
users have high precision requirements for a specific part of the query (e.g., for
subsequences c and d), they may decide to wait longer for these error estimates
to reduce further.

4.9 discussion and future work

We showed that existing approaches do not scale to large collections of millions
of data series. We note that, as data series indexes get faster, our proposed so-
lutions will still be relevant, as they can eventually support larger datasets. Our
methods could also be used to speedup complex analysis algorithms (e.g., k-NN
classifiers) by enabling them to automatically decide when to stop a similarity
search query early, without sacrificing the accuracy of the overall analysis pro-
cess.

We currently examine extensions to our work. We plan to run benchmarks for
the prediction of error bounds for every k-NN answer and not only for the 1-NN
that we presented here. In addition, some data domains demand progressive
similarity search using similarity measures other than the Euclidean Distance.
We have to check if our methods work well with distance measures such as
Dynamic Time Warping, which is invariant to temporal location.

We also need to study the visualization and human-computer interaction as-
pects that emerge in this context. The challenge of how to visually communicate
progressive guarantees of similarity search results still remains open. Past work
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Figure 4.18.: A query example from the seismic dataset showing the evolution of 1-NN
distance estimates, and estimates of the distance error (see Equation 4.2)
of the full progressive answer (top) and its four subsequences a-d (bot-
tom). The thick black lines show the distance of the current approximate
answer. The red error bars represent 95% prediction intervals. The green
line over the predicted distribution of errors shows the real error, which
is only shown for illustration purposes (it is unknown during the search).
Estimates are based on a training set of 100 queries, as well as 100 random
witnesses for initial estimates. We use the ADS index.
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has considered width and color (saturation) of converged bars for visually en-
coding confidence of incremental aggregate results (i.e., the wider and the darker
the bars, the more confident the progressive aggregate estimation (high density
probability)). For example, we could apply such visual variables to violin or
pirate plots, like our attempt in Figure 4.18, or integrate distance bounds into
the visual representation of a time series, by either using the query itself, or its
progressive k-NN answer. In Line Charts, we could draw color-saturated areas,
more or less tight, around patterns of progressive results to convey the uncer-
tainty of final estimates. Though, it is not clear what needs to be done in other
visualizations beyond Line Charts, such as Horizon Graphs and Color Fields,
where the color variable is already used as a core element of their implementa-
tion.

We also need to integrate our solutions into a visual analytics system. Given
the requirements of some users, such as neuroscientists and astronomers, to view
context information (i.e., multiple time series together), creating a system that
shows progressive results in-context presents many challenges. In particular, we
have to think about how to show and alternate between progressive results that
appear in different parts of a dataset.

Finally, and most importantly, our work is motivated by real analysts (as-
tronomers) and their problems, but has never been validated in practice. So we
do not know if analysts are willing to use our solutions in their everyday work,
nor how they will influence their workflow. Given the increasing popularity of
data series visual analysis tasks, these research directions are both relevant and
important, offering exciting research opportunities.

4.10 conclusion

We demonstrated the usefulness (and need) of progressive similarity search in
large data series collections. Our preliminary findings showed that the greatest
cost is not locating the 1-NN, but rather waiting for the algorithm to confirm
that there is no better answer and finish execution. This behaviour results in
inflated waiting times without any improvement. We can reduce waiting times
by providing users with progressive results. An important research question is
how to compute such progressive results and couple them with probabilistic
quality guarantees. Such information can help users decide when to stop the
search process, in cases where improvement in the final answer is not possible,
eliminating wasted times.

We presented the first scalable and effective solutions to this computational
probabilistic problem. We demonstrated their applicability using synthetic and
real datasets. Our benchmark evaluation indicated that our prediction methods
significantly outperform competing approaches. We are able to provide both
initial and progressive estimates of the final result, that are getting better during
the execution of similarity search. We are currently examining extensions of our
work, that is, k-NN search and other distance measures (such as Dynamic Time
Warping), as well as studying in more detail how to visually communicate such
prediction measures to users without misleading them to false decisions.





5
C O N C L U S I O N

D ata series are ubiquitous in a wide range of domains, such as seis-
mology, astrophysics, and neuroscience. Their massive volume has in-
troduced numerous challenging problems to the research community.

This dissertation focused on two research challenges we identified: (1) time series
similarity perception and (2) progressive similarity search. In particular:

• We investigated for the first time in data visualization community whether
different time series visualizations affect similarity perception. We studied
which visualizations promote or penalize results from similarity search al-
gorithms and provided guidelines to people who visually explore their
data which visualizations to use according to their domain-dependent def-
inition and notion of similarity.

• We investigated the quality of early progressive results through a set of
computational benchmarks (or experiments) using large data series datasets,
both synthetic and real.

• We developed a scalable probabilistic method that provides quality guar-
antees (error bounds) for progressive similarity search query answering in
massive data series collections; and we compared different models of this
method with regards to their speed and quality.

We provide an overview of the results of this thesis, and then discuss future
research directions.

5.1 summary of contributions and future work

Time Series Similarity Perception.

As a first step (Chapter 3), we studied how different visual encodings (Line
Charts, Horizon Graphs, and Color Fields) affect time series similarity percep-
tion. In particular, we investigated if the time series results returned by auto-
matic similarity measures are perceived in a similar manner, irrespective of the
visualization technique; and if what people perceive as similar with each visual-
ization aligns with different automatic measures and their similarity constraints.
Our findings suggest that Horizon Graphs align with similarity measures that
allow local variations in temporal position (i.e., dynamic time warping). On the
other hand, Horizon Graphs do not align with measures that allow variations in
y-offset and amplitude scaling (i.e., measures based on z-normalization), while
the inverse seems to be the case for Line Charts and Color Fields. Overall, our
work provides some first evidence that similarity perception in time series is
visualization-dependent.

Future Work: There are still many aspects of this work left for future investiga-
tion. Future experiments need to determine the relationship between additional

94
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visual encodings and other similarity measures. We tested visual settings that
utilize position and/or color for value encoding, are linear in time, split the
space, and scale well for multiple time series; and only a few similarity mea-
sures whose similarity constraints support our data domain. Our EEG dataset
stemming from neuroscience has specific pattern characteristics, such as spikes
followed by rapid discharges. Further studies need to validate our findings in a
wider range of patterns and datasets from other domains.

While our visual encodings scale to multiple time series, we focused on a
small number of data series to compare. Thereby, it is unclear how our results
generalize to larger series collections. For example, Color Fields scale well as
small multiples. In contrast, the aspect ratio may greatly affect the readability of
Line Charts. Thus, for Line Charts and to a lesser degree for Horizon Graphs, a
reduced vertical space could lead to a loss of small patterns and reinforce large
structures (peaks, valleys) altering similarity perception.

Our follow-up experiment showed no clear differences between the RGB and
LAB color interpolation techniques in Color Fields with regards to time series
similarity perception. However, it is possible that differences may exist in other
types of temporal patterns. Moreover, dynamic color maps, such as ones based
on equi-depth or equi-width binning of time series values, distort the original
signals, conceivably affecting similarity perception. Studying how the choice of
color mappings affects how people perceive time series similarity is an exciting
future direction.

Last but not least, our future goal is to validate our results with domain ex-
perts. Our work has been motivated by how neuroscientists inspect their data
and compare similar patterns, e.g., by using Line Chart visualizations in small
multiples. A common problem is that there is high disagreement in their deci-
sions. Their assessments are often very subjective. We are interested in the role
of different visualizations in their decision-making process. Our goal is to in-
vestigate if choosing appropriate visualizations can improve consensus among
domain experts about what is similar, and if this approach can increase their
trust on the results of automatic similarity search algorithms.

Progressive Similarity Search & Quality Guarantees.

In the second part of the thesis (Chapter 4), we focused on the scalability con-
straints of similarity search algorithms. As datasets become larger, systems deal-
ing with data series cannot provide users with similarity search results within
interactive response times. Therefore, we sought progressive query-answering
mechanisms, i.e., mechanisms that give back to users progressive, approximate
results. Such results are not the final and exact ones but progressively improve
during the execution of similarity search. Our experiments (benchmarks) indi-
cated that there is a gap between the time the most similar answer is found
and the time when the search algorithm terminates, resulting in inflated wait-
ing times without any improvement. Probabilistic estimates of the final answer
could help users decide when to stop the search process, i.e., decide if improve-
ments in the final answers are not probable, thus eliminating waiting times. Our
work focused on how to efficiently compute such probabilistic estimates. We de-
veloped a new probabilistic, learning-based method that provides quality guar-
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antees (distance bounds) for progressive k-Nearest Neighbour (k-NN) query re-
sults. We demonstrated the applicability of our method using synthetic and real
datasets of millions of data series. Our approach significantly outperforms com-
peting approaches.

Future Work: There are several possible future extensions of this work. We tested
and evaluated our method to predict estimates of the final 1-NN answer (i.e.,
the most similar answer to the query). We have to test if the same method is
applicable and effective for predicting error bounds and quality guarantees for
every k-NN answer.

In addition, we only used the Euclidean Distance (ED) as a similarity mea-
sure during the execution of k-NN similarity search queries. ED is a measure
that does not transform data series and any variation between two raw series
contributes to their further distance apart (i.e., ED is a non-invariant measure).
Furthermore, ED satisfies the triangular inequality. We have to test if our method
also works well with other distance measures, such as Dynamic Time Warping,
which is invariant to time warping and temporal offset and does not support the
triangular inequality.

We also need to study in more detail how to visually and statistically com-
municate error distance bounds of progressive similarity search results to users.
Possible directions are to integrate such distance bounds and errors into the
visual representation of a time series, by either using the query itself, or its pro-
gressive k-NN answers. We could draw color-saturated areas, more or less wide
around progressive results in order to convey the confidence of the final estimate.
Color and width have been used before for the visualization of uncertainty in
progressive aggregate results. We could apply such visual variables on top of
Line Charts, but it is not clear what alternative visual variables are appropriate
for confidence encoding in other visualizations, such as Horizon Graphs and
Color Fields, where color is already used. Alternatively, we could apply width
and color to supplementary visualizations, such as violin or pirate plots.

Finally, and most importantly, we plan to validate our work with real users,
such as astronomers who often need to analyze large volumes of data series.
In particular, we do not know how our solutions could affect their decisions
and workflow. We are interested in evaluating the effectiveness of alternative
visualizations of progressive guarantees and measuring how fast they help users
complete their visual analysis tasks, when those have to deal with large data
series collections.
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background	  information	   	   Participant	  Code:	  

1. How	  often	  do	  analyze	  data	  series	  as	  part	  of	  your	  work?	  	  

[	  	  	  	  ]	  Never	  

[	  	  	  	  ]	  	  A	  few	  times	  per	  year	  	  

[	  	  	  	  ]	  	  Monthly	  (1	  -‐	  2	  times	  per	  month)	  	  

[	  	  	  	  ]	  	  Weekly	  (1	  -‐	  2	  times	  per	  week)	  

[	  X	  ]	  	  Daily	  

2.	  What	  do	  you	  use	  data	  series	  for	  (e.g.,	  for	  what	  kind	  of	  tasks)?	  

Gravitational-‐wave	  detection	  and	  analysis.	  Including	  analysis	  of	  spurious,	  noisy	  artifacts	  
in	  the	  data	  series.	  I	  work	  as	  part	  of	  an	  international	  collaboration:	  LIGO-‐Virgo	  
Collaboration.	  

3.	  Do	  you	  ever	  visually	  explore	  your	  data	  series	  data?	  If	  yes,	  explain	  why.	  

Yes,	  however	  most	  explorations	  use	  Fourier	  domain	  analysis,	  spectrograms	  and	  
periodograms,	  and	  Uiltering	  techniques	  developed	  speciUically	  for	  gravitational-‐wave	  
signals.	  The	  "raw"	  data	  series	  are	  usually	  not	  very	  useful,	  with	  a	  noise	  Uloor	  several	  
orders	  of	  magnitude	  higher	  than	  the	  signal(s)	  of	  interest.	  	  

4.	  Can	  you	  brieUly	  describe	  any	  limitations	  in	  your	  current	  visualization	  tools?	  	  

Lack	  of	  interactivity.	  We	  are	  trying	  to	  develop	  better	  tools	  (based	  on	  D3	  for	  instance),	  but	  
this	  work	  is	  rarely	  our	  top	  priority.	  We	  tend	  to	  either	  look	  at	  pre-‐generated,	  static	  
representation	  of	  the	  data,	  or	  use	  off-‐the-‐shelf	  visualisation	  included	  in	  scientiUic	  
softwares	  (matplotlib,	  ipython,	  matematica,	  mathlab,	  …).	  

5.	  Would	  you	  be	  interested	  in	  trying	  new	  visual	  exploration	  tools?	  

Absolutely	  !	  

A
A P P E N D I X
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Part	  1:	  scenarios	   	   Participant	  Code	  :	  

Scenario	  1:	  

1.1	  	   Brie0ly	  describe	  your	  data	  (what	  they	  represent,	  their	  dimensions,	  their	  size,	  etc.)	  

The	  unprocessed	  data	  represents	  deformation	  of	  the	  fabric	  of	  space-‐time,	  or	  "strain".	  
The	  units	  are	  ratio	  of	  length	  (dimensionless)	  over	  units	  of	  time.	  The	  raw	  data	  out	  of	  the	  
detector	  is	  in	  photon	  count	  as	  a	  function	  of	  time,	  and	  gets	  calibrated	  into	  dimensionless	  
"strain	  data".	  It	  is	  usually	  sampled	  at	  16kHz,	  from	  a	  few	  detectors,	  and	  is	  separated	  in	  
several	  month-‐long	  "observing	  runs."	  We	  also	  analyse	  the	  output	  of	  noise-‐free	  
simulations:	  in	  this	  case,	  the	  data	  is	  just	  the	  pre-‐computed,	  predicted	  deformation	  of	  
space-‐time.	  

	  1.2	   What	  is	  your	  speci0ic	  goal?	  (e.g.,	  what	  are	  you	  looking	  for	  in	  these	  data?)	  

We	  are	  looking	  for	  Gravitational-‐wave	  signals.	  Speci0ic	  patterns	  in	  the	  strain	  created	  by	  
the	  motion	  of	  very	  dense	  (for	  instance,	  black-‐holes)	  astrophysical	  objects.	  In	  the	  case	  of	  
simulation	  analysis,	  we	  are	  looking	  to	  test	  our	  tools	  and	  asses	  their	  performances.	  

1.3	   What	  tools	  do	  you	  use	  to	  accomplish	  this	  goal?	  

Matched	  0iltering,	  Fourier	  transforms,	  wavelets	  transforms	  and	  transformations	  from	  
time-‐domain	  or	  frequency-‐domain	  to	  manifolds	  of	  expected	  signals.	  Those	  
transformations	  are	  speci0ic	  to	  gravitational-‐waves,	  and	  can	  be	  computationally	  
expensive,	  requiring	  other	  tools	  to	  optimise	  the	  analysis.	  

1.4	   How	  long	  does	  this	  typically	  take?	  

From	  raw	  data	  to	  full	  analysis	  can	  take	  minutes	  (for	  the	  fastest	  algorithms	  making	  strong	  
simplifying	  assumptions	  for	  the	  sake	  of	  speed),	  to	  months	  (for	  the	  slowest,	  most	  
complex	  analyses).	  

Scenario	  2:	  

2.1	  	   Brie0ly	  describe	  your	  data	  (what	  they	  represent,	  their	  dimensions,	  their	  size,	  etc.)	  

In	  addition	  to	  the	  "strain	  data"	  mentioned	  in	  scenario	  1,	  various	  "environmental	  
channels"	  record	  data	  series	  on	  the	  behaviour	  of	  the	  detectors	  and	  the	  environment.	  For	  
instance	  seismometers,	  magnetometers,	  microphones,	  etc	  …	  Some	  are	  sampled	  at	  
16kHz,	  other	  at	  lower	  rates,	  and	  record	  seismic	  vibrations,	  magnetic	  0ield	  0luctuations,	  
noise	  levels,	  …	  They	  span	  the	  same	  range	  in	  time	  as	  the	  "strain	  data"	  from	  scenario	  1.	  	  

	  2.2	   What	  is	  your	  speci0ic	  goal?	  (e.g.,	  what	  are	  you	  looking	  for	  in	  these	  data?)	  

The	  goal	  is	  to	  0ind	  correlations	  between	  those	  "environmental	  channels"	  and	  the	  main,	  
"strain	  channel".	  Any	  such	  correlation	  is	  a	  hint	  that	  the	  environment	  is	  contaminating	  
the	  data,	  and	  the	  data	  should	  not	  be	  trusted.	  
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Part	  1:	  scenarios	   	   Participant	  Code	  :	  

2.3	   What	  tools	  do	  you	  use	  to	  accomplish	  this	  goal?	  

We	  use	  software	  developed	  in-‐house	  to	  compute	  cross-‐correlations	  between	  all	  pairs	  of	  
channels	  of	  interest.	  We	  then	  0lag	  time-‐frequency	  spaces	  of	  high	  correlation	  values	  for	  
further	  analysis	  with	  all	  the	  tools	  of	  scenario	  1.	  Classi0ication	  algorithms	  are	  used	  to	  
build	  a	  database	  of	  noisy	  environmental	  features,	  which	  is	  then	  use	  to	  improve	  the	  
detector	  and	  the	  data	  analysis.	  	  

2.4	   How	  long	  does	  this	  typically	  take?	  

We	  limit	  the	  number	  of	  computation	  so	  that	  the	  results	  can	  appear	  in	  a	  few	  hours.	  This	  
allows	  for	  daily	  analysis	  of	  on-‐going	  observations.	  
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Part	  2:	  detailed	  example	   	   Participant	  Code:	  	  

A.	  YOUR	  DATA	  

Present	  one	  or	  two	  examples	  of	  data	  series	  from	  your	  work:	  
A1.	  Sketch	  your	  data	  (dimensions,	  scale,	  representative	  patterns	  and	  values).	  	  
A2.	  Annotate	  interesting	  aspects,	  e.g.,	  patterns	  of	  particular	  interest.	  
A3.	  Explain	  why	  they	  are	  interesting	  or	  important	  for	  you.	  

Example	  1	  

Annotations	  (or	  explanations):	  

Taken	  from	  losc.ligo.org.	  "H1"	  and	  "L1"	  two	  different	  detectors,	  the	  dimensionless	  
"strain"	  data	  from	  both	  is	  plotted	  as	  a	  function	  of	  time	  in	  seconds.	  This	  particular	  time-‐
series	  has	  been	  Iiltered	  to	  remove	  the	  noisy	  low	  and	  high	  frequency	  content.	  The	  pattern	  
of	  interest	  (the	  signal	  in	  this	  case)	  is	  still	  not	  visible	  on	  the	  plot,	  being	  ~3	  orders	  of	  mag-‐
nitude	  smaller	  that	  either	  traces.	  
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Part	  2:	  detailed	  example	   	   Participant	  Code:	  	  

Example	  2	  

Annotations	  (or	  explanations):	  

Taken	  from	  http://www.pas.rochester.edu/.	  The	  time	  series	  output	  of	  seismometer	  
channels	  are	  shown	  here.	  There	  is	  at	  time	  0	  an	  excitation	  of	  several	  channels.	  If	  the	  main	  
"gravitational-‐wave	  strain"	  data	  from	  the	  detector	  shows	  some	  signal	  at	  the	  same	  time,	  
we	  would	  suspect	  a	  contamination	  of	  the	  data	  due	  to	  seismic	  motion.	  
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Part	  2:	  detailed	  example	   	   Participant	  Code:	  	  

B.	  YOUR	  QUESTION	  

Describe	  a	  speciIic	  question	  that	  you	  would	  like	  to	  ask.	  Can	  you	  express	  it	  visually,	  by	  
drawing	  it?	  (If	  not,	  please	  explain.)	  

Annotations	  (or	  explanations):	  

Taken	  from	  ligo.org.	  The	  top-‐left	  plot	  shows	  3	  models	  of	  simulated	  gravitational-‐wave	  
signals.	  The	  bottom-‐right	  plot	  shows	  a	  stretch	  of	  data	  from	  the	  detector.	  We	  want	  to	  
know	  if,	  (and	  which)	  signal	  is	  present	  in	  the	  data,	  with	  which	  probability,	  and	  for	  which	  
parameters.	  
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Part	  2:	  detailed	  example	   	   Participant	  Code:	  	  

C.	  YOUR	  EXPECTED	  RESULTS	  

Give	  an	  example	  of	  representative	  results	  to	  your	  question.	  	  

Annotations	  (or	  explanations):	  

Taken	  from	  losc.ligo.org	  (left)	  and	  ligo.org	  (right).	  The	  left	  plot	  shows	  the	  correlation	  be-‐
tween	  a	  model	  signal	  and	  a	  stretch	  of	  data.	  At	  time	  0,	  the	  correlation	  function	  peaks,	  
showing	  that	  we	  have	  a	  signal,	  with	  the	  height	  a	  function	  of	  the	  strength	  of	  the	  signal.	  
The	  right	  plot	  shows	  some	  of	  the	  recovered	  parameters	  (here	  the	  masses	  of	  the	  2	  objects	  
which	  created	  the	  signal).	  By	  cross-‐correlating	  many	  simulated	  signals	  with	  the	  data,	  we	  
obtain	  the	  probability	  of	  each	  parameter.	  

Page ���  of ���4 5

appendix 118



Part	  2:	  detailed	  example	   	   Participant	  Code:	  	  

D.	  WAITING	  FOR	  YOUR	  RESULTS	  

D1.	  How	  long	  would	  you	  be	  willing	  to	  wait	  for	  such	  results?	  

While	  faster	  is	  almost	  always	  better,	  we	  can	  wait	  up	  to	  several	  months	  for	  full	  results.	  

D2.	  Would	  you	  be	   interested	   in	  working	  with	  quick	  but	  rough	  results	  (e.g.,	  approxima-‐
tions	  or	  incomplete	  answers),	  while	  you	  wait	  for	  the	  complete,	  more	  accurate	  ones?	  Ex-‐
plain.	  

Yes.	  There	  are	  use-‐cases	  for	  approximate	  results	  in	  minutes	  to	  inform	  other	  observato-‐
ries	  of	  the	  presence	  of	  a	  signal.	  The	  eventual	  full	  analysis	  can	  happen	  without	  such	  time-‐
constraint.	  

D3.	   If	   you	   answered	   yes	   (in	   D2),	   what	   does	   "roughness"	   mean	   for	   you?	   (e.g.,	   error	  
bounds,	  uncertainty	  measure,	  portion	  of	  results?)	  Could	  you	  express	  this	  roughness	  vi-‐
sually	  with	  an	  example?	  

Some	  parameters	  can	  be	  uncertain	  in	  the	  "rough"	  results,	  while	  others,	  such	  as	  the	  posi-‐
tion	  in	  the	  sky	  of	  the	  signal,	  or	  the	  peak	  time	  of	  the	  cross-‐correlation	  (which	  is	  used	  to	  
measure	  the	  time	  of	  arrival)	  need	  to	  be	  within	  certain	  bounds.	  Those	  bounds	  in	  turn	  de-‐
pend	  on	  the	  type	  of	  observatory	  which	  will	  try	  to	  follow-‐up	  on	  the	  signal.
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Titre : Requêtes itératives et expressives pour l’analyse de grandes séries de données

Mots clés : séries temporelles, perception de similarité, recherche de similarité progressive

Résumé : Les séries temporelles deviennent om-
niprésentes dans la vie moderne et leur analyse de
plus en plus difficile compte tenu de leur taille. L’ana-
lyse des grandes séries de données implique des
tâches telles que l’appariement de modèles (motifs),
la détection d’anomalies, l’identification de modèles
fréquents, et la classification ou le regroupement
(clustering). Ces tâches reposent sur la notion de si-
milarité. La communauté scientifique a proposé de
plusieurs techniques, y compris de nombreuses me-
sures de similarité pour calculer la distance entre
deux séries temporelles, ainsi que des techniques et
des algorithmes d’indexation, afin de relever les défis
de l’évolutivité lors de la recherche de similarité.
Les analystes, afin de s’acquitter efficacement de
leurs tâches, ont besoin de systèmes d’analyse vi-
suelle interactifs, extrêmement rapides, et puissants.
Lors de la création de tels systèmes, nous avons iden-
tifié deux principaux défis: (1) la perception de simi-
larité et (2) la recherche progressive de similarité. Le
premier traite de la façon dont les gens perçoivent des
modèles similaires et du rôle de la visualisation dans
la perception de similarité. Le dernier point concerne
la rapidité avec laquelle nous pouvons redonner aux
utilisateurs des mises à jour des résultats progres-
sifs, lorsque les temps de réponse du système sont
longs et non interactifs. Le but de cette thèse est
de répondre et de donner des solutions aux défis ci-
dessus.
Dans la première partie, nous avons étudié si
différentes représentations visuelles (Graphiques en
courbes, Graphiques d’horizon et Champs de cou-
leur) modifiaient la perception de similarité des séries
temporelles. Nous avons essayé de comprendre si
les résultats de recherche automatique de simila-
rité sont perçus de manière similaire, quelle que soit
la technique de visualisation; et si ce que les gens
perçoivent comme similaire avec chaque visualisa-
tion s’aligne avec différentes mesures de similarité.

Nos résultats indiquent que les Graphes d’horizon
s’alignent sur des mesures qui permettent des varia-
tions de décalage temporel ou d’échelle (i.e., ils pro-
meuvent la déformation temporelle dynamique). En
revanche, ils ne s’alignent pas sur des mesures auto-
risant des variations d’amplitude et de décalage ver-
tical (ils ne promeuvent pas des mesures basées sur
la z-normalisation). L’inverse semble être le cas pour
les Graphiques en courbes et les Champs de cou-
leur. Dans l’ensemble, nos travaux indiquent que le
choix de la visualisation affecte les schémas tempo-
rels que l’homme considère comme similaires. Donc,
la notion de similarité dans les séries temporelles est
dépendante de la technique de visualisation.
Dans la deuxième partie, nous nous sommes
concentrés sur la recherche progressive de simi-
larité dans de grandes séries de données. Nous
avons étudié la rapidité avec laquelle les premières
réponses approximatives et puis des mises à jour des
résultats progressifs sont détectées lors de l’exécuton
des requêtes progressives. Nos résultats indiquent
qu’il existe un écart entre le moment où la réponse
finale s’est trouvée et le moment où l’algorithme de
recherche se termine, ce qui entraı̂ne des temps d’at-
tente gonflés sans amélioration. Des estimations pro-
babilistes pourraient aider les utilisateurs à décider
quand arrêter le processus de recherche, i.e., quand
l’amélioration de la réponse finale est improbable.
Nous avons développé et évalué expérimentalement
une nouvelle méthode probabiliste qui calcule les
garanties de qualité des résultats progressifs de k-
plus proches voisins (k-NN). Notre approche apprend
d’un ensemble de requêtes et construit des modèles
de prédiction basés sur deux observations: (i) des
requêtes similaires ont des réponses similaires; et (ii)
des réponses progressives renvoyées par les indices
de séries de données sont de bons prédicteurs de la
réponse finale. Nous fournissons des estimations ini-
tiales et progressives de la réponse finale.



Title : Iterative and Expressive Querying for Big Data Series

Keywords : time series, similarity perception, progressive similarity search

Abstract : Time series are becoming ubiquitous in
modern life, and given their sizes, their analysis is be-
coming increasingly challenging. Time series analy-
sis involves tasks such as pattern matching, anomaly
detection, frequent pattern identification, and time se-
ries clustering or classification. These tasks rely on
the notion of time series similarity. The data-mining
community has proposed several techniques, inclu-
ding many similarity measures (or distance measure
algorithms), for calculating the distance between two
time series, as well as corresponding indexing tech-
niques and algorithms, in order to address the scala-
bility challenges during similarity search.
To effectively support their tasks, analysts need in-
teractive visual analytics systems that combine ex-
tremely fast computation, expressive querying inter-
faces, and powerful visualization tools. We identified
two main challenges when considering the creation
of such systems: (1) similarity perception and (2) pro-
gressive similarity search. The former deals with how
people perceive similar patterns and what the role
of visualization is in time series similarity percep-
tion. The latter is about how fast we can give back
to users updates of progressive similarity search re-
sults and how good they are, when system response
times are long and do not support real-time analy-
tics in large data series collections. The goal of this
thesis, that lies at the intersection of Databases and
Visualization/Human-Computer Interaction, is to ans-
wer and give solutions to the above challenges.
In the first part of the thesis, we studied whether dif-
ferent visual representations (Line Charts, Horizon
Graphs, and Color Fields) alter time series similarity
perception. We tried to understand if automatic simi-
larity search results are perceived in a similar man-
ner, irrespective of the visualization technique; and if
what people perceive as similar with each visualiza-
tion aligns with different automatic similarity measures

and their similarity constraints. Our findings indicate
that Horizon Graphs promote as invariant local varia-
tions in temporal position or speed, and as a result
they align with measures that allow variations in tem-
poral shifting or scaling (i.e., dynamic time warping).
On the other hand, Horizon Graphs do not align with
measures that allow amplitude and y-offset variations
(i.e., measures based on z-normalization), because
they exaggerate these differences, while the inverse
seems to be the case for Line Charts and Color Fields.
Overall, our work indicates that the choice of visuali-
zation affects what temporal patterns humans consi-
der as similar, i.e., the notion of similarity in time series
is visualization-dependent.
In the second part of the thesis, we focused on pro-
gressive similarity search in large data series collec-
tions. We investigated how fast first approximate and
then updates of progressive answers are detected,
while we execute similarity search queries. Our fin-
dings indicate that there is a gap between the time
the final answer (best answer) is found, and the time
when the search algorithm terminates, resulting in in-
flated waiting times without any improvement. Compu-
ting probabilistic estimates of the final answer could
help users decide when to stop the search process.
We developed and experimentally evaluated using
benchmarks, a new probabilistic learning-based me-
thod that computes quality guarantees (error bounds)
for progressive k-Nearest Neighbour (k-NN) similarity
search results. Our approach learns from a set of que-
ries and builds prediction models based on two obser-
vations: (i) similar queries have similar answers; and
(ii) progressive best-so-far (bsf) answers returned by
the state-of-the-art data series indexes are good pre-
dictors of the final k-NN answer. We provide both ini-
tial and incrementally improved estimates of the final
answer.
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