

## Formation des P-bodies et régulations post-transcriptionnelles associées à leurs facteurs d'assemblage dans les cellules humaines

Clémentine Bossevain

### ► To cite this version:

Clémentine Bossevain. Formation des P-bodies et régulations post-transcriptionnelles associées à leurs facteurs d'assemblage dans les cellules humaines. Biologie moléculaire. Sorbonne Université, 2020. Français. NNT : 2020SORUS019 . tel-03182491

### HAL Id: tel-03182491 https://theses.hal.science/tel-03182491

Submitted on 26 Mar 2021

**HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.



# Sorbonne-Université

Ecole Doctorale 515-Complexité du vivant

Laboratoire de Biologie du Développement CNRS-Sorbonne-Université UMR 7622 Equipe Compartimentation et trafic intracellulaire des mRNPs

## **Formation des P-bodies**

# & régulations post-transcriptionnelles associées à leurs facteurs d'assemblage dans les cellules humaines

Par Clémentine BOSSEVAIN

Thèse de doctorat de BIOCHIMIE ET BIOLOGIE MOLECULAIRE

Dirigée par Dr. Dominique WEIL et Dr. Maïté COUREL

Présentée et soutenue le 30 Septembre 2020

Devant un jury composé de :

Mme. Catherine-Laure TOMASETTO, DR M. Olivier NAMY, DR Mme. Julia MORALES, DR M. Frank MARTIN, DR Mme. Dominique WEIL, DR Mme. Maïté COUREL, MC

Rapportrice

Rapporteur

Examinatrice

Examinateur

Directrice de thèse

Co-directrice de thèse



# **Résumé/Abstract**

### Résumé

Les P-bodies (PB) sont des granules ribonucléoprotéiques concentrant des milliers d'ARNm particulièrement riches en AU, et une centaine de protéines. Parmi celles-ci, 3 répresseurs de la traduction : DDX6, LSM14A et 4E-T sont indispensables à l'assemblage des PB. Dans une 1<sup>ère</sup> partie, nous nous sommes intéressés au mécanisme d'assemblage des PB. Nous avons identifié par une approche de TAP-tag et de spectrométrie de masse les partenaires de LSM14A, de son paralogue LSM14B et de 4E-T. Le croisement de leurs interactomes avec ceux, déjà connus, de DDX6 et des PB révèle 8 nouveaux candidats d'assemblage des PB. Nous montrons que l'un d'eux, ILF3, contribue au maintien des PB. Nous montrons par ailleurs qu'une fraction de LSM14A est associée au complexe d'initiation de la traduction. La 2<sup>nde</sup> partie porte sur l'influence du contenu en GC sur les régulations post-transcriptionnelles. Nous avons cherché : si DDX6, LSM14A et 4E-T ont des préférences de liaison à l'ARN expliquant l'accumulation préférentielle d'ARNm riches en AU dans les PB, quelles informations apporte la localisation des cibles des miARN dans/hors des PB sur le mécanisme de régulation des ARNm par les miARN, et quels autres paramètres que le contenu en GC influenceraient la localisation des ARNm aux PB. Nos analyses montrent : que 4E-T est la seule des 3 protéines d'assemblage des PB à manifester une préférence de liaison pour les ARNm riches en AU, que la localisation dans les PB des cibles des miARN est associée à une répression de leur traduction dépendante de DDX6, et que la rétention d'ARNm riches en AU sur les membranes et les ribosomes concurrence leur recrutement aux PB.

### Abstract

P-bodies (PBs) are ribonucleoprotein granules where thousands of mRNAs especially AU-rich, and hundreds of proteins concentrate. Among these proteins, three repressors of translation: DDX6, LSM14A and 4E-T are required to assemble PBs. In a first part, we looked at PB assembly mechanism. We identified by a TAP-tag approach coupled to mass spectrometry analysis protein partners of LSM14A, its paralog LSM14B and 4E-T. Crossing their interactomes with already known DDX6 and PB interactomes revealed 8 new PB assembly candidates. We demonstrate that one of them, ILF3, contributes to PB maintenance. Concerning LSM14A, we show that a fraction of LSM14A associates to the initiation complex. In a second part, related to the influence of GC content on post-transcriptional regulations, we asked: if DDX6, LSM14A and 4E-T have a RNA-binding preference that could explain accumulation of AU-rich mRNAs in PBs, how global localization of miRNA targets in/out PB is informative in regards to mRNA regulation mechanism by miRNAs, and which other parameters apart from mRNA GC content could influence mRNA localization to PBs. Our analyses show: that out of the 3 PB assembly factors, only 4E-T has a preference for AU-rich mRNAs, that localization to PBs of miRNA targets is correlated to their translational repression by DDX6 and that retention of AU-rich mRNAs on membranes and ribosomes competes with their localization to PBs.

# Remerciements

Je remercie en premier lieu les membres de mon jury de thèse : le Dr. Catherine-Laure Tomasetto et le Dr. Olivier Namy pour avoir accepté d'être mes rapporteurs, le Dr Julia Morales et le Dr Frank Martin pour avoir bien voulu examiner ce travail.

J'adresse ensuite ma plus profonde reconnaissance à ma directrice de thèse, Dominique Weil. Dominique, un immense merci pour m'avoir permis de réaliser ce doctorat dans ton laboratoire. Merci pour le temps investi dans chaque aspect de cette formation, pour ton encadrement à la fois exigeant et bienveillant, et ce que cela m'a permis d'apprendre, tant sur le plan scientifique qu'humain. J'espère en faire bon usage.

Maïté Courel, si j'en suis venue à travailler sur les P-bodies, c'est initialement grâce à toi... Merci pour ta disponibilité, tes conseils avisés et relectures rigoureuses. Ce fut une chance de t'avoir pour co-encadrante.

Michèle Ernoult-Lange, merci pour tous tes conseils pratiques qui m'ont efficacement orientée au jour le jour à la paillasse et ce tout au long de ce projet.

Marianne Bénard, merci d'avoir pris le temps de discuter de mes résultats, répondu à mes questions... et de m'avoir supportée comme voisine de paillasse pendant ces 3 ans...

Michel Kress, je te remercie pour tes conseils et ton aide « bio-info-related », ainsi que pour l'ambiance bien particulière que tu apportes au labo en collaboration directe avec Michèle.

Marie Noelle Benassy et Catherine Ségalas, merci pour tout ce que vous réalisez au quotidien. Par ailleurs, sans nos cafés matinaux les journées de labo n'auraient pas démarré d'aussi bon pied...

Je remercie également les membres de mon comité de suivi, Micheline Fromont-Racine, Juliette Leymarie et Hervé Le Hir, pour leurs conseils et questions pertinentes qui ont contribué à l'amélioration de cette thèse.

Enfin, j'adresse mes plus sincères remerciements à mes proches, spécialement mes parents pour leur amour inconditionnel et leur soutien sans lesquels je ne me trouverais pas en train d'écrire ces lignes aujourd'hui.

A toutes et à tous : « Merci. »

5

### SOMMAIRE

| INTRODUCTION                                                                                                |           |
|-------------------------------------------------------------------------------------------------------------|-----------|
| PARTIE1 MRNPS & REGULATIONS POST-TRANSCRIPTIONNELLES CYTOPLASMIQUES CHEZ LES EUCARYOT                       | FES 17    |
| 1. TRADUCTION DE L'ARNM : MECANISME MOLECULAIRE DE L'ETAPE D'INITIATION ET PRINCIPES DE REGULATION          | 19        |
| 1.1 Initiation de la traduction coiffe-dépendante                                                           | 21        |
| 1.1.1 Formation du complexe 43S                                                                             | 21        |
| 1.1.2 Assemblage du complexe eIF4F sur l'ARNm                                                               | 25        |
| 1.1.3 Recrutement du 43S sur l'ARNm                                                                         | 27        |
| 1.1.4 Du balayage de la 5'UTR à la formation du 80S                                                         | 28        |
| 1.2 Principales régulations de la traduction                                                                | 32        |
| 1.2.1 Régulation globale de la traduction par inhibition compétitive pour la formation du complexe d'initia | ation     |
| de la traduction                                                                                            | 33        |
| 1.2.2 Régulations ciblées via la reconnaissance d'éléments de séquence ou de structure dans les UTR         | 37        |
| 1.2.3 Influences de la composition nucléotidique de l'ARNm sur la traduction                                | 45        |
| 1.2.4 La traduction localisée                                                                               | 47        |
| 2. Stabilite des ARNM dans le cytoplasme                                                                    | 49        |
| 2.1 Mécanismes généraux de dégradation de l'ARNm                                                            | 49        |
| 2.1.1 Déadénylation                                                                                         | 51        |
| 2.1.2 Le Decapping                                                                                          | 52        |
| 2.1.3 Deux options de dégradation                                                                           | 55        |
| 2.2 . Eléments de contrôle de la stabilité des ARNm                                                         | 57        |
| 2.2.1 Composition nucléotidique du CDS                                                                      | 57        |
| 2.2.2 Régulation de la stabilité de l'ARNm par des éléments de séquence contenus dans la région 3'UTR :     |           |
| exemple des ARNm à ARE                                                                                      | 60        |
| 2.2.3 Les voies particulières de dégradation : exemple du NMD                                               | 62        |
| 3. Les regulations par ARN interference                                                                     | 65        |
| 3.1 Des régulations sélectives ciblant un grand nombre de transcrits                                        | 65        |
| 3.1.1 Reconnaissance des cibles                                                                             | 65        |
| 3.1.2 Régulation de la formation du complexe miRISC                                                         | 67        |
| 3.2 Deux modes d'action des miARN sur l'expression des ARNm : répression de la traduction et                |           |
| dégradation de l'ARN                                                                                        | 68        |
| -<br>3.2.1. Mécanisme moléculaire de la dégradation de l'ARNm induite par les miARN                         | 68        |
| 3.2.2. Mécanismes moléculaires de répression de la traduction miARN -dépendants                             | 69        |
| 3.2.3. Coordination de la répression de la traduction et de la dégradation miARN-dépendantes                | 71        |
| PARTIE 2 LES P-BODIES                                                                                       | 73        |
| 1. Composition des PB                                                                                       | 76        |
| 1.1 Composition protéique                                                                                   | 76        |
| 1.1.1 Les protéines identifiées dans les PB par approche gène candidat                                      |           |
| 1.1.2 Protéome des PB                                                                                       |           |
| 1.2. Composition en ABN                                                                                     |           |
| 1.2.1. localization d'ARN dans les PB par approche gène candidat                                            |           |
| 1.2.2 RNome des PB                                                                                          | 83        |
| 2 FORMATION DES PB                                                                                          | 86        |
| 2 1 La sénaration de phase liquide-liquide                                                                  | טט<br>אג  |
| 2.1 La separation de prose rigulae-rigulae                                                                  | 00        |
| 2.1.1. FUILUPES IOILIAILIEILIAUX                                                                            | 00<br>00  |
| 2.1.2. Determinants moleculares des LLF3                                                                    | 09<br>01  |
| 2.2.1.3. Elements regulated a des EFS III vivo                                                              | <br>07    |
| 2.2 Le processus de joinduion des r bin vivo                                                                | <u>حو</u> |
| 2.2.2 Assemblage des PB à partir de complexes mRNP de répression de la traduction                           | 92<br>Q5  |
|                                                                                                             |           |

| 2.2.3 Formation des PB dans d'autres organismes                                                       | 97      |
|-------------------------------------------------------------------------------------------------------|---------|
| 2.3. Focus sur trois protéines d'assemblage des PB : LSM14A, 4E-T et DDX6                             | 98      |
| 2.3.1. Structure primaire et fonctions moléculaires                                                   |         |
| 2.3.2. Principaux complexes mRNP cytoplasmiques incluant DDX6, LSM14A, 4E-T                           | 102     |
| 2.3.3 Apport des expériences de complémentation sur les fonctions biologiques de LSM14A, 4E-T et DDX6 | 104     |
| 3. FONCTIONS MOLECULAIRE ET IMPORTANCE BIOLOGIQUE DES PB                                              | 105     |
| 3.1 Stockage d'ARNm réprimés plutôt que dégradation d'ARNm                                            | 105     |
| 3.1.1 Arguments expérimentaux « pro-dégradation »                                                     | 105     |
| 3.1.2 Arguments expérimentaux « pro-stockage »                                                        | 105     |
| 3.2 Homéostasie et adaptation cellulaire                                                              | 106     |
| 3.2.1 Adaptation rapide et coordonnée du transcriptome                                                | 106     |
| 3.2.2 Rôle des PB au cours du développement                                                           | 109     |
| RESULTATS                                                                                             | 111     |
| PART1 ANALYSIS OF PB ASSEMBLY FACTORS IN HUMAN CELLS PROVIDES NEW INSIGHT INTO LSM14A                 | - 112   |
|                                                                                                       | 113     |
| INTRODUCTION                                                                                          | 113     |
| RESULTS                                                                                               | 117     |
| 1.Purification of LSM14A, LSM14B and 4E-T cytoplasmic complexes identifies a large set of partner.    | S       |
| related to RNA metabolism                                                                             | 117     |
| 2. Comparison of LSM14A, 4E-T and DDX6 partners with PB proteome identifies potential new PB a        | ssembly |
| factors                                                                                               | 121     |
| 3.LSM14A associates in vivo with translation initiation complex                                       | 122     |
| Figures                                                                                               | 125     |
| Figure Legends                                                                                        | 163     |
| Discussion                                                                                            | 169     |
| 1.Mass spectrometry analysis of LSM14A LSM14B and 4E-T proteome highlights repressive comple          | xes     |
| rather than degradation complexes                                                                     | 169     |
| 2. Comparison of PB assembly factors proteome reveals new candidates for PB formation                 | 170     |
| 3.LSM14A is present in a subcomplex at the initiation complex                                         | 173     |
| MATERIALS AND METHODS                                                                                 | 175     |
| PART 2: INELLIENCE OF MRNA GC CONTENT ON MRNA LOCALIZATION TO DRS AND ON ITS CYTOPLASM                |         |
| PART 2. INTEGENCE OF MINING GE CONTENT ON MINING ECCALIZATION TO THE AND ON THE CITOT LASK            | 181     |
|                                                                                                       | 101     |
| INTRODUCTION                                                                                          | 181     |
| Results                                                                                               | 185     |
| 1.Nucleotide preference and PB localization of mRNAs bound by PB assembly factors                     | 185     |
| 2. Influence of GC content on PB localization and post-transcriptional regulations of miRNA-targets   | ; 188   |
| 3. Localization of AU-rich mRNAs transcripts                                                          | 190     |
| Figures                                                                                               | 191     |
| Figure Legends                                                                                        | 201     |
| Discussion                                                                                            | 205     |
| 1. Out of the 3 PB assembly factors, only 4E-T has a preference for AU-rich mRNAs                     | 205     |
| 2.3'UTR nucleotide composition of miRNA targets is a key parameter of their localization and repre    | ession  |
| into PBs                                                                                              | 206     |
| 3.PB-excluded and AU-rich mRNAs are localized transcripts                                             | 208     |
| Materials and methods                                                                                 | 211     |
|                                                                                                       | 215     |
|                                                                                                       | 21J     |
|                                                                                                       | 245     |

# Liste des Figures

### INTRODUCTION

| Figure 1. Principales régulations post-transcriptionnelles eucaryotes                       | 18 |
|---------------------------------------------------------------------------------------------|----|
| Figure 2 L'initiation de la traduction coiffe-dépendante.                                   | 20 |
| Figure 3 Cycle d'activation du facteur d'initiation eIF2                                    | 22 |
| Figure 4 Contacts de eIF3 avec la sous-unité 40S au sein du complexe 43S                    | 24 |
| Figure 5 Schéma de la structure du complexe 43S-DHX29 mammifère                             | 25 |
| Figure 6 Organisation schématique du complexe eIF4F                                         | 27 |
| Figure 7 Deux modèles d'association du complexe 43S sur l'ARNm médié par le complexe eIF4F  | 28 |
| Figure 8 Réarrangements structuraux du complexe 48S au cours du balayage de la 5'UTR.       | 29 |
| Figure 9 Du balayage de la 5'UTR à la formation du 80S                                      | 31 |
| Figure 10 Principes de régulations de la traduction eucaryote                               | 33 |
| Figure 11 Modèle de régulation de la formation du complexe elF4F par les 4E-IP              | 35 |
| Figure 12 Régulation de la formation du complexe ternaire par phosphorylation d'eIF2        | 37 |
| Figure 13 Contrôle de la traduction de l'ORF principale par les uORF                        | 39 |
| Figure 14 Comparaison de RBP régulatrices de la traduction et de leurs RBD                  | 41 |
| Figure 15 Régulation de la traduction par le complexe CPEB (modèle Xénope)                  | 43 |
| Figure 16 Traduction IRES-dépendante des ARNm cellulaires                                   | 45 |
| Figure 17 Influence de la composition en codons du CDS sur la traduction                    | 47 |
| Figure 18 Modèle de traduction localisée à la membrane du réticulum endoplasmique           | 49 |
| Figure 19 Principales voies cytoplasmiques de dégradation de l'ARNm                         | 50 |
| Figure 20 Modèle de déadénylation puis dégradation de l'ARNm dépendant du complexe CCR4-NOT | 52 |
| Figure 21 Activation du complexe de decapping humain                                        | 54 |
| Figure 22 Régulation de la stabilité de l'ARNm (modèle levure)                              | 59 |
| Figure 23 Contrôle de la stabilité de l'ARNm par les ARE-BP TTP et HuD                      | 62 |
| Figure 24 Dégradation de l'ARNm par la voie du NMD                                          | 64 |
| Figure 25 Appariement des miARN à leurs ARNm cibles                                         | 66 |

| Figure 26 Dégradation de l'ARNm par les miARN69                                                                                  | Э |
|----------------------------------------------------------------------------------------------------------------------------------|---|
| Figure 27 Répression de la traduction par les miARN72                                                                            | 1 |
| Figure 28 Principaux organites sans membrane des cellules eucaryotes74                                                           | 4 |
| Figure 29 Visualisation des P-bodies marqués par DDX6 dans des cellules épithéliales<br>humaines                                 | 5 |
| Figure 30 Comparaison de deux stratégies expérimentales d'étude de la composition des PB                                         | C |
| Figure 31 Protéome des PB suite à leur purification par FAPS82                                                                   | 2 |
| Figure 32 Principales caractéristiques des ARNm enrichis dans les PB85                                                           | 5 |
| Figure 33 Diagramme de phase et séparation de phase liquide-liquide87                                                            | 7 |
| Figure 34 Partitionnement des molécules clients dans les biocondensats                                                           | Э |
| Figure 35 Effet de l'ARN sur la taille de condensats ARN-protéine artificiels recrées dans les cellules humaines92               | 1 |
| Figure 36 Modèle de recrutement des ARNm aux PB94                                                                                | 1 |
| Figure 37 Identification des protéines de maintenance et d'assemblage des PB96                                                   | ŝ |
| Figure 38 Structure primaire de DDX6, LSM14A, 4E-T et LSM14B98                                                                   | 3 |
| Figure 39 Co-régulation de l'expression de LSM14A et de LSM14B102                                                                | 1 |
| Figure 40 Coordination des régulations post-transcriptionnelles par les PB108                                                    | 3 |
| Figure 41 Modèle de contrôle de la neurogenèse par les PB110                                                                     | ) |
| Figure 42 Purification of LSM14A, LSM14B and 4E-T cytoplasmic complexes by TAP-tag12                                             | 5 |
| <b>RESULTATS PARTIE 1</b><br>Figure 1 Functional description of LSM14A, LSM14B and 4E-T partners identified by mass spectrometry | 7 |
| Figure 2 Identification of potential new PB assembly factors                                                                     | Э |
| Figure 3 Characterisation of LSM14A association to the translation initiation complex132                                         | 1 |
| Figure 4 Investigating LSM14A partners involved in LSM14A association to the translation initiation complex                      | 3 |
| Supplemental Figure 1: TAP-tag experimental strategy134                                                                          | 1 |
| Supplemental Figure 2: Comparison of TAP-tag results to proteomes from the literature .135                                       | 5 |
| Supplemental Figure 3: Protein interactions in untransfected cells                                                               | 7 |
| Supplemental Figure 4: Expression of PB assembly factors and PB markers                                                          | 3 |

### **RESULTATS PARTIE 2**

| Figure 1 PB localization and post transcriptional regulations of DDX6 and 4E-T-bound mRNA               | .s<br>∂1       |
|---------------------------------------------------------------------------------------------------------|----------------|
| Figure 2 Influence of nucleotide composition on LSM14A and DDX6 RNA-binding19                           | <del>)</del> 3 |
| Figure 3 GC bias, PB enrichment and post-transcriptional regulations of miRNA targets19                 | 94             |
| Figure 4 Effect of miRNA nucleotide composition on miRNA activity19                                     | <del>)</del> 6 |
| Figure 5 Concurrent cytoplasmic localizations of AU-rich mRNAs                                          | 98             |
| Supplemental Figure 1: Dosage of luciferase activity of AU-rich and GC-rich Renilla luciferase proteins | e              |
| Supplemental Figure 2: Transcriptome following DICER silencing                                          | <del>)</del> 9 |
| Figure 6 Model of translational repression miRNA-dependent                                              | )7             |

# Liste des Tableaux

| Tableau 1. Récapitulatif des fonctions des facteurs d'initiation de la traduction eucaryotes. | 21 |
|-----------------------------------------------------------------------------------------------|----|
| Tableau 2 Principales ARE-BP régulant la stabilité des ARNm                                   | 61 |
| Tableau 3 Fonctions des principaux organites eucaryotes sans membrane                         | 75 |
| Tableau 4 Estimation de la proportion des principales protéines des PB chez S. cerevisiae     | 78 |
| Supplemental Table 1 Mass spectrometry results14                                              | 42 |
| Supplemental Table 2 Quantitative expression of relevant proteins                             | 62 |

### Liste des Abréviations

43S: complexe de pré-initiation 48S: 43S associé à l'ARNm 4E-BP: eIF4E Binding Protein 4E-IP: eIF4E Interacting Protein 4E-T: eIF4E Transporter aa: acide aminé ADN: Acide DésoxyriboNucléique **ARE:** AU-Rich Element **ARE-BP**: AU-Rich Element-Binding Protein **ARNm**: Acide RiboNucléique messager **ARNt**: ARN de transfert **ATP:** Adenosine Triphosphate CCR4-NOT: Catabolite Carbon Repressor 4-Negative regulator of Transcription **CPE**: Cytoplasmic Polyadenylation Element **CPEB**: CPE-Binding Protein **DCP1,2**: Decapping Enzyme 1,2 DDX6: DEAD box helicase 6 eEFs: eukaryotic Elongation Factor eIF4F: complexe d'eIF4A-eIF4E-eIF4GelF4B elFs: eukaryotic Initiation Factors **EJC**: Exon Junction Complex **ER**: Reticulum Endoplasmique

FC: Fold Change GAP: GTPase Activating Protein **GDI**: GDP Dissociation Inhibitor **GDP**: Guanosine Diphosphate **GEF**: Guanine nucleotide Exchange Factor **GFP**: Green Fluorescent Protein **GO**: Gene Ontology **GTP**: Guanosine Triphosphate hnRNP: heterogeneous nuclear RiboNucleoProtein **IRES:** Internal Ribosome Entry Site m<sup>7</sup>GTP: 7-Méthylguanosine 5'triphosphate miRNA: micro ARN miRNP: microRNA RiboNucleoParticle (m)RNP: (messenger) RiboNucleoProtéine MS: Mass Spectrometry NMD: Nonsense Mediated-Decay nt: nucléotides **PABP:** Poly(A)-Binding Protein PAN3: Poly(A) Nucléase 2 et 3 PARN: Poly(A) RNase

| PTB: Polypyrimidine Tract Binding protein | Rluc: Renilla luciférase                            |  |
|-------------------------------------------|-----------------------------------------------------|--|
| PTC: Premature Terminaison Codon          | RNA seq: RNA sequencing                             |  |
| PTM: Post-Translational Modification      | SG: Stress Granule                                  |  |
| RBD: RNA-Binding Domain                   | siRNA: small interfering RNA                        |  |
| <b>RBP</b> : RNA-binding Protein          | <pre>sm(i)FISH: single molecule (inexpensive)</pre> |  |
| RISC: RNA-Induced Silencing Complex       | Fluorescent In Situ Hybridization                   |  |

# INTRODUCTION

# Partie 1 : mRNPs & régulations post-transcriptionnelles cytoplasmiques chez les eucaryotes

Dans un organisme eucaryote pluricellulaire, toutes les cellules ne remplissent pas les mêmes fonctions ni ne sont exposées aux mêmes variations environnementales. Dans ces conditions, il est vital pour les cellules de pouvoir exprimer sélectivement dans l'espace et dans le temps, les gènes adéquats afin d'adapter le niveau de protéines aux circonstances (Sokabe and Fraser, 2018). Si, historiquement, les régulations transcriptionnelles ont été considérées comme les protagonistes quasi exclusifs du contrôle de base de l'expression génique (i.e. dans des conditions environnementales stables), il est aujourd'hui admis que la coordination globale de l'expression génique dépend également largement des régulations post-transcriptionnelles (Figure 1). La première analyse quantitative et à large échelle des contributions relatives des différentes étapes de l'expression génique sur le niveau de protéines a été réalisée en 2011 sur des fibroblastes de souris (Schwanhäusser et al., 2011). Les mesures des demi-vies de 5000 ARNm par marguage métabolique ainsi que d'abondance de ces ARNm et de leurs protéines correspondantes dans une population de cellules asynchrones ont montré, après révision des calculs dans (Li et al., 2014), que la transcription explique 38 % de la variation des niveaux de protéines. La dégradation de l'ARN en explique 18%, la traduction 30% et la dégradation des protéines 14%, ce qui confirme l'importance des régulations post-transcriptionnelles dans le contrôle de l'expression génique.



Figure 1. Principales régulations post-transcriptionnelles eucaryotes

Après que l'ARN est transcrit dans le noyau par l'ARN Pol II assistée de facteurs de transcription généraux et spécifiques, des RBP se lient au transcrit pré-messager et catalysent l'addition d'une coiffe 7 méthylguanosine (1), l'épissage des introns et le dépôt de l'EJC (2) ainsi que l'ajout d'une queue poly(A) (3). L'ARN mature est exporté dans le cytoplasme via les pores nucléaires (4). Le mRNP est remodelé par l'ajout/retrait de RBP spécifiques contribuant à orienter son devenir cytoplasmique. Après transport éventuel (5), l'ARNm peut être traduit (6), réprimé en traduction (7) et/ou/puis dégradé (8). Les mRNPs dont la traduction est réprimée peuvent également se condenser dans des granules mRNPs où ils sont transitoirement stockés (9). (Modifié d'après Chin and Lécuyer, 2017). Dans le cadre de cette introduction, nous traiterons des régulations post-transcriptionnelles cytoplasmiques, c'est-à-dire celles qui s'appliquent au contrôle de la traduction de l'ARNm et de sa stabilité. Après avoir rappelé les mécanismes moléculaires d'initiation de la traduction ainsi que les mécanismes de dégradation de l'ARNm nous ferons le point sur les principales régulations de ces processus. Les exemples et références choisis concernerons prioritairement le modèle mammifère sans exclure toutefois des références ponctuelles à d'autres organismes modèles eucaryotes lorsque cela s'avèrera nécessaire.

### 1. <u>Traduction de l'ARNm : mécanisme moléculaire de l'étape d'initiation</u> et principes de régulation

La traduction de l'ARNm chez les eucaryotes se décompose en quatre phases successives : initiation, élongation, terminaison et recyclage du ribosome (Sokabe and Fraser, 2018). En pratique, l'initiation de la traduction consiste à activer en parallèle la sous-unité 40S et l'extrémité 5' de l'ARNm, à recruter le 40S sur l'ARNm, à sélectionner le codon d'initiation et à y assembler le ribosome afin de pouvoir démarrer la synthèse protéique (Figure 2). Toutes ces étapes requièrent l'intervention coordonnée d'une multiplicité d'acteurs moléculaires : treize facteurs d'initiation de la traduction canoniques (eIFs) (Tableau 1), plusieurs facteurs auxiliaires tels que la PABP (Poly(A) Binding Protein) et l'hélicase DHX29, auxquels s'ajoutent les ribosomes, les ARN de transfert (ARNt) et l'ARNm. Avec des taux d'initiation estimés par des approches d'imagerie in vivo sur molécule unique entre 1,4 et 3,6 évènements d'initiation/min selon les transcrits considérés (Morisaki et al., 2016; Yan et al., 2016) et comparés à des taux d'élongation estimés entre 3,1 et 4,9 codons/s par les mêmes approches, l'étape d'initiation de la traduction est considérée comme relativement lente même s'il existe des hétérogénéités de cinétique entre ARNm d'une même cellule. Il s'agit de l'étape limitante et par conséquent la plus étroitement régulée du processus de traduction. Pour la majorité des ARNm eucaryotes, l'initiation de la traduction fait intervenir la coiffe de l'ARNm dans le recrutement et l'assemblage des sous-unités ribosomales sur l'ARNm (von der Haar et al., 2004), selon un mécanisme dit « coiffe-dépendant » que nous détaillons ici.



### Figure 2 L'initiation de la traduction coiffe-dépendante.

Le complexe ternaire comportant l'ARNt initiateur, chargé en méthionine et d'eIF2 chargé en GTP, s'associe à la petite sous-unité ribosomale (40S), portant déjà eIF1A, eIF3 et eIF5 pour former le complexe 43S (1).En parallèle de (1), le complexe eIF4F comportant eIF4A/eIF4E/eIF4G et eIF4B se forme, par interaction de la protéine de liaison à la coiffe eIF4E et de la protéine plateforme eIF4G. PABP permet la circularisation de l'ARNm lié à eIF4E ce qui facilite la traduction (2).L'association des complexes 43S et eIF4F forme le complexe 48S, complexe actif de l'initiation de la traduction (3). Celuici scanne la région 5'UTR de l'ARNm (4) jusqu'à atteindre le codon AUG initiateur. (5) A l'atteinte de l'AUG, les facteurs d'initiation de la traduction se dissocient pour être recyclés (6) et la grande sousunité ribosomale (60S) s'associe à la petite pour former le ribosome (7). Cette étape signe la fin de l'initiation et le début de l'élongation de la traduction. (Modifié d'après Merrick and Pavitt, 2018).

| Nom   | Sous-unité | Masse moléculaire<br>(kDa) | Fonction                                                                                                                               |
|-------|------------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| elF1  | 1          | 13                         | Stimule la liaison du TC au 40S/favorise le<br>balayage/contribue à la fidélité de sélection de l'AUG                                  |
| elF1A | 1          | 17                         | Stimule la liaison du TC au 40S/lie le 43S au complexe<br>eIF4F/empêche la liaison du 60S avant la reconnaissance de<br>l'AUG          |
| elF2  | 3          | 36/38/51                   | formation du TC                                                                                                                        |
| elF2B | 5          | 34/39/50/60/80             | réalise l'échange GDP-GTP pour eIF2                                                                                                    |
| elF3  | 13         | total 800                  | Stimule la liaison du TC au 40S/lie le 43S au complexe<br>eIF4F/empêche la liaison du 60S avant la reconnaissasnce de<br>l'AUG         |
| eIF4A | 1          | 165                        | ARN hélicase déroulant les structures secondaires du 5'UTR<br>préalablement au balayage                                                |
| eIF4B | 1          | 69,3                       | activateur de elF4A                                                                                                                    |
| elF4E | 1          | 25                         | lie la coiffe m <sup>7</sup> GTP de l'ARNm/export de l'ARNm du noyau                                                                   |
| elF4G | 1          | 176                        | formation du complexe eIF4F en liant eIF4E, eIF4A, eIF4B/<br>formation du 48S en liant eIF3/ conformation closed-loop en<br>liant PABP |
| elF5  | 1          | 49                         | GAP spécifique d'eIF2-GTP hydrolysant le GTP en GDP lors de<br>la reconnaissance de l'AUG                                              |
| eIF5B | 1          | 139                        | GTPase.association des deux s.u ribosomales                                                                                            |
| eIF6  | 1          | 27                         | empêche une association prématurée en tre le 60S et le 40S                                                                             |
| DHX29 | 1          | 155                        | déroule les structures secondaires de la 5' UTR                                                                                        |
| ABCE1 | 1          | 67                         | empêche l'association prématurée des deux sous-unité<br>ribosomales                                                                    |

Tableau 1. Récapitulatif des fonctions des facteurs d'initiation de la traduction eucaryotes(Modifié d'après Jackson et al., 2010)

### 1.1 Initiation de la traduction coiffe-dépendante

### 1.1.1 Formation du complexe 43S

La première étape de l'initiation de la traduction consiste à mettre en contact la petite sous-unité ribosomale (40S) avec un ARNt initiateur chargé en méthionine (ARNt-Met), sous une forme capable d'être recrutée sur l'ARNm. En pratique, ceci implique l'assemblage d'un complexe 43S PIC (Pre Initiation Complex) contenant le complexe ternaire (TC), les facteurs d'initiation eIF1, eIF1A et eIF3 et le 40S.

Le complexe ternaire inclut le facteur d'initiation eIF2, l'ARNt-Met et du GTP. Il permet d'acheminer l'ARNt-Met jusqu'à la petite sous-unité du ribosome (Dever et al., 2016; Hinnebusch, 2014) grâce à l'action de eIF2 qui, sous sa forme eIFI2-GTP, est capable de lier à

la fois le 40S *via* sa sous-unité eIF2α (Hashem et al., 2013) et l'ARNt-Met (Hinnebusch and Lorsch, 2012). Après hydrolyse du GTP et relargage du phosphate, eIF2-GDP perd son affinité pour l'ARNt-Met et quitte le PIC (Algire et al., 2005). Si la forme eIF2-GTP possède dix fois plus d'affinité pour l'ARNt-Met que la forme eIF2-GDP, il s'agit également de la forme la moins stable (Kapp and Lorsch, 2004). Ainsi, la formation du complexe ternaire nécessite la conversion d'eIF2-GDP en sa forme active liée au GTP. Cette activation repose sur l'action combinée d'un GEF (guanine nucléotide exchange factor) : eIF2B (Pavitt, 2005), et d'une GAP/GDI (GTPase Activating Protein/ GDP Dissociation Inhibitor) : eIF5 (Jennings and Pavitt, 2010), (Figure 3).



Figure 3 Cycle d'activation du facteur d'initiation eIF2

eIF2-GDP est activée par l'action de eIF2B. eIF2B est un GEF (Guanine exchange factor) qui dissocie le GDP de eIF2 pour y permettre la liaison du GTP (1) et faciliter la liaison du Met-ARNt à eIF2 (2). En conditions de stress, la sous-unité  $\alpha$  de eIF2 est phosphorylée sur sa sérine 51 par différentes kinases telles GCN2, HRI, PERK, PKR (3). Sous sa forme phosphorylée, eIF2( $\alpha$ P) inhibe l'activité de eIF2B et conséquemment l'initiation de la traduction (4) (revu en détail dans Proud, 2018 ; Wek, 2018). L'action de GDI (GDP Dissociation Inhibitor) de eIF5 stabilise la liaison du GDP à eIF2 et empêche la dissociation de eIF2 qui pourrait autrement échapper à la régulation par eIF2B. eIF5 a aussi une fonction GAP (GTPase Activating Protein) intervenant après de la reconnaissance de l'AUG (5). (Modifié d'après Jennings and Pavitt, 2014)

Le recrutement du TC au 40S fait intervenir trois facteurs additionnels : eIF1, eIF1A et eIF3. Les facteurs eIF1 et eIF1A se lient de manière coopérative à la sous-unité 40S, du côté de la face non exposée au solvant (Sokabe and Fraser, 2014). Selon deux études par coupure dirigée avec des radicaux hydroxyles, eIF1 occupe le site P du 40S (Lomakin et al., 2003) et eIF1A le site A du 40S (Yu et al., 2009). Leur liaison au 40S induit un changement de conformation de ce dernier, qui adopte alors une conformation ouverte à laquelle peut se lier le TC (Merrick and Pavitt, 2018b). Cette conformation ouverte sera également importante pour l'étape de scanning (cf partie 1 paragraphe 1.1.4). Deux études successives de cryomicroscopie électronique (cryo-EM) ont permis de résoudre la structure du complexe 43S-DHX29 de mammifère à 11,6 Å puis 6 Å et ont montré qu'elF3 possède plusieurs points de contact avec la sous-unité 40S (des Georges et al., 2015; Hashem et al., 2013). elF3 établit trois points de contact avec le 40S : (1) sur la face exposée au solvant via les interactions de eIF3a avec les protéines ribosomales S1/S26/S7 et de eIF3c avec S27, S15 et S7 ; (2) à l'entrée du canal ARNm via les interactions de eIF3b avec S4 ; (3) à la sortie du canal ARNm via les interactions de eIF3d avec RPS28, RPS7 et RPS9 (Figure 4). eIF3 joue aussi un rôle dans la stabilisation du TC au 40S du fait d'un contact entre eIF3d et le domaine D1-eIF2 $\alpha$  (des Georges et al., 2015). (Figure 5). Une étude récente basée sur l'analyse des profils de sédimentation sur gradients de sucrose des différents eIFs crosslinkés à l'ARNm a montré que la suppression de elF3d par ARN interférence empêche la formation d'un complexe 43S, ce qui appuie l'importance d'eIF3d dans l'association d'eIF3 au 40S (Herrmannová et al., 2020)



Figure 4 Contacts de eIF3 avec la sous-unité 40S au sein du complexe 43S

(1) et (3) sont des vues depuis la face exposée au solvant des interactions entre eIF3 et le 43S et (2) est une vue depuis la face inter sous-unités. Les rectangles noirs représentent une vue détaillée des interactions de la sous-unité eIF3a avec les protéines ribosomales RPS1/RPS26/RPS7 et de eIF3c avec RPS27, RP S15 et RPS7 (1); de eIF3b avec RPS4 à l'entrée du canal ARNm (2); de eIF3d avec RPS28, RPS7, RPS9 à la sortie du canal ARNm (3). (Modifié d'après des Georges et al., 2015)



### Figure 5 Schéma de la structure du complexe 43S-DHX29 mammifère.

Le complexe 43S lié à l'hélicase DHX29 est représenté successivement depuis l'arrière, la face exposée au solvant, l'avant. Le 40S est représenté en gris tandis que les sous-unités des différents elFs ainsi que DHX29 sont en couleur. H indique la tête du 40S et B le bec. elF3 possède trois régions d'interaction avec le 40S. L'ensemble des sous-unités (elF3f/h/a/c/k/l/e) se lie du côté exposé au solvant du 40S à l'opposé de la plateforme via elF3a et elF3c. Le module elF3b/i/g est en contact avec l'entrée du canal ARNm via elF3b. elF3d est situé à côté du canal de sortie de l'ARNm. elF1 et elF1A sont positionnés sur la face non exposée au solvant et occupant respectivement les sites A et P. elF2. (Modifié d'après des Georges et al., 2015)

### 1.1.2 Assemblage du complexe eIF4F sur l'ARNm

Pour pouvoir recruter le 43S, l'ARNm doit être activé grâce à la formation du complexe eIF4F à l'extrémité de la 5'UTR. Le complexe eIF4F se compose de la protéine de liaison à la coiffe eIF4E, de la protéine plateforme eIF4G, de l'ARN-hélicase eIF4A et de sa protéine activatrice eIF4B. eIF4E se lie à la coiffe (Sonenberg et al., 1978, 1979) en entourant le m<sup>7</sup> GTP par les orbitales  $\pi$  de deux résidus tryptophane (Marcotrigiano et al., 1997). En parallèle, eIF4E s'associe à la protéine eIF4G par un motif consensus Tyr-XXXX-Leu- $\Phi$  (avec X a.a variable,  $\phi$ acide aminé portant un radical hydrophobe) ce qui renforce l'affinité d'eIF4E pour la coiffe (Grüner et al., 2016). L'association d'eIF4E à la coiffe est également stabilisée par la liaison directe d'eIF4G à l'ARNm (Yanagiya et al., 2009) et sensible à la phosphorylation de la sérine 209 (Wang et al., 1998). En conditions de stress, cette sérine est phosphorylée par la kinase MNK (Scheper et al., 2002) ce qui dissocie eIF4E de la coiffe.

La formation du complexe eIF4F (Figure 6) entraîne deux réarrangements de l'ARNm : le

déroulement des structures secondaires de la 5'UTR et le rapprochement des extrémités 5'et 3' selon une conformation circulaire dite en « boucle fermée » (closed-loop). Le facteur eIF4G joue un rôle clef dans ces deux réarrangements. elF4G lie elF4A associée à elF4B, ceci active la fonction ARN hélicase de eIF4A et lui permet de dérouler des structures secondaires et/ou de déplacer des complexes ARN-protéines susceptibles de gêner le recrutement d'un ARN simple brin dans le canal ARN du 43S PIC (García-García et al., 2015; Ozes et al., 2011). Dans certains cas, d'autres ARN-hélicases telles que DDX3 (Soto-Rifo et al., 2012) ou DHX29 pour les ARNm très structurés (Dhote et al., 2012; Pisarev et al., 2008) contribuent également au déroulement des structures secondaires de la 5'UTR .En parallèle de son interaction à eIF4A, eIF4G s'associe également à la PABP (Imataka et al., 1998). Selon les données structurales, l'interaction entre ces deux protéines est directe et concerne les résidus 178-203 d'elF4G ainsi que le domaine RRM2 (RNA Recognition Motif 2) de PABP (Safaee et al., 2012). Cette interaction est au cœur du modèle en boucle fermée. Selon ce modèle, la chaîne d'interactions directes m<sup>7</sup>GTP-elF4E-elF4G-PABP-queue poly(A) rapproche les extrémités 5' et 3' de l'ARNm et permet de recruter le 40S sur l'ARNm ainsi que de faciliter le recyclage du ribosome (Hinnebusch, 2014; Jackson et al., 2010; Kahvejian et al., 2001; Mangus et al., 2003; Wells et al., 1998). Ce modèle expliquerait la synergie observée in vivo au cours de la traduction, entre la coiffe 5' et la queue poly A (Gallie, 1991). Les interactions à la base du modèle closed-loop ont été initialement démontrées à partir de systèmes de traduction in vitro (Imataka et al., 1998; Preiss and Hentze, 1998; Tarun and Sachs, 1995; Tarun et al., 1997). Ultérieurement, des approches plus physiologiques ont complété ces études. Notamment, les facteurs eIF4E, eIF4G et PAB1 crosslinkés aux extrémités 5' et 3' de plusieurs transcrits endogènes associés aux polysomes ont été co-purifiés par affinité chez la levure S. cerevisiae, démontrant ainsi la réalité de cette chaîne d'interaction in vivo sur des transcrits pouvant être activement traduits (Archer et al., 2015). Également, la mesure de la traduction in situ d'ARNm rapporteurs luciférase dans un système de traduction mammifère montre que la proximité des extrémités 5' et 3' d'un ARNm facilite le démarrage d'un nouveau cycle de traduction sur la même molécule d'ARNm à partir d'un ribosome venant de terminer la traduction (Alekhina et al., 2020). Notons toutefois que la visualisation en smFISH (single molecule Fluorescent In Situ Hybridation) d'ARNm en cours de traduction ne montre pas de co-localisation des extrémités 5' et 3', suggérant que la conformation closed-loop est une étape transitoire de l'étape d'initiation (Adivarahan et al., 2018).



### Figure 6 Organisation schématique du complexe eIF4F

Le complexe elF4F est composé des facteurs d'initiation de la traduction elF4G, elF4A, elF4B et elF4E. elF4E interagit directement avec la coiffe m<sup>7</sup>GTP de l'ARNm ainsi qu'avec elF4G. elF4G se lie directement à elF4E, à l'hélicase elF4A ainsi qu'à PABP.

### 1.1.3 Recrutement du 43S sur l'ARNm

Le complexe 43S est recruté sur l'ARNm *via* le complexe eIF4F. D'après la structure du complexe 48S humain résolue par cryo-EM, les contacts entre eIF4F et le 43S reposent sur l'interaction directe du facteur eIF4G avec les sous-unités eIF3c, eIF3d et eIF3e du complexe 43S à côté du canal de sortie de l'ARNm ainsi que sur l'interaction directe de eIF4B avec la protéine ribosomale RPS3 et l'ARNr 18S à l'entrée du canal ARN (Eliseev et al., 2018).

La manière dont s'insère l'ARNm dans le canal ARN du ribosome reste imprécise. Des expériences ayant reconstitué un système d'initiation de traduction mammifère appuient le modèle selon lequel l'association eIF4E–eIF4G–eIF3–40S positionne eIF4E sur le bord antérieur du ribosome et où l'ARNm s'insérerait alors dans le canal ARNm de sorte à pouvoir être scanné à partir du premier nucléotide (Kumar et al., 2016). Un mécanisme alternatif envisage le déplacement de eIF4F du canal d'entrée vers le canal de sortie de l'ARNm. Au cours de ce déplacement eIF4F resterait lié à la coiffe et l'ARNm serait ainsi entraîné dans le canal ARN (Pelletier and Sonenberg, 2019), (Figure7). Une étude récente basée sur le RCPseq (Ribosome Complex Profiling sequencing)<sup>1</sup> a permis d'évaluer la dynamique de recrutement des ribosomes à l'ARNm et suggère que l'attachement de l'ARNm au ribosome s'effectue

<sup>&</sup>lt;sup>1</sup> Le RCPseq consiste à crosslinker *in vivo* sur l'ARNm le 80S et les RNP ne contenant que la petite sous-unité ribosomale. Les ARN et particules ribosomales crosslinkés sont séparés sur gradient de sucrose et les ARN extraits des différentes fractions sont séquencés à haut débit. Cette technique permet de mesurer la vitesse et le mode de recrutement du 40S au niveau de la coiffe, la processivité du 40S lors du scanning du 5'UTR et la vitesse d'initiation de la traduction.

plutôt selon le premier modèle décrit ci-dessus, par l'enfilement de l'ARNm à travers le 40S (Giess et al., 2020).



Figure 7 Deux modèles d'association du complexe 43S sur l'ARNm médié par le complexe eIF4F

Modèle A : eIF4E est localisé à côté du site E de la sous-unité 40S. Le 40S s'attache légèrement en aval de l'extrémité 5' de l'ARNm et l'ARNm s'insère alors directement dans le canal ARNm. Modèle B : eIF4E est localisé à côté du site A du 40S et l'ARNm est « enfilé » dans le canal ARNm et scanné à partir du premier nucléotide. (Modifié d'après Kumar et al., 2016).

### 1.1.4 Du balayage de la 5'UTR à la formation du 80S

Après avoir lié l'ARNm, le 43S PIC scanne la 5'UTR dans le sens 5'->3' jusqu'à ce que l'anticodon de l'ARNt-Met reconnaisse un codon AUG initiateur. Généralement, le premier AUG rencontré lors du balayage est utilisé comme codon initiateur sous réserve qu'il se situe dans un contexte de séquence favorable. Chez les mammifères la séquence GCCPuCC**AUG**G, appelée séquence consensus de Kozak, favorise la reconnaissance de l'AUG (Kozak, 1986, 1987) Si le contexte de séquence de l'AUG en diffère significativement, le codon AUG n'est pas retenu pour commencer l'élongation (phénomène de « leaky scanning »).

D'après la résolution par cryo-EM du complexe 48S purifié dans des réticulocytes de lapin, plusieurs changements de conformation se produisent au cours du scanning (Figure 8 et Figure 9), notamment une re-localisation de eIF3b à partir de la face exposée au solvant vers la face interne du 40S (Simonetti et al., 2016). La structure du complexe 48S humain montre qu'eIF4A et eIF4G sont physiquement associés dans le 48S et que eIF4B est physiquement associé au 40S (Eliseev et al., 2018). Ceci laisse supposer qu'eIF4A activée par eIF4B déroule les structures secondaires au cours du scanning. De manière intéressante, eIF4E est le seul composant du complexe eIF4F n'ayant pas été retrouvé associé au 48S, ce qui suggère qu'il se dissocie du complexe d'initiation de la traduction lors de l'insertion du transcrit dans le canal ARNm (Kumar et al., 2016). Cette analyse est cohérente avec une étude ultérieure montrant par des approches de co-immunoprécipitation et de pulldown que l'étape de scanning implique un changement de complexe eIF4G1/eIF4E vers un complexe eIF4G/eIF1 (Haimov et al., 2018)



Figure 8 Réarrangements structuraux du complexe 48S au cours du balayage de la 5'UTR

L'association du complexe eIF4F (bleu) au complexe 43S permet d'insérer l'ARNm dans le canal ARN du 40S et forme ainsi le 48S. La re localisation de eIF3b vers la face interne du 40S facilite le balayage de la 5'UTR dans le sens 5'->3'. La reconnaissance de l'AUG provoque un réarrangement du complexe ternaire (TC) suite auquel les eIFs se dissocieront successivement du complexe d'initiation (non représenté). B=bec du 40S ; H=tête du 40S. NB : Dans la structure du complexe 48S à l'origine de ce schéma, les densités n'ont pas été associées avec certitude à eIF3i et eIF3g en raison d'une résolution insuffisante. (Eliseev et al., 2018)

Lorsque le codon AUG est reconnu, un duplex se forme entre l'ARNm et l'ARNt-Met et est stabilisé par elF1A (Lomakin and Steitz, 2013). Les elFs se dissocient ensuite séquentiellement. Le GTP contenu dans elF2 est hydrolysé par sa sous-unité elF2 $\gamma$  ce qui diminue son affinité pour l'ARNt-Met (Algire et al., 2005) et le dissocie du complexe d'initiation, elF1 se dissocie du site P du ribosome (Zhang et al., 2015) et est remplacé par elF5 (Orr et al., 2020) (Llácer et al., 2018). elF3 reste quant à lui attaché au 40S jusqu'à la fin de

l'élongation (Beznosková et al., 2015). Le facteur ABCE1 qui était directement lié au 40S tout au cours de l'initiation pour empêcher une association précoce du 60S (Mancera-Martínez et al., 2017; Simonetti et al., 2020) est remplacé par la GTPase eIF5B ce qui permet aux deux sous-unités ribosomales de s'assembler en un complexe 80S (Fernández et al., 2013). Enfin, la dissociation de eIF5B-GDP et de eIF1A signe la fin de l'étape d'initiation. A ce stade, le 80S est attaché à l'ARNm avec l'ARNt-Met apparié au codon initiateur AUG dans le site P du ribosome : tout est en place pour que la réaction de synthèse peptidique et la phase d'élongation commencent.



### Figure 9 Du balayage de la 5'UTR à la formation du 80S

L'attachement de l'ARNm au 43S (1), déclenche la relocalisation des sous-unités elF3b-i-g vers la face interne du 40S (flèche verte) ce qui déplace ABCE1, change la conformation du complexe ternaire (TC) et facilite le balayage (2). Une fois le codon initiateur reconnu, elF1 se dissocie du 48S et elF3b-i-g sont à nouveau délocalisés (flèche rouge) ce qui dégage le site de liaison de ABCE1(3). elF5 stimule l'hydrolyse du GTP par elF2 et le relargage du Pi (phosphate inorganique) facilite la dissociation de ces facteurs d'initiation du 48S (4). Le moment exact où elF3 quitte le 48S n'est pas connu avec précision mais plusieurs études suggèrent qu'il reste présent pendant l'élongation (Hashem and Frank, 2018). La dissociation de elF2 permet à elF5B de lier à l'extrémité CCA de l'ARNt-Met (5) et de stimuler la jonction des deux sous-unités (6). Le départ de eIF5B et eIF1A signe la fin de l'initiation de la traduction coiffedépendante.

Note : ABCE1 (ATP binding cassette E1) avait été à tort attribué à eIF3i et eIF3g dans des modèles antérieurs, l'erreur a été corrigée dans (Mancera-Martínez et al., 2017) et confirmée par plusieurs études structurales (Kiosze-Becke et al., 2016 ; Heuer et al., 2017). (Modifié d'après Guca and Hashem, 2018)

#### 1.2 Principales régulations de la traduction

La traduction fait partie des voies de biosynthèse cellulaires les plus coûteuses en énergie (Rolfe and Brown, 1997) : chaque réaction d'estérification d'un ARNt avec un a.a nécessite l'hydrolyse des deux liaisons phosphate d'une molécule d'ATP, la formation de chaque liaison peptidique requiert l'hydrolyse de deux molécules de GTP et à cela s'ajoute le coût de production des composants de la machinerie de traduction. Dans ces conditions, il s'avère plus efficace pour la cellule de réguler la traduction en amont de ces dépenses énergétiques c'est-à-dire au niveau de l'étape d'initiation.

Différents principes de régulation de la traduction existent selon qu'ils s'appliquent à un ARNm, à un groupe d'ARNm ou à la majorité du transcriptome (Figure 10). La régulation globale de la traduction repose généralement sur l'activation ou l'inhibition de composants de la machinerie de traduction et fait fréquemment intervenir des modifications post-traductionnelles de facteurs d'initiation de la traduction (Jackson et al., 2010; Proud, 2018). En comparaison, la plupart des régulations ciblées de la traduction impliquent la reconnaissance d'éléments de séquence *cis* présents sur l'ARNm par des facteurs *trans* incluant des RBP (Hershey et al., 2019) et/ou des petits ARN non codant comme les miARN (Duchaine and Fabian, 2019). Ces différentes régulations peuvent se cumuler sur un même transcrit et de leur combinaison résulte le taux de synthèse du transcrit considéré. Dans ce paragraphe les régulations globales de la traduction sont abordées à travers l'exemple des facteurs d'initiation elF4E et elF2. Sont également décrites sans exhaustivité les principales régulations ciblées basées sur des éléments de séquence de l'ARNm ou sur sa localisation intracellulaire. Les régulations médiées par les miARN font l'objet d'une description à part (*cf* partie 1 paragraphe 3).



Figure 10 Principes de régulations de la traduction eucaryote.

La régulation de la traduction peut être ciblée lorsqu'elle concerne un groupe d'ARNm spécifiques ou générale quand elle s'applique à la majorité des transcrits. Dans le cas des régulations ciblées, des éléments cis de séquence de l'ARNm (en noir gras) sont reconnus par des facteurs trans (en rose) qui activent ou répriment la traduction (flèches rouges et vertes). Les régulations globales de la traduction font intervenir des inhibiteurs compétitifs des facteurs d'initiation et/ ou des modifications post-traductionnelles modulant l'activité des facteurs d'initiation de la traduction. Abréviations : CBP : Cap Binding Protein ; TOP : Terminal OligoPyrimidine motif ; ITAFS : Interacting Trans Activating Factors ; (u)ORF : (upstream) Open Reading Frame ; ARE (BP) : AU-Rich Element (Binding Protein) ; MRE : miRNA Responsive Element ; CPE Cytoplasmic Poly(A)denylation Element. NB : Les régulations affectant l'élongation se répercutent sur l'initiation de la traduction car il s'agit de l'étape limitante et les régulations ciblant l'initiation empêchent l'élongation. (Modifié d'après Harvey et al., 2018).

# 1.2.1 Régulation globale de la traduction par inhibition compétitive pour la formation du complexe d'initiation de la traduction

### • <u>Régulation de la formation du complexe eIF4F par séquestration d'eIF4E</u>

Par son activité de liaison à la coiffe et d'activation d'eIF4A (Feoktistova et al., 2013), eIF4E est un acteur indispensable de la formation du complexe eIF4F. Conséquemment, il représente une cible de régulation globale de la traduction privilégiée (Merrick and Pavitt, 2018). La régulation de l'activité d'eIF4E fait intervenir les protéines inhibitrices 4E-IP (eIF4E-Interacting Protein) (Figure 11). Le groupe des 4E-IP inclut chez les mammifères les protéines 4E-BP 1,2,3, (eIF4E-Binding Protein 1,2,3), différant principalement par leur distribution tissulaire (Joshi et al., 2004; Pause et al., 1994), CYFIP qui inhibe la traduction des cibles de FMRP (Napoli et al., 2008), 4E-T (Dostie et al., 2000a) et Angel 1 (Gosselin et al., 2013). Tous ces inhibiteurs se lient à eIF4E *via* la même séquence consensus YX<sub>4</sub>LΦ qu'eIF4G (Mader et al., 1995; Rhoads, 2009). A la différence de eIF4G, les 4E-IP possèdent un motif de liaison supplémentaire à eIF4E (Gosselin et al., 2013 ; Grüner et al., 2016; Peter et al., 2015), qu'elles utilisent pour se lier aux complexes eIF4E-eIF4G, déplacer et prendre la place d' eIF4G sur la surface dorsale d'eIF4E et ainsi empêcher la formation du complexe eIF4F (Igreja et al., 2014)

L'affinité des 4E-BP pour eIF4E est contrôlée par des modifications posttraductionnelles de phosphorylation s'inscrivant dans la voie de de signalisation FRAP/mTOR. (FKBP12 Rapamycin Associated Protein / mammalian Target Of Rapamycin) (Gingras et al., 1999). 4E-BP 1,2,3 portent quatre sites de phosphorylation : Ser 65, Thr 37, Thr 46 et Thr 70. Lorsque ces sites ne sont pas phosphorylés, les 4E-BP entrent en compétition avec eIF4G pour la liaison à eIF4E, ce qui inhibe la traduction. En conditions d'hyperphosphorylation, les 4E-BP adoptent une conformation ne leur permettant plus de se lier à eIF4E lequel s'associe alors à eIF4G (Bah et al., 2015). Cette régulation s'inscrit dans une boucle de rétrocontrôle plus large permettant d'adapter la traduction au niveau d'expression d'eIF4E. 4E-BP1 est hypophosphorylée lorsque le niveau d'expression de eIF4E est faible. Ceci induit la liaison de 4E-BP 1 à eIF4E ainsi que l'ubiquitination et la dégradation de 4E-BP 1 (Yanagiya et al., 2012)



Figure 11 Modèle de régulation de la formation du complexe eIF4F par les 4E-IP

elF4G se lie à une région dorsale de elF4E via le motif conservé  $YX_4L\Phi$  (avec Y : Tyrosine, X : a.a, L : Leucine, et  $\Phi$  : a.a à résidu hydrophobe) également présent sur les 4E-IP. elF4E possède de plus un site de liaison latéral auquel s'attachent les 4E-IP quand elF4G occupe le site de liaison dorsal. L'attachement des 4E-IP au site latéral de elF4E accroît leur affinité pour elF4E d'un facteur 3 ce qui déplace elF4G du site de liaison dorsal au profit des 4E-IP. La traduction est alors inhibée.

La stabilité et l'association de 4E-IP à eIF4E sont sous contrôle du statut de phosphorylation des 4E-IP. Les 4E-IP doivent être déphosphorylées pour s'associer à eIF4E. Sous forme hypophosphorylée ils sont ubiquitinés et dégradés par le protéasome. Leur hyperphosphorylation permet de les stabiliser lorsqu'ils ne sont pas liés à eIF4E. (Modifié d'après Peter et al., 2015; Yanagiya et al., 2012)
### • <u>Régulation de la disponibilité du complexe ternaire par phosphorylation d'eIF2</u>.

Une autre régulation globale bien connue de la traduction s'applique au facteur eIF2. (Figure 12). Hors condition de stress, eIF2B permet à eIF2 d'échanger une molécule de GDP pour une molécule de GTP, forme sous laquelle eIF2 assemble le complexe ternaire et initie la traduction. En conditions de stress, par exemple suite à une infection virale, un choc thermique ou un déficit nutritionnel (Clemens, 2001), l'une des quatre kinases HRI (Haem-Regulated-Inhibitor), GCN2 (General Control Nondepressible 2), PKR (Protéine Kinase activée par l'ARN double brin) ou PERK (PKR-like Endoplasmic Reticulum Kinase) est activée, ce qui phosphoryle la sérine 51 de la sous-unité  $\alpha$  du facteur eIF2-GDP. Cette phosphorylation accroît l'affinité de eIF2B pour la forme eIF2-GDP et empêche sa dissociation. Ceci inhibe la formation du complexe ternaire et réduit l'efficacité générale de la traduction (Proud, 2018). Cette régulation s'inscrit dans le cadre de la voie de réponse intégrée au stress (Pakos-Zebrucka et al., 2016). Notons qu'il existe un couplage entre plusieurs modifications post-traductionnelles de eIF2 dont sa méthylation par PRMT7 sur la sérine 51 de la sous-unité  $\alpha$  : l'absence de PRMT7 diminue la phosphorylation de eIF2 $\alpha$  tandis que sa surexpression l'accroît (Haghandish et al., 2019)



Figure 12 Régulation de la formation du complexe ternaire par phosphorylation d'eIF2

En conditions de stress, plusieurs kinases peuvent phosphoryler la sérine 51 de la sous-unité  $\alpha$  de elF2-GDP.La phosphorylation de elF2 séquestre elF2B et l'empêche d'échanger le GDP en GTP sur elF2. Ceci inhibe la formation du complexe ternaire, indispensable à l'initiation de la traduction. (Modifié d'après Jennings et al., 2017).

- 1.2.2 Régulations ciblées via la reconnaissance d'éléments de séquence ou de structure dans les UTR
- <u>Régulation de la traduction de l'ORF principale par la traduction d'une uORF</u>

La reconnaissance d'un codon initiateur AUG situé dans un contexte de séquence favorable initie la traduction de l'ORF principale. Il arrive toutefois que ce processus soit perturbé lorsque le 48S rencontre au cours du scanning un codon AUG (uAUG) ou un codon initiateur alternatif (par exemple UUG, CUG) situé en amont du codon initiateur de l'ORF principale. Si cet uAUG est suivi d'un codon stop, le cadre de lecture entre ces deux éléments constitue une uORF (upstream Open Reading Frame) pouvant être traduite. Ces éléments de séquence sont fréquents à l'échelle du transcriptome : selon des analyses *in silico*, 50% des ARNm mammifères contiendraient au moins une uORF (Calvo et al., 2009). Une grande partie de ces uORF potentielles ont effectivement été retrouvées associées *in vivo* à des ribosomes suite à des expériences de ribosome profiling<sup>2</sup> (Chew et al., 2016; Ingolia et al., 2009; Johnstone et al., 2016). De manière intéressante, la position des uTIS (upstream *Translation Initiation Site*) se trouve évolutivement conservée chez les mammifères : sur 12945 gènes orthologues communs à la souris et à l'homme 85% des uTIS sont conservées (Daubner et al., 2013; Mackereth and Sattler, 2012), ce qui suggère une réelle importance fonctionnelle de la traduction de ces uORF.

Peu de peptides codés par les uORF ont été détectés en spectrométrie de masse (Slavoff et al., 2013), peut-être en raison de leur dégradation rapide et/ou de leur petite taille les rendant techniquement difficiles à détecter (Orr et al., 2020). Ceci suggère néanmoins que l'effet régulateur observé sur la traduction de l'ORF principale est dû à la traduction des uORF plutôt qu'au produit de leur traduction.

La comparaison des niveaux d'ARNm et de protéine issus de plusieurs transcriptomes et protéomes de mammifères montre que les ARNm contenant au moins une uORF ont une expression protéique de l'ORF principale plus faible que les transcrits sans uORF. (Calvo et al.,2009 ; Ye et al., 2015). La comparaison dans plusieurs jeux de données de ribosome profiling des efficacités de traduction du CDS d'ARNm contenant des uORF par rapport aux ARNm sans uORF montre que la présence d'uORF est associée à une répression de la traduction (Johnstone et al., 2016). Cet effet répresseur est confirmé à l'échelle du transcrit individuel puisque l'insertion d'uORF sur des ARNm rapporteurs réduit leur expression protéique de 30 à 80 % en comparaison à un transcrit rapporteur sans uORF, tout en affectant modestement (5%) les niveaux d'ARNm (Calvo et al., 2009; Johnstone et al., 2016).

<sup>&</sup>lt;sup>2</sup> Le ribosome profiling est une technique de mesure à large échelle et quantitative de la traduction consistant à cartographier les sites d'interaction des ribosomes sur les ARNm en cours de traduction. En pratique, la progression de la traduction est bloquée par l'ajout d'inhibiteurs de la traduction comme la cycloheximide. Les lysats cytoplasmiques sont séparés sur gradient de sucrose. Une partie des ARNm extraits des fractions séparées sur gradient est séquencée à haut débit tandis qu'une autre partie est incubée avec des ribonucléases (souvent la RNAse I) dégradant toutes les régions d'ARN accessibles à l'exception de celles associées à des RBP ou aux ribosomes. Les fragments obtenus après digestion à la RNAse I sont ensuite séquencés. La combinaison des résultats des deux séquençages parallèles permet de déterminer la position exacte de chaque ribosome associé à un ARNm et pour un ARNm donné, la quantité de ribosomes effectivement en train de le traduire.

Les uORFs régulent la traduction de l'ORF principale selon plusieurs mécanismes. (Figure 13). Dans un premier cas de figure, initialement démontré sur l'ARN GCN4 chez la levure (Hinnebush et al., 2005), la traduction de l'uORF entraine le recyclage rapide des facteurs d'initiation et des ribosomes à l'extrémité 5' dès que le codon STOP de l'uORF est atteint, ce qui empêche la machinerie de traduction d'accéder à l'ORF principale.

Alternativement, la traduction de l'uORF peut ralentir les ribosomes ; ceux-ci font alors obstacle aux 48S ne s'étant pas arrêtés sur l'uAUG et empêchent la traduction de l'ORF. Dans cette seconde configuration, l'accumulation des ribosomes au niveau de l'uORF peut induire le recrutement d'UPF1 et induire la dégradation de l'ARNm par la voie du NMD (Nonsense Mediated Decay) (Hinnebusch et al., 2016).

Plusieurs paramètres additionnels affectent l'activité régulatrice des uORF parmi lesquels la longueur de l'uORF, sa position sur la 5'UTR, sa composition en codons, la composition de la séquence autour du codon stop de l'uORF (Wethmar, 2014).



Figure 13 Contrôle de la traduction de l'ORF principale par les uORF

La traduction de l'uORF inhibe la traduction de l'ORF principale selon deux mécanismes. Une première possibilité est que les ribosomes soient recyclés et réadressés à l'extrémité 5' de l'ARNm

immédiatement après la terminaison de la traduction de l'uORF, ils ne peuvent donc pas accéder à l'ORF principale. Alternativement, la traduction de l'uORF peut gêner le scanning par les 48S PIC ne s'étant pas arrêtés à l'uAUG. (Modifié d'après Hinnebusch et al., 2016).

### • La reconnaissance par des RBP d'éléments de séquence spécifiques dans les UTR

Un moyen de régulation de la traduction de l'ARNm de manière ciblée fait intervenir le recrutement de facteurs *trans* par des éléments de séquence *cis* localisés dans les UTR. Les facteurs *trans* concernés sont le plus souvent des RBP (RNA Binding Proteins) se liant à l'ARNm *via* des RBD (RNA Binding Domains). Le plus souvent les RBD sont des domaines globulaires permettant de reconnaître des séquences ou structures d'ARN spécifiques et de réguler leur expression de manière ciblée (Hentze et al., 2018). Actuellement plus de 1000 RBP ont été identifiées *in vivo* dans les cellules humaines par des approches de protéomique (Baltz et al., 2012; Beckmann et al., 2015; Castello et al., 2016; He et al., 2016) . Une quarantaine de RBD sont actuellement annotés (Müller-McNicoll and Neugebauer, 2013). Les plus fréquemment rencontrés chez les mammifères incluent les RRM (RNA Recognition Motif), les domaines KH (K-Homology) ; les domaines ZnF (Zinc Finger binding domain) (Corley et al., 2020). Il a été récemment observé que les IDR (Intrinsically Disordered Region) de nombreuses RBP peuvent également servir de domaines de liaison à l'ARN. (Hentze et al., 2018; Järvelin et al., 2016).

Individuellement, les RBP se lient à de courts segments d'ARN (~4-6nt) avec une faible affinité et de manière séquence et/ou structure-spécifique (Änkö et al., 2012; Ascano et al., 2012). *In vivo*, les RBP modulent leur spécificité de liaison à l'ARN ainsi que leur affinité de liaison afin de réguler leurs cibles de manière spécifique. Ceci implique la multimérisation de RBD. Il peut s'agir de plusieurs copies du même RBD (exemple 4 RRM dans les PTB, Sawicka et al., 2008) ou de la combinaison de plusieurs types de RBD comme c'est le cas des protéines CPEB utilisant deux RRM et un ZnF pour lier leurs cibles (Afroz et al., 2015). (Figure 14)



### Figure 14 Comparaison de RBP régulatrices de la traduction et de leurs RBD

Les RBD des RBP suivantes est représentée : PTB (Polypyrimidine Tract-Binding protein 1) ; CPEB1 (Cytoplasmic Polyadenylation Element-Binding Protein 1) ; LARP1 (LA-Related Protein 1) ; PKR (double-stranded RNA-activated protein kinase) ; FMR1 (Fragile X Mental Retardation Protein 1).

Domaines de liaison à l'ARN : RRM (RNA Recognition Motif) ; MLLE (Met-Leu-Leu-Glu motif) ; NES (Nuclear Export Sequence); NLS (Nuclear localisation Sequence); ZZ (ZZ-type zinc finger domain); LAM (La motif) ; RRM-L5 (RRM-like motif 5) ; DSRM (Double-Stranded RNA-binding Motif) ; STK (Ser-Thr Kinase domain); KH (K Homology RNA-binding domain). (Modifié d'après Harvey et al., 2018)

La traduction de plusieurs groupes d'ARNm incluant les ARNm à motif TOP, les IRES, les CPEs est régulée par ce processus.

Les ARNm portant un motif TOP (Terminal OligoPyrimidine) sont caractérisés par un nucléotide C invariant suivi d'une série pyrimidine de 4-15 nt et d'une région riche en GC directement en aval du motif TOP (Meyuhas and Kahan, 2015). Les ARNm à motif TOP incluent à ce jour 93 transcrits codant majoritairement des protéines impliquées dans la traduction : 79/80 des protéines ribosomales, les cinq facteurs d'élongation de la traduction (EEF1A1, EEF1B2, EEF1D, EEF1G, and EEF2) et des facteurs d'initiation de la traduction (eIF3e, eIF3f, eIF4B et eIF3h). L'extrémité 5' des ARNm TOP est reconnue par le domaine DM15 de la protéine LARP-1 (Lahr et al., 2017) (Figure 14) qui réprime leur traduction par compétition avec eIF4F (Fonseca et al., 2015). L'activité régulatrice de LARP1 sur la traduction des ARNm TOP est sous contrôle de la voie de signalisation mTOR (Philippe et al., 2018) permettant d'adapter la traduction des TOP mRNA aux conditions de croissance (Nandagopal and Roux, 2015).

Un autre motif ARN fréquent est le motif CPE (Cytoplasmic Poly(A)dénylation Element) constitué d'une séquence consensus 5' UUUUAUU 3'présente dans la 3'UTR de 20 à 30% des transcrits chez les vertébrés (Piqué et al., 2008). Les CPE sont reconnus par des protéines CPEB (Cytoplasmic Poly(A)dénylation Elements Binding Protein) qui contrôlent la traduction de leur ARNm cibles par répression ou activation de la poly(A)dénylation (Ivshina et al., 2014). Chez les vertébrés, il existe quatre protéines CPEB (CPEB1-4) divisées en deux sous-familles : CPEB1 et CPEB2-4. Les quatre CPEB ont en commun une région C terminale contenant deux RRM et un ZnF (Afroz et al., 2015) leur permettant de reconnaître les même transcrits contenant des CPE mais avec des affinités différentes (Harvey et al., 2018a). Leur extrémités N-terminales diffèrent par la présence de domaines régulateurs cibles de modifications posttraductionnelles lesquelles combinées à l'action d'autres éléments cis déterminent les différentes activités des RBP régulatrices qui s'y lient (Fernández-Miranda and Méndez, 2012). L'activité biochimique des CPEB a initialement été caractérisée sur la protéine CPEB1 dans des ovocytes de Xénope (Figure 15). CPEB1 y remplit deux fonctions : elle réprime la traduction des ARNm maternels portant des CPE dans leur 3'UTR puis active leur traduction dans les œufs matures en induisant la poly(A)dénylation. La répression de la traduction par CPEB1 requiert un arrangement particulier de CPEs sur le transcrit cible avec au moins 2 CPEs espacés par moins de 50 nucléotides (Piqué et al., 2008). Une fois CPEB1 recrutée sur ces CPE, elle inhibe l'interaction {coiffe- eIF4E-eIF4G -PABP-queue poly A} à deux niveaux. D'une part en empêchant l'association de PABP avec la queue poly(A) via le recrutement par CPEB1 de la déadénylase PARN (Kim and Richter, 2006) ; et d'autre part en empêchant l'interaction entre elF4E et elF4G via le recrutement par CPEB1 soit de la protéine 4E-Tqui interagit avec elF4E et bloque le recrutement de eIF4G soit par le recrutement de 4E-T qui lie eIF4E1b (isoforme d'eIF4E spécifique des ovocytes de Xénope ayant une plus faible affinité pour le m<sup>7</sup>GTP et pour eIF4G) et forme un complexe répresseur de la traduction avec DDX6, PAT1 et LSM14B (Andrei, 2005; Minshall et al., 2007a). Chez l'homme, PAT1B et LSM14A, LSM14B, 4E-T sont bien détectées comme partenaires de DDX6 mais pas CPEB1, possiblement en raison de sa faible expression dans ces cellules (Ayache et al., 2015).

L'activation de la traduction dépendant de CPEB1 est déclenchée par une stimulation hormonale à la progestérone induisant la phosphorylation de CPEB1 par la kinase Aurora B, un réarrangement du complexe CPEB permettant la poly(A)dénylation du transcrit par la poly(A)dénylase GLD2 et l'activation conséquente de la traduction (Kim and Richter, 2006; Mendez and Richter, 2001). Les autres protéines CPEB régulent également la traduction de transcrits portant les motifs CPE mais font intervenir des mécanismes différents .Par exemple CPEB2 agit dans les cellules somatiques sur l'élongation de la traduction qu'il réprime *via* son interaction avec le facteur d'élongation eEF2 tandis que CPEB3 régule la traduction de ses cibles dans les neurones *via* un stockage dans les PB dépendant des conditions d'activité synaptiques et régulée par sumoylation (Ford et al., 2019; Huang et al., 2006; Mendez and Richter, 2001)



Figure 15 Régulation de la traduction par le complexe CPEB (modèle Xénope)

Dans le noyau des ovocytes de Xénope, les protéines CPEB1 et CSPF (Cleavage and Polyadenylation Specificity Factor) reconnaissent une séquence spécifique dans la 3'UTR de l'ARNm. Le mRNP ainsi formé est exporté dans le cytoplasme où il s'associe avec le facteur d'assemblage, Symplekin, les polymérases Gld2 et PAPB, la déadénylase PARN et 4E-T. Dans les ovocytes de Xénope, PARN étant plus active que Gld2, les ARNm peuvent être déadénylés, ce qui favorise la répression de la traduction. De plus, 4E-T lie simultanément CPEB et eIF4E ce qui empêche la formation du complexe d'initiation de la traduction. Lorsque l'ovocyte est mature, la phosphorylation de CPEB1 par la kinase Aurora B entraîne l'expulsion de PARN du complexe CPEB, ce qui active Gld2 et la traduction. (Modifié d'après Ivshina et al., 2014)

### <u>Régulation de la traduction par des éléments de structure du 5'UTR</u>

La séquence 5'UTR de certains ARNm contient des structures secondaires pouvant intervenir dans le contrôle de la traduction. Nous illustrons ce concept à travers l'exemple des IRES. D'autres structures secondaires telles les G-quadruplexes ou des structures tertiaires telles les pseudoknots sont également impliquées dans la régulation de la traduction (revues dans Leppek et al., 2018).

Entre 10 et 15 % des ARNm mammifères contiennent dans leur 5'UTR une structure localisée juste en amont du codon d'initiation appelée IRES (Internal Ribosome Entry Site) (Weingarten-Gabbay et al., 2016). Cette structure leur permet de recruter directement le complexe d'initiation sur l'ARNm. La traduction par les IRES intervient également dans des conditions où la traduction coiffe-dépendante est compromise, par exemple dans les situations de stress du réticulum endoplasmique, d'hypoxie ou lors de la différenciation cellulaire. De manière intéressante, un grand nombre des ARNm contenant des IRES codent des protéines impliquées dans la protection contre différents stress ou dans l'induction de l'apoptose. (Komar and Hatzoglou, 2011).

Les IRES cellulaires se répartissent en deux classes selon leur mécanisme de recrutement du 40S (Figure 16) : les IRES de type I interagissent avec le 40S *via* des ITAF (IRES Trans-Acting Factors) qui se lient à des éléments *cis* par exemple des RBD ou des modifications m6 méthyl-adénosine (Meyer et al., 2015; Yang and Wang, 2019). Les IRES de type II contiennent un petit élément *cis* s'associant directement à l'ARNr 18S pour recruter le ribosome (Dresios et al., 2006).

La plupart des ITAF ont pour point commun d'appartenir à la famille des HnRNP (Heterogeneous nuclear RiboNucleoProteins) comme par exemple HnRNP A1, C1/C2, I, E1/E2, K. Ces protéines ont la propriété de transiter entre le noyau et le cytoplasme, ce qui suggère une relation croisée entre la traduction et la transcription ou la maturation de l'ARN. Le mécanisme exact par lequel ces ITAF facilitent la traduction IRES-dépendante n'est pas clairement établi et plusieurs hypothèses ont été émises. Les ITAF pourraient agir comme chaperonnes de l'ARNm (Yang and Wang, 2019) et remodeler les structures autour de l'IRES ou alternativement, servir d'adapteurs moléculaires avec le ribosome et/ou les autres eIFs (King et al., 2010; Stoneley and Willis, 2004).

44



Figure 16 Traduction IRES-dépendante des ARNm cellulaires

Dans les IRES cellulaires de type I, l'élément cis est reconnu par des ITAF qui interagissent directement avec le 40S ou recrutent le 40S indirectement via des facteurs d'initiation (IF). Les IRES de type II contiennent quant à eux un élément cis se liant directement à l'ARNr18S du 40S. (Modifié d'après Yang and Wang, 2019)

# 1.2.3 Influences de la composition nucléotidique de l'ARNm sur la traduction

Le code génétique comporte 61 codons codant 20 acides aminés. Ceci implique qu'un même acide aminé puisse être codé par plusieurs codons synonymes. Lorsqu'un acide aminé est codé par n codons synonymes il est dit n fois dégénéré (n allant de 2 à 6).

Chez plusieurs espèces comme la levure *S. cerevisiae*, la bactérie *E. coli*, et le poisson zèbre *D. rerio*, des approches par ribosome profiling ont montré que ces codons synonymes ne sont pas uniformément décodés par le ribosome, certains codons se trouvant plus rapidement décodés que d'autres (Ingolia, 2014). Les codons synonymes les plus efficacement décodés sont définis comme « optimaux ». Plusieurs paramètres rendent compte du degré d'optimalité des codons comme par exemple le tAI (ARNt Adaptative Index) défini chez la levure comme l'efficacité avec laquelle l'ARNt correspondant à un codon donné est utilisé par

le ribosome (Zhou et al., 2009). Sur la base de cet indicateur, les codons optimaux ont été définis comme ceux ayant un tAI > 0,47 (Pechmann and Frydman, 2013). Des expériences de ribosome run-off<sup>3</sup> chez la levure montrent que des ARNm rapporteurs enrichis en codons optimaux sont relocalisés dans les fractions sub-polysomales d'un gradient de sucrose suite au run-off alors que les ARNm avec peu de codons optimaux restent sédimentés dans les fractions polysomales (Presnyak et al., 2015). Ces résultats suggèrent que la composition en codons du CDS influence la cinétique locale d'élongation de la traduction. Ceci est cohérent avec les résultats d'expériences de traduction *in vitro* dans lesquelles des vitesses d'élongation plus importantes sont mesurées sur des ARNm enrichis en codons optimaux (Yu et al., 2015). Plusieurs explications rendraient compte du décodage non uniforme des codons synonymes. Elles incluent l'influence des niveaux d'offres et de demandes des ARNt sur le taux d'occupation du ribosome (Hanson and Coller, 2018), les différences de stabilité d'appariement de la wobble base (Stadler and Fire, 2011) et l'influence de la composition de séquence et de la structure de l'ARNm autour du codon initiateur (Pop et al., 2014).

A ceci s'ajoute le constat que les codons synonymes ont un usage biaisé c'est-à-dire qu'ils ne sont pas uniformément représentés dans le transcriptome. Pour expliquer la corrélation observée entre le biais d'usage de codons et le niveau d'expression protéique, Chu et collaborateurs ont calculé la corrélation entre les niveaux d'expression protéique et plusieurs paramètres influencés par le biais d'usage de codons comme la vitesse d'élongation moyenne sur l'ORF, le contenu en GC, le niveau de structure de l'ARNm et le niveau d'expression de l'ARN. Parmi ces paramètres, la vitesse moyenne d'élongation est le plus fortement corrélé au niveau d'expression protéique (Chu et al., 2014). Le modèle établi chez la levure propose que les ribosomes s'accumulent au niveau des séquences enrichies en codons non optimaux et que ce ralentissement se répercute sur l'étape d'initiation de la traduction en empêchant les ribosomes d'y être recyclés ce qui diminue le rendement en protéine du transcrit considéré (Figure 17)

<sup>&</sup>lt;sup>3</sup> Le ribosome run-off est une technique à large échelle et quantitative dérivée du ribosome profiling et utilisée pour étudier l'élongation de la traduction *in vivo*. Elle est basée sur l'emploi d'inhibiteurs de la traduction spécifiques tels la harringtonine ou la lactidomycine qui bloquent les ribosomes au niveau du codon initiateur. L'élongation est ensuite bloquée à différents temps après l'ajout des inhibiteurs de l'initiation. Ceci permet de mesurer la distance parcourue par les ribosomes depuis le site d'initiation et ainsi de déterminer la vitesse d'élongation et les sites de pause du ribosome.

Dans le transcriptome humain, nous avons observé une corrélation forte (rs= 0,46) entre le nombre de codons peu fréquents (prenant en compte la fréquence d'usage de chaque codon et la longueur des CDS) et le rendement protéique (Courel et al., 2019). Nous reviendrons sur ce point dans la partie résultats.



Figure 17 Influence de la composition en codons du CDS sur la traduction

Les CDS contenant des codons non optimaux ont une phase d'élongation plus lente que les CDS contenant des codons optimaux. Cette différence d'élongation affecte le taux de synthèse du transcrit lorsqu'elle se répercute sur l'étape d'initiation en retardant la libération du 40S. Plusieurs paramètres tels que le niveau d'expression des ARNt, la stabilité d'appariement de la wobble base et la composition de la séquence autour du codon initiateur influencent l'efficacité avec laquelle les ribosomes décodent les codons. (Modifié d'après Wu et al., 2019).

### 1.2.4 La traduction localisée

Certains ARNm sont traduits localement à des endroits précis de la cellule. Souvent cette traduction spatialement délimitée repose sur la localisation de l'ARNm dès lors qu'il est plus efficace de transporter des ARNm puis de les traduire *in situ* plutôt que de transporter une à une des protéines sur leur lieu d'action (Hilliker, 2014). La traduction localisée entre en jeu dans de nombreux processus biologiques comme par exemple la polarisation embryonnaire, ou la plasticité synaptique (Buxbaum et al., 2015). Dans cette introduction nous nous limitons

aux traductions localisées aux membranes en nous basant sur l'exemple du Réticulum Endoplasmique Rugueux (RER).

La traduction localisée à la membrane du RER, concerne principalement les ARNm codant des protéines membranaires ou sécrétées transitant par le réseau endomembranaire et a été visualisée très tôt en microscopie électronique (Palade, 1975). Le processus commence dans le cytosol où se déroulent les phases d'initiation et le début de l'élongation. Lorsqu'une séquence-signal ou un domaine transmembranaire émerge à l'extrémité du peptide naissant, celui-ci est reconnu par la protéine SRP (Signal Recognition Particle) qui adresse co-traductionnellement l'ensemble {ribosome/ARNm/peptide naissant} à la membrane du réticulum endoplasmique (Noriega et al., 2014) en se fixant au récepteur du SRP (Figure 18). Au fur et à mesure que la traduction se poursuit sur la membrane de l'ER, le peptide naissant est transloqué dans le lumen du RER *via* le canal transmembranaire Sec61. Une fois dans le lumen différentes chaperonnes comme BiP assistent le repliement du peptide.

La traduction localisée au RER couplée avec le transport dans le lumen sert également de traduction auxiliaire dans des conditions de stress (infection virale, hypoxie...) où la traduction cytosolique est inhibée (Lerner and Nicchitta, 2006; Staudacher et al., 2015).



### Figure 18 Modèle de traduction localisée à la membrane du réticulum endoplasmique

La séquence signal d'adressage à l'ER présente sur le peptide naissant est reconnue par la protéine SRP (1). La protéine SRP se lie à la sous-unité  $\alpha$  du récepteur SRP (2) ce qui amène le ribosome en cours de traduction au contact du canal transmembranaire Sec61 (3). Le peptide naissant est inséré co-traductionnellement dans le lumen où des chaperonnes telles BiP contribuent à son repliement (4). (Modifié d'après Zimmermann et al., 2011)

### 2. <u>Stabilité des ARNm dans le cytoplasme</u>

### 2.1 Mécanismes généraux de dégradation de l'ARNm

Dans les cellules mammifères, les demi-vies des ARNm s'étalent sur une gamme allant de la minute à la journée (Ingolia et al., 2011; Schwanhäusser et al., 2011; Tani et al., 2012), ce qui résulte de différents processus de dégradation des ARNm dans le cytoplasme. Dans cette partie nous présentons succinctement les mécanismes de la déadénylation et du decapping, étapes préalables à l'exécution des voies de dégradation générales de l'ARNm par XRN1 ou par l'exosome (Figure 19). Après avoir résumé ces voies de dégradations, nous abordons deux processus de régulation de la stabilité des transcrits : l'usage différentiel de codons et les régulations en *trans* à travers l'exemple des ARE-BP.



Figure 19 Principales voies cytoplasmiques de dégradation de l'ARNm

La dégradation de l'ARNm commence par la disruption de la structure en boucle fermée de l'ARNm et la déprotection des extrémités 5' et 3' par decapping, déadénylation et uridylation. Après quoi la dégradation a lieu soit à partir de l'extrémité 5' lorsqu'elle est médiée par XRN1 soit à partir de l'extrémité 3' lorsqu'elle fait intervenir l'exosome. Quand la dégradation intervient dans le cadre d'une voie de contrôle de la qualité elle peut être initiée par clivage endonucléolytique. Ceci conduit à l'exposition de fragment 3' et 5' non protégés qui sont alors dégradés par les exonucléases précédemment citées. (Modifié d'après Łabno et al., 2016)

### 2.1.1 Déadénylation

La déadénylation se déroule à l'extrémité 3' de l'ARNm et consiste en un raccourcissement de la queue poly A (Muhlrad and Parker, 1992). Chez les eucaryotes, deux complexes enzymatiques exécutent la déadénylation cytoplasmique : le complexe CCR4-NOT incluant les déadénylases CCR4 et POP2 (aussi appelée CAF1) et le complexe PAN comprenant les enzymes PAN2 et PAN3 (Poly(A) Nucléase 2 et 3). A ces deux complexes s'ajoute l'activité individuelle d'autres déadénylases telles PARN, Nocturnin ou Angel1/2 (revues dans Godwin et al., 2013).

### Le complexe CCR4-NOT :

Le complexe CCR4-NOT est constitué des deux déadénylases CCR4 et POP2 interagissant l'une avec l'autre ainsi qu'avec les protéines non-enzymatiques CNOT1, CNOT2, CNOT3, CNOT4, CNOT9 et CNOT10. Dans les cellules humaines, CCR4 et POP2 possèdent chacune deux orthologues : CCR4A/CNOT6 et CCR4B/CNOT6L pour CCR4 et CAF1A/CNOT7 et POP2/CNOT8 pour POP2 (Aslam et al., 2009). Les orthologues CNOT7 et CNOT8 diffèrent par la composition des sous-complexes qu'ils forment avec les protéines CNOT (Lau et al., 2009). Concernant l'architecture du complexe CCR4-NOT, la protéine CNOT1 sert d'échafaudage sur lequel les sous-unités additionnelles se lient selon un arrangement dépendant de l'organisme considéré (Wahle and Winkler, 2013). CNOT9 et CNOT2/3 servent de plateforme d'interaction protéine-protéine avec des RBP. Chez l'homme, les 2 sous-unités catalytiques CCR4 et POP2 interviennent de façon complémentaire dans le processus de déadénylation (Figure 19) : POP2 se lie aux segments poly(A) n'étant pas liés à PABP tandis que CCR4 raccourcit les séquences associées à PABP et sur lesquels l'activité de POP2 est bloquée (Yi et al., 2018). CAF1 est également impliquée dans la déadénylation induite par les siARN/miARN (Piao et al., 2010). Les sous-unités CNOT 10 et CNOT 11 interagissent également avec CNOT1 (Lau et al., 2009; Mauxion et al., 2013) sans que leur rôle n'ai été à ce jour précisément caractérisé, ce qui est également le cas de la majorité des sous-unités non enzymatiques de CCR4-NOT. Les sousunités non enzymatiques serviraient de site de liaison aux RBP capables de recruter CCR4-NOT sur l'ARNm et permettraient ainsi de rendre la déadénylation transcrit-spécifique. A titre d'exemple, les ARNm liés au complexe RISC peuvent recruter CCR4-NOT via une interaction physique directe entre CNOT9 et TNRC6 (Mathys et al., 2014). Dans plusieurs autres organismes des RBP spécifiques telles Nanos (Bhandari et al., 2014; *D.melanogaster*), Pumilio (Webster et al., 2019; *S.cerevisiae*), Smaug (Wahle and Winkler, 2013 *S.cerevisiae*), SMG5/7 (Shoemaker and Green, 2012; *S.cerevisiae*) ou TTP (Bulbrook et al., 2018; HeLa cells), peuvent également recruter CCR4-NOT *via* l'une de ses sous-unités non-enzymatiques.



Figure 20 Modèle de déadénylation puis dégradation de l'ARNm dépendant du complexe CCR4-NOT

CCR4 dégrade la partie 3' de la queue poly A non liée à la PABP (1). CNOT dégrade ensuite la partie associée à PABPC par unités de 27nt ce qui dissocie PABP de l'ARNm (2). L'ARNm déadénylé peut être uridylé par des TUTases telles TUT4 ou TUT7 (3). Le départ de PABP engage irréversiblement l'ARNm dans l'une des voies de dégradation 5'-3' ou 3'-5'. (4). (Modifié d'après Yi et al., 2018)

### • Le complexe PAN

Ce second complexe de déadénylation contient l'enzyme PAN2, responsable de l'activité catalytique ainsi que PAN3, qui régule l'activité de PAN2. Ces deux enzymes catalysent conjointement un raccourcissement partiel de la queue poly(A) d'environ 200 à 110 adénosines chez les mammifères (Uchida et al., 2004; Wahle and Winkler, 2013). Des études de cinétiques de dégradation de l'ARNm codant la β-globine en conditions de surexpression de CCR4 ou PAN2 chez la souris montrent que la déadénylation se réalise séquentiellement : elle est initiée par PAN2 tant que la PABP est présente. Une fois PABP déplacée, PAN2 est inactivée au profit de CCR4 qui achève la déadénylation (Yamashita et al., 2005).

### 2.1.2 Le Decapping

Dans la perspective où le transcrit sera dégradé à partir de son extrémité 5', sa coiffe protectrice est préalablement clivée de manière irréversible, ce qui constitue l'objet de la phase de decapping. Cette étape peut succéder à la déadénylation mais il arrive également qu'elle se produise indépendamment du raccourcissement de la queue poly A. Le decapping est orchestré par le complexe DCP1/DCP2 dans lequel l'activité enzymatique est portée par DCP2 (Wang et al., 2002), tandis que DCP1 joue le rôle d'activateur de DCP2. Des mesures de cinétique de dégradation *in vitro* ont montré que d'autres facteurs prennent part à l'activation de DCP2. Les facteurs d'activation évolutivement conservés de la levure à l'homme incluent : le complexe LSM1-7 /PAT1B (Vindry et al., 2017), la protéine EDC3 (Enhancer of decapping 3) (Fromm et al., 2012; Nissan et al., 2010) et l'hélicase DDX6 (Coller and Parker, 2004). Chez la levure, deux facteurs supplémentaires, Edc1 et Edc2, contribuent à activer Dcp2 (Borja et al., 2011). Chez les métazoaires, le facteur EDC4 -inexistant chez la levure, est nécessaire pour assembler le complexe de decapping et activer DCP2 (Łabno et al., 2016).

Concernant le mécanisme d'activation de DCP2 par ses cofacteurs, les données de cristallographie réalisées chez la levure montrent que l'interaction directe de Dcp1 avec Dcp2 fait passer l'enzyme d'une conformation ouverte catalytiquement inactive à une conformation fermée active (She et al., 2008). Des études structurales plus récentes sur le complexe Dcp1-Dcp2-m<sup>7</sup>GDP indiquent que Dcp1 stabilise le domaine catalytique NRD de Dcp2 et recrute les deux autres cofacteurs de decapping Edc1 et Edc2. Simultanément, la liaison directe d'Edc3 à Dcp2 accroît l'affinité de Dcp2 pour l'ARNm et stimule son activité catalytique (Charenton et al., 2016). L'interaction Dcp1/Edc1 sert quant à elle à positionner Dcp2 dans une conformation catalytiquement active par rapport à la coiffe de l'ARNm (Mugridge et al., 2018). Les domaines d'interaction entre Dcp1 et Dcp2 y sont de faible affinité. L'activation de DCP2 nécessite chez les métazoaires l'intervention d'EDC4 (Figure 21). Celle-ci sert de plateforme d'assemblage pour le complexe de decapping en liant simultanément DCP1, DCP2 et XRN1 et permet à un trimère DCP1 d'activer DCP2 (Chang et al., 2014).



Figure 21 Activation du complexe de decapping humain

DCP1 se lie sous forme de trimère sur le domaine WD40 du cofacteur EDC4. Suite à cette liaison, DCP1 se lie au domaine NRD de DCP2 laquelle adopte alors une conformation fermée, catalytiquement active pour la réaction de decapping. Le recrutement direct de XRN1 sur EDC4 permet aux transcrits dont la coiffe vient d'être clivée par DCP2 d'être dégradés rapidement. (Modifié d'après Chang et al., 2014).

Deux autres cofacteurs de decapping, PAT1B (Pat1 chez la levure) et DDX6 (Dhh1 chez la levure), sont aussi impliqués dans l'activation de DCP2. Pat1 a initialement été décrit comme un activateur de decapping suite à l'observation que des ARNm rapporteurs sont stabilisés sous leur forme coiffée et déadénylée dans des souches *patl1*Δ (Bouveret et al., 2000; Tharun et al., 2000). Sa fonction d'activateur de decapping a également été caractérisée chez l'homme par des expériences de tether assay<sup>4</sup> (Ozgur et al., 2010). De plus, à l'échelle du transcriptome 2221 gènes se trouvent stabilisés après siPAT1B (Vindry et al., 2017) ce qui est cohérent avec un rôle de cette protéine dans la dégradation des ARNm. En termes d'interactions protéiques, PAT1B est co-immunoprécipité avec DCP1/2 et XRN1 (Ozgur et al., 2010) et interagit directement avec LSM1-7 (Sharif and Conti, 2013) ce qui laisse supposer qu'il contribue au decapping en facilitant le recrutement des autres facteurs du decapping sur l'ARNm. De manière intéressante, PAT1B interagit de façon ARN- dépendante avec elF4E, elF4G et PABP (Arribas-Layton et al., 2013) et sa surexpression provoque une répression générale de la traduction chez la levure (Coller and Parker, 2004). Cette activité

<sup>&</sup>lt;sup>4</sup> Le thether est un essai fonctionnel permettant d'étudier *in vivo* le rôle d'une RBP d'intérêt sur la traduction/ la stabilité de ses ARNm cibles indépendamment de la capacité de liaison à l'ARNm de la RBP.

supplémentaire de répresseur de la traduction en remodelant le complexe d'initiation de la traduction faciliterait l'accès de DCP2 à la coiffe m<sup>7</sup>GTP.

Un autre cofacteur de decapping : DDX6, interagit avec PAT1B (Ayache et al., 2015) et possède également une activité de répression de la traduction (Minshall et al., 2009). Il sera détaillé ultérieurement dans la seconde partie de cette introduction.

Les mécanismes précis par lesquels PAT1B et DDX6 remodèlent les complexes d'initiation de la traduction et/ou activent le decapping ne sont pas clairement caractérisés. Une étude récente de transcriptomique réalisée sur des levures *Dcp2Δ*, *Pat1Δ*, *Lsm1Δ* ou *Dhh1Δ* a apporté des précisions sur leurs modes d'action respectifs (He et al., 2018). Les profils d'expression issus des différents séquençages indiquent que Pat1, Lsm1 et Dhh1 sont impliqués dans la déstabilisation d'une partie seulement des transcrits ciblés par Dcp2. De plus, les transcrits séquencés se répartissent en deux sous-groupes : d'un côté des transcrits conjointement stabilisés en l'absence de Pat1 ou de Lsm1 (cohérent avec l'existence d'un complexe Pat1- Lsm1-7) et d'un autre côté des transcrits stabilisés en l'absence de Dhh1 et insensibles à Pat1 et Lsm1-7. Ces résultats nuancent l'assertion que ce sont des facteurs « généraux » de decapping (Parker, 2012) et suggèrent que Pat1 et Dhh1 remplissent des fonctions distinctes dans le processus de decapping.

En plus d'être nécessaire à la voie de dégradation générale 5'-3', le complexe de decapping est également requis dans des voies de dégradation particulières telles le NMD (Nonsense Mediated Decay), la dégradation des transcrits portant des éléments ARE (Fenger-Grøn et al., 2005; Yamashita et al., 2005) et la dégradation des cibles de miARN (Behm-Ansmant et al., 2006). Le complexe de decapping est alors recruté par des RBP spécifiques. Par exemple, DDX6 interagit dans les cellules humaines avec les effecteurs de la voie des miARN AGO1 et AGO2 indépendamment de l'ARN. De plus, l'absence de DDX6 diminue la répression d'un ARNm rapporteur cible de miARN (Chu and Rana, 2006). En ce qui concerne les cibles du NMD, c'est le facteur UPF1 qui recrute DCP2 et active le decapping (Lykke-Andersen, 2002).

2.1.3 Deux options de dégradation

55

### <u>-Dégradation '5' ->3 par l'exonucléase XRN1</u>

Suite au decapping par DCP2, les ARNm possédant une extrémité 5' monophosphate lient l'exonucléase 5' 3' cytoplasmique XRN1 (Jones et al., 2012). Des approches par cristallographie ont montré : que le site catalytique de XRN1 reconnaît l'extrémité 5' de l'ARNm et que l'ARNm est transloqué nucléotide par nucléotide au fur et à mesure que l'ARNm substrat est hydrolysé. Ce mode de fonctionnement permet notamment à XRN1 de résoudre des structures secondaires sur l'ARN sans consommer d'ATP (Jinek et al., 2011).

Plusieurs interactions impliquant XRN1 sont le support d'un couplage entre la dégradation 5'->3', le decapping et la déadénylation. Chez la Drosophile et la levure, XRN1 est coimmunoprécipité avec DCP1 indépendamment de la présence d'ARN et la structure de leurs domaines d'interaction a été caractérisée par spectrométrie RMN (Braun et al., 2012). Chez les vertébrés, le domaine d'interaction de XRN1 avec DCP1 n'est pas conservé et le couplage dégradation/decapping s'effectue *via* le cofacteur EDC4 interagissant simultanément avec XRN1 et DCP1 (Braun et al., 2012; Chang et al., 2014) (Figure 21). Concernant le couplage entre dégradation et déadénylation, des approches de co-immunoprécipitation et de purification d'affinité montrent que XRN1 interagit directement avec le complexe CCR4-NOT ainsi qu'avec PAT1B *via* la région peu structurée CIR (C-terminal Interacting R*egion*), et que ces interactions s'excluent mutuellement (Chang et al., 2019). Plus encore, cette étude a montré que l'interaction XRN1-CCR4-NOT réprime la déadénylation par la sous-unité POP2. Les auteurs suggèrent que la liaison concurrentielle de PAT1B à ce même domaine contribue à coordonner la déadénylation, le decapping et la dégradation 5'->3'.

Dans la plupart des modèles, la dégradation par XRN1 intervient après la traduction de l'ARNm. Toutefois, des expériences basées sur la quantification d'ARNm rapporteur dans des profils de polysome chez la levure suggèrent que la dégradation générale par XRN1 peut avoir lieu co-traductionnellement (Hu et al., 2009). Plus récemment, l'analyse structurale par cryo-EM d'un complexe purifié XRN1/80S/ARN a démontré l'existence d'une interaction stable entre XRN1 et le ribosome. L'interaction directe XRN1/ribosome en couplant la traduction de l'ARNm à sa dégradation contribuerait à accroître l'efficacité du processus de dégradation (Tesina et al., 2019a)

• . <u>Dégradation 3 '->5' par l'exosome</u>

Alternativement à la dégradation 5'-3', les ARN peuvent être dégradés à partir de leur extrémité 3' par un complexe multiprotéique : l'exosome. Ce complexe a initialement été découvert dans le cadre de son intervention dans la voie de biogenèse des ARNr chez la levure (Mitchell et al., 1997). Depuis, des analyses de transcriptomique dans plusieurs organismes modèles ont montré qu'il prend part à la dégradation de nombreuses classes d'ARN incluant les ARNm, des ARN non codant comme les CUTs (Cryptic Unstable Transcripts) et les SUTs (Stable Uncharacterized Transcripts), des précurseurs d'ARNt, des pri-miARN (Chekanova et al., 2007 ; Gudipati et al., 2012 ; Pefanis et al., 2015 ; Schneider et al., 2012)

Structurellement, l'exosome est formé d'un cœur (appelé EXO9) composé de six RNases (RRP41, RRP42, RRP45, RRP46, MTR3 et OIP2) organisées en anneau autour de l'ARN et accompagnées de trois RBP (CSL4, RRP4 et RRP40) (Januszyk and Lima, 2014). Dans le cytoplasme des cellules mammifères, l'exosome s'associe à l'enzyme DIS3 qui porte l'activité endonucléolytique et exonucléolytique (Lebreton et al., 2008)

*In vivo*, l'activité de l'exosome nécessite la présence d'activateurs spécifiques comme le complexe SKI (SuperKiller), un hétérotétramère incluant les hélicases SKI2 et SKI3 assemblées avec SKI8 selon une stœchiométrie 1 :1 :2. Ce complexe interagit avec l'exosome *via* SKI7 (Araki et al., 2001). La dégradation de l'ARN s'achève par la libération de la coiffe seule, ou liée à quelques nucléotides et qui est alors dégradée par l'enzyme de clivage de la coiffe DCPS (DCP Scavenger) (Bazzini et al., 2016).

### 2.2. <u>Eléments de contrôle de la stabilité des ARNm</u>

### 2.2.1 Composition nucléotidique du CDS

En plus de réguler le taux de traduction, la composition en codons influence également directement la stabilité de l'ARNm. A l'échelle du transcriptome chez la levure, la demi-vie des transcrits corrèle positivement avec l'optimalité des codons : *in vivo* à l'échelle du transcrit, la substitution de codons non optimaux d'un transcrit instable par des codons synonymes optimaux multiplie sa demi-vie par 7 et inversement, la substitution des codons optimaux par des synonymes non optimaux dans la CDS d'un transcrit stable diminue sa demi-vie d'un facteur 10 (Presnyak et al., 2015).

Plusieurs approches ont été mises en œuvre pour étudier le lien de causalité entre ralentissement l'élongation au niveau des codons non optimaux et déclenchement de la dégradation de l'ARNm chez l'homme. Pour isoler les effets du CDS sur la stabilité de l'ARNm, Narula et collaborateurs ont mesuré les demi-vies d'une collection d'ARNm rapporteurs récapitulant l'ORFeome humain et montrent que les codons les plus lentement traduits d'après des données de ribosome profiling se trouvent préférentiellement dans les ARNm rapporteurs instables de la collection. De plus, cette stabilité corrèle positivement au temps de résidence des codons dans le site A du ribosome (Narula et al., 2019). Une étude encore plus directe a mesuré dans différentes cellules humaines la stabilité de chaque codon et confirmé que la composition en codons (indépendamment de la composition en acides aminés) est un déterminant de la stabilité de l'ARNm (Wu et al., 2019)

Concernant les mécanismes moléculaires sous-jacent, il est observé que l'optimalité des codons influence les taux de déadénylation et de decapping d'ARNm rapporteurs en plus de jouer sur la vitesse d'élongation. Dans le modèle levure (Figure 22), les différences de vitesse d'élongation de la traduction (évaluée par TRAP Translating Ribosome Affinity Purification), dues à la composition en codons sont captées par la machinerie de traduction et entrainent le recrutement de CCR4-NOT, ainsi que de l'activateur de decapping Dhh1 (Radhakrishnan and Green, 2016; Sweet et al., 2012; Webster et al., 2018). Dans ce modèle, une fraction de Dhh1 est physiquement associée aux ribosomes en cours d'élongation et réagit à un ralentissement local de l'élongation au niveau des codons non optimaux en s'accumulant sur l'ARNm ce qui ralentit encore plus l'élongation et oriente le transcrit vers les voies de dégradation (Radhakrishnan and Green, 2016). Ces résultats sont remis en cause par Jacobson et collaborateurs (Jacobson et al., 2018) et nuancés par les résultats de Zeidan et collaborateurs (Zeidan et al., 2018) qui ne mesurent qu'une faible corrélation entre optimalité de codon et changement d'abondance des transcrits l'échelle du transcriptome entres des souches Dhh1A vs WT. Le croisement de leurs ribosome profiling  $Dhh1\Delta$  et WT avec les données de RIPseq Dhh1 (Miller et al., 2017) confirme toutefois que l'association de Dhh1 s'accroît sur les transcrits dont la stabilité est régulée par Dhh1. Le rôle de DDX6 dans le couplage entre efficacité de l'élongation et stabilité des ARNm n'est pas conservé entre la levure et les

mammifères : dans des cellules embryonnaires de souris où le gène *DDX6* a été inactivé, les transcrits stabilisés par l'absence de DDX6 ne sont pas significativement surreprésentés parmi les transcrit les plus inefficacement traduits et ne sont pas non plus significativement enrichis en codons non optimaux (Freimer et al., 2018). Chez l'homme, notre analyse de différents jeux de données de transcriptomique montre que les transcrits liés par DDX6 contiennent préférentiellement des nucléotides GC, sont régulés de manière prépondérante en stabilité, possèdent peu de codons non optimaux et présentent un rendement protéique élevé (Courel et al., 2019)



### Figure 22 Régulation de la stabilité de l'ARNm (modèle levure)

Les ARNm ayant un CDS enrichi en codons suboptimaux sont décodés plus lentement que les ARNm enrichis en codons optimaux. Dhh1 associée aux ribosomes « capte » la vitesse d'élongation. Lorsque celle-ci est ralentie, des molécules supplémentaires de Dhh1 sont recrutées sur l'ARNm ce qui ralentit d'autant plus la progression des ribosomes sur l'ARNm. L'accumulation de ces derniers déclenche le recrutement du complexe CCR4-NOT et la dégradation subséquente du transcrit. (Modifié d'après Radhakrishnan and Green, 2016). Chez l'homme, l'identité de la wobble base est fortement corrélée à l'optimalité du codon. En effet, les codons contenant soit un G ou C en troisième position (GC3) ont été identifiés par analyse bio-informatique comme stabilisateurs alors que ceux avec un A ou U en troisième position sont non optimaux. De plus, des transcrits optimisés sur lesquels le cadre de lecture est déplacé restent stables ce qui suggère que le contenu en GC médian du CDS représente à lui seul un proxy de la stabilité du transcrit (Hia et al., 2019).

# 2.2.2 Régulation de la stabilité de l'ARNm par des éléments de séquence contenus dans la région 3'UTR : exemple des ARNm à ARE

Plusieurs éléments localisés dans les UTR des transcrits contribuent à en réguler la stabilité. Ces éléments sont reconnus par des RBP ou des miARN induisant le recrutement ciblé de la machinerie de dégradation. A titre d'exemple nous traitons ici de la régulation de la stabilité des transcrits portant des ARE par les ARE-BP (ARE Binding Protein).

Les ARE ont été découverts dans la région 3'UTR d'ARNm codant des cytokines (Caput et al., 1986). Les ARNm à ARE se caractérisent par la présence d'une ou plusieurs copies du motif AUUUA dans leur 3' UTR insérée(s) au sein d'une séquence riche en uracile (Helfer et al., 2012). Les ARNm à AREs constituent 9% des ARNm totaux (Barreau et al., 2005). Certaines ARE-BP ont un effet déstabilisateur de l'ARNm ce qui est par exemple de cas d'AUF1, TTP, TIA-1 (Chen and Shyu, 1995) (Tableau 2). Des études ultérieures ont démontré que ces éléments de séquence pouvaient aussi avoir un effet stabilisateur intervenant dans des processus biologiques tels que la prolifération et la différenciation cellulaires, la maturation de certains miARNs, l'épissage alternatif de certains ARN pré-messagers (Otsuka et al., 2019).

Le mécanisme par lequel les séquences AREs régulent la dégradation de l'ARNm implique la fixation de RBP spécifiques appelées ARE-BP (Tableau 2). La plupart des ARE-BP reconnaissent leurs transcrits-cibles grâce à des RBD canoniques comme le RRM, le Znf et le KH domaine (Nicastro et al., 2015).

| ARE-BP  | RBD          | ARNm cibles             |
|---------|--------------|-------------------------|
| AUF1    | 4 RRMs       | TNF-α, IL-1β,c-fos, c-  |
|         |              | myc, VEGF, COX2         |
| TTP     | 2 Znf        | TNF-α, GM-CSF, IL-10,   |
|         |              | TTP, HuR                |
| ZFP36L1 | 2 Znf        | CDK6                    |
| ZFP36L2 | 2 Znf        | LHR, H3K4, H3K9         |
| KSRP    | 4 KH domains | Myogenin, c-fos, c-myc, |
|         |              | TNF-α                   |
| TIA-1   | 3 RRMs       | Cc,TNF-α,VEGF, COX2     |
| HuR     | 3 RRMs       | GAP-43, APP, BACE1,     |
|         |              | TNFα, VEGF, COX2, c-fos |
| HuD     | 3 RRMs       | HuR                     |
| GAPDH   | -            | CSF                     |
| LDHM    | -            |                         |

### Tableau 2 Principales ARE-BP régulant la stabilité des ARNm

Les ARE-BP déstabilisatrices sont surlignées en bleu, et les ARE-BP stabilisatrices en vert. (Modifié d'après Otsuka et al., 2019)

Les ARE-BP régulent la stabilité de l'ARNm selon différents mécanismes moléculaires (Figure 23). Ils peuvent interférer avec la voie de dégradation miARN dépendante (Jing et al., 2005), activer les voies de dégradation générales 3'-5' (Chen et al., 2001) ou 5'-3' des ARNm (Helfer et al., 2012). Dans ce dernier cas, les ARE-BP fonctionnent comme des adaptateurs connectant les ARNm à ARE avec le complexe de decapping (Lykke-Andersen and Wagner, 2005; Stoecklin et al., 2006) ou la déadénylase CCR4-NOT (Bulbrook et al., 2018).



### Figure 23 Contrôle de la stabilité de l'ARNm par les ARE-BP TTP et HuD.

Dans ce modèle issu d'études en cellulaires humaines, TTP provoque la dégradation de l'ARNm en recrutant le complexe CCR4-NOT, l'exosome et le complexe de decapping. Il réprime également la traduction de l'ARNm en se liant à GYF2 qui recrute l'inhibiteur 4EHP.

HuD (exclusivement exprimée dans les cellules neuronales) stimule la traduction en interagissant directement avec eIF4A et la queue poly(A). La liaison à eIF4A atténue l'effet inhibiteur des miARN ciblant ce facteur d'initiation (cf. partie 1 paragraphe 3). HuD s'associe également à Akt/PKB. Akt/PKB phosphoryle les ARE-BP déstabilisatrices comme KSRP, TTP, ZFP36L1 ou ZFP36L2 ce qui a pour effet de les inactiver. Elle phosphoryle également eIF4B ce qui stimule l'activité d'eIF4A. (Modifié d'après Otsuka et al., 2019)

### 2.2.3 Les voies particulières de dégradation : exemple du NMD

Les régulations de la stabilité de l'ARNm sont aussi intégrées dans les voies de contrôle de la qualité des ARNm (RQC). Le RQC sert à éviter l'accumulation d'ARNm dysfonctionnels et la production de peptides anormaux. Dans le cytoplasme le RQC se décline en trois voies de dégradations (Lykke-Andersen and Bennett, 2014) : le NMD (Nonsense-Mediated-Decay), que nous détaillons ultérieurement, dégrade les ARNm portant un codon STOP prématuré (appelé PTC, Premature Terminaison Codon), le NSD (Non-Stop-Decay) dégrade les ARNm sans codon STOP et le NGD (No-Go-Decay) cible les ARNm sur lesquels les ribosomes sont bloqués.

Le NMD est déclenché lorsqu'un ribosome en cours de traduction se retrouve bloqué sur un PTC localisé à plus de 50-55 nucléotides en amont de la dernière jonction exon-exon portant un EJC (Exon Junction Complex) lequel recrute les hélicases UPF2 et UPF3 (Kervestin and

Jacobson, 2012). Le PTC entre dans le site A du ribosome et la fixation des facteurs de terminaison eRF1 et eRF3 y hydrolyse la chaine polypeptidique attachée au site P. UPF1 est alors recrutée par eRF3 au niveau du PTC de même que la protéine kinase SMG1 se liant aux facteurs eRF1 et eRF3 formant ainsi le complexe SURF (SMG1-UPF1-eRF1-eRF3). SMG8 et SMG9 s'associent également au complexe SURF afin de bloquer temporairement la phosphorylation d'UPF1 par SMG1. Le complexe {SURF-SMG8-SMG9} est transloqué du ribosome aux protéines UPF2 et UPF3 associées à l'EJC. Après la translocation, SMG8 et SMG9 se dissocient du complexe ce qui permet à l'ARN hélicase DHX34 de servir de plateforme d'interaction entre UPF1 et SMG1 (Melero et al., 2016). La phosphorylation subséquente d'UPF1 par SMG1 déclenche la dissociation du ribosome de l'ARNm, inhibe l'initiation de la traduction en empêchant l'association d'eIF3, et recrute les protéines SMG5, SMG6 et SMG7, ce qui induit la dégradation du transcrit (Hug et al., 2016) (Figure 24). Chez les mammifères, plusieurs mécanismes peuvent intervenir dans la dégradation de l'ARNm par la voie du NMD. Une première option est que SMG6 agisse comme une endonucléase et produise des fragments dégradés par les exonucléases classiques (Eberle et al., 2009; Huntzinger et al., 2008). Alternativement, l'hétérodimère SMG5–SMG7 peut recruter le complexe CCR4-NOT qui active le decapping et la dégradation 5'->3'. Enfin, il est également envisageable qu'UPF1 recrute directement le complexe de decapping conduisant à la dégradation 5'-3'. (Loh et al., 2013).



Figure 24 Dégradation de l'ARNm par la voie du NMD

Lorsque l'étape de terminaison est inefficace, par exemple lorsque le ribosome rencontre un PTC (Premature Terminaison Codon), UPF1 peut se lier à l'ARNm de manière non spécifique (1) ou alternativement être recruté par eRF3 (eukaryotic Release Factor 3) (2). UPF1 seul ou assisté de l'EJC recrute ensuite UPF2 et UPF3 (3) ce qui initie l'assemblage d'un complexe activateur du NMD au niveau du PTC. Ce complexe contient UPF1,2,3, SMG1,8,9, DHX34 et l'EJC (4). Lorsque le ribosome se dissocie de l'ARNm, SMG1 phosphoryle UPF1 (5) ce qui entraine le recrutement de l'endonucléase SMG6, du complexe CCR4-NOT via le dimère SMG5– SMG7 et/ou du complexe de decapping (6). Le clivage endonucléolytique ou la déadénylation et le decapping sont suivies de la dégradation complète du

transcrit par les voies générales de dégradation 5'->3' ou 3'->5' (non représenté) (Modifié d'après Lykke-Andersen and Bennett, 2014)

Des études récentes montrent qu'en plus d'intervenir dans le cadre du RQC (Ribosom Quality Control), le NMD constitue une voie de régulation post-transcriptionnelle indépendante, ciblant *via* UPF1 (Imamachi et al., 2017) ainsi que *via* SMG6 (Courel et al., 2019) des transcrits particulièrement riches en GC. Les transcrits possédant un intron en 5' UTR suivi par une uORF ou une longue séquence 3'UTR sont également des cibles privilégiées de cette voie de régulation (Colombo et al., 2017).

### 3. Les régulations par ARN interférence

Les régulations post-transcriptionnelles cytoplasmiques ciblées de l'expression génique peuvent également être médiées par les voies dites d'ARN interférence. Ces voies de régulations se trouvent partiellement conservées chez les eucaryotes : elles sont en effet présentes chez tous les métazoaires mais ont en revanche disparu de plusieurs organismes unicellulaires tels S. cerevisiae, Trypanosoma cruzi, Leishmania major et Plasmodium falciparum (Cerutti and Casas-Mollano, 2006). Ces régulations se subdivisent en trois voies chacune faisant intervenir des petits ARN non codant de nature différente : les siARNs (Small Interfering ARN), les miARNs (MicroARN) et les piARNs (PIWI Interacting ARN). Dans cette introduction nous décrivons les mécanismes moléculaires de la répression de la traduction et de la dégradation dépendant des miARNs. Les miARN sont de petits ARN non codants de 22 nt formés à partir de précurseurs appelés miARN primaires (pri-miARN) (Winter et al., 2009) eux même issus de la transcription de gènes spécifiques par l'ARN Pol II (Lee et al., 2002). Une fois clivés dans le noyau par l'enzyme DROSHA, les précurseurs de miARN sont exportés dans le cytoplasme par l'exportine 5 (Wu et al., 2018) où ils acquièrent leur forme mature suite au clivage par DICER. Pour le détail des étapes de biogenèse des miARN, se référer à (Bartel, 2018).

### 3.1 <u>Des régulations sélectives ciblant un grand nombre de transcrits</u>

### 3.1.1 Reconnaissance des cibles

Une fois présents sous leur forme mature dans le cytoplasme, les miARN sont chargés sous forme simple brin sur le complexe miRISC (miARN Induced Silencing Complex) où ils servent de guide pour la reconnaissance des transcrits cibles en s'appariant à des séquences complémentaires localisées dans la 3'UTR et appelées MRE (miARN Response Element). Chez les mammifères, la quasi-totalité des miARN s'apparient à leurs cibles de manière imparfaitement complémentaire, sans faire intervenir l'activité endonucléique des protéines AGO et notamment AGO2 (Bartel, 2018). Des données structurales montrent que les miARN s'apparient à leurs cibles en deux temps : d'abord *via* une portion de séquence de 6 nt appelée «séquence seed» incluant les nucléotides 2 à 7 du miARN ce qui induit un changement de conformation de la protéine AGO et permet ensuite l'appariement du miARN à sa cible par les nucléotides 8 et/ou 13-16. D'autres sites non canoniques supplémentaires sont parfois également impliqués (Schirle et al., 2014). Le dernier nucléotide de la MRE est souvent une adénine ne s'appariant pas directement au miARN mais se liant à la protéine AGO et contribuant à stabiliser le complexe miRISC sur l'ARNm cible (Schirle et al., 2015), (Figure 25).



### Figure 25 Appariement des miARN à leurs ARNm cibles

Les positions 2 à 7 du miARN (en rouge) constituent la séquence seed par laquelle le miARN s'apparie à sa cible par interactions Watson–Crick. Des sites de liaison additionnels situés entre les nucléotides 13 à 16 (en orange) du miARN peuvent également contribuer à l'appariement avec l'ARNm cible. L'adénine en dernière position du MRE interagit directement avec la protéine AGO2. (Modifié d'après Bartel, 2018). . Chez l'homme, plus de 4000 miARN possédant chacun entre un à un millier d'ARNm cibles ont été séquencés (miRTarBase 7.0). Ces miARN réguleraient ~60% des ARNm (Friedman et al., 2009), contre 27% et 37% respectivement chez *C. elegans* et *D. melanogaster* (Bartel, 2018). La stratégie de régulation par les miARN se base sur un effet répresseur modeste à chaque MRE, souvent moins de 50% de répression selon une approche combinée de transcriptomique et de protéomique haut débit (Baek et al., 2008; Selbach et al., 2008). L'effet répresseur associé à un MRE donné est d'autant plus important que le MRE se trouve dans un contexte nucléotidique riche en AU et/ou qu'il est proche (8-40 nt) de sites de régulation reconnus par des miARNs co-exprimés permettant un effet coopératif (Grimson et al., 2007).

### 3.1.2 Régulation de la formation du complexe miRISC

Dans le cytoplasme, l'activité des miARN est régulée par plusieurs modifications posttranscriptionnelles intervenant aux extrémités 5' ou 3' et susceptibles de modifier les interactions miARN/MRE ou miARN/AGO (Bartel, 2018). Par exemple, l'extrémité 3' des prémiARN peut être oligo-uridylée par les uridyltransférases TUT4 et TUT7 ce qui bloque la progression de l'enzyme DICER responsable du clivage des pre-miARN en miARN. Conséquemment le pré-miARN est dégradé par l'exonucléase DIS3L2 capable de reconnaître les oligo(U) (Faehnle et al., 2014; Ustianenko et al., 2013).

Les protéines AGO font également l'objet de modifications post-traductionnelles influençant la formation et l'activation fonctionnelle du complexe miRISC. Parmi celles-ci, la phosphorylation de la sérine 387 d'AGO2 par la kinase AKT3 documentée *in vitro* ainsi que dans des cellules HeLa diminue l'activité de clivage d'AGO2 et réoriente son activité dans la répression de la traduction associée à la voie des miARN dès lors que la déplétion d'AKT3, de même que l'expression d'un mutant AGO ne pouvant être phosphorylé sur ce site conduisent à la dé-répression d'un ARNm rapporteur Luciférase et à un affaiblissement de l'interaction d'AGO2 avec TNRC6A (Horman et al., 2013). Alternativement, la phosphorylation de la tyrosine 393 d'AGO2 régule négativement l'activité des miARN en les empêchant de se lier à AGO2 (Rüdel et al., 2011).

# 3.2 <u>Deux modes d'action des miARN sur l'expression des ARNm : répression de la</u> <u>traduction et dégradation de l'ARN</u>

L'interaction entre le complexe miRISC et un ARNm cible inhibe l'expression de cet ARNm. Cette inhibition peut s'expliquer de différentes façons. Dans de très rares cas chez les mammifères, l'ARNm ciblé est clivé par endonucléolyse par la protéine AGO2 (Shin et al., 2010). Plus classiquement, l'ARNm est réprimé en traduction et/ou est dégradé par la voie de dégradation 5'-3 '.

# 3.2.1. Mécanisme moléculaire de la dégradation de l'ARNm induite par les miARN

A l'échelle du transcriptome la dégradation induite par les miARN concerne 66 à 90 % des régulations dépendantes de miARN (Jonas and Izaurralde, 2015). Concernant le mécanisme moléculaire (Figure 26), les protéines AGO interagissent avec TNRC6 (GW182) directement liée à la PABPC (Jinek et al., 2010; Zekri et al., 2009) et recrute les complexes PAN et CCR4-NOT via PAN3 et NOT1 (Braun et al., 2011). Les ARNm sont alors successivement déadénylés par ces deux complexes (Chen et al., 2009; Wahle and Winkler, 2013). Le complexe CCR4-NOT interagit avec les facteurs de decapping DDX6 (Rouya et al., 2014) et PAT1B, ainsi qu'avec le répresseur 4E-T (Nishimura et al., 2015). Ces protéines recrutent ensuite le complexe de decapping (Chen et al., 2014; Jonas and Izaurralde, 2013; Mathys et al., 2014). Le complexe miRISC peut également recruter directement le complexe de decapping. La coiffe de l'ARNm est alors clivée par DCP2 puis DCP1 et EDC4 recrutent XRN1 qui dégrade l'ARNm cible (Braun et al., 2012).



### Figure 26 Dégradation de l'ARNm par les miARN

La dégradation de l'ARNm par les miARN se décompose en trois étapes. Les transcrits cibles sont d'abord déadénylés par les complexes CCR4-NOT et PAN ayant été recrutés par TNRC6 (1). Les ARNm déadénylés sont ensuite oligo-uridylés par TUT4/7, ce qui déclenche la dégradation. En plus de recruter les déadénylases, TNRC6 active la dissociation de PABP ce qui accroît l'efficacité de la déadénylation par CCR4-NOT. Des cofacteurs de decapping incluant DDX6 sont ensuite recrutés sur le complexe CCR4-NOT et activent la suppression de la coiffe par DCP2 (2). L'exonucléase XRN1 dégrade ensuite l'ARNm (3). (Modifié d'après Iwakawa and Tomari, 2015)

# 3.2.2. Mécanismes moléculaires de répression de la traduction miARN -dépendants

Plusieurs études basées sur des analyses biochimiques en cellules humaines suggèrent que la répression de la traduction par les miARN cible la phase d'initiation (Humphreys et al., 2005; Pillai, 2005) et implique la dissociation des facteurs d'initiation dont elF4G, elF4A1 et elF4A2 (Fukao et al., 2014) ainsi que de PABP (Rissland et al., 2017). Deux principaux mécanismes moléculaires de répression de la traduction par les miARN sont décrits à ce jour (Figure 27). Le premier mécanisme implique le recrutement par TNRC6 du complexe CCR4-NOT qui interagit directement avec DDX6 *via* la sous-unité CNOT 1 (Chen et al., 2014a; Kuzuoğlu-Öztürk et al., 2016; Mathys et al., 2014; Rouya et al., 2014). DDX6 lié à CCR4-NOT interagit à son tour directement avec d'autres facteurs de répression de la traduction dont en particulier 4E-T. L'interaction 4E-T/DDX6 est capable de réprimer *in vivo* la traduction d'un ARNm rapporteur ciblé par le miARN let7 (Kamenska et al., 2016). Des résultats d'expériences de tether montrent que 4E-T peut réprimer la traduction de manière elF4E-indépendante (Kamenska et al., 2014). Concernant la voie des miARN, la répression de la traduction de leurs cibles fait intervenir la liaison directe de 4E-T avec 4EHP (eIF4E2) qui entre en compétition avec eIF4E pour se lier à la coiffe de l'ARNm (Chapat et al., 2017; Chen and Gao, 2017).

De manière intéressante, des mutations du domaine FDF de DDX6 empêchant son interaction avec 4E-T ainsi qu'avec des facteurs de decapping (EDC3, PAT1B, LSM14A) rendent DDX6 incapable de réprimer la traduction d'un ARNm rapporteur (Kuzuoğlu-Öztürk et al., 2016). De plus, l'absence de 4E-T diminue sans la supprimer totalement la répression de la traduction des cibles des miARN par DDX6 (Kuzuoğlu-Öztürk et al., 2016) ce qui suggère que DDX6 puisse interagir avec d'autres facteurs que 4E-T pour réprimer la traduction des cibles de miARN.

Un modèle alternatif implique l'hélicase eIF4A2 (paralogue de eIF4A1), impliquée dans le recrutement du 43S et le scanning lors de l'initiation de la traduction. eIF4A2 se lie de manière mutuellement exclusive, en compétition avec DDX6, sur la sous-unité CNOT1 du complexe CCR4-NOT (Meijer et al., 2019). Elle fait de plus partie d'un complexe endogène incluant DDX6 et CNOT1 (Wilczynska et al., 2019) et son absence empêche la répression miARN-dépendante d'un ARNm rapporteur (Meijer et al., 2013a). Le mécanisme détaillé par lequel eIF4A2 interfère avec l'initiation de la traduction n'est à ce jour pas clairement établi. Les hypothèses retenues à ce sujet incluent une inhibition de la formation du complexe eIF4F et/ou de l'étape de scanning par le 48S PIC (Fukao et al., 2014).



### Figure 27 Répression de la traduction par les miARN

TNRC6 dissocie PABP de la queue poly(A) et recrute les complexes CCR4-NOT et PAN via les résidus tryptophane de son domaine N terminal GW. Les complexes CCR4-NOT et PAN orchestrent la déadénylation de l'ARNm (celle-ci n'est toutefois pas indispensable à la répression de la traduction). Le complexe CCR4-NOT recrute des répresseurs de la traduction comme DDX6 et 4E-T via la sous-unité CNOT1. 4E-T peut alors réprimer l'initiation de la traduction de deux manières : (1) soit en interagissant directement avec 4EHP qui empêche eIF4E d'accéder à la coiffe de l'ARNm (1) soit en liant directement eIF4E et en empêchant la formation du complexe eIF4F (2). Les miARN peuvent aussi réprimer la traduction en déplaçant l'hélicase eIF4A du complexe eIF4F, possiblement par l'action de eIF4A2 et selon des mécanismes à ce jour inconnus.(Modifié d'après Iwakawa and Tomari, 2015)

3.2.3. Coordination de la répression de la traduction et de la dégradation miARN-dépendantes
Les contributions relatives de la répression de la traduction et de la dégradation aux régulations miARN-dépendantes constituent l'objet de débats non encore résolus (Iwakawa and Tomari, 2015; Jonas and Izaurralde, 2015). D'un côté, des expériences de ribosome profiling et de RNA-seq dans des conditions de surexpression ou de délétion de différents miARN montrent que les miARN entrainent plus fréquemment des changements d'abondance de leurs ARNm cibles plutôt qu'ils n'en modifient l'efficacité de la traduction. Ceci suggère qu'à l'échelle du transcriptome l'action des miARN sur la stabilité de leurs cibles serait prépondérante par rapport à leur activité de répression de la traduction (Eichhorn et al., 2014). Il n'est néanmoins pas exclu que la répression de la traduction puisse précéder la dégradation des transcrits cibles, ce que suggèrent des études de cinétique de répression de la traduction de miARN rapporteurs (Béthune et al., 2012; Djuranovic et al., 2012), voire qu'elle soit un prérequis à la dégradation (Radhakrishnan and Green, 2016). Enfin, il semble que la répression de la traduction par les miARN puisse ne pas immédiatement être suivie de la dégradation de l'ARNm cible. A titre d'exemple, l'ARNm CAT1 est réprimé en traduction par miR-122 et peut, en fonction des conditions cellulaires, retourner en traduction sans être immédiatement dégradé (Bhattacharyya et al., 2006).

Des travaux récents de polysome profiling et de marquage métabolique, menés sur deux lignées de cellules embryonnaires de souris où les gènes *Ddx6* et *Dgcr8* ont été inactivés par Crispr Cas9, montrent que l'absence de DGCR8 (facteur indispensable à la biogenèse des miARN) empêche à la fois la répression de la traduction et la dégradation des cibles de miARN tandis que l'absence de DDX6 empêche la répression de la traduction des cibles des miARN sans affecter leur stabilité (Freimer et al., 2018). Ceci suggère que la dégradation miARN-dépendante peut se dérouler indépendamment de la répression de la traduction dans le cas des transcrits ciblés par DDX6.

Un autre élément associé à la coordination de l'activité des miARN est la localisation cellulaire du processus d'ARN interférence. En effet, s'il est admis que les processus d'ARN interférence ont lieu dans le cytoplasme, il est observé en parallèle que les acteurs des voies d'ARN interférence (protéines du miRISC, miARNs et ARNm cibles) s'accumulent également dans des granules de mRNP appelés P-bodies (Jakymiw et al., 2005) (*cf* partie 2). Ces structures semblent impliquées dans les régulations par l'ARN-interférence dès lors que le silencing de TNRC6 inhibe la répression de la traduction d'ARNm rapporteurs ciblés par des miARN, et que l'expression de mutants AGO ne pouvant être localisés dans les PB perdent leur activité de répression de la traduction même lorsqu'ils se trouvent accrochés artificiellement à leurs ARNm cibles (Bhattacharyya et al., 2006; Eulalio et al., 2007; Liu et al., 2005; Pillai, 2005).

# Partie 2 : Les P-Bodies

La compartimentation cellulaire est à l'origine de plusieurs propriétés émergentes contribuant à améliorer l'adaptation des cellules à leur environnement (Gomes and Shorter, 2019). En effet, elle permet : d'accroître les vitesses de réaction en concentrant certains réactants biochimiques, de séquestrer des composants potentiellement dangereux, de stocker des molécules d'intérêt ou encore d'amplifier des voies de signalisation en concentrant récepteurs et molécules de signal (Boeynaems et al., 2018). En termes d'ultrastructure cellulaire, la compartimentation se matérialise par l'existence d'organites membranaires parmi lesquels le noyau, les mitochondries et les organites du réseau endomembranaire (appareil de Golgi, réticulum endoplasmique, endosome, lysosome etc). Elle implique également des organites non membranaires (Hyman and Brangwynne, 2011), appelés MLO (Membrane Less Organelles) (Mélèse and Xue, 1995; Schmidt and Görlich, 2016) ou biocondensats (Banani et al., 2017). Ces derniers peuvent contenir uniquement des protéines comme les PML bodies (ProMyelocytic Leukemia) ou des protéines et des ARN, comme par exemple les P-bodies (Brangwynne, 2013). Certains de ces organites sans membrane se localisent dans le noyau comme les nucléoles, les corps de Cajal, les nuclear speckles, les paraspeckles, les PML bodies. D'autres organites sont cytoplasmiques comme les P-bodies, les granules de stress, les granules germinaux, les granules neuronaux (Figure 28). Ces MLO remplissent des fonctions moléculaires diverses (Tableau 3) et pour certains leur présence dans les cellules dépend des conditions environnementales et/ou du type cellulaire.



# Figure 28 Principaux organites sans membrane des cellules eucaryotes

Les différents organites sans membrane sont schématisés selon leur présence dans le noyau ou dans le cytoplasme des cellules eucaryotes. Plusieurs de ces biocondensats ne se rencontrent que dans certains types cellulaires. Par exemple, les Balbiani bodies et les granules germinaux (en vert) sont spécifiques des cellules germinales. Se référer au tableau 3 pour les fonctions associées à chaque organite. (Modifié d'après Gomes and Shorter, 2019).

| P-bodies                   | stockage d'ARNm réprimés en traduction                                                                                                                       | Standart & Weil, 2018 ;<br>Luo & Slavoff, 2018     |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| Balbiani bodies            | localisation d'ARNm dans les ovocytes                                                                                                                        | Jamieson-Lucy et al., 2019                         |
| granules germinaux         | régulation de la traduction dans les cellules<br>germinales                                                                                                  | Sengupta & Boag, 2012                              |
| granules de stress         | stockage d'ARNm bloqués en traduction et de<br>protéines de la machinerie de traduction                                                                      | Protter & Parker, 2016; Ivanov<br>et al., 2019     |
| complexe du pore nucléaire | import/export nucléaire                                                                                                                                      | Gomes & Shorter, 2018                              |
| corps de Cajal             | assemblage et maturation des snRNP                                                                                                                           | Staněk, 2017                                       |
| nucléole                   | centre de biogenèse des ribosomes; stabilité du<br>génome                                                                                                    | Lindström et al., 2018 ;<br>Tzekrekou et al., 2017 |
| PML bodies                 | recrutement de protéines impliquées dans divers<br>processus cellulaires (remodelage de la<br>chromatine, modification des télomères, défense<br>antivirale) | Lallemand-Breitenbach & de<br>Thé, 2018            |
| hétérochromatine           | maintien de la stabilité du génome                                                                                                                           | Allshire & Madhani, 2017                           |
| paraspeckles               | retention nucléaire d'ARN modifé A->I                                                                                                                        | Fox & Lamond., 2010                                |
| nuclear speckles           | stockage de facteurs d'épissage                                                                                                                              | Galganski et al., 2017                             |

# Tableau 3 Fonctions des principaux organites eucaryotes sans membrane

En vert les organites cytoplasmiques, en bleu les organites nucléaires.

Focalisons-nous à présent sur les organites au cœur de notre étude : les P-bodies (Processingbodies, par la suite abrégés en PB). Les PB désignent des granules de mRNP cytoplasmiques d'environ 0,5 µm de diamètre, conservés chez les eucaryotes de la levure à l'homme et constitutivement présents dans les cellules mammifères à raison de 5 à 10 PB/cellule (Figure 29).



# Figure 29 Visualisation des P-bodies marqués par DDX6 dans des cellules épithéliales humaines

Panneau de gauche : localisation de la protéine DDX6-RFP marquant les PB dans des cellules RPE-1 observées par microscopie à contraste de phase sur cellules vivantes. (Standart and Weil, 2018).

Panneau de droite : détail de l'ultrastructure d'un PB observé par immuno-microscopie électronique avec un anticorps dirigé contre la protéine endogène DDX6, et un anticorps secondaire couplé à des grains d'or. (Modifié d'après Souquere et al., 2009).

Comme pour d'autres organites disparaissant lors de la mitose, la taille et le nombre de PB varie au cours du cycle cellulaire : en utilisant un co-marquage avec CENP-F (Centromere Protein type F) et PCNA (Proliferating Cell Nuclear Antigen) sur des cellules HeLa synchronisées en phase S Yang et collaborateurs observent des PB moins nombreux en phase G1 et au début de la phase S du cycle cellulaire (Yang et al, 2004). De plus, les PB se décondensent lors de l'entrée en mitose et se réassemblent au cours de la phase G1 du cycle cellulaire.

Bien que les PB aient été découverts il y a plus de vingt ans, leur fonction moléculaire est longtemps restée controversée entre stockage et dégradation d'ARNm, notamment en raison de l'impossibilité de les purifier du fait de leur petite taille et de leur relativement faible abondance cellulaire. Toutefois, au début de ma thèse, une approche de purification par FAPS (Fluorescent-Activated Particle Sorting) des PB venait d'être mise en œuvre au laboratoire et a permis de déterminer la composition exhaustive en protéines et en ARN des PB dans les cellules humaines (Hubstenberger et al., 2017). Comme nous allons le voir, les résultats de cette étude ont également apporté des éléments de clarification quant à la fonction cellulaire des PB. Actuellement les PB sont décrits comme des lieux de stockage d'ARNm représentant un niveau supplémentaire de régulation impliqué dans la coordination des régulations post-transcriptionnelles (Standart and Weil, 2018).

# 1. Composition des PB

# 1.1 Composition protéique

# 1.1.1 Les protéines identifiées dans les PB par approche gène candidat

XRN1 (Bashkirov et al., 1997), DCP1, DCP2, LSM1-7(van Dijk et al., 2002; Ingelfinger et al., 2002) et TNRC6 (Eystathioy et al., 2003) sont les premières protéines dont la localisation dans des foci cytoplasmiques appelés DCP-bodies ou encore GW bodies a été décrite par microscopie à immunofluorescence sur les protéines endogènes ou sur des protéines de fusion dans des cellules mammifères. Le nom actuel de Processing-bodies est issu de l'étude de ces granules chez *S. cerevisiae* (Sheth and Parker, 2003) ayant montré que plusieurs protéines de la voie de dégradation 5'->3' de l'ARNm dont Dcp1, Dcp2, Lsm1, Pat1, Dhh1 et Xrn1 s'y trouvent concentrés. Par la suite, d'autres protéines liées au métabolisme de l'ARN ont été localisées dans les PB chez différents organismes (Eulalio et al., 2007b; Parker and Sheth, 2007; Wilczynska et al., 2005). Ces protéines se répartissent principalement entre des facteurs de dégradation 5'->3' (XRN1, DCP1, DCP2), cofacteurs de decapping (EDC3, EDC4, PAT1B, LSM1-7), déadénylases (PAN2, PAN3, complexe CCR4-NOT), acteurs des voies d'ARN-interférence (AGO1-4, GW182), facteurs du NMD (UPF1, SMG7, SMG5) et répresseurs de la traduction (DDX6, LSM14A, CPEB1, 4E-T). La liste des composants des PB continue de

s'allonger : parmi les composants récemment identifiés, la micro-protéine Nobody (Non annotated P-body dissociating polypeptide) (D'Lima et al., 2017) ainsi qu'HAX-1 (Zayat et al., 2015) ont été récemment colocalisés avec d'autres protéines canoniques des PB dans les cellules humaines.

Le niveau de surconcentration des protéines des PB par rapport au cytosol a été déterminé expérimentalement pour DDX6 par une approche d'immuno-microscopie électronique dans des cellules humaines. La protéine DDX6 endogène est 170 fois plus concentrée dans les PB que dans le cytosol. Toutefois, en termes de quantité de protéine il est important de considérer que le stockage dans les PB ne concerne qu'une fraction minoritaire (~10%) de la quantité cellulaire totale de DDX6 (Ernoult-Lange et al., 2012). Une approche différente basée sur la comparaison d'intensité de fluorescence dans *versus* hors des PB de la protéine de fusion GFP-AGO2 a estimé un facteur 10 de surconcentration de cette protéine dans les PB par rapport au cytoplasme, et a montré que, là aussi, la localisation aux PB ne concerne qu'une faible proportion (~1%) de la quantité cytoplasmique totale de GFP-AGO2 (Leung et al., 2006). Ces dernières considérations soulignent la difficulté d'étudier les protéines des PB par des approches de seule purification d'affinité.

Chez la levure, une étude récente basée sur une approche de microscopie quantitative à fluorescence montre que la gamme de surconcentrations des composants des PB est large ; un petit nombre de protéines des PB principalement associées à la dégradation de l'ARNm (Dcp2, Edc3, Pat1, Xrn1, Lsm1, Upf1 et Dhh1) sont fortement concentrées dans les PB par rapport au cytoplasme (d'un facteur 30 pour Dhh1 à un facteur 133 pour Dcp2) tandis que les autres protéines des PB n'y sont enrichies que d'un facteur inférieur ou égal à 10 (Xing et al., 2020). Considérant des cellules de 8 µm de diamètre contenant chacune en moyenne 5 PB de 500 nm de diamètre, il est possible d'estimer la proportion des principales protéines des PB comprise entre 3% (Dhh1) et 15% (Dcp2) (Tableau 4).

| protéine | coefficient<br>de partition | concentration<br>dans les PB<br>(µM) | concentration<br>cytoplasmique<br>(µM) | proportion<br>de la<br>protéine<br>dans les PB<br>(%) |
|----------|-----------------------------|--------------------------------------|----------------------------------------|-------------------------------------------------------|
| Dp2      | 133                         | 15                                   | 0,12                                   | 15                                                    |
| Edc3     | 133                         | 12                                   | 0,09                                   | 16                                                    |
| Pat1     | 107                         | 12                                   | 0,12                                   | 12                                                    |
| Xrn1     | 53                          | 11                                   | 0,22                                   | 6                                                     |
| Lsm1     | 52                          | 8,9                                  | 0,17                                   | 6                                                     |
| Upf1     | 39                          | 5,1                                  | 0,13                                   | 5                                                     |
| Dhh1     | 30                          | 10                                   | 0,38                                   | 3                                                     |

# Tableau 4 Estimation de la proportion des principales protéines des PB chez S. cerevisiae

Les concentrations dans les PB et cytoplasmiques utilisées pour calculer la proportion de chaque protéine dans les PB sont reprises des résultats de (Xing et al., 2020) obtenus dans des souches S. cerevisiae Dcp1 $\Delta$ .

# 1.1.2 Protéome des PB

Notre connaissance actuelle de la composition en protéines des PB de cellules humaines est issue de deux études indépendantes de protéomique à large échelle (Figure 30). La première étude précédemment mentionnée et réalisée au laboratoire repose sur la purification par tri de particules fluorescentes (FAPS) réalisé sur des lysats cytoplasmiques de cellules HEK293, exprimant de manière stable la protéine de fusion GFP-LSM14A utilisée pour marquer les PB, et sur l'identification en spectrométrie de masse des protéines présentes dans les fractions pré-triée et triée (Figure 30). Cette approche identifie 125 protéines significativement enrichies dans les PB dont 15 préalablement connues (Figure 31). Comme attendu, les protéines identifiées sont majoritairement associées au métabolisme de l'ARNm et plus particulièrement à la répression de la traduction, à la voie de régulation par les miARN, à la dégradation générale de l'ARNm et au NMD (Hubstenberger et al., 2017).

La seconde étude (Youn et al., 2018) a utilisé une approche de BioID (Proximity-Dependent Biotinylation (BioID) (Roux, 2013) combinée à une purification d'affinité sur deux protéines des PB : DCP1A et PAT1B portant un double tag BirA\*-FLAG. (Figure 30). Suite à la purification d'affinité, 54 et 68 protéines endogènes se recoupant partiellement (7 protéines en communs : AGO1, AGO2, DCP1B, EDC3, EDC4, MARF1 et SMG7 se retrouvant toutes dans le protéome des PB issu de leur purification par FAPS) ont été identifiées par spectrométrie de masse comme partenaires directs de DCP1A et PAT1B et donc comme potentiels composants des PB. Cette méthode présente l'avantage de mettre en évidence des interactions protéine-protéine (IPP) faibles et/ou transitoires *in vivo*. Toutefois, les données issues de cette approche sont à interpréter avec précaution étant donné que toutes les protéines des PB sont aussi et majoritairement présentes dans le cytoplasme et que par conséquent, les interactions identifiées par BioID pourraient tout à fait avoir lieu en dehors des PB. L'utilisation d'un plus grand nombre de protéines des PB comme appât dans le BioID pourrait améliorer la résolution du réseau d'interactions spécifiques des PB. Notons qu'une étude récente a tenté de purifier des PB de cellules U2OS en conditions de stress (Matheny et al., 2019). Là aussi, l'interprétation se heurte au fait que le résultat de la purification est un mélange de complexes solubles et/ou de PB, ne permettant pas de tirer de conclusions quant aux seuls PB.





**A. Purification des PB par FAPS**. Les lysats cytoplasmiques de cellules HEK293 exprimant de manière stable un marqueur fluorescent des P-bodies, la protéine GFP-LSM14A (vert), sont centrifugés à 10000g ce qui constitue la fraction pré-triée. Cette fraction passe ensuite à travers un FACS (Fluorescence-Activated Cell Sorter) afin de récupérer la fraction triée contenant les PB fluorescents. Les protéines des fractions pré-triées et triées sont identifiée par LC-MS/MS (Liquid Chromatography–Tandem Mass Spectrometry). En parallèle, les ARN totaux des fractions pré-triées et triées sont extraits, les librairies d'ADNc préparées à partir de random-primers puis séquencées à haut débit. (Modifié d'après Standart and Weil, 2018).

**B. Identification du réseau d'interactions des PB par marquage de proximité à la biotine.** Une protéine appât A (DCP1A et PAT1B dans Youn et al., 2018) contenue dans les PB et fusionnée à la biotine-ligase BirA\* étiquetée avec le peptide FLAG est exprimée transitoirement dans des cellules HEK. L'ajout de biotine au milieu de culture permet à BirA\* de biotinyler des protéines environnantes dans un rayon de 10 nm. Les partenaires d'interaction directs sont ensuite purifiés par affinité avec un anticorps dirigé contre le FLAG et identifiés en spectrométrie de masse. Ceci réalisé en parallèle pour plusieurs protéines appât contenues dans les PB, permet en croisant les interactomes d'établir le réseau d'interactions protéiques localisées dans les PB. (Modifié d'après Go et al., 2019 Biorxiv)

La purification des PB met par ailleurs en évidence une spécificité de composition protéique qui différencie les PB d'autres granules mRNP dont notamment les granules de stress. En effet le croisement du protéome des PB avec celui des granules de stress ne trouve que 25% de protéines communes entre les deux types de granules. Également, les protéines des PB se caractérisent par leur relativement grand nombre de partenaires protéiques (Hubstenberger et al., 2017) ainsi que par la présence d'IDR (Intrinsically Disordered Region) (Uversky, 2017). Deux tiers d'entre elles sont des RBP associées au métabolisme de l'ARN (Hubstenberger et al., 2017). Ces caractéristiques sont importantes pour expliquer l'assemblage des PB que nous détaillerons dans un paragraphe dédié (*cf* Partie 2 paragraphe 2).



Figure 31 Protéome des PB suite à leur purification par FAPS

(A) Comparaison des scores de spectrométrie de masse associés aux protéines des fractions prétriée et triée. En orange les protéines significativement enrichies dans les PB, en bleu celles significativement déplétées.

82

(B) Répartition fonctionnelle des protéines enrichies et déplétées des PB. (Modifié d'après Hubstenberger et al., 2017).

# 1.2. Composition en ARN

# 1.2.1. Localisation d'ARN dans les PB par approche gène candidat

Avant que les PB ne soient purifiés, des approches d'hybridation fluorescente *in situ* sur molécule unique (smFISH) avaient détecté la présence d'ARNm (CAT-1) et de miARN endogènes (miR122) dans les PB (Bhattacharyya et al., 2006) ainsi que d'ARNm rapporteurs contenant des motifs particuliers tels des MRE (Pillai et al., 2005a), des séquences TOP (Halstead et al., 2015) ou des motifs ARE (Franks and Lykke-Andersen, 2007). Par ailleurs, une approche d'l'immuno-microscopie électronique a montré que les PB sont dépourvus d'ARN ribosomiques (Hubstenberger et al., 2017). Précédemment il avait été observé en immunofluorescence qu'à la différence des granules de stress, les protéines ribosomales ne se localisent pas dans les PB (Kedersha et al., 2005). Ensemble ces observations confirment que les transcrits localisés dans les PB ne sont pas traduits.

Les quantifications réalisées à l'échelle du transcrit individuel montrent que pour un ARN donné il existe une large variabilité intercellulaire de la proportion du transcrit localisée dans les PB. Par exemple pour l'ARNm SPEN la proportion du transcrit contenue dans les PB est de 15% en moyenne mais peut atteindre jusqu'à 30% dans 12 % des cellules (Hubstenberger et al., 2017), elle est comprise entre 1 et 13% pour l'ARNm rapporteur CFP-β-actine-MS2 (Aizer et al., 2014) et oscille entre 11 et 36 % pour un ARNm rapporteur ciblé par let7 (Pillai et al., 2005a).

# 1.2.2 RNome des PB

Suite à la purification des PB par FAPS présentée précédemment, les ARN totaux contenus dans les fractions pré-triée et triée ont été extraits et séquencés. L'analyse des résultats de séquençage montre que le stockage dans les PB concerne majoritairement des ARNm,

représentant un tiers du transcriptome humain codant. Il s'agit donc d'un phénomène à la fois large et sélectif (Figure 32). Les ARNm des PB ont pour particularité d'être régulés en traduction mais pas en stabilité par DDX6. Ils possèdent un faible rendement protéique, (Hubstenberger et al., 2017) résultant d'un biais de codons (Courel et al., 2019). Enfin, ils se trouvent également enrichis en ARNm cibles de répresseurs de la traduction : par exemple, les ARNm contenant des ARE se trouvent stockés dans les PB (Franks and Lykke-Andersen, 2007).

Chez la levure, les ARNm associés à deux composants des PB (Dcp2 et Scd6 -orthologue de LSM14A) ont été purifiés par cCLAP (chemical Cross-Linking coupled to Affinity Purification) dans trois conditions de stress chacune capable d'induire des PB, et séquencés (Wang et al., 2018). D'après cette étude, le recrutement d'ARNm par Dcp2 et Scd6 (qui inclurait donc le recrutement des ARNm des PB selon le postulat des auteurs) concerne un grand nombre de transcrits (1544 ARNm soit ~1/4 du transcriptome de levure) avec 1/3 des transcrits s'exprimant de façon stress-spécifique. De manière intéressante, la longueur du CDS des transcrits spécifiquement associés aux protéines Dcp2 et Scd6 est fonction de la nature du stress. Nous reviendrons sur ce point lorsque nous aborderons la formation des PB (partie 2 paragraphe 2.2)



Figure 32 Principales caractéristiques des ARNm enrichis dans les PB

(A) Comparaison des abondances d'ARN entre les fractions triée et pré-triée à partir des données de RNAseq, exprimées en CPM (Count Per Million). En rouge les transcrits significativement enrichis dans les PB et en vert ceux significativement déplétés. Ces données montrent que les PB concentrent jusqu'à un cinquième du transcriptome.

(B) Comparaison des proportions d'ARN codant et non codant enrichis et exclus des PB indiquant que les PB contiennent majoritairement des ARNm.

(C) ARNm du transcriptome humain, enrichis, ou déplétés des PB représentés selon leur contenu en GC. Les pourcentages en GC médians sont précisés en bas. Les PB contiennent majoritairement les ARNm riches en AU du transcriptome.

(D) Comparaison des abondances des protéines et des ARNm qui les codent et colorés selon l'enrichissement des ARNm dans les PB. Pour un niveau d'expression d'ARNm donné, l'abondance des protéines qu'ils codent est d'autant plus faible que ces ARNm sont fortement enrichis dans les PB. (Modifié d'après Courel et al., 2019 ; Hubstenberger et al., 2017)

# 2. Formation des PB

La première description du comportement liquide des organites sans membrane a été réalisée sur les P-granules de cellules embryonnaires chez *C. elegans* (Brangwynne et al., 2009). Dans cet organisme il a été observé que les P-granules fusionnent, se condensent, se dissolvent, échangent rapidement des composants protéiques avec le cytoplasme et réagissent à la déformation en fluant (*i.e.* en se déformant à une vitesse lente sous l'effet d'une force) et leur viscosité dynamique (Pa.s.) a été estimée à 1 Pa.s (pour comparaison  $\eta_{eau}$  à 30°C = 0,8 .10<sup>-3</sup> Pa.s et  $\eta_{miel 30\%humidité à 30°C} \sim 2$  Pa.s (Yanniotis et al., 2006)). Des comportements similaires de gouttelettes visqueuses ont ultérieurement été décrits dans d'autres organites (Hyman et al., 2014; Li et al., 2018; Shin and Brangwynne, 2017) et constituent autant d'observations suggérant que les organites sans membrane se forment par un processus physique de séparation de phase liquide-liquide (Hyman et al., 2014).

# 2.1 La séparation de phase liquide-liquide

# 2.1.1. Principes fondamentaux

La séparation de phase liquide-liquide (LLPS) désigne le partage d'une phase liquide initialement homogène en deux phases distinctes : une phase concentrée et une phase déplétée. Ce phénomène se produit à partir de seuils de concentration et dans des conditions de température (Nott et al., 2015) et de pH (Kaibara et al., 2000; Koga et al., 2011) bien précis récapitulés dans un diagramme de phase (Figure 33). A l'échelle moléculaire, la LLPS se produit dans des conditions où les interactions homotypiques (*i.e.* entre molécules de propriétés similaires) entre composants de la solution deviennent plus fortes que les interactions hétérotypiques ce qui rend le maintien d'une phase liquide unique thermodynamiquement défavorable (Gomes and Shorter, 2019). Notons que la nature des cosolvants ainsi que la concentration en sels peuvent également influencer la formation des condensats *in vitro* en modifiant la force des interactions entre les ARN et protéines entrant en séparation de phase (Nakashima et al., 2019).



# Figure 33 Diagramme de phase et séparation de phase liquide-liquide

**A**. Diagramme de phase théorique montrant les conditions de concentration dans lesquelles le système est sous forme d'une phase homogène (jaune) ou de deux phases séparées (vert). Les pointillés représentent la réponse du système à un accroissement de concentration

**B.** Un mélange homogène se sépare en deux phases à partir du seuil de concentration (c). Passé ce seuil, la taille de la gouttelette s'accroît sans que sa concentration ne soit modifiée (d), (e) (f). Au-delà du seuil de concentration (f), le système retourne dans un état monophasique (Modifié d'après McSwiggen et al., 2019).

La valeur du seuil de concentration à partir duquel un composant entre en séparation de phase dépend principalement de deux paramètres moléculaires : la multivalence du composant c'est-à-dire le fait qu'il possède plusieurs sites d'interaction avec d'autres ligands, et l'affinité de chaque site d'interaction pour ses ligands (Peran and Mittag, 2020). L'importance de la multivalence pour la formation des séparations de phase a d'abord été démontrée expérimentalement *in vitro* sur des mélanges de protéines, d'ARN et de protéines/ARN (Boeynaems et al., 2018) puis *in vivo* sur des protéines chimères fluorescentes (Li et al., 2012). Dans cette étude, la co-expression dans des cellules HeLa de la protéine mCherry-SH3<sub>5</sub> contenant cinq répétitions du domaine SH3 (SRC Homology 3) avec la protéine eGFP-PRM<sub>5</sub> comportant cinq répétitions du motif ligand de SH3, PRM (Proline Rich Motif), conduit à la formation de granules cytoplasmiques de 0,5 à 2 µm de diamètre. Ceci ne se produit pas lorsque les mêmes protéines sont exprimées seules ou sous des versions contenant un plus petit nombre de modules répétés confirmant ainsi que des interactions multivalentes entre protéines peuvent engendrer des séparations de phase dans les cellules.

En terme de cinétique, la séparation de phase commence par une étape de nucléation où les protéines ayant le seuil de concentration le plus bas, les « scaffolds », se condensent pour former le cœur du granule et recrutent dans un second temps d'autres composants, les clients, dont le seuil de concentration est plus élevé (Alberti, 2017; Lin et al., 2015a; Nott et al., 2015). Les mécanismes *in vivo* du processus de nucléation ne sont pas clairement établis. Toutefois plusieurs études étayent l'idée que la nucléation des organites sans membrane commence par le pré-assemblage de certains composants spécifiques du granule. Par exemple, les nucléoles se forment à partir d'un ARNr (Grob et al., 2014) ou encore les centrosomes à partir d'un centriole (Gönczy, 2012; Zwicker et al., 2014).

En théorie, le recrutement des clients s'effectue par partitionnement ou séquestration. Formellement, le coefficient de partition des molécules clients Kpart (i.e. le rapport de leurs concentrations respectives dans la phase surconcentrée et dans le solvant) dépend de la différence d'énergie libre standard ( $\Delta$ G0) entre ces différentes phases et est donné par la relation Kpart =  $e^{-\Delta GO/RT}$  où R est la *constante* des gaz parfaits et T la température.  $\Delta GO$  est ellemême décomposée en plusieurs contributions  $\Delta G0 = \Delta G0_{hphob} + \Delta G0_{charge} + \Delta G0_{Hbond} + \Delta G0_{mesh}$ (Figure 34). Brièvement,  $\Delta GO_{hphob}$  est l'énergie libre de solvatation, elle rend compte du fait que la polarité locale à l'intérieur des condensats est plus faible que dans leur environnement aqueux proche ce qui favorise le partitionnement des molécules hydrophobes.  $\Delta GO_{charge}$ résulte de l'existence de larges régions chargées dans certaines molécules et explique notamment le partitionnement des IDP (Intrinsically Disordered Protein) sur lesquelles nous reviendrons dans le paragraphe suivant.  $\Delta GO_{Hbond}$  rend compte des interactions par liaison hydrogène des molécules partitionnées avec la matrice du condensat. Enfin ΔG0<sub>mesh</sub> représente l'énergie nécessaire pour déformer réseau d'interactions à l'intérieur du condensat afin d'y intégrer de nouvelles molécules, il s'agit d'une contribution négative au partitionnement (Nakashima et al., 2019).



### Figure 34 Partitionnement des molécules clients dans les biocondensats

Dans le cas des biocondensats déjà formés les molécules se partitionnent entre le solvant et la séparation de phase selon la différence d'énergie libre entre ces deux phases. La molécule A ayant un  $\Delta G^{\circ}$  0 est sélectivement recrutée dans le granule, la molécule B n'a pas de comportement déterminé et la molécule C est sélectivement exclue du granule. Plusieurs interactions contribuent à la différence d'énergie libre illustrée à droite (Modifié d'après Nakashima et al., 2019)

# 2.1.2. Déterminants moléculaires des LLPS

Plusieurs types d'interactions entre ARN et protéines interviennent dans la formation des organites sans membranes. Les domaines repliés des protéines forment des interactions protéines-protéines et/ou protéines-ARN spécifiques (Kato et al., 2012; Li et al., 2012). Les protéines contenant des IDP contribuent également à plusieurs types d'interactions multivalentes. A la différence des domaines globulaires, les IDP n'adoptent pas de conformation tridimensionnelle fixe du fait de la présence de longs éléments de séquence ayant une faible diversité d'a.a et de la composition chimique de ces a.a les empêchant de se replier en domaines structurés, ce qui contribue notamment à maintenir le comportement liquide des biocondensats (Darling et al., 2018). Ces séquences non structurées appelées LCD (Low Complexity Domains) sont souvent enrichies en acides aminés à résidus polaires (glycine, glutamine, asparagine, et serine) et/ou chargés (acide aspartique, acide glutamique, arginine et lysine) (Uversky et al., 2015) se trouvant répétés sous forme de petits motifs FG-, RG-, GY-, KSPEA-, SY, ou formant des régions riches en Q/N (Banani et al., 2017), ce qui les rend particulièrement aptes à former des séparations de phase liquide-liquide (Brangwynne et al., 2015; Nott et al., 2015; Pak et al., 2016). D'ailleurs, in vitro, les IDP suffisent à assembler des granules protéiques par LLPS. Ceci a été montré sur des solutions contenant juste une IDP comme par exemple DDX4, une protéine de nuage (i.e. de granule germinal) (Nott et al., 2015), la protéine des granules de stress TIA-1 (Gilks et al., 2004) ou encore les régions désordonnées de plusieurs RBP mises en présence d'ARN dans des conditions physiologiques telles eIF4G, Lsm4, TIA1, Fus, hnRNPA1 (Lin et al., 2015a). L'implication des LCD de plusieurs RBP dans la localisation de ces RBP dans les biocondensats s'avère également importante in vivo. Par exemple chez la levure, les régions riches en Q/N de Lsm4p (Decker et al., 2007) ainsi que de Ccr4, Pop2, Dhh1 (Reijns et al., 2008) contribuent à l'accumulation de ces protéines dans les PB en conditions de stress. Chez la souris, les LCD de TIA1 et PUM2 contribuent à l'accumulation de ces protéines dans les granules de stress (Gilks et al., 2004; Vessey et al., 2006). De manière intéressante, les granules de stress mammifères possèdent une organisation sub-granulaire comprenant une région périphérique et un cœur où les concentrations en protéines et en ARN sont plus élevées que dans la périphérie (Jain et al., 2016; Souquere et al., 2009). Une approche de TALM (Tracking And Localisation Microscopy) permettant de localiser des protéines individuelles sur de longues périodes temporelles) a comparé dans des cellules neuronales de rat traitées à l'arsenite, la distribution des coefficients de diffusion de deux versions d'une protéine canonique des granules de stress (G3BP1) : la version entière de G3BP1 contenant 1 RBD et 4 LCD et une version tronquée (G3BPc) contenant 1 RBD et 2 LCD. Selon cette étude, les protéines G3BP<sub>C</sub> peuvent être recrutées dans les SG comme la protéine entière mais elles y sont moins mobiles. Ceci suggère que la présence de LCD contribue, à l'intérieur des SG, à la diffusion de G3BP1 et y facilite le passage d'un état interactif et immobile dans le cœur du SG à un état diffusif dans la périphérie. (Niewidok et al., 2018).

Parallèlement aux protéines, l'ARN joue aussi un rôle actif dans la formation des granules mRNP par LLPS. Il peut notamment agir comme « plateforme » de recrutement de RBP. Par exemple, lorsque la traduction est bloquée *in vivo* suite à un stress, ce sont les ARNm qui nucléent la formation des granules de stress (Bounedjah et al., 2014; Van Treeck et al., 2018). Alternativement, les ARN peuvent être recrutés *in vitro* dans des granules déjà pré-nucléés (Nott et al., 2016), notamment *via* des interactions ARN-ARN se produisant à la surface de condensats ARN ou RNP (Tauber et al., 2020). De manière intéressante, il est observé que la taille de granules mRNP artificiels reconstitués à l'intérieur de cellules humaines est directement influencée par la densité des domaines d'interaction avec l'ARN, pouvant en effet conduire à une gêne stérique empêchant le recrutement d'autres briques élémentaires à la surface du condensat (Garcia-Jove Navarro et al., 2019). (Figure 35)



# Figure 35 Effet de l'ARN sur la taille de condensats ARN-protéine artificiels recrées dans les cellules humaines

(A) Des granules ARN-protéines artificiels (ArtiG<sup>mCh/PUM</sup>) sont recrées dans des cellules HeLa en coexprimant les protéines chimères mCherrry-FtFm et PUM-FtFm. FtFm est une protéine chimère composée de 24 répétitions de la ferritine chacune fusionnée à la protéine F36M-FKBP (version mutée de la protéine FKBP ayant la propriété de former des homodimères avec des affinités de l'ordre de 1 $\mu$ M). Dans sa version PUM-FtFm, la FtFm est fusionnée au domaine de liaison à l'ARNm de la protéine Pumilio1 humaine.

**(B)** Les plasmides codant mCherrry-FtFm et PUM-FtFm. sont transfectés dans différents ratios (1 :1, 5 :1, et 10 :1) et la formation des granules est mesurée en microscopie confocale 8-10 h après transfection.

(C) Quantification de la taille des granules artificiels (\*\*\*\*p < 0.0001).

(Modifié d'après Garcia-Jove Navarro et al., 2019)

2.1.3. Eléments régulateurs des LLPS in vivo

*In vivo*, d'autres paramètres peuvent moduler la formation de condensats par LLPS. Certaines modifications post traductionnelles induisent des changements dans les charges des acides aminés des domaines repliés et des LCD des protéines et/ou dans leur distribution. Ceci modifie le nombre ainsi que l'intensité des interactions multivalentes des protéines modifiées et change conséquemment leur capacité à former des séparations de phase (Bah and Forman-Kay, 2016 ; Hofweber and Dormann, 2019). Par exemple, la méthylation des arginines de DDX4X double son seuil de concentration ce qui tend à dissoudre les granules qu'elle forme (Nott et al., 2015).

Certaines protéines agissent également directement sur les séparations de phase liquide liquide. C'est le cas notamment des hélicases à ARN Dhh1, Ded1, Dbp1, Dbp2 (Hondele et al., 2019) et eIF4A (Tauber et al., 2020), qui, en modulant les structures secondaires de l'ARN et les interactions protéine/ARN, contrôlent activement les propriétés viscoélastiques des granules. Chaque hélicase serait spécifique d'un type de granule particulier (Hondele et al., 2019)

Enfin, signalons que l'activité de protéines chaperonnes peut intervenir dans l'assemblage ou le désassemblage des biocondensats. Par exemple chez *C. elegans*, le complexe CCT (Chaperonin-Containing Tailless *complex* polypeptide 1) contribue à l'assemblage des grP-bodies (Hubstenberger et al., 2015), tandis que chez la levure, une mutation sur le site de liaison à l'ATP de CCT3 conduit à la formation de PB hypertrophiés (Nadler-Holly et al., 2012). Dans les cellules humaines, les deux ATPases RUVBL1/2 prennent part au remodelage des granules de stress, en synergie avec les complexes CCT et MCM (MiniChromosome Maintenance complex) (Jain et al., 2016).

# 2.2 Le processus de formation des PB in vivo

2.2.1 Recrutement d'ARNm réversiblement exclus de la traduction

Tous les facteurs d'initiation de la traduction sont absents des PB (à l'exception d'eIF4E sans doute en raison de son association avec son répresseur 4E-T (Andrei, 2005; Ferraiuolo et

92

al., 2005). La quasi-totalité des protéines ribosomales (73/78) est absente des protéines enrichies dans les PB et une approche d'hybridation in situ couplée à de l'immuno-microscopie électronique montre que les ARNr 18S et 28S sont exclus des PB (Hubstenberger et al., 2017). Ainsi les ARNm des PB se trouvent exclus du dispositif de traduction. Ne pas être associé à la machinerie de traduction s'avère nécessaire au recrutement des ARNm dans les PB. En effet, lorsque les polysomes sont artificiellement figés sur l'ARNm au moyen de cycloheximide, le nombre de PB décroît et ce quelle que soit la protéine utilisée pour les repérer (Andrei, 2005; Wilczynska et al., 2005). Inversement, lorsque les polysomes sont artificiellement dissociés de l'ARNm par ajout de puromycine, le nombre de PB augmente (Wilczynska et al., 2005). La visualisation des mouvements individuels d'ARNm rapporteurs sortant de la traduction par une approche de NCT (Nascent Chain Tracking)\*<sup>5</sup> met en évidence deux types de comportements des ARNm par rapport aux PB. Une partie d'entre eux s'associe transitoirement (entre 6 à 18s) aux PB tandis que d'autres sont maintenus à l'intérieur des PB pour des périodes prolongées (entre 1min30s et 45min) où ils seraient stockés sous forme réprimée (Moon et al., 2019) (Figure 36). Notons que la répression de la traduction des ARNm stockés dans les PB est réversible. Par exemple, supprimer la répression de la traduction de l'ARNm CAT-1 provoque sa délocalisation des PB et son recrutement aux polysomes (Bhattacharyya et al., 2006). Les dynamiques d'interaction des ARN avec les PB ont été visualisées sur d'autres classes d'ARN notamment les miARN (Pitchiaya et al., 2019). Ces derniers présentent également un schéma d'interaction bimodal (*i.e.* interactions stables ou transitoires) avec les PB, influencé par le statut de liaison du miARN à son ARNm cible. En effet, la micro-injection d'un ARNm cible du miARN rapporteur let7 accroît d'un facteur cinq la proportion d'interactions transitoires formées par ce miARN avec son ARNm cible.

<sup>&</sup>lt;sup>5</sup> Le NCT est une approche basée sur l'utilisation conjointes de tags présentant plusieurs épitopes et de sondes fluorescentes couplées à des anticorps permettant de quantifier les dynamiques de traduction à l'échelle du transcrit individuel.



Figure 36 Modèle de recrutement des ARNm aux PB

Suite à la répression de la traduction, les ribosomes se dissocient. Les ARNm diffusent dans le cytoplasme sous forme condensée et interagissent transitoirement avec des composants à la surface du granule (pointillés noirs). Certains ARNm forment des interactions stables et sont engagés dans des interactions multivalentes avec d'autres ARNm ou protéines. (Modifié d'après Moon et al., 2019).

En termes de mécanismes de recrutement des ARNm aux PB, deux déterminants principaux interviennent. D'un côté, une partie des ARNm enrichis dans les PB sont ciblés par des RBP ayant une activité de répresseurs spécifiques de la traduction et enrichis dans les PB. Aussi est-il plausible que la reconnaissance d'un ou plusieurs éléments de séquence dans la 3'UTR des ARNm cibles de ces RBP soit associée au recrutement simultané de leurs transcrits cibles dans les PB (Hubstenberger et al., 2017). Parallèlement, les ARNm des PB possèdent un biais de codon à l'origine de leur faible rendement protéique (Courel et al., 2019). Hypothétiquement, le fait d'être moins bien traduits en ferait des cibles plus efficacement régulables par répression de la traduction comparé à des ARNm intrinsèquement traduits de manière active, dont l'expression serait plus efficacement contrôlée par dégradation.

# 2.2.2 Assemblage des PB à partir de complexes mRNP de répression de la traduction

Plusieurs éléments suggèrent que les ARNm sont recrutés dans les PB sous forme de mRNP suite à l'action de répresseurs de la traduction. En effet, la suppression par ARN interférence de l'expression de certains facteurs de répression généraux de la traduction comme 4E-T, LSM1, DDX6 ou CCR4 empêche l'accumulation réciproque de chacun de ces facteurs dans les PB ce qui laisse envisager qu'ils y soient recrutés sous forme de complexes pré-préformés plutôt qu'individuellement (Andrei, 2005). Concernant les complexes de répression de la voie d'ARN interférence, les protéines du complexe RISC, les miARN et leurs ARNm cibles sont présents dans les PB (Pillai et al., 2005a) et la suppression de GW182 par ARN interférence délocalise AGO2 des PB tout en inhibant la répression de la traduction d'ARNm rapporteurs (Liu et al., 2005). Ceci a très tôt suggéré que les ARNm cibles de miARN sont recrutés aux PB sous forme de miRNP déjà réprimés. Enfin, l'interaction 4E-T/DDX6 induit la répression de traduction d'ARNm rapporteur et contribue en partie à la formation des PB (quelques PB peuvent se former après mutation du domaine d'interaction CHD de 4E-T avec DDX6) ce qui montre que l'association de ces deux protéines sur l'ARNm contribue à son recrutement aux PB (Kamenska et al., 2016).

Dans les cellules humaines, plusieurs protéines contribuent au maintien des PB dès lors que leur suppression par ARN interférence entraine une diminution du nombre de PB observables en immunofluorescence. Certaines de ces protéines sont indispensables au maintien des PB quand l'absence de l'une d'entre elles entraine la dissolution complète des PB (Figure 37). Ceci concerne notamment les protéines DDX6, 4E-T, LSM1, CCR4 (Andrei, 2005), LSM14A (Yang, 2006), GW182 (Yang, 2004) et CPEB1 (Serman et al., 2007). Toutefois dans la majorité des cas testés, lorsque les cellules sont soumises à un stress capable d'induire les PB, ces derniers se reforment même en l'absence de l'une des protéines requises pour leur maintien, montrant

ainsi qu'elles ne sont pas indispensables à l'assemblage *de novo* des PB. Trois protéines des PB, DDX6 4E-T et LSM14A, dérogent à ce comportement. Effectivement, en l'absence de l'une de ces trois protéines, il est impossible de reformer des PB après ajout de drogues induisant les PB tels l'arsenite, la vinblastine, soit après exposition des cellules à 30°C (Ayache et al., 2015).



Figure 37 Identification des protéines de maintenance et d'assemblage des PB

Les cellules HeLa sont transfectées avec les siARN précisés sur la gauche. 48h plus tard, les PB sont analysés en par immunofluorescence avec un anticorps anti-EDC4 (Barre d'échelle 10  $\mu$ m). Le comptage des PB sur trois expériences indépendantes (\*\*, p < 0.005.) montre que les protéines DDX6, LSM14A et 4E-T sont indispensables au maintien des PB tandis que PAT1B et ATXN2L ne font qu'y contribuer.

Après traitement à l'arsenite, à la vinblastine ou après un choc thermique, les PB sont réinduits en l'absence de toutes les protéines testées sauf DDX6 LSM14A et 4E-T ce qui démontre le caractère indispensable de ces trois protéines à l'assemblage des PB. (Modifié d'après Ayache et al., 2015)

### 2.2.3 Formation des PB dans d'autres organismes

Si le principe d'assemblage des PB reposant sur la formation d'un réseau d'interactions entre RBP multivalentes semble conservé parmi les eucaryotes, des différences existent quant aux conditions de formation des PB. Par exemple, alors que les PB sont constitutivement présents dans les cellules mammifères, ils ne se forment chez la levure que dans des conditions restreintes de croissance telles la privation de glucose (Teixeira et al., 2005). Dans ces conditions la majorité de la traduction cellulaire s'arrête et certains ARNm non traduits se condensent avec des facteurs de dégradation et de répression de la traduction sous forme de PB (Brengues et al., 2005; Lui et al., 2014; Sheth and Parker, 2003).

Par ailleurs, la majorité des protéines des PB sont conservées parmi les eucaryotes (avec quelques exceptions préalablement mentionnées *cf* partie 2 paragraphe 1). Toutefois, leur implication relative dans le processus d'assemblage des PB diffère d'un organisme à l'autre. Chez la levure des souches *edc3* ne peuvent pas former de PB suite à la privation de glucose. De plus l'expression de protéines Edc3 dont les domaines d'interaction Lsm ou Yjef-N ont été délétés entraine un défaut d'assemblage des PB marqués par Dcp2 sans affecter le niveau d'expression de Dcp2 (Decker et al., 2007). D'autres approches génétiques chez la levure ont mis en évidence un statut similaire des protéines Dcp2 et Pat1 (Pilkington and Parker, 2008; Teixeira and Parker, 2007). Le rôle prépondérant de ces facteurs de dégradation n'est pas retrouvé pour les PB de cellules humaines (Ayache et al., 2015). Réciproquement, dans les cellules humaines trois protéines : DDX6, LSM14A et 4E-T ont un statut unique dans la formation des PB (Ayache et al., 2015) ne se retrouvant pas chez la levure.



# 2.3.1. Structure primaire et fonctions moléculaires

Figure 38 Structure primaire de DDX6, LSM14A, 4E-T et LSM14B

En noir le nom des domaines et motifs protéiques, en bleu les partenaires protéiques directs, en orange les fonctions moléculaires associées.

# <u>DDX6 :</u>

La protéine DDX6 est une hélicase à ARN à boîte DEAD (Cordin et al., 2006) évolutivement conservée de la levure à l'homme (Presnyak and Coller, 2013; Weston and Sommerville, 2006) localisée dans le cytoplasme et particulièrement concentrée dans les PB (Minshall et al., 2009). Comme les autres hélicases à motif DEAD, DDX6 possède deux domaines globulaires centraux D1 et D2 contenant chacun le domaine RecA caractéristique des hélicases (Fairman-Williams et al., 2010)(Figure 38). Le domaine D1 contient les motifs Q, I(AKNGTGK), la (VPTRELALQ), lb (TPGR), II (DEAD), et III (SAT). Le domaine D2 contient les motifs IV(IIF),QwwR, V (TRGID). et VI(LHRIGRSGR). Chacun de ces motifs contribue à différents aspects de l'activité biochimique de DDX6 à savoir : la liaison à l'ATP (motifs Q, I et II), l'hydrolyse de l'ATP (motifs Q et III), la liaison à l'ARN (motifs Ia, Ib, IV et V) et l'activité hélicase (motif VI) (Cordin et al., 2006; Nishimura et al., 2015; Tanner et al., 2003).

DDX6 et ses homologues se trouvent particulièrement abondants dans le cytoplasme : dans des cellules HeLa, DDX6 est 7 fois plus abondante que l'ARNm en ratio molaire (Ernoult-Lange et al., 2012), dans les ovocytes de Xénope elle y est 15 fois plus abondante que les ARNm réprimés (Smillie and Sommerville, 2002) et 8 fois plus abondante chez le trypanosome (Kramer et al., 2010)

En termes de propriétés biochimiques, DDX6 se lie avec une grande affinité ( $K_d$ = 1 nM) et sans spécificité de séquence à l'ARNm (Dutta et al., 2011; Ernoult-Lange et al., 2012). De plus, elle s'oligomérise *in vitro*, sous forme de dimère et trimère, indépendamment de la présence d'ARN (Ernoult-Lange et al., 2012a).

Dans les cellules humaines, DDX6 possède une activité de répresseur démontrée par une approche de tether (Chu and Rana, 2006). Le domaine D2 est particulièrement important dans cette activité de répression puisque la fixation artificielle de D2 dans la 3'UTR d'un ARNm rapporteur suffit à en réprimer la traduction *in vivo* (Minshall et al., 2009). Le domaine D2 contient également les sites de liaison de DDX6 à plusieurs partenaires protéiques. Plusieurs approches structurales ont co-cristallisé D2 avec différents répresseurs de la traduction et activateurs du decapping : LSM14A, EDC3, PAT1B, CNOT1 et 4E-T. Les interactions entre DDX6 et LSM14A/EDC3/ PAT1B/4E-T sont mutuellement exclusives (Brandmann et al., 2018; Ozgur et al., 2015a; Sharif et al., 2013a; Tritschler et al., 2008, 2009), ce qui expliquerait que DDX6 soit impliquée dans plusieurs complexes protéiques associés à différentes fonctions biologiques que nous détaillons par la suite.

# <u>LSM14A :</u>

LSM14A est une RBP appartenant à la famille LSM et conservée des eucaryotes unicellulaires à l'homme (Albrecht and Lengauer, 2004). Chez les vertébrés, LSM14 a évolué en deux protéines paralogues, LSM14A et LSM14B (Marnef et al., 2009). Chez le Xénope, les deux paralogues présentent une expression temporelle différente dans les ovocytes: LSM14B y est exprimée de manière croissante jusqu'au stade II de l'ovogenèse (Minshall et al., 2007) et co-sédimente avec DDX6 sur des ARNm spécifiques, activement traduits à ce moment du développement (Ladomery and Sommerville, 2015). L'expression de LSM14A s'accroît quant à elle progressivement en parallèle de la décroissance d'expression de LSM14B à partir du stade II de l'ovogenèse (Minshall et al., 2007; Tanaka et al., 2006). Chez A. thaliana, DCP5 (homologue de LSM14A) est également impliquée dans le développement précoce en régulant la traduction et la stabilité d'ARNm spécifiques impliqués dans la germination (Xu and Chua, 2009). Dans les cellules humaines, LSM14A et LSM14B co-localisent dans les PB de cellules somatiques (Yang, 2006) et ont un statut différent vis-à-vis du maintien des PB : alors que l'absence de LSM14A entraine la disparition des PB, l'absence de LSM14B accroît quant à elle leur formation. Cette dernière observation est à mettre en relation avec l'existence d'une co-régulation entre ces deux protéines : la diminution d'expression de LSM14A stimule l'expression de LSM14B et inversement (Ayache et al., 2015) (Figure 39).



# Figure 39 Co-régulation de l'expression de LSM14A et de LSM14B

Après transfection des siLSM14A ou si LSM14B, les protéines sont analysées par WB avec les anticorps indiqués et les signaux quantifiés dans 3 expériences indépendantes. (Modifié d'après Ayache et al., 2015)

En termes de structure primaire (Figure 38), la protéine LSM14A se compose du domaine caractéristique LSm pouvant se lier à l'ARN et à 4E-T (Brandmann et al., 2018; Nishimura et al., 2015), d'une région riche en sérine/thréonine pouvant être modifié post-traductionnellement par phosphorylation, d'un motif FDF (phénylalanine-aspartate-phénylalanine) et de motifs FDF-TFG impliqués dans des interactions protéine-protéine avec DDX6 (Brandmann et al., 2018). Le motif FFD de LSM14A est capable de lier directement EDC4 (Brandmann et al., 2018). Enfin, les deux motifs RGG arginine-glycine-glycine peuvent être méthylés par PRMT1 ce qui contribue à localiser LSM14A dans les PB (Matsumoto et al., 2012). LSM14B diffère structurellement de LSM14A au niveau de sa partie C terminale, plus courte, et ne contenant qu'un seul motif RGG.

L'activité de répression de la traduction de LSM14A a été démontrée *in vivo* par des expériences de tether de la partie N-terminale de LSM14A chez le Xénope (Tanaka et al., 2006a) et du domaine Lsm chez l'homme (Brandmann et al., 2018).

# <u>4E-T</u>

4E-T (eIF4E Transporter protein) aussi appelé EIF4ENIF1 (eIF4E Nuclear Import Factor1) est une protéine évolutivement conservée parmi les métazoaires. Elle a initialement été

caractérisée comme une 4E-BP requise pour la localisation d'eIF4E dans le noyau (Dostie et al., 2000b). Si la protéine 4E-T peut être localisée dans le noyau, elle se trouve majoritairement présente dans le cytoplasme et dans les PB (Andrei, 2005; Ferraiuolo et al., 2005).

Comme les autres 4E-BP, la partie N-terminale de 4E-T contient deux motifs de liaison à eIF4E: le motif consensus YX<sub>4</sub>Lφ entrant en compétition avec eIF4G (Sonenberg and Hinnebusch, 2009), et le motif adjacent commun aux 4E-BP mais absent chez eIF4G (Peter et al., 2015). Les séquences NLS (Nuclear localisation Sequence) et NES (Nuclear Export Sequence) sont responsables de l'activité de transporteur nucléaire de 4E-T (Dostie et al., 200b), (Figure 38).

La comparaison des séquences de 4E-T entre les vertébrés et la Drosophile a identifié quatre motifs conservés : les motifs I (131-161), II (291-316), III (331-346) et CHD. Le motif I lie spécifiquement la protéine UNR, les motifs II et III n'ont pas de rôle connu à ce jour et le domaine CHD se lie à DDX6 (Kamenska et al., 2016). D'après la structure du complexe LSM14A-4E-T, la partie C terminale de 4E-T contient un motif s'associant au domaine Lsm de LSM14A (Brandmann et al., 2018). De plus, une région centrale de 4E-T (résidus 335–490) interagit *in vitro* directement avec le domaine Lsm de LSM14A (Nishimura et al., 2015) ce qui est confirmé *in vivo* par co-immunoprécipitation (Kamenska et al., 2016).

Concernant les fonctions moléculaires de 4E-T, cette protéine possède une activité de répresseur général de la traduction. En effet, sa surexpression diminue la traduction générale, et ce de manière eIF4E-dépendante (Ferraiuolo et al., 2005; Kamenska et al., 2014b). De plus, 4E-T réprime la traduction d'ARNm spécifiques indépendamment de sa liaison à eIF4E. En effet 4E-T réprime la traduction d'un ARNm rapporteur en tether assay même lorsque les motifs d'interaction de 4E-T avec eIF4E sont mutés. Enfin, 4E-T contribue à la répression de la traduction dans le cadre des régulations par les miARN conjointement avec DDX6 (Kamenska et al., 2014b).

2.3.2. Principaux complexes mRNP cytoplasmiques incluant DDX6, LSM14A, 4E-T

DDX6, LSM14A et 4E-T sont des RBP multivalentes pouvant interagir directement l'une avec l'autre et possédant toutes les trois une activité de répression de la traduction. Ces trois protéines et leurs homologues font partie de complexes mRNP pouvant réprimer la traduction et/ou enlever la coiffe 5' del'ARN selon les partenaires auxquels elles s'associent. Notamment, les trois protéines font partie du complexe de répression de la traduction CPEB initialement caractérisé dans les ovocytes de Xénope. Dans ces cellules se trouvant au stade I/II de l'ovogenèse, la protéine DDX6 co-purifie après filtration sur gel dans les mêmes fractions que CPEB1, 4E-T, PAT1A, LSM14B, elF4E1b et est également co-immunoprécipitée avec ces protéines (Minshall et al., 2007b, 2009). Dans les cellules humaines, la purification par TAP-tag des complexes mRNP contenant DDX6 a permis d'identifier LSM14A, 4E-T, PAT1B, LSM14B parmi les principaux partenaires protéiques de DDX6 mais pas la protéine CPEB1 sans doute trop faiblement exprimée, de sorte que le complexe de répression qu'ils forment a été appelé « CPEB-like » (Ayache et al., 2015).

DDX6 fait également partie avec 4E-T et CCR4-NOT d'un complexe de répression de la traduction des ARNm ciblés par les miARN. Dans ce complexe, DDX6 interagit avec la sousunité CNOT1 ce qui stimule l'activité ATPase de DDX6 (Mathys et al., 2014). De plus, des mutations empêchant DDX6 de se lier à NOT1 (Chen et al., 2014b; Mathys et al., 2014; Rouya et al., 2014) ou à 4E-T (Kamenska et al., 2016) inhibent la répression de la traduction d'un ARNm rapporteur cible d'un miARN.

L'association de DDX6 et de LSM14A au sein des complexes de decapping a principalement été étudiée sur leurs homologues chez la levure. Dans cet organisme, Scd6 (homologue de LSM14A) est un activateur direct de l'enzyme de decapping Dcp2. Elle se lie directement au domaine HLM de Dcp2 de même qu'Edc3 avec qui elle entre en compétition. *In vitro* Edc3 et Scd6 stimulent l'activité de Dcp1/Dcp2 mais l'affinité de Scd6 pour Dcp2 étant plus faible qu'Edc3, l'activation du decapping résultant de l'interaction Scd6/Dcp2 est également moins importante (Fromm et al., 2012b).

L'homologue de DDX6, Dhh1, co-immunoprécipite avec plusieurs facteurs de decapping dont Dcp1, Lsm1 et Pat1 (Coller et al., 2001) et co-cristallise avec Edc3 et Pat1 (Sharif et al., 2013). Les interactions directes de Dhh1 avec Pat1 et Edc3 sont mutuellement exclusives et interfèrent avec la capacité de liaison à l'ARN de Dhh1 (Sharif et al., 2013a), ce qui a également été observé chez la Drosophile (Tritschler et al., 2009). De plus, chez des doubles mutants  $dhh1\Delta/pat1\Delta$ , la demi-vie d'un ARNm rapporteur est significativement plus longue que chez des mutants de délétion  $dhh1\Delta$  ou  $pat1\Delta$  (Coller and Parker, 2005). Dans les cellules humaines, DDX6 est également co-immunoprécipitée avec DCP2, DCP1, EDC3, EDC4, PAT1B et LSM14A (Ayache et al., 2015; Fenger-Grøn et al., 2005). L'analyse structurale du complexe LSM14A-DDX6 montre que LSM14A se lie à DDX6 par les motifs FDF et TFG, séparés par un motif FFD lui-même requis pour l'interaction de LSM14A avec EDC4 (Brandmann et al., 2018). Certaines des interactions de LSM14A ne sont pas conservées de la levure à l'homme. Par exemple, EDC4 n'existe pas chez la levure et Scd6 peut directement y recruter le complexe de decapping par interaction directe avec Dcp1. De plus, plusieurs études *in vitro* ont montré que Scd6 peut réprimer la traduction d'un ARNm rapporteur en se liant directement sous sa forme méthylée par PRMT1 à eIF4G (Nissan et al., 2010; Poornima et al., 2016). L'existence d'un mécanisme similaire dans d'autres organismes reste à ce jour inconnu.

# 2.3.3 Apport des expériences de complémentation sur les fonctions biologiques de LSM14A, 4E-T et DDX6

Des expériences de complémentation montrent que suite à la délétion conjointe des domaines CHD (domaine d'interaction de 4E-T avec DDX6) et du motif I (motif d'interaction de 4E-T avec UNR), 4E-T perd sa capacité à réprimer la traduction d'un ARNm rapporteur ainsi que la traduction d'un ARNm rapporteur ciblé par un miARN. De plus, dans des cellules humaines déplétées de la protéine DDX6 endogène, l'expression d'une protéine DDX6 exogène entière restore l'activité de répression de 4E-T ce qui n'est pas le cas suite à l'expression de mutants ATPase de DDX6 ou du mutant d'interaction de DDX6 avec CNOT1(Kamenska et al., 2016). Ceci suggère que la fonction ATPase de DDX6, elle-même stimulée par la liaison de DDX6 à CNOT1 (Ozgur et al., 2015b), contribue à la répression de la traduction par 4E-T. En termes de localisation aux PB, la délétion du seul domaine CHD diminue de 60% le nombre de PB/cellule en comparaison à la version de 4E-T non mutée, indiguant que l'interaction 4E-T/DDX6 est requise pour la formation des PB (Kamenska et al., 2016). Concernant LSM14A, des expériences similaires où le motif TFG ou FFD est délété (motifs d'interaction de LSM14A avec DDX6) montrent que l'interaction DDX6/LSM14 contribue à la formation des PB (Brandmann et al., 2018). Concernant DDX6, une substitution d'acide aminé sur le motif de liaison de DDX6 à LSM14A et à 4E-T diminue la formation des PB

(Ozgur et al., 2015a; Sharif et al., 2013a; Tritschler et al., 2008), étayant ce faisant le rôle central des interactions DDX6-4E-T et DDX6-LSM14A dans la formation des PB.

# 3. Fonction moléculaire et importance biologique des PB

### 3.1 Stockage d'ARNm réprimés plutôt que dégradation d'ARNm

# 3.1.1 Arguments expérimentaux « pro-dégradation »

Le rôle des PB dans le métabolisme de l'ARNm est longtemps resté controversé entre deux fonctions : la dégradation des ARNm et le stockage de transcrits non traduits. Initialement, les PB ont été assimilés à des sites de dégradation de l'ARNm. En effet, ils contiennent presque tous les facteurs de la voie de dégradation 5'->3' incluant des déadénylases, des facteurs de decapping, l'enzyme XRN1 (van Dijk et al., 2002; Sheth and Parker, 2003), ainsi que plusieurs facteurs de la voie du NMD. De plus, des ARN poly(A) s'accumulent dans les PB après suppression par ARN interférence de XRN1 (Cougot et al., 2004) et la taille ainsi que le nombre de PB augmentent dans des souches de levures *xrn1* $\Delta$  ou *dcp1* $\Delta$  (Sheth and Parker, 2003). Enfin, une accumulation d'ARNm contenant un codon de terminaison prématuré, donc cibles du NMD, a été observée à la périphérie des PB (Durand et al., 2007). L'ensemble de ces résultats a suggéré que les PB seraient des sites actifs de dégradation de l'ARNm et/ou *a minima* des sites d'accumulation de transcrits en attente de dégradation (Decker and Parker, 2012).

### 3.1.2 Arguments expérimentaux « pro-stockage »

Néanmoins, plusieurs observations ont invalidé le modèle associant les PB à des sites de dégradation de l'ARNm. D'une part suite à la purification des PB, la distribution des reads du RNAseq est identique entre les fractions pré-triée et triée, ce qui suggère que les PB n'accumulent pas de produits de dégradation. De plus, le croisement de ces données avec le transcriptome siDDX6 réalisé en parallèle sur des cellules HEK293 montre que l'absence de cette protéine (et donc la dissolution des PB) n'influence pas le niveau d'expression des ARNm enrichis dans les PB. (Hubstenberger et al., 2017). Ces résultats ont été confirmés par une approche de smFISH ayant pour objectif de visualiser l'accumulation d'intermédiaires de dégradation dans les PB au moyen d'un ARN rapporteur bi-fluorescent TREAT (3'-RNA End Accumulation during Turnover). Cette étude montre que la dégradation du transcrit rapporteur se produit à l'extérieur des PB (Horvathova et al., 2017). Les conclusions sont similaires en utilisant le système rapporteur MS2-MCP chez S. cerevisiae dans des conditions de stress où se forment les PB (Tutucci et al., 2018). L'absence de dégradation des ARNm des PB en dépit de la présence d'enzyme de dégradation dans ces granules pourrait s'expliquer soit par le fait que les enzymes de dégradation s'accumulent dans les PB sous une forme inactive (Schütz et al., 2017) et/ou par le fait que les ARNm des PB puissent être protégés des enzymes de dégradation par exemple grâce à leur association à 4E-T/eIF4E empêchant le recrutement des enzymes de decapping (Räsch et al., 2020). Le consensus actuel est que les PB servent à stocker transitoirement des ARNm réprimés en traduction. En effet, plusieurs répresseurs de la traduction se concentrent dans des PB dont les trois RBP indispensables à leur assemblage DDX6, 4E-T et LSM14A. (Ayache et al., 2015; Hubstenberger et al., 2017). De plus, nos données de polysome profiling montrent que les ARNm enrichis dans les PB sont plus activement traduits en l'absence de DDX6 (donc en l'absence de PB) et suggèrent que ce sont des transcrits préférentiellement régulés en traduction qui s'accumulent dans les PB (Hubstenberger et al., 2017). Également, l'étude des facteurs des voies d'ARN interférence a montré que les composants du complexe RISC s'accumulent conjointement avec des ARNm cibles dont la traduction est inhibée par un miARN dans les PB et que les transcrits réprimés peuvent retourner dans le cytosol pour être traduits lorsque le miARN est inactivé (Bhattacharyya et al., 2006). Ceci est cohérent avec les résultats de l'approche de smFISH précédemment mentionnée, ayant démontré que l'association stable des miRNP aux PB nécessite que le miARN injecté soit fonctionnel pour réprimer la traduction de ses ARNm cibles (Pitchiaya et al., 2019a).

# 3.2 Homéostasie et adaptation cellulaire

# 3.2.1 Adaptation rapide et coordonnée du transcriptome

La capacité des PB à stocker conjointement et réversiblement un grand nombre d'ARNm réprimés en traduction représente une opportunité de contrôle supplémentaire de l'expression génique : celle d'intégrer différentes régulations post-transcriptionnelles et donc de pouvoir répondre rapidement aux changements d'environnement cellulaires. Chez la levure, il a été observé que les PB se formant en conditions de stress séquestrent des ARNm rapporteurs très exprimés hors conditions de stress. Dans des souches *edc3Δpatl1Δ* incapables de former des PB, ces ARNm ne peuvent plus être stockés dans les PB et leur expression est alors associée à une léthalité accrue par rapport à des levures WT (*Lavut and Raveh, 2012*). Ceci suggère que le stockage des transcrits dans les PB contribue effectivement à l'adaptation aux conditions environnementales.

Adresser cette question par une approche similaire sur les PB de cellules épithéliales humaines s'avère plus délicat car les PB n'y sont pas indispensables à la viabilité cellulaire en conditions standard de culture. Toutefois, deux observations issues de la purification des PB supportent l'idée que les PB y jouent un rôle de coordinateur de l'expression d'ARNm codant des protéines fonctionnellement voire physiquement associées (Standart and Weil, 2018). Premièrement, les ARNm codant des protéines régulatrices intervenant dans une même fonction cellulaire (cet ensemble d'ARNm est aussi appelé régulon), sont enrichis dans les PB alors que les transcrits codant des protéines effectrices tendent à en être exclus. Par exemple, les ARNm codant les protéines du ribosome, effecteur de la traduction, sont exclus des Pbodies, alors que les ARNm codant des régulateurs de la traduction incluant les protéines des PB eux-mêmes, s'y accumulent. De plus, les ARNm codant des protéines s'assemblant dans les mêmes complexes tendent à avoir le même comportement par rapport aux PB en termes d'enrichissement/ exclusion. Par exemple, les ARNm codant les sous-unités du centrosome et des complexes condensine/cohésine impliqués dans le cycle cellulaire sont stockés dans les Pbodies alors que les ARNm codant les sous-unités du protéasome et des nucléosomes en sont exclus suggérant que les P-bodies soient impliqués dans l'adaptation de la production des protéines individuelles à leur stœchiométrie au sein de complexes protéiques. (Hubstenberger et al., 2017), (Figure 40).

A la lumière du modèle de formation des PB par LLPS, il est envisageable que l'implication des PB à l'adaptation aux conditions environnementales soit basée sur leur capacité à établir un
équilibre dynamique avec le cytoplasme qui permettrait de tamponner les variations de concentration cytoplasmique des composants (ARNm et protéines) se concentrant dans les PB. Les résultats issus de la reconstitution de granules artificiels dans des cellule humaines appuient cette hypothèse. A partir de la phase de nucléation du granule artificiel, il est observé que la concentration cytosolique de la protéine FFm (ici l'élément structural unitaire des granules artificiels) cesse d'augmenter et se maintient à une valeur stationnaire tandis que la concentration de la même protéine dans la phase condensée continue de croître (Garcia-Jove Navarro et al., 2019). Ceci corrobore l'idée qu'*in vivo,* la condensation en granules puisse effectivement maintenir une protéine à une concentration cytoplasmique limite constante.



AGO1-2, ELAVL1, FRMR1, HNRNPM, IFGF2BP1-3, MOV10, PUM2, ZC3H7B

#### Figure 40 Coordination des régulations post-transcriptionnelles par les PB

Les PB stockent des ARNm peu traduits et codant essentiellement des protéines régulatrices et ayant tendance à s'assembler dans les mêmes complexes protéiques. Parallèlement, les ARNm exclus des PB sont fortement traduits et codent des protéines à fonctions constitutives. Des RBP particulières (carrés verts) localisent les ARNm aux PB par reconnaissance d'un élément cis dans l'UTR des transcrits des PB. (Modifié d'après Hubstenberger et al., 2017).

#### 3.2.2 Rôle des PB au cours du développement

Plusieurs observations suggèrent que les régulations post-transcriptionnelles médiées par les PB interviennent dans différents processus du développement en particulier le neurodéveloppement

Le dernier élément à l'appui de cette idée est apporté par des données de séquençage d'exons à haut-débit ayant identifié cinq mutations de novo, faux-sens hétérozygotes sur le gène DDX6 de patients présentant des signes de déficience intellectuelle ainsi qu'un retard de développement. Les cinq mutations (His372Arg, Arg373Gln, Cys390Arg, Thr391lle et Thr391Pro) sont localisées dans l'exon 11 de DDX6. Cet exon code deux motifs (motif QxxR et le motif V) du domaine RecA2 impliqué dans l'activité ATPase de DDX6, dans sa liaison à l'ARN ainsi qu'à ses partenaires protéiques (cf. partie 2 paragraphe 2.3.1). Les fibroblastes issus des patients exprimant les variants Arg373Gln et Cys390Arg de DDX6 à des niveaux similaires à ceux de la protéine non mutée présentent un important défaut d'assemblage des PB. En effet, alors que 70 à 80% des fibroblastes des parents des patients contiennent des PB, seulement 30% des cellules de patients contiennent des PB se trouvant moins nombreux que dans les fibroblastes des parents. De plus, les versions DDX6 mutées exprimées dans des cellules HeLa sont incapables de former de novo des PB et ne peuvent pas non plus interagir avec les partenaires principaux habituels 4E-T, LSM14A, PAT1B ni dans une moindre mesure avec EDC3. Enfin, le croisement du transcriptome des fibroblastes du patient portant la mutation Cys390Arg avec les données de CLIP DDX6 et le transcriptome d'une lignée K562 transfectée de manière stable par un shDDX6 dont l'expression a été induite pendant 48h, montre que les ARNm abondants dans les fibroblastes de patients (dont beaucoup codent des facteurs de traduction), le sont aussi dans les jeux de données de CLIP et dans le transcriptome shDDX6 ce qui suggère que ces transcrits sont régulés en stabilité par un mécanisme DDX6-dépendant et impliquant une liaison directe à DDX6 (Balak et al., 2019).

Une autre protéine des PB, 4E-T, est également impliquée dans le contrôle de la neurogenèse (Figure 41). Dans les précurseurs radiaux de cortex de souris, 4E-T s'associe à eIF4E au sein de granules similaires aux PB avec LSM1 et DDX6. Dans ces granules, 4E-T empêche la différenciation en neurones en réprimant la traduction de différents facteurs de transcription ainsi que de facteurs de différenciation bHLH (basic Helix Loop Helix) tels les Neurogénines 1 et 2 ou NeuroD qui lui sont retrouvés associés par une approche de RIP (RNA Immunoprécipitation) (Yang et al., 2014).



#### Figure 41 Modèle de contrôle de la neurogenèse par les PB

Les ARNm codant les facteurs de différenciation bHLH ainsi que des facteurs de transcription ont leur traduction réprimée par 4E-T et sont stockés dans les PB. Dans ces conditions, les cellules précurseurs continuent de se diviser. Lorsque ces ARNm sont déstockés des PB et traduits dans le cytoplasme, la différenciation des cellules précurseurs en neurones a lieu. (Modifié d'après Yang et al., 2014).

# RESULTATS

## Part1 Analysis of PB assembly factors in human cells provides new insight into LSM14A-associated functions

#### Introduction

Post-transcriptional regulation in the cytoplasm of eukaryotic cells relies on the balance between mRNA translation, storage and decay. Several pathways regulate mRNA translation and contribute to the adaptation of protein production to cellular needs. In metazoan, 4E-BPs (eIF4E Binding Proteins) mediate general inhibition of translation by regulating the eIF4F complex activity during initiation step (Kamenska et al., 2014a; Peter et al., 2015). In addition, miRNAs (micro-RNAs) and other *trans* regulators achieve selective translational inhibition by recognizing *cis* elements such as MRE (miRNA Response Element), ARE (AU-Rich Elements), CPE (Cytoplasmic Polyadenylation Elements) or TOP (Terminal OligoPyrimidine) motifs, embedded in the UTRs of their mRNA targets (Duchaine and Fabian, 2019; Harvey et al., 2018b; Hinnebusch et al., 2016; Iwakawa and Tomari, 2015).

Remarkably, a large number of transcripts translationally repressed by these pathways are able to concentrate into cytoplasmic mRNP granules called P-bodies (PBs) (Hubstenberger et al., 2017). These membrane-less organelles are thought to form by phase separation (Yoshizawa et al., 2020) and to coordinate storage of transcripts encoding regulatory proteins (Hubstenberger et al., 2017; Standart and Weil, 2018). Not to be associated to the translation machinery is required for mRNAs to accumulate into PBs. Indeed, in human cells where polysomes are artificially blocked on mRNAs by cycloheximide, PBs disappear whereas polysomes disruption by puromycin treatment, increases number of PBs (Andrei, 2005; Wilczynska et al., 2005). Also, visualization of different mRNA reporters highlighted that while some of them transiently associate to PBs other stably associate into PBs where they are thought to be stored in a repressed state (Moon et al., 2019).

Interestingly, while repression of translation occurs independently of mRNA accumulation in PBs, molecular actors of PB formation so far characterized in human cells are multitasking repressors of translation, namely the RNA helicase DDX6, the repressor of translation 4E-T (eIF4E-transporter protein), and LSM14A (Ayache et al., 2015).

113

DDX6 is a general repressor of translation since its silencing stimulates cellular translation (Chu and Rana, 2006) and it translationally represses reporter mRNAs when artificially tethered to their 3'UTR (Minshall et al., 2009). Moreover, DDX6 is a key effector of miRNA silencing in human cells since its depletion releases translational repression conferred by the let-7a miRNA (Chu and Rana, 2006; Eulalio et al., 2007a; Rouya et al., 2014). Structural experiments showed that human DDX6 binds to CNOT1 mIF4G domain (Chen et al., 2014; Mathys et al., 2014) CNOT1. This interaction activates DDX6 ATPase activity (Mathys et al., 2014) and enhances miRNA-mediated silencing (Chen et al., 2014; Rouya et al., 2014). Moreover, crystal structure of CNOT1/DDX6/4E-T complex (Ozgur et al., 2015b) shows that when directly bound to CNOT1, DDX6 can interact with 4E-T but not with its other partners EDC3, LSM14A and PAT1B, all of which directly interact with the RecA2 domain of DDX6 in a mutually exclusive manner (Jonas and Izaurralde, 2013; Ozgur et al., 2015; Sharif et al., 2013; Tritschler et al., 2009).

DDX6 partner, 4E-T, predominantly localizes to PBs in human cells (Andrei, 2005; Ferraiuolo et al., 2005) but can shuttle between nucleus and cytoplasm to localize eIF4E to the nucleus (Dostie et al., 2000). 4E-T acts as a general repressor of translation, partly by sequestering eIF4E from eIF4G (Gingras et al., 1999) but also in an eIF4E-independent way, as shown by tether assays experiments (Kamenska et al., 2014). Actually, 4E-T also binds to 4EHP (eIF4E2) which represses mRNA translation including through the miRNA pathway : knocking down 4EHP in mammalian cells partially inhibits miRNA-mediated silencing (Chapat et al., 2017; Chen and Gao, 2017) and 4E-T knock-down impairs miRNA-mediated silencing of reporter mRNAs (Chapat et al., 2017; Kamenska et al., 2016). Finally, a 4E-T mutant unable to interact with eIF4E is defective in promoting decay of miRNA targeted mRNAs (Nishimura et al., 2015), which suggests that 4E-T is able to promote both early translation repression and repression and decay of miRNA targets.

The third PB assembly factor, LSM14A, is a RBP able to interact directly both with 4E-T and DDX6 in human cells (Brandmann et al., 2018; Nishimura et al., 2015). Its activity in repression of translation has been characterized using the tether assay in human cells (Brandmann et al., 2018), Arabidopsis (Xu and Chua, 2009) and Xenopus oocytes (Fromm et al., 2012; Rajyaguru et al., 2012; Yang, 2006). Of note, ribosome profiling and RNAseq analyses performed in *dcp2A*, *scd6A*, *dhh1A*, *dcp2Ascd6A* and *dcp2Adhh1A* yeast strains in nutrient replete medium conditions showed that Scd6 (LSM14A) and Dhh1 (DDX6) cooperate in repressing translation

and destabilizing a subset of native mRNAs functionally related to carbohydrate metabolism (Zeidan et al., 2018). Scd6 also inhibits assembly of the 48S PIC (Pre Initiation Complex) *in vitro* by binding to eIF4G *via* its methylated RGG motif (Nissan et al., 2010; Poornima et al., 2016; Rajyaguru et al., 2012a). Whether this interaction is conserved in higher eukaryotes is hitherto not known. Interestingly, methylation of the RGG domain of human LSM14A is necessary for the localization of this protein in PBs (Matsumoto et al., 2012).

In Xenopus oocytes, DDX6 coimmunoprecipitates and copurifies in gel-filtration fractions with CPEB1, 4E-T, PAT1B, LSM14B, and eIF4E (Minshall et al., 2007b, 2009), hence forming a CPEB complex required for translation repression of maternal mRNAs. Characterization of DDX6 interactome by TAP tag followed by mass spectrometry analysis in human cells found DDX6 associated with all members of the CPEB complex except CPEB1 -possibly due to its weak expression. Three members of this "CPEB-like complex" : DDX6, LSM14A (paralog of LSM14B which is himself dispensable to PB assembly), and 4E-T are necessary to maintain PBs and also to assemble them *de novo* following specific PB -inducing stresses such as arsenite, vinblastine or mild cold shock (Ayache et al., 2015; Minshall et al., 2009; Serman et al., 2007) . These results are in line with complementation assays demonstrating that 4E-T/DDX6 and LSM14A/DDX6 respective interactions contribute to *de novo* PB assembly since almost no PB can form in cells expressing DDX6 protein mutated for 4E-T interaction (Kamenska et al., 2016) or for LSM14A interaction (Brandmann et al., 2018) in human cells when their endogenous counterpart is silenced.

One hypothesis concerning PB formation includes that they assemble first through translationally repressed mRNPs, which then aggregate into larger structures. In order to address from which mRNP complexes PBs could assemble, we investigated the mRNP complexes containing LSM14A, LSM14B and 4E-T in human epithelial cell lines and that could organize along with DDX6 to assemble PBs. Using a tandem affinity purification TAP-tag strategy coupled to mass spectrometry analysis, we mapped LSM14A, LSM14B and 4E-T respective interactomes in human cells. Top partners included members of the CPEB-like complex and common partners uncovered new candidates for PB assembly. Mass spectrometry results also unexpectedly identified several initiation factors and small ribosomal proteins co purifying with LSM14A which led us to characterize LSM14A association to the translation initiation complex.

#### Results

## 1) Purification of LSM14A, LSM14B and 4E-T cytoplasmic complexes identifies a large set of partners related to RNA metabolism

To determine the main mRNP complexes containing either LSM14A, LSM14B or 4E-T, we purified these complexes from epithelial HEK293 using a TAP-tag approach as we previously did for DDX6 (Ayache et al., 2015) (Supplemental Figure 1A). To do so, plasmids encoding either LSM14A, LSM14B or 4E-T fused to FLAG and HA sequences were transiently transfected in HEK293 cells. 48H after transfection, we confirmed by immunofluorescence analysis that the tagged proteins could localize to PBs labelled by anti-EDC4 antibodies (Figure 1A). We also controlled by western blotting analysis that the tagged proteins were expressed at levels similar to their endogenous counterparts (Figure 1B) which overall confirmed that LSM14A, LSM14B and 4E-T transgenes were fully functional in terms of localization to PBs and did not alter cellular mRNP composition.

mRNP complexes containing these proteins were then purified from cytoplasmic lysates treated either with RNAse inhibitor or RNAse to discriminate between RNA-dependent and RNA-independent interactions, first on FLAG and then on HA affinity resins. The same protocol was concomitantly applied to cells transfected with an empty vector as a control. One tenth of the elution was separated on denaturing SDS–PAGE gel and silver-stained to assess the quality of the purification (Figure 1C). Purification quality was deemed satisfactory since tagged proteins were visualized at their expected size and the silver staining pattern was more complex than in the negative control sample (Figure 1C). Complexes purified from both RNAse inhibitor and RNAse-treated lysates and from control lysates treated with RNAse were briefly separated by SDS PAGE (Supplemental Figure 1B). Gel was cut into 5 lanes (each one corresponding to one sample) and each lane was cut into 6 slices that were individually trypsinized. Peptides obtained from each digestion were subsequently analysed by mass spectrometry

Several criteria were applied to ensure high confidence in the identified proteins: a 0.1% FDR (False Discovery Rate) cut-off was used for peptides, and a 0.2% FDR cut-off for proteins. Then we considered proteins identified by at least 2 peptides (see also material and methods). We furthermore removed any protein whose score in the control was higher than or equal to score in samples. Finally, contaminants such as keratins, immunoglobins and several proteins of cytoskeleton were also excluded from the list (Supplemental Table 1).

Once these stringent criteria implemented, mass spectrometric analysis identified between 168 and 238 proteins, specifically interacting with LSM14A, LSM14B or 4E-T and scoring above 20 (arbitrary minimal score set to facilitate dataset analysis) (Figure 2A and Supplemental Table 1). Between 66 and 104 interactions were found both in RNAse and RNAse inhibitor-treated samples. When degrading RNA, between 40 and 63 proteins were no longer detected. Finally, between 52 and 80 proteins were identified exclusively in RNAse treated samples, which at first sight might seem counterintuitive but might be explained by these proteins taking part to complexes where tags are inaccessible in presence of RNA.

Approximately three quarters of the identified interactions occurred in RNAse-treated conditions, indicating RNA-independent interactions (Figure 2A). Functional annotation based on the literature found at least one third of LSM14A, LSM14B and 4E-T partners involved in RNA metabolism, which is consistent with known molecular functions of these proteins (Figure 2B upper panel). Further subclassification revealed that this category mainly included repressors and activators of translation as well as decay factors (Figure 2B, lower panel). Based on the values of spectral counting with normalized total spectra from Scaffold software, LSM14A top scoring partners included DDX6 and other components of the CPEB-like complex, namely LSM14B and 4E-T (Figure 2C, upper panel). Other specific interactions previously documented included the 2 arginine methyltransferases PRMT5 and PRMT1 which is required for LSM14A to localize to PBs (Matsumoto et al., 2012) as well as the repressive regulator of translation FMR1 (Fragile X mental retardation protein) and its partners FXR1 and FXR2 (He and Ge, 2017). A very similar pattern of interactions applied to LSM14B, in line with strong homology and similar localization in PBs of both proteins (Figure 2C, middle panel). Interestingly, all components of 2 chaperonin complexes: the MCM complex (MiniChromosome Maintenance) and the CCT (Chaperonin-containing tailless complex polypeptide 1) were identified amongst LSM14B partners with higher scores than in LSM14A

dataset (supplemental table 1). These complexes are both involved in assembly and disassembly of stress granules in human cells (Jain et al., 2016) and the CCT complex contributes to formation of grPBs in *C.elegans* (Hubstenberger et al., 2015). Concerning 4E-T, its top scoring partners included components of the same repressive complexes as LSM14A/B , 6 tubulins, and the two chaperon proteins RUVBL1 and RUVBL2 (Figure 2C, lower panel). Several components of the CRD-mediated complex, shown to promote stability of the *myc* mRNA (Weidensdorfer et al., 2009) and including HNRNPU, SYNCRIP, YBX1, and DHX9 were also present in the 3 datasets.

Interestingly, we noticed that while proteins of the decapping complex and of repressive complexes were as abundantly found associated with DDX6 (Supplemental Figure 2A), LSM14A, LSM14B and 4E-T partners are mostly related to repressive complexes including the CPEB-like complex and the FMRP complex (Figure 2C). These observations are in accordance with the known functions of LSM14A and 4E-T in repression of translation and their localization to PBs.

We also compared our TAP-tag results with three proteomes available in the literature : proteomes of LSM14A and 4E-T established by proximity-dependant BioID (Biotin Identification) approach (Youn et al., 2018) (Supplemental Figure 2B) and a second proteome of 4E-T obtained by a FLAG-affinity purification strategy (Kamenska et al., 2016) (Supplemental Figure 2C). Mass spectrometry analysis following BioID purification identified 64 proteins as LSM14A significant partners (FDR<0,05). LSM14A partners also present in our LSM14A TAPtag results included repressors of translation such as components of the CPEB-like complex, members of the FMRP complex (FMR1, FXR2, NUFIP2). LSM14A partners found in the BioID but not in our TAP tag included decapping factors (DCP1A, DCP1B; LSM1, LSM12, EDC3, EDC4), RNA interference factors (AGO1, AGO2, TNRC6A, TNRC6B), CNOT-CCR4 subunits and NMD factors (UPF1, SMG1, SMG8, SMG9). Similar observations applied to 4E-T partners with 21 out of 41 significant interactors also present in our analysis (Supplemental Figure 2B). Interestingly we noted that NOT1 subunit was found in our TAP tag and in the BioID purifications, in agreement with the interaction between 4E-T and NOT1 demonstrated in vitro (Räsch et al., 2020). Regarding the 4E-T proteome from (Kamenska et al., 2016), 34 out of 50 4E-T top scoring partners were also present in our TAP tag in RNAse conditions (Supplemental Figure 2C). Common partners notably included repressors of translation such as DDX6, cold shock

domain protein CSDE1 which have been described to facilitate the interaction of AGO2-miRISC to PB components like LSM14A and the decapping factors DCP1-DCP2 (Kakumani et al., 2020). Consistently, STRAP (Serine Threonine kinase receptor associated protein) is the direct partner of CSDE1 was also identified among LSM14A partners. Both DDX6 and CDSE1 were found to directly interact with 4E-T on its motif 1 and CHD domain, respectively (Kamenska et al., 2016). Translation initiation factors like the canonical 4E-T partner eIF4E, 4 eIF3 subunits and 2 ribosomal proteins from the small subunit (RSP3 and RPS4X) were also common to the 2 independent analyses. These observations might be consistent with 4E-T acting at the 5'end of its target mRNAs.

To verify that interactions highlighted by mass spectrometry analysis do not result from the expression of exogenous proteins, we performed immunoprecipitations experiments with anti-LSM14A, anti-LSM14B and anti-4E-T antibodies using cytoplasmic lysates from untransfected HEK293 cells in presence and in absence of RNAse (Supplemental Figure 3). As expected, anti-LSM14A antibodies coimmunoprecipitated endogenous 4E-T and DDX6 proteins as efficiently as LSM14A itself, suggesting that a large fraction of 4E-T and DDX6 proteins interact with LSM14A.

While EDC3 and EDC4 proteins were not detected in LSM14A TAP tag, we found that endogenous EDC3 was weakly co-immunoprecipitated with LSM14A in absence of RNAse and that EDC4 was immunoprecipitated efficiently with LSM14A in both conditions, which is consistent with the interaction domain between EDC4 and LSM14A previously characterized by structural experiments (Brandmann et al., 2018). LSM14B was not immunoprecipitated efficiently by anti-LSM14A antibody nor LSM14A by anti-LSM14B antibody in both presence of RNAse and RNAse inhibitor. Given that LSM14A is ten times more abundant then LSM14B (Supplemental table 3), we cannot exclude that these proteins could interact together but quantities would be too low to be detected. Finally, DDX6 was coimmunoprecipitated weakly with 4E-T in absence of RNAse in agreement with its much higher cellular abundance compared to 4E-T.

Overall, these results provided a consistent dataset showing that the three PB assembly proteins interact in the cell with a large set of factors linked to cytosolic mRNA metabolism.

120

## 2) Comparison of LSM14A, 4E-T and DDX6 partners with PB proteome identifies potential new PB assembly factors

The three PB proteins LSM14A, 4E-T and DDX6 were previously shown to be essential for PB maintenance because their individual silencing by RNA interference completely dissolved PBs (Ayache et al., 2015; Chu and Rana, 2006; Ferraiuolo et al., 2005; Yang et al., 2006). They are also required for *de novo* PB assembly following PB induction by various treatments such as arsenite, vinblastine or mild cold shock exposure (Ayache et al., 2015; Minshall et al., 2009; Serman et al., 2007). Structural data evidenced that interactions between 4E-T or LSM14A and DDX6 were mutually exclusive since occurring on the same region of DDX6 RecA2 domain. Moreover, complementation assays with interaction mutants revealed that LSM14A deficient for DDX6 interaction cannot assemble PBs (Brandmann et al., 2018), while DDX6 deficient for LSM14A interaction and 4E-T deficient for DDX6 interaction displayed only reduced ability to assemble PBs (Ayache et al., 2015; Kamenska et al., 2016). On these grounds, DDX6, LSM14A and 4E-T could not associate in a ternary complex to assemble PB. Alternative scenari include possible intervention of a fourth or even several, other PB assembly partner(s).

To specify in which mRNP complexes DDX6, LSM14A and 4E-T take part in PB formation we looked for new PB assembly factors by comparing our LSM14A, LSM14B and 4E-T TAP tag datasets with published DDX6 proteome (Ayache et al., 2015) and PB proteome (Hubstenberger et al., 2017). Indeed, if other PB assembly partners exist, they should be partners of the four proteins LSM14A, LSM14B, 4E-T DDX6 and be localized to PBs. By doing so, we obtained a list of 12 proteins significantly enriched in PBs and able to interact with LSM14A, LSM14B, 4E-T and DDX6 (Figure 3A). These 12 proteins comprised the 4 proteins of the CPEB-like complex DDX6 LSM14A LSM14B and 4E-T. Eight other factors included 3 RBPs: ILF3, DHX9 and HRNPU, 3 mitochondrial proteins: ATAD3A, SLC25A5, SLC25A6 and two proteins from the small ribosomal subunit: RPS3 and RPS4X.

Concerning PB assembly, involvement of DDX6, LSM14A LSM14B and 4E-T in PB formation had already been assessed (Ayache et al., 2015). ATAD3A, SLC25A5, SLC25A6 being mitochondrial proteins, we did not favour the hypothesis that they could be indispensable to PB assembly. Similarly, RPS3 and RPS4X being ribosomal proteins and knowing that the translation machinery is excluded from PBs, we thought major contribution of these proteins to PB assembly is unlikely. The three other factors ILF3, DHX9 and HNRNPU seemed better candidates. Since ILF3 localization to PBs had previously been confirmed in the lab (Hubstenberger et al., 2017), we started by investigating involvement of this candidate in PB maintenance and assembly. To evaluate ILF3 contribution to PB maintenance, we transiently silenced ILF3 (Supplemental Figure 4A). Cells were fixed 48h after transfection and stained with anti-EDC4, anti-XRN1 or anti-DDX6 antibodies to visualize PBs (Figure 3B). Counting displays a significant 40 % drop in PB number/cells in absence of ILF3 and the observation is identical for the 3 markers used to visualize PBs (Figure 3C). To control that the effect we observed was indeed due to partial PB dissolution by siILF3 and did not result from a decreased expression of the proteins we used to visualize PBs, we ensured by western blotting analysis that EDC4, XRN1 and DDX6 expression levels were unaffected by ILF3 silencing (Supplemental Figure 4B). Wondering next whether partial PB dissolution observed in absence of ILF3 could occur via a decreased expression of PB assembly factors, we assessed their expression in absence of ILF3.We observed that LSM14A, LSM14B, DDX6 and 4E-T protein expression levels were unaffected by the absence of ILF3 (Supplemental Figure 4B).

To assess ILF3 contribution to PB *de novo* assembly, HEK293 cells transiently silenced for ILF3 were treated for 30min with arsenite before fixation. Using three different markers to visualize PBs, immunofluorescence imaging showed that arsenite induced PBs as efficiently in absence of ILF3 as in the control. (Figure 3D). Arsenite treatment increased PB number by ~66% which is consistent with previous observations (Ayache et al., 2015). The same increase was observed in absence of ILF3 and in control for the 3 PB markers (Figure 3E). Collectively, these results show that ILF3 contributes to PB maintenance without being an essential factor and is not involved in PB *de novo* assembly.

#### 3) LSM14A associates in vivo with translation initiation complex

Interestingly, several initiation factors were found specifically present in LSM14A complexes, including 12 out of 13 eIF3 subunits, 3 out of 3 eIF2 subunits, eIF4B and eIF4G (Figure 4A upper panel). Also, .17 out of 21 proteins of the small ribosomal subunit but only 11 out of 34 proteins of the large ribosomal subunit were found to interact with LSM14A (Figure 4A lower panel). This observation is reminiscent of interactions occurring in yeast where LSM14A homolog Scd6 interacts *in vitro* with the initiation complex *via* eIF4G, thus preventing association of the 43S

PIC to mRNA (Nissan et al., 2010; Poornima et al., 2016). In order to investigate whether these interactions are conserved *in vivo* in human cells, we assessed the immunoprecipitation of several components of the initiation complex from HEK293 cytoplasmic lysates by anti-LSM14A antibody : eIF4E because of its interaction with the LSM14A partner 4E-T and its localization to PBs, and also eIF3a given its high MS score in our dataset (Figure 4B). LSM14A antibodies specifically immunoprecipitated eIF3a in presence of RNAse inhibitor. Unexpectedly immunoprecipitation was more efficient in presence of RNAse which may be explained by epitopes being more accessible in this condition. Concerning eIF4E, immunoprecipitation efficiency by anti-LSM14A was also weak and enhanced by RNA digestion. Reciprocally, anti-eIF3a antibody immunoprecipitated a fraction of LSM14A as well as RPS6. These observations confirm mass spectrometry results in which eIF3a, eIF4E and RPS6 were found to associate with LSM14A in both conditions RNAse and RNAse out. Moreover, they suggest that besides being mainly involved in repressive complexes like those accumulated in PBs, LSM14A could be implied in control of translation at the initiation step in a complex interacting with eIF3a and the 40S.

In order to assess LSM14A association to mRNA 5'end; we performed cap binding assay on HEK cytoplasmic lysates. In this assay, cytoplasmic lysates are incubated with Agarose beads coupled to m<sup>7</sup>GTP, a 5' mRNA cap analogue on which factors involved in the regulation of translation initiation are known to bind. As a negative control we used Agarose beads coupled to GTP, on which initiation factors do not bind. We observed that LSM14A and DDX6 proteins were specifically retained by m<sup>7</sup>GTP beads though less efficiently than canonical initiation factor eIF4E and its direct partner 4E-T. This suggests that a fraction of LSM14A and DDX6 could be present in mRNA 5' end-associated complexes.

To complement these results, we analysed the distribution of endogenous LSM14A in polysomal fractions using sucrose gradients. In polysome profiles from 10-50% sucrose gradients centrifuged for 2h45 at 39K RPM, LSM14A was distributed along the entire gradient and a large fraction of the protein was present in sub-polysomal fractions (Supplemental Figure 5A). In a 5-20% sucrose gradient centrifuged for 2h45 at 39K RPM, LSM14A was enriched in 40S fraction, according to both RNA absorbance profile and RPS6 distribution along the profile. (Figure 4D). For comparison, we looked at DDX6 and 4E-T distributions: both were present in all subpolysomal fractions without preferentially co-sedimenting in any

123

particular fraction. These observations suggest that a fraction of LSM14A associates to 43S and/or 48S complex *in vivo*.

In order to investigate if other components of the CPEB-like complex were involved in LSM14A association to the initiation complex, we repeated these experiments after transiently silencing either DDX6, LSM14A or 4E-T. We noted that neither the absence of LSM14A had an effect on DDX6 distribution across the polysome profile (Supplemental Figure 5B) nor absence of DDX6 on LSM14A distribution across the polysome profile (Supplemental Figure 5C). These observations suggest that LSM14A association to the initiation complex is independent of DDX6.

Interestingly, we noted that in absence of 4E-T, LSM14A was significantly displaced towards sub-40S fraction (Figure 5A). Nonetheless, absence of 4E-T did not influence immunoprecipitation of eIF3a by anti-LSM14A antibody indicating that interaction between LSM14A and eIF3a occurs independently of 4E-T (Figure 5B).

## Figures

## Figure 1





126

### Figure 2

Α.



Β.















Ε.









D.



.









в.





в.



c.







Α.







c.

## Supplemental table 1

|                    | 10. CL. 10.20 III              | Molecular       | CONTROL                 |              | With RNAse inhibitor    |               |                         | W14B 4E-T     |                         |               | ISM14A                   |               | With RNAse A            |               | 4F-T                    |               |
|--------------------|--------------------------------|-----------------|-------------------------|--------------|-------------------------|---------------|-------------------------|---------------|-------------------------|---------------|--------------------------|---------------|-------------------------|---------------|-------------------------|---------------|
| Gene Name          | Accession Number               | Weight<br>(kDa) | normalized              | unique       | normalized              | unique        | normalized              | unique        | normalized              | unique        | normalized               | unique        | normalized              | unique        | normalized              | unique        |
| DDXS               | DDX6_HUMAN                     | 54              | total spectra<br>5,2198 | peptide<br>3 | total spectra<br>987,09 | peptide<br>33 | total spectra<br>637,22 | peptide<br>34 | total spectra<br>123,83 | peptide<br>25 | total spectra<br>1 110,8 | peptide<br>34 | total spectra<br>316,24 | peptide<br>30 | total spectra<br>133,54 | peptide<br>28 |
| EIF48              | IF48_HUMAN                     | 69              | 2,6099                  | 2            | 100,84                  | 33            | 277,65                  | 42            | 0                       | 0             | 53,784                   | 22            | 194,14                  | 35            | 58,798                  | 25            |
| LSM145             | Q5TEPS_HUMAN                   | 27              | 0                       | 0            | 48,482                  | 2             | 268,23                  | 2             | 49,531                  | 2             | 91,105                   | 25            | 296,92                  | 2             | 45,845                  | 18            |
| HSPAIA             | HS71A_HUMAN (+1)               | 70              | 33,929                  | 15           | 126,05                  | 28            | 160,94                  | 33            | 562,07                  | 41            | 140,5                    | 31            | 149,34                  | 32            | 244,16                  | 37            |
| AFM                | AFAM_HUMAN                     | 69              | 43,063                  | 5            | 25,12                   | 2             | 108,02                  | 3             | 21,535                  | 0             | 0                        | 0             | 0                       | 0             | 0                       | 0             |
| TCP1               | TCPA_HUMAN                     | 60              | 0                       | 9            | 42,664                  | 22            | 106,57                  | 29            | 23,689                  | 16            | 37,519                   | 22            | 78,182                  | 28            | 29,897                  | 20            |
| TUBB               | TB35_HUMAN                     | 50              | 15,659                  | 10           | 68,844                  | 20            | 94,241                  | 26            | 226,12                  | 27            | 83,419                   | 21            | 85,21                   | 23            | 156,45                  | 25            |
| PRKDC              | PRKDC_HUMAN                    | 965             | 2,5099                  | 2            | 72,723                  | 60            | 90,617                  | 101           | 47,377                  | 43            | 105,47                   | 82            | 106,29                  | 100           | 91,685                  | 82            |
| EEF1A2             | EF1A2_HUMAN                    | 50              | 3,9148                  | 2            | 0                       | 0             | 87,717<br>86,267        | 4             | 29,072                  | 0             | 158,06                   | 0             | 39,53                   | 2             | 4,9829                  | 5             |
| LRPPAC             | LPPRC_HUMAN                    | 158             | 0                       | D            | 150,29                  | 61            | 79,743                  | 60            | 33,379                  | 28            | 158,06                   | 61            | 60,613                  | 49            | 136,53                  | 63            |
| MYH9               | MYHS_HUMAN                     | 227             | 2,5099                  | 2            | 20,362                  | 20            | 73,943                  | 73            | 75,373                  | 54            | 4,3905                   | 4             | 12,258                  | 13            | 5,9795                  | ŝ             |
| R PS3              | RS3_HUMAN                      | 27              | 35,233                  | 12           | 167,75                  | 19            | 73,943                  | 18            | 156,13                  | 19            | 220,62                   | 20            | 115,08                  | 20            | 176,39                  | 20            |
| DYNC1H1            | DYHC1_HUMAN                    | 532             | 0                       | 0            | 42,664<br>D             | 0             | 73,218                  | 52            | 2,1535                  | 0             | 21,952 24,148            | 22            | 20,204                  | 23            | 13,952                  | 14            |
| PARP1              | PARP1_HUMAN                    | 113             | 3,9148                  | 3            | 45,573                  | 32            | 73,218                  | 45            | 3,2303                  | 3             | 62,565                   | 33            | 73,79                   | 43            | 23,918                  | 21            |
| MCM3               | MCM3_HUMAN                     | 91              | 0                       | 0            | 33,937                  | 29            | 68,869                  | 34            | 5,38.38                 | 0             | 27,441                   | 21            | 59,735                  | 35            | 18,935                  | 16            |
| RBM10              | ADADADWR66_HUMAN               | 110             | 0                       | 0            | 39,755                  | 27            | 68,144                  | 37            | 0                       | 0             | 36,222                   | 23            | 108,05                  | 43            | 38,857                  | 28            |
| EIF4G1             | E9PGVI HUMAN                   | 167             | 0                       | 0            | 0                       | 0             | 65,244                  | 2             | 0.0298                  | 46            | 0                        | 0             | 0                       | 0             | 0                       | 0             |
| 5/F4G1             | EZEUU4_HUMAN                   | 172             | 0                       | D            | 57,209                  | 33            | 65,244                  | 47            | e                       | 0             | 37,319                   | 29            | 60,613                  | 41            | 38,857                  | 33            |
| TUBA18             | TBA15_HUMAN                    | 58              | 50,893                  | 11           | 29,089<br>51,391        | 16            | 64,519                  | 18            | 3,2303                  | 3<br>21       | 6,5857<br>71,346         | 18            | 55,381<br>69,397        | 23            | 10,962                  | 23            |
| HSPA8              | HSP7C_HUMAN                    | 71              | 31,319                  | 7            | 41,694                  | 20            | 63,794                  | 28            | 187,36                  | 28            | 63,662                   | 23            | 58,856                  | 23            | 101,65                  | 28            |
| GTF21<br>HNRNPK    | GTF2_HUMAN<br>HN/IPK_HUMAN     | 112             | 9,1346<br>5,2198        | 7            | 217,2                   | 56            | 60,894                  | 42            | 12,921<br>9,6908        | 11 8          | 45,98                    | 51            | 63,248<br>72,911        | 45            | 36,873<br>39,853        | 26            |
| MCM4               | MCM4_HUMAN                     | 97              | 0                       | D            | 25,211                  | 24            | 60,894                  | 40            | 2,1535                  | 2             | 17,562                   | 16            | 25,475                  | 21            | 6,9761                  | 6             |
| TRIM28<br>CCT3     | TIF15_HUMAN<br>TCPG_HUMAN      | 89<br>61        | 0                       | 0            | 34,907                  | 21            | 60,894                  | 28            | 6/605<br>53838          | 6             | 29,636                   | 21            | 39,53<br>36,895         | 26<br>28      | 14,949                  | 13            |
| LTF                | E7EQ82_HUMAN (+4)              | 77              | 9,1346                  | 3            | 27.15                   | 16            | 60,17                   | 39            | 11,844                  | 6             | 2,1952                   | 2             | 1,7569                  | 2             | 2,9897                  | 3             |
| EIF3A<br>DDX5      | EIF3A_HUMAN<br>DDX5_HUMAN (+1) | 167<br>69       | 0 11,744                | 0<br>8       | 77,571 89,207           | 26            | 59,445<br>58.72         | 40            | 2,1535<br>35,533        | 2             | 28,538<br>151.47         | 21<br>31      | 58,856<br>124.74        | 36<br>29      | 46,839 49,829           | 34<br>26      |
| CC12               | TCPB_HUMAN                     | 57              | 3,9148                  | 2            | 20,362                  | 14            | 56,545                  | 26            | e                       | 0             | 4,3905                   | 4             | 33,381                  | 21            | 7,9726                  | 7             |
| MCM5<br>NCI        | MCMS_HUMAN<br>NUCL HUMAN       | 82<br>77        | 0                       | 0            | 38,786<br>13,575        | 23            | 56,545<br>56,545        | 34            | 2,1535                  | 223           | 31,831<br>54,881         | 18            | 61,491<br>66,127        | 34            | 25,911 38,957           | 16            |
| PIMTS              | ANMS_HUMAN                     | 73              | 11,744                  | 7            | 136,72                  | 27            | 55,82                   | 23            | 37,686                  | 15            | 216,23                   | 30            | 60,613                  | 21            | 21,925                  | 14            |
| DHX9<br>KIESS      | CHXS_HUMAN<br>KINH HUMAN       | 141             | 5,2198                  | 4            | 110,54<br>41,694        | 39<br>36      | 54,37<br>54,37          | 38            | 57,068<br>C             | 28            | 122,93                   | 44            | 119,47<br>35,138        | 45            | 95,672<br>28.901        | 41 26         |
| MYH10              | MYH10_HUMAN                    | 229             | 0                       | 0            | 26,18                   | 20            | 54,37                   | 54            | 45,224                  | 31            | 3,2929                   | 3             | 9,6629                  | 8             | 0                       | D             |
| COPA<br>MCM6       | COPA_HUMAN<br>MCM6_HUMAN       | 138<br>93       | 0 2.6099                | 0            | 35,877<br>19,393        | 23            | 52,92<br>52,92          | 42            | 20,458                  | 12            | 42,807                   | 29            | 36,895                  | 30            | 33,884                  | 31            |
| PAICS              | PUR6_HUMAN                     | 47              | 0                       | 0            | 9,6964                  | 7             | 52,92                   | 20            | c                       | ō             | 3,2929                   | 2             | 16,691                  | 14            | 9,9658                  | 9             |
| STK38<br>HSRAS     | STK38_HUMAN                    | 54              | 0 32 624                | 0            | 22,302                  | 14            | 52,92                   | 22            | 0                       | 0             | 17,562                   | 10            | 28,11                   | 18            | 21,925                  | 13            |
| MCM7               | MCM7_HUMAN                     | 81              | 0                       | 9            | 22,302                  | 20            | 50,02                   | 34            | 23,689                  | 19            | 14,269                   | 13            | 24,597                  | 23            | 18,935                  | 17            |
| EIF35<br>DOX3X     | EIF35_HUMAN                    | 92              | 2,8099                  | 2            | 49,452                  | 20            | 49,298                  | 26            | 3,2303                  | 2             | 13,171                   | 10            | 30,746                  | 21            | 23,915                  | 16            |
| IQGAP1             | IQGA1_HUMAN                    | 189             | 2,6099                  | z            | 74,662                  | 53            | 48,571                  | 51            | 52,761                  | 40            | 66,955                   | 50            | 78,182                  | 57            | 81,719                  | 61            |
| CCT5<br>SNRNP200   | TCPE_HUMAN                     | 60<br>245       | 0                       | 0            | 16,484                  | 13            | 47,846                  | 31            | 0 59.94                 | 0             | 3,2929                   | 2             | 27,232                  | 24            | 0                       | 3             |
| HDL6P              | ADA024R4E5_HUMAN               | 141             | õ                       | Ð            | 15,514                  | 16            | 47,121                  | 44            | 0                       | 0             | 2,1952                   | 2             | 5,2707                  | 6             | 0                       | 5             |
| SER3P1<br>SIC2545  | PAIRB_HUMAN                    | 45              | 6,5247                  | 2            | 42,664                  | 20            | 47,121                  | 23            | 11,844                  | 7             | 132,81                   | 27            | 69,397                  | 22            | 62,784                  | 24            |
| CC17               | TCPH_HUMAN                     | 59              | 5,2198                  | 2            | 19,393                  | 19            | 44,221                  | 25            | 3,2303                  | 3             | 0                        | D             | 20,204                  | 17            | 7,9726                  | 8             |
| ROCKI<br>CCTEA     | ROCK1_HUMAN<br>TCPZ_HUMAN      | 158             | 0                       | 0            | 29,089                  | 29            | 44,221                  | 46            | 0 21535                 | 0             | 6,5857                   | 6             | 9,6629                  | s<br>15       | 0                       | 0<br>6        |
| HNRNPU             | HNRPU_HUMAN                    | 91              | 0                       | D            | 115,39                  | 27            | 42,771                  | 21            | 29,072                  | 16            | 217,33                   | 33            | 90,48                   | 27            | 68,754                  | 25            |
| STK38L<br>SHM12    | ST38L_HUMAN                    | 54              | 0                       | 0            | 13,575                  | 7             | 42,771                  | 16            | 0                       | 0             | 0<br>7.5834              | 0             | 21,083                  | 13            | 8,9692                  | 5             |
| 51C25A6            | ADT3_HUMAN                     | 33              | 6,5247                  | 5            | 40,725                  | 12            | 41,321                  | 13            | 111,98                  | 16            | 29,636                   | 12            | 36,016                  | 14            | 85,706                  | 15            |
| DOX17<br>EIF4ENIF1 | A1W2PQ51_HUMAN (-<br>4ET_HUMAN | 80              | 0 2.6099                | 0            | 54,3<br>100.84          | 20            | 40,596                  | 18<br>30      | 25,842                  | 10-62         | 103,18                   | 24            | 85,21<br>22,84          | 26<br>18      | 40,86                   | 17<br>61      |
| NAA15              | NAA15_HUMAN                    | 101             | 0                       | D            | 14,545                  | 14            | 40,596                  | 30            | 2,1535                  | 2             | 14,269                   | 12            | 17,569                  | 15            | 4,9829                  | 5             |
| ATP1A1<br>AEDN     | ATIAI_HUMAN<br>AFAD_HUMAN      | 113             | 0                       | 0            | 15,484                  | 10            | 39,871 39,146           | 24            | 6,4605                  | 5             | 18,55                    | 12            | 23,718 28,11            | 17 29         | 11,959<br>38,867        | 9<br>35       |
| EPRS               | SYEP_HUMAN                     | 171             | 0                       | D            | 19,393                  | 20            | 39,146                  | 36            | 6,4605                  | 6             | 10,976                   | 9             | 13,177                  | 14            | 7,9726                  | 8             |
| CAD                | F8VPD4_HUMAN (+1)              | 236             | 0                       | 0            | 32,968                  | 9             | 38,145                  | 45            | 58,145                  | 45            | 8,781                    | 19            | 14,934                  | 18            | 28,901                  | 29            |
| RANBP2             | R3P2_HUMAN                     | 358             | 0                       | D            | 6,7875                  | 5             | 38,422                  | 48            | c                       | ٥             | 9,8786                   | 9             | 17,569                  | 18            | 2,9897                  | 3             |
| ACLY               | ACLY_HUMAN                     | 121             | 0                       | 5            | 3,8786                  | 4             | 36,972                  | 33            | 251,95                  | 41            | 2,1952                   | 2             | 7,906                   | 30<br>S       | 4,9829                  | 5             |
| DHX15              | DHX15_HUMAN                    | 91              | 0                       | D            | 14,545                  | 11            | 36,972                  | 24            | 24,765                  | 15            | 23,05                    | 13            | 36,016                  | 24            | 11,959                  | 10            |
| MAP4               | E7EVA0_HUMAN                   | 245             | 0                       | 0            | 40,725                  | 13            | 36,972                  | 26<br>30      | 2,1535<br>C             | 0             | 6,5857                   | 5             | 29,807                  | 12            | 5,9795                  | 5             |
| TLN1<br>space      | TUN1_HUMAN                     | 270             | 0                       | 0            | 0                       | 0             | 36,247                  | 46            | 0                       | 0             | 0                        | 0             | 1,7569                  | 2             | 0                       | 0             |
| TUBBS              | TESS_HUMAN                     | 50              | 0                       | 5            | 52,968<br>D             | 0             | 35,522                  | 4             | 93,678                  | 10            | 34,026                   | 4             | 33,381                  | 5             | 24,914<br>58,798        | 9             |
| UBAP2L             | UBP2_HUMAN                     | 115             | 0                       | 0            | 65,935                  | 24            | 35,522                  | 22            | 0                       | 0             | 64,76                    | 24            | 36,016                  | 23            | 10,962                  | 10            |
| 5102544            | ADT1_HUMAN                     | 33              | 0                       | 0            | 31,028                  | 2             | 34,797                  | 3             | 90,448                  | 3             | 27,441                   | 3             | 29,867                  | 3             | 69,761                  | 4             |
| SMC3               | SMC3_HUMAN                     | 142             | 0                       | 9            | 50,421<br>3,8794        | 37            | 34,797                  | 38            | 8,614                   | 8             | 10,976                   | 7             | 15,812                  | 17            | 7,9726                  | 8             |
| HNRNPM             | HNRPM_HUMAN                    | 78              | 3,9148                  | 3            | 16,484                  | 16            | 34,072                  | 25            | 88,294                  | 28            | 43,905                   | 24            | 57,099                  | 32            | 17,938                  | 15            |
| DDX1               | DOX1_HUMAN                     | 82              | 0                       | 0            | 19,393                  | 18            | 33,347                  | 28            | 2,1535                  | 2             | 21,952                   | 18            | 31,624                  | 25            | 7,9725                  | 8 26          |
| OTUD4              | 0TUD4_HUMAN                    | 124             | 0                       | 0            | 35,877                  | 23            | 32,622                  | 31            | 0                       | 0             | 5,4881                   | 4             | 18,447                  | 19            | 0                       | 0             |
| UPFI               | RENTI_HUMAN                    | 124             | 0                       | D            | 1,9393                  | 2             | 32,622                  | 36            | 2,1535                  | 2             | 3,2929                   | 3             | 3,5138                  | 4             | 0                       | 0             |
| KIF11              | KIF11_HUMAN                    | 119             | 0                       | 5            | 19,393<br>D             | 0             | 31,897                  | 34            | e o                     | 0             | 3,3780                   | D             | 6 B                     | 0             | 0                       | 2             |
| LSM14A             | US14A_HUMAN                    | 51              | 2,6099                  | 2            | 658,38<br>65.036        | 40            | 31,897                  | 17            | 68,912                  | 21            | \$23,1<br>60.509         | 41            | 29,867                  | 16            | 57,802                  | 20            |
| SF353              | SF3B3_HUMAN                    | 136             | 0                       | 0            | 7,7571                  | 6             | 31,897                  | 24            | 19,382                  | 14            | 9,8786                   | 8             | 9,6629                  | 8             | 4,9829                  | 5             |
| GCN1               | GCN1_HUMAN                     | 293             | 0                       | 0            | 6,7875                  | 6             | 31,172                  | 40            | 5,3838                  | 5             | 7,6834                   | 7             | 20,204                  | 22            | 10,962                  | 11            |
| PRPF31             | PRP31_HUMAN                    | 55              | 0                       | 0            | 34,907                  | 16            | 31,172                  | 18            | 13,998                  | 11            | 130,62                   | 22            | 141,43                  | 20            | 92,682                  | 20            |
| SYNCE P            | HNRPQ_HUMAN                    | 70              | 3,9148                  | 2            | 35,877                  | 13            | 31,172                  | 14            | 19,582                  | 8             | 126,25                   | 22            | 74,668                  | 19            | 36,873                  | 15            |
| EIFBL              | BODY89_HUMAN (-1)              | 71              | 2,6099                  | 2            | 31,028                  | 12            | 30,447                  | 20            | 3,58.58<br>8,614        | 3             | 6,5857                   | 6             | 19,326                  | 15            | 19,932                  | 16            |
| HUWE1              | HUWE1_HUMAN                    | 482             | 0                       | D            | 13,575                  | 12            | 30,447                  | 41            | 0                       | 0             | 10,976                   | 10            | 36,895                  | 39            | 7,9725                  | 8             |
| RIOKI              | RIOK1_HUMAN                    | 66              | 0                       | 0            | 21,332<br>96,298        | 20            | 29,722                  | 17            | 0.0908                  | 0             | 5,8780<br>63,662         | 17            | 43,922                  | 16            | 7,9726                  | 5             |
| RPS3A              | RS3A_HUMAN                     | 30              | 3,9148                  | 3            | 23,271                  | 11            | 29,722                  | 14            | 38,763                  | 15            | 37,319                   | 16            | 30,746                  | 13            | 12,958                  | 10            |
| TMPO               | LAP2A_HUMAN                    | 75              | 2,5099                  | 2            | +5,034<br>11,636        | 6             | 25,722                  | 25            | ~,s07<br>0              | 4             | 25,558                   | 25<br>6       | 23,718                  | 12            | 13,952 12,958           | 12<br>S       |
| HMG81              | HMGB1_HUMAN (+1)               | 25              | 5,2198                  | 2            | 4,8482                  | 2             | 28,997                  | 11            | 0                       | 0             | 4,3905                   | 3             | 9,6629                  | 8             | 4,9829                  | 4             |
| CU13               | CUI3_HUMAN                     | 86              | 0                       | 0            | 20,362                  | 16<br>2       | 28,997 28,272           | 23            | 22,612 3,2303           | 17            | 28,538                   | 17            | 29,867 4,3922           | 25<br>5       | 27,904                  | 16            |
| EEF2               | EF2_HUMAN                      | 95              | 10,44                   | 5            | 15,514                  | 13            | 28,272                  | 20            | 5,3838                  | 5             | 6,5857                   | 6             | 3,5138                  | 4             | 4,9829                  | 4             |
| SMC4<br>YBX1       | YBOX1, HUMAN                   | 147             | 0                       | 0            | 31,028<br>31,998        | 27            | 28,272 28,272           | 27<br>9       | C<br>11,844             | 7             | 13,976 71,346            | 10            | 8,7845                  | 8<br>12       | 12,955 26,908           | 13            |
| CAMSAP3            | CAMP3_HUMAN                    | 135             | 3,9148                  | 3            | 35,877                  | 29            | 27,548                  | 28            | c                       | 0             | 39,514                   | 29            | 65,005                  | 39            | 44,845                  | 28            |
| EIF3E<br>PSMC2     | EIF3E_HUMAN<br>PRS7_HUMAN      | 52<br>49        | 0                       | 0            | 30,059<br>15,514        | 16<br>15      | 27,548                  | 20            | 20,458                  | 14            | 18,65                    | 13            | 28,585<br>18,447        | 20            | 41,858 6,9761           | 20<br>7       |
| TARS               | SYTC_HUMAN                     | 83              | õ                       | D            | 2,9089                  | 3             | 27,548                  | 25            | C                       | o             | Э                        | D             | 6,1491                  | 7             | 0                       | a             |
| ELP1<br>TMPD       | ELP1_HUMAN<br>LAP28_HUMAN      | 150             | 0                       | 0            | 3,8786<br>20,362        | 3             | 26,823                  | 24<br>R       | 19,382<br>D             | 15            | 5,4881<br>28 538         | 5             | 6,1491<br>30,746        | 7             | 22,921<br>23 918        | 20<br>8       |
| ATP2A2             | AT2A2_HUMAN                    | 115             | 2,6099                  | 2            | 14,545                  | 10            | 26,098                  | 15            | 10,768                  | 8             | 13,171                   | 10            | 10,541                  | s             | 9,9658                  | 9             |
| HENR               | HORN_HUMAN                     | 282             | 15,659                  | 5            | 19,393                  | 13            | 26,098                  | 14            | 13,998                  | 7             | 9,8786                   | 5             | 50,072                  | 28            | 300,97                  | 38            |

| IMPOH2          | MDH2_HUMAN                 | 56        | 0      | 0   | 8,7267 | 8  | 26,098 | 20 | 3,2305 | 3   | 7,6834      | 7  | 20,204  | 16     | 9,9658  | 9      |
|-----------------|----------------------------|-----------|--------|-----|--------|----|--------|----|--------|-----|-------------|----|---------|--------|---------|--------|
| NSUN2           | NSUN2_HUMAN                | 86        | 0      | D   | 21,332 | 19 | 26,098 | 22 | 0      | 0   | 19,757      | 17 | 15,812  | 15     | 9,9658  | 9      |
| PSMD2           | PSMD2_HUMAN                | 100       | 0      | 0   | 15,514 | 14 | 26,098 | 23 | 0      | 0   | 4,3905      | 4  | 5,2707  | 6      | 0       | 0      |
| SMC2            | SMC2 HUMAN                 | 136       | 5,1315 | 0   | 23,271 | 17 | 26,055 | 35 | 0      | 0   | 3 2929      | 3  | 14 934  | 15     | 2 9997  | 3      |
| SUPTSH          | SPTSH HUMAN                | 121       | 0      | 0   | 0      | 0  | 26,098 | 28 | e      | 0   | 3           | 0  | 3,5138  | 4      | 0       | 0      |
| TNRC68          | TNR66_HUMAN                | 194       | 0      | D   | 3,8786 | 4  | 26,098 | 30 | 0      | 0   | 2,1952      | 2  | 11,42   | 12     | 0       | a      |
| CLASP2          | E7ERIS_HUMAN (+1)          | 166       | 3,9148 | 3   | 46,543 | 29 | 25,373 | 28 | 13,998 | 11  | 58,174      | 33 | 44,801  | 36     | 34,88   | 27     |
| PUS             | TUS_HUMAN                  | 53        | 2,6099 | 2   | 29,089 | 11 | 25,373 | 9  | 5,3838 | 4   | 71,346      | 11 | 43,922  | 10     | 19,932  | 9      |
| PI4KA           | PI4KA_HUMAN                | 237       | 0      | 0   | 0      | 0  | 25,373 | 30 | 0      | 0   | 2,1952      | 2  | 5,2707  | 6      | 3,9865  | 4      |
| RPS4X           | PSADS_HUMAN                | 30        | 11 744 | 5   | 35,877 | 10 | 25,373 | 10 | 20,496 | 10  | 59,272      | 13 | 22.84   | 10     | 25.911  | 12     |
| AP181           | AP181 HUMAN                | 105       | 0      | 0   | 19,393 | 18 | 24,648 | 28 | 8.614  | 7   | 8.781       | 8  | 8.7845  | 10     | 12.956  | 12     |
| CKAP4           | CKAP4_HUMAN                | 66        | 0      | Ð   | 20,362 | 15 | 24,648 | 20 | 36,51  | 21  | 10,976      | 10 | 38,652  | 23     | 31,891  | 25     |
| HNRNPR          | HNRPR_HUMAN                | 71        | 3,9148 | 2   | 22,302 | 14 | 24,643 | 18 | 16,151 | 12  | 130,62      | 30 | 87,845  | 32     | 41,856  | 22     |
| MSHE            | MSH6_HUMAN                 | 153       | 0      | D   | 25,211 | 22 | 24,648 | 25 | 0      | 0   | 25,245      | 22 | 14,934  | 16     | 10,962  | 11     |
| PSM01           | PSMD1_HUMAN                | 106       | 0      | 0   | 9,6964 | 7  | 24,648 | 23 | 0      | 0   | 2,1952      | 2  | 2,6353  | 3      | 0       | D      |
| SF3A1           | SF3A1_HUMAN                | 89        | 0      | 0   | 2,9089 | 3  | 24,648 | 23 | 0      | 0   | 0           | 0  | 3,5138  | 4      | 0       | 0      |
| EII 3D          | CONTROL HUMAN              | 24        | 0      | 5   | 29,089 | 1/ | 23,923 | 17 | 24,785 | 12  | 15,686      | 15 | 35,016  | 19     | 28,501  | 21     |
| PAZGA           | PA264 HUMAN                | 60        | 0      | 0   | 9,6964 | 10 | 23,525 | 17 | 0      | 0   | 14 269      | 11 | 18 447  | 14     | 11,939  | 11     |
| SLK             | SLK HUMAN                  | 143       | 0      | 0   | 13,575 | 14 | 23,923 | 21 | 0      | 0   | 8,781       | 8  | 6,1491  | 7      | 0       | 3      |
| DNMT1           | DNMT1_HUMAN                | 183       | 0      | 0   | 11,636 | 10 | 23,198 | 24 | 0      | 0   | 13,171      | 10 | 32,503  | 31     | 10,962  | 11     |
| EFTUD2          | USS1_HUMAN                 | 109       | 0      | D   | 31,998 | 23 | 23,198 | 26 | 6,4605 | 5   | 20,855      | 15 | 20,204  | 19     | 7,9725  | s      |
| SF351           | SF3B1_HUMAN                | 146       | 0      | D   | 20,362 | 13 | 23,198 | 27 | 5,3838 | 5   | 35,124      | 23 | 25,475  | 23     | 13,952  | 14     |
| SPIN1           | SPIN1_HUMAN                | 30        | 0      | 0   | 9,6964 | 8  | 23,198 | 12 | 0      | 0   | 4,3905      | 4  | 19,326  | 12     | 6,9751  | 7      |
| ABCE1           | ABCEL_HUMAN                | 67        | 0      | 0   | 8,7267 | 7  | 22,473 | 16 | 4,307  | 4   | 14,269      | 2  | 12,258  | 10     | 5,9795  | 5      |
| ARS             | 3KR24 HUMAN                | 132       | 0      | 9   | 13,575 | 16 | 22,473 | 27 | 5 3838 | 5   | 2,1952      | 2  | 5 2707  | 5      | 0       | 20     |
| PSMD11          | PSD11_HUMAN                | 47        | 0      | 0   | 7,7571 | 8  | 22,473 | 19 | 0      | 0   | 0           | 0  | 7.0276  | 8      | 0       | 0      |
| AECATA          | ATD3A_HUMAN                | 71        | 6,5247 | 5   | 21,332 | 14 | 21,748 | 18 | 117,37 | 27  | 21,952      | 14 | 27,232  | 17     | 46,839  | 25     |
| CUL48           | CUL46_HUMAN                | 104       | 0      | D   | 0      | 0  | 21,748 | 21 | 0      | 0   | Ð           | D  | 7,906   | 9      | 0       | D      |
| CYFIP1          | CYFP1_HUMAN                | 145       | 0      | 0   | 0      | 0  | 21,748 | 24 | e      | 0   | 0           | 0  | 0       | C      | 0       | 0      |
| EIF3I           | EIF31_HUMAN                | 37        | 0      | 0   | 24,241 | 12 | 21,748 | 14 | 0      | 0   | 15,367      | 10 | 19,326  | 12     | 0       | 0      |
| CART            | BUDS HUMAN                 | 113       | 0      | 0   | 39,733 | 21 | 21,743 | 26 | 0      | 0   | 33,-1/      | 24 | 25,718  | 21     | 0,9701  | 0      |
| MSN             | MOES HUMAN                 | 68        | 2,6099 | 2   | 3,8786 | 4  | 21,748 | 23 | C C    | 0   | 0           | 0  | 13.177  | 12     | 3,9563  | 4      |
| SERT            | SRRT HUMAN                 | 101       | 0      | D   | 7,7571 | 8  | 21,748 | 23 | 0      | 0   | 10,976      | 10 | 17,569  | 19     | 3,9863  | 4      |
| XRCC6           | XRCC6_HUMAN                | 70        | 2,6099 | 2   | 12,605 | 12 | 21,748 | 15 | 6,4605 | \$  | 14,289      | 11 | 43,922  | 27     | 10,952  | 10     |
| AP281           | AP281_HUMAN                | 105       | 0      | D   | 23,12  | 11 | 21,023 | 10 | 15,075 | 6   | 21,952      | 11 | 14,055  | 8      | 20,928  | 8      |
| D APH1          | 2ADG21H68_HUMAN (+         | 141       | 0      | D   | 2,9089 | 3  | 21,023 | 24 | c      | Ó   | 3,2929      | 3  | o       | C      | 0       | D      |
| ELEOF           | IF26_HUMAN                 | 51        | 0      | 0   | 7,7571 | 7  | 21,023 | 14 | 11,844 | 10  | 24,148      | 14 | 32,503  | 17     | 24,914  | 15     |
| EMCI            | EIFSE_HUMAN                | 112       | 0      | 9   | 22,302 | 5  | 21,023 | 11 | 3,2505 | 3   | 0,085/      | 2  | 13,812  | d<br>p | 5.0706  | 5      |
| 440368          | I3KN16 HUMAN               | 224       | 0      | 0   | 9.6964 | 10 | 21.023 | 23 | 0      | 0   | 3,2929      | 3  | 7.0276  | 8      | 3,9863  | 4      |
| LETM1           | LETM1_HUMAN                | 83        | 0      | D   | 13,575 | 14 | 21,023 | 20 | e      | 0   | 20,855      | 17 | 23,718  | 19     | 14,919  | 14     |
| G35P1           | G38P1_HUMAN                | 52        | 0      | D   | 22,302 | 13 | 20,298 | 12 | 2,1535 | 2   | 40,612      | 17 | 55,342  | 16     | 26,908  | 13     |
| RNPA281         | ROA2_HUMAN                 | 37        | 6,5247 | 2   | 14,545 | 11 | 20,298 | 12 | 10,768 | 7   | 148,18      | 19 | 65,005  | 17     | 9,9658  | 7      |
| MAGED2          | MAGD2_HUMAN                | 65        | 0      | D   | 15,514 | 12 | 20,258 | 15 | 9,6908 | 8   | 20,855      | 15 | 22,84   | 19     | 14,949  | 14     |
| NCKAP1          | NCKP1_HUMAN                | 125       | 0      | 0   | 0      | 0  | 20,298 | 21 | 0      | 0   | 0           | 0  | 1,7569  | 2      | 0       | 0      |
| POKL            | PERAL_HUMAN                | 69        | 0      | 5   | 1 9292 | 2  | 20,298 | 12 | 12,921 | 0   | 2,1052      | 2  | 7,906   | 3      | 5,9558  | 3      |
| BOCK2           | BOCK2 HUMAN                | 161       | 0      | 0   | 0      | ê  | 20.298 | 19 | 0      | 0   | 3           | 0  | P       | 0      | 0       | 3      |
| RP\$5           | MOROFD_HUMAN (+1)          | 22        | 7,8297 | 4   | 41,694 | n  | 20,298 | 10 | 9,6908 | 7   | 40,612      | 10 | 30,746  | s      | 22,921  | 10     |
| 51C25A3         | MPCP_HUMAN                 | 40        | 0      | 0   | 6,7875 | 3  | 20,298 | 3  | 67,836 | 11  | 15,367      | 5  | 21,961  | 8      | 31,891  | 10     |
| XRCCS           | XRCC5_HUMAN                | 83        | 5,2198 | 4   | 11,636 | 12 | 20,298 | 15 | 9,307  | 1   | 13,171      | 11 | 39,53   | 27     | 1,9932  | 2      |
| 11or 84         | Q9BUA3 SPNDC_HUM           | 5         | 0      | D   | 2,9089 | 3  | 19,573 | 15 | 0      | 0   | 2,1952      | 2  | 14,055  | 12     | 1,9932  | 2      |
| COP31           | COP5_HUMAN                 | 107       | 0      | 9   | 5,8178 | 6  | 19,573 | 23 | 8,614  | 8   | 3,2929      | 3  | 9,6629  | 11     | 0       | 5      |
| 5153            | ICDA HUMAN                 | 105       | 201/9  | 2   | 12 575 |    | 19,573 | 12 | 8 614  | 6   | 4,3905      | 10 | 7,0276  | 15     | 0       | 2      |
| EPR41           | 41 HUMAN                   | 97        | 0      | 0   | 20.362 | 15 | 19,573 | 16 | 0,014  | 0   | 7.6834      | 6  | 7.906   | 6      | 6.9761  | 6      |
| INRNPAL         | ROAL HUMAN                 | 39        | 3,9148 | 3   | 19,393 | 10 | 19,573 | 12 | 18,305 | 7   | 127.32      | 20 | 69,127  | 21     | 9,9558  | 5      |
| LONPI           | LONM_HUMAN                 | 106       | 0      | D   | 2,9089 | 3  | 19,573 | 22 | 0      | 0   | 3,2929      | 3  | 7,0276  | 8      | 1,9932  | 2      |
| PPIB            | PPIB_HUMAN                 | 24        | 2,6099 | 2   | 7,7571 | 6  | 19,573 | 11 | 7,5373 | 7   | 3,2929      | 3  | 9,6629  | 8      | 7,9726  | 8      |
| PRPIS           | PRPS_HUMAN                 | 107       | 0      | D   | 28,12  | 23 | 19,573 | 22 | 5,3838 | 5   | 23,05       | 19 | 17,569  | 19     | 5,9795  | 8      |
| TBC1D4          | TBCD4_HUMAN                | 147       | 0      | 0   | 27.15  | 25 | 19,573 | 25 | 0      | 0   | 18,66       | 17 | 16,691  | 19     | 6,9761  | 7      |
| USPSX           | USP9X_HUMAN                | 292       | 0      | 0   | 4,8482 | 3  | 19,573 | 25 | 383,33 | 106 | 5,4881      | 5  | 2,6353  | 3      | 57,802  | 50     |
| WOR77           | MEPSO_HUMAN                | 37        | 3,9148 | 5   | 63,027 |    | 19,573 | 3  | 13,998 | 6   | 85,712      | n  | 22,84   | 10     | 0       | 0      |
| 39326           | SEPT2 HUMAN                | 51        | 0      | 0   | *,0+0Z | 0  | 19,575 | 17 | 0      | 0   | 4,5905      | 0  | 5,5136  | 0      | 0       | 3      |
| DHX38           | PRP16 HUMAN                | 141       | 0      | 0   | 21.332 | 14 | 18,848 | 21 | 0      | 0   | 15,367      | 9  | 45.679  | 34     | 12.956  | 11     |
| DNAIAL          | DNJA1_HUMAN                | 45        | 0      | D   | 10,666 | 7  | 18,848 | 13 | 17,228 | 10  | 12,074      | 6  | 16,691  | 12     | 22,921  | 14     |
| 4501784         | DH64_HUMAN                 | 80        | 0      | D   | 83,389 | 26 | 18,848 | 15 | 0      | 0   | 12,074      | 7  | 8,7845  | 9      | 0       | D      |
| JUP             | PLAK_HUMAN                 | 82        | 26,099 | 5   | 38,786 | 19 | 18,848 | 13 | 13,998 | 7   | 4,3905      | 4  | 38,652  | 24     | 43,849  | 17     |
| ATHED1L         | CITM_HUMAN                 | 106       | 0      | D   | 10,666 | 11 | 18,848 | 24 | 0      | 0   | 2,1952      | 2  | 1,7569  | 2      | 0       | 0      |
| NARS            | SYNC_HUMAN                 | 63        | 0      | 0   | 0      | 0  | 18,848 | 14 | 0      | 0   | 0           | 0  | 2,6353  | 3      | 0       | 3      |
| POLA1<br>22AJT1 | ANNI JUMAN (22)            | 166       | 0      | 0   | 2,9085 | 3  | 18,848 | 12 | 8614   | 9   | 204.05      | 25 | 12,258  | 13     | 1 0027  | 2      |
| PRIC2A          | PRC2A HUMAN                | 229       | 0      | 0   | 35.877 | 30 | 18,848 | 25 | 2 1555 | 2   | 354,03      | 29 | 43 922  | 39     | 29.897  | 29     |
| PTBP1           | PTEP1 HUMAN                | 57        | 0      | D   | D      | 0  | 18,848 | 12 | 0      | 0   | 10,976      | 7  | 20,204  | 14     | 4,9829  | 4      |
| AIFM1           | AIFM1_HUMAN                | 67        | 0      | 0   | 2,9089 | 3  | 18,123 | 15 | 34,456 | 13  | 3,2929      | 3  | 12,298  | 12     | 31,891  | 19     |
| AP381           | AP3B1_HUMAN                | 121       | 0      | Ð   | 2,9089 | 3  | 18,123 | 22 | e      | 0   | Э           | D  | 9,6629  | 11     | 1,9932  | 2      |
| EIF353          | B3K598_HUMAN (+1)          | 42        | 0      | D   | 29,089 | 14 | 18,123 | 13 | 3,2303 | 3   | 14,269      | 11 | 14,055  | 11     | 1,9932  | 2      |
| FXR1            | FXR1_HUMAN                 | 70        | 0      | 0   | 35,846 | 22 | 18,123 | 17 | 25,842 | 17  | 109,76      | 35 | 43,044  | 27     | 24,914  | 22     |
| KIESE           | KIESC HUMAN                | 109       | 2      | 0   | 11,636 | 4  | 18 123 | 9  | 0      | 0   | -+*3A(D     | 0  | 8 7945  | 3      | 7,9726  | 2      |
| KLC2            | KLC2_HUMAN                 | 69        | o l    | D   | 14,545 | 14 | 18,123 | 21 | e      | 0   | 4,3905      | 4  | 24,597  | 23     | 18,935  | 16     |
| NPM1            | NPM_HUMAN                  | 33        | 0      | D   | 6,7875 | 5  | 18,123 | 10 | 21,535 | 8   | 15,367      | 7  | 30,746  | 13     | 2,9897  | 2      |
| PRPS1           | PRPS1_HUMAN                | 35        | 0      | Э   | 1,9393 | 2  | 18,123 | 12 | 10,768 | 8   | 3,2929      | 2  | 3,5138  | 4      | 0       | э      |
| RP315           | 2516_HUMAN                 | 16        | 2 0140 | 5   | 36,059 | 10 | 18,123 | 11 | 15,382 | 10  | 47,198      | 11 | 26,597  | 11     | 18,935  | 10     |
| B252            | ISS HUMAN                  | 31        | 14,354 | 4   | 52,057 | 12 | 18 123 | 10 | 30,149 | 12  | 69 15       | 14 | 21.093  | 12     | 22,921  | p      |
| SPAG9           | 14087X2D8_HUMAN (+         | 145       | 0      | D   | 0      | 0  | 18,123 | 17 | 0      | 0   | 0           | 0  | 0       | 0      | 0       | 0      |
| TAB2            | TAS2_HUMAN                 | 76        | 0      | 0   | 0      | e  | 18,123 | 16 | e      | 0   | 2,1952      | 2  | 4,3922  | 4      | 0       | э      |
| UFLI            | UFL1_HUMAN                 | 90        | 0      | D   | 11,636 | 12 | 18,123 | 22 | 4,307  | 4   | 18,65       | 16 | 26,353  | 21     | 8,9592  | 8      |
| AP2A1           | AP2A1_HUMAN                | 108       | 0      | 9   | 22,302 | 22 | 17,398 | 21 | 19,382 | 16  | 24,148      | 20 | 14,055  | 16     | 23,918  | 22     |
| EETIG BEALDIN   | PEDI2 HUMAN                | 50        | 2,5099 | Z   | 8,7875 | 2  | 17,358 | 12 | 4,307  | 4   | 9,8785      | 8  | 10,541  | 5      | 10,952  | 10     |
| RPL38           | RE38 HEXAN                 | 35        | 5,2198 | 2   | 6,7875 | 5  | 17,398 | 13 | 12,921 | 5   | 21.952      | 5  | 2,0353  | 5      | 10.952  | 5      |
| SEC63           | SEC63_HUMAN                | 88        | 0      | 0   | 16,484 | 15 | 17,398 | 18 | 0      | ő   | 24,148      | 18 | 21,083  | 20     | 4,9829  | s      |
| C3HAV1          | ZCCHV_HUMAN                | 101       | 0      | 0   | 1,9393 | 2  | 17,398 | 18 | 31,226 | 18  | 20,855      | 13 | 21,083  | 15     | 11,959  | 9      |
| DHK30           | DHX30_HUMAN (+1)           | 134       | 0      | D   | 5,8178 | 5  | 16,673 | 22 | 21,535 | 17  | 29,636      | 23 | 17,569  | 18     | 2,9897  | 3      |
| DNAJA2          | DNJA2_HUMAN                | 46        | 0      | D   | 8,7267 | 7  | 16,673 | 11 | 19,382 | 12  | 9,8786      | 5  | 14,055  | 10     | 16,942  | 11     |
| DOCK7           | DOCK7_HUMAN                | 243       | 0      | 0   | 11,636 | 10 | 16,673 | 22 | C      | 0   | 3,2929      | 3  | 21,961  | 24     | 6,9751  | 7      |
| EIF3G           | K7EL20_HUMAN               | 79        | 0      | 0   | 17,453 | 12 | 16,673 | 13 | 3,7303 | 3   | 4,3905      | 3  | 14,055  | 11     | 5,9795  | 5      |
| ELAC?           | RNZ2 HUMAN                 | 192<br>¢6 | 0      | 9   | 7,7571 | 3  | 16,673 | 13 | 0      | 0   | 0<br>4.3ans | 0  | 5 2 202 | 6      | 1 99322 | 2      |
| HNRNPI          | HNRPL HUMAN                | 64        | 3,9148 | 3   | 12,605 | 9  | 16,673 | 14 | 3,2303 | 3   | 49,393      | 21 | 44,801  | 21     | 19,932  | 15     |
| KPNA2           | IMAL HUMAN                 | 58        | 0      | D   | 4,8482 | 4  | 16,673 | 13 | 7,5373 | 5   | 10,976      | 8  | 13,177  | s      | 8,9692  | 9      |
| NAAIO           | NAA10_HUMAN                | 26        | 0      | D   | 3,8786 | 4  | 16,673 | 15 | 0      | 0   | 2,1952      | 2  | 7,906   | 8      | 0       | a      |
| PHB             | PHB_HUMAN                  | 50        | 0      | D   | 9,6964 | 10 | 16,673 | 13 | 6,4605 | 6   | 8,781       | 7  | 7,906   | 8      | 5,9795  | 5      |
| PSMC5           | PIS8_HUMAN                 | 46        | 0      | D   | 12,605 | 12 | 16,673 | 16 | e      | ۵   | 8,5857      | 5  | 11,42   | 11     | 3,9853  | 3      |
| 53F1            | G5E933_HUMAN (+1)          | 208       | 0      | 0   | 18,423 | 13 | 16,673 | 21 | 13,998 | 13  | 24,148      | 22 | 30,746  | 31     | 23,918  | 23     |
| TCOF1           | TEOF_HUMAN                 | 152       | 0      | 0   | 4,8482 | 4  | 16,673 | 17 | 0      | 0   | 9,8786      | 9  | 14,934  | 17     | 1,9932  | 2      |
| TALMA           | TYLNA HUMAN                | 62        | 0      | 0   | 19,393 | 15 | 16,673 | 15 | 0      | 0   | 10,343      | 15 | /1,961  | 17     | 0       | ц<br>9 |
| YARS            | STYC HUMAN                 | 59        | ő      | 0   | 1,9393 | 2  | 16,673 | 20 | 0      | 0   | 0           | p  | 7.0276  | 8      | 0,5036  | 2      |
| APIG1           | APIG1_HUMAN                | 91        | 0      | D   | 2,9089 | 3  | 15,949 | 15 | õ      | 0   | 5           | 0  | 0       | 0      | õ       | 5      |
| AP2A2           | AP2A2_HUMAN                | 104       | 0      | D   | 16,484 | 9  | 15,949 | 10 | e      | 0   | 12,074      | 3  | 6,1491  | 3      | 10,962  | 2      |
| DARS            | SYDC_HUMAN                 | 57        | 0      | D   | 2,9089 | 3  | 15,949 | 15 | 15,075 | 8   | 2,1952      | 2  | 7,906   | s      | 2,9897  | 3      |
| E F4G2          | DSDQV9_HUMAN (+1)          | 102       | 0      | D   | 1,9393 | 2  | 15,949 | 20 | Q      | 0   | Э           | 0  | 2,6353  | 3      | 0       | Э      |
| HSPD1           | CHEC_HUMAN                 | 61        | 32,824 | 13  | 8,7875 | 6  | 15,949 | 12 | 773,96 | 50  | 5,4881      | 4  | 7,906   | S      | 325,88  | 47     |
| MSH2            | MSH2_HUMAN                 | 105       | 0      | 0   | 7,7571 | 8  | 15,949 | 15 | 0      | 0   | 4,3905      | 4  | 12,298  | 14     | 3,9863  | 4      |
| NCAPH           | ENDS_HUMAN<br>ESPH42_HUMAN | 114       | 0      | 9   | 3,8786 | 4  | 15,949 | 20 | e<br>o | 0   | 2,1952      | 2  | 5,2707  | 6      | 0       | J      |
| BAN             | BSMDFS HUMAN (+2)          | 25        | 7,8797 | G C | 21.332 | 5  | 15 949 | 6  | 8,614  | 5   | 18.66       | 5  | 18.447  | 2      | 10,962  | 5      |
| 0.04.00         |                            | 20        |        |     |        |    |        |    |        |     | 10.000      |    |         | 1 A A  |         |        |
| a                | e                                |            |             |         |                  |         | ÷                |          | 2                | ·        |                  |          |                  |          |                  | a        |
|------------------|----------------------------------|------------|-------------|---------|------------------|---------|------------------|----------|------------------|----------|------------------|----------|------------------|----------|------------------|----------|
| CCAR1            | TPS_HUMAN<br>CCAR1_HUMAN         | 267<br>133 | 0           | 9<br>0  | 0<br>10,666      | 0<br>9  | 15,949<br>15,224 | 22<br>15 | e<br>o           | 0        | 9<br>0           | 0        | 0<br>5,2707      | 0<br>5   | 0                | 0<br>0   |
| CCAR2<br>COPG2   | CCAR2_HUMAN<br>COPG2_HUMAN       | 103<br>98  | 0           | 0       | 20,362<br>3,8786 | 18      | 15,224           | 18<br>18 | 0<br>3.2303      | 0        | 12,074<br>0      | 10<br>0  | 10,541<br>3,5138 | 11<br>3  | 16,942<br>0      | 15<br>0  |
| EIF252           | IF28_HUMAN                       | 38         | 0           | 0       | 16,484           | 8       | 15,224           | 15       | 7,5373           | 7        | 29,636           | 17       | 35,138           | 17       | 18,935           | 12       |
| GLUD1            | DHE3_HUMAN                       | 61         | 0           | 5       | 18,423           | é       | 15,224           | 18       | 19,382           | 11       | 0                | n v      | 5,2707           | 6        | 6,9751           | 7        |
| IGF28P1          | (F251_HUMAN<br>640Y09_HUMAN (+1) | 63<br>39   | 0 2,6099    | 0<br>2  | 11,636<br>13,575 | 11 10   | 15,224           | 12<br>12 | 31,226<br>23,689 | 15<br>11 | 38,417<br>51,588 | 18<br>17 | 48,315<br>75,547 | 24<br>18 | 17,938<br>36,873 | 15<br>15 |
| OPA1             | E5KU9_HUMAN                      | 114        | 0           | 0       | 4,8482           | 5       | 15,224           | 15       | 0                | 0        | 2,1952           | 2        | 0                | 0        | 0                | D        |
| SKIV2L2          | SK2L2_HUMAN                      | 151        | 0           | 5       | 15,484           | 2       | 15,224           | 15       | 0                | 0        | 3,2929           | 3        | 9,6629           | 10       | 1,9932           | 2        |
| SRP72<br>ATP281  | SRP72_HUMAN<br>AT281_HUMAN       | 75<br>139  | 0           | 0       | 21,332<br>2,9089 | 13<br>3 | 15,224           | 14<br>13 | 5,3838<br>0      | 5        | 17,562 7,5834    | 10<br>7  | 20,204           | 13<br>5  | 14,949<br>4,9829 | 12       |
| CAPRIN1          | CAPR1_HUMAN                      | 78         | 0           | D       | 18,423           | 11      | 14,499           | 11       | 3,2303           | 3        | 23,05            | 13       | 20,204           | 14       | 13,952           | 9        |
| FLI              | FUI_HUMAN                        | 145        | 0           | 5       | 15,514           | 19      | 14,499           | 15       | 37,686           | 24       | 40,612           | 25       | 7,0276           | 8        | 3,9853 27,904    | 23       |
| GEPT1<br>HADHA   | GEPT1_HUMAN<br>ECHA_HUMAN        | 79<br>83   | 0           | 0       | 3,8786 20.362    | 4       | 14,499           | 19       | 0 26.919         | 0        | 0<br>18.55       | 0        | 5,2707<br>29.867 | 5<br>25  | 1,9932           | 2 28     |
| HNRNPD           | HNRPD_HUMAN                      | 38         | 0           | 0       | 8,7267           | 7       | 14,499           | 11       | 0                | 0        | 40,612           | 12       | 28,11            | 13       | 15,945           | 9        |
| PKM              | KPYM_HUMAN                       | 58         | 23,489      | s       | 9,6964           | 0       | 14,499           | 12       | 4,307            | 4        | 2,1952           | 0        | 2,6353           | 2        | 2,9897           | 3        |
| PKN2<br>POLD1    | PKN2_HUMAN<br>DPDD1_HUMAN (+1)   | 112<br>124 | 0           | 0       | 5,8786<br>23,271 | 4 21    | 14,499           | 17<br>15 | C<br>C           | 0        | 7,6834 34,026    | 7        | 6,1491<br>21.083 | 7 23     | 0 12.955         | 0<br>13  |
| PSMC1            | PR54_HUMAN                       | 49         | 0           | D       | 5,8178           | 5       | 14,499           | 14       | 0                | 0        | D                | 0        | 7,906            | 7        | 0                | 0        |
| RTCB             | RTCB_HUMAN                       | 55         | 0           | 5       | 15,514           | 14      | 14,499           | 17       | 6,4605           | 5        | 27,441           | 14       | 20,204           | 16       | 14,949           | 13       |
| VIM<br>WDHD1     | VIME_HUMAN<br>WOHD1_HUMAN        | 54<br>126  | 13,049<br>0 | 10<br>0 | 14,545<br>D      | 14      | 14,499<br>14,499 | 17       | 54,915<br>0      | 25<br>0  | 21,952<br>0      | 16<br>D  | 22,84<br>0       | 21<br>0  | 37,87            | 24<br>D  |
| AMPD2            | H0Y360_HUMAN                     | 99         | 0           | 0       | 6,7875           | 7       | 13,774           | 12       | 0                | 0        | 0                | 0        | 1,7569           | 2        | 0                | 0        |
| CSDE1            | CSDET_HUMAN                      | 89         | 0           | 0       | 0                | 0       | 13,774           | 15       | 166,9            | 44       | 0                | 0        | 0                | 0        | 44,846           | 27       |
| DDX42<br>EIF3M   | DDX42_HUMAN<br>EIF3M_HUMAN       | 103<br>43  | 0           | 0       | 0<br>18,423      | 0       | 13,774<br>13,774 | 14<br>12 | C<br>C           | 0        | 0<br>7,6834      | 0 6      | 4,3922 13,177    | 5<br>9   | 0                | 0        |
| EIF5B            | A087WUT6_HUMAN (-                | 139        | 0           | 0       | 1,9393           | 2       | 13,774           | 18       | 2,1535           | 2        | 27,441           | 22       | 30,746           | 28       | 8,9692           | 9        |
| LARPI            | LARP1_HUMAN                      | 124        | ő           | D       | 18,423           | 15      | 13,774           | 17       | 5,3838           | 5        | 39,514           | 24       | 29,867           | 28       | 12,956           | ñ        |
| URRC59<br>NDUFS1 | LRC59_HUMAN<br>NDUS1_HUMAN       | 35<br>79   | 0           | 0<br>0  | 12,605<br>5,8178 | 8       | 13,774<br>13,774 | 10<br>15 | 13,998<br>5,3838 | 10<br>5  | 21,952<br>2,1952 | 9<br>2   | 22,84<br>5,2707  | 10<br>6  | 33,994<br>2,9897 | 13<br>3  |
| PRPF19           | PRP19_HUMAN                      | 55         | 0           | 0       | 3,8786           | 4       | 13,774           | 14       | 26,919           | 11       | 14,269           | 9        | 19,326           | 14       | 21,925           | 13       |
| PYCR2            | PSCR2_HUMAN                      | 34         | 0           | 0       | 10,666           | 7       | 13,774           | 7        | 19,382           | 9        | 13,171           | 8        | 7,0276           | 6        | 6,9761           | 5        |
| RNF20<br>RPS6KA3 | BRE1A_HUMAN<br>KS6A3_HUMAN       | 114<br>84  | 0           | 0<br>D  | 1,9393<br>D      | 2<br>0  | 13,774<br>13,774 | 17       | C<br>C           | 0        | 9<br>0           | 0        | 0                | 0<br>2   | 0                | 0<br>0   |
| RPS9<br>BUMBLE   | A024R4M0_HUMAN (+<br>RUMB1_HUMAN | 23         | 0           | 0       | 32,968           | 11      | 13,774           | 10       | 13,998           | 9        | 40,612           | 13       | 14,055           | 11       | 8,9692           | 9        |
| SRP68            | SRP68_HUMAN                      | 71         | 0           | 0       | 25,211           | 22      | 13,774           | 17       | 12,921           | 12       | 19,757           | 16       | 28,989           | 26       | 16,942           | 17       |
| YBX3<br>BCLAF1   | YBOX3_HUMAN<br>BCLF1_HUMAN       | 40<br>10€  | 0           | 0<br>D  | 0<br>8,7267      | 0<br>4  | 13,774<br>13,049 | 5        | 8,614<br>2,1535  | 6<br>2   | 40,612 7,6834    | 7        | 22,84<br>6,14S1  | 7 5      | 18,935<br>2,9897 | 5<br>3   |
| CNOT1<br>CINND1  | CNOT1_HUMAN<br>CRIZ12_HUMAN (+1) | 267        | 0           | 0       | 0                | 0       | 13,049           | 18       | 5,3838           | 5        | 0                | 0        | 0                | 0        | 2,9897           | 3        |
| DNAIC13          | DJC13_HUMAN                      | 254        | 0           | D       | 0                | ô       | 13,049           | 18       | 0                | 0        | D                | 0        | 0                | 0        | 0                | a        |
| FARSA<br>FEN1    | K7ERD0_HUMAN (+1)<br>FEN1_HUMAN  | 62<br>43   | 0           | 9<br>0  | 4,8482           | 4       | 13,049           | 12       | 17,228           | 9        | 6,5857           | 4        | 12,298           | 10       | 13,952<br>3,9853 | 10 4     |
| GAPVD1<br>H=CUD1 | GAPD1_HUMAN                      | 165        | 0           | 0       | 1,9393           | 2       | 13,049           | 16       | 0                | 0        | 0                | 0        | 5,2707           | 6        | 0                | 0        |
| HS017510         | HCD2_HUMAN                       | 205        | 0           | 0       | 3,8786           | 2       | 13,049           | 10       | 0                | 0        | 0                | 0        | 0,1451           | ó        | 0                | 5        |
| MATR3<br>NCAPD2  | A8MXP9_HUMAN<br>CND1_HUMAN       | 100        | 0           | 0       | 16,484<br>18,423 | 14      | 13,049<br>13,049 | 15<br>16 | 8,614<br>0       | 7        | 85,615<br>2,1952 | 31<br>2  | 122,98           | 35       | \$9,658<br>0     | 31<br>D  |
| PFKM             | PFKAM_HUMAN                      | 85         | 0           | D       | 5,8178           | 3       | 13,049           | 11       | 9,6908           | 5        | 9,8786           | 7        | 14,055           | 12       | 8,9692           | 3        |
| PSMD6            | PSMDS_HUMAN                      | 46         | 0           | 0       | 4,8482           | 5       | 13,049           | 15       | e                | 0        | 9                | 0        | 1,7569           | 2        | 0                | 5        |
| RARS<br>RCC1     | SYRC_HUMAN<br>RCC1 HUMAN         | 75<br>45   | 0           | 0       | 3,8786 2,9089    | 4       | 13,049<br>13,049 | 16       | 3,2303<br>0      | 3        | 0<br>5,4881      | 0        | 14,055<br>7,906  | 16<br>8  | 1,9932 4,9829    | 2        |
| R217             | RL7_HUMAN                        | 29         | 5,2198      | 2       | 8,7875           | 7       | 13,049           | 10       | 35,533           | 13       | 18,65            | 11       | 18,447           | 13       | 8,9592           | 9        |
| SCRIB            | MOG2INZ2_HUMAN (+                | 175        | 0           | 5       | 1,9393           | 2       | 13,049           | 17       | 3,2303           | 3        | 0                | D        | 0                | e<br>e   | 1,9932           | 2        |
| SSB<br>TCERG1    | LA_HUMAN<br>TCRG1_HUMAN          | 47<br>124  | 0           | 0       | 3,8786<br>6,7875 | 4       | 13,049<br>13,049 | 13<br>15 | 4,307<br>0       | 4        | 13,171<br>5,4881 | 10<br>5  | 18,447<br>6,1491 | 14       | 5,9795           | 6<br>0   |
| ABCF2            | ABCF2_HUMAN                      | 71         | 0           | 0       | 10,666           | 11      | 12,324           | 14       | 7,5373           | 7        | 17,562           | 15       | 21,083           | 19       | 15,945           | 13       |
| BCAP31           | 5AP31_HUMAN                      | 28         | 0           | 5       | 5,8178           | 4       | 12,324           | 14       | 2,1535           | 2        | 2,1952           | 2        | 4,3922           | 4        | 3,9853           | 4        |
| CCDC47<br>CLASP1 | CCD47_HUMAN<br>CLAP1 HUMAN       | 56<br>169  | 0           | 0       | 7,7571 24,241    | 8<br>21 | 12,324           | 13<br>13 | 0                | 0        | 9,8786 25,245    | 8<br>17  | 16,691<br>19,326 | 15<br>17 | 8,9692 4,9829    | 9        |
| C.PX             | CLPX_HUMAN                       | 69         | 0           | D       | 8,7267           | 7       | 12,324           | 14       | 0                | 0        | 4,3905           | 4        | 3,5138           | 4        | 0                | 2        |
| DDX21            | DDX21_HUMAN                      | 87         | 0           | 5       | 6,7875           | 7       | 12,324           | 15       | 25,842           | 16       | 29,636           | 20       | 31,624           | 21       | 11,959           | 12       |
| FLG2<br>HMGB2    | FILA2_HUMAN<br>HNIGB2_HUMAN      | 248<br>24  | 13,049<br>0 | 2       | 18,423<br>4,8482 | 8       | 12,324 12,324    | 6<br>5   | 12,921<br>C      | 3        | 12,074           | 5        | 14,934 5,2707    | 12<br>4  | 48,832<br>0      | 20<br>3  |
| HSPA14           | HSP7E_HUMAN                      | 55<br>26   | 0           | 0       | 0                | 0       | 12,324           | 15       | 0                | 0        | 0                | D        | 3,5138           | 4        | 2,9897           | 3        |
| KLC4             | KLC4_HUMAN                       | 69         | õ           | 5       | 0,1015           | é       | 12,324           | 12       | e                | 0        | 0                | D        | 9,6629           | 2        | 7,9725           | 4        |
| RBM26            | R5M26_HUMAN                      | 75<br>114  | 0           | D<br>D  | 8,7267<br>16,484 | 8<br>12 | 12,324 12,324    | 14       | 2,1535<br>C      | 2        | 4,3905           | 3 11     | 16,691<br>14,934 | 18<br>15 | 2,9897<br>4,9829 | 3 4      |
| RBM6<br>RP518    | R6M6_HUMAN<br>R518_HUMAN         | 125        | 0           | 0       | 31,998           | 26      | 12,324           | 16       | 3,2303           | 3        | 72,443           | 38       | 49,193           | 44       | 15,945           | 16       |
| SLC25A11         | I3L1P8_HUMAN (+1)                | 32         | 0           | b       | 7,7571           | 7       | 12,324           | 12       | 35,533           | 15       | 13,171           | 9        | 12,298           | 11       | 30,894           | 14       |
| ACACA<br>ACSLS   | ACSES_HUMAN                      | 266<br>80  | 0           | 0       | 0<br>5,8178      | 6       | 11,599           | 16       | 0<br>5,3838      | 0<br>4   | 0<br>6,5857      | 5        | 0 12,298         | 0<br>12  | 0 14,949         | 10       |
| ARCN1<br>ARPC2   | COPD_HUMAN<br>ARPC2_HUMAN        | 57<br>34   | 0           | 0<br>0  | 8,7267           | 7       | 11,599           | 15       | 8,614<br>C       | 8        | 3,2929           | 3        | 11,42<br>5,2707  | 13<br>5  | 2,9897           | 3        |
| DHX16            | DHX16_HUMAN                      | 115        | 0           | 0       | 1,9393           | 2       | 11,599           | 11       | e                | 0        | 15,367           | 9        | 12,258           | 11       | 0                | 0        |
| EIF5             | IFS_HUMAN                        | 49         | 0           | 0       | 9,8785<br>0      | 4<br>0  | 11,599           | 15       | 0<br>C           | 0        | 2,1952           | 2        | 10,541           | 9        | 5,9795           | s        |
| FANC             | FANCI_HUMAN<br>SYHC HUMAN (+2)   | 149<br>57  | 0           | 0<br>9  | 14,545<br>2,9089 | 14<br>3 | 11,599           | 15       | 0                | 0        | 3,2929 3,2929    | 3        | 0                | 0        | 0                | а<br>Э   |
| HNRNPUL1         | HNRL1_HUMAN                      | 96         | 0           | 0       | 8,7267           | 9       | 11,599           | 10       | 15,075           | 12       | 6,5857           | 6        | 3,5138           | 1        | 0                | 0        |
| PPP1R12A         | MYPT1_HUMAN                      | 115        | 0           | 9       | 1,9393           | 2       | 11,599           | 15       | e                | 0        | 2,1952           | 2        | 4,3922           | 5        | 0                | 3        |
| PRRC2C<br>QARS   | PRC2C_HUMAN<br>SYQ_HUMAN         | 317<br>88  | 0           | 0<br>0  | 21,332<br>0      | 15<br>0 | 11,599           | 14<br>15 | 3,2303           | 3        | 20,855<br>0      | 19<br>0  | 26,353<br>2,6353 | 27<br>3  | 15,945<br>0      | 16<br>0  |
| RPL17            | AC87WXM5_HUMAN (                 | 20         | 0           | 0       | 23,271           | 8       | 11,599           | 8        | 11,864           | 6        | 28,538           | 9        | 14,934           | 8        | 8,9592           | 7        |
| SART3            | SARTS_HUMAN                      | 110        | 0           | 0       | 1,9393           | 2       | 11,599           | 8<br>16  | 3,2305           | 3        | 15,464           | 14       | 9,6629           | 11       | 3,9865<br>2,9897 | 3        |
| TAB1<br>TAF15    | TABI_HUMAN<br>R8P56_HUMAN        | 55<br>62   | 0           | 0<br>0  | 1,9393<br>6,7875 | 2       | 11,599<br>11,599 | 16<br>5  | 0<br>0           | ů<br>o   | 0<br>30,733      | 0<br>7   | 7,0276           | 7 4      | 0                | а<br>0   |
| TUMTI            | TRM1_HUMAN                       | 72         | 0           | 0       | 6,7875           | 5       | 11,599           | 12       | 2,1535           | 2        | 6,5857           | 5        | 12,258           | 12       | 8,9592           | 7        |
| UZAF1            | U2AF1_HUMAN (+1)                 | 28         | 0           | 5       | 10,666           | 5       | 11,599           | 6        | 7,5373           | 4        | 27,441           | 8        | 22,84            | 8        | 4,9829           | 5        |
| AIMP1<br>APIS    | AIMPI_HUMAN<br>G3V1C3_HUMAN      | 34<br>58   | 0           | 0<br>0  | 1,9393<br>0      | 2<br>0  | 10,874 10,874    | 11<br>12 | 3,2303 2,1555    | 3        | 2,1952<br>0      | 2        | 6,1491<br>6,1491 | 6        | 0                | 0<br>0   |
| ATPSC1           | ATPC_HUMAN                       | 33         | 3,9148      | 3       | 10,666           | 7       | 10,874           | 9        | 11,844           | 7        | 13,171           | 8        | 14,934           | 11       | 14,949           | 9        |
| CYFIP2           | E7EVI5_HUMAN                     | 143        | 0           | 0       | 0,7875           | e       | 10,874           | 3        | e                | 0        | 0,4881<br>0      | 0        | 0                | 0        | 0,9761           | D D      |
| DAR52<br>DDB1    | SYDM_HUMAN<br>DD51 HUMAN         | 74<br>127  | 0           | 0<br>0  | 0<br>3,8786      | 0       | 10,874           | 10<br>9  | 0<br>43.07       | 0 22     | 0 15.367         | 0<br>13  | 4,3922<br>6,1491 | 5 4      | 0<br>8,9692      | л<br>8   |
| DHX36            | DHX36_HUMAN                      | 115        | 0           | 0       | 2,9089           | 2       | 10,874           | 13       | C IC ICC         | 0        | 5,4881           | 3        | 7,906            | 8        | 3,9863           | 4        |
| EIF3J            | EIF3J_HUMAN                      | 41<br>29   | 0           | 0       | 2,9089<br>D      | 3       | 10,874           | 8<br>10  | 10,768<br>C      | 9        | 3,2929<br>D      | 3<br>0   | 2,6353<br>2,6353 | 3        | 1,9932           | 2        |
| ERCC6L<br>FZR    | ERC61_HUMAN<br>EZRI HUMAN        | 141<br>69  | 0           | 0       | 5,8178<br>D      | 6<br>0  | 10,874           | 14       | 0                | 0        | 5,4881           | 5        | 5,2707<br>13.172 | 5<br>8   | 0<br>3,9853      | 0<br>2   |
| CIGYT2           | GGYF2_HUMAN                      | 150        | 0           | 0       | 12,605           | 12      | 10,874           | 11       | 3,2303           | 3        | 10,976           | 10       | 4,3922           | 4        | 28,901           | 22       |
| MAP3K7           | M3K7_HUMAN                       | 67         | 0           | 0       | 40,725           | 0       | 10,874           | 9        | 13,998<br>C      | 0        | 29,636           | 12       | 7,0276           | 8        | 0                | 3        |
| MOGS<br>NCRP1    | MOGS_HUMAN<br>NGB21_HUMAN        | 92<br>92   | 0           | 0       | 8,7267<br>0      | 9<br>0  | 10,874           | 12       | 6,4605           | 6        | 17,562           | 15<br>0  | 17,569           | 12       | 28,901           | 19       |
| PLCCI            | PLCG1_HUMAN                      | 145        | 0           | D       | D                | e       | 10,874           | 15       | e                | 0        | D                | D        | 0                | o        | 0                | D        |

|                 |                    | a   |        |   |             |        | 9 B     |    |         | 2 7    | 17          |    |         |        |             |        |
|-----------------|--------------------|-----|--------|---|-------------|--------|---------|----|---------|--------|-------------|----|---------|--------|-------------|--------|
| PSMC6           | 0A087X2I1_HUMAN (+ | 46  | 0      | 9 | 9,6964      | 10     | 10,874  | 9  | e       | 0      | 3,2929      | 3  | 7,0276  | 8      | 0           | 0      |
| PSMD13          | PSD13_HUMAN        | 43  | 0      | 0 | 9,6964      | 9      | 10,874  | 12 | 0       | 0      | 2           | 0  | 3,5138  | 4      | 0           | а<br>0 |
| 20160           | DACISTYPE HUMAN (- | 57  | 11.755 | 8 | 1.9393      | 2      | 10,874  | 12 | 21.535  | 15     | 20.855      | 13 | 33 381  | 19     | 12 955      | 12     |
| RPS11           | R511 HUMAN         | 18  | 10,44  | 4 | 20,362      | 9      | 10,874  | 6  | 12,921  | 3      | 26,343      | 9  | 8,7845  | 6      | 8,9692      | 7      |
| RP517           | RS17_HUMAN         | 16  | 2,6099 | 2 | 22,302      | 12     | 10,874  | 8  | 10,768  | 6      | 27,641      | 11 | 14,934  | 8      | 10,962      | 8      |
| RUVBL2          | RUV32_HUMAN        | 51  | 0      | D | 4,8482      | 3      | 10,874  | 9  | 143,21  | 33     | 9,8786      | 8  | 7,906   | 8      | 67,787      | 28     |
| SNRPD2          | SMD2_HUMAN         | 14  | 3,9148 | 2 | 10,666      | 6      | 10,874  | 7  | 0       | 0      | 12,074      | 6  | 17,569  | 7      | 6,9761      | 5      |
| SRPRA           | SRPRA_HUMAN        | 70  | 0      | 0 | 8,7267      | 9      | 10,874  | 15 | 0.014   | 0      | 7,5834      | 5  | 21,561  | 19     | 16,942      | 16     |
| ANKRO17         | ANR17 HUMAN (+1)   | 274 | 0      | 0 | 0           | 0      | 10,374  | 13 | 8,014   | 0      | 54881       | 14 | 8 7845  | 12     | 9 9692      | 9      |
| ANIN            | ANIN HUMAN         | 124 | 0      | 5 | 2,9089      | 2      | 10,149  | 13 | 0       | 0      | 3,4601      | 0  | 0,7645  | 0      | 0,9092      | 3      |
| ASCC3           | ASCC3 HUMAN        | 251 | 0      | 0 | 12.605      | 10     | 10,149  | 14 | 19.382  | 18     | 41.71       | 35 | 38,652  | 41     | 33,984      | 30     |
| CALD1           | CALD1_HUMAN        | 93  | 0      | D | Ð           | 0      | 10,149  | 12 | c       | Ô      | D           | 0  | 1,7569  | 2      | 0           | D      |
| CAMK2D          | D6R938_HUMAN (+3)  | 56  | D      | D | 1,9393      | 2      | 10,149  | 9  | 0       | 0      | D           | 0  | 5,2707  | 3      | 0           | D      |
| CC201A          | C2D1A_HUMAN        | 104 | 0      | 0 | 3,8786      | 4      | 10,149  | 14 | C       | 0      | Э           | 0  | 3,5138  | 4      | 0           | C      |
| CIUH            | K7EIG1_HUMAN       | 141 | 0      | 0 | 0           | 0      | 10,149  | 13 | 0       | 0      | 0           | 0  | 0       | 0      | 0           | 0      |
| CORDIC          | COPE_HUMAN         | 54  | 0      | 9 | 5,8786      | 4      | 10,149  | 12 | 3,2505  | 3      | 3,2929      | 2  | 2 6252  | 8      | 3,9865      | -<br>- |
| CUL4A           | CUL4A HUMAN        | 88  | 0      | 0 | 0           | 0      | 10.149  | 6  | c<br>c  | 0      | 0           | 0  | 5,2707  | 3      | 0           | 2      |
| DRG1            | DIG1 HUMAN         | 41  | 0      | 0 | 14,545      | 10     | 10,149  | 12 | o       | 0      | 14,269      | 9  | 14,055  | 12     | 0           | э      |
| FFF1D           | ESPRYS_HUMAN (+1)  | 77  | 0      | D | 7,7571      | 6      | 10,149  | 9  | 0       | 0      | 3,2929      | 2  | 3,5138  | 3      | 0           | D      |
| EML4            | EMAL4_HUMAN        | 109 | 0      | 0 | 0           | 0      | 10,149  | 1C | e       | 0      | 0           | 0  | 0       | e      | 0           | C      |
| EXOC7           | ACADAOMS68_HUMAN   | 79  | 0      | D | D           | e      | 10,149  | 12 | 0       | ٥      | а           | D  | 3,5138  | 4      | Ô           | D      |
| HB51L           | HBS1L_HUMAN        | 75  | 0      | 0 | 0           | 0      | 10,149  | 9  | 0       | 0      | 0           | 0  | 6,1491  | 7      | 0           | 0      |
| IAK1            | JAKI_HUMAN         | 133 | 0      | 0 | 7,75/1      | 5      | 10,149  | 13 | 0       | 0      | 18,55       | 11 | 22,84   | 19     | 13,952      | 11     |
| MDN1            | MON1 HUMAN         | 633 | 0      | 0 | 2,9089      | 3      | 10,149  | 14 | 6.4605  | 6      | 2,1952      | 2  | 5 2707  | 6      | 3,9863      | 4      |
| NACA            | NACAM_HUMAN        | 205 | 0      | D | 9,6964      | 4      | 10,149  | 4  | 0       | ō      | \$,5857     | 3  | 7,0276  | 4      | 0           | D      |
| NKRE            | NKRF_HUMAN         | 78  | o      | 0 | 3,8786      | 4      | 10,149  | 10 | 18,305  | 16     | 9,8786      | 8  | 6,1491  | 6      | 10,962      | 11     |
| PASPC1          | PABP1_HUMAN        | 71  | ٥      | D | 10,666      | 11     | 10,149  | 14 | 30,149  | 22     | 9,8786      | 9  | 18,447  | 20     | ٥           | э      |
| PRPSAP2         | KPR3_HUMAN         | 41  | 0      | D | 2,9089      | 3      | 10,149  | 11 | 0       | 0      | 2,1952      | 2  | 4,3922  | 5      | 0           | D      |
| R3M25           | RBM25_HUMAN        | 100 | 0      | 0 | 0           | 0      | 10,149  | 9  | C       | 0      | 4,3905      | 4  | 3,5138  | 4      | 0           | 0      |
| D DCC           | DEC HUMAN          | 76  | 0      |   | 21,009      | 2      | 10,149  | 14 | 16 16 1 | U<br>6 | 22.05       | 10 | 9,2707  | e<br>e | 6 9761      | 5      |
| SAUL1           | SMUL HUMAN         | 58  | 0      | 0 | 5 81/8      | 4      | 10,149  | 8  | 5 3838  | 5      | 9.8785      | 6  | 13.177  | 10     | 4 9829      | 5      |
| SNRPB           | RSMB_HUMAN         | 25  | 0      | D | 0           | 0      | 10,149  | 6  | 0       | 0      | 7,6834      | 2  | 13,177  | 6      | 6,9761      | 4      |
| <b>SNRPDS</b>   | SMD3_HUMAN         | 14  | 2,6099 | 2 | 10,666      | 4      | 10,149  | 4  | 0       | 0      | 7,6834      | 4  | 14,934  | 4      | 6,9761      | 4      |
| 40057           | SEPTS_HUMAN        | 65  | 0      | Ð | Ð           | 0-     | 9,4241  | 10 | e       | 0      | D           | D  | Đ       | 0      | 0           | D      |
| AFG3L2          | AFG32_HUMAN        | 89  | 0      | 0 | 9,6964      | 10     | 9,4241  | 11 | 2,1535  | 2      | 6,5857      | 6  | 10,541  | 10     | 11,959      | 12     |
| APIM1           | AP1M1_HUMAN        | 49  | 0      | 0 | 1,9393      | 2      | 5,4241  | 10 | 6/605   | 6      | 9,8786      | 7  | 8,7845  | 10     | 5,9795      | Ś      |
| COLGALTA        | GT251_HUMAN        | 32  | 0      | 0 | 1,7571      | 6      | 9,4741  | 12 | 17,728  | 14     | 17,562      | 12 | 3 6100  | 15     | 5,9795      | 0      |
| CPSF7           | CPSF7_HUMAN        | 52  | 0      | a | 3,8786      | 4      | 9,4241  | 10 | 8,514   | 6      | 15,367      | 9  | 12.298  | 10     | 9,9558      | 5      |
| CSNK2A1         | E7EUS6_HUMAN       | 45  | ő      | 0 | 5,8178      | 5      | 9,4241  | 9  | 0       | õ      | 5,4881      | 5  | 11,42   | 10     | 0           | 5      |
| CSNK2A2         | CSK22_HUMAN        | 41  | Ó      | 0 | 4,8482      | 4      | 9,4241  | 8  | e       | o      | 4,3905      | 4  | 12,258  | 10     | 0           | D      |
| EXOC4           | EXOC4_HUMAN        | 111 | 0      | D | 3,8786      | 4      | 9,4241  | 13 | 0       | 0      | 3,2929      | 3  | 2,6353  | 3      | 0           | D      |
| HSD17312        | DHB12_HUMAN        | 34  | 0      | 0 | 1,9393      | 2      | 9,4241  | 9  | 3,2305  | 3      | 4,3905      | 4  | 8,7845  | s      | 7,9726      | 7      |
| IGF2R           | MPRI_HUMAN         | 274 | 0      | D | 0           | 0      | \$,4241 | 13 | 0       | 0      | 0           | D  | 0       | 0      | 0           | C      |
| KATNB1          | KTNB1_HUMAN        | 72  | 0      | 0 | 0           | 0      | 9,4241  | 12 | 0       | 0      | 0           | 0  | 10,541  | 12     | 3,9863      | 4      |
| KHURBSI         | KHORI_HUMAN        | 60  | 0      | 0 | 0,8/182     | 3      | 5,4241  | 8  | 2,1535  | 2      | 6 6 8 6 7   | 8  | 12,258  | 8      | 4,9829      | 2      |
| LARS            | SYLC HUMAN         | 134 | 0      | 0 | 8           | e<br>D | 9.4241  | 13 | 0       | 0      | 0,3837      | 0  | 15,326  | 6      | 4,332.3     | 2      |
| MTCH            | LYRIC HUMAN        | 64  | ů.     | 0 | 2,9089      | 3      | 9,4241  | 12 | 5,3838  | 5      | 19,757      | 13 | 18,447  | 17     | 16,942      | 15     |
| PRPF3           | PRPFS_HUMAN        | 78  | 0      | 0 | 13,575      | 13     | 9,4241  | 12 | 9,6908  | 9      | 19,757      | 14 | 18,447  | 17     | 13,952      | 12     |
| PRPS2           | PRPS2_HUMAN        | 35  | o      | Ð | D           | e      | 5,4241  | 2  | c       | 0      | э           | U  | e       | e      | 0           | D      |
| PU 57           | PUS7_HUMAN         | 75  | 0      | D | 0           | 0      | 9,4241  | 13 | o       | 0      | D           | 0  | 5,2707  | 6      | 0           | D      |
| RBMK            | R6MX_HUMAN         | 42  | 0      | 0 | 17,453      | 12     | 9,4241  | 12 | 13,998  | 11     | 53,784      | 17 | 28,11   | 15     | 14,949      | 12     |
| RCC2            | RCC2_HUMAN         | 56  | 0      | 0 | n           | 0      | 5,4241  | 12 | 0       | 0      | 3           | 0  | 0       | 0      | 0           | 2      |
| ENEDIG          | RECUL HUMAN        | 75  | 0      | 0 | 2,0090      | 2      | 9,4241  | 12 | 6 2020  | e 0    | 3           | 0  | 7,0276  | 0      | 0           | 3      |
| RPI 23          | HI23 HUMAN         | 15  | 7 8297 | 5 | 13575       | 5      | 9.4241  | 5  | 27,995  | 8      | 25343       | 8  | 16.055  | 6      | 13 952      | 5      |
| RPN1            | RPN1_HUMAN         | 69  | 0      | 0 | 2,9089      | 3      | 9,4241  | 8  | 21,535  | 16     | 3,2929      | 3  | 13,177  | 14     | 14,949      | 14     |
| RP510           | RS10_HUMAN         | 19  | 9,1346 | 2 | 14,545      | 7      | 9,4241  | 7  | 4,307   | 3      | 17,562      | 7  | 14,934  | 7      | 11,959      | 8      |
| RP527A          | RS27A_HUMAN (+2)   | 18  | 10,44  | 4 | 17,453      | 4      | \$,4241 | 4  | 11,844  | 3      | 8,781       | 3  | 8,7845  | 4      | 13,952      | 5      |
| RP57            | R57_HUMAN          | 22  | 3,9148 | 3 | 22,302      | 8      | 9,4241  | 3  | 4,307   | 4      | 25,245      | 9  | 21,083  | 10     | 9,9658      | 7      |
| SLC25A13        | CMC2_HUMAN         | 70  | 0      | 0 | D           | 0      | 9,4241  | 10 | 43,07   | 21     | 0           | D  | 16,691  | 15     | 34,88       | 19     |
| SPTAN1<br>CODEQ | SPINI_HUMAN        | 285 | 0      | 0 | 0 7 26 21   | 0      | 9,4241  | 13 | 0       | 0      | 0<br>4 5906 | 0  | 12.209  | 0      | 9 9 6 6 2 2 | 0      |
| TIPI            | DADB7X0K9 HUMAN (+ | 188 | 0      | 0 | 34 907      | 31     | 9,4241  | 13 | 5 3838  | 5      | 4,5905      | 27 | 14,055  | 13     | 20.928      | 19     |
| USP10           | UBP10 HUMAN        | 87  | 0      | 0 | 0           | 0      | 9.4241  | 13 | 0       | 0      | 2           | 0  | 1,7569  | 2      | 0           | 0      |
| 40787           | DERERS_HUMAN (-2)  | 50  | 0      | D | Ð           | 0-     | 8,6992  | 5  | e       | 0      | D           | D  | Ð       | e      | 0           | D      |
| AHNAK           | AHNK_HUMAN         | 629 | 3,9148 | 3 | 3,8786      | 3      | 8,6992  | 12 | 0       | 0      | D           | 0  | 1,7569  | 2      | 2,9897      | 3      |
| ALYREF          | E9P361_HUMAN       | 28  | 0      | 0 | 5,8178      | 5      | 8,6992  | 6  | 4,307   | 3      | 29,636      | 9  | 16,691  | 7      | 7,9726      | 6      |
| BU 33           | BU53_HUMAN         | 37  | 0      | D | 4,8482      | 4      | 8,6992  | 9  | 3,2303  | 3      | \$,5857     | 6  | 6,1491  | 7      | 0           | ۵      |
| CEP170          | CE170_HUMAN        | 175 | 0      | 0 | 8,7267      | 9      | 8,6992  | 11 | 16,151  | 15     | 15,367      | 14 | 16,691  | 19     | 14,949      | 15     |
| CNID            | CN22 HUMAN         | 10  | 0      | 3 | 10,666      | 8      | 8,6992  | 5  | 3,2303  | 3      | 5,4881      |    | 7,506   |        | 6,9751      |        |
| CINE            | CPSEG HUMAN (#1)   | 59  | 0      | 0 | 19393       | 2      | 8,6992  | 6  | 0       | 0      | 12 074      | 6  | 11.42   | 11     | 7,9720      | 2      |
| DCTN1           | DCTN1 HUMAN (+1)   | 142 | ů.     | 0 | 0           | 0      | 8,6992  | 11 | c c     | ò      | 0           | 0  | 0       | 0      | 0           | 5      |
| EHD4            | EHD4_HUMAN         | 61  | 0      | 0 | 0           | 0      | 8,6992  | 11 | 0       | 0      | 0           | 0  | 5,2707  | 6      | 0           | э      |
| EIF2A           | EIF2A_HUMAN        | 65  | o      | Э | Ð           | e      | 8,6992  | 11 | e       | 0      | Э           | 0  | 7,0276  | 7      | 0           | э      |
| FAM988          | FAS88_HUMAN        | 37  | 0      | D | 6,7875      | 7      | 8,6992  | 8  | 0       | 0      | 12,074      | 7  | 7,0276  | 7      | 2,9897      | 3      |
| FXR2            | FXR2_HUMAN         | 74  | 0      | 0 | 22,302      | 14     | 8,6992  | 6  | 24,765  | 16     | 39,514      | 19 | 15,812  | S      | 5,9795      | 2      |
| C35P2           | G38P2_HUMAN        | 54  | 0      | 0 | 9,6964      | 6      | 8,6992  | 7  | 5,3838  | 3      | 17,562      | 9  | 26,353  | 12     | 20,928      | 11     |
| KAPS            | SYK HUMAN          | 53  | 0      | 0 | e,5009<br>p | r p    | 8,6002  | 10 | 21535   | 3      | 3           | n  | 8 78/15 | 10     | 6           | 2      |
| KDM33           | KOM38_HUMAN        | 192 | ő      | 0 | 2,9089      | 3      | 8,6992  | 12 | C       | 0      | 0           | 0  | 2,6353  | 3      | 0           | 0      |
| LARP7           | LARP7_HUMAN        | 67  | 0      | 0 | 3,8786      | 4      | 8,6992  | 10 | 2,1535  | 2      | 10,976      | 9  | 19,326  | 17     | 5,9795      | 5      |
| 1MO7            | 13KPOS_HUMAN       | 191 | 0      | D | 11,636      | 11     | 8,6992  | 12 | 0       | 0      | 8,781       | 8  | 14,055  | 14     | 12,956      | 13     |
| MLHI            | MLH1_HUMAN         | 85  | 0      | 0 | 1,9393      | 2      | 8,6992  | 12 | 8,614   | 7      | 2,1952      | 2  | 2,6353  | 3      | 0           | 0      |
| MRT04           | MRT4_HUMAN         | 28  | 0      | 0 | 1,9393      | 2      | 8,6992  | 10 | 8,514   | 8      | 2,1952      | 2  | 9,6629  | 10     | 0           | 3      |
| NAME            | NAALE HUMAN        | 101 | 0      | 0 | 3,8780      | 2      | 8,0992  | 2  | 0       | 0      | 3           | 0  | 0       | 0      | 0           | 3      |
| PPFIAL          | LIPA1_HUMAN        | 136 | 0      | 2 | 12,605      | 12     | 8,6992  | 12 | 0       | 0      | 5,4881      | 5  | 8,7845  | 10     | 5,9795      | 5      |
| RABLE           | RABLE_HUMAN        | 80  | 0      | Э | 2,9089      | 3      | 8,6992  | 9  | 0       | 0      | 2,1952      | 2  | 5,2707  | 6      | 1,9932      | 2      |
| RPS25           | IS25_HUMAN         | 14  | 7,8297 | 2 | 15,514      | 5      | 8,6992  | 4  | 8,514   | 5      | 8,781       | 4  | 8,7845  | 5      | 4,9829      | 3      |
| RTRAF           | QSY224 RTRAF_HUM   | 1   | 0      | 0 | 5,8178      | 5      | 8,6992  | 10 | 0       | 0      | 6,5857      | 6  | 7,906   | 8      | 3,9963      | 4      |
| SAR52           | MOQW27_HUMAN (+1   | 58  | 0      | 0 | 2,9089      | 3      | 8,6992  | 10 | 0       | 0      | 5,4881      | 5  | 5,2707  | 6      | 7,9726      | 1      |
| SEAA3           | SESAS_HUMAN        | 59  | 0      | 0 | 0           | 0      | 8,6992  | 9  | 21575   | 0      | 16.000      | 0  | 19 447  | 0      | 60744       | 2      |
| SLAIN?          | SLOID HUMAN        | 6%  | 0      | 0 | 3,01/8      | 4      | 8,6003  | 11 | 2,1555  | 2      | 2 1052      | 2  | 10,447  | 15     | 5.0705      | 6      |
| SNEPA1          | BUZA HUMAN         | 28  | 0      | 0 | 7,7571      | 6      | 8.6992  |    | 0       | 0      | 9,8785      | 8  | 12,298  | 10     | 7.9726      | 7      |
| SNRP32          | RU26_HUMAN         | 25  | ő      | 0 | 2,9089      | 2      | 8,6992  | 5  | e       | 0      | 5,4881      | 3  | 7,906   | 3      | 4,9829      | 3      |
| STX5            | STOS_HUMAN         | 40  | ů.     | 0 | 1,9393      | 2      | 8,6992  | 10 | 0       | Ô.     | D           | 0  | 3,5138  | 4      | 0           | D      |
| SUPTER          | SPT6H_HUMAN        | 199 | 0      | 9 | 0           | 0      | 8,6992  | 11 | 0       | 0      | 0           | 0  | 2,6353  | 3      | 0           | Э      |
| TCEA1           | 41W2P225_HUMAN (-  | 34  | 0      | Ð | Ð           | 0-     | 8,6992  | 10 | e       | 0      | 0           | D  | e       | e      | 0           | D      |
| THRAPS          | TR150_HUMAN        | 109 | 0      | 0 | 11,636      | 7      | 8,6992  | 11 | 0       | 0      | 10,976      | 8  | 5,2707  | 4      | 2,9997      | 3      |
| UBE20           | Cacocal DBE20_HUM  | 141 | 0      | 0 | 12,605      | 12     | 8,6992  | 10 | 0       | 0      | 8,781       | 8  | 15,812  | 16     | 11,959      | 12     |
| WRNIPI          | WRIP1 HUMAN        | 72  | 0      | 0 | 1,9393      | 2      | 8,6993  | 11 | 21555   | 2      | 0           | 0  | 7,0276  | 2      | 0           | 0      |
| EVALEUP1        | MOOYTE HUMAN       | 36  | 0      | 0 | A,5090      | é      | 8 6992  | 2  | 0       | 0      | 3           | 0  | 0       | e      | 0           | 2      |
| ACTR2           | ARP2_HUMAN         | 45  | ő      | 0 | 0           | ō      | 7,9743  | 7  | 0       | 0      | 0           | 0  | 1,7569  | 2      | 0           | 0      |
| ANK2            | ANK2_HUMAN (+1)    | 434 | 0      | 0 | 3,8786      | 2      | 7,9743  | 1  | e       | 0      | 0           | 0  | 3,5138  | 3      | 0           | Э      |
| ATP50           | ATPO_HUMAN         | 23  | 0      | D | 10,666      | 8      | 7,9743  | 7  | 8,614   | 7      | 9,8786      | 7  | 9,6629  | 8      | 7,9726      | 7      |
| BTF3            | STF3_HUMAN         | 22  | 0      | 0 | 4,8482      | 5      | 7,9743  | 7  | 0       | 0      | 4,3905      | 4  | 7,0276  | 6      | 1,9932      | 2      |
| COKN2AIP        | CARF_HUMAN         | 61  | 0      | 0 | 3,8786      | 4      | 7,5743  | 7  | 0       | 0      | 3,2929      | 3  | 6,1491  | 6      | 0           | 0      |
| DHX40           | DHX40_HUMAN        | 89  | 0      | 0 | 3,8786      | 3      | 7,9743  | 9  | 2,1535  | 2      | 7,6834      | 6  | 18,447  | 16     | 7,9726      | 3      |
| HARNPAR         | ROA3 HUMAN         | 40  | ě      | 0 | 6,7875      | 5      | 7,9743  | 8  | 5,3838  | 5      | 63.662      | 17 | 47 436  | 14     | 11,959      | 5      |
| IMME            | M C60 HUMAN        | 84  | 3,9148 | 3 | 3,8786      | 4      | 7,9743  | 10 | 32,503  | 21     | 3           | 0  | 3,5138  | 4      | 8,9692      | 9      |
| IMPOH1          | CSI381_HUMAN (+1)  | 55  | 0      | a | D           | C      | 7,9743  | 6  | C       | 0      | D           | D  | 5,2707  | 4      | 0           | D      |
| KIF21A          | ALBOGV47_HUMAN (+  | 185 | 0      | 0 | 10,666      | 10     | 7,9743  | 10 | 0       | 0      | 5,4881      | 4  | 14,055  | 13     | 10,962      | 10     |
| LIGB            | DNUS_HUMAN         | 113 | 0      | 9 | 3,8786      | 4      | 7,9743  | 10 | e       | 0      | 9,8786      | 9  | 8,7845  | 10     | 2,9897      | 3      |
| URRC47          | LRC47_HUMAN        | 63  | 0      | 0 | 0           | 0      | 7,9743  | 8  | 0       | 0      | 3           | 0  | 13,177  | 13     | 0           | 0      |
| NELFA           | MOCADEXS, HUMAN /- | 59  | 0      | 5 | 2,5089      | 5<br>0 | 7,9743  | 7  | e       | 0      | 2           | 0  | 7,906   | 7      | 4,9829      | 5      |

| NELFE<br>PASPC4   | NELFE_HUMAN<br>BIANRO HUMAN (+1)       | 43<br>68  | 0        | 9      | 1,9393<br>D   | 2       | 7,9743           | 8  | 0           | 0       | 3,2929        | 2       | 14,055     | 11 5    | 4,9829           | 5       |
|-------------------|----------------------------------------|-----------|----------|--------|---------------|---------|------------------|----|-------------|---------|---------------|---------|------------|---------|------------------|---------|
| PO.R25            | CS12Y9 HUMAN (+1)                      | 133       | 0        | 0      | 11,636        | 10      | 7,9743           | 11 | 19,382      | 14      | 10,976        | 10      | 7,0276     | 8       | 15,945           | 15      |
| PSMD7             | PSMD7_HUMAN                            | 37        | 0        | D      | 3,8786        | 4       | 7,\$743          | 9  | 0           | 0       | 0             | 0       | 1,7569     | 2       | 0                | 0       |
| RFC3              | REC3 HUMAN                             | 41        | 0        | 5      | 9,0904        | 4       | 7,9743           | 10 | 8,614       | 6       | 16,464        | 15      | 14,055     | 11      | 0                | 0       |
| RFC4              | RFC4_HUMAN                             | 40        | 0        | D      | 4,8482        | 5       | 7,9743           | 10 | 7,5373      | 5       | 13,171        | 9       | 13,177     | 12      | 0                | D       |
| RFC5              | RFC5_HUMAN                             | 58<br>ec  | 0        | 0      | 3,8786        | 4       | 7,9743           | 9  | 11,844      | 10      | 9,8786        | 8       | 8,7845     | 5       | 0                | 0       |
| SNRPA             | SNRPA_HUMAN                            | 31        | 0        | 0      | 4,8482        | 4       | 7,9743           | 7  | o           | õ       | 9,8786        | 7       | 26,353     | 8       | 8,9692           | 7       |
| SNRPD1            | SMD1_HUMAN                             | 15        | 0        | 9      | 2,9089        | 2       | 7,9743           | 5  | e           | 0       | 8,781         | 5       | 11,42      | 5       | 6,9751           | 4       |
| SNX9<br>XEN2      | SNX9_HUMAN<br>X8N2_HUMAN               | 67        | 0        | D<br>0 | 3,8786        | 4       | 7,9743           | 9  | 0           | 0       | 2,1952        | 2       | 12,258     | 11      | 7,9725           | 8       |
| ZFR               | ZTR_HUMAN                              | 117       | 0        | Ð      | 2,9083        | 3       | 7,\$743          | 11 | 3,2303      | 3       | 15,484        | 14      | 17,569     | 17      | 11,959           | 10      |
| 37500             | SEPT2_HUMAN                            | 41        | 0        | 0      | 0             | 0       | 7,2493           | 9  | 0           | 0       | 0             | 0       | 1,7569     | 2       | 0                | 0       |
| AGAP2             | DAD87X1H5_HUMAN (+                     | 96        | 0        | 0      | 0             | 0       | 7,2493           | 9  | 0           | 0       | 20,855        | 0       | 22,89      | 0       | 8,9592           | 3       |
| AGK               | E9PC15_HUMAN                           | 44        | o        | D      | 8,7267        | 9       | 7,2493           | 10 | 12.921      | 12      | 13.171        | 10      | 10,541     | 11      | 21,925           | 20      |
| APEX1             | APEX1_HUMAN                            | 36        | 0        | 0      | D O           | 0       | 7,2493           | 8  | 0           | 0       | 2,1952        | 2       | 7,906      | s       | 0                | 0       |
| ATXN2L            | ATX2L_HUMAN                            | 102       | 0        | 5      | 2,9089        | 3       | 7,2493           | 10 | 3,2303      | 3       | 3,2929        | 3       | 4,3922     | 5       | 0                | 3       |
| CAMSAP1           | CAMP1_HUMAN                            | 178       | 0        | D      | 2,9089        | 3       | 7,2493           | 9  | 0           | 0       | D             | D       | 6,1491     | 6       | 0                | a       |
| CSNK25            | CSK2B HUMAN (+1)                       | 25        | 0        | 0      | 2,9089        | 3       | 7,2493           | 7  | 75373       | 5       | 3             | 0       | 4.3922     | 5       | 1.9932           | z       |
| CUL1              | ADC4DGX4_HUMAN (4                      | 87        | 0        | D      | 0             | 0       | 7,2493           | 10 | 0           | 0       | D             | 0       | 0          | 0       | 0                | D       |
| CULS              | CULS_HUMAN                             | 91        | 0        | 0      | U             | 0       | 7,2493           | 10 | 0           | 0       | 0             | 0       | 0          | 0       | 0                | 0       |
| EIFAA3            | F4AS_HUMAN                             | 47        | 0        | 0      | 0             | 0       | 7,2493           | 9  | 0           | 0       | 5,4881        | 3       | 6,1491     | 7       | 2,9897           | 2       |
| FMR1              | FMR1_HUMAN                             | 71        | 0        | Ð      | 16,484        | 8       | 7,2493           | 5  | 15,075      | 9       | 28,538        | 15      | 19,326     | 15      | 9,9858           | 8       |
| GAR               | GAX_HUMAN<br>CSLG1_HUMAN               | 143       | 0        | 0      | 0             | 0       | 7,2493           | 9  | e<br>p      | 0       | 0<br>6.5857   | 0       | 0          | 0       | 0 2 9897         | 0       |
| GO .G42           | GOGA2_HUMAN                            | 113       | 0        | 0      | 1,9393        | 2       | 7,2493           | 10 | ō           | ō       | Э             | 0       | 0          | 0       | 5,9795           | 6       |
| HADHB             | ECHB_HUMAN                             | 51        | 0        | 0      | 10,666        | 10      | 7,2493           | 10 | 13,998      | 10      | 19,757        | 13      | 11,42      | 12      | 34,88            | 21      |
| HNRNPAD           | ROAD HUMAN (+3)                        | 31        | 0        | 0      | 10.666        | 6       | 7,2493           | 5  | 6,4605      | 4       | 27,441        | 9       | 2,6353     | 8       | 3,9863           | 3       |
| HNRNPAB           | DSR9P3_HUMAN                           | 30        | 0        | D      | 2,9089        | 2       | 7,2493           | 5  | 3,2303      | 2       | 23,05         | 8       | 21,083     | 7       | 3,9853           | 2       |
| IGF2BP3           | IF253_HUMAN                            | 64        | 0        | 0      | 1,9393        | 2       | 7,2493           | 5  | 19,382      | 14      | 17,562        | 10      | 24,597     | 15      | 10,962           | 5       |
| IRS4              | IRS4_HUMAN                             | 134       | 0        | 5      | 23,271        | 15      | 7,2493           | s  | 39,84       | 16      | 25,245        | 18      | 15,812     | 13      | 25,911           | 20      |
| LMN31             | LMNB1_HUMAN                            | 66        | 0        | D      | 0             | 0       | 7,2493           | 9  | c           | 0       | э             | 0       | 2,6353     | 3       | 0                | 0       |
| MEPCE<br>MORCE    | MEPCE_HUMAN<br>MORC3_HUMAN             | 107       | 0        | 0      | 2,9089        | 3       | 7,2493           | 9  | 0           | 0       | 9,8786        | 9       | 13,177     | 12      | 2,9897           | 3       |
| MRPS2             | RT02_HUMAN                             | 33        | 0        | 0      | 10,666        | 9       | 7,2493           | 9  | 6,4605      | 6       | 12,074        | 9       | 7,0276     | 8       | 5,9795           | 6       |
| NELFB             | ADADX1KC71_HUMAN                       | 70        | 0        | D      | D             | 0       | 7,2493           | 7  | 0           | 0       | 3,2929        | 3       | 7,906      | 6       | 0                | a       |
| NUP205            | CPSFS_HUMAN<br>NU205_HUMAN             | 20        | 2,6099   | 2      | 5,8786<br>D   | 4       | 7,2493           | 3  | 2,1535      | 23      | 9,8785        | 4       | 12,258     | 9       | 5,9795<br>6 9751 | ь<br>7  |
| NUP50             | NUP50_HUMAN                            | 50        | 0        | D      | 0             | 0       | 7,2493           | 9  | 0           | 0       | Э             | 0       | 0          | 0       | 0                | D       |
| PDCD4             | PDCD4_HUMAN                            | 52        | 0        | 0      | 0             | 0       | 7,2493           | 10 | C           | 0       | 0             | 0       | 2,6353     | 3       | 0                | 0       |
| PPIL4             | PPIL4 HUMAN                            | 57        | 0        | 0      | 13,575        | 0       | 7,2493           | 10 | 0           | 0       | 9,8786        | 7       | 23,718     | 11      | 6,9761           | 6       |
| PRPSAP1           | KPRA_HUMAN                             | 39        | o        | D      | 2,9089        | 2       | 7,2493           | 7  | c           | Ó       | 3,2929        | 2       | 3,5138     | 3       | 0                | C       |
| PSPC1             | PSPC1_HUMAN                            | 59        | 0        | 0      | 0             | 0       | 7,2493           | 10 | 0           | 0       | 4,3905        | 4       | 9,6629     | 5       | 0                | 0       |
| RPL12             | RL12_HUMAN                             | 18        | 0        | 0      | 3,8786        | 4       | 7,2493           | 5  | 15,075      | 5       | 4,3905        | 4       | 5,2707     | 4       | 1,9932           | 2       |
| RPL22             | BL22_HUMAN                             | 15        | 3,9148   | 3      | 10,666        | 4       | 7,2493           | 4  | 2,1535      | 2       | 21,952        | 4       | 13,177     | 4       | 7,9726           | 4       |
| RP520<br>RP527    | IS20_HUMAN<br>IS27_HUMAN               | 13        | 0 2 6099 | 2      | 5,8178        | 3       | 7,2493           | 3  | 3,2303      | 2       | 7,5834        | 3       | 11,42      | 4       | 5,9795           | 3       |
| RRBP1             | REBP1_HUMAN                            | 152       | 0        | 0      | 0             | 0       | 7,2493           | 10 | 17,228      | 15      | D             | 0       | 1,7569     | 2       | 0                | 0       |
| SHMT1             | GLYC_HUMAN                             | 53        | 0        | D      | D             | 0       | 7,2493           | 5  | 0           | 0       | 0             | D       | 0          | 0       | 0                | 0       |
| S EN11            | SIN11 HUMAN                            | 85        | 0        | 0      | 0             | 0       | 7,2493           | 10 | 75373       | 7       | 0             | 0       | 1 2569     | 2       | 0                | 0       |
| SMG1              | JSKRA9_HUMAN                           | 399       | 0        | 0      | Ð             | e       | 7,2493           | 9  | e           | ò       | D             | U       | Ð          | e       | 0                | э       |
| SPTBN1            | ADAD87WUZ3_HUMAN                       | 275       | 0        | 0      | 0             | 0       | 7,2493           | 10 | 0           | 0       | 0             | 0       | 0          | 0       | 0                | 0       |
| SR5F3<br>SUPV3L1  | SHSF3_HUMAN<br>SUV3_HUMAN              | 19<br>88  | 0        | 0      | 8,7267        | 4<br>0- | 7,2493           | 9  | 0           | 0       | 12,074        | ь<br>D  | 10,541     | 6       | 4,9829           | 3       |
| TECR              | TECR_HUMAN                             | 36        | 0        | D      | 8,7267        | 5       | 7,2493           | 6  | 19,382      | 7       | 5,4881        | 4       | 13,177     | 5       | 29,897           | 10      |
| THOC2             | MOCHDG98_HUMAN (4                      | 170       | 0        | 0      | 0             | 0       | 7,2493           | 10 | 0           | 0       | 8,781         | 8       | 8,7845     | 10      | 6,9751           | 7       |
| TRIM33            | TRISS_HUMAN                            | 123       | 0        | 0      | 1,9393        | é       | 7,2493           | 10 | e           | 0       | 7,0834        | 0       | 0          | 0       | 0                | 0       |
| T\$11             | TSR1_HUMAN                             | 92        | 0        | D      | 14,545        | 12      | 7,2493           | 8  | 5,3838      | 5       | 24,148        | 15      | 14,055     | 12      | 1,9932           | 2       |
| TTC78             | TTC28_HUMAN                            | 94<br>89  | 0        | 0      | 0             | 0       | 7,2493           | 10 | 0           | 0       | 0             | 0       | 0          | 0       | 0                | 0       |
| XENI              | XRN1_HUMAN                             | 194       | ō        | 0      | 20,362        | 14      | 7,2493           | 10 | 0           | õ       | 26,343        | 23      | 25,475     | 29      | 9,9658           | 10      |
| ABCF3             | ABCF3_HUMAN                            | 80        | 0        | 0      | 0             | 0       | 6,5244           | 9  | 0           | 0       | 0             | 0       | 1,7569     | 2       | 0                | 0       |
| ADD1<br>ANK3      | ADDA_HUMAN (+2)<br>ANK3_HUMAN          | 480       | 0        | 2      | 1,9393        | 2       | 6,5244           | 9  | 0           | 0       | a<br>0        | 0       | 7.906      | 9       | 0                | 2       |
| ANKHO1            | ANKH1_HUMAN                            | 269       | 0        | a      | D             | e       | 6,5244           | 2  | c           | 0       | D             | D       | 7,906      | 3       | 6,9751           | 2       |
| ARHGEF2           | ARHG2_HUMAN (+1)                       | 112       | 0        | D      | 9,6964        | 10      | 6,5244           | 8  | 0           | 0       | 8,781         | 8       | 7,0276     | 8       | 3,9863           | 4       |
| CCDC124           | CC124 HUMAN                            | 26        | 0        | 3      | 2,9089        | 3       | 6,5244           | 5  | 0           | 0       | 3<br>4,3905   | 3       | 7,906      | 8       | 1,9932           | 2       |
| CD2AP             | CD2AP_HUMAN                            | 71        | 0        | 0      | 0             | 0       | 6,5244           | 9  | 0           | 0       | Э             | 0       | 0          | 0       | 0                | 0       |
| COC2              | DA024Q2P7_HUMAN (+                     | 34        | 0        | 9      | 1,9393        | 2       | 6,5244           | 5  | 7,5373      | 6       | 3             | 0       | 0          | 0       | 3,9853           | 4       |
| DYNC112           | DC112_HUMAN                            | 71        | 0        | 0      | 0             | 0       | 6,5244           | 8  | c           | 0       | 3             | 0       | 0          | C       | 0                | 3       |
| EDC3              | EDC3_HUMAN                             | 56        | ٥        | D      | D             | 0       | 6,5244           | 8  | 10,768      | 9       | D             | D       | 7,0276     | 8       | 12,955           | 10      |
| EDC4<br>ELF4F     | EDC4_HUMAN<br>D6EBW1_HUMAN             | 152<br>29 | 0        | 0      | 0             | 0<br>6  | 6,5244           | 9  | 24.765      | 0       | 0             | 0       | 0<br>61491 | 0       | 25 911           | 0<br>8  |
| FOXK1             | FOXK1_HUMAN                            | 75        | 0        | D      | 2,9089        | 3       | 6,5244           | 7  | C           | 0       | D             | 0       | 1,7569     | 2       | 0                | 0       |
| GTF2F1            | T2FA_HUMAN<br>HNDDC_HUMAN              | 58        | 0        | 0      | 1,9393        | 2       | 6,5244           | 8  | 0           | 0       | 2,1952        | 2       | 7,0276     | 8       | 0                | 0       |
| HSPH1             | HS105_HUMAN                            | 97        | 0        | 0      | 0             | 0       | 6,5244           | 9  | 25,842      | 18      | 0             | 0       | 0          | 0       | 2,9897           | 3       |
| IKB1P             | KIP_HUMAN                              | 39        | 0        | D      | D             | e       | 6,5244           | 9  | 4,307       | 4       | 3,2929        | 3       | 5,2707     | é       | 1,9932           | 2       |
| KIF15             | KF15 HUMAN                             | 120       | 0        | 0      | 0             | 0       | 6,5244           | 9  | 0           | 0       | 0             | 0       | 0          | 0       | 0                | 0<br>2  |
| KIF3A             | DADB7X011_HUMAN (+                     | 83        | ō        | 0      | 4,8482        | 5       | 6,5244           | 9  | 10,768      | 10      | 4,3905        | 4       | 10,541     | 10      | 3,9853           | 3       |
| KPNA1             | IMAS_HUMAN                             | 60        | 0        | 0      | 0             | 0       | 6,5244           | 3  | 12,921      | 10      | 2,1952        | 2       | 2,6353     | 3       | 3,9863           | 4       |
| ORC3              | ORC3_HUMAN                             | 82        | 0        | 0      | 0             | 0       | 6,5244           | 3  | c           | 0       | 0             | 0       | 3,5138     | 4       | 0                | 5       |
| PGAMS             | PGAM5_HUMAN                            | 32        | 0        | Э      | 5,8178        | 4       | 6,5244           | 5  | 5,3838      | 4       | 3,2929        | 3       | 6,1491     | 5       | 3,9863           | 4       |
| PIK3C2A<br>PO P14 | P3C2A_HUMAN<br>RPA1_HUMAN              | 191       | 0        | 0      | 2,9089        | 3       | 6,5244           | 0  | 0<br>g cone | 0       | 5,4881        | 5       | 7,906      | S<br>21 | 16,942           | 17      |
| PO.R3E            | MOC4DH01_HUMAN (H                      | 76        | ő        | 0      | 3,8786        | 4       | 6,5244           | ŝ  | 0,0506      | 0       | 2,1952        | 2       | 9,6629     | 5       | 3,9853           | 4       |
| PRRC2B            | PRC2B_HUMAN                            | 243       | 0        | 0      | 5,8178        | 5       | 6,5244           | 8  | 3,2303      | 3       | 17,562        | 16      | 8,7845     | 8       | 0                | 0       |
| RA050<br>R3M27    | RADSD_HUMAN<br>RSM27_HUMAN             | 154       | 0        | 0      | 11,636        | 12      | 6,5244           | 9  | 3,2303      | 3       | 0             | 0       | 2,6353     | 3 5     | 0                | 2       |
| RFC2              | RFC2_HUMAN                             | 39        | 0        | D      | 2,9089        | 3       | 6,5244           | 9  | 4,307       | 4       | 12,074        | 10      | 8,7845     | 9       | 0                | 0       |
| RPL10             | RL10_HUMAN (+1)                        | 25        | 0        | 0      | 25,211        | 7       | 6,5244           | 4  | 15,075      | s       | 20,855        | 8       | 14,934     | 6       | \$,9558          | s       |
| RPL30<br>RPL4     | RESO_HUMAN<br>RE4_HUMAN                | 13 48     | 0        | 0      | 7,7571        | 4<br>6  | 6,5244           | 5  | 35,533      | 6<br>11 | 30,733 21.952 | 8<br>12 | 8,7845     | 7       | 5,9795           | 5<br>9  |
| SEC61AL           | 64DR61_HUMAN (-1)                      | 53        | 0        | 0      | 2,9089        | 2       | 6,5244           | 3  | 5,3838      | 3       | 2,1952        | 2       | 1,7569     | 2       | 2,9897           | 3       |
| SRP54             | SRP54_HUMAN                            | 56        | 0        | 0      | 1,9393        | 2       | 6,5244           | 9  | 0           | 0       | 5,4881        | 5       | 3,5138     | 4       | 1,9932           | 2       |
| TORIA PI          | TOIP1_HUMAN                            | 63<br>66  | 0        | 0      | 5,8178        | 6       | 6,5244           | 9  | 3,2303      | 2       | 6,5857        | 10      | 4,3922     | 3       | 5,9795           | 14<br>5 |
| TTC28             | TTC28_HUMAN                            | 2/1       | 0        | 0      | U             | 0       | 6,5244           | 9  | 22,612      | 21      | Э             | Ð       | 0          | ¢       | 13,952           | 13      |
| UBAP2             | UBAP2_HUMAN                            | 117       | 0        | 0      | 0             | 0       | 6,5244           | 9  | 0           | 0       | 2,1952        | 2       | 2,6353     | 3       | 0                | 0<br>0  |
| WASHC2C           | DADESLPCS_HUMAN (+                     | 147       | 0        | 0      | 0             | é.      | 6,5244           | 8  | e           | 0       | 3             | D       | e          | e       | 0                | 5       |
| WDR11             | WDR11_HUMAN                            | 137       | 0        | 0      | 2,9089        | 3       | 6,5244           | 7  | 0           | 0       | Э             | 0       | 0          | 0       | 2,9897           | 3       |
| 2CCHC11<br>7G168  | ADC4DFM7_HUMAN (4<br>ADC4DGN4_HUMAN (4 | 185       | 0        | 0      | 23,271 5,8178 | 22<br>5 | 6,5244           | 8  | 0           | 0       | 15,367        | 12      | 7,0276     | 7       | 2,9897           | 2       |
| A811              | ADADMRTG_HUMAN (                       | 52        | 0        | D      | 0             | 0       | 5,7995           | 7  | c           | 0       | э             | 0       | 0          | 0       | 0                | 0       |
| AGO1              | AGO1_HUMAN                             | 97        | 0        | 0      | D             | 0       | 5,7995           | 4  | 0           | 0       | 0             | 0       | 0          | 0       | 0                | 0       |
| AP301<br>AP3M1    | AP3D1_HUMAN<br>AP3M1_HUMAN             | 130       | 0        | 9      | 0             | 0<br>0  | 5,7995           | 8  | e<br>e      | 0       | 6,5857        | 5       | 9,6625     | 10      | 2,9897           | 3       |
| ARHGAP17          | RHG17_HUMAN                            | 95        | 0        | D      | 0             | 0       | 5,7995           | 7  | 0           | ō       | D             | 0       | 0          | 0       | 0                | a       |
| ARHGEF18<br>BCS11 | ARHGI_HUMAN<br>3CS1_HUMAN              | 131       | 0        | 0      | 0             | 0       | 5,7995<br>5,7006 | 8  | 0           | 0       | 0<br>5,4881   | 0       | 0<br>52202 | 0       | 0                | 0       |
| an SIL            | I TOWARD                               | -0        |          |        |               |         |                  |    | . *         |         |               |         | ape that   | - 1 - I |                  |         |

| CDK9      | CDK9_HUMAN                      | 43  | 0      | Э | 5,8178      | 6    | 5,7995 | 6   | 3,2305           | 3        | 9,8786 | 8      | 8,7845    | 9   | 0       | Э   |
|-----------|---------------------------------|-----|--------|---|-------------|------|--------|-----|------------------|----------|--------|--------|-----------|-----|---------|-----|
| CHUK      | IKKA_HUMAN                      | 85  | 0      | a | n           | 0    | 5,7995 | 8   | 0                | 0        | a      | n      | 0         | 0   | 0       | a   |
| CNOT9     | CNOT9_HUMAN                     | 34  | 0      | 0 | 0           | 0    | 5,7995 | 6   | 2,1535           | 2        | 0      | 0      | 0         | 0   | 0       | 0   |
| DOX46     | MOLADGER HUMAN                  | 117 | 0      | 0 | 0           | 0    | 5,7995 | e e | 3,2305           | 2        | 20,000 | 0      | 2 6353    | 3   | 2,9597  | 2   |
| DHK29     | A087WYN9 HUMAN H                | 155 | õ      | 9 | 0           | e e  | 5,7995 | 7   | c                | 0        | 4,3905 | 3      | 3 5 1 3 8 | 3   | 0       | 0   |
| DNAJA3    | DNJA3_HUMAN                     | 52  | 0      | D | 4,8482      | 3    | 5,7995 | 5   | 23,689           | n        | 8,781  | 5      | 5,2707    | 4   | 15,932  | 8   |
| DNAJC9    | DNJC9_HUMAN                     | 50  | 0      | Ð | 3,878G      | 4    | 5,7995 | 5   | 2,1535           | 2        | 4,3905 | 4      | 2,6353    | 3   | 0       | D   |
| DPM1      | DPM1_HUMAN (+2)                 | 30  | 0      | D | 6,7875      | 7    | 5,7995 | 8   | 12,921           | 10       | 7,6834 | 7      | 9,6629    | S   | 14,949  | 11  |
| ELP3      | ELP3_HUMAN                      | 62  | 0      | 0 | 0           | 0    | 5,7995 | 8   | 13,998           | 12       | 0      | 0      | 3,5138    | 4   | 2,9897  | 3   |
| EMC2      | EMIC2_HUMAN                     | 35  | 0      | 9 | 2,9089      | 3    | 5,7995 |     | 0                | 0        | 3,2929 | 2      | 4,3922    | 4   | 5 0705  | 0   |
| EXOC1     | EXOC1 HUMAN                     | 102 | 0      | 0 | 1,9393      | 2    | 5,7995 | 8   | C                | 0        | 2,1952 | 2      | 0         | c   | 1,9932  | 2   |
| EXOCS     | EXOC5_HUMAN                     | 82  | 0      | Ð | D           | 0    | 5,7995 | 8   | e                | ò        | Э      | 0      | 3,5138    | 4   | 0       | D   |
| EXOSC2    | EXOS2_HUMAN                     | 33  | 0      | D | 0           | 0    | 5,7995 | 7   | 6,4605           | 5        | 3,2929 | 3      | 6,1491    | 5   | 1,9932  | 2   |
| HIST1H1E  | H14_HUMAN                       | 22  | 0      | 0 | 8,7267      | 4    | 5,7995 | 4   | 3,2303           | 3        | 4,3905 | 4      | 1,7569    | 2   | 3,9853  | 4   |
| HTT       | HC_HUMAN                        | 348 | 0      | D | n           | 0    | 5,7995 | 8   | 0                | 0        | 0      | 0      | 0         | 0   | 0       | D   |
| IK3K8     | IKKS_HUMAN                      | 87  | 0      | 0 | 0           | 0    | 5,7995 | 7   | 0                | 0        | 3      | 0      | 0         | 0   | 0       | 0   |
| VIEAA     | VISAA HUNAAN                    | 140 | 0      | 5 | 14 545      | 12   | 5,7995 | ŝ   | 0                | 0        | 14 269 | 11     | 9.79.45   | 0   | 2 09/52 | 2   |
| KPNAG     | IMAZ HUMAN                      | 60  | 0      | 0 | 0           | e    | 5.7995 | 3   | 8.614            | 3        | 3      | 0      | 0         | 0   | 0       | 0   |
| KTN1      | KTN1_HUMAN                      | 156 | 0      | D | 6,7875      | 4    | 5,7995 | 6   | 0                | 0        | D      | 0      | 2,6353    | 2   | 0       | a   |
| LARP4B    | LAR48_HUMAN                     | 81  | 0      | 0 | 5,8786      | 4    | 5,7995 | 5   | e                | 0        | 9,8786 | 9      | 9,6629    | 8   | 2,9897  | 3   |
| MARK2     | ESPCS9_HUMAN                    | 87  | 0      | D | 12,605      | 13   | 5,7995 | 8   | 6,4605           | 6        | 17,582 | 14     | 15,812    | 16  | 0       | D   |
| MARS      | SYMC_HUMAN                      | 101 | 0      | 0 | 0           | 0    | 5,7995 | 3   | 0                | 0        | 0      | 0      | 0         | 0   | 0       | 0   |
| MET UIS   | METIS_HUMAN                     | 79  | 0      | 0 | 0           |      | 5,7995 | 8   | 2,1535           | 2        | 0.0702 | 0      | 6 1 4 6 1 | 2   | 1,9932  | 2   |
| MPO       | PERM HUMAN                      | 84  | 0      | 0 | 3,6176      | 0    | 5,7995 | 5   | 0                | 0        | 3,5759 | 0      | 0,1461    | 0   | 0       | 3   |
| MRPS22    | GSE9VS_HUMAN (-2)               | 41  | 0      | D | 20,362      | 15   | 5,7995 | 7   | 8,514            | 7        | 24,148 | 15     | 10,541    | 11  | 0       | D   |
| MRPS27    | RT27_HUMAN                      | 48  | 0      | 0 | 17,453      | 12   | 5,7995 | 7   | 5,3838           | 5        | 17,562 | 12     | 14,934    | 9   | 3,9963  | 4   |
| NUHP2     | NUFP2_HUMAN                     | 76  | ٥      | 0 | 3,8786      | 4    | 5,7995 | 5   | 3,2303           | 3        | 4,3905 | 4      | 7,0276    | 1   | 0       | э   |
| NUP153    | NU153_HUMAN                     | 154 | 0      | D | 11,636      | 12   | 5,7995 | 8   | 0                | 0        | 12,074 | 11     | 11,42     | 13  | 10,962  | n   |
| OSBPL11   | USBII_HUMAN                     | 84  | 0      | 0 | 0           | 0    | 5,7995 | 8   | 0                | 0        | 3      | 0      | 7,0276    | 8   | 0       | 0   |
| PEGIO     | 4087W/769 HUMAN (4              | 40  | 0      | 0 | 2,9089      | 3    | 5,7995 | 4   | 6307             | 4        | 3,2929 | 3      | 3,5138    | 3   | 2 9997  | 2   |
| PRIMZ     | PRIZ_HUMAN                      | 59  | 0      | 0 | U           | e    | 5,7995 | 8   | C                | 0        | 3      | 0      | 2,6353    | 3   | Ó       | D   |
| PSMD14    | PSDE_HUMAN                      | 35  | 0      | D | 4,8482      | 4    | 5,7995 | 4   | 3,2303           | 3        | .0     | 0      | 0         | 0   | 0       | D   |
| PTCDS     | PTCD3_HUMAN                     | 79  | 0      | 0 | 16,484      | 16   | 5,7995 | 8   | 2,1535           | 2        | 5,4881 | 5      | 10,541    | 10  | 2,9897  | 3   |
| PYCR1     | PSCR1_HUMAN                     | 33  | 0      | D | 3,8786      | 2    | 5,7995 | 5   | 8,814            | 4        | 3,2929 | 2      | 0         | 0   | 0       | D   |
| QPCTL     | QPCTL_HUMAN                     | 43  | 0      | 0 | 5,8178      | 4    | 5,7995 | 4   | 19,382           | 7        | 8,781  | 7      | 5,2707    | 5   | 5,9795  | 4   |
| RGPDS     | RGPDS HUMAN                     | 199 | 0      | 0 | 0           | 0    | 5,7995 | 2   | 64605            | 4        | 0      | 0      | 0         | 0   | 0       | 2   |
| RPL11     | BL11 HUMAN                      | 20  | 3.9148 | 2 | 10.666      | 5    | 5,7995 | 4   | 9.6908           | 5        | 16,464 | 6      | 12.298    | 7   | 2,9897  | 3   |
| RP19      | RL9_HUMAN                       | 22  | 0      | D | 11,636      | 6    | 5,7995 | 5   | 3,2303           | 2        | 19,757 | 8      | 22,84     | s   | 10,952  | \$  |
| RP515A    | RS15A_HUMAN                     | 15  | 0      | 0 | 8,7267      | 4    | 5,7995 | 5   | 11,844           | 4        | 35,124 | 6      | 6,1491    | 3   | 3,9863  | 4   |
| SARS      | SYSC_HUMAN                      | 59  | 0      | 0 | D           | e    | 5,7995 | 7   | e                | 0        | 3      | 0      | 0         | 0   | 0       | 0   |
| SILIEAL   | MO LHUMAN                       | 100 | 0      | 0 | 1 0 00      | 2    | 5,7995 | 2   | 4,507            | 4        | 7,6834 | 3      | 9,6629    | 2   | 3,9658  | 3   |
| TATA      | TAFA HUMAN                      | 110 | 0      | 0 | 1,9393      | 2    | 5,7995 | 8   | 0                | 0        | 2      | 0      | e e       | 0   | 0       | 2   |
| TAOK1     | TAOKI HUMAN                     | 116 | 0      | D | 1.9393      | 2    | 5,7995 | 3   | 0                | 0        | 2      | 0      | 0         | 0   | 0       | D   |
| TBL2      | TBL2_HUMAN                      | 50  | 0      | D | 7,7571      | 7    | 5,7995 | 8   | 2,1535           | 2        | 18,55  | 10     | 9,6629    | 11  | 12,955  | 12  |
| UBR5      | UBR5_HUMAN                      | 309 | 0      | D | 1,9393      | 2    | 5,7995 | 8   | 0                | 0        | 0      | 0      | 5,2707    | 6   | 1,9932  | 2   |
| VP513A    | VP13A_HUMAN                     | 360 | 0      | 0 | 0           | 0    | 5,7995 | 8   | e                | 0        | 2,1952 | 2      | 10,541    | 12  | 3,9863  | 4   |
| ZN:598    | ZNSSE_HUMAN                     | 99  | 0      | 0 | 4,8482      | 4    | 5,7995 | 5   | 0                | 0        | 3,2929 | 3      | 2,6353    | 3   | 5,9795  | S   |
| ACS14     | ACSLG HUMAN                     | 79  | 0      | 0 | 1,5555      | 6    | 5.0745 | 3   | 0                | 0        | 3      | D      | D D       | 0   | 0       | 2   |
| AIMP2     | AIMP2 HUMAN                     | 35  | 0      | 0 | 0           | 0    | 5,0745 | 5   | 0                | õ        | 0      | 0      | 2,6353    | 3   | 0       | 0   |
| ALDH18A1  | PSCS_HUMAN                      | 87  | 0      | 0 | 0           | 0    | 5,0745 | 7   | 6,4605           | 6        | Э      | 0      | 0         | 0   | 0       | D   |
| ARMCX3    | ARMX3_HUMAN                     | 43  | 0      | D | 7,7571      | 6    | 5,0745 | 8   | 11,844           | 10       | 14,269 | 11     | 11,42     | 12  | 0       | D   |
| C7orf50   | CG050_HUMAN                     | 22  | 0      | D | 0           | 0    | 5,0745 | 6   | 5,3838           | 5        | 5,4881 | 5      | 4,3922    | 5   | 1,9932  | 2   |
| COLIAI    | CO1A1_HUMAN                     | 139 | 0      | 0 | 0           | 0    | 5,0745 | 3   | 6,4605           | 2        | 0      | 0      | 0         | 0   | 0       | 0   |
| DIPTE     | DIR29 HUMAN                     | 100 | 0      | 0 | 0           | 0    | 5,0745 |     | 0                | 0        | 3      | 0      | 0         | 0   | 0       | 2   |
| DIGARS    | DIGPS HUMAN                     | 95  | 0      | 0 | 0           | 0    | 5.0745 | 7   | 0                | 0        | 2 1952 | 2      | 17569     | 2   | 0       | 0   |
| DIST      | OD02_HUMAN                      | 49  | 0      | D | D           | 0    | 5,0745 | 4   | e                | 0        | 3      | D      | 0         | 0   | 0       | D   |
| DNAJ36    | DNJB6_HUMAN                     | 36  | 0      | Ð | 5,8178      | 3    | 5,0745 | 4   | 9,6908           | 6        | 4,3905 | 3      | 4,3922    | 4   | 4,9829  | 5   |
| DPYSL3    | DPYL3_HUMAN                     | 62  | 0      | Ð | Ð           | e    | 5,0745 | 7   | e                | ٥        | э      | D      | D         | 0   | ٥       | C   |
| DSC1      | DSC1_HUMAN                      | 100 | 6,5247 | 4 | 10,666      | 8    | 5,0745 | 6   | 4,307            | 4        | D      | 0      | 8,7845    | 7   | 34,88   | 11  |
| DUSBL     | DUS3L_HUMAN                     | 73  | 0      | 0 | 0           | 0    | 5,0745 | 7   | e                | 0        | 3      | 0      | 7,0276    | 8   | 0       | 0   |
| EZELAY    | EZEZ_HUMAN                      | 16  | 0      | 0 | 8,7875      | 2    | 5,0745 | 6   | 0                | 0        | 4 2905 | u<br>4 | 6,1491    | A   | 3 9962  | 2   |
| EIF232    | EI258 HUMAN                     | 39  | ő      | 0 | 0           | e    | 5.0745 | 5   | c                | 0        | 2,1952 | 2      | 4.3522    | 4   | 0       | o o |
| EMC3      | EMC3_HUMAN                      | 30  | 0      | D | 2,9089      | 3    | 5,0745 | 6   | 0                | 0        | 0      | 0      | 7,0276    | 7   | 0       | 0   |
| EXOCS     | EXOC3_HUMAN                     | 87  | 0      | Э | 0           | 0    | 5,0745 | 7   | 0                | 0        | Э      | 0      | 3,5138    | 4   | 0       | Э   |
| EXOSC10   | EXOSX_HUMAN                     | 101 | 0      | D | D           | 0-   | 5,0745 | 7   | 5,3838           | 5        | 7,6834 | 7      | 10,541    | 12  | 0       | a   |
| FAM126A   | H7COW7_HUMAN                    | 52  | 0      | 0 | 0           | 0    | 5,0745 | 7   | 0                | 0        | 3      | 0      | 0         | 0   | 0       | 0   |
| GIT1      | PROPAGINE WEIMAN (              | 92  | 0      | 0 | 1,9393      | 2    | 5,0745 | 2   | 0,307            | 1        | 3,2929 | 3      | 0,3922    | 0   | 5,9795  | 5   |
| HACDS     | HACD3 HUMAN                     | 43  | 2 6099 | 2 | 7.7571      | 6    | 5.0745 | 4   | 18,505           | 7        | 6.5857 | 5      | 6 1491    | 5   | 13.952  | 9   |
| HDGF      | HDGF_HUMAN                      | 27  | 0      | D | 2,9089      | 3    | 5,0745 | 5   | 0                | 0        | 3,2929 | 3      | 2,6353    | 3   | Ó       | 5   |
| HEATRS    | HEATS HUMAN                     | 75  | 0      | 0 | 0           | 0    | 5,0745 | 7   | 0                | 0        | 0      | 0      | 2,6353    | 3   | 0       | 0   |
| HELLS     | DVGR(11/a <sup>-</sup> HnWVM (+ | 103 | 0      | 9 | 9,6964      | 10   | 5,0745 | 7   | e                | 0        | 14,269 | 12     | 6,1491    | 7   | 3,9853  | 3   |
| HNRNPOL   | ACA087WUK2_HUMAN                | 40  | 0      | 0 | 2,9089      | 2    | 5,0745 | 3   | 0                | 0        | 17,562 | 6      | 11,42     | 5   | 0       | 0   |
| KAKG      | DADRZY1R1 HUMAN                 | 60  | 0      | 0 | 5,6176      | 0    | 5.0745 | 7   | 0                | 0        | 7,003% | 0      | 15,612    | 15  | 3,9793  | 2   |
| LEMD3     | MAN1 HUMAN                      | 100 | 0      | 0 | 0           | 0    | 5.0745 | 6   | 0                | 0        | 0      | 0      | 0         | 0   | 0       | 0   |
| LMN32     | LMNB2_HUMAN                     | 70  | o      | D | D           | 0-   | 5,0745 | 5   | C                | 0        | э      | D      | 2,6353    | 2   | 0       | D   |
| LRRCSA    | LRC8A_HUMAN                     | 94  | 0      | 0 | 0           | 0    | 5,0745 | 7   | 0                | 0        | 0      | 0      | 0         | 0   | 0       | 0   |
| MAP9K9    | ADADD95EY1_HUMAN                | 151 | 0      | 9 | 7,7571      | 5    | 5,0745 | 6   | 0                | 0        | 27,441 | 20     | 10,541    | 9   | 8,9592  | 9   |
| MICALS    | M CA3 HUMAN                     | 224 | 0      | 0 | 1 9393      | 2    | 5,0745 | 2   | 6                | 0        | 0      | 0      | 2,906     | 9   | 0       | 0   |
| MRE11     | MILE11_HUMAN                    | 81  | 0      | 0 | 2,9089      | 3    | 5,0745 | 7   | 3,2303           | 3        | 3      | 0      | 5,2707    | é   | 0       | 0   |
| MRPL37    | RM37_HUMAN                      | 48  | 0      | D | 0           | 0    | 5,0745 | 7   | 0                | 0        | 10,976 | 9      | 8,7845    | 7   | 0       | D   |
| MRPS9     | RT09_HUMAN                      | 46  | 0      | 0 | 19,393      | 15   | 5,0745 | 7   | e                | 0        | 21,952 | 14     | 10,541    | 11  | 0       | э   |
| NAA35     | NAA35_HUMAN                     | 84  | 0      | a | D           | 0    | 5,0745 | 7   | 0                | 0        | 3      | 0      | 0         | 0   | 0       | 0   |
| NEMF      | NEMF_HUMAN                      | 123 | 0      | 0 | 1,9393      | 2    | 5,0745 | 6   | 0                | 0        | 14,269 | 10     | 14,934    | 15  | 3,9863  | 4   |
| PACSIN2   | PACN2 HUMAN                     | 56  | 0      | 0 | 0           | 0    | 5,0745 | 6   | 0                | 0        | 5      | 0      | 17569     | 2   | 0       | 0   |
| PA-A-151  | LIS1 HUMAN                      | 47  | 0      | 9 | 0           | 0    | 5,0745 | 1   | e                | 0        | 3      | D      | 0         | ō   | 0       | 3   |
| PIGR      | PIGR_HUMAN                      | 83  | 0      | D | 1,9393      | 2    | 5,0745 | 5   | 0                | 0        | a      | D      | 0         | 0   | 0       | D   |
| PLOD1     | PLOD1_HUMAN                     | 84  | 0      | 0 | 2,9089      | 3    | 5,0745 | 7   | e                | 0        | 8,781  | 8      | 0         | 0   | 0       | 0   |
| PO.RIC    | RPAC1_HUMAN                     | 39  | 0      | D | 4,8482      | 4    | 5,0745 | 5   | 9,6908           | 7        | 8,781  | 7      | 8,7845    | 8   | 0       | D   |
| PO_R2A    | RP31_HUMAN                      | 217 | 0      | 0 | 14,545      | 13   | 5,0745 | 7   | 0                | 0        | 9,8786 | 9      | 12,298    | 13  | 15,945  | 13  |
| PPPICA    | PPIA HUMAN                      | 38  | 0      | 0 | 15,575<br>D | 10   | 5,0745 |     | 5,2505           | 3        | 3,2929 | 50     | 9,6629    | e a | 2,9897  | 3   |
| PRIMI     | PRI1 HUMAN                      | 50  | õ      | 2 | 0           | 0    | 5,0745 | 6   | 2,1535           | 2        | 2.1952 | 2      | 2,6353    | 3   | 1,9932  | 2   |
| RAB8A     | RABBA_HUMAN                     | 24  | 0      | 0 | 2,9089      | 2    | 5,0745 | \$  | 4,307            | 3        | 3,2929 | 3      | 4,3922    | 4   | 0       | D   |
| RAVER1    | 4087WZ13_HUMAN (-               | 78  | 0      | 0 | 0           | 0    | 5,0745 | 7   | 0                | 0        | D      | 0      | 2,6353    | 3   | 0       | 0   |
| RPL13     | RL13_HUMAN                      | 24  | 0      | 9 | 21,332      | 6    | 5,0745 | 2   | 18,305           | 9        | 13,171 | 6      | 7,906     | 3   | 5,9795  | 5   |
| RPI23A    | RIZZA_HUMAN                     | 18  | 0      | 0 | 20,362      | 8    | 5,0745 | 4   | 8,614            | 4        | 24,148 | 12     | 13,177    | 10  | 6,9781  | 4   |
| RPL26     | RL20_HUMAN                      | 17  | 0      | 0 | 12,605      | 5    | 5,0745 | 5   | 0,4605<br>37 ded | 5        | 15,171 | 5      | 4,3922    | 5   | 0,9761  | 5   |
| RPI 81    | BL31 HUMAN                      | 14  | 0      | 0 | 8,7267      | 5    | 5.0745 | 5   | 9,6908           | 5        | 7,6934 | 5      | 7,0276    | 5   | 5,9795  | 4   |
| RP513     | RS13_HUMAN                      | 17  | ő      | 0 | 8,7267      | 1    | 5,0745 | 1   | 9,6908           | 6        | 5,4881 | 4      | 7,0276    | 6   | 4,9829  | 5   |
| RPS15     | K7ELC2_HUMAN (+2)               | 18  | 0      | D | 12,605      | 3    | 5,0745 | 3   | 6,4605           | 2        | 29,636 | 4      | 4,3922    | 2   | 4,9829  | 2   |
| SEC223    | SC22B_HUMAN                     | 25  | 0      | 0 | 1,9393      | 2    | 5,0745 | 6   | 8,614            | 7        | Э      | 0      | 4,3922    | 5   | 4,9829  | 4   |
| SERPINB12 | SPB12_HUMAN                     | 46  | 0      | 0 | 5,8178      | 4    | 5,0745 | 3   | e                | 0        | 0      | D      | 11,42     | 7   | 17,938  | 5   |
| SALARCAIN | SHSAZ_HUMAN<br>SMRCD_HUMAN      | 49  | 0      | 0 | 0           | 0    | 5,0745 | 5   | 0                | 0        | 0      | 0      | 0         | 0   | 0       | 0   |
| SNRNP70   | BU17_HUMAN                      | 52  | ő      | 0 | 2,9089      | 2    | 5,0745 | 3   | 0                | 0        | 23.05  | 13     | 18.447    | 10  | 3,9863  | 3   |
| SPINE     | SPINS_HUMAN                     | 29  | 0      | 9 | 2,9089      | 2    | 5,0745 | 4   | 0                | 0        | 3,2929 | 2      | 7,906     | 6   | 0       | 0   |
| SRP14     | SEP14_HUMAN                     | 15  | o      | D | 7,7571      | 5    | 5,0745 | 6   | 3,2303           | 3        | 7,6834 | 5      | 11,42     | 7   | 3,9853  | 3   |
| STAG2     | STAG2_HUMAN                     | 141 | 0      | 0 | 0           | 0    | 5,0745 | 7   | 0                | 0        | D      | 0      | 0         | 0   | 0       | 0   |
| TEP11     | TEP11_HUMAN                     | 97  | 0      | 0 | 1,9393      | 2    | 5,0745 | 6   | e                | 0        | 0      | 0      | 0         | 0   | 0       | 0   |
| 1.111     | INTER BUMAN                     | 155 | 0      | 0 | 5,8178      | 2    | 5,0745 | 2   | 0                | 0        | 15,367 | 8      | L 0       | 0   | 1,9726  | 4   |
| TONNATO   | TOM20 HUMAN                     | 67  | 0      | 0 | n           | p. 1 | 5,0745 | 2   | 0                | <u> </u> | 21002  | 2      | 11.10     | 12  | 6.0761  | 6   |

|                 | 2                              |     |        | s s |         |        | ÷       |    |        | a  | S           | a  |         |    |        | 10     |
|-----------------|--------------------------------|-----|--------|-----|---------|--------|---------|----|--------|----|-------------|----|---------|----|--------|--------|
| ¥P551           | VPS51_HUMAN                    | 86  | 0      | 5   | 0       | 0      | 5,0745  | 1  | e      | 0  | 3           | 0  | 0       | 0  | 0      | 0      |
| W0348           | WDS48 HUMAN                    | 76  | 0      | 0   | 1,9393  | 0      | 5.0745  | 7  | 9,6908 | 9  | 4,3903      | 0  | 3,5139  | 4  | 15.945 | 13     |
| YTHDE3          | YTHD3 HUMAN                    | 64  | 0      | D   | 0       | e.     | 5.0745  | 4  | 3,2303 | 3  | 5           | 0  | 0       | e  | 1.9932 | 2      |
| ZC3H15          | ZC3HF_HUMAN                    | 49  | 0      | D   | 0       | 0      | 5,0745  | 6  | 0      | 0  | 7,6834      | 7  | 7,906   | 8  | 0      | 0      |
| EVALEUR]        | HOTHGO_HUMAN                   | 59  | 0      | Э   | 2,9089  | 3      | 5,0745  | 7  | 0      | 0  | 3,2929      | 3  | 4,3922  | 5  | 2,9897 | 3      |
| ACAD11          | ACD11_HUMAN                    | 87  | 0      | D   | 4,8482  | 5      | 4,3496  | 6  | 6,4605 | 6  | 12,074      | 9  | 7,906   | 8  | 0      | n      |
| AGO2            | AGO2_HUMAN                     | 97  | 0      | D   | 0       | 0      | 4,3496  | 6  | 0      | 0  | Э           | 0  | 0       | 0  | 0      | 0      |
| AKAPSL          | AKPBL_HUMAN                    | 72  | 0      | 0   | 5,7875  | 6      | 4,3496  | 5  | 10,768 | 9  | 3,2929      | 3  | 2,6353  | 2  | 5,9795 | 5      |
| ALGIS           | AUGIS_HUMAN                    | 126 | 0      | 0   | 6 79 75 | 2      | 4,3490  | 0  | 5,2505 | 2  | 16 4 64     | 0  | 2,0303  | 6  | 0 0059 |        |
| 407             | AOF HUMAN                      | 171 | 0      | 0   | 0,7075  | 0      | 4 3495  | 5  | 0,0000 | 0  | 10,404      | 0  | 0       | 0  | 3,3635 | 'n     |
| ASG1            | ARG 1 HUMAN                    | 35  | 5,2198 | 2   | 8,7267  | 6      | 43496   | 4  | 4.307  | 2  | 2           | 0  | 6.1491  | 6  | 31,891 | 11     |
| ASPH            | ASPH_HUMAN                     | 86  | 0      | Ð   | 6,7875  | 7      | 4,3496  | 5  | e      | 0  | 9,8786      | 9  | 10,541  | 10 | 3,9853 | 4      |
| BCOR            | BCOR_HUMAN                     | 192 | 0      | D   | 2,9089  | 2      | 4,3496  | 5  | 0      | 0  | D           | 0  | 3,5138  | 4  | 0      | D      |
| BTAF1           | AQAOMTH9_HUMAN (-              | 207 | 0      | D   | 4,8482  | 5      | 4,3496  | 6  | C .    | 0  | C           | 0  | 6,1491  | 1  | 1,9932 | 2      |
| BYSL            | BYST_HUMAN                     | 50  | 0      | D   | 11,636  | 11     | 4,3496  | 6  | 3,2303 | 3  | 31,831      | 17 | 25,475  | 17 | 16,942 | 13     |
| CACYBP          | CYBP_HUMAN                     | 26  | 0      | D   | 0       | 0      | 4,3496  | 5  | 0      | 0  | Э           | 0  | 0       | 0  | 0      | 0      |
| CONB1           | CCN31_HUMAN                    | 48  | 0      | D   | 0       | 0      | 4,3496  | 5  | 0      | 0  | 0           | 0  | 2,6353  | 3  | 0      |        |
| DAP3            | CDC27_HUMAN (+1)<br>RT29_HUMAN | 92  | 0      | 0   | 12.605  | 8      | 4,3490  | 5  | 6307   | 4  | 10.976      | 9  | 20226   | 2  | 0      |        |
| DHR575          | ADCADGOR HUMAN (4              | 34  | ő      | 0   | 0       | °,     | 4.3496  | 5  | 10.768 | 6  | 4,3905      | 4  | 7.0276  | 7  | 18,935 | 9      |
| DHK57           | DHX57 HUMAN                    | 156 | 0      | 0   | 4,8482  | 5      | 4,3496  | 6  | C      | 0  | 27,441      | 23 | 5,2707  | 6  | 0      | 0      |
| DLAT            | ODP2_HUMAN                     | 69  | 0      | D   | 3,8786  | 4      | 4,3496  | 6  | 0      | 0  | Э           | D  | 4,3922  | 5  | 5,9795 | 5      |
| DNAJC7          | DN.C7_HUMAN                    | 56  | 0      | D   | 0       | 0      | 4,3496  | 5  | 3,2303 | 3  | D           | 0  | 1,7569  | 2  | 0      | D      |
| DVL3            | DVL3_HUMAN                     | 78  | 0      | 0   | Ð       | 0-     | 4,3496  | 2  | 0      | 0  | 3           | U  | 5,2707  | 2  | 0      | D      |
| DAVCINI         | DC1L1_HUMAN                    | 57  | 0      | D   | n       | 0      | 4,3496  | 6  | 0      | 0  | D           | 0  | 0       | 0  | 0      | ۵      |
| EIF284          | E7ERK9_HUMAN                   | 60  | 0      | 0   | 1,9393  | 2      | 4,3496  | 6  | 6,4605 | 6  | 6,5857      | 5  | 16,055  | 12 | 4,9829 | 5      |
| EMC7            | EMC7_HUMAN (+1)                | 28  | 0      | 3   | U O     | 0      | 4,3455  | 4  | 5 2020 | 0  | 0 6 6 6 6 7 | 0  | 2,6353  | 2  | 0      |        |
| ENLINZ<br>EXOC2 | EXCHANCE HUMAN                 | 104 | 0      | 0   | 0       | n      | 4,3450  | 6  | 3,5556 | 0  | 0,3837      | 0  | 1,7305  | 0  | 0      |        |
| EXOSCE          | EXOS6 HUMAN                    | 28  | 0      | 0   | 1,9393  | 2      | 4,3495  | 6  | 8,614  | 8  | 3,2929      | 3  | 7,0276  | 8  | 0      | 0      |
| FAM1208         | DAODSSEIS HUMAN (+             | 105 | 0      | 0   | 0       | 0      | 4.3496  | 6  | e      | 0  | 0           | 0  | 0       | 0  | 0      | 0      |
| FAM98A          | FASBA_HUMAN                    | 55  | 0      | D   | D       | 0      | 4,3496  | 4  | 0      | ٥  | 5,4881      | 3  | 4,3922  | 3  | 1,9932 | 2      |
| FANCD2          | FACD2_HUMAN                    | 164 | 0      | D   | 6,7875  | 7      | 4,3496  | 5  | 0      | 0  | 0           | 0  | 2,6353  | 2  | 1,9932 | 2      |
| FBL             | FBRL_HUMAN                     | 34  | 0      | 0   | 10,666  | 9      | 4,3496  | 5  | 7,5373 | 5  | 21,952      | 12 | 7,0276  | 8  | 0      | D      |
| FHOD1           | FHOD1_HUMAN                    | 127 | 0      | D   | 0       | 0      | 4,3496  | 6  | 0      | 0  | 0           | 0  | 1,7569  | 2  | 1,9932 | 2      |
| HNBP1           | B72L14_HUMAN                   | 64  | 0      | 0   | 0       | 0      | 4,3496  | 6  | 0      | 0  | 3           | 0  | 0       | 0  | 0      | 0      |
| GTF2=2          | T2FB HUDAAN                    | 28  | 0      | 0   | 1,9393  | 2      | 4,3450  | 6  | 0      | 0  | 5           | 0  | 43422   | 5  | 0      |        |
| GTPRP1          | GTPS1 HUMAN                    | 12  | 0      | 2   | 3,9393  | 4      | 13496   | 6  | 0      | 0  | 7.58%       | 7  | 13 42   | 21 | 1,9829 |        |
| HDAC2           | HDAC2_HUMAN                    | 55  | ő      | D   | 2,9089  | 2      | 4,3496  | Š  | 4,307  | 4  | 0           | 0  | 4,3922  | 5  | 0      | 0      |
| HIP1            | HIP1_HUMAN                     | 116 | 0      | D   | 0       | 0      | 4,3496  | 6  | 0      | 0  | Э           | 0  | 0       | 0  | 0      | 0      |
| HTATSF1         | HTSF1_HUMAN                    | 86  | 0      | D   | D       | 0      | 4,3498  | 6  | Q      | 0  | D           | D  | 3,5138  | 4  | 0      | D      |
| NT513           | INT13_HUMAN                    | 80  | 0      | D   | 0       | 0      | 4,3496  | 6  | 0      | 0  | о           | 0  | 0       | 0  | 0      | D      |
| WS1             | IWS1_HUMAN                     | 92  | 0      | 0   | 1,9393  | 2      | 1,3496  | 5  | e      | 0  | 9           | 0  | 0       | e  | 0      | Э      |
| LSGI            | LSG1_HUMAN                     | 75  | 0      | 0   | 1,9393  | 2      | 4,3496  | 6  | 0      | 0  | 5,4881      | 5  | 8,7845  | 10 | 3,9963 | 4      |
| MAPIS           | MAP15_HUMAN                    | 112 | 0      | 0   | D COCO  | 0      | 4,3496  | 6  | 0      | 0  | 3           | 0  | 0       | 0  | 0      | 5      |
| MAPEE1          | MAREL HUMAN                    | 30  | 3      | 0   | 9,0904  | 0      | 4,3496  | 3  | 0      | 0  | 16,55       | 0  | 0       | 0  | 1,9952 | ź      |
| MEPI 19         | RM19 HUMAN                     | 30  | 0      | 0   | 2 9089  | 3      | 0.3496  |    | 0      | 0  | 4 3905      | 6  | 35138   | 4  | 0      | 5      |
| MRPS23          | RT23_HUMAN                     | 22  | 0      | D   | 7,7571  | 6      | 4,3496  | 6  | 3,2303 | 3  | 7,6834      | 6  | 5,2707  | 6  | 2,9897 | 3      |
| MRPSS           | RT05_HUMAN                     | 48  | 0      | 0   | 17,453  | 13     | 4,3496  | 4  | 3,2305 | 3  | 14,269      | 11 | 5,2707  | 6  | 0      | э      |
| MTMR12          | MTMRC_HUMAN                    | BŚ  | 0      | D   | D       | 0      | 4,3496  | \$ | 0      | 0  | D           | D  | 0       | 0  | 0      | D      |
| NAA30           | NAA30_HUMAN                    | 39  | 0      | D   | 0       | 0      | 4,3496  | 6  | 0      | 0  | 0           | 0  | 0       | 0  | 0      | D      |
| NA 10           | NATI0_HUMAN                    | 116 | 0      | D   | 2,9089  | 2      | 4,3495  | 6  | c      | 0  | 14,269      | 9  | 3,5138  | 3  | 0      | э      |
| NDUF52          | NDUS2_HUMAN                    | 53  | 0      | D   | 4,8482  | 5      | 4,3496  | 6  | 3,2303 | 3  | 0           | 0  | 3,5138  | 4  | 5,9795 | 6      |
| NDUFV1          | GSVOIS_HUMAN (+1)              | 50  | 0      | 0   | 4,8482  | 5      | 4,3496  | 6  | 2 2202 | 0  | 3           | 10 | 20 905  | 0  | 0      | 5      |
| NXE1            | NXEL HUMAN                     | 70  | 5      | 5   | 1,9393  | 11     | 4,3496  | 6  | 4307   | 4  | 30,733      | 20 | 17,569  | 15 | 7 9726 | 7      |
| ORCS            | ORCS HUMAN                     | 50  | ő      | 0   | 0       | 0      | 4 3496  | 6  | 0      | 0  | 3,2929      | 3  | 35138   | 4  | 3,9863 | 4      |
| OS5PL9          | OSB.9 HUMAN                    | 83  | 0      | 0   | 1.9393  | 2      | 4.3496  | 5  | e      | 0  | 9           | 0  | 5.2707  | 5  | 0      | э      |
| PEKEB3          | F263_HUMAN                     | 60  | 0      | D   | 0       | 0      | 4,3496  | 6  | 0      | 0  | 0           | 0  | 17,569  | 19 | 17,935 | 14     |
| PHF6            | PHF6_HUMAN                     | 41  | 0      | Э   | 4,8482  | 5      | 4,3496  | 5  | 5,3838 | 4  | 24,148      | 12 | 16,055  | 12 | 2,9897 | 3      |
| PIPSL           | PIPSL_HUMAN                    | 95  | 0      | D   | 2,9089  | 2      | 4,3496  | 2  | e      | 0  | D           | D  | 0-      | 0  | 0      | D      |
| PKN1            | PKN1_HUMAN                     | 104 | 0      | 0   | 0       | 0      | 4,3496  | 5  | 0      | 0  | 0           | 0  | 0       | 0  | 0      | 0      |
| PKP1            | POPI_HUMAN                     | 83  | 0      | 0   | 9,6964  | 10     | 4,3496  | 5  | 3,2303 | 2  | 3           | 0  | 7,906   | 6  | 15,945 | 9      |
| PLUBA           | PROFA_HUMAN                    | 262 | 0      | 0   | 2 0190  | 2      | 4,3490  | 0  | 0      | 0  | 7 6957      | 2  | 9.79.45 | 10 | 20726  |        |
| POPI            | POP1 HUMAN                     | 115 | ő      | 0   | 4.8482  | 2      | 4.3496  | 4  | c      | ò  | 10.976      | 9  | 6.1491  | 7  | 0      | 5      |
| PSMD10          | 81A/Y7 HUMAN (+1)              | 21  | 0      | D   | 0       | 0      | 4,3496  | 5  | 0      | 0  | Э           | 0  | 0       | 0  | 0      | 0      |
| PTK7            | PTKZ_HUMAN                     | 118 | 0      | D   | D       | 0-     | 4,3196  | 5  | e      | 0  | D           | D  | 0       | 0  | 0      | D      |
| RAS11FIP1       | REP1_HUMAN                     | 137 | 0      | D   | 8,7267  | 7      | 4,3496  | 6  | 0      | 0  | 4,3905      | 4  | 14,055  | 14 | 1,9932 | 2      |
| R3M17           | SPE45_HUMAN                    | 45  | 0      | О   | 0       | 0      | 4,3496  | 4  | 2,1535 | 2  | 2,1952      | 2  | 0       | 0  | 0      | Э      |
| RBM5            | REMS_HUMAN                     | 92  | 0      | D   | D       | 0-     | 4,3498  | 3  | e      | 0  | 4,3905      | 3  | 11,42   | 2  | 6,9781 | \$     |
| RPL7A           | RL7A_HUMAN                     | 50  | 0      | 0   | 7,7571  | 5      | 4,3496  | 4  | 30,149 | 12 | 26,343      | 14 | 20,204  | 17 | 13,952 | 11     |
| 5/1/3           | SAFBI_HUMAN                    | 103 | 0      | 5   | 5,8178  | 5      | 4,3195  | 8  | 0.514  |    | 18,55       | 13 | 2,6262  | 12 | 5,9558 | 8      |
| SMG8            | SMG8_HUMAN                     | 110 | 0      | 0   | 1,9393  | n in   | 4 3496  |    | 0,014  | ő  | 2           | 0  | 2,0303  | 0  | 0      |        |
| SNRNP4D         | SNR40 HUMAN                    | 39  | 0      | D   | 3,8786  | 4      | 4,3496  | \$ | 0      | 0  | 3,2929      | 3  | 3,5138  | 4  | 0      | 5      |
| SRGAP2          | 87ZM87_HUMAN (+1)              | 121 | 0      | 0   | 0       | 0      | 4,3496  | 6  | 0      | 0  | D           | 0  | 0       | 0  | 0      | 0      |
| SSRP1           | SSRP1_HUMAN                    | 81  | 0      | Ð   | Ð       | e      | 4,3495  | 5  | e      | 0  | Э           | 0  | 7,0276  | 8  | 0      | Э      |
| STIM1           | GOXQ39_HUMAN (+1)              | 89  | 0      | D   | 0       | 0      | 4,3496  | 6  | 0      | 0  | D           | 0  | 2,6353  | 3  | 0      | Э      |
| SUB1            | ICP4_HUMAN                     | 14  | 0      | 0   | 1,9393  | 2      | 4,3496  | 5  | C C    | 0  | 2,1952      | 2  | 0       | 0  | 0      | 0      |
| SYN: 1          | DADD9SGL5_HUMAN (+             | 168 | 0      | 9   | 0       | 0      | 4,3498  | 8  | 0      | 0  | 3           | 0  | 0       | 0  | 0      | a<br>0 |
| THUMPDI         | THUM1 HUMAN                    | 39  | ő      | þ   | D       | ¢.     | 4,3496  | 5  | c c    | ŏ  | 5           | D  | 1,7569  | 2  | o      | 0      |
| TPP2            | 05VZU9_HUMAN                   | 140 | ő      | D   | 0       | 0      | 4,3496  | 6  | e      | õ  | D           | 0  | 0       | 0  | 0      | 0      |
| USP39           | 89A018_HUMAN (+1)              | 62  | 0      | 9   | 0       | e      | 4,3496  | 5  | 0      | 0  | 5,4881      | 5  | 10,541  | 9  | 1,9932 | 2      |
| VAPB            | VAPB_HUMAN                     | 27  | 0      | D   | D       | 0      | 4,3496  | 5  | 0      | a  | 2,1952      | 2  | 2,6353  | 2  | 0      | a      |
| VASP            | VASP_HUMAN                     | 40  | 0      | 0   | 0       | 0      | 4,3496  | 5  | e      | 0  | 0           | 0  | 0       | C  | 0      | 0      |
| VP35Z<br>WASTO  | WASE2 HUMAN                    | 62  | 0      | 0   | 0       | e<br>c | 4,3456  | °. | 0      | 0  | 3           | 0  | 0       | 0  | 0      | 0      |
| WD382           | WD582 HUMAN                    | 34  | 0      | 0   | 2,9089  | 2      | 43490   | 1  | 0      | 0  | 43905       | 3  | 43922   | 3  | 0      | 0      |
| WNK1            | FSGWT4_HUMAN /+1)              | 225 | õ      | 0   | 0       | °.     | 4,3496  | 5  | °,     | õ  | 0           | 0  | 0       | 0  | o      | 0      |
| XP32            | XP32_HUMAN                     | 26  | 0      | 0   | 6,7875  | 5      | 4,3496  | 5  | 0      | 0  | D           | 0  | 4,3922  | 4  | 0      | D      |
| SVALEUR]        | AGA1W2PNV4_HUMAN               | 76  | 0      | D   | D       | 0-     | 4,3496  | 5  | e      | 0  | C           | D  | 3,5138  | 4  | 0      | D      |
| A5CD3           | ABCD3_HUMAN                    | 75  | 0      | 0   | 7,7571  | 8      | 3,6247  | 4  | 37,686 | 17 | 6,5857      | 5  | 10,541  | 10 | 29,997 | 16     |
| AB12            | ADC4DG21_HUMAN (-              | 55  | 0      | 9   | 0       | 0      | 3,6247  | 3  | 0      | 0  | Э           | D  | 0       | 0  | 0      | э      |
| ACADS           | ACAD9_HUMAN                    | 69  | 0      | D   | 5,8178  | 6      | 3,6247  | 5  | 0      | 0  | 0           | D  | 2,6353  | 3  | 0      | 0      |
| ADD3            | ADDG_HUMAN                     | 79  | 0      | 0   | 0       | 0      | 3,6247  | 5  | e      | 0  | 3           | 0  | 3,5138  | 4  | 0      | 0      |
| ALDH242         | AL3A2 HUMAN                    | 55  | 0      | 0   | 0       | 0      | 3,6247  | 4  | 75272  | 7  | 3           | 0  | 0       | 0  | 9 9692 | 6      |
| AP3S1           | AP351 HUMAN                    | 22  | 2,6099 | 2   | 1.9393  | 2      | 3 6247  | 4  | C      | 0  | 3           | D  | 2 6353  | 3  | 0      | 3      |
| ARHGAP21        | RHG21_HUMAN                    | 217 | 0      | n   | D       | ô      | 3,6247  | 5  | õ      | õ  | D           | 0  | 11,42   | 13 | 0      | D      |
| ARHGEF7         | BIALK7 HUMAN                   | 80  | 0      | О   | 0       | 0      | 3,6247  | 5  | 0      | 0  | Э           | 0  | 0       | 0  | 0      | о      |
| ARPC4           | ARPC4_HUMAN (+1)               | 20  | 0      | D   | Ð       | 0-     | 3,6247  | 5  | e      | 0  | D           | D  | 3,5138  | 4  | 0      | D      |
| TPSJ2 PTCD      | G3V325_HUMAN                   | 84  | 0      | D   | 1,9393  | 2      | 3,6247  | 4  | 0      | 0  | 4,3905      | 4  | 6,1491  | 6  | 1,9932 | 2      |
| ATKN2           | ATX2_HUMAN (+2)                | 140 | 0      | D   | 2,9089  | 3      | 3,6247  | 3  | e      | 0  | э           | D  | 0       | 0  | 0      | D      |
| 34/AP211        | BI2L1_HUMAN                    | 57  | 0      | 0   | 0       | 0      | 3,6247  | 5  | 0      | 0  | D           | 0  | 0       | 0  | 0      | 0      |
| BUR             | BCR_HUMAN                      | 143 | 0      | 0   | U       | 0      | 3,6247  | 4  | 0      | 0  | 3           | 0  | 0       | 0  | 0      | 0      |
| CONT1           | CONTL HUMAN                    | 81  | 0      | 0   | 0       | 0      | 3,6247  | ŝ  | 0      | 0  | 3           | 0  | 43922   | 5  | 0      |        |
| CHCHID2         | CHCH2 HUMAN                    | 16  | ő      | p   | 10,666  | 3      | 3,6247  | 3  | 0      | 0  | 4,3905      | 3  | 1,7569  | 2  | 0      | 0      |
| CHERP           | CHERP_HUMAN (+1)               | 104 | õ      | D   | 0       | 0      | 3,6247  | 5  | 0      | õ  | 0           | 0  | 0       | ō  | o      | 0      |
| CS              | 340JV2_HUMAN (+1)              | 50  | 0      | D   | 6,7875  | 6      | 3,6247  | 5  | o      | 0  | 4,3905      | з  | 3,5138  | 4  | 0      | О      |
| CSNK15          | KC1E_HUMAN                     | 47  | 0      | D   | 9,6964  | 9      | 3,6247  | 5  | 7,5373 | 6  | 30,733      | 14 | 9,6629  | 10 | 12,955 | 10     |
| CWC27           | CWC27_HUMAN                    | 54  | 0      | 0   | 0       | 0      | 3,6247  | 4  | 0      | 0  | D           | 0  | 2,6353  | 2  | 0      | D      |
| DDRGK1          | DDRGK_HUMAN                    | 36  | 0      | 0   | 3,8786  | 1      | 3,6247  | 5  | 0      | 0  | 5,4881      | 5  | 5,2707  | 4  | 0      | 0      |
| DDX47           | DOX47_HUMAN<br>DENS_HUMAN      | 51  | 0      | 0   | 4,8482  | 4      | 3,6247  | 5  | 2,1535 | 2  | 12,074      | 8  | 18,447  | 11 | 6,9751 | 8      |
| DNAIN           | DNJS1 HUMAN                    | 38  | 0      | 0   | p       | p      | 3 (5747 | 5  | 0      | 0  | 3           | 0  | 0       | 0  | 0      | 0      |
| DNAIC10         | DJC10_HUMAN                    | 91  | 0      | D   | 0       | 0      | 3,6247  | 5  | e      | õ  | D           | 0  | 0       | °. | 0      | D      |
| DNAJC11         | DUC11_HUMAN                    | 63  | 0      | 0   | D       | e      | 3,6247  | 5  | 10,768 | 8  | D           | D  | 3,5138  | 4  | 11,959 | 10     |
| DOCKE           | DOCK6_HUMAN                    | 230 | 0      | D   | D       | 0      | 3,6247  | 4  | 0      | 0  | D           | 0  | 3,5138  | 3  | 0      | D      |
| EDRF1           | EDRF1_HUMAN                    | 139 | 0      | 0   | 0       | 0      | 3,6247  | 5  | 0      | 0  | C           | 0  | 0       | 0  | 0      | 0      |
| EU-3K           | EIFAN_HUMAN                    | 25  | 1 ° 1  | a   | 3,0786  | 4      | 3,6247  |    | l D    | 0  | 3           | 0  | 4,4522  | 4  | 0      |        |
|                 |                                |     |        |     |         |        |         |    |        |    |             |    |         |    |        |        |

| ELP2         | ELP2_HUMAN                         | 92        | 0 | 9 | U           | 0      | 3,6247 | 2 | e        | 0  | Э           | 0  | 0      | e   | 0           | 0  |
|--------------|------------------------------------|-----------|---|---|-------------|--------|--------|---|----------|----|-------------|----|--------|-----|-------------|----|
| EMC8         | EMC8_HUMAN                         | 24        | 0 | 0 | 1,9393      | 2      | 3,6247 | 5 | 0 00 100 | 0  | 0           | 0  | 1,7569 | 2   | 0 0.000     | 2  |
| ERALI        | ERALI HUMAN                        | 29        | 0 | 0 | 1.9393      | 2      | 3,6247 | 5 | 3,2303   | 3  | 2,1952      | 4  | 2,6353 | 4   | 8,9692      | 3  |
| ERC1         | GBILD3_HUMAN (+1)                  | 125       | ō | 0 | 0           | 0      | 3,6247 | 5 | 0        | 0  | D           | 0  | 0      | 0   | ō           | 0  |
| 5 <b>8</b> 1 | ERI1_HUMAN                         | 40        | 0 | 9 | 3,8786      | 4      | 3,6247 | 5 | C        | 0  | 5,4881      | 4  | 4,3922 | 4   | 0           | 0  |
| FAMIZOA      | F120A_HUMAN                        | 122       | 0 | 0 | 7,7571      | 7      | 3,6247 | 5 | 0        | 0  | 40,612      | 27 | 12,258 | 14  | 0           | 2  |
| FSD1         | FSD1 HUMAN                         | 56        | 0 | 5 | D           | e e    | 3,6247 | 5 | c        | ò  | 5           | D  | e e    | e   | õ           | 3  |
| GATADZA      | P66A_HUMAN                         | 68        | 0 | 0 | 1,9393      | 2      | 3,6247 | 4 | 0        | 0  | D           | 0  | 5,2707 | 5   | 2,9897      | 2  |
| GATAD2B      | ADU1REM1_HUMAN (                   | 63        | 0 | 9 | U           | 0      | 3,6247 | 5 | 0        | 0  | 0           | 0  | 8,7845 | 10  | 0           | 0  |
| HDACG        | HDACE HUMAN                        | 131       | 0 | 0 | 2,50.85     | 3<br>0 | 3,6247 | 4 | L3,998   | 0  | 2,1952      | 0  | 4,3977 | 4   | 3,9853      | â  |
| HDX          | HDX_HUMAN                          | 77        | õ | 0 | 0           | e e    | 3,6247 | 4 | e        | õ  | 3           | 0  | 2,6353 | 2   | õ           | 3  |
| HEATR1       | HEAT1_HUMAN (+1)                   | 242       | o | D | 0           | 0      | 3,6247 | 5 | 0        | 0  | D           | 0  | 1,7569 | 2   | 0           | D  |
| HIP1R        | HIP1R_HUMAN                        | 119       | 0 | 0 | 0           | 0      | 3,6247 | 5 | C        | 0  | Э           | 0  | 0      | 0   | 0           | 0  |
| IGLC2        | IGLC2_HUMAN (=1)                   | 11        | 0 | 3 | 7,7571      | 3      | 3,6247 | 3 | 0,4505   | 2  | 0<br>2 1952 | 2  | 0      | 0   | 0           | 2  |
| KATNAL       | KTNA1_HUMAN                        | 56        | 0 | D | 0           | ē.     | 3,6247 | 5 | 2,1535   | 2  | D           | D  | 7,906  | s   | 2,9897      | 3  |
| KLC3         | K7EL76_HUMAN (+1)                  | 44        | 0 | 0 | 0           | 0      | 3,6247 | 2 | 0        | 0  | 0           | 0  | 0      | 0   | 0           | 0  |
| LRPAP1       | AMRP_HUMAN                         | -61       | 0 | 0 | 0           | 0      | 3,6247 | 5 | 0        | 0  | 3           | 0  | 0      | 0   | 0           | 3  |
| LKRL41       | LERF2 HUMAN                        | 8h<br>82  | 0 | 0 | 1,9393      | 0      | 3,6247 | 4 | 0        | 0  | 0           | 0  | 1,2569 | 4   | 0           | 0  |
| LUC7L        | LUC7HUMAN                          | 44        | 0 | 3 | 10,666      | 3      | 3,6247 | 2 | C C      | 0  | 23,05       | 4  | 7,0276 | 2   | ò           | 3  |
| MCTS1        | MCTS1_HUMAN                        | 21        | 0 | D | 0           | 0      | 3,6247 | 5 | 0        | 0  | D           | 0  | 0      | 0   | 0           | D  |
| MORF4L1      | B3KTM8_HUMAN                       | 40        | 0 | 0 | 5,8178      | 6      | 3,6247 | 4 | 0        | 0  | 14,269      | 10 | 5,2707 | 5   | 0           | 0  |
| MRPL45       | DA087X2D5 HUMAN (+                 | 35        | 0 | 9 | 0,7873      | 0      | 3.6247 | 4 | 0        | 0  | 2.1952      | 2  | 1,7569 | 2   | 0           | 2  |
| MRPL46       | RM46_HUMAN                         | 32        | 0 | D | 2,9089      | 3      | 3,6247 | 3 | 2,1535   | 2  | 4,3905      | 3  | 7,0276 | 5   | 0           | D  |
| MRPS26       | RT26_HUMAN                         | 24        | 0 | 0 | 9,6964      | 8      | 3,6247 | 5 | 2,1535   | 2  | 9,8786      | 7  | 4,3922 | 5   | 1,9932      | 2  |
| MIPAP        | PAPD1_HUMAN                        | 66        | 0 | 3 | 2,9089      | 3      | 3,6247 | 5 | 5,3838   | 4  | 5,4881      | 4  | 8,7845 | 9   | 6,9761      | 7  |
| NOC2.        | NOC2L HUMAN                        | 85        | 0 | 0 | 2,9089      | 3      | 3.6247 | 5 | 5,5858   | 5  | 0           | 0  | 3,5138 | 4   | ő           | 0  |
| NOP56        | NOP55_HUMAN                        | 66        | 0 | D | 2,9089      | 3      | 3,6247 | 2 | 4,307    | 4  | 13,171      | 11 | 3,5138 | 4   | Ó           | а  |
| NSUNS        | NSUN5_HUMAN                        | 47        | 0 | 0 | 5,8178      | 6      | 3,6247 | 5 | 0        | 0  | 9,8786      | 9  | 4,3922 | 4   | 4,9829      | 5  |
| PAXEPI       | PARAL HUMAN                        | 105       | 0 | 0 | 5,8786      | 4      | 3,6247 | 5 | 17,228   | 15 | 1,3905      | 0  | 10,541 | 0   | 14,949      | 14 |
| PCBP1        | PCBP1_HUMAN                        | 37        | 0 | 0 | 5,8178      | 6      | 3,6247 | 5 | 8,614    | 7  | 14,269      | 11 | 8,7845 | 5   | 0           | 0  |
| P K3R4       | PI3R4_HUMAN                        | 153       | 0 | D | Ð           | 0-     | 3,6247 | 5 | 0        | 0  | D           | D  | 0      | 0   | 0           | D  |
| PNPT1        | PNPT1_HUMAN                        | 86        | 0 | 0 | 0           | 0      | 3,6247 | 5 | 0        | 0  | Э           | 0  | 0      | 0   | 0           | 0  |
| PRUMZ        | AAKG1 HUMAN                        | 22        | 0 | 0 | 1,8/182     | 3      | 3,6247 | 5 | 3,2303   | 2  | 3,7881      | 3  | 25129  | 4   | 14,949      | 5  |
| PTS          | PTPS_HUMAN                         | 16        | 0 | 0 | 1,9393      | 2      | 3,6247 | 4 | c        | 0  | 3           | 0  | 1,7569 | 2   | 0           | 3  |
| PU S1        | TRUA_HUMAN                         | 47        | ٥ | a | 7,7571      | 8      | 3,6247 | 5 | 0        | 0  | 17,562      | 15 | 13,177 | 14  | 0           | а  |
| PYM1         | PYM1_HUMAN                         | 23        | 0 | 0 | 1,9393      | 2      | 3,6247 | 3 | 0        | 0  | 2,1952      | 2  | 1,7569 | 2   | 0           | 0  |
| E3M28        | ESM28 HUMAN                        | 21        | 0 | 0 | 3,8786      | 9      | 3,6247 | 4 | 4,507    | 1  | 3           | 0  | 0      | 0   | 2,9897      | 3  |
| R3M39        | RBM39_HUMAN                        | 59        | 0 | 0 | 7,7571      | 5      | 3,6247 | 5 | C        | 0  | 18,66       | 6  | 14,055 | s   | 12,956      | 9  |
| RHOC         | QSJR08_HUMAN (+1)                  | 22        | 0 | D | Ð           | 0      | 3,6247 | 3 | 0        | 0  | D           | D  | 0      | 0   | 0           | D  |
| RNMT         | MCES_HUMAN                         | 55        | 0 | 0 | 0           | 0      | 3,6247 | 5 | 0        | 0  | 3,2929      | 3  | 2,6353 | 3   | 0           | D  |
| RPL18        | SUGEZ_HUMAN                        | 17        |   | 0 | 9,8482      | 4      | 3,6247 | 3 | 5,2929   | 3  | 1,3905      | 3  | 3,5138 | 2   | 2,9897      | 2  |
| REP1         | RRP1 HUMAN                         | 53        | 0 | 0 | 9,6964      | 5      | 3,6247 | 3 | 3,2303   | 3  | 13,171      | 9  | 5,2707 | 5   | 6,9761      | 6  |
| SAMHD1       | SAMH1_HUMAN                        | 72        | 0 | a | D           | 0      | 3,6247 | 4 | 2,1535   | 2  | D           | D  | 2,6353 | 3   | 0           | a  |
| SCAF8        | ACADAOMT33_HUMAN                   | 149       | 0 | 0 | 0           | 0      | 3,6247 | 4 | 0        | 0  | 3,2929      | 3  | 0      | 0   | 0           | 0  |
| SEC62        | SEC62_HUMAN                        | 46<br>ca  | 0 | 0 | 6,7875      | 3      | 3,6247 | 3 | 2,1535   | 2  | 9,8786      | 2  | 7,906  | 6   | \$,9558     | 5  |
| SH3BP1       | 33P1 HUMAN                         | 76        | 0 | 0 | 0           | e o    | 3,6247 | s | c        | 0  | 3           | 0  | 0      | e e | 0           | 0  |
| S.C25A10     | DIC_HUMAN                          | 31        | 0 | D | 1,9393      | 2      | 3,6247 | 5 | 16,151   | 10 | 2,1952      | 2  | 3,5138 | 4   | \$,9858     | 8  |
| 5LC25A24     | SCMC1_HUMAN                        | 53        | 0 | D | 0           | 0      | 3,6247 | 4 | 0        | 0  | 2,1952      | 2  | 0      | 0   | 0           | D  |
| SMN2         | A1W2PRVS_HUMAN (-                  | 30        | 0 | 0 | 2,9089      | 3      | 3,6247 | 3 | 0        | 0  | 3,2929      | 3  | 0      | 0   | 0           | 0  |
| SNRPF        | BUXE HUMAN                         | 11        | 0 | 0 | 1,9393      | 2      | 3,6247 | 4 | 0        | 0  | 4,3905      | 3  | 5,2707 | 4   | 3.9563      | 3  |
| SNW1         | SNW1_HUMAN                         | 61        | 0 | Э | 3,8786      | 3      | 3,6247 | 5 | 0        | 0  | 6,5857      | 4  | 22,84  | 15  | 10,962      | 10 |
| SRSF1        | I3KTL2_HUMAN (+1)                  | 28        | 0 | D | D           | 0      | 3,6247 | 4 | 13,998   | 10 | 2,1952      | 2  | 8,7845 | 10  | 0           | D  |
| STRAP        | STRAP_HUMAN                        | 38        | 0 | 0 | 0           | 0      | 3,6247 | 5 | 44,147   | 17 | 3,2929      | 3  | 1,7569 | 2   | 8,9692      | 3  |
| SUPT16H      | SPI6H HUMAN                        | 120       | 0 | 0 | 2,5005      | 0      | 3,6247 | 4 | 2,1555   | 0  | 5           | 0  | 0      | 0   | 0           | 3  |
| TBL1XR1      | TBLIR_HUMAN                        | 56        | 0 | 0 | 0           | 0      | 3,6247 | 5 | 0        | 0  | Э           | 0  | 0      | 0   | 0           | 0  |
| TEL02        | TELO2_HUMAN                        | 92        | 0 | D | D           | Û      | 3,6247 | 5 | 2,1535   | 2  | D           | D  | D      | 0   | Ó           | D  |
| TIMM50       | TIM50_HUMAN                        | 40        | 0 | 0 | 0           | 0      | 3,6247 | 4 | 12,921   | 7  | 5,4881      | 4  | 1,7569 | 2   | 0           | 0  |
| TOPI         | ZUZ_HUMAN<br>TOPL HUMAN            | 91        | 0 | 0 | 52,968      | 25     | 3,6247 | 5 | 3,2303   | 3  | 37,319      | 24 | 5,2707 | 6   | 5,9795      | 2  |
| TOX4         | TOX4_HUMAN                         | 66        | 0 | 0 | 1,9393      | 2      | 3,6247 | 4 | C        | 0  | Э           | 0  | 4,3922 | 4   | 0           | э  |
| TP53         | P53_HUMAN                          | 44        | 0 | D | 5,8178      | 4      | 3,6247 | 3 | 12,921   | 7  | 8,781       | 6  | 6,1491 | 5   | 5,9795      | 8  |
| TPSSRK       | PRPK_HUMAN                         | 28        | 0 | 0 | 0           | 0      | 3,6247 | 4 | 0        | 0  | 5,4881      | 4  | 4,3922 | 4   | 0           | 3  |
| TUPIO        | CIPI_HUMAN<br>REMECS_HUMAN (A1)    | 58<br>150 | 0 | 0 | 0           | 0      | 3,6247 | 5 | 0        | 0  | 0           | 0  | 2,6353 | 3   | 0           | 3  |
| VP545        | VPS45 HUMAN                        | 65        | 0 | 9 | 0           | 0      | 3,6247 | 5 | 5,3838   | 5  | э           | 0  | 0<br>0 | o   | 0           | 3  |
| VPS5D        | VP\$50_HUMAN                       | 111       | ۵ | D | D           | 0      | 3,6247 | 5 | 0        | 0  | D           | D  | n      | 0   | 0           | а  |
| WAR52        | SYWM_HUMAN                         | 40        | 0 | 0 | 0           | 0      | 3,6247 | 5 | 0        | 0  | 0           | 0  | 0      | 0   | 0           | 0  |
| XPO5         | XPOS_HUMAN                         | 137       | 0 | 0 | 1 9393      | 2      | 3,6247 | 3 | 0        | 0  | 3           | 0  | 0      | 0   | 0           | 3  |
| XPOT         | XPOT_HUMAN                         | 110       | 0 | 0 | 0           | 0      | 3,6247 | 5 | 5,3838   | 5  | 3           | 0  | 0      | e   | 0           | 3  |
| YARS2        | SYYM_HUMAN                         | 53        | 0 | D | 1,9393      | 2      | 3,6247 | 5 | 0        | 0  | D           | D  | D      | 0   | 0           | а  |
| YME1L1       | YMEL1_HUMAN                        | 86        | 0 | 0 | 0           | 0      | 3,6247 | 5 | 24,765   | 18 | 6,5857      | 6  | 12,298 | 13  | 26,908      | 20 |
| ADD2         | ADDS HUMAN                         | 81        | 0 | 0 | 0           | 0      | 2,8997 | 4 | c        | 0  | 5           | 0  | 0      | 0   | 0           | 3  |
| AGAPS        | AGAP3_HUMAN                        | 95        | 0 | 3 | 3,8786      | 3      | 2,8997 | 3 | o        | 0  | 6,5857      | 5  | 5,2707 | 6   | 0           | э  |
| ANAPC7       | APC7_HUMAN                         | 67        | 0 | D | n           | 0      | 2,8997 | 4 | 0        | 0  | 0           | D  | 0      | 0   | 0           | a  |
| ANKLE2       | ANK 2 HUMAN                        | 104       | 0 | 0 | 0           | 0      | 2,8997 | 4 | 0        | 0  | 0           | 0  | 0      | 0   | 0           | 3  |
| AP352        | AP352 HUMAN (+1)                   | 22        | 0 | 0 | 0           | 0      | 2,8997 | 4 | 0        | 0  | 5           | 0  | 1.7569 | 2   | 0           | 0  |
| APP          | A4_HUMAN                           | 87        | 0 | 0 | 0           | 0      | 2,8997 | 4 | e        | 0  | Э           | 0  | 0      | 0   | 0           | э  |
| ARAF         | ARAF_HUMAN (+1)                    | 68        | 0 | D | 0           | 0      | 2,8997 | 4 | 13,998   | 5  | 4,3905      | 2  | 2,6353 | 2   | 5,9795      | 4  |
| ATPISAL      | AT131 HUMAN                        | 1/2       | 0 | 9 | 0           | 0      | 2,8997 | 3 | 0        | 0  | 3           | 0  | 0      | 0   | 0           | 3  |
| ATPSF1       | ATSF1_HUMAN (+1)                   | 29        | õ | 0 | 0           | 0      | 2,8997 | 4 | c        | õ  | 0           | 0  | 0      | °.  | õ           | 0  |
| BAG2         | BAG2_HUMAN                         | 24        | 0 | э | 4,8482      | 5      | 2,8997 | 4 | 8,614    | 8  | 3,2929      | 3  | 2,6353 | 3   | 4,9829      | 5  |
| BAGS         | DA0G21K23_HUMAN (+                 | 119       | 0 | D | n           | 0      | 2,8997 | 4 | 0        | 0  | D           | D  | 0      | 0   | 0           | 0  |
| SCAS2        | SPF27_HUMAN                        | 20        | 0 | 0 | 0           | 0      | 2,8997 | 4 | 2,1555   | 2  | 0           | 0  | 0      | 0   | 0           | 0  |
| CASK         | CSKP_HUMAN                         | 105       | 0 | 0 | 0           | 0      | 2,8997 | 4 | õ        | 0  | D           | 0  | 0      | õ   | 0           | 0  |
| CCNB2        | CCN32_HUMAN                        | 45        | 0 | 0 | Ð           | 0      | 2,8997 | 4 | e        | 0  | D           | D  | 0      | 0   | Ó           | э  |
| CDC73        | CDC73_HUMAN                        | 61        | ٥ | n | 3,8786      | 4      | 2,8997 | 4 | 5,3838   | 5  | D           | 0  | 7,0276 | 8   | 6,9751      | 7  |
| CORSA        | CDK/_HUMAN (+1)<br>CSNA_HUMAN (+1) | 39        | 0 | 9 | 0           | 0      | 2,8997 | 4 | 0        | 0  | 9           | D  | 0      | 0   | 0           | 0  |
| CTNNBL1      | A087WUB9 HUMAN (                   | 66        | õ | 5 | 0           | 0      | 2,8997 | 4 | c c      | 0  | 5           | 0  | 0      | 0   | ő           | 3  |
| CXorf56      | CX056_HUMAN                        | 26        | 0 | э | 0           | 0      | 2,8997 | 4 | C        | 0  | э           | D  | 0      | 0   | 0           | э  |
| CY85R1       | NBSR1_HUMAN                        | 34        | 0 | 0 | 0           | 0      | 2,8997 | 4 | 0        | 0  | 0           | 0  | 0      | 0   | 0           | 0  |
| CYC1<br>DBP3 | CY1_HUMAN<br>D3R1_HUMAN            | 35<br>62  | 0 | 0 | 0           | 0      | 2,8997 | 4 | 5,5858   | 5  | 3           | 0  | 5,2707 | 6   | 4,9829      | 3  |
| DDOST        | ADC4DGS1 HUMAN (+                  | 49        | 0 | 0 | 2,9089      | 3      | 2,8997 | 4 | 0        | 0  | 3,2929      | 3  | 3,5138 | 4   | 0           | 0  |
| DOX18        | DDX18_HUMAN                        | 75        | 0 | 0 | 10,666      | 8      | 2,8997 | 4 | 9,6908   | 9  | 9,8786      | 9  | 9,6629 | 10  | 3,9863      | 4  |
| DDX23        | DDX23_HUMAN                        | 96        | 0 | D | 1,9393      | 2      | 2,8997 | 4 | 0        | 0  | 7,6834      | 6  | 1,7569 | 2   | 0           | a  |
| DECRI        | DECK_HUMAN<br>DEK_HUMAN            | 30        | 0 | 0 | U<br>P      | 0<br>p | 2,8997 | 2 | 0        | 0  | 3 8786      | 6  | 7,0274 | 2   | 5 9 7 95    | 5  |
| DHCR24       | DHC24_HUMAN (+1)                   | 60        | 0 | 0 | 1,9393      | 2      | 2,8997 | 3 | 0        | 0  | 0           | 0  | 0      | 0   | 2,9897      | 3  |
| DHCR7        | DHCR7_HUMAN                        | 54        | 0 | э | 1,9393      | 2      | 2,8997 | 3 | 5,3838   | 4  | 4,3905      | 4  | 2,6353 | 3   | 4,9829      | 5  |
| DID01        | DID01_HUMAN                        | 244       | 0 | 0 | 3,8786      | 3      | 2,8997 | 4 | 5,3838   | 5  | 18,55       | 16 | 11,42  | 13  | 10,962      | 11 |
| DIMT1        | DIM1_HUMAN<br>DNUC1_HUMAN          | 35<br>64  | 0 | 0 | 5,8178<br>P | 6      | 2,8997 | 3 | 4,307    | 4  | 14,269      | 11 | 4,3022 | 1 5 | 1,9932<br>A | 2  |
| DNAJC21      | DJC21_HUMAN                        | 62        | 0 | 0 | 2,9089      | 3      | 2,8997 | 4 | e        | 0  | 2,1952      | 2  | 7,0276 | 7   | 1,9932      | 2  |
| DID1         | DTD1_HUMAN                         | 23        | 0 | 0 | 1,9393      | 2      | 2,8997 | 4 | e        | 0  | Э           | Ð  | 2,6353 | 3   | 0           | э  |
| ECI2         | ADADC4DGA2_HUMAN                   | 40        | 0 | 0 | 0           | 0      | 2,8997 | 4 | 0        | 0  | 0           | 0  | 0      | 0   | 0           | 0  |
| CUHI         | COFI_HUMAN                         | 10        |   | 0 | U           | U      | 5,899/ | 3 | 0        | 0  | 5           | U  | 0      | U U | 0           | 5  |

|                     |                                  |           |        |        | 2,0000      |        |        | i |             |    | 1 a anan 1  |        | 0.2200      |        |          | i w i   |
|---------------------|----------------------------------|-----------|--------|--------|-------------|--------|--------|---|-------------|----|-------------|--------|-------------|--------|----------|---------|
| EIF4E2              | IF482_HUMAN                      | 28        | 0      | a      | 3,8786      | 4      | 2,8997 | 4 | 16,151      | 8  | 6,5857      | 5      | 2,6353      | 3      | 9,9658   | 7       |
| EIF4H               | IF4H_HUMAN                       | 27        | 0      | 0      | 0           | 0      | 2,8997 | 4 | 0           | 0  | 0           | 0      | 0           | 0      | 0        | 0       |
| ENAH                | ENAH HUMAN                       | 27<br>67  | 0      | 0      | 2,9089<br>0 | 3      | 2,8997 | 3 | 0           | 0  | 2,1952      | 2      | 6,1451      | 0      | 0        | 0       |
| EX.32               | EXD2_HUMAN                       | 70        | 0      | 9      | 2,9089      | 2      | 2,8997 | 3 | 22,612      | 13 | 3,2929      | 3      | 6,1491      | 5      | 14,949   | 11      |
| EXOC6               | E7EW84_HUMAN (+1)                | 82        | 0      | 0      | 0           | 0      | 2,8997 | 4 | 0           | 0  | 0           | 0      | 0           | 0      | 0        | 2       |
| FNSPIL              | FBP1L_HUMAN (+1)                 | 70        | 0      | 5      | D           | e o    | 2,8997 | 4 | c           | õ  | 5           | D      | D D         | e      | 0        | 5       |
| FRG1                | FRG1_HUMAN                       | 29        | 0      | 0      | 3,8786      | 4      | 2,8997 | 3 | 5,3838      | 5  | 7,6834      | 6      | 8,7845      | 6      | 3,9963   | 4       |
| G01681              | GOGB1_HUMAN<br>COLEEA_HUMAN.(+1) | 376       | 0      | 9      | 0           | 0      | 2,8997 | 4 | 0           | 0  | 3           | 0      | 0           | 0      | 0        | 0       |
| GTFBC1              | TF3C1_HUMAN                      | 239       | 0      | 0      | 10,666      | 9      | 2,8997 | 3 | 24,765      | 22 | 14,269      | 12     | 14,934      | 17     | 12,956   | 13      |
| HDAC1               | HDAC1_HUMAN                      | 55        | 0      | 0      | D           | 0      | 2,8997 | 3 | e           | 0  | 0           | D      | 0           | e      | 0        | 0       |
| HEXIMI<br>HIST1H2AC | HEALL HUMAN (+6)                 | 14        | 0      | 0      | 8,7267      | 2      | 2,8997 | 2 | 4,307       | 2  | J<br>7,6834 | 2      | 5,2707      | 2      | 2,9897   | 2       |
| HNRNPF              | HNRPF_HUMAN                      | 46        | 9,1346 | 3      | 1,9393      | 2      | 2,8997 | 3 | 13,998      | 8  | 15,367      | 8      | 9,6629      | 5      | 16,942   | 8       |
| HNRNPUL2            | HNRL2_HUMAN                      | 85<br>60  | 0      | 0      | 17,453      | 15     | 2,8997 | 4 | 0           | 0  | 39,514      | 24     | 7,906       | 9      | 8,9692   | 9       |
| HOOKS               | HOOK3_HUMAN                      | 83        | 0      | 0      | 0           | 0      | 2,8997 | 4 | c           | 0  | 0           | 0      | 0           | °.     | 0        | 5       |
| HP                  | H07300_HUMAN                     | 49        | 16,954 | 6      | 1,9393      | 2      | 2,8997 | 3 | 3,2303      | 2  | 5,4881      | 4      | 1,7569      | 2      | 0        | э       |
| KDM1A               | KOMIA HUMAN                      | 181<br>93 | 0      | 0      | 4,8482      | 2      | 2,8997 | 2 | 0           | 0  | 0<br>0      | 0      | 7,906       | 5      | 0        | 2       |
| KIF1C               | KIFIC_HUMAN                      | 123       | 0      | 5      | D           | e      | 2,8997 | 3 | c           | 0  | 7,6834      | 6      | 1,7569      | 2      | 0        | D       |
| KIFC1               | KIFC1_HUMAN                      | 74        | 0      | 0      | 0           | 0      | 2,8997 | 4 | 0           | 0  | 0           | 0      | 5,2707      | 6      | 0        | 0       |
| LCN1                | LCN1_HUMAN                       | 81<br>19  | 0      | 5      | 1,9393      | 2      | 2,8997 | 3 | 0           | 0  | 5,4881      | 0      | 0           | 0      | 0        | 5       |
| LEO1                | LEO1_HUMAN                       | 75        | o      | 0      | 1,9393      | 2      | 2,8997 | 4 | 0           | 0  | Э           | 0      | 1,7569      | 2      | 0        | Э       |
| LIMSI               | LIMS1_HUMAN                      | 37        | 0      | 0      | 0           | 0      | 2,8997 | 4 | 0           | 0  | 0           | 0      | 0           | 0      | 0        | 5       |
| LINI                | LTN1_HUMAN                       | 201       | 0      | 0      | 0           | c c    | 2,8997 | 4 | 2,1535      | 2  | 3           | 0      | 3,5138      | 4      | 4,9829   | 5       |
| MAGEDI              | MAGD1_HUMAN                      | 86        | 0      | D      | 0           | 0      | 2,8997 | 2 | 10,768      | 8  | 0           | 0      | 0           | 0      | 0        | D       |
| MARCES 1            | A087WU53_HUMAN (*<br>MEP_HUMAN   | 42<br>20  | 0      | 0      | 4,8482      | 3      | 2,8997 | 2 | 0           | 0  | 2,1952      | 2      | 5,2707      | 5      | 3,9863   | 3       |
| MCAT                | FABD_HUMAN                       | 43        | 0      | 0      | 0           | 0      | 2,8997 | 4 | o           | 0  | D           | 0      | 0           | 0      | 0        | D       |
| MICALU1             | MILK1_HUMAN                      | 93        | 0      | 0      | U           | 0      | 2,8997 | 4 | C .         | 0  | 0           | 0      | 0           | e      | 0        | 0       |
| MRPL16              | RM16 HUMAN                       | 28        | 0      | 0      | 3,8786      | 4      | 2,8997 | 4 | 3,2305      | 3  | 6,5857      | 6      | 5,2707      | 6      | 1,9932   | 2       |
| MRPL44              | RM44_HUMAN                       | 38        | 0      | D      | Ð           | 0      | 2,8997 | 3 | e           | 0  | 5,4881      | 4      | 4,3922      | 5      | 0        | D       |
| MRPL53<br>MRPS15    | RM53_HUMAN<br>RT15_HUMAN         | 12        | 0      | 0      | 0 6 7875    | 0      | 2,8997 | 3 | 0           | 0  | 0<br>N4881  | 0      | 0 2 6353    | 0      | 0        | 3       |
| MRPS188             | RT18B_HUMAN                      | 29        | 0      | 0      | 5,8178      | 5      | 2,8997 | 3 | 2,1535      | 2  | 3,2929      | 3      | 2,6353      | 3      | 0        | 5       |
| MRPS35              | RT35_HUMAN                       | 37        | 0      | 0      | 14,545      | 11     | 2,8997 | 4 | 0           | 0  | 8,781       | 8      | 3,5138      | 4      | 0        | 0       |
| NDUF53              | MTA1_HUMAN<br>NDUS3_HUMAN        | 81<br>30  | 0      | 0<br>0 | 2,9089      | 0<br>3 | 2,8997 | 2 | 3,2303      | 3  | 0<br>2.1952 | 2      | 2,6353      | 3      | 1,9932   | 2       |
| NHP2                | D61C52_HUMAN (+2)                | 15        | 0      | 0      | 3,8786      | 4      | 2,8997 | 4 | e           | 0  | 3,2929      | 3      | 4,3922      | 4      | 0        | D       |
| NIPSNAP1            | N PS1_HUMAN                      | 33        | 0      | 0      | 0           | 0      | 2,8997 | 3 | 0           | 0  | 3,2929      | 3      | 2,6353      | 3      | 1,9932   | 2       |
| NMT1                | NMT1_HUMAN                       | 57        | 0      | 5      | 2,5005      | 0      | 2,8997 | 4 | e           | 0  | 2,1952      | 2      | 5,2707      | 5      | 0        | 5       |
| NOA1                | NOA1_HUMAN                       | 78        | 0      | Ð      | 4,8482      | 4      | 2,8997 | 4 | 0           | 0  | 5,4881      | 4      | 9,6629      | 10     | 0        | Э       |
| NOP58<br>MSMCE2     | NOP58_HUMAN<br>NSE2_HUMAN        | 60        | 0      | 0      | 2,9089      | 3      | 2,8997 | 4 | C<br>O      | 0  | 10,976      | 9      | 9,6629      | S      | 10,952   | 10      |
| OS3PL3              | OSB.3_HUMAN                      | 101       | 0      | 0      | 3,8786      | 4      | 2,8997 | 4 | e           | 0  | 6,5857      | 6      | 3,5138      | 4      | 0        | 0       |
| P4HB                | PDIA1_HUMAN                      | 57        | 0      | a      | D           | 0      | 2,8997 | 4 | 8,814       | 7  | D           | D      | 1,7569      | 2      | 0        | D       |
| PAGSIN3             | PASPZ_HUMAN                      | 48        | 0      | 0      | 1,9393      | e<br>e | 2,8997 | 3 | e           | 0  | 0,5857      | 0      | 3,5138      | 4      | 0        | 5       |
| PARG                | PARG_HUMAN                       | 111       | o      | Ð      | 0           | 0      | 2,8997 | 4 | 0           | 0  | D           | D      | 0           | 0      | 0        | D       |
| PARN                | PARN_HUMAN                       | 73        | 0      | 0      | 0           | 0      | 2,8997 | 4 | C 21.22%    | 0  | 0           | 0      | 0           | 0      | 0        | 0       |
| PCYTIA              | CSIEJ2_HUMAN (+1)                | 43        | 0      | 0      | 0           | 0      | 2,8997 | 3 | 0           | 0  | 3           | 0      | 1,7569      | 2      | 0        | 0       |
| PDAP1               | HAP28_HUMAN                      | 21        | 0      | 0      | 0           | 0      | 2,8997 | 3 | 0           | 0  | D           | 0      | 0           | 0      | 0        | 0       |
| PHACTR2<br>PHAX     | J3KP75_HUMAN<br>PHAX_HUMAN       | 68<br>44  | 0      | 0      | 1,9393      | 2      | 2,8997 | 4 | e<br>o      | 0  | 3           | 0      | 4,3922      | 4      | 0        | 2       |
| PIGT                | A1W2PNPD_HUMAN (-                | 66        | 0      | 9      | 0           | 0      | 2,8997 | 4 | 0           | 0  | D           | 0      | 1,7569      | 2      | 1,9932   | 2       |
| PMS1                | PMS1_HUMAN                       | 106       | 0      | D      | D           | 0      | 2,8997 | 4 | e           | 0  | D           | D      | Ð           | 0      | 0        | D       |
| PNO1<br>POLD2       | AC87WWIS HUMAN F                 | 28        | 0      | 9      | 5,8178      | 0      | 2,8997 | 4 | e           | 0  | 12,074      | 0      | 7,906       | e<br>e | 2,9897   | 5       |
| PO_R2C              | RP33_HUMAN                       | 31        | 0      | D      | 2,9089      | 3      | 2,8997 | 3 | 3,2303      | 3  | 3,2929      | 3      | 5,2707      | 3      | 3,9863   | 4       |
| POLR2E              | ADADMQR7_HUMAN (                 | 24        | 0      | 0      | 6,7875      | 6      | 2,8997 | 4 | 2,1535      | 2  | 0           | 0      | 6,1491      | 5      | 0        | 0       |
| PO_R3C              | RPC3_HUMAN                       | 61        | 0      | 0      | 0           | 0      | 2,8997 | 4 | 0           | 0  | 2,1952      | 0      | 4,3922      | 5      | 0        | 5       |
| PRKRA               | PRKRA_HUMAN                      | 34        | 0      | 0      | Ð           | e      | 2,8997 | 4 | 3,2303      | 3  | D           | D      | Ð           | e      | 0        | C       |
| PRPF4<br>PTPRF      | PRP4_HUMAN<br>PTPRF_HUMAN        | 58<br>213 | 0      | 0      | 5,8178      | 6      | 2,8997 | 4 | 9,6908      | 9  | 15,367      | 13     | 20,204      | 19     | 11,959   | 12      |
| R4612               | RAB12_HUMAN                      | 27        | 0      | 0      | D           | 0      | 2,8997 | 3 | e           | 0  | D           | 0      | 0           | e      | 0        | D       |
| RFC1                | RFC1_HUMAN                       | 128       | 0      | 0      | 0           | 0      | 2,8997 | 4 | 3,2303      | 3  | 12,074      | 10     | 3,5138      | 3      | 4,9829   | 5       |
| RPL14               | CSINWS HUMAN (+1)                | 15        | 0      | 0      | 6,8482      | 3      | 2,8997 | 4 | 6,4605      | 6  | 7,6834      | 6      | 4,3922      | 4      | 1,9829   | 4       |
| RPL28               | RL28_HUMAN                       | 16        | 0      | 9      | 3,8786      | 3      | 2,8997 | 3 | 6,4605      | 5  | 7,6834      | 5      | 2,6353      | 3      | 0        | Э       |
| RPLB<br>PPP20       | RUB_HUMAN<br>OSVILLL HUDAN (~1)  | 28        | 0      | 0      | 4,8482      | 3      | 2,8997 | 3 | 15,075      | 7  | 15,367      | 8      | 10,541      | 8      | 2,9897   | 3       |
| ILP525              | IS26_HUMAN                       | 13        | 0      | 5      | 7,7571      | 3      | 2,8997 | 3 | 6,4605      | 3  | 3,2929      | 3      | 4,3522      | 3      | 0        | 5       |
| RRPIB               | RRP18_HUMAN                      | 84        | 0      | 0      | 5,8178      | 6      | 2,8997 | 4 | 11,844      | 10 | 13,171      | 11     | 11,42       | 11     | 0        | 0       |
| RTCA                | RTCA_HUMAN                       | 52<br>39  | 0      | 3      | D           | 0      | 2,8997 | 4 | e<br>e      | 0  | 0           | 0      | 0           | 0      | 0        | 5       |
| SAMD48              | A087WZTO_HUMAN (+                | 72        | 0      | 0      | 0           | 0      | 2,8997 | 4 | 0           | 0  | Э           | 0      | 0           | 0      | 0        | О       |
| SAP30BP<br>SEC164   | 3305P_HUMAN<br>J3KNL6_HUMAN      | 3/1       | 0      | 0      | 1,9393<br>P | 2      | 2,8997 | 4 | C 22.612    | 20 | 3,2929<br>D | 3      | 0,3922      | 5      | 0        | 5       |
| SETMAR              | SETMR_HUMAN                      | 78        | Ó      | 0      | D           | 0      | 2,8997 | 4 | c           | 0  | э           | 0      | 0           | e      | 0        | D       |
| SF356<br>SGPL1      | SF3B6_HUMAN                      | 15        | 0      | 0      | 1,9393      | 2      | 2,8997 | 3 | 0<br>57 nce | 0  | 0<br>7 6954 | n<br>A | 3,5138      | 2      | 0        | 0<br>16 |
| SIN3A               | SIN3A_HUMAN                      | 145       | 0      | 5      | 2,9089      | 3      | 2,8997 | 4 | C           | 0  | 0           | D      | 0           | e      | 0        | 5       |
| SLAIN1              | H MAMUH_EZZMOACAI                | 62        | 0      | 0      | 0           | 0      | 2,8997 | 4 | 0           | 0  | D           | 0      | 2,6353      | 3      | 0        | 0       |
| SURP                | SURP HUMAN                       | 12        | 0      | 3      | 1,9393      | 6      | 2,8997 | 4 | 3,2303      | 8  | 4,3905      | 6      | 5,2707      | 6      | 9,9558   | 5       |
| SMARCE1             | B40GMB_HUMAN (+1)                | 45        | o      | э      | 0           | 0      | 2,8997 | 4 | 0           | 0  | D           | 0      | 0           | 0      | 0        | D       |
| SMCHD1<br>SPATAS    | SMHD1_HUMAN<br>SPATS_HUMAN       | 226<br>98 | 0      | 0      | p           | C<br>C | 2,8997 | 4 | 0           | 0  | 0           | 0      | 0           | 0      | 0        | 0       |
| SRSF4               | SRSF4_HUMAN                      | 57        | 0      | 9      | 1,9393      | 2      | 2,8997 | 4 | e           | õ  | 3,2929      | 2      | 7,0276      | 6      | 0        | 0       |
| STT3B               | STT36_HUMAN                      | 94        | 0      | 0      | 2,9089      | 3      | 2,8997 | 4 | 3,2303      | 3  | 5,4881      | 5      | 1,7569      | 2      | 4,9829   | 4       |
| TARS2               | TASS_HUMAN<br>STTM_HUMAN         | /9<br>81  | 0      | 0      | 0<br>D      | e<br>e | 2,8997 | 3 | C<br>5,3838 | 5  | 0           | 0      | 0           | 0      | 0        | 5       |
| TCF25               | TCF25_HUMAN                      | 77        | 0      | 0      | 1,9393      | 2      | 2,8997 | 3 | 2,1535      | 2  | 4,3905      | 4      | 8,7845      | 9      | 9,9658   | 9       |
| THUMPDS             | THUMS_HUMAN<br>TMID9_HUMAN       | 57        | 0      | 0      | 0           | 0      | 2,8997 | 4 | e<br>o      | 0  | 0 2 1052    | 0      | 0           | 0      | 0        | 0       |
| TR M25              | TRI25_HUMAN                      | 71        | 0      | 0      | 0           | é      | 2,8997 | 4 | 4,307       | 3  | 0           | 0      | 0           | 0      | 0        | 0       |
| TRMTIL              | TRM1L_HUMAN                      | 82        | 0      | 0      | 1,9393      | 2      | 2,8997 | 4 | 7,5373      | 7  | 3,2929      | 3      | 6,1491      | 6      | 2,9897   | 2       |
| TSC2<br>TUBRICP2    | TSC2_HUMAN<br>GCP2_HUMAN         | 201       | 0      | 0      | 2,9089<br>p | 2      | 2,8997 | 4 | 0           | 0  | 2,1952      | 2      | 2,6353<br>D | 3      | 0        | 0       |
| TUBGCP3             | GCP3_HUMAN                       | 164       | 0      | 5      | 0           | 0      | 2,8997 | 4 | 3,2303      | 3  | 5           | 0      | 0           | 0      | 0        | a       |
| U29URP              | E7ET15_HUMAN (+1)                | 118       | 0      | 9      | 1,9393      | 2      | 2,8997 | 4 | 0           | 0  | 3           | 0      | 0           | 0      | 0        | 0       |
| VPS13C<br>VWAS      | VPISC_HUMAN<br>VWA8_HUMAN        | 215       | 0      | 0<br>0 | 1,9393      | 2      | 2,8997 | 4 | 0           | 0  | 3           | 0      | 2,6353      | 3      | 2,9897   | 3       |
| WASHCS              | WASC5_HUMAN                      | 134       | 0      | 0      | U           | 0      | 2,8997 | 4 | e           | 0  | Э           | U      | Ð           | e      | 0        | э       |
| WASI.               | WASI_HUMAN                       | 55        | 0      | 0      | 0           | 0      | 2,8997 | 3 | 0           | 0  | 0 9,9705    | 0      | 1,7569      | 2      | 0 3 9962 | D<br>4  |
| WDR5                | WDR5_HUMAN                       | 37        | 0      | 0      | 0           | é      | 2,8997 | 4 | 5,3838      | 4  | 4,3905      | 4      | 1,7569      | 2      | 0        | D       |
| WDR92               | WDR92_HUMAN                      | 40        | 0      | 0      | 0           | 0      | 2,8997 | 4 | 0           | 0  | D           | 0      | 0           | 0      | 0        | 0       |
| XAB2<br>XBCC1       | SYF1_HUMAN<br>F5H8D7_HUMAN (+1)  | 100<br>66 | 0      | 0      | 0           | 0      | 2,8997 | 4 | C<br>C      | 0  | 2,1952      | 2      | 2,0276      | 0 8    | 0        | 0       |
| YTHDF2              | YTHD2_HUMAN                      | 62        | 0      | 0      | 0           | 0      | 2,8997 | 2 | 3,2505      | 2  | Э           | D      | 2,6353      | 2      | 3,9863   | 3       |
| YWHAC<br>ZC3H11A    | 1433C_HUMAN<br>7C11A_HUMAN       | 28        | 0      | 0      | 1,9393      | 2      | 2,8997 | 2 | 8,514       | 6  | 2,1952      | 2      | 0           | 0      | 0        | 0       |
| ZCCHCB              | ZCHC8_HUMAN                      | 79        | 0      | 9      | 0           | e      | 2,8997 | 4 | e           | 0  | 0           | D      | 0           | Č.     | 0        | 5       |
| ZNF326              | ZN326_HUMAN                      | 66        | 0      | 0      | 1,9393      | 2      | 2,8997 | 4 | 0           | 0  | 9,8786      | 9      | 8,7845      | 10     | 6,9761   | 7       |
| ZN-622<br>ZW10      | ZW622_HUMAN<br>ZW10_HUMAN        | 54<br>89  | 0      | 0      | 1,9393      | 2      | 2,8997 | 4 | e<br>e      | 0  | 3,2929      | 5      | 0           | 6      | 0        | 5       |

| ADAR                                                                                                            | DSRAD_HUMAN                                                                                                                                                       | 136                                                                    | 0                               | 9                                                                                           | 0                                                                            | 0                                              | 2,1748                                                                                                     | 3                                                                  | e                                                   | 0                                       | 9,8786                                             | 9                                         | 7,906                                                                        | 9                                                        | 6,9761                                    | 5                                                                                           |
|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------|----------------------------------------------------|-------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------|---------------------------------------------------------------------------------------------|
| AKAPS                                                                                                           | AKAPS_HUMAN                                                                                                                                                       | 76                                                                     | 0                               | D                                                                                           | 2,9089                                                                       | 2                                              | 2,1748                                                                                                     | 2                                                                  | 10,768                                              | 8                                       | 13,171                                             | 10                                        | 4,3922                                                                       | 5                                                        | 8,9592                                    | \$                                                                                          |
| ANGEL2                                                                                                          | ANGE2_HUMAN                                                                                                                                                       | 62                                                                     | 0                               | 0                                                                                           | 0                                                                            | 0                                              | 2,1748                                                                                                     | 2                                                                  | 0                                                   | 0                                       | 0                                                  | 0                                         | 1,7569                                                                       | 2                                                        | 0                                         | 0                                                                                           |
| APISZ                                                                                                           | APISZ_HOMAN                                                                                                                                                       | 19                                                                     | 0                               | 5                                                                                           | u<br>o                                                                       | 0                                              | 2,1745                                                                                                     | 3                                                                  | (207                                                | 3                                       | 3                                                  | 0                                         | 2 6353                                                                       | 2                                                        | 1 0022                                    | 2                                                                                           |
| ATP181                                                                                                          | AT181 HUMAN                                                                                                                                                       | 35                                                                     | õ                               | 0                                                                                           | 0                                                                            | e o                                            | 21748                                                                                                      | 2                                                                  | 0                                                   | ò                                       | 3                                                  | 0                                         | 2,0303                                                                       | 0                                                        | 0                                         | 2<br>D                                                                                      |
| ATPSH                                                                                                           | ATPSH_HUMAN                                                                                                                                                       | 18                                                                     | 0                               | D                                                                                           | 0                                                                            | 0                                              | 2,1748                                                                                                     | 3                                                                  | 0                                                   | 0                                       | 0                                                  | 0                                         | 0                                                                            | 0                                                        | 0                                         | D                                                                                           |
| AURKA                                                                                                           | AURKA_HUMAN                                                                                                                                                       | 46                                                                     | 0                               | D                                                                                           | 2,9089                                                                       | 3                                              | 2,1748                                                                                                     | 3                                                                  | 3,2303                                              | 3                                       | 4,3905                                             | 4                                         | 2,6353                                                                       | 2                                                        | 4,9829                                    | 5                                                                                           |
| BČKDK                                                                                                           | BCKD_HUMAN                                                                                                                                                        | 46                                                                     | 0                               | D                                                                                           | 4,8482                                                                       | 4                                              | 2,1748                                                                                                     | 3                                                                  | e                                                   | Ó                                       | 7,6834                                             | 4                                         | 3,5138                                                                       | 4                                                        | 0                                         | D                                                                                           |
| BIRCS                                                                                                           | BIRC6_HUMAN                                                                                                                                                       | 530                                                                    | 0                               | 0                                                                                           | 0                                                                            | 0                                              | 2,1748                                                                                                     | 3                                                                  | 0                                                   | 0                                       | 3                                                  | 0                                         | 0                                                                            | 0                                                        | 0                                         | 0                                                                                           |
| san2                                                                                                            | DEMOTORD WILMAN (*                                                                                                                                                | 22                                                                     | 0                               | 5                                                                                           | 0                                                                            | 0                                              | 2,1/95                                                                                                     | 2                                                                  | 0                                                   | 0                                       | 3                                                  | 0                                         | 0                                                                            | 0                                                        | 5,9795                                    | <u> </u>                                                                                    |
| BTF3L4                                                                                                          | BT3L4 HUMAN                                                                                                                                                       | 17                                                                     | 0                               | 0                                                                                           | 0                                                                            | 0                                              | 2 1748                                                                                                     | 3                                                                  | c                                                   | 0                                       | 3                                                  | 0                                         | 0                                                                            | c                                                        | 0                                         | 3                                                                                           |
| SUD23                                                                                                           | 5UD23_HUMAN                                                                                                                                                       | 32                                                                     | 0                               | D                                                                                           | 3,8786                                                                       | 4                                              | 2,1748                                                                                                     | 3                                                                  | e                                                   | õ                                       | 7,5834                                             | 4                                         | 3,5138                                                                       | 3                                                        | 0                                         | 3                                                                                           |
| C17ori75                                                                                                        | JSUCS_HUMAN (+1)                                                                                                                                                  | 45                                                                     | 0                               | D                                                                                           | 2,9089                                                                       | 3                                              | 2,1748                                                                                                     | 3                                                                  | 0                                                   | 0                                       | D                                                  | 0                                         | 1,7569                                                                       | 2                                                        | 0                                         | D                                                                                           |
| C3orf58                                                                                                         | DIA1_HUMAN                                                                                                                                                        | 49                                                                     | 0                               | D                                                                                           | 6,7875                                                                       | 7                                              | 2,1748                                                                                                     | 3                                                                  | 11,844                                              | 10                                      | 8,781                                              | 7                                         | 8,7845                                                                       | S                                                        | 12,955                                    | 12                                                                                          |
| C8ori33                                                                                                         | CH033_HUMAN                                                                                                                                                       | 25                                                                     | 0                               | 0                                                                                           | 2,9089                                                                       | 3                                              | 2,1748                                                                                                     | 3                                                                  | 2,1535                                              | 2                                       | 0                                                  | 0                                         | 4,3922                                                                       | 5                                                        | 1,9932                                    | 2                                                                                           |
| CADP52                                                                                                          | H73YR4_HUMAN                                                                                                                                                      | 103                                                                    | 0                               | 0                                                                                           | 0                                                                            | 0                                              | 2,1748                                                                                                     | 3                                                                  | 0                                                   | 0                                       | 3                                                  | 0                                         | 0                                                                            | 0                                                        | 0                                         | 0                                                                                           |
| CCDC8                                                                                                           | CCDC8_HUMAN                                                                                                                                                       | 59                                                                     | 0                               | 0                                                                                           | 6 7875                                                                       | 2                                              | 2 1748                                                                                                     | 3                                                                  | 4307                                                | 4                                       | 9,8786                                             | 9                                         | 5,2702                                                                       | 6                                                        | 3,9803                                    | â                                                                                           |
| CONK                                                                                                            | CONK HUMAN                                                                                                                                                        | 64                                                                     | 0                               | 0                                                                                           | 3,8786                                                                       | 3                                              | 2,1748                                                                                                     | 2                                                                  | 2,1535                                              | 2                                       | 2,1952                                             | 2                                         | 3,5138                                                                       | 4                                                        | 1,9932                                    | 2                                                                                           |
| CDC16                                                                                                           | CDC16_HUMAN (+1)                                                                                                                                                  | 72                                                                     | 0                               | D                                                                                           | n                                                                            | 0                                              | 2,1748                                                                                                     | 3                                                                  | 0                                                   | 0                                       | D                                                  | 0                                         | 0                                                                            | 0                                                        | 0                                         | а                                                                                           |
| CDC20                                                                                                           | CDC20_HUMAN                                                                                                                                                       | 55                                                                     | 0                               | 0                                                                                           | 0                                                                            | 0                                              | 2,1748                                                                                                     | 3                                                                  | 4,307                                               | 4                                       | 4,3905                                             | 4                                         | 0                                                                            | C                                                        | 5,9795                                    | 5                                                                                           |
| CHCHD3                                                                                                          | CSIRZS_HUMAN (+1)                                                                                                                                                 | 27                                                                     | 0                               | D                                                                                           | D                                                                            | e                                              | 2,1748                                                                                                     | 3                                                                  | 7,5373                                              | 6                                       | а                                                  | 0                                         | 1,7569                                                                       | 2                                                        | 1,9932                                    | 2                                                                                           |
| CHDS                                                                                                            | CHD8_HUMAN                                                                                                                                                        | 291                                                                    | 0                               | D                                                                                           | 4,8482                                                                       | 4                                              | 2,1748                                                                                                     | 3                                                                  | 0                                                   | 0                                       | 10,976                                             | 10                                        | 16,691                                                                       | 17                                                       | 11,959                                    | 12                                                                                          |
| CIRSP                                                                                                           | CIERP HUMAN                                                                                                                                                       | 125                                                                    | 0                               | 0                                                                                           | 2,50/05                                                                      | é.                                             | 2,1746                                                                                                     | 2                                                                  | 21535                                               | 2                                       | 3 2929                                             | 3                                         | 3,5138                                                                       | 3                                                        | 2 9897                                    | 2                                                                                           |
| CISD2                                                                                                           | CISD2 HUMAN                                                                                                                                                       | 15                                                                     | 0                               | 0                                                                                           | 0                                                                            | 0                                              | 2,1748                                                                                                     | 3                                                                  | 0                                                   | 0                                       | 3                                                  | 0                                         | 1,7569                                                                       | 2                                                        | 0                                         | 0                                                                                           |
| Ć.P1                                                                                                            | CLP1_HUMAN (+1)                                                                                                                                                   | 48                                                                     | 0                               | D                                                                                           | Ð                                                                            | 0                                              | 2,1748                                                                                                     | 2                                                                  | 0                                                   | 0                                       | D                                                  | D                                         | 0-                                                                           | 0                                                        | 0                                         | D                                                                                           |
| CNOT2                                                                                                           | CNOT2_HUMAN                                                                                                                                                       | 60                                                                     | 0                               | D                                                                                           | 0                                                                            | 0                                              | 2,1748                                                                                                     | 3                                                                  | 0                                                   | 0                                       | 0                                                  | 0                                         | 0                                                                            | 0                                                        | 0                                         | 0                                                                                           |
| CNO13                                                                                                           | CNOT3_HUMAN                                                                                                                                                       | 82                                                                     | ٥                               | 0                                                                                           | D                                                                            | o                                              | 2,1748                                                                                                     | 3                                                                  | e                                                   | ٥                                       | э                                                  | D                                         | 0                                                                            | e.                                                       | 0                                         | Э                                                                                           |
| COP53                                                                                                           | CSN3_HUMAN                                                                                                                                                        | 48                                                                     | 0                               | D                                                                                           | 0                                                                            | 0                                              | 2,1748                                                                                                     | 3                                                                  | 0                                                   | 0                                       | 0 0000                                             | 0                                         | 0                                                                            | 0                                                        | 0                                         | 0                                                                                           |
| CPSCI                                                                                                           | CPSEL HUMAN                                                                                                                                                       | 161                                                                    | 0                               | 0                                                                                           | D                                                                            | 0                                              | 2,1740                                                                                                     | 2                                                                  | 0,2505                                              | 0                                       | 8 781                                              | 8                                         | 1 2569                                                                       | 2                                                        | 2,5057                                    | 3                                                                                           |
| CRNKL1                                                                                                          | QSIY65 HUMAN                                                                                                                                                      | 99                                                                     | 0                               | 0                                                                                           | 0                                                                            | 0                                              | 2.1748                                                                                                     | 3                                                                  | õ                                                   | 0                                       | 0,101                                              | 0                                         | 4,3922                                                                       | ŝ                                                        | 0                                         | 0                                                                                           |
| CTR9                                                                                                            | CTR9_HUMAN                                                                                                                                                        | 134                                                                    | 0                               | Ð                                                                                           | 2,9089                                                                       | 2                                              | 2,1748                                                                                                     | 3                                                                  | e                                                   | 0                                       | 0                                                  | 0                                         | 6,1491                                                                       | 5                                                        | 0                                         | D                                                                                           |
| CWC22                                                                                                           | CWC22_HUMAN                                                                                                                                                       | 105                                                                    | 0                               | D                                                                                           | n                                                                            | 0                                              | 2,1748                                                                                                     | 2                                                                  | 0                                                   | 0                                       | D                                                  | 0                                         | 0                                                                            | 0                                                        | 0                                         | ۵                                                                                           |
| DBT                                                                                                             | OD52_HUMAN                                                                                                                                                        | 53                                                                     | 0                               | 0                                                                                           | 0                                                                            | 0                                              | 2,1748                                                                                                     | 3                                                                  | 0                                                   | 0                                       | 3                                                  | 0                                         | 0                                                                            | 0                                                        | 0                                         | 0                                                                                           |
| DON:00                                                                                                          | DCA-7_HUMAN                                                                                                                                                       | 39                                                                     | 0                               | 9                                                                                           | Z,9083                                                                       | 3                                              | 2,1748                                                                                                     | 3                                                                  | 45,531                                              | 13                                      | 4,3905                                             | 4                                         | 3,5138                                                                       | 4                                                        | 10,952                                    | 9                                                                                           |
| D APH2                                                                                                          | ASIMILE HUMAN (+24                                                                                                                                                | 125                                                                    | 0                               | 0                                                                                           | 0<br>p                                                                       | o<br>p                                         | 21748                                                                                                      | 3                                                                  | 0                                                   | 0                                       | 0,3857                                             | 0                                         | 7,500                                                                        | 0                                                        | 4,5829                                    | 3                                                                                           |
| DKC1                                                                                                            | DKC1_HUMAN                                                                                                                                                        | 58                                                                     | 0                               | D                                                                                           | 1,9393                                                                       | 2                                              | 2,1748                                                                                                     | 3                                                                  | õ                                                   | õ                                       | 7,6834                                             | 7                                         | 9,6629                                                                       | 5                                                        | 4,9829                                    | 5                                                                                           |
| DMXL1                                                                                                           | P5H269_HUMAN                                                                                                                                                      | 340                                                                    | 0                               | C                                                                                           | 0                                                                            | 0                                              | 2,1748                                                                                                     | 3                                                                  | 0                                                   | 0                                       | Э                                                  | 0                                         | 0                                                                            | C                                                        | 0                                         | э                                                                                           |
| DNAI512                                                                                                         | DJ512_HUMAN (+1)                                                                                                                                                  | 42                                                                     | 0                               | D                                                                                           | 2,9089                                                                       | 3                                              | 2,1748                                                                                                     | 3                                                                  | 3,2303                                              | 3                                       | 4,3905                                             | 4                                         | 2,6353                                                                       | 3                                                        | 2,9897                                    | 3                                                                                           |
| DNAJC3                                                                                                          | DNJC3_HUMAN                                                                                                                                                       | 58                                                                     | 0                               | 0                                                                                           | 0                                                                            | 0                                              | 2,1748                                                                                                     | 3                                                                  | 0                                                   | 0                                       | 0                                                  | 0                                         | 0                                                                            | 0                                                        | 0                                         | 0                                                                                           |
| DYLL                                                                                                            | DTL_HUMAN (+1)                                                                                                                                                    | 79                                                                     | 0                               | 9                                                                                           | 0                                                                            | 0                                              | 2,1748                                                                                                     | 3                                                                  | 6,4505                                              |                                         | 2,1952                                             | 2                                         | 3,5138                                                                       | 4                                                        | 0                                         | 3                                                                                           |
| DYNC2H1                                                                                                         | DYHC2 HUMAN                                                                                                                                                       | 493                                                                    | 0                               | 0                                                                                           | 0                                                                            | 0                                              | 2 1748                                                                                                     |                                                                    | 0                                                   | 0                                       | 3                                                  | 0                                         | D                                                                            | 0                                                        | 0                                         | 0                                                                                           |
| EAPP                                                                                                            | EAPP_HUMAN (+1)                                                                                                                                                   | 33                                                                     | 0                               | D                                                                                           | 1,9393                                                                       | 2                                              | 2,1748                                                                                                     | 2                                                                  | e                                                   | 0                                       | 0                                                  | D                                         | 3,5138                                                                       | 3                                                        | 0                                         | 0                                                                                           |
| EEF1E1                                                                                                          | HOYAL7_HUMAN                                                                                                                                                      | 15                                                                     | 0                               | D                                                                                           | 0                                                                            | 0                                              | 2,1748                                                                                                     | 3                                                                  | 0                                                   | 0                                       | Э                                                  | 0                                         | 0                                                                            | 0                                                        | 0                                         | D                                                                                           |
| EHD1                                                                                                            | ADA024R571_HUMAN                                                                                                                                                  | 62                                                                     | 0                               | D                                                                                           | D                                                                            | e                                              | 2,1748                                                                                                     | 2                                                                  | e                                                   | 0                                       | э                                                  | D                                         | Ð                                                                            | e                                                        | 0                                         | D                                                                                           |
| EIF2AK2                                                                                                         | E2AK2_HUMAN                                                                                                                                                       | 62                                                                     | 0                               | D                                                                                           | 0                                                                            | 0                                              | 2,1748                                                                                                     | 3                                                                  | 0                                                   | 0                                       | 0                                                  | 0                                         | 1,7569                                                                       | 2                                                        | 0                                         | 0                                                                                           |
| EIF255                                                                                                          | EIZEG_HUMAN                                                                                                                                                       | 50                                                                     | 0                               | 0                                                                                           | 0                                                                            | 0                                              | 2,1/48                                                                                                     | 3                                                                  | 2 1525                                              | 2                                       | 3 2020                                             | 2                                         | 7,0276                                                                       | 8                                                        | 1,9932                                    | 2                                                                                           |
| FU                                                                                                              | FLL HUMAN                                                                                                                                                         | 68                                                                     | 0                               | 0                                                                                           | 0                                                                            | 0                                              | 2 1748                                                                                                     | 3                                                                  | 0                                                   | 0                                       | 3,2929                                             | 0                                         | 0                                                                            | 0                                                        | 0                                         | 0                                                                                           |
| ELP4                                                                                                            | ELPI_HUMAN                                                                                                                                                        | 47                                                                     | 0                               | D                                                                                           | Ð                                                                            | e                                              | 2,1748                                                                                                     | 3                                                                  | e                                                   | 0                                       | 3                                                  | D                                         | e                                                                            | e                                                        | 0                                         | D                                                                                           |
| EMC10                                                                                                           | EMCID_HUMAN (+1)                                                                                                                                                  | 27                                                                     | 0                               | D                                                                                           | 0                                                                            | 0                                              | 2,1748                                                                                                     | 2                                                                  | 0                                                   | 0                                       | D                                                  | 0                                         | 0                                                                            | 0                                                        | 0                                         | D                                                                                           |
| EMC4                                                                                                            | EMC4_HUMAN                                                                                                                                                        | 20                                                                     | 0                               | 0                                                                                           | 0                                                                            | 0                                              | 2,1748                                                                                                     | 2                                                                  | 0                                                   | 0                                       | Э                                                  | 0                                         | 0                                                                            | 0                                                        | 0                                         | D                                                                                           |
| EP300                                                                                                           | EP300_HUMAN                                                                                                                                                       | 264                                                                    | 0                               | D                                                                                           | 1,9393                                                                       | 2                                              | 2,1748                                                                                                     | 3                                                                  | 0                                                   | 0                                       | 3                                                  | 0                                         | 3,5138                                                                       | 3                                                        | 0                                         | 2                                                                                           |
| EXCC2                                                                                                           | ABMR/5_HUMAN (+2)                                                                                                                                                 | 81                                                                     | 0                               | 0                                                                                           | 0                                                                            | 0                                              | 2,1748                                                                                                     | 3                                                                  | 2,1535                                              | 2                                       | 0                                                  | 0                                         | 1,7565                                                                       | 2                                                        | 0                                         | 0                                                                                           |
| EXOSC8                                                                                                          | EXOS8 HUMAN                                                                                                                                                       | 30                                                                     | 0                               | 0                                                                                           | D                                                                            | e                                              | 2 1748                                                                                                     | 3                                                                  | 3 2303                                              | 3                                       | 3,2929                                             | 3                                         | 2 6353                                                                       | 3                                                        | 0                                         | 3                                                                                           |
| FASTKD2                                                                                                         | FAKD2_HUMAN                                                                                                                                                       | 81                                                                     | õ                               | 0                                                                                           | 0                                                                            | 0                                              | 2,1748                                                                                                     | 3                                                                  | 3,2303                                              | 3                                       | 0                                                  | 0                                         | 0                                                                            | 0                                                        | 0                                         | 0                                                                                           |
| FKBP15                                                                                                          | ADADMTED_HUMAN (                                                                                                                                                  | 136                                                                    | 0                               | Э                                                                                           | 0                                                                            | 0                                              | 2,1748                                                                                                     | 3                                                                  | 0                                                   | 0                                       | Э                                                  | 0                                         | 0                                                                            | 0                                                        | 0                                         | Э                                                                                           |
| FK6P3                                                                                                           | FKBP3_HUMAN                                                                                                                                                       | 25                                                                     | 0                               | D                                                                                           | D                                                                            | 0                                              | 2,1748                                                                                                     | 3                                                                  | 0                                                   | 0                                       | D                                                  | D                                         | 0-                                                                           | 0                                                        | 0                                         | D                                                                                           |
| FNDC3A                                                                                                          | FNDBA_HUMAN                                                                                                                                                       | 132                                                                    | 0                               | 0                                                                                           | 0                                                                            | 0                                              | 2,1748                                                                                                     | 3                                                                  | 0                                                   | 0                                       | 0                                                  | 0                                         | 0                                                                            | 0                                                        | 0                                         | 0                                                                                           |
| GADD(SG P1                                                                                                      | GISIP_HUMAN                                                                                                                                                       | 25                                                                     | 0                               | 0                                                                                           | 0                                                                            | 0                                              | 2,1748                                                                                                     | 3                                                                  | 0                                                   | 0                                       | 3,2929                                             | 3                                         | 2,6353                                                                       | 3                                                        | 0                                         | 3                                                                                           |
| GEMIN4                                                                                                          | GEMI4_HUMAN (+1)                                                                                                                                                  | 120                                                                    | 0                               | 0                                                                                           | 0                                                                            | 0                                              | 2 1748                                                                                                     | 3                                                                  | 21555                                               | 2                                       | 3                                                  | 0                                         | 1 7569                                                                       | 2                                                        | 0                                         | 3                                                                                           |
| GN13                                                                                                            | GNL3 HUMAN                                                                                                                                                        | 62                                                                     | 0                               | 0                                                                                           | D                                                                            | 0                                              | 2,1748                                                                                                     | 3                                                                  | 18,305                                              | 11                                      | 6,5857                                             | 6                                         | 8,7845                                                                       | 7                                                        | 4,9829                                    | 5                                                                                           |
| GPATC H11                                                                                                       | MADAOMSE9_HUMAN (+                                                                                                                                                | 33                                                                     | 0                               | D                                                                                           | 0                                                                            | 0                                              | 2,1748                                                                                                     | 2                                                                  | 0                                                   | 0                                       | Э                                                  | 0                                         | 0                                                                            | 0                                                        | 0                                         | Э                                                                                           |
| GRAMDIA                                                                                                         | GRM1A_HUMAN (+1)                                                                                                                                                  | 81                                                                     | 0                               | D                                                                                           | Ð                                                                            | 0-                                             | 2,1748                                                                                                     | 3                                                                  | e                                                   | 0                                       | Э                                                  | D                                         | 0-                                                                           | e                                                        | 0                                         | Э                                                                                           |
| GTF2E2                                                                                                          | T2EB_HUMAN                                                                                                                                                        | 33                                                                     | 0                               | D                                                                                           | 3,8786                                                                       | 4                                              | 2,1748                                                                                                     | 3                                                                  | 0                                                   | 0                                       | 2,1952                                             | 2                                         | 2,6353                                                                       | 3                                                        | 0                                         | 0                                                                                           |
| GTERRING                                                                                                        | T2H2L_HUMAN                                                                                                                                                       | 44                                                                     | 0                               | 9                                                                                           | 0 7975                                                                       | 0                                              | 2,1/48                                                                                                     | 3                                                                  | 6,4605                                              | 6                                       | 2,1952                                             | 2                                         | 1,7569                                                                       | 2                                                        | 0                                         | 3                                                                                           |
| HABP4                                                                                                           | HABPA HUMAN                                                                                                                                                       | 46                                                                     | 0                               | 0                                                                                           | 1,9393                                                                       | 2                                              | 2,1748                                                                                                     | 3                                                                  | 0                                                   | 0                                       | 4,3905                                             | 4                                         | 0                                                                            | 0                                                        | 0                                         | 3                                                                                           |
| HAUSS                                                                                                           | HAUSS HUMAN                                                                                                                                                       | 72                                                                     | 0                               | 0                                                                                           | 0                                                                            | ē                                              | 2,1748                                                                                                     | 3                                                                  | 2,1535                                              | 2                                       | 3                                                  | D                                         | D D                                                                          | e                                                        | 0                                         | 0                                                                                           |
| HAUS6                                                                                                           | HAUS6_HUMAN (+1)                                                                                                                                                  | 109                                                                    | 0                               | D                                                                                           | 0                                                                            | 0                                              | 2,1748                                                                                                     | 3                                                                  | 0                                                   | 0                                       | D                                                  | 0                                         | 0                                                                            | 0                                                        | 0                                         | Э                                                                                           |
| HBB                                                                                                             | HBB_HUMAN (+2)                                                                                                                                                    | 16                                                                     | 0                               | 9                                                                                           | 5,8178                                                                       | 4                                              | 2,1748                                                                                                     | 3                                                                  | 2,1555                                              | 2                                       | Э                                                  | 0                                         | 0                                                                            | 0                                                        | 0                                         | Э                                                                                           |
| hCG_1984214                                                                                                     | I3LDE3_HUMAN                                                                                                                                                      | 26                                                                     | 0                               | D                                                                                           | 2,9089                                                                       | 3                                              | 2,1748                                                                                                     | 3                                                                  | 0                                                   | 0                                       | D                                                  | D                                         | 2,6353                                                                       | 3                                                        | 0                                         | D                                                                                           |
| HIKIPS<br>HOMERI                                                                                                | HIRPS_HUMAN<br>HOMEL HUMAN                                                                                                                                        | 62                                                                     | ő                               | 0                                                                                           | 5 8178                                                                       | 5                                              | 2,1748                                                                                                     | 2                                                                  | 0                                                   | 0                                       | 5                                                  | 0                                         | 5,5138                                                                       | 4                                                        | 0                                         | 0                                                                                           |
| HSPA4                                                                                                           | HSP74_HUMAN                                                                                                                                                       | 94                                                                     | 0                               | D                                                                                           | 0                                                                            | ő                                              | 2,1749                                                                                                     | 2                                                                  | 18,305                                              | 12                                      | 5                                                  | 0                                         | 0                                                                            | 0                                                        | 1,9932                                    | 2                                                                                           |
| INF2                                                                                                            | INF2_HUMAN                                                                                                                                                        | 136                                                                    | 0                               | D                                                                                           | 1,9393                                                                       | 2                                              | 2,1748                                                                                                     | 3                                                                  | e                                                   | 0                                       | D                                                  | 0                                         | 0                                                                            | e                                                        | 0                                         | C                                                                                           |
| IMIDS                                                                                                           | K7EIUS_HUMAN                                                                                                                                                      | 45                                                                     | 0                               | D                                                                                           | D                                                                            | 0                                              | 2,1748                                                                                                     | 3                                                                  | Q                                                   | Ô                                       | D                                                  | 0                                         | 1,7569                                                                       | 2                                                        | 0                                         | а                                                                                           |
| KIF33                                                                                                           | KIF3B HUMAN                                                                                                                                                       | 85                                                                     | 0                               | 0                                                                                           | 0                                                                            | 0                                              | 2,1748                                                                                                     | 3                                                                  | 3,2303                                              | 2                                       | 0                                                  | 0                                         | 0                                                                            | 0                                                        | 0                                         | 0                                                                                           |
| KUP16<br>KPMA2                                                                                                  | MAA HUMAN                                                                                                                                                         | 25<br>50                                                               | 0                               | 0                                                                                           | 0                                                                            | 0                                              | 2,1748                                                                                                     | 2                                                                  | 0                                                   | 0                                       | 5                                                  | 0                                         | 0                                                                            | 0                                                        | 0                                         | 0                                                                                           |
| KU1                                                                                                             | KRI1 HUMAN                                                                                                                                                        | 83                                                                     | 0                               | 0                                                                                           | 1,9393                                                                       | 2                                              | 2,1748                                                                                                     | 3                                                                  | 0                                                   | 0                                       | 3,2929                                             | 3                                         | 2,6353                                                                       | 3                                                        | 1,9932                                    | 2                                                                                           |
| LACRT                                                                                                           | LACRT_HUMAN                                                                                                                                                       | 14                                                                     | ۵                               | D                                                                                           | 1,9393                                                                       | 2                                              | 2,1748                                                                                                     | 2                                                                  | 0                                                   | 0                                       | Э                                                  | D                                         | 0                                                                            | 0                                                        | 0                                         | a                                                                                           |
| LIN7C                                                                                                           | G3V1D4 HUMAN (+1)                                                                                                                                                 | 19                                                                     | 0                               | D                                                                                           | 0                                                                            | 0-                                             | 2,1748                                                                                                     | 3                                                                  | e                                                   | 0                                       | 0                                                  | 0                                         | 0                                                                            | 0-                                                       | 0                                         | 0                                                                                           |
| LMT2                                                                                                            | LMIZ_HUMAN                                                                                                                                                        | 80                                                                     | 0                               | 0                                                                                           | 0                                                                            | 0                                              | 2,1748                                                                                                     | 3                                                                  | 2,1535                                              | 2                                       | 2,1952                                             | 2                                         | 0                                                                            | 0                                                        | 0                                         | 0                                                                                           |
| LSM12                                                                                                           | LISM12 HUMAN                                                                                                                                                      | 22                                                                     | 0                               | 0                                                                                           | 0<br>p                                                                       | 0<br>p                                         | 2,1748                                                                                                     | 3                                                                  | 0                                                   | 0                                       | 3                                                  | 0                                         | 1,7569<br>B                                                                  | 2                                                        | 1,9952                                    | 2                                                                                           |
| LUC7L3                                                                                                          | I3KPP4_HUMAN (+1)                                                                                                                                                 | 58                                                                     | õ                               | 0                                                                                           | 0                                                                            | ē.                                             | 2,1748                                                                                                     | 2                                                                  | ē.                                                  | õ                                       | 8,781                                              | 6                                         | 2,6353                                                                       | 2                                                        | 3,9853                                    | 4                                                                                           |
| MACF1                                                                                                           | MACF1_HUMAN                                                                                                                                                       | 838                                                                    | 0                               | о                                                                                           | 0                                                                            | 0                                              | 2,1748                                                                                                     | 3                                                                  | 0                                                   | 0                                       | D                                                  | 0                                         | 5,2707                                                                       | 6                                                        | 3,9863                                    | 4                                                                                           |
| MCM2                                                                                                            | MCM2_HUMAN                                                                                                                                                        | 102                                                                    | 0                               | D                                                                                           | Ð                                                                            | e                                              | 2,1748                                                                                                     | 3                                                                  | e                                                   | 0                                       | D                                                  | D                                         | 0                                                                            | 0                                                        | 0                                         | D                                                                                           |
| ME2                                                                                                             | A1W2PPH1_HUMAN (                                                                                                                                                  | 61                                                                     | 0                               | 0                                                                                           | 0                                                                            | 0                                              | 2,1748                                                                                                     | 3                                                                  | 0                                                   | 0                                       | 0                                                  | 0                                         | 0                                                                            | 0                                                        | 0                                         | 0                                                                                           |
| METTI 2                                                                                                         | MTA70 HUMAN                                                                                                                                                       | 51<br>64                                                               | 0                               | 0                                                                                           | 1,9393                                                                       | 2                                              | 2,1748                                                                                                     | 2                                                                  | 0                                                   | 0                                       | 3                                                  | 0                                         | 2,0353                                                                       | 2                                                        | 0<br>0                                    | 3                                                                                           |
| MICU2                                                                                                           | MICU2 HUMAN                                                                                                                                                       | 50                                                                     | 0                               | 0                                                                                           | 3,8786                                                                       | 4                                              | 2.1748                                                                                                     | 3                                                                  | 0                                                   | 0                                       | 9,8786                                             | 7.                                        | 4,3922                                                                       | 5                                                        | 0                                         | 0                                                                                           |
| MILPL18                                                                                                         | RM18_HUMAN                                                                                                                                                        | 21                                                                     | 0                               | D                                                                                           | D                                                                            | e                                              | 2,1748                                                                                                     | 3                                                                  | e                                                   | 0                                       | 2,1952                                             | 2                                         | 0                                                                            | C                                                        | 0                                         | D                                                                                           |
| MRP.4                                                                                                           | K7E561_HUMAN (+1)                                                                                                                                                 | 34                                                                     | 0                               | 0                                                                                           | 0                                                                            | 0                                              | 2,1748                                                                                                     | 2                                                                  | 0                                                   | 0                                       | 4,3905                                             | 4                                         | 1,7569                                                                       | 2                                                        | 0                                         | Э                                                                                           |
| MBPL47                                                                                                          | 8M47_HUMAN                                                                                                                                                        | 29                                                                     | 0                               | 0                                                                                           | 1,9393                                                                       | 2                                              | 2,1748                                                                                                     | 3                                                                  | e                                                   | 0                                       | 4,3905                                             | 3                                         | 0                                                                            | 0                                                        | 1,9932                                    | 2                                                                                           |
| MRPL48                                                                                                          | 2T25 HUMAN (+1)                                                                                                                                                   | 13                                                                     | 0                               | 0                                                                                           | 1,9393                                                                       | 2                                              | 2,1748                                                                                                     | 3                                                                  | 21656                                               | 0                                       | 2,1952                                             | 2                                         | 3,5138                                                                       | 3                                                        | 1,9932                                    | 2                                                                                           |
| MRPS31                                                                                                          | TT31 HUMAN                                                                                                                                                        | 45                                                                     | 0                               | p                                                                                           | 11,636                                                                       | 8                                              | 2,1748                                                                                                     | 3                                                                  | 2,1535                                              | 2                                       | 8,781                                              | 6                                         | 4,3922                                                                       | 5                                                        | 0                                         | 0                                                                                           |
| MRPS34                                                                                                          | CSU19_HUMAN                                                                                                                                                       | 26                                                                     | 0                               | 5                                                                                           | 11,636                                                                       | 6                                              | 2,1748                                                                                                     | 2                                                                  | 0                                                   | Ó                                       | 7,6834                                             | 4                                         | 3,5138                                                                       | 4                                                        | 1,9932                                    | 2                                                                                           |
| MEPS7                                                                                                           | J3QLS3_HUMAN (+1)                                                                                                                                                 | 32                                                                     | 0                               | D                                                                                           | 12,605                                                                       | 9                                              | 2,1748                                                                                                     | 3                                                                  | 4,307                                               | 3                                       | 10,976                                             | 1                                         | 5,2707                                                                       | 4                                                        | 5,9795                                    | 6                                                                                           |
| MTIF2                                                                                                           | F2M_HUMAN                                                                                                                                                         | 81                                                                     | 0                               | a                                                                                           | D                                                                            | 0                                              | 2,1748                                                                                                     | 2                                                                  | 0                                                   | 0                                       | D                                                  | 0                                         | 0                                                                            | 0                                                        | 0                                         | a                                                                                           |
| MTOR                                                                                                            | MTOR_HUMAN                                                                                                                                                        | 289                                                                    | 0                               | 0                                                                                           | 0                                                                            | 0                                              | 2,1748                                                                                                     | 3                                                                  | 0                                                   | 0                                       | 3                                                  | 0                                         | 0                                                                            | 0                                                        | 0                                         | 3                                                                                           |
| MYLS                                                                                                            | B72S24_HUMAN                                                                                                                                                      | 27                                                                     | 0                               | 0                                                                                           | 0                                                                            | 0                                              | 2,1748                                                                                                     | 3                                                                  | 2,1535                                              | 2                                       | 3                                                  | 0                                         | 0                                                                            | 0                                                        | 0                                         | 0                                                                                           |
| NCSP2<br>NCUSA12                                                                                                | NUB"Z_HUMAN                                                                                                                                                       | 18                                                                     | 0                               | 0                                                                                           | 0                                                                            | 0                                              | 2,1748                                                                                                     | 3                                                                  | 0<br>0                                              | 0                                       | 0                                                  | 0                                         | 0                                                                            | 0                                                        | 0                                         | 0                                                                                           |
|                                                                                                                 | B4DEZS HUMAN I-91                                                                                                                                                 |                                                                        | ő                               | 0                                                                                           | 0                                                                            | 0                                              | 2,1748                                                                                                     | 3                                                                  | 0                                                   | ő                                       | 5                                                  | 0                                         | 0                                                                            | 0                                                        | 0                                         | 5                                                                                           |
| NDUF54                                                                                                          | B4DE25_HUMAN (+3)<br>NDUS4_HUMAN                                                                                                                                  | 20                                                                     |                                 |                                                                                             |                                                                              | 0                                              | 2,1748                                                                                                     | 3                                                                  | 0                                                   | 0                                       | 3                                                  | 0                                         | 0                                                                            |                                                          |                                           |                                                                                             |
| NDUF54<br>NEDD1                                                                                                 | B4DE25_HUMAN (+3)<br>NDU54_HUMAN<br>NEDD1_HUMAN                                                                                                                   | 20<br>72                                                               | 0                               | О                                                                                           | U                                                                            |                                                | 100000000000000000000000000000000000000                                                                    |                                                                    | 1.20                                                | 21.0                                    | 20030-00                                           | · · ·                                     | 10000000                                                                     | 0                                                        | 0                                         | Э                                                                                           |
| NDUFS4<br>NEDD1<br>NIFK                                                                                         | B4DE25_HUMAN (+3)<br>NDUS4_HUMAN<br>NEDD1_HUMAN<br>MKS7I_HUMAN                                                                                                    | 20<br>72<br>34                                                         | 0                               | 0                                                                                           | 2,9089                                                                       | 3                                              | 2,1748                                                                                                     | 3                                                                  | e                                                   | 0                                       | 8,781                                              | 5                                         | 7,0276                                                                       | 7                                                        | 0                                         | 0<br>0                                                                                      |
| NDUF54<br>NEDD1<br>NIFK<br>NOP2                                                                                 | B4DE23_HUMAN (+3)<br>NDUS4_HUMAN<br>NEDD1_HUMAN<br>MKS71_HUMAN<br>NOP2_HUMAN                                                                                      | 20<br>72<br>34<br>89                                                   | 0000                            | 0<br>0<br>0                                                                                 | 2,9089<br>0                                                                  | 3                                              | 2,1748                                                                                                     | 3                                                                  | C<br>13,998                                         | 9                                       | 8,781<br>D                                         | 5                                         | 7,0276<br>1,7569                                                             | 7 2                                                      | 000                                       | 0<br>0<br>0                                                                                 |
| NDUF54<br>NEDD1<br>NIFX<br>NOP2<br>NF3C1<br>NSU54                                                               | B4DE25_HUMAN (+3)<br>NDU54_HUMAN<br>NEDD1_HUMAN<br>MK57I_HUMAN<br>NOP2_HUMAN<br>GCR_HUMAN<br>NSUMA HUMAN                                                          | 20<br>72<br>34<br>89<br>86<br>63                                       | 0000                            | 0<br>0<br>0<br>0                                                                            | 0<br>2,9089<br>0<br>0<br>1,9263                                              | 3<br>0<br>0                                    | 2,1748<br>2,1748<br>2,1748<br>2,1748                                                                       | 3<br>3<br>3                                                        | C<br>13,998<br>C                                    | 0<br>9<br>0                             | 8,781<br>0<br>0<br>4,3905                          | 5 0                                       | 7,0276<br>1,7569<br>0<br>2,6353                                              | 2 0 3                                                    | 00000                                     | 0<br>0<br>0<br>0                                                                            |
| NDUF54<br>NEDD1<br>NIFK<br>NOP2<br>NE3C1<br>NSUN4<br>NT5C2                                                      | B4DE23_HUMAN (+3)<br>NDU54_HUMAN<br>NEDD1_HUMAN<br>MK57_HUMAN<br>NOP2_HUMAN<br>GCR_HUMAN<br>NSUN4_HUMAN<br>SNIT_HUMAN                                             | 20<br>72<br>34<br>89<br>86<br>43<br>65                                 | 0 0 0 0 0                       | 0<br>0<br>0<br>0<br>0                                                                       | 0<br>2,9089<br>0<br>0<br>1,9393<br>0                                         | 3<br>0<br>2<br>2<br>0                          | 2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748                                                   | 3<br>3<br>3<br>2                                                   | C<br>13,998<br>C<br>C<br>C                          | 0<br>0<br>0                             | 8,781<br>D<br>0<br>4,3905<br>D                     | 5<br>0<br>4<br>0                          | 7,0276<br>1,7569<br>0<br>2,6353<br>2,6353                                    | 7<br>2<br>0<br>3<br>3                                    | 000000                                    | 0<br>0<br>0<br>0<br>0<br>0                                                                  |
| NDUF54<br>NEDD1<br>NIFK<br>NOP2<br>NR3C1<br>NSUN4<br>NT5C2<br>NUB1                                              | B4DE25_HUMAN (+3)<br>NDUSE_HUMAN<br>NED5_HUMAN<br>MKS7_HUMAN<br>NOP2_HUMAN<br>SCR_HUMAN<br>SNTC_HUMAN<br>SNTC_HUMAN<br>H3BMT4_HUMAN                               | 20<br>72<br>34<br>89<br>86<br>43<br>65<br>72                           | 0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0                                                             | 0<br>2,9089<br>0<br>0<br>1,9393<br>0<br>0                                    | 3<br>0<br>2<br>0<br>0                          | 2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748                                         | 3<br>3<br>3<br>2<br>3                                              | C<br>13,998<br>C<br>C<br>C<br>C                     | 0 9 0 0<br>0 0 0                        | 8,781<br>D<br>0<br>4,3905<br>D<br>0<br>D           | 5<br>0<br>2<br>4<br>0<br>0                | 2,0276<br>1,7569<br>0<br>2,6353<br>2,6353<br>0                               | 7<br>2<br>3<br>3<br>0                                    | 000000                                    | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                        |
| NDUF54<br>NEDD1<br>NIFK<br>NOP2<br>NESC1<br>NSUN4<br>NTSC2<br>NUB1<br>NUMB                                      | B4DE23_HUMAN (+3)<br>NDUSE_HUMAN<br>NED3_HUMAN<br>MKS7_HUMAN<br>NOP2_HUMAN<br>SCR_HUMAN<br>SNTC_HUMAN<br>SNTC_HUMAN<br>NUMB_HUMAN                                 | 20<br>72<br>34<br>89<br>86<br>43<br>65<br>72<br>71                     | 0 0 0 0 0 0 0                   | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                        | 0<br>2,9089<br>0<br>0<br>1,9393<br>0<br>0<br>0<br>0<br>3,8786                | 3<br>0<br>2<br>0<br>0<br>4                     | 2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748                               | 3<br>3<br>3<br>2<br>3<br>3                                         | 0<br>13,998<br>0<br>0<br>0<br>0<br>2,1535           | 0<br>9<br>0<br>0<br>0<br>0<br>0<br>2    | 8,781<br>D<br>4,3905<br>D<br>D<br>7,6834           | 5<br>0<br>4<br>0<br>5<br>6                | 7,0276<br>1,7569<br>0<br>2,6353<br>2,6353<br>0<br>4,3922                     | 7<br>2<br>3<br>3<br>5                                    | 0000000                                   | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 |
| NDUF54<br>NEDD1<br>NFK<br>NOP2<br>NE3C1<br>NSUN4<br>NT5C2<br>NUB1<br>NUMB<br>NUMB                               | BHDE25_HUMAN H31<br>NDU55_HUMAN<br>NEDD1 HUMAN<br>MK57_HUMAN<br>NDP2_HUMAN<br>NCR_HUMAN<br>SNTC_HUMAN<br>SNTC_HUMAN<br>NUME_HUMAN<br>NUME_HUMAN<br>NUME_HUMAN     | 20<br>72<br>34<br>89<br>86<br>43<br>65<br>72<br>71<br>214              | 000000000                       | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>2,9089<br>0<br>0<br>1,9393<br>0<br>0<br>3,8786<br>0                     | 3<br>0<br>2<br>0<br>4<br>0                     | 2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748           | 3<br>3<br>3<br>2<br>3<br>3<br>3<br>3                               | 0<br>13,998<br>0<br>0<br>0<br>2,1535<br>0           | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 8,781<br>D<br>0<br>4,3905<br>D<br>7,6834<br>D      | 5<br>0<br>0<br>4<br>0<br>6<br>0<br>0      | 7,0276<br>1,7569<br>0<br>2,6353<br>2,6353<br>0<br>4,3522<br>0                | 0720330507                                               |                                           |                                                                                             |
| NDUFS4<br>NEDD1<br>NIFK<br>NOP2<br>NESC1<br>NSUN4<br>NTSC2<br>NUB1<br>NU/MB<br>NU/MB<br>NU/MB<br>NU/MB<br>NU/MB | B41252, HUMAN (43)<br>NDUSA_HUMAN<br>NEDD1_HUMAN<br>NS72_HUMAN<br>NS72_HUMAN<br>SSTC_HUMAN<br>SSTC_HUMAN<br>NUB_HUMAN<br>NU2X4_HUMAN<br>ORC2_HUMAN<br>OSEJS HUMAN | 20<br>72<br>34<br>89<br>86<br>43<br>65<br>72<br>71<br>214<br>66<br>101 |                                 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                    | 0<br>2,9089<br>0<br>0<br>1,9393<br>0<br>0<br>0<br>3,8786<br>0<br>1,9393<br>0 | 3<br>0<br>2<br>0<br>0<br>4<br>0<br>2<br>0<br>2 | 2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748 | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 | 0<br>13,998<br>0<br>0<br>0<br>2,1585<br>0<br>0<br>0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 8,781<br>0<br>4,3905<br>0<br>7,6834<br>0<br>0<br>0 | 5<br>0<br>4<br>0<br>6<br>0<br>0<br>0<br>0 | 7,0276<br>1,7569<br>0<br>2,6353<br>2,6353<br>0<br>4,3922<br>0<br>1,7569<br>0 | 0<br>7<br>2<br>0<br>3<br>0<br>5<br>0<br>2<br>0<br>2<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>1,9932<br>0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                       |

| PAWR<br>PCF11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | rear and the most of real                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                       |                                                                                                    | U                                                                                                                                                                                                                                  | 0                                                                                                | 2,1748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                                                         | e                                                                                                          | 0                                                                                | Э                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                   | 0                                                                                                                    | e                                                                                                | 0                                                                                           | 3                                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| PCF11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PAWR_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | D                                       | D                                                                                                  | Ω                                                                                                                                                                                                                                  | 0                                                                                                | 2,1748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                                                         | D                                                                                                          | 0                                                                                | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | D                                                                                                                                                                   | 0                                                                                                                    | 0                                                                                                | 0                                                                                           | D                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PCF11_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 173                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                       | 0                                                                                                  | 0                                                                                                                                                                                                                                  | 0                                                                                                | 2,1748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                                                         | 0                                                                                                          | 0                                                                                | 2,1952                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                                                                                                                                                                   | 6,1491                                                                                                               | 7                                                                                                | 0                                                                                           | 0                                                                                                |
| PDCD11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PDIA3 HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                       | 0                                                                                                  | 0                                                                                                                                                                                                                                  | 0                                                                                                | 2,1748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                                                         | 20,058                                                                                                     | 15                                                                               | 2,1952                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                                                                                                                                                                   | 2,6353                                                                                                               | 3                                                                                                | 0                                                                                           | 0                                                                                                |
| PEX113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PA116 HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                       | 5                                                                                                  | 0                                                                                                                                                                                                                                  | e                                                                                                | 2,1748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                                                         | 4,307                                                                                                      | 3                                                                                | 4,3905                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4                                                                                                                                                                   | 2,6353                                                                                                               | 3                                                                                                | 2,9897                                                                                      | 3                                                                                                |
| PGD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6PGD_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                       | D                                                                                                  | 1,9393                                                                                                                                                                                                                             | 2                                                                                                | 2,1748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                                                         | 0                                                                                                          | 0                                                                                | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                   | 0                                                                                                                    | 0                                                                                                | 0                                                                                           | D                                                                                                |
| PHKG2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | JSKNN3_HUMAN (=1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                       | D                                                                                                  | 0                                                                                                                                                                                                                                  | 0                                                                                                | 2,1748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                                                         | 7,5373                                                                                                     | 6                                                                                | Э                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                   | 0                                                                                                                    | 0                                                                                                | 0                                                                                           | Э                                                                                                |
| PIBF1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SAD87WUIS_HUMAN (+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                       | 0                                                                                                  | D                                                                                                                                                                                                                                  | 0                                                                                                | 2,1748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                                                         | e                                                                                                          | 0                                                                                | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | D                                                                                                                                                                   | D.                                                                                                                   | e                                                                                                | 0                                                                                           | 0                                                                                                |
| PIHIDI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PIND1_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                       | 0                                                                                                  | 0                                                                                                                                                                                                                                  | 0                                                                                                | 2,1749                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                                                         | 0                                                                                                          | 0                                                                                | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                   | 0                                                                                                                    | 0                                                                                                | 0                                                                                           | 0                                                                                                |
| PIPSKIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ASPW57 HUMAN (+1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                       | 0                                                                                                  | 4,8482                                                                                                                                                                                                                             | 4                                                                                                | 2,1748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                                                         | 5,3838                                                                                                     | 4                                                                                | 19,757                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15                                                                                                                                                                  | 7,906                                                                                                                | a                                                                                                | 5,9795                                                                                      | 5                                                                                                |
| PLK1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PLK1_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                       | D                                                                                                  | 0                                                                                                                                                                                                                                  | 0                                                                                                | 2,1748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                                                         | 17,228                                                                                                     | 11                                                                               | Э                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                   | 1,7569                                                                                                               | 2                                                                                                | 27,904                                                                                      | 17                                                                                               |
| PLRC1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PURG1_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                       | Ð                                                                                                  | D                                                                                                                                                                                                                                  | 0                                                                                                | 2,1748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                                                         | 4,307                                                                                                      | 4                                                                                | Э                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                   | 5,2707                                                                                                               | 5                                                                                                | 0                                                                                           | Э                                                                                                |
| POLD3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DPOD3_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                       | D                                                                                                  | 0                                                                                                                                                                                                                                  | 0                                                                                                | 2,1749                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                                                         | 0                                                                                                          | 0                                                                                | 4,3905                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4                                                                                                                                                                   | 7,906                                                                                                                | 9                                                                                                | 0                                                                                           | D                                                                                                |
| POLD P3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PDIP3_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                       | 0                                                                                                  | 4,8482                                                                                                                                                                                                                             | 4                                                                                                | 2,1748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2                                                                         | 0                                                                                                          | 0                                                                                | 25,343                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 17                                                                                                                                                                  | 26,353                                                                                                               | 16                                                                                               | 17,938                                                                                      | 15                                                                                               |
| PPI11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PPIL1 HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                       | 0                                                                                                  | 0                                                                                                                                                                                                                                  | 0                                                                                                | 2 1748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2                                                                         | 0                                                                                                          | 0                                                                                | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                   | 1,7569                                                                                                               | 2                                                                                                | 0                                                                                           | 3                                                                                                |
| PPIP5K2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MORTWEND HUMAN (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                       | D                                                                                                  | D                                                                                                                                                                                                                                  | e e                                                                                              | 2,1748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                                                         | c c                                                                                                        | ő                                                                                | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                   | 0                                                                                                                    | ē                                                                                                | 0                                                                                           | 5                                                                                                |
| PPP1R12C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PP12C_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                       | 0                                                                                                  | 0                                                                                                                                                                                                                                  | 0                                                                                                | 2,1748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                                                         | 0                                                                                                          | 0                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                   | 0                                                                                                                    | 0                                                                                                | 0                                                                                           | 0                                                                                                |
| PRC1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PRC1_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                       | 0                                                                                                  | 2,9089                                                                                                                                                                                                                             | 2                                                                                                | 2,1748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2                                                                         | 3,2303                                                                                                     | 3                                                                                | 2,1952                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                                                                                                                                                                   | 14,055                                                                                                               | 14                                                                                               | 7,9726                                                                                      | 8                                                                                                |
| PRES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PREB_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                       | 0                                                                                                  | 0                                                                                                                                                                                                                                  | 0                                                                                                | 2,1748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2                                                                         | 0                                                                                                          | 0                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                   | 0                                                                                                                    | 0                                                                                                | 0                                                                                           | D                                                                                                |
| PREAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AAPKI_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                       | 0                                                                                                  | 0                                                                                                                                                                                                                                  | 0                                                                                                | 2,1748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                                                         | 2,1555                                                                                                     | 2                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                   | 2,6353                                                                                                               | 0                                                                                                | 3,9865                                                                                      | -                                                                                                |
| PSMA1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | F5GX11_HUMAN (+1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                       | D                                                                                                  | 1,9393                                                                                                                                                                                                                             | 2                                                                                                | 2,1748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                                                         | 0                                                                                                          | 0                                                                                | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                   | 0                                                                                                                    | 0                                                                                                | 0                                                                                           | 0                                                                                                |
| PSMA7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PSA7_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                       | D                                                                                                  | U                                                                                                                                                                                                                                  | 0-                                                                                               | 2,1748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                                                         | 0                                                                                                          | 0                                                                                | Э                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | U                                                                                                                                                                   | 0-                                                                                                                   | e                                                                                                | 0                                                                                           | D                                                                                                |
| PURA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PURA_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                       | D                                                                                                  | 1,9393                                                                                                                                                                                                                             | 2                                                                                                | 2,1748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                                                         | 4,307                                                                                                      | 4                                                                                | 8,751                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6                                                                                                                                                                   | 11,42                                                                                                                | 8                                                                                                | 0                                                                                           | ۵                                                                                                |
| PURB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PURB_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                       | 0                                                                                                  | 2,9089                                                                                                                                                                                                                             | 2                                                                                                | 2,1748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                                                         | 2,1535                                                                                                     | 2                                                                                | 5,4881                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5                                                                                                                                                                   | 5,2707                                                                                                               | 6                                                                                                | 0                                                                                           | 0                                                                                                |
| RAD21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RAD21 HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                       | 0                                                                                                  | 0                                                                                                                                                                                                                                  | 0                                                                                                | 2,1748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                                                         | 0                                                                                                          | 0                                                                                | 3,2925                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                   | 0                                                                                                                    | 0                                                                                                | 0                                                                                           | 3                                                                                                |
| RAE1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | KAELL_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                       | Э                                                                                                  | U                                                                                                                                                                                                                                  | 0                                                                                                | 2,1748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                                                         | 0                                                                                                          | 0                                                                                | Э                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | D                                                                                                                                                                   | 2,6353                                                                                                               | 3                                                                                                | 0                                                                                           | э                                                                                                |
| RAI14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RAI14_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                       | D                                                                                                  | 0                                                                                                                                                                                                                                  | 0                                                                                                | 2,1748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                                                         | 0                                                                                                          | 0                                                                                | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | D                                                                                                                                                                   | 0                                                                                                                    | 0                                                                                                | 0                                                                                           | D                                                                                                |
| RALA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RALA_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                       | 0                                                                                                  | 0                                                                                                                                                                                                                                  | 0                                                                                                | 2,1748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2                                                                         | e                                                                                                          | 0                                                                                | 2,1952                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                                                                                                                                                                   | 2,6353                                                                                                               | 3                                                                                                | 3,9863                                                                                      | 3                                                                                                |
| R3M33<br>20021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HOY3K4_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                       | 0                                                                                                  | 1,9393                                                                                                                                                                                                                             | 2                                                                                                | 2,1748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                                                         | 0                                                                                                          | 0                                                                                | 3,2929                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3                                                                                                                                                                   | 0                                                                                                                    | 0                                                                                                | 3,9983                                                                                      | 4                                                                                                |
| RCH13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ROH13 HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                       | 0                                                                                                  | D                                                                                                                                                                                                                                  | 0                                                                                                | 2,1748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                                                         | 0                                                                                                          | 0                                                                                | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | D                                                                                                                                                                   | 0                                                                                                                    | C C                                                                                              | 0                                                                                           | 3                                                                                                |
| RNASEH28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RNH25_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                       | D                                                                                                  | 0                                                                                                                                                                                                                                  | 0                                                                                                | 2,1748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                                                         | 0                                                                                                          | 0                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                   | 0                                                                                                                    | 0                                                                                                | 0                                                                                           | D                                                                                                |
| RNGTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MCE1_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                       | 0                                                                                                  | 0                                                                                                                                                                                                                                  | 0                                                                                                | 2,1748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                                                         | 0                                                                                                          | 0                                                                                | Э                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                   | 0                                                                                                                    | 0                                                                                                | 0                                                                                           | э                                                                                                |
| RPAP2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RPAP2_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                       | 0                                                                                                  | 1,9393                                                                                                                                                                                                                             | 2                                                                                                | 2,1748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                                                         | 0                                                                                                          | 0                                                                                | 2,1952                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                                                                                                                                                                   | 4,3922                                                                                                               | 5                                                                                                | 1,9932                                                                                      | 2                                                                                                |
| EPI 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | JAKTEL HUMAN 1-21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                       | 9                                                                                                  | 6.7825                                                                                                                                                                                                                             | 2                                                                                                | 2,1/48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2                                                                         | 21535                                                                                                      | 0                                                                                | 9,8786                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4                                                                                                                                                                   | 26353                                                                                                                | 2                                                                                                | 2,9897                                                                                      | 3                                                                                                |
| RPI.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RI34_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ő                                       | D                                                                                                  | 3,8786                                                                                                                                                                                                                             | 2                                                                                                | 2,1748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                                                         | 7,5373                                                                                                     | 4                                                                                | 13,171                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5                                                                                                                                                                   | 7,0276                                                                                                               | 4                                                                                                | 4,9829                                                                                      | 3                                                                                                |
| RPP38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RPP38_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                       | 0                                                                                                  | 0                                                                                                                                                                                                                                  | 0                                                                                                | 2,1748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                                                         | 0                                                                                                          | 0                                                                                | 2,1952                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                                                                                                                                                                   | 4,3922                                                                                                               | 5                                                                                                | 0                                                                                           | Э                                                                                                |
| RP\$24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AD87WUSD_HUMAN (-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                       | 0                                                                                                  | 6,7875                                                                                                                                                                                                                             | 3                                                                                                | 2,1748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2                                                                         | 3,2303                                                                                                     | 2                                                                                | 6,5857                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4                                                                                                                                                                   | 3,5138                                                                                                               | 3                                                                                                | 0                                                                                           | D                                                                                                |
| RPS28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SS28_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                       | 0                                                                                                  | 8,7267                                                                                                                                                                                                                             | 3                                                                                                | 2,1748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                                                         | 3,2303                                                                                                     | 3                                                                                | 5,4881                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3                                                                                                                                                                   | 3,5138                                                                                                               | 3                                                                                                | 1,9932                                                                                      | 2                                                                                                |
| RTEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | STEL HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                       | 0                                                                                                  | *,0*i02<br>D                                                                                                                                                                                                                       | 0                                                                                                | 2,1745                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                                                         | 2,1535                                                                                                     | 2                                                                                | 7,0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                   | 2,0353                                                                                                               | 0                                                                                                | 0                                                                                           | 3                                                                                                |
| \$100A8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SICA8_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                       | 0                                                                                                  | 3,8786                                                                                                                                                                                                                             | 2                                                                                                | 2,1748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2                                                                         | c                                                                                                          | 0                                                                                | э                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                   | 0                                                                                                                    | c                                                                                                | 0                                                                                           | D                                                                                                |
| \$10049                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | S10A9_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                       | D                                                                                                  | D                                                                                                                                                                                                                                  | 0                                                                                                | 2,1748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2                                                                         | 0                                                                                                          | 0                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | D                                                                                                                                                                   | 0                                                                                                                    | 0                                                                                                | 0                                                                                           | D                                                                                                |
| SBN01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SBN01_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 154                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                       | D                                                                                                  | 0                                                                                                                                                                                                                                  | 0                                                                                                | 2,1748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2                                                                         | 0                                                                                                          | 0                                                                                | 2,1952                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                                                                                                                                                                   | 0                                                                                                                    | 0                                                                                                | 0                                                                                           | D                                                                                                |
| SKA1<br>S C145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SKAL_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                       | 0                                                                                                  | 0                                                                                                                                                                                                                                  | 0                                                                                                | 2,1748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                                                         | 0                                                                                                          | 0                                                                                | 3 2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                                                                                                                                                                   | 0                                                                                                                    | 0                                                                                                | 0                                                                                           | 2                                                                                                |
| SNAPC1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SNPC1 HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                       | 0                                                                                                  | 1,9393                                                                                                                                                                                                                             | 2                                                                                                | 2,1748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ŝ                                                                         | e e                                                                                                        | 0                                                                                | 3,2929                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3                                                                                                                                                                   | 0<br>0                                                                                                               | 0                                                                                                | 0                                                                                           | ő                                                                                                |
| \$27.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SPTC1_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                       | D                                                                                                  | D                                                                                                                                                                                                                                  | 0                                                                                                | 2,1748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                                                         | 9,6908                                                                                                     | 8                                                                                | 2,1952                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                                                                                                                                                                   | 3,5138                                                                                                               | 3                                                                                                | 7,9725                                                                                      | 8                                                                                                |
| SRP9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SRP09_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                       | D                                                                                                  | 3,8786                                                                                                                                                                                                                             | 3                                                                                                | 2,1748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                                                         | 0                                                                                                          | 0                                                                                | 2,1952                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                                                                                                                                                                   | 1,7569                                                                                                               | 2                                                                                                | 0                                                                                           | D                                                                                                |
| SR UM2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SHRM2_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                       | 0                                                                                                  | U                                                                                                                                                                                                                                  | e<br>c                                                                                           | 2,1748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                                                         | C C                                                                                                        | 0                                                                                | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                   | 2,6353                                                                                                               | 3                                                                                                | 1,9932                                                                                      | 2                                                                                                |
| 5581                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SSRA HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                       | 0                                                                                                  | 2,9089                                                                                                                                                                                                                             | 3                                                                                                | 2,1748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                                                         | c                                                                                                          | 0                                                                                | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                   | 3,5138                                                                                                               | 3                                                                                                | 0                                                                                           | 5                                                                                                |
| STIM2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ALW2PRAL_HUMAN (-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                       | D                                                                                                  | D                                                                                                                                                                                                                                  | 0                                                                                                | 2,1748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2                                                                         | 0                                                                                                          | 0                                                                                | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | D                                                                                                                                                                   | Û                                                                                                                    | 0                                                                                                | 0                                                                                           | D                                                                                                |
| STK10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | STK10_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | o                                       | D                                                                                                  | 0                                                                                                                                                                                                                                  | 0                                                                                                | 2,1748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                                                         | 0                                                                                                          | 0                                                                                | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                   | 0                                                                                                                    | 0                                                                                                | 0                                                                                           | D                                                                                                |
| STX18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DGRF48_HUMAN (+1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                       | 0                                                                                                  | 0                                                                                                                                                                                                                                  | 0                                                                                                | 2,1748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                                                         | 0                                                                                                          | 0                                                                                | 3,2929                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3                                                                                                                                                                   | 2,6353                                                                                                               | 3                                                                                                | 0                                                                                           | 0                                                                                                |
| SURF2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SUB72 HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                       | 0                                                                                                  | 0                                                                                                                                                                                                                                  | 0                                                                                                | 2,1748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                                                         | 0                                                                                                          | 0                                                                                | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                   | 0                                                                                                                    | 0                                                                                                | 0                                                                                           | 3                                                                                                |
| SYMPK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SYMPK_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                       | Э                                                                                                  | 4,8482                                                                                                                                                                                                                             | 5                                                                                                | 2,1748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                                                         | 0                                                                                                          | 0                                                                                | Э                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                   | 2,6353                                                                                                               | 2                                                                                                | 0                                                                                           | Э                                                                                                |
| TBRG4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TBRG4_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                       | D                                                                                                  | D                                                                                                                                                                                                                                  | 0                                                                                                | 2,1748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                                                         | 0                                                                                                          | 0                                                                                | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | D                                                                                                                                                                   | 0                                                                                                                    | 0                                                                                                | 0                                                                                           | D                                                                                                |
| TGM1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TGM1_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                       | 0                                                                                                  | 6,7875                                                                                                                                                                                                                             | 5                                                                                                | 2,1748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2                                                                         | 0                                                                                                          | 0                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                   | 0                                                                                                                    | 0                                                                                                | 4,9329                                                                                      | 5                                                                                                |
| TL C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TLK2 HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                       | 0                                                                                                  | 3,8786                                                                                                                                                                                                                             | 9<br>0                                                                                           | 2,1748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                                                         | 0,307                                                                                                      | 0                                                                                | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                   | 0                                                                                                                    | 0                                                                                                | 0                                                                                           | 5                                                                                                |
| TMICS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TMTC3_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                       | D                                                                                                  | 0                                                                                                                                                                                                                                  | 0                                                                                                | 2,1748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2                                                                         | e                                                                                                          | 0                                                                                | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                   | 0                                                                                                                    | 0                                                                                                | 1,9932                                                                                      | 2                                                                                                |
| TRIP12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TRIPC_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                       | D                                                                                                  | D                                                                                                                                                                                                                                  | 0                                                                                                | 2,1748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                                                         | c                                                                                                          | ۵                                                                                | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | D                                                                                                                                                                   | 2,6353                                                                                                               | 3                                                                                                | ٥                                                                                           | D                                                                                                |
| TRIP4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TRIP4_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                       | 0                                                                                                  | 0                                                                                                                                                                                                                                  | 0                                                                                                | 2,1749                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                                                         | 0                                                                                                          | 0                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                   | 6,1491                                                                                                               | 6                                                                                                | 4,9829                                                                                      | 5                                                                                                |
| TEMELA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TRMS_HUMAN (A1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                       | 9                                                                                                  | 0                                                                                                                                                                                                                                  | 0                                                                                                | 2,1748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                                                         | 6,4505                                                                                                     | 2                                                                                | 2,1952                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                                                                                                                                                                   | 5,2707                                                                                                               | 2                                                                                                | 0                                                                                           | 3                                                                                                |
| TROVE2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ROEC HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <i>c</i> 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ~                                       | 0                                                                                                  |                                                                                                                                                                                                                                    |                                                                                                  | 2,1140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2                                                                         |                                                                                                            |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                     | 2 5 1 2 6                                                                                                            |                                                                                                  | v                                                                                           | 3                                                                                                |
| T5H73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                       |                                                                                                    | 0                                                                                                                                                                                                                                  | 0                                                                                                | 2,1748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2                                                                         | 0                                                                                                          | 0                                                                                | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                   | 3,5138                                                                                                               | 2                                                                                                | 0                                                                                           |                                                                                                  |
| 1.01.00.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TSH3_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 61<br>115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                       | D                                                                                                  | 0                                                                                                                                                                                                                                  | 0<br>0                                                                                           | 2,1748<br>2,1748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                                                         | 0                                                                                                          | 0                                                                                | 3<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0<br>D                                                                                                                                                              | 3,5138<br>1,7569<br>0                                                                                                | 3<br>2<br>0                                                                                      | 0                                                                                           | a                                                                                                |
| ττκ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TSH3_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 61<br>119<br>97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 000                                     | 0<br>0                                                                                             | 0<br>D<br>2,9089                                                                                                                                                                                                                   | 0<br>0<br>3                                                                                      | 2,1748<br>2,1748<br>2,1748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2                                                                         | 0<br>0<br>2,1535                                                                                           | 0 0 2                                                                            | 3 3 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0<br>D<br>0                                                                                                                                                         | 3,5138<br>1,7569<br>0                                                                                                | 3<br>2<br>0                                                                                      | 000                                                                                         | а<br>Э                                                                                           |
| TTK<br>UBE3C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TSH3_HUMAN<br>TTK_HUMAN<br>UBE3C_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 61<br>115<br>97<br>124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0000                                    | 0<br>0<br>0                                                                                        | 0<br>0<br>2,9089<br>1,9393                                                                                                                                                                                                         | 0<br>0<br>3<br>2                                                                                 | 2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3                                                                         | 0<br>0<br>2,1535<br>0                                                                                      | 0 0 2 0 0                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0<br>0<br>0<br>0                                                                                                                                                    | 3,5138<br>1,7569<br>0<br>0                                                                                           | 3<br>2<br>0<br>0                                                                                 | 0000                                                                                        | 0<br>0<br>0                                                                                      |
| UBESC<br>UBXN4<br>UCKL1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TSH3_HUMAN<br>TTK_HUMAN<br>UBE3C_HUMAN<br>UBXN4_HUMAN<br>UCK_1 HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 61<br>115<br>97<br>124<br>57<br>61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0 0 0 0                                 | 0<br>0<br>0<br>0<br>0                                                                              | 0<br>0<br>2,9089<br>1,9393<br>0<br>0                                                                                                                                                                                               | 0<br>0<br>3<br>2<br>0<br>0                                                                       | 2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 332                                                                       | 0<br>0<br>2,1535<br>0<br>0<br>0                                                                            | 0 0 0 0                                                                          | 5<br>0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0<br>0<br>0<br>0<br>0                                                                                                                                               | 3,5138<br>1,7569<br>0<br>0<br>0<br>0<br>0                                                                            | 3<br>2<br>0<br>0<br>0<br>0<br>0                                                                  | 000000                                                                                      | 0<br>0<br>0<br>0<br>0                                                                            |
| TTK<br>UBE3C<br>UBXN4<br>UCKL1<br>UNC135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TSH3_HUMAN<br>TTK_HUMAN<br>UBE3C_HUMAN<br>UBXN4_HUMAN<br>UCK_1_HUMAN<br>ADA160CUS7_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 61<br>115<br>97<br>124<br>57<br>61<br>484                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0<br>0<br>0<br>0<br>0<br>0              | 0<br>0<br>0<br>0<br>0<br>0                                                                         | 0<br>D<br>2,9089<br>1,9393<br>0<br>0<br>0                                                                                                                                                                                          | 0<br>0<br>3<br>0<br>0<br>0                                                                       | 2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 33333                                                                     | 0<br>0<br>2,1535<br>0<br>0<br>0<br>0                                                                       | 0020000                                                                          | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0<br>0<br>0<br>0<br>0<br>0                                                                                                                                          | 3,5138<br>1,7569<br>0<br>0<br>0<br>0<br>0                                                                            | 3 2 0 0 0 0                                                                                      | 000000                                                                                      | 0<br>0<br>0<br>0<br>0                                                                            |
| TTK<br>UBE3C<br>UBXN4<br>UCKL1<br>UNC135<br>UNC45A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TSHB_HUMAAN<br>TTK, HUMAAN<br>UBE3C_HUMAAN<br>UDSN4_HUMAAN<br>UCK1_HUMAAN<br>ADA1BOGUS7_HUMAAN<br>A1W2PNX8_HUMAAN (-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 61<br>119<br>97<br>124<br>57<br>61<br>484<br>118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0<br>0<br>0<br>0<br>0<br>0<br>0         | 0<br>0<br>0<br>0<br>0<br>0<br>0                                                                    | 0<br>D<br>2,9089<br>1,9393<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                | 0<br>0<br>2<br>0<br>0<br>0<br>0                                                                  | 2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3233233                                                                   | 0<br>0<br>2,1535<br>0<br>0<br>0<br>0<br>0<br>0                                                             | 0020000                                                                          | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                     | 3,5138<br>1,7569<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                             | 3 2 0 0 0 0 0 0 0                                                                                | 0000000                                                                                     | 0<br>0<br>0<br>0<br>0<br>0<br>0                                                                  |
| UBE3C<br>UBE3C<br>UBE3C<br>URE1<br>UNC135<br>UNC45A<br>URC61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TSH3_HUMAN<br>TTK HUMAN<br>UBBC_HUMAN<br>UBXN4_HUMAN<br>UCK1_HUMAN<br>ADA160CUS7_HUMAN<br>A1W2PNX8_HUMAN (-2)<br>UST5_USTAN (-2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 61<br>119<br>97<br>124<br>57<br>61<br>484<br>118<br>29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 0 0 0 0 0 0 0 0                       | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                               | 0<br>D<br>2,9089<br>1,9393<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                | 0<br>0<br>2<br>0<br>0<br>0<br>0<br>0<br>0                                                        | 2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3                                   | 0<br>0<br>2,1555<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                   | 00 2 0 0 0 0 0 0 0                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                | 3,5138<br>1,7569<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                        | 3 2 0 0 0 0 0 0 0 0 0                                                                            | 0000000000                                                                                  | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                   |
| UBE3C<br>UBE3C<br>UBE3C<br>UNC136<br>UNC136<br>UNC45A<br>UQCC1<br>USE1<br>UVRAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TSH3_HUMAN<br>TTK_HUMAN<br>UB33C_HUMAN<br>UBXN4_HUMAN<br>UBXN4_HUMAN<br>A1AIBROCUS7_HUMAN<br>A1W2PNX8_HUMAN (-2)<br>USE1_HUMAN<br>UVRAG_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 61<br>115<br>97<br>124<br>57<br>61<br>484<br>118<br>29<br>29<br>29<br>78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0 0 0 0 0 0 0 0 0                       | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0        | 0<br>D<br>2,9089<br>1,9393<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                       | 0<br>0<br>2<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                   | 2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 323323333                                                                 | 0<br>0<br>2,1535<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0 0 0 0 0 0 0 0                                                                  | 3<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                            | 3,5138<br>1,7569<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                          | 3<br>2<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      | 0000000000                                                                                  | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                    |
| UB3C<br>UB3C<br>UB3N4<br>UCK13<br>UNC45A<br>UCC13<br>USE1<br>UVR45A<br>V4C14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TSHS_HUMAAN<br>TTK_HUMAN<br>UBE3C_HUMAN<br>USXN4_HUMAN<br>USXN4_HUMAN<br>ADAIBOCUS7_HUMAN<br>ADAIBOCUS7_HUMAN<br>ADAIBOCUS7_HUMAN<br>(-2)<br>USE1_HUMAN<br>UVRAG_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 61<br>115<br>97<br>124<br>57<br>61<br>484<br>118<br>29<br>29<br>29<br>78<br>88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 0 0 0 0 0 0 0 0 0 0                   | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                  | 0<br>D<br>2,9089<br>1,9393<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                             | 0<br>0<br>2<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                    | 2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 323323333333                                                              | 0<br>0<br>2,1535<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0 0 0 0 0 0 0 0 0 0                                                              | 3<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                       | 3,5138<br>1,7569<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0           | 3<br>2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                     | 0 0 0 0 0 0 0 0 0 0                                                                         | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      |
| TTK<br>UBE3C<br>UBXN4<br>UCKL1<br>UNC135<br>UNC45A<br>UQCC1<br>USE1<br>UVR4G<br>VAC14<br>VP555                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TSH5_HUMAN<br>TTK.HUMAN<br>UB3C_HUMAN<br>USN14_HUMAN<br>UCCL_HUMAN<br>ADAIBCCUS7_HUMAN<br>ADAIBCCUS7_HUMAN<br>ADAIBCCUS7_HUMAN<br>USEL_HUMAN<br>USEL_HUMAN<br>VACI4_HUMAN<br>VACI4_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 61<br>115<br>97<br>124<br>57<br>61<br>484<br>118<br>29<br>29<br>78<br>88<br>88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 000000000000                            | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                  | 0<br>D<br>2,9089<br>1,9393<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                   | 0<br>3<br>2<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                              | 2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | * 2 3 * 2 3 * 3 * 3 * 3 *                                                 | 0<br>0<br>2,1555<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                          | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                          | 3<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                        | 3,5138<br>1,7569<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                          | 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                          | 0 0 0 0 0 0 0 0 0 0 0 0                                                                     | 8<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9 |
| TTK<br>UBE3C<br>UBXN4<br>UCKL1<br>UNC135<br>UNC45A<br>UQCC1<br>USE1<br>UVR45G<br>VAC14<br>VP553<br>VT18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TSHS_HUMAAN<br>TTK_HUMAAN<br>UBB2CHUMAAN<br>UBBX14_HUMAAN<br>UCK1_HUMAAN<br>ADALBOCUSZ_HUMAAN<br>ADALBOCUSZ_HUMAAN<br>(USE3_HUMAAN (+22)<br>USE1_HUMAAN<br>VAC14_HUMAAN<br>VAC14_HUMAAN<br>VISI2_HUMAAN<br>VISI2_HUMAAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 61<br>115<br>97<br>124<br>57<br>61<br>484<br>118<br>29<br>29<br>78<br>88<br>80<br>27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |                                                                                                    | 0<br>0<br>2,9089<br>1,9393<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>1,9393                                                                                                                                             | 003200000000000000000000000000000000000                                                          | 2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | * * * * * * * * * * * *                                                   | 0<br>0<br>2,1535<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 00100000000000                                                                   | 3,292<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                         | 3,5138<br>1,2569<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      | 3 2 0 0 0 0 0 0 0 0 0 0 4 0                                                                      | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      |
| TTK<br>UBE3C<br>UBXN4<br>UCKL1<br>UNC45A<br>UNC45A<br>UCCC1<br>USE1<br>UVRAG<br>VAC14<br>VP553<br>VT18<br>WASE1<br>WASE1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TSH5_HUMAN<br>TTK_HUMAN<br>UBE3C_HUMAN<br>UCK1_HUMAN<br>UCK1_HUMAN<br>ADAIBCUS7_HUMAN<br>ADAIBCUS7_HUMAN<br>ADAIBCUS7_HUMAN<br>VARA5_HUMAN<br>VARA5_HUMAN<br>VAR55_HUMAN<br>WAS51_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 61<br>115<br>97<br>124<br>57<br>61<br>484<br>29<br>29<br>29<br>78<br>88<br>80<br>27<br>62<br>50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0        | 0<br>0<br>2,9089<br>1,9393<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>1,9393<br>0<br>0                                                                                                                                                  | 0<br>0<br>2<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | * * * * * * * * * * * * * *                                               | 0<br>0<br>2,1555<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0 0 N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                          | 3<br>2<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                         | 3,5138<br>1,2569<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      | 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                          | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      |
| TTK<br>UBE3C<br>UBXN4<br>UCKL1<br>UNC45A<br>URC45A<br>URC45A<br>URC61<br>UVRAG<br>VAC14<br>VP553<br>VT1B<br>WASF1<br>WASF1<br>WASF1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | THS_HUMAN<br>TTK_HUMAN<br>UBAC_HUMAN<br>UBAC_HUMAN<br>UBAC_HUMAN<br>ADAIBCCUS_HUMAN<br>ADAIBCCUS_HUMAN<br>ADAIBCCUS_HUMAN<br>USE_HUMAN<br>USE_HUMAN<br>VTIB_HUMAN<br>VTIB_HUMAN<br>VTIB_HUMAN<br>WASEL_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 61<br>119<br>97<br>124<br>57<br>61<br>484<br>29<br>29<br>29<br>29<br>88<br>80<br>27<br>62<br>50<br>50<br>125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0        | 0<br>2,9089<br>1,9393<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>1,9393<br>0<br>0<br>1,9393<br>0<br>0<br>3,8786                                                                                                                    | 0<br>3<br>2<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748<br>2,1748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | * 2 * * 2 * * * * * * * * * * * * * * *                                   | 0<br>0<br>2,1555<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                          | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15                                                 | 3<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>1<br>0<br>16                                                                                            | 3,5138<br>1,7569<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>3,5138<br>0<br>0<br>0<br>12,298 | 3<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3      |
| TTK<br>UBS3C<br>UBX34<br>UCCL1<br>UNC45A<br>UQCC1<br>USE1<br>UVRAG<br>VAC14<br>VP553<br>VT18<br>WAS51<br>WAS51<br>WAS51<br>WAS51<br>WAS51<br>VT18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TSH, HUMAN<br>UBAC, HUMAN<br>UBAC, HUMAN<br>USAL, HUMAN<br>USAL, HUMAN<br>MUZAL, HUMAN<br>USAL, HUMAN<br>USAL, HUMAN<br>USAL, HUMAN<br>VIEW, HUMAN<br>VIEW, HUMAN<br>VIEW, HUMAN<br>VIEW, HUMAN<br>VIEW, HUMAN<br>VIEW, HUMAN<br>VIEW, HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 61<br>119<br>97<br>124<br>57<br>61<br>484<br>118<br>29<br>78<br>80<br>27<br>62<br>50<br>125<br>160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0        | 0<br>0<br>2,9089<br>1,9333<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>1,9393<br>0<br>0<br>0<br>3,8786<br>0                                                                                                                    | 0<br>0<br>2<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | , , , , , , , , , , , , , , , , , , ,                                     | 0<br>2,1555<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      | 0 0 2 0 0 0 0 0 0 0 0 0 0 0 15 5                                                 | 3<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>3<br>0<br>0<br>3<br>16<br>16                                                                                           | 3,5138<br>1,756<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0       | 3<br>2<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      |
| TTK<br>UBE3C<br>UBXN4<br>UCKL1<br>UNC135<br>UNC45A<br>UNC45A<br>UCCC1<br>USE1<br>UVRAG<br>VAC14<br>VP553<br>VT118<br>WASF1<br>WASF1<br>WASF2<br>VT18<br>WASF2<br>T18<br>WASF2<br>T18<br>UNC45A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TSH, HUMAN<br>TTK, HUMAN<br>UEBQC, HUMAN<br>USANG, HUMAN<br>UCCL, HUMAN<br>ADAI IBOCUS, HUMAN<br>ALW294WS, HUMAN<br>IUSET, HUMAN<br>USET, HUMAN<br>VISET, HUMAN<br>VISET, HUMAN<br>WISET, HUMAN<br>WISET, HUMAN<br>WISET, HUMAN<br>ZIFIZ, HUMAN<br>ZIFIZ, HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 61<br>115<br>97<br>124<br>57<br>61<br>484<br>118<br>29<br>78<br>88<br>80<br>27<br>62<br>50<br>125<br>160<br>115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |                                                                                                    | 0<br>0<br>2,9089<br>1,9393<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                        | 0<br>3<br>2<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | * 2 * * 2 * * * * * * * * * * * * * * *                                   | 0<br>2,1535<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                               | 0 0 2 0 0 0 0 0 0 0 0 0 0 15 1 0 0                                               | 3<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                         | 3,5138<br>1,7569<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      | 3<br>2<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      |
| TTK<br>UBS3C<br>UR51C<br>UK1<br>UK135<br>UK12<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135<br>UK135 | ТЭН, НОМАЙ<br>ТТК, НОМАЙ<br>UB304, НОМАЙ<br>US304, НОМАЙ<br>US304, НОМАЙ<br>US304, НОМАЙ<br>US304, НОМАЙ<br>US304, НОМАЙ<br>US304, НОМАЙ<br>VIS30, НОМАЙ<br>VIS300, НОМАЙ<br>V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 61<br>113<br>97<br>124<br>57<br>61<br>484<br>129<br>29<br>78<br>80<br>27<br>88<br>80<br>27<br>50<br>125<br>50<br>126<br>119<br>60<br>123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0        | 0<br>0<br>2,9089<br>1,9333<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                               | 0 0 3 2 0 0 0 0 0 0 0 2 0 0 4 0 0 4 0                                                            | 2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                           | 0<br>2,15355<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                              | 0 0 2 0 0 0 0 0 0 0 0 0 0 15 5 0 0 0                                             | 3<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>16<br>16<br>0<br>0<br>3<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 3,5138<br>1,7569<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      | 3<br>2<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      |
| TTK<br>UBS2C<br>URXN4<br>UCKL1<br>UNC435<br>UCC13<br>USE1<br>UVN645<br>VAC14<br>VP555<br>VT138<br>VASE1<br>VM5612<br>VT138<br>VM5612<br>VM562<br>Z87321<br>ZF991 CATF<br>ZM7M4<br>ZMAFU3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ТЭН, НОМАЯ<br>ТТК, НОМАЯ<br>UENG, НОМАЯ<br>UENG, НОМАЯ<br>UENG, НОМАЯ<br>UCCL, НОМАЯ<br>UCCL, НОМАЯ<br>AUW294WS, НОМАЯЧ,<br>USAG, НОМАЯ<br>VACLE,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 61<br>115<br>97<br>124<br>57<br>61<br>484<br>118<br>29<br>78<br>80<br>27<br>62<br>50<br>125<br>160<br>125<br>160<br>119<br>60<br>123<br>?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0        | 0<br>0<br>2,9089<br>1,9393<br>0<br>0<br>0<br>0<br>0<br>0<br>1,9393<br>0<br>0<br>0<br>1,93933<br>0<br>0<br>0<br>3,8786<br>0<br>0<br>3,8786<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                         | 003200000000000000000000000000000000000                                                          | 2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2 3 3 2 3 3 3 3 3 3 3 3 3 3 2 3 2 3 2 3                                   | 0<br>2,1535<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                               | 0 0 N 0 0 0 0 0 0 0 0 0 0 15 5 0 0 0 0                                           | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                         | 3,5138<br>1,756<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0       | 3<br>2<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      |
| TTK<br>UBS3C<br>URXN4<br>UCKL1<br>UNC435<br>UNC451<br>UNC451<br>USEL<br>UVR45<br>VACL2<br>VACL4<br>VACL4<br>VACL4<br>VAS51<br>VAS51<br>VAS51<br>VAS51<br>VAS51<br>ZF931<br>CNT2<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>ZF931<br>Z | ТЭН, НОМАЯ<br>ТТК, НОМАЯ<br>UB304, JUMAN<br>US304, JUMAN<br>UCCL, HUMAN<br>UCCL, HUMAN<br>AUX29408, HUMAN<br>AUX29408, HUMAN<br>AUX29408, HUMAN<br>AUX29408, HUMAN<br>AUX294, HUMAN<br>VIES, HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 61<br>115<br>97<br>124<br>57<br>61<br>484<br>29<br>29<br>29<br>29<br>88<br>88<br>80<br>27<br>62<br>50<br>125<br>160<br>113<br>60<br>113<br>87<br>60<br>113<br>87<br>60<br>113<br>87<br>60<br>113<br>86<br>125<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>51<br>57<br>57<br>57<br>57<br>57<br>57<br>57<br>57<br>57<br>57<br>57<br>57<br>57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         | ,<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0   | 0<br>0<br>1<br>2,9089<br>1,9333<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                          | 0 0 3 2 0 0 0 0 0 0 0 2 0 0 4 0 0 4 0 0 0 0 0                                                    | 2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2 3 3 2 3 7 3 8 3 8 3 8 3 7 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2           | 0<br>0<br>2.1555<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                          | 00 2 0 0 0 0 0 0 0 0 0 0 0 1 5 0 0 0 0 0 0 0                                     | 3<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                         | 3,5138<br>1,7569<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      | 3<br>2<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      |
| TTK<br>UBS3C<br>URKNA<br>UKC135<br>UNC45A<br>UCCC1<br>US51<br>UVRAG<br>UVRAG<br>UVRAG<br>UVRAG<br>VAS12<br>VTHOC<br>Z87321<br>ZF93 CAS12<br>VTHOC<br>Z87321<br>ZF93 CAS12<br>VTHOC<br>Z87321<br>ZF93 CAS12<br>VTHOC<br>Z87321                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TSH, HUMAN<br>TTK, HUMAN<br>UBAC, HUMAN<br>UBAC, HUMAN<br>UCAL, HUMAN<br>UCAL, HUMAN<br>AUWOO, HUMAN<br>USAL, HUMAN<br>USAL, HUMAN<br>USAL, HUMAN<br>USAL, HUMAN<br>VACI 3, HUMAN<br>VI 10, HUMAN<br>VI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 61<br>119<br>97<br>124<br>61<br>488<br>29<br>78<br>80<br>27<br>62<br>50<br>125<br>50<br>125<br>50<br>125<br>119<br>60<br>119<br>60<br>124<br>50<br>124<br>50<br>29<br>78<br>80<br>27<br>50<br>125<br>50<br>126<br>118<br>29<br>76<br>126<br>118<br>29<br>76<br>129<br>76<br>118<br>29<br>76<br>129<br>76<br>118<br>29<br>76<br>129<br>76<br>118<br>29<br>76<br>129<br>76<br>118<br>29<br>76<br>129<br>76<br>118<br>29<br>76<br>118<br>29<br>76<br>129<br>76<br>129<br>76<br>129<br>76<br>129<br>76<br>129<br>76<br>129<br>78<br>80<br>27<br>50<br>125<br>129<br>129<br>78<br>80<br>27<br>50<br>129<br>129<br>129<br>129<br>129<br>129<br>129<br>129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | ,<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0   | 0<br>2,9089<br>1,9333<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>1,9333<br>0<br>0<br>0<br>0<br>3,8786<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0 0 3 2 0 0 0 0 0 0 0 0 0 2 0 0 4 0 0 4 0 0 0 0                                                  | 2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2 3 3 2 3 3 3 3 3 3 3 3 3 2 3 2 3 2 3 2                                   | 0<br>0<br>2,1555<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                          | 002000000000000000000000000000000000000                                          | 3<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                         | 3,5138<br>1,7569<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      | 3<br>2<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      |
| 1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ТЭК, НОМАЯ<br>ТТК, НОМАЯ<br>СВВСС, НОМАЯ<br>UCCL, НОМАЯ<br>UCCL, НОМАЯ<br>ADAI BOCKS, НОМАЯ<br>DUCCL, НОМАЯ<br>ADAI BOCKS, НОМАЯ<br>UCCL, НОМАЯ<br>UCCL, НОМАЯ<br>UCCL, НОМАЯ<br>UCCL, НОМАЯ<br>UCCL, НОМАЯ<br>VCCL,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 61<br>1197<br>124<br>57<br>61<br>488<br>29<br>78<br>80<br>27<br>62<br>50<br>125<br>160<br>119<br>60<br>173<br>?<br>45<br>160<br>173<br>?<br>45<br>50<br>175<br>160<br>173<br>29<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |                                                                                                    | 0<br>0<br>1,9393<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>1,9393<br>0<br>0<br>0<br>1,9393<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                  | 0 0 3 2 0 0 0 0 0 0 0 2 0 0 4 0 0 4 0 0 0 0 0                                                    | 2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2. | 2 3 3 2 3 7 3 3 7 3 8 3 3 3 3 2 3 2 3 2 2 2 2 2                           | 0<br>0<br>2.1555<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                          | 0 0 2 0 0 0 0 0 0 0 0 0 0 15 5 0 0 0 0 0 0 0                                     | 3<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                         | 3,5138<br>1,7569<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      | 3 2 0 0 0 0 0 0 0 0 0 0 1 0 0 8 5 0 4 2 0 6 0 0 0                                                | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      |
| TTK<br>UBS3C<br>UBXNA<br>UCKL1<br>UNCL3S<br>UNCL3S<br>UNCL3S<br>UNAG<br>US51<br>UNAG<br>US51<br>UNAG<br>US55<br>UNAG<br>UNAG<br>US55<br>UNAG<br>UNCL5S<br>UNAG<br>UNCL5S<br>UNAG<br>UNCL5S<br>UNAG<br>UNCL5S<br>UNAG<br>UNCL5S<br>UNAG<br>UNCL5S<br>UNAG<br>UNCL5S<br>UNCL5S<br>UNAG<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S<br>UNCL5S                                                                                                                                      | ТЭН, НОМАЯ<br>ТТК, НОМАЯ<br>UBNZ, НОМАЯ<br>UDNZ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 61<br>119<br>97<br>124<br>484<br>118<br>29<br>78<br>80<br>27<br>78<br>80<br>27<br>78<br>80<br>27<br>62<br>50<br>125<br>160<br>113<br>60<br>125<br>160<br>113<br>45<br>167<br>123<br>50<br>47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         | , n<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>2.9089<br>1.0333<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                         | 0 0 3 2 0 0 0 0 0 0 0 0 2 0 0 4 0 0 4 0 0 0 0                                                    | 2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2 3 3 2 3 3 3 3 3 3 3 3 3 2 3 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 0<br>0<br>2.15355<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                         | 00 N 0 0 0 0 0 0 0 0 0 0 15 % 0 0 0 0 0 0 0 0 0                                  | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                         | 3,5138<br>1,7565<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0           | 3<br>2 C O C O C O C O C O O 4 O C 8 5 C 4 2 O 6 C O C 4                                         | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      |
| TTK<br>UBS2C<br>UBKW4<br>UCK11<br>UVC13B<br>UVC45A<br>UVC45A<br>UC45A<br>USE1<br>UV7026<br>VT105<br>VAC14<br>VF555<br>VT105<br>VAC14<br>VF555<br>VT105<br>VAC14<br>VF555<br>VT105<br>ZF551<br>ZF551<br>CV7026<br>VF555<br>VT105<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF552<br>ZF55    | ТЭК, НОМАЯ)<br>ТТК, НОМАЯ<br>СВВС, НОМАЯ<br>СВВС, НОМАЯ<br>СВВС, НОМАЯ<br>СВВС, НОМАЯ<br>СВВС, НОМАЯ<br>СВС, НОМАЯ<br>АОХ ВОССКУ, НОМАЯ<br>ССК, НОМАЯ<br>ССК, НОМАЯ<br>ССК, НОМАЯ<br>АСС, НОМАЯ<br>АСС, НОМАЯ<br>ССК, ССК, ССК, ССК, ССК, ССК, ССК, ССК,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 61<br>119<br>97<br>124<br>57<br>61<br>118<br>29<br>78<br>80<br>72<br>62<br>109<br>78<br>80<br>175<br>100<br>175<br>109<br>119<br>60<br>173<br>25<br>109<br>24<br>3<br>50<br>24<br>3<br>50<br>24<br>3<br>50<br>25<br>25<br>26<br>26<br>20<br>27<br>26<br>20<br>27<br>28<br>20<br>28<br>27<br>29<br>28<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         | ,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,        | 0<br>2,9089<br>1,9333<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                    | 00320000000020020040004000002                                                                    | 2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2. |                                                                           | 0<br>0<br>2.1555<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                          | 00 2 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0                                         | 3<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                         | 3,5138<br>1,2560<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0           | 32000000000040085042060040                                                                       | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      |
| TTRE<br>UBESSE<br>URCALL<br>UNCLIBE<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNCCASA<br>UNC                                                                                                                                                                                                                                                                | ТЭК, НОМАЯ<br>ТТК, НОМАЯ<br>ТТК, НОМАЯ<br>ТТК, НОМАЯ<br>ПТК, НОМАЯ<br>ЦОСС, НОМАЯ<br>UCCL, НОМАЯ<br>ИССС, НОМ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 61<br>119<br>97<br>124<br>57<br>61<br>188<br>29<br>788<br>80<br>27<br>62<br>50<br>175<br>160<br>193<br>60<br>175<br>160<br>193<br>60<br>173<br>60<br>173<br>60<br>173<br>60<br>173<br>60<br>173<br>60<br>173<br>80<br>7<br>45<br>60<br>173<br>80<br>7<br>45<br>7<br>40<br>80<br>7<br>40<br>80<br>7<br>80<br>7<br>80<br>7<br>80<br>80<br>7<br>80<br>80<br>7<br>80<br>80<br>7<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         |                                                                                                    | 0<br>2,9089<br>1,0333<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>1,9393<br>0<br>0<br>0<br>1,9393<br>0<br>0<br>0<br>0<br>3,8786<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0           | 0 0 3 2 0 0 0 0 0 0 0 2 0 0 4 0 0 4 0 0 0 2 0 2                                                  | 2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2. | 2 3 3 2 3 3 3 3 3 3 3 3 3 2 3 2 3 2 3 2                                   | 0<br>0<br>2.15555<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                         | 00 N 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0                                       | 3<br>0<br>0<br>0<br>0<br>0<br>3,2920<br>0<br>3,2920<br>0<br>0<br>3,2920<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                         | 3,5138<br>1,756<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0       | 320000000000000000000000000000000000000                                                          | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      |
| 1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ТК, НОМАЯ<br>ТК, НОМАЯ<br>URAC, НОМАЯ<br>URAC, НОМАЯ<br>URAC, НОМАЯ<br>UCC, НОМАЯ<br>UCC, НОМАЯ<br>UCC, НОМАЯ<br>UCC, НОМАЯ<br>URAC, НОМАЯ<br>Care, НОМАЯ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 61<br>115<br>97<br>124<br>57<br>61<br>484<br>118<br>29<br>29<br>78<br>88<br>80<br>27<br>62<br>50<br>125<br>50<br>125<br>60<br>125<br>100<br>123<br>50<br>123<br>50<br>27<br>45<br>1023<br>50<br>27<br>45<br>1023<br>50<br>45<br>1023<br>50<br>45<br>1023<br>50<br>27<br>20<br>27<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |                                                                                                    | 0<br>2.5009<br>1,0309<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                    | 0 0 3 2 0 0 0 0 0 0 2 0 0 4 0 0 4 0 0 0 0 2 0 2                                                  | 2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2. | - 2 - 3 - 2 - 3 - 3 - 3 - 3 - 3 - 3 - 2 - 2                               | 0<br>0<br>215555<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                          | 0 C N O C O C O C O C O S O O IS M O C O C O C O C O C N O O C                   | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                         | 3,5138<br>1,7560<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0           | 3200000000000400850420600404040                                                                  | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      |
| UTTA<br>UBDA<br>UBDA<br>URDA<br>UNCLISE<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UNCASA<br>UN                                                                                                                                                 | ТЭК, НОМАЯ<br>ТТК, НОМАЯ<br>USDAL, НОМАЯ<br>USDAL, НОМАЯ<br>USCL, НОМАЯ<br>UCCL, НОМАЯ<br>ADALBOCKZ, НОМАЯ<br>USZL, НОМАЯ<br>USZL, НОМАЯ<br>USZL, НОМАЯ<br>VIZL, НОМАЯ<br>CITY, CITY, CIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 61<br>115<br>97<br>124<br>57<br>61<br>484<br>129<br>29<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>27<br>80<br>20<br>80<br>27<br>80<br>20<br>80<br>27<br>80<br>20<br>80<br>20<br>80<br>20<br>80<br>20<br>80<br>20<br>80<br>20<br>80<br>20<br>10<br>20<br>10<br>20<br>10<br>20<br>10<br>20<br>10<br>20<br>10<br>20<br>10<br>20<br>10<br>20<br>10<br>20<br>10<br>20<br>10<br>20<br>10<br>20<br>10<br>20<br>10<br>20<br>10<br>20<br>10<br>20<br>10<br>20<br>10<br>20<br>10<br>20<br>10<br>20<br>10<br>20<br>10<br>20<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |                                                                                                    | 0<br>2,5065<br>1,0333<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                         | 0 0 3 2 0 0 0 0 0 0 0 2 0 0 4 0 0 4 0 0 0 2 0 2                                                  | 2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2. | - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2                                   | 0<br>0<br>215555<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                          | 0 0 N 0 0 0 0 0 0 0 0 0 0 0 0 1 N 0 0 0 0                                        | 3<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                         | 3,5138<br>1,7569<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      | 320000000000000000000000000000000000000                                                          | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 000000000000000000000000000000000000000                                                          |
| LUTX<br>UB32C<br>URCNA<br>URCNA<br>URCNA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>URCASA<br>U                                                                                                                                                 | ТЭК, НОМАЯ<br>ТТК, НОМАЯ<br>ЦВВС, НОМАЯ<br>UBCL, НОМАЯ<br>UCCL, НОМАЯ<br>UCCL, НОМАЯ<br>UCCL, НОМАЯ<br>UCCL, НОМАЯ<br>UCCL, НОМАЯ<br>UCCL, НОМАЯ<br>UCCL, НОМАЯ<br>UCSL, Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 61<br>115<br>97<br>124<br>57<br>61<br>484<br>118<br>29<br>29<br>80<br>27<br>76<br>50<br>128<br>80<br>27<br>76<br>50<br>129<br>100<br>123<br>50<br>123<br>50<br>123<br>50<br>123<br>50<br>123<br>50<br>123<br>50<br>123<br>50<br>27<br>57<br>57<br>57<br>57<br>57<br>57<br>57<br>57<br>57<br>57<br>57<br>57<br>57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |                                                                                                    | 0<br>2,50083<br>1,0033<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                        | 0 0 3 2 0 0 0 0 0 0 0 0 2 0 0 4 0 0 4 0 0 0 0                                                    | 2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2. | - 2 - 3 - 2 - 3 - 3 - 3 - 3 - 3 - 2 - 3 - 2 - 2                           | 0<br>0<br>215555<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                          | 0 G N O O O O O O O O O O O O E N O O O O O                                      | 3<br>3<br>3<br>3<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                         | 3,5138<br>1,7569<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      | 3 2 0 0 0 0 0 0 0 0 0 0 0 4 0 0 8 5 0 4 2 0 6 0 0 0 4 0 4 0 0 0 0                                | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 000000000000000000000000000000000000000                                                          |
| UTTX<br>UB32<br>URXN4<br>URX13<br>UNC135<br>UNC456<br>UNC456<br>US51<br>UN7455<br>WA551<br>WA551<br>WA552<br>WA552<br>WA552<br>ZF931 CNTF<br>ZF931 CNTF<br>ZF9                                                                                                                                                                                                                                                                                                                                                                                                                                                                | THS, HUMAN           TTK, HUMAN           TTK, HUMAN           UDOLL, HUMAN           UDOLL, HUMAN           UDOLL, HUMAN           UDOLL, HUMAN           UDOLL, HUMAN           UDOLL, HUMAN           USTL, HUMAN           USTL, HUMAN           VICEL, HUMAN           ACIG, HUMAN           VICEL, HUMAN           ACIG, HUMAN <tr< td=""><td>61<br/>115<br/>97<br/>44<br/>57<br/>61<br/>484<br/>118<br/>29<br/>27<br/>88<br/>80<br/>27<br/>50<br/>50<br/>125<br/>100<br/>175<br/>100<br/>175<br/>100<br/>45<br/>107<br/>45<br/>107<br/>45<br/>107<br/>45<br/>107<br/>205<br/>127<br/>205<br/>121<br/>229<br/>205<br/>207<br/>24<br/>207<br/>207<br/>207<br/>207<br/>207<br/>207<br/>207<br/>207<br/>207<br/>207</td><td></td><td></td><td>0<br/>2,5069<br/>3,9333<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0</td><td>0<br/>3<br/>2<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0</td><td>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.1748<br/>2.</td><td></td><td>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0</td><td>0 0 N 0 0 0 0 0 0 0 0 0 0 0 ½ ½ 0 0 0 0</td><td>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0</td><td>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0</td><td>3,5138<br/>1,7565<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0</td><td>3 2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 8 3 0 4 2 0 6 0 0 0 4 0 1 0 0 0 0 0 0</td><td>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0</td><td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td></tr<> | 61<br>115<br>97<br>44<br>57<br>61<br>484<br>118<br>29<br>27<br>88<br>80<br>27<br>50<br>50<br>125<br>100<br>175<br>100<br>175<br>100<br>45<br>107<br>45<br>107<br>45<br>107<br>45<br>107<br>205<br>127<br>205<br>121<br>229<br>205<br>207<br>24<br>207<br>207<br>207<br>207<br>207<br>207<br>207<br>207<br>207<br>207                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |                                                                                                    | 0<br>2,5069<br>3,9333<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                    | 0<br>3<br>2<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                     | 2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2. |                                                                           | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                         | 0 0 N 0 0 0 0 0 0 0 0 0 0 0 ½ ½ 0 0 0 0                                          | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                         | 3,5138<br>1,7565<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0           | 3 2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 8 3 0 4 2 0 6 0 0 0 4 0 1 0 0 0 0 0 0                          | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                          |
| 117К<br>UB32C<br>UCK1<br>UCC135<br>UCC135<br>UCC135<br>UCC21<br>US51<br>US52<br>US52<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US55<br>US555<br>US55<br>US55<br>US55<br>US55<br>US55<br>US555<br>US55<br>US55<br>U                                                                                                                                                                                                                                                                                                                                                           | ТЭК, НОМАЯ<br>ТТК, НОМАЯ<br>ЦЭКС, НОМАЯ<br>USCL, НОМАЯ<br>ACC 19, НОМАЯ<br>USCL, НОМАЯ<br>USCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 61<br>115<br>97<br>44<br>57<br>61<br>484<br>129<br>78<br>80<br>76<br>20<br>57<br>62<br>50<br>125<br>10<br>10<br>10<br>27<br>29<br>29<br>10<br>27<br>29<br>20<br>50<br>125<br>10<br>10<br>20<br>20<br>57<br>20<br>57<br>20<br>57<br>20<br>57<br>20<br>57<br>57<br>57<br>57<br>57<br>57<br>57<br>57<br>57<br>57<br>57<br>57<br>57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |                                                                                                    | 0<br>2.59089<br>1.0333<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                        |                                                                                                  | 2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2. |                                                                           | 0<br>0<br>2,15555<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                         | 0 C N C C C C C C C C C C C C C C C C C                                          | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>3<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                         | 3,5138<br>1,726<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0       | * 2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 # 5 0 # 2 0 6 0 0 0 4 0 4 0 0 0 0 0 0 0                          | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      |
| TTK<br>UB35C<br>UB35C<br>UCK13<br>UNC438<br>UCK23<br>UNC438<br>UNC438<br>UNC438<br>UNC438<br>UNA64<br>US51<br>UNA64<br>UNA64<br>UNA64<br>UNA64<br>UNA64<br>UNA64<br>UNA64<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTBA<br>ACTB    | THS, HUMAN           TT, HUMAN           UDAL, HUMAN           UDAL, HUMAN           UDAL, HUMAN           UCCL, HUMAN           UCCL, HUMAN           DAL, HUMAN           UDAL, HUMAN           UDAL, HUMAN           USAL, HUMAN           USAL, HUMAN           USAL, HUMAN           USAL, HUMAN           VICL, HUMAN           VICL, HUMAN           VICL, HUMAN           VICL, HUMAN           ZUTCL, HUMAN           ZUTL, HUMAN           ZUTL, HUMAN           ZUTL, HUMAN           ZUTL, HUMAN           ZUTL, HUMAN           ZUTL, HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 61, 115<br>177, 124<br>172, 124<br>188<br>192, 124<br>192, 124<br>192, 124<br>193, 125<br>194, 125                                                                                                                                                                                                                                                                                                                                                                    |                                         |                                                                                                    | 0<br>2.5069<br>1.9333<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                    | 0 0 3 2 0 0 0 0 0 0 0 2 0 0 4 0 0 4 0 0 0 0 0                                                    | 2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2. | - 2 - 3 - 2 - 3 - 3 - 3 - 3 - 3 - 2 - 3 - 2 - 2                           | 0<br>2,15355<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                              | 0 0 N 0 0 0 0 0 0 0 0 0 0 1 N 0 0 0 0 0                                          | )<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                         | 3.5138<br>1.7565<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                    | 3200000000000004008504206004040000044                                                            | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      |
| 11TK<br>UB35C<br>UB35C<br>UCK1<br>UVCC35<br>UVCC35<br>UVCC35<br>UVCC35<br>UVCC3<br>UVCC3<br>UVCC3<br>UVC55<br>UVCA6<br>UVC55<br>UVCA6<br>UVC55<br>UVCA6<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC55<br>UVC5    | ТТК, НОМАЯ<br>ТТК, НОМАЯ<br>USAL,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 61, 119<br>177, 119<br>174, 174, 174, 174, 174, 174, 174, 174,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |                                                                                                    | 0<br>2.5082<br>1.9333<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>1.5333<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                       | 0 0 3 7 6 0 0 0 0 0 0 0 7 6 0 4 0 0 4 0 0 0 0 7 0 7 0 7 0 0 0 0 0 0                              | 2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2. | - 2 - 3 - 2 - 3 - 3 - 3 - 3 - 3 - 2 - 2                                   | 21535<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0            | 0 0 N 0 0 0 0 0 0 0 0 0 0 0 0 1 N 0 0 0 0                                        | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                         | 3.5138<br>1.726<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                     | * * * * * * * * * * * * * * * * * * * *                                                          | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      |
| - ттк<br>UBS3C<br>UBS3C<br>URMA<br>UCK13<br>UNC438<br>UCC21<br>UNC436<br>UNC454<br>UNC454<br>UNC454<br>UNC454<br>UNC454<br>UNC454<br>UNC454<br>UNC454<br>UNC454<br>UNC454<br>UNC454<br>UNC454<br>UNC454<br>UNC454<br>UNC454<br>UNC454<br>UNC454<br>UNC454<br>UNC454<br>UNC454<br>UNC454<br>UNC454<br>UNC454<br>UNC454<br>UNC454<br>UNC454<br>UNC454<br>UNC454<br>UNC454<br>UNC454<br>UNC454<br>UNC454<br>UNC454<br>UNC454<br>UNC454<br>UNC454<br>UNC454<br>UNC454<br>UNC454<br>UNC454<br>UNC454<br>UNC454<br>UNC454<br>UNC454<br>UNC454<br>UNC454<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC455<br>UNC4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ТНА, НОМАЯ<br>ТТА, НОМАЯ<br>U BOAL, HUMAN<br>U CCL, HUMAN<br>U CCL, HUMAN<br>U CCL, HUMAN<br>U CCL, HUMAN<br>ELANCI, HUMAN<br>ELANCI, HUMAN<br>VIES, HUMAN<br>ACI B, HU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 61, 118<br>197<br>118<br>29<br>29<br>28<br>80<br>27<br>20<br>29<br>28<br>80<br>27<br>20<br>20<br>125<br>20<br>20<br>125<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |                                                                                                    | 0<br>2,50053<br>1,9333<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                   |                                                                                                  | 2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2.1748<br>2. | - 2 3 3 2 3 3 3 3 3 3 3 3 3 3 2 3 2 3 2                                   | 0<br>2,1535<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                               | 0 a N a C a a a a a a a a a a a a <u>k</u> N a a a a a a a a a a a a a a a a a a | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                         | 3,5138<br>1,7569<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                    | 3 2 0 0 0 0 0 0 0 0 0 0 4 0 0 0 7 5 0 4 2 0 6 0 0 0 4 0 0 0 0 4 4 0 0                            | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      |
| LITE<br>UB25C<br>URXNA<br>UCCL1<br>UVCC38<br>UVCC38<br>UVCC38<br>UVCC38<br>UVCC38<br>UVCC38<br>UVCC38<br>UVCC38<br>UVCC38<br>UVCC38<br>UVCC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UVC38<br>UV       | ТЭК, НОМАЙ<br>ТТК, НОМАЙ<br>ЦЭКЭЦ, НОМАЙ<br>UCSL,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 61, 119<br>177, 40<br>57, 61, 40, 41, 42<br>20, 97, 42, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |                                                                                                    | 0<br>2,2,905<br>1,1033<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                   | 0 0 3 7 0 0 0 0 0 0 0 7 0 0 4 0 0 4 0 0 0 0 7 0 7                                                | 2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2.1248<br>2. |                                                                           | 0<br>2,1555<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                               | 0 0 2 0 0 0 0 0 0 0 0 0 0 0 1 5 0 0 0 0 0 0 0                                    | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                         | 1,2,138<br>0,2,2,44<br>0,2,44<br>0,44<br>0,44<br>0,44<br>0,44<br>0,4                                                 | 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                          | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      |
| LITE<br>UB32C<br>URRNA<br>UCK13<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138<br>UVC138                                                                                                                                                     | ТНА, НОМАЯ<br>ТТА, НОМАЯ<br>U BOAL, HUMAN<br>U CCL, HUMAN<br>U CCL, HUMAN<br>U CCL, HUMAN<br>U CCL, HUMAN<br>U CCL, HUMAN<br>U CCL, HUMAN<br>DI CL, HUMAN<br>U CL, HUMAN<br>U CL, HUMAN<br>U CL, HUMAN<br>U CL, HUMAN<br>U CL, HUMAN<br>U STAL, HUMAN<br>U STALL, HUMA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 61, 119<br>119<br>77, 40<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |                                                                                                    | 0<br>2,2,905<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                             | 0 0 3 2 0 0 0 0 0 0 0 0 2 0 0 2 0 0 4 0 0 4 0 0 0 0                                              | 2.1268<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.1488<br>2.14888<br>2.1488<br>2.1488<br>2.1488<br>2.14888<br>2.1488<br>2.1488<br>2.1488<br>2.1488     |                                                                           | 0<br>2,1555<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                               | 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                          | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                         | 1,5,138<br>0,5,66<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                   | 1 1 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 M 5 0 4 1 0 6 0 0 0 4 0 0 0 0 0 0 4 4 0 0 0 0 0 0              | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      |
| UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UIREC.<br>UI                                                                                                                                                    | ТЭК, НОМАЙ<br>ТТК, НОМАЙ<br>ТТК, НОМАЙ<br>ЦВЛКК, НОМАЙ<br>USAL,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 61.119<br>17.24<br>17.25<br>7.61<br>18.29<br>7.72<br>50<br>17.72<br>50<br>17.72<br>50<br>17.72<br>50<br>17.72<br>50<br>17.72<br>50<br>17.72<br>50<br>17.72<br>50<br>17.72<br>50<br>17.72<br>50<br>17.72<br>50<br>17.72<br>50<br>17.72<br>50<br>17.72<br>50<br>17.72<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         |                                                                                                    | 0<br>2,5905<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                              |                                                                                                  | 2.1288, 21,288, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228, 22,228                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                           | 0<br>2,1555<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      | 0 0 1 0 0 0 0 0 0 0 0 0 0 0 15 5 0 0 0 0                                         | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                         | 1,2,513<br>,2,269<br>,2,269<br>,0<br>,0<br>,0<br>,0<br>,0<br>,0<br>,0<br>,0<br>,0<br>,0                              | 110000000000000000000000000000000000000                                                          | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3      |
| URSC<br>URSC<br>URSC<br>UCR1<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UVC65A<br>UV                                                                                                                                                  | ТНА, НОМАЯ<br>ТТА, НОМАЯ<br>ТТА, НОМАЯ<br>ТТА, НОМАЯ<br>ТТА, НОМАЯ<br>ТТА, НОМАЯ<br>ТТА, НОМАЯ<br>ПТА, НОМАЯ<br>U SDAL, НОМАЯ<br>LCCL, НОМАЯ<br>LCCL, НОМАЯ<br>VICEL, НОМАЯ<br>VICE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 61,119<br>197,120,75<br>51,140<br>118<br>29,76<br>80,07<br>50,55<br>10,119<br>10,125<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,17<br>20,10                   |                                         |                                                                                                    | 0<br>2.5085<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                              | 0 8 7 9 0 0 0 0 0 0 0 0 7 0 0 4 0 0 4 0 0 0 0 7 0 7                                              | 2.1268<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2.1288<br>2. | - ~                                                                       | 0<br>2,1555<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                               | 0 0 2 0 0 0 0 0 0 0 0 0 0 15 5 0 0 0 0 0 0 0                                     | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                         | 1,2,13,263<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                          | 1 2 0 0 0 0 0 0 0 0 0 0 4 0 0 <b>8 5 0 4 2 0 0 0 0 4 0 4 0 0 0 0 0 4 4 0 0 0 0</b>               | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      |
| 111<br>111<br>111<br>111<br>111<br>111<br>111<br>111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ТВК, НОМАЯ<br>ТТК, НОМАЯ<br>ТТК, НОМАЯ<br>ТТК, НОМАЯ<br>ТТК, НОМАЯ<br>ЦВЛАК, НОМАЯ<br>UCSL, НО                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 61.119<br>77.24<br>77.24<br>78.00<br>77.02<br>90<br>77.02<br>90<br>77.02<br>90<br>77.02<br>90<br>77.02<br>90<br>77.02<br>90<br>77.02<br>90<br>77.02<br>90<br>77.02<br>90<br>77.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.020<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>97.02<br>9 |                                         |                                                                                                    | 0<br>2,5965<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                         |                                                                                                  | 2.1268, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288, 2.1288                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                           | 0<br>2,1555<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                               | 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 5 0 0 0 0                                          | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                         | 1,2,513<br>2,2,569<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                  |                                                                                                  | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      |
| инето<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO<br>UINETO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ТНА, НОМАЯ<br>ТТА, НОМАЯ<br>ТТА, НОМАЯ<br>ТТА, НОМАЯ<br>ТТА, НОМАЯ<br>ТТА, НОМАЯ<br>ТТА, НОМАЯ<br>ПТА, НОМАЯ<br>U SDAL, HUMAN<br>LCCL, HUMAN<br>LCCL, HUMAN<br>LCCL, HUMAN<br>VCCL, HUMAN<br>VCCL, HUMAN<br>VCCL, HUMAN<br>VCCL, HUMAN<br>LCCL, HUMA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 61.119<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17<br>17.17                |                                         |                                                                                                    | 0<br>2.5085<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                              |                                                                                                  | 2.1268<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2. | - ~                                                                       | 0<br>2,1555<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                               | 0 0 × 0 0 0 0 0 0 0 0 0 0 0 0 15 × 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0           | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                         | 1,2,3,3,2,63<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                        | 110000000000000000000000000000000000000                                                          | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3                                                            |
| 111<br>UBSIC<br>UBSIC<br>UCK1<br>UCK1<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44<br>UKC44                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ТВК, НОМАЯ<br>ТТК, НОМАЯ<br>ТТК, НОМАЯ<br>ТТК, НОМАЯ<br>ПТК, НОМАЯ<br>ПТК, НОМАЯ<br>ЦВОКС, НОМАЯ<br>UCSCL, НОМАЯ<br>ОССС, НОМАЯ<br>UCSCL, НОМАЯ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 61.119 岁34 57 61.444 118 22 29 月 團 圓 07 72 50 125 60 119 07 12 50 77 43 119 22 17 76 36 52 17 76 36 53 64 111 110 29 10 12 77 43 10 12 10 10 10 10 10 10 10 10 10 10 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |                                                                                                    | 0<br>2,5065<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                              |                                                                                                  | 2.1282,1282,1282,1282,1282,1282,1282,128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                           | 0<br>2,1555<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                               | 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 5 0 0 0 0                                          | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                         | 1,2,513<br>0,2,563<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                  | 11000000000000000000000000000000000000                                                           | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3      |
| ина<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic<br>Ulasic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ТТК, «ПОМАЯ<br>ТТК, «ПОМАЯ<br>URAC, «ПОМАЯ<br>ACC) «ПОМАЯ<br>ACC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 61.118<br>1797 97<br>1978 97<br>1978 98<br>1977 62<br>1977 62<br>1979 1979 1979 1979 1979 1979 1979 1979                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |                                                                                                    | 0<br>2.5065<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                              | 0 0 1 7 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 4 0 0 0 0 0 0 7 0 7                                        | 2.1268<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2.1278<br>2. |                                                                           | 0<br>2,1555<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                               | 0 0 × 0 0 0 0 0 0 0 0 0 0 0 0 × 0 0 0 0                                          | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                     | 1,2,513<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                             | 110000000000000000000000000000000000000                                                          | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3      |
| 111<br>UBSC USA<br>UDSC UCK1<br>UNCAS<br>UCK1<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCAS<br>UNCA                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ТТК, Н. ИМА<br>ТТК, Н. ИМА<br>ТТК, Н. ИМА<br>ТТК, Н. ИМА<br>ПТК, Н. ИМА<br>ПТК, Н. ИМА<br>ПТК, Н. ИМА<br>ПТК, Н. ИМА<br>ИТК, Н. ИМА<br>ИСК, Ц. ИМА<br>ИСК,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 61.10 9734 97 51.444 118 22 29 78 88 80 77 62 50 125 50 127 51 50 127 50 50 127 50 50 50 111 112 20 20 20 125 50 120 120 120 120 120 120 20 20 20 20 20 20 20 20 20 20 20 20 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |                                                                                                    | 0<br>2.5065<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                              |                                                                                                  | 2.1.26.20<br>2.1.26.20<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.26<br>2.1.27.27.27.27.27.27.27.27.27.27.27.27.27.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                           | 0<br>2,1555<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                               | 0 0 1 0 0 0 0 0 0 0 0 0 0 1 5 0 0 0 0 0                                          | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                         | 1,2,513<br>0,2,563<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                  | 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 M 5 0 4 2 0 6 0 0 0 4 0 0 0 0 0 0 0 1 4 0 0 0 0 0 0 0          | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 3 3 3 3 3 3 3 3 3 5 3 5 3 5 3 5 5 5 5 5                                                          |
| инас<br>UBAC<br>UDA<br>UDA<br>UDA<br>UDA<br>UDA<br>UDA<br>UDA<br>UDA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ТТК, «ПОМАЯ<br>ТТК, «ПОМАЯ<br>URAC, «ПОМАЯ<br>URA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 61.110 9740 97 91.4111 22 25 26 26 26 26 27 26 26 27 26 26 27 26 26 27 26 26 27 26 26 27 26 26 27 26 26 27 26 26 27 26 26 27 26 26 27 26 26 27 26 26 27 26 26 26 27 26 26 26 27 26 26 26 27 26 26 26 27 26 26 26 27 26 26 26 27 26 26 26 26 26 26 26 26 26 26 26 26 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |                                                                                                    | 0<br>2.5065<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                              | 0 0 1 7 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 4 0 0 0 0 0 0 7 0 7                                      | 2.1268, 121, 1268, 121, 1268, 121, 1268, 121, 1268, 121, 1268, 121, 121, 121, 121, 121, 121, 121, 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                           | 0<br>2,1555<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                               | 0 0 × 0 0 0 0 0 0 0 0 0 0 0 0 1 × 0 0 0 0                                        | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                     | 1,2,513<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                             | 110000000000000000000000000000000000000                                                          | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3      |
| 111<br>UBSC USA<br>USAC CCA1<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCAL<br>UCA                                                                                                                                                                                                                                                                                                                                                           | ТВК, НОМАЯ<br>ТТК, НОМАЯ<br>USDAL, НОМАЯ<br>USDAL, НОМАЯ<br>USCL, НОМАЯ<br>UCCL, НОМАЯ<br>UCCL, НОМАЯ<br>ADALBOCKZ, НОМАЯ<br>USSI, НОМАЯ<br>USSI, НОМАЯ<br>USSI, НОМАЯ<br>USSI, НОМАЯ<br>VIELE, N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 61.118 77 11.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117 77 12.117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |                                                                                                    | 0<br>2.5065<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                              |                                                                                                  | 2.1282, 21.2282, 22.1282, 22.1282, 22.1282, 22.1282, 22.1282, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1284, 22.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                           | 0<br>2,1555<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                               | 0 0 × 0 0 0 0 0 0 0 0 0 0 0 1 5 0 0 0 0 0 0 0                                    | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                         | 1,2,5139<br>0,2,563<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                 | 1 2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 8 5 0 4 2 0 6 0 0 4 0 1 0 0 0 0 0 0 1 4 4 0 0 0 0 0 0        | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3                                                            |

| CEPSS             | CEP55_HUMAN                       | 54        | 0      | 0 | U           | 0      | 1,4499 | 2 | e           | 0   | 0            | 0       | 0      | e       | 0           | 0      |
|-------------------|-----------------------------------|-----------|--------|---|-------------|--------|--------|---|-------------|-----|--------------|---------|--------|---------|-------------|--------|
| CEPT1             | ADAOC4DGS9_HUMAN                  | 31        | 0      | a | 0           | 0      | 1,4499 | 2 | 2,1535      | 2   | 2,1952       | 2       | 1,7569 | 2       | 0           | а<br>0 |
| CEAP23<br>CHCHD1  | CHA20_HUMAN<br>CHCH1_HUMAN        | 25        | 0      | 0 | 1,9393      | 3      | 1,4499 | 2 | e e         | 0   | 3<br>2.1952  | 2       | 2,6353 | 3       | 0           | 5      |
| CHEK1             | CHK1_HUMAN                        | 54        | 0      | D | 1,9393      | 2      | 1,4499 | 2 | 4,307       | 3   | 9,8786       | 6       | 2,6353 | з       | 4,9829      | 5      |
| CHMP28            | CHM25_HUMAN                       | 24        | 0      | 0 | 0           | 0      | 1,4499 | 2 | 3,2303      | 3   | 0            | 0       | 0      | 0       | 0           | 0      |
| CNOT10            | CNO10 HUMAN                       | 82        | 0      | D | 0           | 0      | 1,4499 | 2 | 0           | 0   | 3            | 0       | 2,6353 | 3       | 0           | 0      |
| COPS7A            | CSN7A_HUMAN                       | 30        | 0      | 0 | D           | 0      | 1,4499 | 2 | 0           | 0   | 0            | D       | 0      | e<br>o  | 0           | 0      |
| CTU1              | CATG_HUMAN (+2)<br>CTU1_HUMAN     | 36        | 0      | 0 | 1,9393      | 2      | 1,4499 | 2 | 3,2305      | 3   | 2,1952       | 2       | 2,6353 | 3       | 0           | 0      |
| CUTC              | CUTC_HUMAN                        | 29        | 0      | D | D           | 0      | 1,4499 | 2 | 0           | 0   | D            | D       | 0      | 0       | 0           | n      |
| DAXX<br>DCTN2     | DAXX_HUMAN<br>DCTN2_HUMAN         | 81        | 0      | 0 | 8,7267      | 9      | 1,4499 | 2 | 2,1555      | 2   | 15,367       | 12      | e<br>e | e<br>e  | 0           | 5      |
| DOX20             | DDX20_HUMAN                       | 92        | 0      | D | 1,9393      | 2      | 1,4499 | 2 | 3,2303      | 3   | D            | 0       | 1,7569 | 2       | 0           | D      |
| DDX56             | DDX56_HUMAN<br>DIAR2_HUMAN        | 62        | 0      | 0 | 1,9393      | 2      | 1,4499 | 2 | 5,3838      | 5   | 7,6834       | 7       | 7,0276 | 2       | 0           | 0      |
| DLG3              | DLG3_HUMAN (+1)                   | 90        | 0      | D | 0           | 0      | 1,4499 | 2 | o           | 0   | э            | 0       | 0      | 0       | 0           | 0      |
| DNAIC19           | TIM14_HUMAN                       | 12        | 0      | D | 1,9393      | 2      | 1,4499 | 2 | 0           | 0   | 0            | D       | 2,6353 | 3       | 2,9897      | 3      |
| DRAP1             | CSUCCE_HUMAN (+1)                 | 23        | 0      | 5 | 1,9393      | 2      | 1,4499 | 2 | e           | 0   | 3            | 0       | 1,7569 | 2       | 0           | 5      |
| DRG2              | A8MZF9_HUMAN (+1)                 | 38        | 0      | D | 0           | 0      | 1,4499 | 2 | 0           | 0   | 0            | 0       | 0      | 0       | 0           | D      |
| DUS2              | DUS2L_HUMAN                       | 55        | 0      | 5 | D           | e e    | 1,4499 | 2 | e<br>e      | 0   | 3            | 0       | C C    | 0       | 0           | 5      |
| EGLN1             | EGLN1_HUMAN                       | 46        | 0      | D | 0           | 0      | 1,4499 | 2 | 0           | 0   | D            | 0       | 1,7569 | 2       | 0           | D      |
| EIF2AR3           | EIF2D_HUMAN                       | 65        | 0      | 5 | 0           | 0      | 1,4499 | 2 | 0           | 0   | 0            | 0       | 0      | 0       | 0           | 5      |
| EIPR1             | A8MUM1_HUMAN (+1                  | 46        | 0      | О | D           | 0      | 1,4499 | 2 | 0           | 0   | Э            | 0       | 0      | 0       | 0           | D      |
| ELMOZ             | ELMOZ_HUMAN (+1)<br>EMC6_HUMAN    | 8.3       | 0      | 0 | 0           | 0      | 1,4499 | 2 | 0           | 0   | 0            | 0       | 0      | 0       | 0           | 5      |
| EXOCES            | MOU IRRBÉ_HUMAN (-                | 95        | ٥      | D | D           | o      | 1,4499 | 2 | 0           | ٥   | Э            | υ       | 0      | o       | 0           | э      |
| EXOSC4<br>FAM207A | EXOS4_HUMAN<br>E207A_HUMAN        | 26        | 0      | 0 | 0 4.8482    | 0      | 1,4499 | 2 | 0           | 0   | 9.8786       | 0       | 6,1491 | 6 7     | 0 4.9829    | 5      |
| FAIL              | FACR1_HUMAN                       | 59        | 0      | D | D           | 0      | 1,4499 | 2 | 16,151      | 11  | 2,1952       | 2       | D      | 0       | 15,945      | 11     |
| FKRP              | FKRP_HUMAN<br>ENBPA_HUMAN         | 55        | 0      | 0 | 0           | 0      | 1,4499 | 2 | 4,307       | 4   | 0            | 0       | 0      | 0       | 0           | 0      |
| GARI              | GAR1_HUMAN                        | 22        | õ      | D | 1,9393      | 2      | 1,4499 | 2 | õ           | 0   | 3,2929       | 3       | 4,3922 | 5       | 1,9932      | 2      |
| GARS              | GARS_HUMAN                        | 83        | 0      | 0 | 0           | 0      | 1,4499 | 2 | 0           | 0   | 0            | 0       | 0      | 0       | 0           | 0      |
| GOLGA5            | GOGAS_HUMAN                       | 83        | 0      | D | 0           | o      | 1,4499 | 2 | c           | 0   | 3            | 0       | 0      | c       | 0           | D      |
| GE K2             | ARBK1_HUMAN                       | 80        | 0      | 0 | U           | 0      | 1,4499 | 2 | 0           | 0   | 0            | 0       | 0      | 0       | 0           | 2      |
| GTPBP8            | F8WBY6_HUMAN (+1)                 | 16        | 0      | 0 | 0           | 0      | 1,4499 | 2 | e           | 0   | 2,1952       | 2       | 0      | 0       | 0           | 0      |
| HIT               | HIX_HUMAN                         | 22        | 0      | 0 | D           | 0      | 1,4499 | 2 | 3,2303      | 2   | 3,2929       | 2       | 0      | 0       | 2,9897      | 3      |
| HAUS4             | G3v541_HUMAN (-1)                 | 32        | 0      | 0 | 0           | e      | 1,4499 | 2 | 4,307       | 4   | 9            | 0       | e      | e       | 3,9303<br>Û | D      |
| HMGN5             | HMGNS_HUMAN (+3)                  | 32        | 0      | D | 0           | 0      | 1,4499 | 2 | 0           | 0   | 0            | 0       | 0      | 0       | 0           | D      |
| HOX86<br>HS2ST1   | HXB6_HUMAN<br>HS2ST_HUMAN         | 25<br>42  | 0      | 0 | 4,8482      | 4      | 1,4499 | 2 | 0<br>8.514  | 6   | 8,781 4,3905 | 3       | 4,3922 | 3       | 7,9725      | 5      |
| HSPE1             | B8ZZLS_HUMAN (+1)                 | 11        | 0      | D | 0           | 0      | 1,4499 | 2 | 0           | 0   | D            | 0       | 0      | 0       | 0           | D      |
| IARS2             | STIM_HUMAN<br>IETS7_HUMAN         | 114       | 0      | 0 | 0           | 0      | 1,4499 | 2 | 0<br>4307   | 0   | 0            | 0       | 0      | 0       | 0           | 5      |
| IFT74             | IFT74_HUMAN                       | 69        | 0      | D | 0           | 0      | 1,4499 | 2 | 4,307       | 4   | Э            | 0       | 0      | c       | 0           | 0      |
| ILVBL<br>INTS10   | ILVBL_HUMAN                       | 68        | 0      | 0 | D 0         | 0      | 1,4499 | 2 | 0           | 0   | 0            | 0       | 0      | 0       | 0           | 0      |
| NT512             | INT12_HUMAN                       | 49        | õ      | D | D           | e      | 1,4499 | 2 | e           | 0   | 3            | D       | e      | e       | 0           | 5      |
| INTS3             | INT3_HUMAN                        | 118       | 0      | D | 0           | 0      | 1,4499 | 2 | 0           | 0   | 0            | 0       | 0      | 0       | 0           | 0      |
| KCTD3             | KCTD3_HUMAN                       | 89        | 0      | 5 | D           | C C    | 1,4499 | 2 | e           | 0   | 5            | 0       | e e    | e       | 0           | 5      |
| K AA0100          | K0100_HUMAN (+2)                  | 254       | 0      | D | 0           | 0      | 1,4499 | 2 | 0           | 0   | D            | 0       | 0      | 0       | 0           | 0      |
| KIF7              | KIF7_HUMAN                        | 135       | 0      | 0 | 10,666      | 11     | 1,4499 | 2 | 13,998      | 10  | 5,4881       | 5       | 1,7569 | 2       | 19,932      | 15     |
| KUK7              | KUK7_HUMAN                        | 28        | 2,6099 | 2 | 1,9393      | 2      | 1,4499 | 2 | 0           | 0   | D            | 0       | 0      | 0       | 0           | 0      |
| LANCL2<br>LCN2    | INGAL HUMAN (+1)                  | 23        | 0      | 0 | D           | 0      | 1,4499 | 2 | e<br>e      | 0   | 3            | 0       | 0      | 0       | 0           | 5      |
| LIMA1             | LIMA1_HUMAN                       | 85        | 0      | D | 0           | 0      | 1,4499 | 2 | 0           | 0   | D            | 0       | 1,7569 | 2       | 0           | D      |
| LLGL1             | 1TBP1_HUMAN (                     | 114       | 0      | 0 | 1,9393      | 2      | 1,4499 | 2 | 0           | 0   | 16,464       | 12      | 12,298 | 11      | 8,9592      | 9      |
| LTV1              | LTV1_HUMAN                        | 55        | 0      | D | 2,9089      | 2      | 1,4499 | 2 | e           | 0   | 15,367       | 10      | 21,961 | 11      | 7,9726      | 7      |
| LUC7L2            | LC7L2_HUMAN                       | 47        | 2,5099 | 2 | 4,8482      | 3      | 1,4499 | 2 | 0           | 0   | 18,55        | 8       | 6,1491 | 5       | 5,9795      | 5      |
| LYAN              | LTAILHUMAN                        | 44        | ő      | D | 2,9089      | 3      | 1,4499 | ž | 2,1535      | 2   | 10,976       | 6       | 4,3522 | 4       | 0           | 5      |
| MAIP1             | MAIPI_HUMAN                       | 33        | 0      | D | 0           | 0      | 1,4499 | 2 | 3,2303      | 3   | 0            | 0       | 0      | 0       | 1,9932      | 2      |
| METTU14           | MET14_HUMAN                       | 52        | 0      | 5 | D           | 0<br>0 | 1,4499 | 2 | 2,1535      | 2   | 5            | 0       | 0      | 0       | 0           | 5      |
| MFAP1             | MFAP1_HUMAN                       | 52        | 0      | D | 0           | 0      | 1,4499 | 2 | 7,5373      | 6   | 2,1952       | 2       | 7,0276 | 7       | 0           | 0      |
| MORC2             | MORC2_HUMAN                       | 118       | 0      | D | 0           | 0      | 1,4499 | 2 | 0           | 0   | 5            | 0       | 2,6353 | 3       | 0           | 5      |
| MPG               | 3MG_HUMAN                         | 53        | 0      | 9 | 3,8786      | 4      | 1,4499 | 2 | e           | 0   | 7,6834       | 7       | 0      | 0       | 0           | 0      |
| MRPL10            | RMIC_HUMAN                        | 29        | 0      | 0 | 0           | 0      | 1,4499 | 2 | 0           | 0   | 3,2929       | 2       | 1,7569 | 2       | 0           | 5      |
| MIPL17            | RM17_HUMAN                        | 20        | 0      | 9 | 2,9089      | 3      | 1,4499 | 2 | e           | 0   | 4,3905       | 4       | 2,6353 | 3       | 0           | 0      |
| MRPL2<br>MRPL22   | E7ESLO HUMAN (+2)                 | 33<br>24  | 0      | 0 | 2,9089      | 2      | 1,4499 | 2 | 2,1535      | 2   | 5,4881       | 4       | 2,6353 | 3       | 0           | 3      |
| MRPL24            | RM24_HUMAN                        | 25        | 0      | D | D           | 0      | 1,4499 | 2 | Q           | 0   | 2,1952       | 2       | 1,7569 | 2       | 0           | D      |
| MRPL28<br>MRPL3   | E7ETU7_HUMAN (+1)                 | 29<br>(2  | 0      | 0 | 0           | 0      | 1,4499 | 2 | 0<br>C      | 0   | 0<br>9,8786  | 0 8     | 2,0353 | 3       | 0           | 0      |
| MRPL39            | C9JG87_HUMAN (+1)                 | 34        | 0      | 0 | 4,8482      | 5      | 1,4499 | 2 | 0           | 0   | 10,976       | 7       | 1,7569 | 2       | 0           | 0      |
| MRPL40            | ICTI_HUMAN (+1)                   | 24        | 0      | 0 | D           | 0      | 1,4499 | 2 | 0           | 0   | 3            | 0       | 1,7569 | 2       | 0           | 5      |
| MRPS16            | RT16_HUMAN                        | 15        | 0      | 0 | 3,8786      | 4      | 1,4499 | 2 | C           | 0   | 2,1952       | 2       | 0      | 0       | 0           | 0      |
| M5H3              | M5H3_HUMAN                        | 11        | 0      | 0 | 3,6786<br>0 | 3      | 1,4499 | 2 | 2,1535      | 2   | 4,3905       | 2       | 3,5138 | 4       | 0           | 0      |
| MTERF4            | MTEF4_HUMAN                       | 44        | 0      | 0 | 5,8178      | 5      | 1,4499 | 2 | C           | 0   | 5,4881       | 5       | 3,5138 | 4       | 0           | 0      |
| MTMR1<br>MYOG     | FBWA39_HUMAN<br>MOD95GC1_HUMAN (4 | 76<br>150 | 0      | 0 | 1,9393      | 2      | 1,4499 | 2 | 2,1535      | 2   | 2,1952       | 2       | 8,7845 | 10<br>3 | 1,9932      | 2      |
| NAASO             | E7EQ69_HUMAN (+1)                 | 19        | 0      | D | Ð           | C-     | 1,4499 | 2 | e           | 0   | D            | D       | 0      | e       | 0           | D      |
| NACC1<br>NBAS     | NACCI_HUMAN<br>NBAS_HUMAN         | 57<br>269 | 0      | 0 | 0           | 0      | 1,4499 | 2 | C<br>C      | 0   | 0            | 0       | 3,5138 | 2       | 3,9963      | 3      |
| NCAPH2            | MOASYYG7_HUMAN (+                 | 66        | 0      | D | n           | 0      | 1,4499 | 2 | 0           | ō   | a            | D       | 1,7569 | 2       | 0           | D      |
| NDULA9            | NDE1_HUMAN<br>NDUAS_HUMAN         | 39<br>63  | 0      | 0 | 0           | 0      | 1,4499 | 2 | 0           | 0   | 0<br>4,3905  | 0       | 0      | 0       | 0           | 0<br>2 |
| NDUF610           | H35PJS_HUMAN (+1)                 | 19        | 0      | 0 | 0           | 0      | 1,4499 | 2 | 0           | 0   | 0            | 0       | 0      | 0       | 1,9932      | 2      |
| NDUF58            | NDUS8_HUMAN                       | 24        | 0      | 0 | 0           | 0      | 1,4499 | 2 | 0           | 0   | 0            | 0       | 0      | 0       | 0           | 0      |
| NF1               | NF1_HUMAN                         | 319       | 0      | D | 0           | 0      | 1,4499 | 2 | 0           | 0   | 0            | 0       | 2,6353 | 3       | 0           | 5      |
| NF2               | MERL_HUMAN                        | 70        | 0      | 0 | 0           | 0      | 1,4499 | 2 | e           | 0   | 3,2929       | 3       | 8,7845 | 10      | 0           | 0      |
| NMD3              | CSIADE_HUMAN (+1)                 | 90<br>60  | 0      | 5 | 0           | 0      | 1,4499 | 2 | e           | 0   | 3            | 0       | 1,7569 | 0       | 0           | 5      |
| NOC4L             | NOC4L_HUMAN                       | 58        | 0      | 0 | 1,9393      | 2      | 1,4499 | 2 | 6,4605      | 6   | 18,65        | 13      | 17,569 | 13      | 14,949      | 12     |
| NO.11<br>NOLS     | NOL11_HUMAN<br>MADACMRWE_HUMAN    | 81<br>112 | 0      | 0 | 0<br>5,8178 | 0      | 1,4499 | 2 | 0<br>3,2303 | 0   | 3<br>8,781   | 0       | 0      | 0       | 0           | 0      |
| NOSIP             | NOS/P_HUMAN                       | 33        | 0      | 0 | 0           | 0      | 1,4499 | 2 | 0           | 0   | Э            | 0       | 0      | 0       | 0           | D      |
| NR2F2             | CO12_HUMAN<br>NUP93_HUMAN         | 46<br>92  | 0      | 0 | 0           | 0      | 1,4499 | 2 | 0           | 0   | 2,1952       | 2       | 0      | 0       | 2,9897      | 3      |
| OBSL1             | AGNNSO_HUMAN                      | 197       | 0      | 0 | 2,9089      | 3      | 1,4499 | 2 | 16,151      | 11  | 9,8786       | 8       | 0      | o       | 0           | 0      |
| OGDH              | DACOSSISS_HUMAN (+                | 113       | 0      | 0 | 0           | 0      | 1,4499 | 2 | e<br>o      | 0   | 9            | 0       | 0      | 0       | 0           | 2      |
| ORCS              | ORC6_HUMAN                        | 28        | 0      | 0 | 0           | c      | 1,4499 | 2 | e           | 0   | 3            | 0       | 0      | e       | 0           | 5      |
| OTUD65            | A087X0W9_HUMAN (                  | 37        | 0      | 0 | 0           | 0      | 1,4499 | 2 | 0           | 0   | 0            | 0       | 0      | 0       | 0           | 0      |
| PDE12             | PANUS_HUMAN<br>P6T1Q0_HUMAN (+1)  | 151<br>52 | 0      | 0 | 9,d1/8<br>D | 0      | 1,4499 | 2 | e           | 0   | 0            | 14<br>D | 1,7569 | 2       | 1,9932      | 2      |
| PDHX              | ODPX_HUMAN                        | 54        | 0      | 0 | 0           | 0      | 1,4499 | 2 | 0           | 0   | D            | 0       | 0      | 0       | 0           | 0      |
| PDX3<br>PDZD8     | PDES_HUMAN<br>PDZD8_HUMAN         | 129       | 0      | 0 | 0           | 0      | 1,4499 | 2 | 0           | 0 0 | 9            | 0       | 0      | 0       | 1,9932      | 2      |
| PELO              | PELO_HUMAN                        | 43        | 0      | o | 0           | 0-     | 1,4499 | 2 | 5,3838      | 5   | 2,1952       | 2       | 0      | c       | 0           | D      |
| PES1              | IBS MCF9_HUMAN (+1)               | 66        | 0      | D | 14,545      | 11     | 1,4499 | 2 | 4,307       | 4   | 23,05        | 13      | 13,177 | 14      | 3,9853      | 4      |

| PHESA                               | PHF5A_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12                                 | 0      | 9                     | 0                     | 0                | 1,4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | e                          | 0                | 3                               | 0                | 0                               | e                     | 0                          | э                     |
|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------|-----------------------|-----------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------|------------------|---------------------------------|------------------|---------------------------------|-----------------------|----------------------------|-----------------------|
| PIP4K2A                             | PI42A_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 46                                 | 0      | 0                     | 1,9393                | 2                | 1,4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | 0                          | 0                | 3,2929                          | 3                | 2,6353                          | 3                     | 0                          | n<br>0                |
| PIP4KZU                             | PH42C_HUMAN<br>2LEC_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 532                                | 0      | 0                     | D                     | 0                | 1,4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | 21535                      | 2                | 2.1952                          | 2                | 2,6353                          | 3                     | 2 9897                     | 2                     |
| PIEKHAL                             | OSRGS4 HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 44                                 | 0      | 0                     | 0                     | 0                | 1,4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | 0                          | 0                | 5                               | 0                | 0                               | 0                     | 2,9597                     | 2                     |
| PLPPS                               | PLPPE HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 32                                 | õ      | 0                     | 0                     | e                | 1,4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | 0                          | 0                | 3                               | 0                | 0                               | 0                     | 0                          | D                     |
| PNPLAE                              | PLPL6_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 150                                | 0      | D                     | 3,8786                | 3                | 1,4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | 4,307                      | 3                | 3                               | D                | 0                               | 0                     | 2,9897                     | 3                     |
| POLA2                               | DPOA2_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 66                                 | 0      | D                     | 0                     | 0                | 1,4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | o                          | 0                | Э                               | 0                | 3,5138                          | 3                     | 0                          | Э                     |
| POLG                                | DPOG1_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 140                                | 0      | 0                     | 1,9393                | 2                | 1,4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | C                          | 0                | a                               | D                | 0                               | e                     | Ó                          | D                     |
| POLRIE                              | RPA45_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 54                                 | 0      | 0                     | 0                     | 0                | 1,4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | 3,2303                     | 3                | 6,5857                          | 5                | 0                               | 0                     | 3,9953                     | 4                     |
| POLIZH                              | PURI HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 57                                 | 0      | 0                     | 1,5353                | 2                | 1,4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | 2,1555                     | 2                | 3                               | 0                | 2,6353                          | 3                     | 0                          | 5                     |
| PPP2CA                              | PP2AA HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 36                                 | 0      | 0                     | 0                     | 0                | 1,4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | 18,505                     | 11               | 3                               | 0                | 0                               | e a                   | 0                          | 2                     |
| PPP2R1A                             | 2AAA_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 65                                 | 0      | 0                     | Ð                     | e                | 1,4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | 68,912                     | 24               | 3,2929                          | 3                | 3,5138                          | 4                     | 10,952                     | n                     |
| POBP1                               | POBP1_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 30                                 | 0      | D                     | 0                     | 0                | 1,4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | 0                          | 0                | D                               | 0                | 0                               | 0                     | 0                          | D                     |
| PRKAB2                              | AAKB2_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 30                                 | 0      | 0                     | 0                     | 0                | 1,4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | C                          | 0                | Э                               | D                | 0                               | e                     | 0                          | D                     |
| PRKAR2A                             | KAP2_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 46                                 | 0      | 0                     | n                     | 0                | 1,4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | 0                          | 0                | 0                               | 0                | 0                               | 0                     | 0                          | a                     |
| PRMT3                               | ADAD MSN 7_HUMAN (+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 53                                 | 0      | 0                     | 0                     | 0                | 1,4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | 0                          | 0                | 9                               | 0                | 0                               | 0                     | 0                          | 0                     |
| PRPIALIA                            | PRODAL HEIMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20                                 | 0      | 5                     | 0                     | 0                | 1,4455                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | (207                       | 4                | 3                               | 0                | 1,7565                          | 0                     | 0                          | 5                     |
| PSMD8                               | PSMD8 HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 40                                 | 0      | 0                     | 0                     | e                | 1,4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | 0                          | 0                | 3                               | 0                | 1.7569                          | 2                     | ő                          | 5                     |
| PSTPIP2                             | PPIP2_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 39                                 | 0      | D                     | 0                     | 0                | 1,4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | 0                          | 0                | D                               | D                | 0                               | 0                     | 0                          | D                     |
| PTPN13                              | PTN13_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 277                                | 0      | 0                     | 0                     | 0                | 1,4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | 0                          | 0                | 0                               | 0                | 6,1491                          | 6                     | 12,956                     | 13                    |
| PYCR3                               | ADADMQS1_HUMAN (-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 30                                 | 0      | D                     | 4,8482                | 4                | 1,4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | 5,3838                     | 5                | 3,2929                          | 3                | 2,6353                          | 3                     | 1,9932                     | 2                     |
| RABLS                               | RAB.3_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 26                                 | 0      | 0                     | 0                     | 0                | 1,4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | 0                          | 0                | 0                               | 0                | 0                               | 0                     | 0                          | 0                     |
| PACE                                | RAGIL_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 72                                 | 0      | 2                     | 0                     | 0                | 1,4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | 11.8//                     | 11               | 3                               | 0                | 1 75.60                         | 2                     | 4 0820                     | 5                     |
| RAP1B                               | F5GX62 HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 16                                 | 0      | 0                     | 0                     | 0                | 1.4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | 0                          | 0                | 3                               | 0                | 0                               | 0                     | 0                          | D                     |
| RBBPG                               | R58P4_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 48                                 | 0      | D                     | 1,9393                | 2                | 1,4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | 2,1535                     | 2                | 4,3905                          | 4                | 5,2707                          | 4                     | 4,9829                     | 5                     |
| R3M34                               | RBM34_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 49                                 | 0      | 0                     | 0                     | 0                | 1,4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | 10,768                     | 10               | 4,3905                          | 4                | 4,3922                          | 5                     | 5,9795                     | 6                     |
| RBSN                                | RENSS_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 89                                 | ٥      | D                     | D                     | o                | 1,4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | c                          | 0                | э                               | D                | 0                               | e                     | 0                          | э                     |
| RULL                                | RECT_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 41                                 | 0      | 3                     | 0                     | 0                | 1,4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       | 0                          | 0                | 8,781                           | /                | 6,1451                          | 2                     | 0                          | 0                     |
| RIOK2                               | BIOK2 HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 63                                 | 0      | 0                     | 4,8082                | ŝ                | 1,4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | 6 307                      | 4                | 13 171                          | 11               | 12 2:08                         | 11                    | 2 9897                     | 3                     |
| RIOX1                               | RIOX1_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 71                                 | 0      | 0                     | 3,8786                | 4                | 1,4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | 3,2303                     | 3                | 3,2929                          | 3                | 1,7569                          | 2                     | 0                          | D                     |
| <b>ENASEH2A</b>                     | RNH2A_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 33                                 | 0      | 0                     | Ð                     | 0                | 1,4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | e                          | Ó                | 0                               | D                | Ð                               | e                     | 0                          | D                     |
| RNF2                                | RING2_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 38                                 | 0      | D                     | n                     | 0                | 1,4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | 0                          | 0                | D                               | 0                | 0                               | 0                     | 0                          | D                     |
| RPL15                               | RL15_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 24                                 | 0      | 0                     | 0                     | 0                | 1,4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | 5,3838                     | 2                | 5,4881                          | 2                | 1,7569                          | 2                     | 1,9932                     | 2                     |
| RPL18A                              | REALAZ_HUMAN (+1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 17                                 | 0      | 9                     | Z,9089                | 3                | 1,4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | 0,307                      | 3                | 4,3905                          | 4                | 1,7569                          | 2                     | 2,9897                     | 5                     |
| HPL37A                              | C91423 HUMAN (+1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8                                  | 0      | 2                     | 2,9089                | 2                | 1,4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | 6,307                      | 4                | 43905                           | 6                | 17469                           | 2                     | 35554                      | 2<br>D                |
| RPLP2                               | RLA2_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12                                 | ő      | 0                     | 0                     | ô                | 1,4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | 0                          | 0                | 0                               | 0                | 2,6353                          | 3                     | ő                          | 0                     |
| 8PN2                                | RPN2_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 69                                 | 0      | 0                     | 0                     | 0                | 1,4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | 0                          | 0                | Э                               | 0                | 0                               | 0                     | 0                          | э                     |
| RPRD15                              | RPR18_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 37                                 | ٥      | D                     | D                     | 0                | 1,4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | 0                          | ۵                | D                               | D                | D                               | C C                   | 0                          | D                     |
| RPRD2                               | RPRD2_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 156                                | 0      | 0                     | 0                     | 0                | 1,4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | 0                          | 0                | 0                               | 0                | 0                               | 0                     | 0                          | 0                     |
| RP5Z5                               | HSZ3_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15                                 | 0      | 9                     | 7,75/1                | 4                | 1,4455                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | 2,1535                     | 2                | 7,5854                          | 6                | 1,7565                          | 2                     | 0                          | 3                     |
| SACMI                               | F9PG26_HUMAN (+1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 33<br>56                           | 0      | 0                     | 0                     | 0                | 1,4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | 0                          | 0                | 0,751                           | 0                | 1,7365                          | 0                     | 0                          | 3                     |
| SAP18                               | SAP18 HUMAN (+1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 18                                 | 0      | D                     | 0                     | 0                | 1.4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | e                          | 0                | 9                               | 0                | 1,7565                          | 2                     | 0                          | D                     |
| 5CG81D1                             | SG1D1_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10                                 | 0      | D                     | 0                     | 0                | 1,4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | 0                          | 0                | Э                               | 0                | 0                               | 0                     | 0                          | D                     |
| SCG81D2                             | SC1D2_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10                                 | O      | D                     | D                     | e                | 1,4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | c                          | 0                | э                               | D                | 0                               | e                     | 0                          | D                     |
| 5CG82A1                             | SG2A1_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11                                 | 0      | D                     | 0                     | 0                | 1,4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | 0                          | 0                | 0                               | 0                | 0                               | 0                     | 0                          | D                     |
| 5001                                | JSQLSE_HUMAN (+1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 50                                 | 0      | 0                     | 0                     | 0                | 1,4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | C                          | 0                | 2,1952                          | 2                | 2,6353                          | 3                     | 2,9897                     | 3                     |
| SDAD1                               | SDA1 HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30                                 | 0      | 0                     | 5.9179                | 6                | 1,4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | 3,7303                     | 2                | 5,4991                          | - U              | 6 1491                          | 2                     | 2,9897                     | ź                     |
| SEC11A                              | HOTNAS HUMAN (+3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 16                                 | õ      | 0                     | 0                     | e.               | 1.4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | c                          | 0                | 3                               | 0                | 0,1451                          | é                     | 0                          | 5                     |
| SEC613                              | SC615_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10                                 | 0      | D                     | 1,9393                | 2                | 1,4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | 2,1535                     | 2                | 2,1952                          | 2                | 2,6353                          | 3                     | 1,9932                     | 2                     |
| SERPINB3                            | SPB3_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 45                                 | 0      | 0                     | 4,8482                | 3                | 1,4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | 0                          | 0                | D                               | 0                | 3,5138                          | 4                     | 4,9829                     | 5                     |
| SHOC2                               | SHOC2_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 65                                 | 0      | D                     | D                     | 0                | 1,4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | 0                          | 0                | D                               | D                | 0                               | 0                     | 0                          | D                     |
| 51C12A2                             | G3XAL9_HUMAN (+1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 125                                | 0      | 0                     | 0                     | 0                | 1,4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | 0                          | 0                | 0                               | 0                | 0                               | 0                     | 0                          | D                     |
| SUC25A15                            | OKNT1_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 33                                 | 0      | 9                     | 0                     | 0                | 1,4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | 5,5858                     | 5                | 3                               | 0                | 1 7560                          | 0                     | 4 9979                     | 5                     |
| SUC3049                             | ZNT9 HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 64                                 | õ      | 0                     | 0                     | e<br>e           | 1 4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | 0                          | 0                | 3 2929                          | 3                | 0                               | 0                     | 5 9795                     | 4                     |
| SL PI                               | SLPI HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14                                 | 0      | Э                     | 1,9393                | 2                | 1,4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | 0                          | 0                | Э                               | 0                | 0                               | 0                     | 0                          | э                     |
| SMAD2                               | SMAD2_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 52                                 | 0      | D                     | D                     | 0-               | 1,4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | e                          | 0                | D                               | D                | 0-                              | 0                     | 0                          | D                     |
| SMAD5                               | SMADS_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 52                                 | 0      | 0                     | 0                     | 0                | 1,4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | 0                          | 0                | 0                               | 0                | 0                               | 0                     | 0                          | о                     |
| SMARCAA                             | AQADAQMT49_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 189                                | ٥      | D                     | D                     | 0                | 1,4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | 2,1535                     | 2                | 10,976                          | 10               | 5,2707                          | 6                     | 0                          | э                     |
| SMARCAS                             | SMCA5_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 122                                | 0      | 0                     | 0                     | 0                | 1,4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | 0                          | 0                | 3,2929                          | 3                | 0                               | 0                     | 0                          | 0                     |
| SMCS                                | SMGS_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 58                                 | 0      | 9                     | 0                     | 0                | 1,4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | 0                          | 0                | 3                               | 0                | 0                               | 0                     | 0                          | 5                     |
| SNX18                               | SNX18 HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 69                                 | 0      | 0                     | 1 9393                | 2                | 1 4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | 0                          | 0                | 4 3905                          | 4                | 52707                           | 6                     | 1 9932                     | 2                     |
| SPAST                               | SPAST_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 67                                 | 0      | D                     | Ð                     | 0-               | 1,4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | e                          | 0                | 3                               | D                | Đ                               | e                     | 0                          | D                     |
| SPATS2L                             | SPS21_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 62                                 | 0      | D                     | 0                     | 0                | 1,4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | 3,2303                     | 3                | D                               | 0                | 3,5138                          | 4                     | 0                          | D                     |
| SPIN2A                              | SPI2A_HUMAN (+1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 29                                 | 0      | 0                     | 0                     | 0                | 1,4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | C                          | 0                | Э                               | 0                | 0                               | 0                     | 0                          | э                     |
| SRPK1                               | SRPK1_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 74                                 | 0      | D                     | D                     | 0                | 1,4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | 5,3838                     | 4                | 3,2929                          | 3                | 9,6629                          | s                     | 3,9853                     | 3                     |
| 585811                              | SKS11_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 34                                 | 0      | 9                     | 0                     | 0                | 1,4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | 2 2202                     | 2                | 4,3905                          | -                | 5,5138                          | 4                     | 2,9897                     | 3                     |
| STRN4                               | FSGYK2 HUMAN (+1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 69                                 | 0      | 0                     | 0                     | 0                | 1,4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | 0                          | 0                | 0                               | 0                | 0                               | 0                     | 0                          | 2                     |
| STX3P3                              | STX63_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 68                                 | 0      | 9                     | 0                     | 0                | 1,4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | e                          | 0                | э                               | 0                | 0                               | 0                     | 0                          | э                     |
| SUM01                               | 6822N6_HUMAN (+3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 17                                 | 0      | D                     | D                     | 0                | 1,4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | 0                          | 0                | D                               | D                | 0                               | 0                     | 0                          | D                     |
| TAF12                               | TAF12_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 18                                 | 0      | 0                     | 0                     | 0                | 1,4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | e                          | 0                | Э                               | 0                | 0                               | 0                     | 0                          | D                     |
| TAF98                               | TAPSE_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 28                                 | 0      | 0                     | 0                     | 0                | 1,4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | e                          | 0                | 0                               | 0                | 0                               | e                     | 0                          | D                     |
| TAMM41                              | TAMAL HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 51                                 | 0      | 3                     | 0                     | 0                | 1,4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | 0                          | 0                | 3                               | 0                | 0 5199                          | 0                     | 0                          | 3                     |
| TBC1023                             | TBD26_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 110                                | õ      | 0                     | D                     | e.               | 1,4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | c c                        | 0                | D                               | 0                | 0                               | 0                     | õ                          | 5                     |
| TEAM                                | TEAM HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 29                                 | 0      | 0                     | 0                     | 0                | 1,4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | 0                          | 0                | 7,6834                          | 5                | 6,1491                          | 6                     | 1,9932                     | 2                     |
| TEBIM                               | TIB1M_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 40                                 | ٥      | D                     | 7,7571                | 8                | 1,4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | 2,1535                     | 2                | 21,952                          | 14               | 6,1491                          | 6                     | 0                          | Э                     |
| THOC1                               | A087WWS1_HUMAN (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 76                                 | 0      | 0                     | 0                     | 0                | 1,4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | 0                          | 0                | D                               | 0                | 0                               | 0                     | 0                          | 0                     |
| TIMELECE                            | TIM HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 19                                 |        | 0                     | 77571                 | 0                | 1,4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | 0                          | 0                | 3                               | 0                | 2 6252                          | 2                     | 0                          |                       |
| TIMMDC1                             | TIDC1_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 32                                 | 0      | 0                     | 0                     | e e              | 1,4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | 2,1535                     | 2                | 0                               | 0                | 1,7569                          | 2                     | 1,9932                     | 2                     |
| TMA16                               | H0Y9X1_HUMAN (+1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 28                                 | 0      | 0                     | 1,9393                | 2                | 1,4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | 2,1535                     | 2                | 3                               | D                | 4,3522                          | 3                     | 1,9932                     | 2                     |
| TMEM33                              | TMM33_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 28                                 | 0      | D                     | 0                     | 0                | 1,4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | 6,4605                     | 5                | 2,1952                          | 2                | 0                               | 0                     | 3,9863                     | 3                     |
| TMEM43                              | IMM43_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 45                                 | 0      | 0                     | 0                     | 0                | 1,4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | 0                          | 0                | 9                               | 0                | 0                               | C.                    | 0                          | 0                     |
| TOMMOS                              | TNRSA_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 210                                | 0      | 2                     | 1,9393                | 2                | 1,4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | 7,1535                     | 2                | 0                               | 0                | 2,6353                          | 3                     | 2,9897                     | 3                     |
| TPIL                                | TPIS HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 31                                 | 23,489 | 8                     | 1,9393                | 2                | 1,4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | 0                          | 0                | 5                               | D                | 1,7569                          | 2                     | a,5805<br>Ó                | 2                     |
| TRIPIS                              | PCH2_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 49                                 | 0      | D                     | 0                     | ô                | 1,4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | 9,6908                     | 8                | 0                               | 0                | 1,7569                          | 2                     | 6,9761                     | 7                     |
| TRIR                                | Q93Q61[TRIR_HUM/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ?                                  | 0      | Э                     | 0                     | 0                | 1,4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | 0                          | 0                | Э                               | 0                | 0                               | o                     | 0                          | э                     |
| TRMT2A                              | F2Z2W7_HUMAN (+1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 71                                 | 0      | D                     | D                     | 0                | 1,4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | 0                          | ò                | 6,5857                          | 6                | 9,6629                          | 11                    | 0                          | D                     |
| TR MT618                            | TRG18_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 53                                 | 0      | 0                     | 0                     | 0                | 1,4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | 0                          | 0                | 0                               | 0                | 0                               | 0                     | 0                          | 0                     |
| TRUAN                               | TRUB1 HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 37                                 | 0      | 0                     | 0                     | e<br>p           | 1,4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | 2,1535                     | 2                | 3                               | 0                | 0                               | 0                     | 0                          |                       |
| TSEN2                               | SEN2_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 53                                 | 0      | 0                     | 0                     | e                | 1,4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | e                          | 0                | 0                               | 0                | e                               | e                     | 0                          | 0                     |
| TSN                                 | H7C1D4_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 21                                 | ō.     | n n                   | D                     | 0                | 1,4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | 0                          | õ                | D                               | 0                | 0                               | 0                     | 0                          | D                     |
| TTC218                              | TT216_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 151                                | 0      | D                     | 0                     | 0                | 1,4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | 0                          | 0                | э                               | 0                | 0                               | 0                     | 0                          | о                     |
| TTC27                               | TTC27_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 97                                 | 0      | Ð                     | D                     | 0-               | 1,4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | 7,5373                     | 6                | D                               | D                | 0                               | e                     | 0                          | D                     |
| TTC37                               | TTC37_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 175                                | 0      | 0                     | 0                     | 0                | 1,4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | 0                          | 0                | D                               | 0                | 0                               | 0                     | 0                          | 0                     |
| T1F2                                | TTP2_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 130                                | 0      | 0                     | 2 0040                | 0                | 1,4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | 0                          | 0                | 0                               | 0                | 16.024                          | 0                     | 26.000                     | 17                    |
| UPF3B                               | REN3B HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 58                                 | 0      | 2                     | 3,8786                | 4                | 1,4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | 4,307                      | 4                | 12.074                          | 10               | 11.42                           | 12                    | 7,9726                     | 8                     |
| UPRT                                | ADADWERS_HUMAN (-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 31                                 | ō      | D                     | D                     | e                | 1,4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | e                          | 0                | э                               | D                | 0                               | e                     | 0                          | 2                     |
| UQCRC2                              | QCR2_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 48                                 | 0      | 0                     | 1,9393                | 2                | 1,4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | 4,307                      | 4                | Э                               | 0                | 0                               | 0                     | 2,9897                     | 3                     |
| URGEP                               | URGCP_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 105                                | 0      | 0                     | Ð                     | 0                | 1,4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | e                          | 0                | Э                               | 0                | 0                               | e                     | 0                          | э                     |
| URI                                 | RMP_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 60                                 | 0      | 0                     | 0                     | 0                | 1,4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | 0                          | 0                | D                               | 0                | 0                               | 0                     | 0                          | D                     |
| USP16                               | UBP16_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 94                                 | 0      | 0                     | 0                     | 0                | 1,4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | 0                          | 0                | 3                               | 0                | 0                               | 0                     | 0                          | 0                     |
| UTRM                                | UTRO HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 394                                | 0      | 0                     | 0                     | e<br>P           | 1,4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | 0                          | 0                | 3                               | 0                | 0                               | 0                     | 0                          | 2                     |
| WANGL1                              | VANG1_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 60                                 | 0      | 0                     | D                     | e                | 1,4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | e                          | ő                | 6,5857                          | 4                | 3,5138                          | 4                     | 2,9897                     | 3                     |
| VARS2                               | 4040MTG1 HUMAN I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 118                                | 0      | Ď.                    | 0                     | 0                | 1,4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | 0                          | 0                | D                               | 0                | 0                               | 0                     | 0                          | a                     |
| WEXT                                | and the second sec | 10000                              |        | 0                     | 0                     | 0                | 1,4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | 0                          | 0                | Э                               | 0                | 0                               | 0                     | 0                          | 2                     |
| VINA                                | VRK1_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 45                                 |        |                       | 22                    |                  | and a second sec |                       |                            |                  |                                 |                  |                                 | 1                     | 202                        |                       |
| WAC                                 | VRK1_HUMAN<br>WAC_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 71                                 | o<br>o | a                     | D                     | 0                | 1,4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | e                          | 0                | D                               | D                | 0                               | 0                     | ٥                          | a                     |
| WAC<br>WDR36                        | VRK1_HUMAN<br>WAC_HUMAN<br>WDR36_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 71<br>105                          | 000    | 0                     | 0                     | 0                | 1,4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | 0<br>3,2303                | 3                | 0<br>0                          | 0                | 0<br>2,6353                     | 0<br>3                | 0                          | 0<br>0<br>2           |
| WAC<br>WDR36<br>WFS1<br>WFS1        | VRK1_HUMAN<br>WAC_HUMAN<br>WDR36_HUMAN<br>WFS1_HUMAN<br>WFS1_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 71<br>105<br>100<br>51             | 0000   | 0<br>0<br>0           | 0<br>0<br>0           | 0<br>0<br>0      | 1,4499<br>1,4499<br>1,4499<br>1,4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2<br>2<br>2<br>3      | 0<br>3,2306<br>0           | 030              | 0<br>0<br>4,3905<br>0           | 0<br>4<br>2      | 0<br>2,6353<br>3,5138<br>0      | 0<br>3<br>4           | 0<br>0<br>2,9897           | 0<br>0<br>3<br>0      |
| WAC<br>WDR36<br>WFS1<br>WFF1<br>WIZ | V3K1_HUMAN<br>WAC_HUMAN<br>WD336_HUMAN<br>WF51_HUMAN<br>WF51_HUMAN<br>8956Q5_HUMAN (+1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25<br>71<br>105<br>100<br>51<br>89 | 0000   | 0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>1,9393 | 0<br>0<br>0<br>2 | 1,4499<br>1,4499<br>1,4499<br>1,4499<br>1,4499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2<br>2<br>2<br>2<br>2 | 0<br>3,2303<br>0<br>0<br>0 | 0<br>3<br>0<br>0 | 0<br>0<br>4,3905<br>0<br>2,1952 | 0<br>4<br>0<br>2 | 0<br>2,6353<br>3,5138<br>0<br>0 | 0<br>3<br>4<br>0<br>0 | 0<br>0<br>2,9897<br>0<br>0 | 0<br>0<br>3<br>0<br>0 |

| XRCC4          | XRCC4 HUMAN                 | 38       | 0      | 9 | Ð        | 0      | 1.4499 | 2 | e           | 0        | 3          | 0  | 1.7569  | 2   | 0       | 0   | 1  |
|----------------|-----------------------------|----------|--------|---|----------|--------|--------|---|-------------|----------|------------|----|---------|-----|---------|-----|----|
| YL PM1         | YUPMI_HUMAN                 | 220      | ۵      | a | n        | 0      | 1,4499 | 2 | 0           | 0        | а          | D  | 14,055  | 16  | 5,9795  | 5   | Í. |
| ZC2HC1A        | ZC21A_HUMAN                 | 35       | 0      | 0 | 3,8786   | 4      | 1,4499 | 2 | 2,1535      | 2        | 5,4881     | 5  | 2,6353  | 3   | 0       | D   | Í. |
| ZC3H7A         | Z3H7A_HUMAN                 | 111      | 0      | D | 0        | 0      | 1,4499 | 2 | e           | 0        | 0          | 0  | e       | e   | 0       | 0   | Í. |
| 26PA1<br>38961 | ETAMS2 HUMAN (+1)           | 57       | 0      | 0 | 0        | 0      | 1,4499 | 2 | 0           | 0        | 3          | 0  | 1,7565  | 2   | 0       | 3   | Í. |
| AATE           | AATF_HUMAN                  | 63       | 0      | D | 0        | 0      | 0      | 0 | 0           | 0        | 0          | 0  | 2,6353  | 3   | 0       | 0   | Í. |
| A3C 510        | ABCBA_HUMAN                 | 79       | 0      | D | 0        | 0      | 0      | 0 | 0           | 0        | 9          | 0  | 1,7569  | 2   | 0       | о   | Ĺ  |
| A6HD12         | A5D12_HUMAN                 | 45       | 0      | 0 | D        | 0      | 0      | 0 | 4,307       | 4        | 3,2929     | 2  | D       | e   | 5,9795  | 5   | Í. |
| ABRAXASZ       | ASRX2_HUMAN                 | 47       | 0      | 0 | 0 3.8786 | 9      | 0      | 0 | 3,2303      | 3        | 0<br>54881 | 0  | 1 25/69 | 2   | 0       | 0   | Í. |
| ABTEI          | ASTRI HUMAN                 | 54       | 0      | 0 | 0,0700   | 0      | 0      | 0 | 6.4605      | 6        | 3,4601     | 0  | 0       | 0   | 0       | 2   | Í. |
| ACADVL         | ACADV_HUMAN                 | 70       | 0      | D | 0        | 0      | 0      | 0 | C           | 0        | Э          | 0  | 0       | 0   | 0       | D   | Í. |
| ACAT2          | THIC_HUMAN                  | 41       | 0      | Ð | D        | e      | e      | ٥ | 15,075      | 13       | 0          | 0  | 0       | e   | 1,9932  | 2   | Í. |
| ACBD3          | GCP60_HUMAN                 | 61       | 0      | D | 0        | 0      | 0      | 0 | 2,1535      | 2        | D          | 0  | 0       | 0   | 0       | D   | Í. |
| ACBDS          | ACBOS_HUMAN                 | 60       | 0      | 0 | 0        | 0      | 0      | 0 | 5,3838      | 5        | 3          | 0  | 1,7569  | 2   | 0       | 5   | Í. |
| ACOTS          | ACOTS HUMAN                 | 56       | 0      | 0 | 0        | 0      | 0      | 0 | 3,2505      | 3        | 2          | 0  | 0       | 0   | 0       | 3   | Í. |
| ADNP           | ADNP_HUMAN                  | 124      | 0      | D | D        | 0      | 0      | 0 | C           | 0        | a          | D  | 2,6353  | 3   | 0       | D   | Í. |
| AGP5           | ADAS_HUMAN                  | 73       | 0      | 0 | 0        | 0      | 0      | 0 | 0           | 0        | 0          | 0  | 0       | 0   | 0       | 0   | Í. |
| AHCY           | SAHH_HUMAN                  | 48       | 0      | 0 | 0        | 0      | 0      | 0 | c           | 0        | 3          | D  | 0       | 0   | 1,9932  | 2   | Ĺ  |
| AHCYL1         | SAHH2_HUMAN                 | 59       | 0      | 0 | 0        | 0      | 0      | 0 | 5,3838      | 5        | 0          | 0  | 0       | 0   | 2,0007  | 0   | Í. |
| ALCI           | ALG1 HUMAN                  | 53       | 0      | 3 | 1.9393   | 2      | c      | 0 | 0           | 0        | 3          | D  | e e     | 0   | 1.9932  | 2   | Í. |
| ALG3           | ALG3_HUMAN (+1)             | 50       | 0      | D | 0        | 0      | 0      | 0 | 0           | 0        | D          | 0  | 0       | 0   | 1,9932  | 2   | Í. |
| ALKEH5         | ALK65_HUMAN                 | 6,2)     | 0      | 0 | U        | 0      | e      | 0 | e           | 0        | 3,2929     | 3  | 1,7569  | 2   | 2,9897  | 3   | Í. |
| AMD1           | DCAM_HUMAN                  | 38       | 0      | D | 0        | 0      | 0      | 0 | 2,1535      | 2        | 0          | 0  | 0       | 0   | 0       | ۵   | Í. |
| ANGELI         | ANGE1_HUMAN                 | /5       | 0      | 0 | 6,7875   | 6      | 0      | 0 | 0           | 0        | 21,952     | 12 | 0       | 0   | 0       | 3   | Í. |
| ARF1           | ARF1 HUMAN (+1)             | 21       | õ      | 0 | 0        | 0      | °.     | 0 | 5,3838      | 2        | 0          | 0  | 2,6353  | 2   | ő       | 0   | Ĺ  |
| VINGAP18       | RHG18_HUMAN                 | 75       | 0      | Э | D        | 0      | 0      | 0 | 0           | ō        | 3          | D  | 0       | 0   | 0       | э   | Í. |
| RHGAPIS        | RHG19_HUMAN                 | 56       | 0      | D | 0        | 0      | 0      | 0 | 0           | 0        | 2,1952     | 2  | 0       | 0   | 0       | D   | Í. |
| ARHGEF39       | ARG39_HUMAN                 | 38       | 0      | 0 | 0        | 0      | C      | 0 | e           | 0        | 4,3905     | 3  | 0       | C   | 0       | C   | Í. |
| AR D43         | ARI4B_HUMAN                 | 148      | 0      | 2 | 1,9393   | 2      | 0      | 0 | 21525       | 2        | 3          | 0  | 0       | 0   | 0       | 2   | Ĺ  |
| ARMCS          | ARMCE HUMAN                 | 54       | 0      | 0 | 0        | e      | c      | 0 | 4,307       | 4        | 3          | 0  | e e     | e   | 0       | 5   | Ĺ  |
| ARMCX2         | ARMX2_HUMAN                 | 66       | 0      | D | D        | 0      | 0      | 0 | 0           | 0        | .0         | 0  | 2,6353  | 3   | 0       | D   | Í. |
| ARPCS          | ARPC3_HUMAN                 | 21       | 0      | D | 0        | 0      | 0      | 0 | 0           | 0        | Э          | 0  | 0       | 0   | 0       | э   | Í. |
| ARPCS          | ARPCS_HUMAN                 | 16       | 0      | D | D        | 0      | C .    | 0 | e           | 0        | 0          | D  | 0       | 0   | 0       | D   | Í. |
| ASUL2          | ASCC2_HUMAN                 | 20       | 0      | 9 | 0        | 0      | 0      | 0 | 0           | 0        | 3,7820     | -  | 3,5138  | 4   | 2,9397  | 3   | Í. |
| ASPRV1         | APRVI_HUMAN                 | 37       | 0      | 0 | 1,9393   | 2      | 0      | 0 | 0           | 0        | 0          | 0  | 0       | 0   | 0       | 5   | i  |
| ASPSCR1        | ASPC1_HUMAN                 | 60       | 0      | 0 | 0        | 0      | C      | 0 | e           | 0        | 0          | 0  | 0       | 0   | 0       | э   | i  |
| ASTE1          | ASTE1_HUMAN (+1)            | 77       | 0      | D | D        | 0      | 0      | 0 | C           | ٥        | ۵          | D  | 1,7569  | 2   | 0       | а   | i  |
| AECATA         | H0Y2W2_HUMAN                | 64       | 0      | 0 | 0        | 0      | 0      | 0 | 104,45      | 2        | 0          | 0  | 26,353  | 2   | 40,86   | 2   | Í. |
| ATAJ35         | ATDSB_HUMAN                 | 73       | 0      | 9 | 0        | 0      | 0      | 0 | 85,571      | <i>.</i> | 3          | 0  | 0       | 0   | 34,88   | 2   | Í. |
| ATPEV1D        | VATO HUMAN                  | 28       | 0      | 0 | 0        | 0<br>0 | ° c    | 0 | c           | 0        | 2          | 0  | 1,7569  | 2   | 0       | 5   | Í. |
| ATPEV1H        | VATH_HUMAN                  | 56       | 0      | D | 0        | 0      | 0      | 0 | 4,307       | 4        | 0          | 0  | 0       | 0   | 0       | D   | Í. |
| ATXN10         | ATX10_HUMAN                 | 53       | 0      | D | 0        | 0      | 0      | 0 | 0           | 0        | Э          | 0  | 0       | 0   | 2,9897  | 3   | Í. |
| AURKB          | AURK3_HUMAN                 | 39       | 0      | 0 | Ð        | 0      | 0      | 0 | 7,5373      | 1        | 8,781      | 5  | 1,7569  | 2   | 0       | 0   | Í. |
| AVEN POCALAIT2 | AVEN_HUMAN                  | 39       | 0      | 0 | 0        | 0      | 0      | 0 | 0 2020 2    | 0        | 3,2929     | 2  | 0       | 0   | 0       | 3   | Í. |
| 53GALT6        | B3CT6 HUMAN                 | 37       | 0      | 0 | D        | e e    | c c    | 0 | 75373       | 5        | 3,2929     | 2  | 1.7569  | 2   | 0       | 5   | Í. |
| BAG4           | BAG4_HUMAN                  | 50       | 0      | 0 | 0        | 0      | 0      | 0 | 6,4605      | 4        | 0          | 0  | 0       | 0   | 0       | D   | Í. |
| BAG5           | BAC5_HUMAN                  | 51       | 0      | D | Ð        | 0      | C      | 0 | 3,2303      | 3        | э          | U  | 0       | e   | 1,9932  | 2   | Í. |
| BCAP29         | BAP29_HUMAN                 | 28       | 0      | D | 0        | 0      | 0      | 0 | 2,1535      | 2        | 0          | 0  | 0       | 0   | 1,9932  | 2   | Í. |
| VM-FRCCS       | A1W22585 HUMAN (-           | 159      | 0      | 0 | 1 9393   | 2      | 0      | 0 | 0           | 0        | 2          | 0  | e e     | 0   | 0       | 3   | Í. |
| BLM            | BLM_HUMAN                   | 159      | 0      | D | 0        | 0      | 0      | 0 | 2,1535      | 2        | D          | 0  | 0       | 0   | 0       | D   | Í. |
| BMS1           | BMS1_HUMAN                  | 146      | 0      | D | 0        | 0      | 0      | 0 | 0           | 0        | 10,976     | 10 | 4,3922  | 3   | 4,9829  | 5   | Í. |
| BN P1          | SEC20_HUMAN                 | 26       | 0      | 0 | Ð        | 0-     | e      | 0 | e           | 0        | 0          | 0  | 3,5138  | 4   | 0       | Э   | Í. |
| SOP1           | BOP1_HUMAN                  | 84       | 0      | 0 | 1,9393   | 2      | 0      | 0 | 0           | 0        | 9,8786     | 9  | 4,3922  | 5   | 0       | 0   | Í. |
| CISor/47       | CSDG7_HUMAN                 | 41       | 0      | 0 | D        | 0      | 0      | 0 | 0           | 0        | 2,1952     | 2  | 4.3922  | 4   | 0       | 5   | Í. |
| CALMLS         | CALLS HUMAN                 | 16       | 0      | 0 | 0        | 0      | õ      | 0 | o           | 0        | 0          | 0  | 2,6353  | 2   | 0       | 0   | Í. |
| CAPN1          | CAN1_HUMAN                  | 82       | ٥      | Э | D        | 0      | C      | ٥ | 3,2303      | 3        | э          | D  | D       | 0   | ٥       | C   | Í. |
| CAP7B          | B1AK87_HUMAN (+1)           | 29       | 0      | D | 0        | 0      | 0      | 0 | 3,2303      | 3        | D          | 0  | 0       | 0   | 0       | 0   | Í. |
| CASC3          | CASC3_HUMAN                 | 76       | 0      | 0 | 0        | 0      | 0      | 0 | C           | 0        | 3,2929     | 3  | 1,7569  | 2   | 0       | 0   | Í. |
| CBW02          | C9/362_HUMAN (+2)           | 42       | 0      | 0 | 0        | 0      | 0      | 0 | 3,2303      | 3        | 2          | 0  | 0       | 0   | 0       | 3   | Í. |
| CBX8           | C3X8 HUMAN                  | 43       | õ      | 0 | 0        | e      | c      | 0 | c           | 0        | 4,3905     | 3  | e e     | e   | 0       | 5   | Í. |
| CCDC125        | CC125_HUMAN (+1)            | 59       | 0      | D | 0        | 0      | 0      | 0 | 2,1535      | 2        | 0          | 0  | 0       | 0   | 0       | D   | Í. |
| CCDC138        | CC138_HUMAN                 | 76       | 0      | о | 0        | 0      | 0      | 0 | C           | 0        | Э          | 0  | 1,7569  | 2   | 2,9897  | 3   | Í. |
| CCCCSD         | CCDSD_HUMAN                 | 36       | 0      | 0 | 0        | 0      | 0      | 0 | 0           | 0        | 0          | 0  | 0       | 0   | 0       | 2   | Í. |
| CCDC39         | CCR5B_HUMAN                 | 29       | 0      | 0 | 2,9069   | а<br>р | 0      | 0 | 6307        | 4        | 4,5900     | -  | D D     | 0   | 0       | 3   | Í. |
| CCDC85C        | CC85C_HUMAN                 | 45       | 0      | D | 0        | 0      | 0      | 0 | 18,305      | 11       | 0          | 0  | 0       | 0   | 9,9658  | 8   | Í. |
| CCDC9          | CCDC9_HUMAN                 | 60       | 0      | 9 | 0        | 0      | 0      | 0 | e           | 0        | 4,3905     | 3  | 2,6353  | 3   | 0       | Э   | Í. |
| 000093         | CCD93_HUMAN                 | 73       | 0      | D | D        | 0      | 0      | 0 | 0           | 0        | D          | D  | 0       | 0   | 0       | 0   | Í. |
| CONTZ          | CCN12_HUMAN                 | 81       | 0      | 0 | 0        | 0      | 0      | 0 | 0           | 0        | 3          | 0  | 2,6353  | 3   | 0       | 3   | Í. |
| CDC40          | Q55RN1 HUMAN                | 61       | õ      | 0 | 0        | 0      | 0      | 0 | 0           | õ        | 3          | 0  | 2,6353  | 3   | 0       | 0   | Í. |
| CDC42          | CDC42_HUMAN                 | 21       | 0      | 0 | 0        | 0      | e      | 0 | 3,2503      | 2        | D          | 0  | 0       | e   | 0       | D   | i  |
| COC42EP1       | BORG5_HUMAN                 | 40       | 0      | D | D        | 0      | 0      | 0 | 0           | 0        | 4,3905     | 4  | 0       | 0   | 1,9932  | 2   | Í. |
| CDC45          | CDC45_HUMAN                 | 66       | 0      | 0 | 0        | 0      | 0      | 0 | 20,458      | 11       | 0          | 0  | 0       | 0   | 0       | 0   | i  |
| COCZ           | CDC2_HUMAN                  | 60       |        | 0 | 0        | 0      | 0      | 0 | 8,514       | 8        | 5          | 0  | 1 7569  | 2   | 2 09/52 |     | Í. |
| COLPT          | 33KY94_HUMAN (+1)           | 26       | ő      | 0 | Ð        | e      | 0      | 0 | 6,4605      | 2        | 2,1952     | 2  | 0       | 0   | 3,9863  | 3   | i  |
| CD4115         | ADADD9SEI3_HUMAN            | 89       | ٥      | D | D        | 0      | 0      | Q | 0           | 0        | 4,3905     | 4  | 0       | 0   | 0       | а   | i  |
| CDK2           | CDK2_HUMAN (+1)             | 34       | 0      | 0 | 0        | 0      | 0      | 0 | 3,2303      | 2        | 0          | 0  | 0       | 0   | 0       | 0   | i  |
| CO/5           | COM_HUMAN                   | 32       | 0      | 0 | 0        | e<br>e | c<br>C | 0 | 8686,6      | 0        | 3          | 0  | 35139   | 2   | 0       | 0   | i  |
| DKSRAPI        | CKSP1_HUMAN                 | 68       | 0      | 0 | 0        | e      | e      | 0 | 3,2303      | 2        | 0          | 0  | 0       | C C | 0       | 0   | i  |
| CDKAL1         | CDKAL_HUMAN                 | 65       | 0      | D | D        | 0      | 0      | 0 | 3,2303      | 3        | D          | D  | 1,7569  | 2   | 1,9932  | 2   | i  |
| CDSN           | CDSN_HUMAN (+2)             | 52       | 0      | 9 | 1,9393   | 2      | 0      | 0 | 0           | 0        | D          | 0  | 4,3922  | 3   | 12,956  | 4   | i  |
| CENPB          | CENPB_HUMAN                 | 65       | 0      | 0 | 0        | 0      | e<br>o | 0 | 8,514       | 7        | 0          | 0  | 0       | 0   | 0       | 0   | i  |
| CEP120         | CE120 HUMAN                 | 113      | 0      | 3 | 0        | é      | 0      | 0 | 7,5373      | 7        | 3          | 0  | 0       | 0   | 0       | 3   | i  |
| CEP131         | CP131_HUMAN                 | 122      | 0      | D | 1,9393   | 2      | 0      | 0 | 2,1535      | 2        | D          | D  | 0       | 0   | 0       | 0   | i  |
| CEP41          | CEP41_HUMAN                 | 41       | 0      | 0 | 0        | 0      | 0      | 0 | e           | 0        | 0          | 0  | 0       | 0   | 0       | D   | i  |
| CEP57          | CEP57_HUMAN (+1)            | 57       | 0      | 0 | D        | 0      | 0      | 0 | 3,2303      | 3        | 0          | 0  | 0       | 0   | 0       | 0   | i  |
| CERSO          | CERS2 HUMAN (+1)            | 18       | 0      | 0 | 0        | 0      | 0      | 0 | a,2303<br>B | 3<br>0   | 3,2929     | 2  | 6       | 0   | 19932   | 2   | i  |
| CFAP97         | CFA97_HUMAN                 | 59       | õ      | 0 | D        | ē.     | °.     | 0 | 0           | 0        | 0          | ů  | 1,7569  | 2   | 0       | â   | i  |
| CHAF15         | CAF18_HUMAN                 | 61       | 0      | D | 0        | 0      | 0      | 0 | 0           | 0        | э          | 0  | 0       | 0   | 0       | о   | i  |
| CHD4           | M0C4D669_HUMAN (            | 220      | 0      | D | D        | 0-     | e      | 0 | e           | 0        | D          | D  | 8,7845  | 10  | 0       | D   | i  |
| CHPF2          | CHPF2_HUMAN (+1)            | 86       | 0      | 0 | 0        | 0      | 0      | 0 | 2,1535      | 2        | 0          | 0  | 0       | 0   | 0       | 0   | i  |
| CHTOP          | CHEOP HUMAN (+1)            | *3<br>26 | 0      | 0 | 1,9393   | 2      | 0      | 0 | 32303       | 2        | 3,2929     | 5  | 0       | 0   | 1 9932  | 2   | i  |
| CKAP2          | CKAP2 HUMAN                 | 77       | 0      | 0 | 0        | 0      | 0      | 0 | 2,1555      | 2        | Э          | 0  | 2,6353  | 2   | 0       | D D | i  |
| CLCN7          | CLCN7_HUMAN                 | 89       | o      | D | D        | e      | C      | 0 | e           | 0        | 3,2929     | 3  | D       | C   | 0       | a   | Ĺ  |
| CLINT1         | EPN4_HUMAN                  | 68       | 0      | 0 | 0        | 0      | 0      | 0 | 7,5373      | 7        | 0          | 0  | 0       | 0   | 1,9932  | 2   | i  |
| CLNSIA         | CLSPIF4_HUMAN (+3)          | 20       | 0      | 0 | 0        | 0      | 0      | 0 | 0           | 0        | 2,1952     | 2  | 0       | 0   | 0       | 0   | i  |
| CLITC          | A087WVQ6_HUMAN /            | 192      | 7.8297 | s | 0        | 0      | 0      | 0 | 24,765      | 21       | 2          | 0  | 0       | 0   | 11.959  | 12  | i  |
| CMSS1          | CSI384_HUMAN                | 26       | 0      | 0 | Ð        | e      | e e    | 0 | e           | 0        | 5,4881     | 5  | 5,2707  | 4   | 0       | 5   | i  |
| CNOT11         | CNO11_HUMAN                 | 55       | 0      | D | 1,9393   | 2      | 0      | 0 | 0           | 0        | Э          | 0  | 1,7569  | 2   | 1,9932  | 2   | i  |
| COIL           | COIL_HUMAN                  | 63       | 0      | 0 | 0        | 0      | 0      | 0 | c           | 0        | 3,2929     | 2  | 5,2707  | 6   | 0       | 0   | i  |
| COMPO          | COTAL_HUMAN                 | 178      | 0      | 0 | 1,9393   | 2      | 0      | 0 | 21656       | 0        | 0          | 0  | 0       | 0   | 1 9933  | 0   | i  |
| COQ85          | COQ86_HUMAN                 | 60       | 0      | 5 | D        | e e    | e      | 0 | 4,307       | 4        | 0          | D  | e e     | e   | 0       | 2   | Ĺ  |
| RO7 PAMI       | ADADAGYYL4_HUMAN            | 114      | 0      | D | 1,9393   | 2      | 0      | 0 | 0           | 0        | 3,2929     | 3  | 1,7569  | 2   | 2,9897  | 3   | Ĺ  |
| COX15          | COX15_HUMAN                 | 46       | 0      | 9 | Ð        | e      | e      | 0 | e           | 0        | Э          | D  | 0       | e   | 3,9853  | 3   | i  |
| CPNE1<br>CPSE4 | QSJX59_HUMAN<br>CPSFA_HUMAN | 23       | 0      | 0 | 0        | 0      | 0      | 0 | 2,1535      | 2        | 3,2020     | 0  | 2,6969  | 0   | 0       | 0   | Ĺ  |
| CETTA          | COTTA HILMAN                | 00       | ~      |   |          |        |        | ň | 2 16 26     |          | 2          |    |         |     | Ň       |     | i. |

| CPVL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CPVL_HUMAN                                                                                                                                                                                   | 54                                                        | 0        | 9                                                                                      | 0                                              | 0                                                        | 0                 | 0                 | 57,068                                                  | 10          | э                                                             | 0                                    | 0                                              | 0                                       | 26,908                                              | 9                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|----------|----------------------------------------------------------------------------------------|------------------------------------------------|----------------------------------------------------------|-------------------|-------------------|---------------------------------------------------------|-------------|---------------------------------------------------------------|--------------------------------------|------------------------------------------------|-----------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------|
| CREBBP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CBP_HUMAN                                                                                                                                                                                    | 265                                                       | 0        | D                                                                                      | n                                              | 0                                                        | ٥                 | 0                 | 0                                                       | 0           | ۵                                                             | D                                    | 4,3922                                         | 2                                       | 0                                                   | а                                                                                                |
| CRIAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CSIP16_HUMAN (+1)                                                                                                                                                                            | 41                                                        | 0        | 5                                                                                      | 0                                              | 0                                                        | 0                 | 0                 | 2,1535                                                  | 2           | 3                                                             | 0                                    | 20226                                          | 0                                       | 0 0000                                              | 0                                                                                                |
| CSNK1G1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | U3KOB3 HUMAN                                                                                                                                                                                 | 54                                                        | 0        | 0                                                                                      | 0                                              | ô                                                        | 0                 | 0                 | 0                                                       | 0           | 0                                                             | 0                                    | 2,6353                                         | 3                                       | 1,9932                                              | 2                                                                                                |
| CST6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CYTM_HUMAN                                                                                                                                                                                   | 17                                                        | 0        | э                                                                                      | 0                                              | 0                                                        | 0                 | 0                 | C                                                       | 0           | Э                                                             | 0                                    | 0                                              | 0                                       | 1,9932                                              | 2                                                                                                |
| CSTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CYTA_HUMAN                                                                                                                                                                                   | 11                                                        | 0        | D                                                                                      | n                                              | 0                                                        | 0                 | 0                 | 0                                                       | 0           | D                                                             | D                                    | 3,5138                                         | 4                                       | 5,9795                                              | 5                                                                                                |
| CSTF1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CSTF1_HUMAN                                                                                                                                                                                  | 48                                                        | 0        | 0                                                                                      | 0                                              | 0                                                        | 0                 | 0                 | 2,1535                                                  | 2           | 0                                                             | 0                                    | 0                                              | 0                                       | 0                                                   | 0                                                                                                |
| CTPS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PYRG1_HUMAN                                                                                                                                                                                  | 67                                                        | 0        | 0                                                                                      | 0                                              | 0                                                        | 0                 | 0                 | 0                                                       | 0           | 2                                                             | 0                                    | ő                                              | 0                                       | 0                                                   | 2                                                                                                |
| CISS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CATB_HUMAN                                                                                                                                                                                   | 38                                                        | ő        | 0                                                                                      | U                                              | e                                                        | 0                 | 0                 | 2,1535                                                  | 2           | 0                                                             | U                                    | e                                              | 0                                       | 0                                                   | 0                                                                                                |
| CTSC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CATC_HUMAN                                                                                                                                                                                   | 52                                                        | 0        | D                                                                                      | D                                              | 0                                                        | 0                 | 0                 | 0                                                       | 0           | D                                                             | D                                    | 0                                              | 0                                       | 1,9932                                              | 2                                                                                                |
| CUL7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CUL7_HUMAN                                                                                                                                                                                   | 191                                                       | 0        | 0                                                                                      | 0                                              | 0                                                        | 0                 | 0                 | 13,998                                                  | 12          | 2                                                             | 0                                    | 0                                              | 0                                       | 0                                                   | 0                                                                                                |
| DCAF11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DCA11 HUMAN                                                                                                                                                                                  | 62                                                        | 0        | 0                                                                                      | 0                                              | 0                                                        | 0                 | 0                 | 5,3838                                                  | 5           | 5                                                             | 0                                    | ő                                              | 0                                       | 0                                                   | 0                                                                                                |
| DCAF13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AGA087WT20_HUMAN                                                                                                                                                                             | 68                                                        | 0        | D                                                                                      | υ                                              | e                                                        | c                 | 0                 | c                                                       | 0           | 2,1952                                                        | 2                                    | 0                                              | 0                                       | 0                                                   | D                                                                                                |
| DCAF4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DCAF4_HUMAN                                                                                                                                                                                  | 56                                                        | 0        | D                                                                                      | 0                                              | 0                                                        | 0                 | 0                 | 2,1535                                                  | 2           | 2,1952                                                        | 2                                    | 0                                              | 0                                       | 0                                                   | 0                                                                                                |
| DCAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DCA-6_HUMAN (#1)                                                                                                                                                                             | 57                                                        | 0        | 0                                                                                      | 0                                              | 0                                                        | 0                 | 0                 | 2,1555                                                  | 2           | 3                                                             | 0                                    | 0                                              | 0                                       | 0                                                   | 0                                                                                                |
| 0082                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DD52_HUMAN                                                                                                                                                                                   | 48                                                        | 0        | 0                                                                                      | 0                                              | 0                                                        | 0                 | 0                 | 0                                                       | 0           | 0                                                             | 0                                    | 2,6353                                         | 3                                       | 0                                                   | D                                                                                                |
| DOX10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DDX10_HUMAN (+1)                                                                                                                                                                             | 101                                                       | 0        | 0                                                                                      | U                                              | 0                                                        | 0                 | 0                 | C                                                       | 0           | 8,781                                                         | 7                                    | 0                                              | 0                                       | 0                                                   | 0                                                                                                |
| DOX24<br>DOX27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | B22605_HUMAN (+1)<br>B22605_HUMAN (+1)                                                                                                                                                       | 95                                                        | 0        | 0                                                                                      | 1 9393                                         | 2                                                        | 0                 | 0                 | 2 1535                                                  | 2           | 3,2929                                                        | 2                                    | 0                                              | 0                                       | 0                                                   | 2                                                                                                |
| DOX28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DDX28_HUMAN                                                                                                                                                                                  | 60                                                        | 0        | 0                                                                                      | 2,9089                                         | 3                                                        | e                 | 0                 | 6,4605                                                  | 4           | 18,55                                                         | 12                                   | e                                              | 0                                       | 2,9897                                              | 2                                                                                                |
| DDX50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DDX50_HUMAN                                                                                                                                                                                  | 83                                                        | 0        | D                                                                                      | 7,7571                                         | 7                                                        | 0                 | 0                 | 6,4605                                                  | 3           | 9,8786                                                        | 6                                    | 14,055                                         | 10                                      | 0                                                   | D                                                                                                |
| DUX51<br>DDX52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DDXS1_HUMAN<br>DDX52_HUMAN                                                                                                                                                                   | 68                                                        | 0        | 0                                                                                      | 0                                              | 0                                                        | 0                 | 0                 | 3 2303                                                  | 3           | 2 1952                                                        | 2                                    | 6 1491                                         | 4                                       | 0                                                   | 3                                                                                                |
| DDX54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DDX54_HUMAN                                                                                                                                                                                  | 99                                                        | 0        | 0                                                                                      | 2,9089                                         | 2                                                        | 0                 | 0                 | 0                                                       | 0           | 9,8786                                                        | 6                                    | 0                                              | o                                       | 0                                                   | D                                                                                                |
| DOX55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DDN55_HUMAN (+1)                                                                                                                                                                             | 69                                                        | 0        | D                                                                                      | D                                              | 0                                                        | e                 | 0                 | 2,1535                                                  | 2           | 2,1952                                                        | 2                                    | 1,7569                                         | 2                                       | 0                                                   | D                                                                                                |
| DOX60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DDX50_HUMAN                                                                                                                                                                                  | 198                                                       | 0        | 0                                                                                      | 0                                              | 0                                                        | 0                 | 0                 | 0                                                       | 0           | 0                                                             | 0                                    | 2,6353                                         | 3                                       | 0                                                   | 0                                                                                                |
| DGATI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AD40AD WR74 HUMAN                                                                                                                                                                            | 34                                                        | 0        | 0                                                                                      | 0                                              | 0                                                        | 0                 | 0                 | 0                                                       | 0           | 0                                                             | 0                                    | 0                                              | 0                                       | 2,9897                                              | 3                                                                                                |
| DISKE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DGKE_HUMAN                                                                                                                                                                                   | 64                                                        | 0        | D                                                                                      | 0                                              | 0-                                                       | c                 | 0                 | 20,458                                                  | 9           | 0                                                             | 0                                    | 0                                              | 0                                       | 13,952                                              | 8                                                                                                |
| DHFR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DYR_HUMAN                                                                                                                                                                                    | 21                                                        | 0        | 0                                                                                      | D                                              | 0                                                        | 0                 | 0                 | 2,1535                                                  | 2           | 0                                                             | 0                                    | 0                                              | 0                                       | 0                                                   | 0                                                                                                |
| DHRS13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DHR13 HUMAN                                                                                                                                                                                  | 41                                                        | 0        | 0                                                                                      | 0                                              | e                                                        | e                 | 0                 | 6                                                       | ő           | 2,1952                                                        | 2                                    | e e                                            | e                                       | 0                                                   | 5                                                                                                |
| DHX33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DHX33_HUMAN                                                                                                                                                                                  | 79                                                        | 0        | D                                                                                      | D                                              | 0                                                        | 0                 | 0                 | 2,1535                                                  | 2           | D                                                             | 0                                    | 0                                              | 0                                       | 0                                                   | a                                                                                                |
| DHK34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DHX34_HUMAN                                                                                                                                                                                  | 128                                                       | 0        | 0                                                                                      | 0                                              | 0                                                        | 0                 | 0                 | 0                                                       | 0           | 2,1952                                                        | 2                                    | 0                                              | 0                                       | 0                                                   | 0                                                                                                |
| DICERJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DICER_HUMAN                                                                                                                                                                                  | 219                                                       | 0        | 0                                                                                      | 0                                              | 0                                                        | 0                 | 0                 | 3,2303                                                  | 3           | 0                                                             | 0                                    | 0                                              | c                                       | 0                                                   | 5                                                                                                |
| DLD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DLDH_HUMAN (+1)                                                                                                                                                                              | 54                                                        | 0        | D                                                                                      | D                                              | 0                                                        | 0                 | 0                 | c                                                       | 0           | 2,1952                                                        | 2                                    | 0                                              | o                                       | 0                                                   | э                                                                                                |
| DMAPI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DMAP1_HUMAN                                                                                                                                                                                  | 53                                                        | 0        | D                                                                                      | 0                                              | 0                                                        | 0                 | 0                 | 0                                                       | 0           | 0                                                             | 0                                    | 1,7569                                         | 2                                       | 0                                                   | 0                                                                                                |
| DNAIC16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DIC16 HUMAN                                                                                                                                                                                  | 26                                                        | 0        | 0                                                                                      | D                                              | e<br>e                                                   | 0                 | 0                 | 3,2303                                                  | 3           | 0                                                             | 0                                    | 0                                              | 0                                       | 1,9932                                              | 2                                                                                                |
| DNAJC30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DJC30_HUMAN                                                                                                                                                                                  | 26                                                        | 0        | 0                                                                                      | 0                                              | 0                                                        | 0                 | 0                 | 2,1535                                                  | 2           | 0                                                             | 0                                    | 0                                              | 0                                       | 1,9932                                              | 2                                                                                                |
| DNAJC8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DN.C8_HUMAN                                                                                                                                                                                  | 30                                                        | 0        | D                                                                                      | D                                              | e                                                        | e                 | 0                 | e                                                       | 0           | Э                                                             | U                                    | 0                                              | e                                       | 0                                                   | 0                                                                                                |
| DNVI2<br>DNTTIP1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DYN2_HUMAN                                                                                                                                                                                   | 98                                                        | 0        | 0                                                                                      | 0                                              | 0                                                        | 0                 | 0                 | 0                                                       | 0           | 0 2 1952                                                      | 0                                    | 0                                              | 0                                       | 0                                                   | 2                                                                                                |
| DPY19L1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ACA1BOGWOS_HUMAN                                                                                                                                                                             | 85                                                        | 0        | D                                                                                      | 1,9393                                         | 2                                                        | e                 | 0                 | e                                                       | õ           | 0                                                             | 0                                    | 0                                              | e                                       | 2,9897                                              | 3                                                                                                |
| DPYSL2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DA1C7CYX9_HUMAN (+                                                                                                                                                                           | 74                                                        | 0        | D                                                                                      | 0                                              | 0                                                        | 0                 | 0                 | 0                                                       | 0           | D                                                             | 0                                    | 0                                              | 0                                       | 0                                                   | D                                                                                                |
| DROSHA<br>DEC2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ENC_HUMAN                                                                                                                                                                                    | 159                                                       | 0        | 0                                                                                      | 0                                              | 0                                                        | 0                 | 0                 | 0                                                       | 0           | 2,1952                                                        | 2                                    | 0                                              | 0                                       | 0                                                   | 0                                                                                                |
| DUSP11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DUS11 HUMAN                                                                                                                                                                                  | 39                                                        | 0        | 0                                                                                      | 0                                              | 0<br>0                                                   | 0                 | 0                 | e e                                                     | 0           | 10.976                                                        | 6                                    | 0                                              | °.                                      | 0                                                   | 2                                                                                                |
| DYRK1A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DYRIA_HUMAN                                                                                                                                                                                  | 86                                                        | 0        | D                                                                                      | D                                              | o                                                        | 0                 | 0                 | 30,149                                                  | 19          | D                                                             | D                                    | 0                                              | 0                                       | 24,914                                              | 13                                                                                               |
| DYRK15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DYR18_HUMAN                                                                                                                                                                                  | 69                                                        | 0        | 0                                                                                      | 0                                              | 0                                                        | 0                 | 0                 | 16,151                                                  | 3           | 0                                                             | 0                                    | 0                                              | 0                                       | 15,945                                              | 5                                                                                                |
| EB15<br>FRMA1RP2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ESP2 HUMAN (+1)                                                                                                                                                                              | 35                                                        | 0        | 5                                                                                      | 0                                              | 0                                                        | 0                 | 0                 | 4307                                                    | 0           | 3,2929                                                        | 2                                    | 3,5138                                         | 4                                       | 0                                                   | 5                                                                                                |
| ECSIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ECSIT_HUMAN                                                                                                                                                                                  | 49                                                        | 0        | 0                                                                                      | 1,9393                                         | 2                                                        | 0                 | 0                 | C                                                       | 0           | 3                                                             | 0                                    | 2,6353                                         | 3                                       | 1,9932                                              | 2                                                                                                |
| ECT2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ECT2_HUMAN                                                                                                                                                                                   | 104                                                       | 0        | D                                                                                      | D                                              | 0                                                        | 0                 | 0                 | 0                                                       | ۵           | 3,2929                                                        | 3                                    | Đ                                              | 0                                       | 0                                                   | D                                                                                                |
| EED<br>EEE122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | EED_HUMAN                                                                                                                                                                                    | 50                                                        | 0        | 0                                                                                      | 0                                              | 0                                                        | 0                 | 0                 | 0                                                       | 0           | 0                                                             | 0                                    | 1,7569                                         | 2                                       | 0                                                   | 0                                                                                                |
| EEFSEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SELB_HUMAN                                                                                                                                                                                   | 65                                                        | 0        | 0                                                                                      | Ð                                              | e                                                        | e                 | 0                 | e                                                       | 0           | 2,1952                                                        | 2                                    | 9,6629                                         | 10                                      | 8,9592                                              | s                                                                                                |
| EFU1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EFL1_HUMAN                                                                                                                                                                                   | 125                                                       | 0        | D                                                                                      | 0                                              | 0                                                        | 0                 | 0                 | 0                                                       | 0           | 0                                                             | 0                                    | 0                                              | 0                                       | 0                                                   | D                                                                                                |
| EGFL7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | EGFL7_HUMAN                                                                                                                                                                                  | 30                                                        | 0        | 0                                                                                      | 0                                              | 0                                                        | 0                 | 0                 | 2,1535                                                  | 2           | 2,1952                                                        | 2                                    | 0                                              | 0                                       | 0                                                   | 0                                                                                                |
| EI24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EI24 HUMAN                                                                                                                                                                                   | 39                                                        | 0        | 5                                                                                      | 0                                              | 0                                                        | c                 | 0                 | 4,307                                                   | 3           | 5                                                             | 0                                    | 0                                              | ó                                       | 2,9897                                              | 3                                                                                                |
| ELAVL1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ELAV1_HUMAN                                                                                                                                                                                  | 36                                                        | 0        | Ð                                                                                      | D                                              | e                                                        | c                 | ٥                 | c                                                       | 0           | 3,2929                                                        | 3                                    | 3,5138                                         | 4                                       | 0                                                   | э                                                                                                |
| ELOC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ESRHG8_HUMAN (+2)                                                                                                                                                                            | 10                                                        | 0        | 0                                                                                      | 0                                              | 0                                                        | 0                 | 0                 | 0                                                       | 0           | 0                                                             | 0                                    | 1,7569                                         | 2                                       | 0                                                   | 0                                                                                                |
| EPB4115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | E41L5 HUMAN                                                                                                                                                                                  | 82                                                        | 0        | 0                                                                                      | D                                              | 0                                                        | 0                 | 0                 | c                                                       | 0           | 3,2929                                                        | 3                                    | 0                                              | 0                                       | 0                                                   | 2                                                                                                |
| EPPK1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 040758730_HUMAN (-                                                                                                                                                                           | 553                                                       | 0        | D                                                                                      | 0                                              | 0                                                        | 0                 | 0                 | 0                                                       | 0           | Э                                                             | 0                                    | 5,2707                                         | 2                                       | 0                                                   | D                                                                                                |
| ERBIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ERBIN_HUMAN                                                                                                                                                                                  | 158                                                       | 0        | D                                                                                      | U                                              | 0                                                        | e                 | 0                 | 3,2303                                                  | 2           | D                                                             | D                                    | 0                                              | e                                       | 0                                                   | э                                                                                                |
| ERCCS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ERCCS_HUMAN                                                                                                                                                                                  | 168                                                       | 0        | 0                                                                                      | 0                                              | 0                                                        | 0                 | 0                 | 0                                                       | 0           | 9.8795                                                        | 9                                    | 3,5138                                         | 3                                       | 2,9597                                              | 3                                                                                                |
| ERMP1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | E7ER77_HUMAN (+1)                                                                                                                                                                            | 93                                                        | 0        | D                                                                                      | D                                              | 0                                                        | e                 | 0                 | e                                                       | 0           | D                                                             | 0                                    | 1,7569                                         | 2                                       | 0                                                   | 0                                                                                                |
| ESF1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ESF1_HUMAN                                                                                                                                                                                   | 99                                                        | 0        | D                                                                                      | 0                                              | 0                                                        | 0                 | 0                 | 0                                                       | 0           | 0                                                             | 0                                    | 3,5138                                         | 4                                       | 0                                                   | 0                                                                                                |
| ESYT1<br>EXOCS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ESYT1_HUMAN                                                                                                                                                                                  | 123                                                       | 0        | 5                                                                                      | 0                                              | 0                                                        | 0                 | 0                 | 2 7202                                                  | 0           | 0                                                             | 0                                    | 0                                              | 0                                       | 0                                                   | 5                                                                                                |
| EXOG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EXOG_HUMAN                                                                                                                                                                                   | 41                                                        | 0        | 0                                                                                      | 0                                              | e e                                                      | 0<br>0            | 0                 | 21,535                                                  | 11          | 3,2929                                                        | 3                                    | 1,7569                                         | 2                                       | 4,9829                                              | 5                                                                                                |
| EXOSC3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | EXOS3_HUMAN                                                                                                                                                                                  | 30                                                        | 0        | D                                                                                      | D                                              | 0                                                        | 0                 | 0                 | 7,5373                                                  | 6           | D                                                             | D                                    | 1,7569                                         | 2                                       | 4,9929                                              | 5                                                                                                |
| EXOSUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | EXUSS HUMAN                                                                                                                                                                                  | 69                                                        | 0        | 0                                                                                      | 0                                              | 0                                                        | 0                 | 0                 | 6307                                                    | 4           | 3                                                             | 0                                    | 5,5158                                         | 4                                       | 0                                                   | 2                                                                                                |
| FAF2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | FAF2_HUMAN                                                                                                                                                                                   | 53                                                        | 0        | D                                                                                      | 0                                              | 0                                                        | 0                 | 0                 | 4,307                                                   | 3           | D                                                             | D                                    | 0                                              | 0                                       | 2,9897                                              | 3                                                                                                |
| FAM120C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | F120C_HUMAN                                                                                                                                                                                  | 121                                                       | 0        | 0                                                                                      | 0                                              | 0                                                        | e                 | 0                 | C                                                       | 0           | 6,5857                                                        | 2                                    | 0                                              | 0                                       | 0                                                   | D                                                                                                |
| FAR2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | FACR2_HUMAN_[+1;                                                                                                                                                                             | 59                                                        | 0        | 0                                                                                      | 0                                              | 0                                                        | 0                 | 0                 | 64605                                                   | 6           | 3                                                             | 0                                    | 0                                              | 0                                       | 5.9795                                              | 5                                                                                                |
| EARP2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | FARP2_HUMAN                                                                                                                                                                                  | 120                                                       | 0        | D                                                                                      | D                                              | e                                                        | c                 | 0                 | c                                                       | ō           | 3,2929                                                        | 3                                    | 0                                              | ē.                                      | 0                                                   | D                                                                                                |
| FBXO21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | FBX21_HUMAN (+1)                                                                                                                                                                             | 72                                                        | 0        | 0                                                                                      | 0                                              | 0                                                        | 0                 | 0                 | 2,1535                                                  | 2           | 0                                                             | 0                                    | 0                                              | 0                                       | 0                                                   | 0                                                                                                |
| FBXW8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | FBXWB HUMAN                                                                                                                                                                                  | 67                                                        | 0        | 5                                                                                      | 2,5065                                         | 0                                                        | 0                 | 0                 | 3,2303                                                  | 3           | 1,5905                                                        | 0                                    | 0                                              | 0                                       | 0                                                   | 3                                                                                                |
| FHL1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A0095FB0_HUMAN (+)                                                                                                                                                                           | 17                                                        | 0        | 0                                                                                      | 0                                              | 0                                                        | e                 | 0                 | e                                                       | 0           | 0                                                             | 0                                    | 0                                              | 0                                       | 0                                                   | 0                                                                                                |
| FIBP<br>E CAULA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TIBP_HUMAN                                                                                                                                                                                   | 42                                                        | 0        | 0                                                                                      | 0                                              | 0                                                        | 0                 | 0                 | 0 21636                                                 | 0           | 2,1952                                                        | 2                                    | 3,5138                                         | 4                                       | 0                                                   | 0                                                                                                |
| FIP1L1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | FIP1 HUMAN                                                                                                                                                                                   | 67                                                        | 0        | 0                                                                                      | 0                                              | 0                                                        | e                 | 0                 | 2,1535                                                  | ő           | 0                                                             | 0                                    | 5,2707                                         | 6                                       | 0                                                   | 5                                                                                                |
| FKBP4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | FKBP4_HUMAN                                                                                                                                                                                  | 52                                                        | 0        | a                                                                                      | D                                              | 0                                                        | 0                 | 0                 | 0                                                       | Ô           | D                                                             | D                                    | 0                                              | Ô                                       | 0                                                   | ٥                                                                                                |
| FLG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | FILA_HUMAN                                                                                                                                                                                   | 435                                                       | 0        | 0                                                                                      | 0                                              | 0                                                        | 0                 | 0                 | 0                                                       | 0           | 0                                                             | 0                                    | 2,6353                                         | 3                                       | 24,914                                              | 13                                                                                               |
| FMR1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A8MQ38_HUMAN (+1)                                                                                                                                                                            | 66                                                        | 0        | 0                                                                                      | 0                                              | 0                                                        | 0                 | 0                 | c                                                       | 0           | 31,831                                                        | 2                                    | 18,447                                         | 2                                       | 0                                                   | 5                                                                                                |
| FOXRED1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | FXRD1_HUMAN                                                                                                                                                                                  | 54                                                        | 0        | 9                                                                                      | D                                              | 0                                                        | 0                 | 0                 | c                                                       | 0           | э                                                             | U                                    | 0                                              | e                                       | 4,9829                                              | 5                                                                                                |
| FTS/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TRM7_HUMAN                                                                                                                                                                                   | 36                                                        | 0        | 0                                                                                      | D                                              | 0                                                        | 0                 | 0                 | 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                 | 0           | 6,5857                                                        | 5                                    | 0                                              | 0                                       | 0                                                   | 2                                                                                                |
| FUBPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | UF_HUMAN                                                                                                                                                                                     | 0Z<br>36                                                  | 0        | 0                                                                                      | 0<br>D                                         | e<br>e                                                   | 0                 | 0                 | 3,2505                                                  | 3           | 3,2929                                                        | 0                                    | 0                                              | C<br>C                                  | 0                                                   | 5                                                                                                |
| GALK1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | GALK1_HUMAN                                                                                                                                                                                  | 42                                                        | 0        | D                                                                                      | 0                                              | 0                                                        | 0                 | 0                 | 4,307                                                   | 4           | D                                                             | 0                                    | 0                                              | 0                                       | 0                                                   | о                                                                                                |
| GCDH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | GCDH_HUMAN                                                                                                                                                                                   | 48                                                        | 0        | 0                                                                                      | 0                                              | 0                                                        | 0                 | 0                 | 3,2303                                                  | 3           | 0                                                             | 0                                    | 0                                              | 0                                       | 1,9932                                              | 2                                                                                                |
| GID8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | GIDS HUMAN                                                                                                                                                                                   | 17<br>27                                                  | 0        | 0                                                                                      | 0                                              | 0                                                        | 0                 | 0                 | 21555                                                   | 2           | 0                                                             | 0                                    | 0                                              | 3                                       | 0                                                   | 2                                                                                                |
| GIGYF1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | GGYF1_HUMAN                                                                                                                                                                                  | 115                                                       | õ        | 0                                                                                      | D                                              | e                                                        | c                 | 0                 | c                                                       | õ           | 8,5857                                                        | 6                                    | e                                              | e                                       | 2,9897                                              | 3                                                                                                |
| GLYR1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | GLYR1_HUMAN (+1)                                                                                                                                                                             | 61                                                        | 0        | D                                                                                      | 0                                              | 0                                                        | 0                 | 0                 | 3,2303                                                  | 3           | 0                                                             | 0                                    | 0                                              | 0                                       | 0                                                   | 0                                                                                                |
| GNA12<br>GNR1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | GARL HUMAN                                                                                                                                                                                   | 37                                                        | 0        | 0                                                                                      | 0                                              | 0                                                        | 0                 | 0                 | 21525                                                   | 2           | 3,2929                                                        | 2                                    | 0                                              | 0                                       | 0                                                   | 2                                                                                                |
| GNL1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | GNL1_HUMAN                                                                                                                                                                                   | 69                                                        | 0        | 0                                                                                      | 1,9393                                         | 2                                                        | o                 | 0                 | 0                                                       | 0           | 0                                                             | 0                                    | 6,1491                                         | 2                                       | 0                                                   | 5                                                                                                |
| GN12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NOC2_HUMAN                                                                                                                                                                                   | 84                                                        | ٥        | D                                                                                      | D                                              | o                                                        | 0                 | ٥                 | c                                                       | ٥           | 2,1952                                                        | 2                                    | e                                              | e                                       | 0                                                   | а                                                                                                |
| GN.3L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | GNL3_HUMAN                                                                                                                                                                                   | 66                                                        | 0        | 0                                                                                      | 0                                              | 0                                                        | 0                 | 0                 | 5,3838                                                  | 4           | 5,4881                                                        | 4                                    | 7,906                                          | 9                                       | 0                                                   | 0                                                                                                |
| SINE/91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GOPC HUMAN                                                                                                                                                                                   | 51                                                        | 0        | 0                                                                                      | 0                                              | 0                                                        | 0                 | 0                 | 3,2303                                                  | 5           | 0                                                             | 0                                    | 0                                              | 0                                       | 0                                                   | 5                                                                                                |
| GOPC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                              | 28                                                        | 0        | 0                                                                                      | 1,9393                                         | 2                                                        | 0                 | 0                 | c                                                       | 0           | э                                                             | 0                                    | 0                                              | 0                                       | 2,9897                                              | 3                                                                                                |
| GOPC<br>GOSR1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | E9PCW1_HUMAN (+1)                                                                                                                                                                            |                                                           |          | 1 0                                                                                    | D                                              | 0                                                        | e                 | 0                 | 18,305                                                  | 14          | Э                                                             | D                                    | 0                                              | 0                                       | 7,9725                                              |                                                                                                  |
| GOPC<br>GOSR1<br>GPAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | E9PCW1_HUMAN (+1)<br>GPAT1_HUMAN                                                                                                                                                             | 94                                                        | 0        |                                                                                        |                                                | 0                                                        | ~                 |                   | ~                                                       | ~           |                                                               |                                      |                                                |                                         | 1 0000                                              | 2                                                                                                |
| GOPC<br>GOSR1<br>GPAM<br>GPAT4<br>GPATCH4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | E9PCW1_HUMAN (+1)<br>GPAT1_HUMAN<br>GPAT4_HUMAN<br>GPTC4_HUMAN                                                                                                                               | 94<br>52<br>50                                            | 0        | 0                                                                                      | 0                                              | 0                                                        | 0                 | 0                 | 0                                                       | 0           | 0<br>2,1952                                                   | 0                                    | 0                                              | 0                                       | 1,9932<br>0                                         | 2                                                                                                |
| GOPC<br>GOSR1<br>GPAM<br>GPAT4<br>GPATCH4<br>GPATCH8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | E9PCW1_HUMAN (+1)<br>GPAT1_HUMAN<br>GPAT4_HUMAN<br>GPTC4_HUMAN<br>GPTC8_HUMAN                                                                                                                | 94<br>52<br>50<br>164                                     | 0000     | 0<br>0<br>0                                                                            | 0<br>0<br>0                                    | 0<br>0<br>0                                              | 0<br>0            | 0<br>0<br>0       | 0<br>0<br>0                                             | 0 0 0       | 0<br>2,1952<br>2,1952                                         | 0<br>2<br>2                          | 0<br>0<br>0                                    | 0                                       | 1,9932<br>0<br>0                                    | 2<br>2<br>3                                                                                      |
| GOPC<br>GOSR1<br>GPAM<br>GPAT4<br>GPATCH4<br>GPATCH8<br>GPN3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | E9PCW1 HUMAN (+1)<br>GPAT1_HUMAN<br>GPAT4_HUMAN<br>GPTC4_HUMAN<br>GPTC8_HUMAN<br>GPN5_HUMAN                                                                                                  | 94<br>52<br>50<br>164<br>33                               | 0000     | 0<br>0<br>0                                                                            | 0<br>0<br>0<br>0                               | 0<br>0<br>0                                              | 0000              | 0000              | 0<br>0<br>2,1555                                        | 0           | 3<br>2,1952<br>2,1952<br>3                                    | 0<br>2<br>2<br>0                     | 0<br>0<br>0                                    | 0                                       | 1,9932<br>0<br>0<br>0                               | 3<br>2<br>3<br>3<br>3                                                                            |
| GOPC<br>GOSR1<br>GPAM<br>GPAT4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPATCH4 | E9PCW1_HUMAN (-1)<br>GPATI_HUMAN<br>GPATI_HUMAN<br>GPTC4_HUMAN<br>GPTC4_HUMAN<br>GPTC4_HUMAN<br>MTR1_HUMAN<br>GBBI0_HUMAN                                                                    | 94<br>52<br>50<br>164<br>33<br>67<br>67                   | 000000   | 0<br>0<br>0<br>0<br>0                                                                  | 0<br>0<br>0<br>1,9393<br>0                     | 0<br>0<br>0<br>2<br>0                                    | 000000            | 000000            | 0<br>0<br>2,1535<br>0                                   | 000200      | 0<br>2,1952<br>2,1952<br>0<br>0                               | 0<br>2<br>2<br>0<br>0                | 0<br>0<br>0<br>0                               | 000000000000000000000000000000000000000 | 1,9932<br>0<br>0<br>1,9932<br>0                     | 2<br>0<br>0<br>2<br>2<br>0                                                                       |
| GOPC<br>GOSR1<br>GPAM<br>GPAT4<br>GPATCH4<br>GPATCH4<br>GPATCH4<br>GPN3<br>CPR50<br>GR810<br>GR810<br>GR86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | E9PCW1_HUMAN (+1)<br>GPAT1_HUMAN<br>GPAT4_HUMAN<br>GPTC4_HUMAN<br>GPTC4_HUMAN<br>GPN5_HUMAN<br>GRB10_HUMAN<br>GRB10_HUMAN<br>F8W9W2_HUMAN (+1)                                               | 94<br>52<br>50<br>164<br>33<br>67<br>67<br>62             | 00000000 | 0<br>0<br>0<br>0<br>0<br>0<br>0                                                        | 0<br>0<br>1,9393<br>0<br>0                     | 0<br>0<br>0<br>2<br>0<br>0                               | 0000000           | 0 0 0 0 0 0       | 0<br>0<br>2,1535<br>0<br>0<br>0                         | 0 0 0 0 0 0 | 0<br>2,1952<br>2,1952<br>0<br>0<br>0<br>0<br>0                | 0<br>2<br>2<br>0<br>0<br>0<br>0      | 0<br>0<br>0<br>0<br>1,7569                     | 0<br>0<br>0<br>0<br>2                   | 1,9932<br>0<br>0<br>1,9932<br>0<br>0                | 2<br>3<br>3<br>2<br>2<br>3<br>3<br>3<br>3<br>3<br>3                                              |
| GOPC<br>GOSR1<br>GPAM<br>GPATCH<br>GPATCH8<br>GPN3<br>CPR5D<br>GR810<br>GR810<br>GR86<br>GRN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | E9PCW1_HUMAN (+1)<br>GPAT1_HUMAN<br>GPAT4_HUMAN<br>GPTC4_HUMAN<br>GPTC4_HUMAN<br>GPN5_HUMAN<br>GRN5_HUMAN<br>ISBBI0_HUMAN<br>ISBBI0_HUMAN<br>(+1)<br>GRN_HUMAN                               | 94<br>52<br>50<br>164<br>53<br>67<br>67<br>62<br>62<br>64 |          | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                         | 0<br>0<br>1,9393<br>0<br>0<br>0                | 0<br>0<br>0<br>2<br>0<br>0                               | 0000000           | 0 0 0 0 0 0 0 0   | 0<br>0<br>2,1535<br>0<br>0<br>3,2303                    | 00020008    | 0<br>2,1952<br>2,1952<br>0<br>0<br>0<br>0<br>0<br>0           | 0<br>2<br>2<br>0<br>0<br>0           | 0<br>0<br>0<br>0<br>1,7569<br>0                | 000000000000000000000000000000000000000 | 1,9932<br>0<br>0<br>1,9932<br>0<br>0<br>0           | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2      |
| GOPC<br>GOSR1<br>GPAT4<br>GPAT4<br>GPATCH9<br>GPATCH9<br>GPA5<br>GPA5<br>GPA5<br>GR50<br>GR50<br>GR50<br>GR50<br>GR810<br>GR50<br>GRW21<br>GSDMA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E9PCW1_HUMAN (+1)<br>GPAT1_HUMAN<br>GPTC4_HUMAN<br>GPTC4_HUMAN<br>GPTC4_HUMAN<br>GPX5_HUMAN<br>MTR11_HUMAN<br>MTR11_HUMAN<br>GRN_HUMAN<br>GRN_HUMAN<br>GRN_HUMAN<br>GRN_1HUMAN<br>GRN_1HUMAN | 94<br>52<br>50<br>164<br>33<br>67<br>62<br>64<br>49<br>49 |          | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>1,9393<br>0<br>0<br>0<br>0<br>2,9085 | 0<br>0<br>0<br>2<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>2 | 0 0 0 0 0 0 0 0 0 | 0 0 0 0 0 0 0 0 0 | 0<br>0<br>2,1535<br>0<br>0<br>0<br>3,2303<br>8,614<br>0 | 00020007880 | 0<br>2,1952<br>2,1952<br>0<br>0<br>0<br>0<br>0<br>7,6834<br>0 | 0<br>2<br>0<br>0<br>0<br>7<br>0<br>7 | 0<br>0<br>0<br>0<br>1,7565<br>0<br>4,3922<br>0 | 000000000000000000000000000000000000000 | 1,9932<br>0<br>0<br>1,9932<br>0<br>0<br>2,9897<br>0 | 2<br>0<br>2<br>0<br>2<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |

|                   | í                                 |           | 1      |        |             |        |                          |   | 2                | a  | 20          |        | 1.1.1       |        | 1                          | S  |
|-------------------|-----------------------------------|-----------|--------|--------|-------------|--------|--------------------------|---|------------------|----|-------------|--------|-------------|--------|----------------------------|----|
| GSPT1<br>GSTP1    | ERF3A_HUMAN<br>ARMX94_HUMAN (+3)  | 56<br>19  | 0      | 9<br>D | 0           | 0      | 0                        | 0 | C<br>C           | 0  | 9           | 0      | 0           | 0      | 0                          | 0  |
| GTF2H4            | TF2H4_HUMAN                       | 52        | 0      | 0      | 0           | 0      | o                        | 0 | c                | 0  | 2,1952      | 2      | 5,2707      | 5      | 3,9863                     | 4  |
| GTF3C2            | TF3C2_HUMAN                       | 101       | 0      | D      | 5,8178      | 5      | e                        | 0 | C III            | 0  | 7,5834      | 8      | 3,5138      | 4      | 0                          | 0  |
| GTF3C4            | TF3C4 HUMAN                       | 92        | 0      | 0      | 1,9393      | 0      | c c                      | 0 | 4,307            | 4  | 3,4881      | 0      | 1,7569      | 2      | 0                          | 2  |
| GTPBP2            | GTP82_HUMAN                       | 66        | 0      | D      | n           | 0      | 0                        | 0 | 2,1535           | 2  | D           | 0      | 0           | 0      | 1,9932                     | 2  |
| GTPBP4<br>CTPBP6  | NOG1_HUMAN<br>GT235_HUMAN (#1)    | 74        | 0      | 0      | 0           | 0      | 0                        | 0 | 5,3838           | 5  | 10,976      | 9      | 6,1491      | 7      | 0                          | 0  |
| GTSE1             | GTSE1_HUMAN                       | 77        | 0      | 0      | 0           | 0      | 0                        | 0 | 0                | ô  | 4,3905      | 4      | 0           | ō      | 0                          | Ď  |
| GUF1              | GUF1_HUMAN                        | 74        | 0      | 9      | U           | 0      | 0                        | 0 | e                | 0  | 0           | 0      | 4,3922      | 5      | 0                          | 0  |
| GYS1<br>HAL       | GYS1_HUMAN<br>HUTH_HUMAN          | 73        | 0      | 0      | 0           | 0      | C C                      | 0 | 5,3838<br>C      | 5  | 0<br>0      | 0      | 0           | 0      | 0                          | 2  |
| HA/152            | SYHM_HUMAN                        | 57        | 0      | Ð      | Ð           | e      | e                        | 0 | c                | ò  | 5,4881      | 3      | 0           | e      | 0                          | D  |
| HAUS1             | HAUS1_HUMAN                       | 32        | 0      | 0      | 0           | 0      | 0                        | 0 | 2,1535           | 2  | D           | 0      | 0           | 0      | 0                          | 0  |
| HEAL              | HBA_HUMAN (+2)                    | 15        | 3,9148 | 2      | 1,9393      | 2      | 0                        | 0 | 0                | 0  | 0           | 0      | 0           | 0      | 0                          | 3  |
| hCG_204342        | G FGQDSQ_HUMAN                    | 54        | 0      | Э      | 0           | 0      | 0                        | 0 | 0                | 0  | Э           | 0      | 0           | 0      | 0                          | D  |
| HDGFL2<br>HEL72   | HDG12_HUMAN<br>HE 72_HUMAN        | 74        | 0      | 0      | 0           | 0      | 0                        | 0 | C<br>3 2303      | 0  | 0<br>54881  | 0      | 0           | 0      | 0                          | 2  |
| HERC2             | HERC2_HUMAN                       | 527       | 0      | 9      | D           | e      | 0                        | 0 | 13,998           | 13 | 3           | D      | 0           | 0      | 0                          | 3  |
| HERCS             | HERCS_HUMAN                       | 117       | 0      | D      | 0           | 0      | 0                        | 0 | 0                | 0  | D           | D      | 1,7569      | 2      | 0                          | D  |
| HUARC             | ADC4DGAS_HUMAN (+1)               | 114       | 0      | 5      | 2.9089      | 3      | e                        | 0 | 3,2505           | 0  | 7.5834      | 7      | 5.2707      | 5      | 0                          | 5  |
| HNRNPH2           | HNRH2_HUMAN                       | 49        | 0      | D      | 0           | 0      | 0                        | 0 | 0                | 0  | 17,562      | 2      | 0           | 0      | 11,959                     | 4  |
| HNRNPH3<br>HOMER3 | HNRH3_HUMAN                       | 37        | 0      | 0      | 0           | 0      | e<br>o                   | 0 | 2,1535           | 2  | 19,757      | 7      | 1,7569      | 2      | 0                          | 0  |
| HOXA10            | HXA10_HUMAN                       | 42        | 0      | 0      | 0           | 0      | 0                        | 0 | o                | 0  | 2.1952      | 2      | 0           | 0      | 1,9932                     | 2  |
| HOXAS             | HXAS_HUMAN                        | 29        | 0      | D      | 5,8178      | 3      | e                        | 0 | e                | 0  | 9,8786      | 3      | 2,6353      | 3      | 0                          | D  |
| HOX58<br>HOX59    | HX88_HUMAN (+2)<br>HX88_HUMAN     | 28        | 0      | 0      | 0           | 0      | 0                        | 0 | 0                | 0  | 4,3905      | 2      | 0           | 0      | 0                          | 0  |
| HRAS              | RASH_HUMAN (+3)                   | 21        | 0      | D      | 0           | 0      | 0                        | 0 | 0                | ō  | 9           | 0      | 1,7569      | 2      | 0                          | a  |
| HSDL2             | HSD_2_HUMAN                       | 45        | 0      | 0      | 0           | 0      | 0                        | 0 | C                | 0  | 0           | 0      | 0           | 0      | 0                          | 0  |
| HSPA11<br>HSPA41  | HS74L_HUMAN                       | /D<br>95  | 0      | 9      | 0           | 0      | 0                        | 0 | 16,151           | 3  | 0           | 0      | 0           | 0      | 2,9897                     | 2  |
| HSP81             | H\$P81_HUMAN                      | 23        | 0      | D      | 1,9393      | 2      | e                        | 0 | 3,2303           | 3  | C           | D      | 4,3922      | 4      | 2,9897                     | z  |
| ICMT              | ICMT_HUMAN<br>IDE_HUMAN           | 32        | 0      | 0      | 0           | 0      | 0                        | 0 | 2,1535           | 2  | 0           | 0      | 17500       | 0      | 0                          | 0  |
| IDH2              | DHP_HUMAN                         | 51        | 0      | D      | 1,9393      | 2      | e                        | 0 | e                | 0  | 5           | 0      | 0           | é      | 0                          | 5  |
| IFRD1             | IFRD1_HUMAN                       | 50        | 0      | 0      | 0           | 0      | 0                        | 0 | C                | 0  | 0           | 0      | 1,7569      | 2      | 0                          | 0  |
| IFT1/0            | F172_HUMAN                        | 165       | 0      | 0      | 0           | 0      | 0                        | 0 | 2,1535<br>30,149 | 2  | 0           | 0      | 0           | 0      | 4,9829                     | 5  |
| IFT81             | IFT81_HUMAN                       | 80        | 0      | 0      | D           | 0      | C                        | 0 | 5,5858           | 5  | э           | 0      | 0           | 0      | 0                          | э  |
| ICF2BP2           | FBW930_HUMAN (+1)                 | 67        | 0      | 0      | D           | 0      | 0                        | 0 | 10,768           | 6  | 0           | 0      | 7,906       | 4      | 4,9829                     | 2  |
| IMMT              | CS1405_HUMAN                      | 73        | 0      | 9      | Ð           | 0<br>0 | c                        | 0 | 30,149           | 2  | 0           | 0      | 0           | é      | 0                          | 5  |
| INA               | AINX_HUMAN                        | 55        | 0      | D      | 0           | 0      | 0                        | 0 | 7,5373           | 7  | D           | 0      | 0           | 0      | 0                          | D  |
| INPPSK<br>IDD/S   | INPSK_HUMAN                       | 51        | 0      | 0      | 0           | 0      | 0                        | 0 | 3,2305           | 2  | 2           | 0      | 0           | 0      | 0                          | 0  |
| IP6K1             | P6K1_HUMAN                        | 50        | õ      | D      | 0           | 0      | 0                        | 0 | 0                | 0  | 2,1952      | 2      | 0           | 0      | 0                          | 5  |
| IPD4              | HOYN14_HUMAN                      | 101       | 0      | D      | D           | 0      | c                        | 0 | 2,1535           | 2  | Э           | D      | 0           | 0      | 0                          | D  |
| IQC81             | QC61_HUMAN                        | 53        | 0      | 0      | 0           | 0      | 0                        | 0 | 2 1535           | 4  | 3,2929      | 3<br>0 | 0           | 0      | 2,9897                     | 5  |
| IQGAP3            | IQGA3_HUMAN                       | 185       | 0      | D      | D           | 0      | 0                        | 0 | 78,603           | 46 | 5,4881      | 3      | 6,1491      | 4      | 48,832                     | 42 |
| IQSEC1            | A087WWK8_HUMAN (                  | 124       | 0      | 0      | 0           | 0      | 0                        | 0 | 6,4605           | 5  | 0           | 0      | 0           | 0      | 0                          | 0  |
| IRF28P1           | 125P1_HUMAN                       | 62        | 0      | 0      | 0           | 0      | 0                        | 0 | 3,2303           | 3  | 0           | 0      | 1,7565      | 0      | 1,9932                     | 2  |
| ITPR PL1          | H7COT2_HUMAN (+1)                 | 67        | 0      | 0      | 0           | 0      | c                        | 0 | 3,2305           | 3  | Э           | 0      | 0           | 0      | 0                          | D  |
| JPH1<br>JUN       | JPH1_HUMAN<br>JUN_HUMAN           | 72        | 0      | 0      | 1,9393      | 2      | 0                        | 0 | 8,814            | 8  | 2,1952      | 2      | 2,6353      | 3      | 7,9728                     | 8  |
| KCTDS             | KCTDS_HUMAN                       | 26        | 0      | D      | 0           | 0      | 0                        | 0 | 3,2303           | 3  | D           | 0      | 0           | 0      | 0                          | D  |
| KDM45             | MOCHDEL8_HUMAN (-                 | 122       | 0      | 0      | Ð           | 0      | e                        | 0 | e                | 0  | 2,1952      | 2      | 0           | e      | 0                          | 0  |
| KIF14             | KIF14 HUMAN                       | 186       | 0      | 5      | 0           | 0      | 0                        | 0 | 0                | 0  | 0,3537      | 0      | 1,7569      | 2      | 0                          | 3  |
| KIF23             | KIF23_HUMAN                       | 110       | 0      | D      | D           | 0      | e                        | 0 | 2,1535           | 2  | D           | D      | 0           | 0      | 0                          | D  |
| KIF3C             | F8WAR6_HUMAN (+2)                 | 76        | 0      | 0      | 0           | 0      | 0                        | 0 | 2,1535           | 2  | 0           | 0      | 0           | 0      | 0                          | 0  |
| KIN               | KIN17_HUMAN                       | 45        | õ      | D      | 0           | 0      | 0                        | 0 | 0                | ō  | D           | 0      | 1,7569      | 2      | 0                          | 0  |
| KLHDC2            | KLDC2_HUMAN                       | 46        | 0      | 0      | 0           | 0      | 0                        | 0 | 2,1555           | 2  | Э           | 0      | 0           | 0      | 0                          | 0  |
| KLHL21<br>KLHL23  | KUH21_HUMAN                       | 64        | 0      | 0      | 0           | 0      | 0                        | 0 | 4,307            | 4  | 3           | 0      | 0           | 0      | 0                          | 2  |
| KPNA4             | IMA3_HUMAN                        | 58        | 0      | D      | Ð           | 0      | e                        | ò | e                | 0  | D           | D      | Ð           | e      | 0                          | Э  |
| KPN51             | IMB1_HUMAN                        | 97        | 0      | 0      | 0           | 0      | 0                        | 0 | 2,1535           | 2  | 2,1952      | 2      | 1,7569      | 2      | 0                          | 0  |
| L3MBTL2           | MBL2_HUMAN                        | 79        | ő      | D      | D           | e      | e                        | 0 | 5,3838           | 5  | 0           | 0      | 0           | e      | 2,9897                     | 3  |
| LANCL1            | E9PH50_HUMAN (+1)                 | 22        | 0      | D      | 0           | 0      | 0                        | 0 | 0                | 0  | 2,1952      | 2      | 0           | 0      | 0                          | 0  |
| LATSI             | LATSI_HUMAN                       | 127       | 0      | 5      | 1,9393      | 2      | 0                        | 0 | 0                | 0  | 2,1952      | 2      | 0           | 0      | 0                          | 5  |
| LEMD2             | LEMD2_HUMAN                       | 57        | 0      | 9      | 0           | 0      | 0                        | 0 | e                | 0  | Э           | 0      | 0           | e      | 3,9863                     | 4  |
| LENGS             | A087WTE7_HUMAN (+                 | 86        | 0      | 0      | 0           | 0      | 0                        | 0 | 0                | 0  | 3,2029      | 3      | 0           | 0      | 0                          | 2  |
| LGALS35P          | LG3BP_HUMAN                       | 65        | 0      | 0      | 0           | e      | c                        | 0 | 2,1535           | 2  | 5           | 0      | 0           | e      | 0                          | 5  |
| LGALS7            | LEG7_HUMAN                        | 15        | 0      | D      | 0           | 0      | 0                        | 0 | 0                | 0  | 0           | 0      | 4,3922      | 4      | 2,9897                     | 3  |
| LIAT1<br>LIN286   | A180GVD3 HUMAN /-                 | 28        | 0      | 0      | D           | 0      | 0                        | 0 | 2,1535           | 2  | 2,1952      | 2      | 2,6353      | 3      | 0                          | 3  |
| LLGL2             | .SQRV5_HUMAN (+1)                 | 113       | 0      | 0      | 0           | 0      | 0                        | 0 | 0                | 0  | 2,1952      | 2      | 0           | 0      | 0                          | Э  |
| LOR               | LORI_HUMAN<br>PCATL HUMAN         | 26        | 2,6099 | 2      | 1,9393      | 2      | 0                        | 0 | C<br>3 7202      | 0  | 3 2020      | 0      | 0           | 0      | 0 3 9962                   | 0  |
| LRCH4             | LRCH4_HUMAN                       | 73        | 0      | 9      | 0           | e      | 0                        | 0 | 0                | ő  | 3           | D      | 1,7569      | 2      | 0                          | D  |
| LRRC15            | LRC15_HUMAN                       | 64        | 0      | D      | 2,9089      | 3      | 0                        | 0 | 0                | 0  | 0           | 0      | 0           | 0      | 0                          | 0  |
| LSM1              | LSM1_HUMAN                        | 15        | 0      | 0      | 0           | e      | 0                        | 0 | e                | 0  | 3           | 0      | 0           | 0      | 1,9932                     | 2  |
| LSM11             | LSM11_HUMAN                       | 40        | 0      | D      | 1,9393      | 2      | 0                        | 0 | 0                | 0  | D           | 0      | 1,7569      | 2      | 0                          | 0  |
| LSM2<br>LSM2      | LSM2_HUMAN<br>LSM4_HUMAN          | 11        | 0      | 0      | 1,9393      | 2      | 0                        | 0 | 3,2303           | 2  | 0           | 0      | 0           | e<br>o | 3,9853                     | 3  |
| LSMG              | LSMG_HUMAN                        | 9         | 0      | э      | 0           | 0      | 0                        | 0 | 2,1535           | 2  | D           | 0      | 0           | 0      | 2,9897                     | 3  |
| LSM7              | LSM7_HUMAN                        | 12        | 0      | 0      | D           | 0-     | e                        | 0 | 2,1535           | 2  | D           | 0      | 0           | 0      | 0                          | D  |
| MAD2L1            | MD2L1_HUMAN                       | 73<br>24  | 0      | 9      | 0           | 0      | 0                        | 0 | 3,2303           | 3  | 0<br>0      | 0      | 0           | 0      | 0                          | 3  |
| MAFA              | F7FSC7_HUMAN (+1)                 | 49        | 0      | D      | D           | 0      | 0                        | 0 | 2,1535           | 2  | D           | D      | 0           | 0      | 0                          | D  |
| MAP2K7<br>MAP3K20 | MP2K7_HUMAN<br>M3K20_HUMAN        | 47        | 0      | 0      | 1,9393<br>D | 2      | 0                        | 0 | 0                | 0  | 0<br>2,1952 | 0      | 1,7569<br>D | 2      | 0                          | 0  |
| MAP3k4            | P5H4R1_HUMAN (+3)                 | 163       | 0      | 0      | 0           | 0      | o                        | 0 | 0                | 0  | 0           | 0      | 2,6353      | 3      | 0                          | 5  |
| MAP7D3            | MA7D3_HUMAN                       | 98        | 0      | 0      | 0           | 0      | e                        | 0 | e                | 0  | 8,781       | 8      | 0           | 0      | 0                          | 0  |
| MAPKI             | MK03 HUMAN                        | 41        | 0      | 9      | 0           | 0      | 0                        | 0 | 6,4605           | 5  | 2           | 0      | 0           | 0      | 0                          | 0  |
| Маркар1           | SIN1_HUMAN                        | 59        | õ      | Ð      | Ð           | e      | e                        | õ | 2,1535           | 2  | a           | D      | e           | ē      | õ                          | a  |
| MARCH7            | F5H6W4_HUMAN                      | 70        | 0      | 0      | 0           | 0      | 0                        | 0 | 6,4605           | 6  | 0           | 0      | 0           | 0      | 0                          | 0  |
| MAZ               | I3L2Z5_HUMAN                      | 22        | 0      | 5      | 0,7875      | 6      | 0                        | 0 | 0                | 0  | 4,3905      | 3      | 1,7569      | 2      | 0                          | 3  |
| MBD4              | MBD4_HUMAN                        | 66        | 0      | 0      | 0           | 0      | 0                        | 0 | o                | 0  | 2,1952      | 2      | 0           | 0      | 0                          | D  |
| MCM10<br>MCM10    | MCM10_HUMAN (+1)<br>MCM89_HEIMARP | 98<br>72  | 0      | 0      | 0           | 0      | 0                        | 0 | 0                | 0  | 2,1952      | 2      | 0           | 0      | 0                          | 0  |
| MDH2              | MDHM_HUMAN                        | 36        | 0      | 0      | 6,7875      | 7      | c                        | 0 | e                | 0  | 2,1952      | 2      | e e         | e      | 0                          | 0  |
| MERTK             | FOPHXS_HUMAN (+1)                 | 91        | 0      | 0      | 0           | 0      | 0                        | 0 | 0                | 0  | 4,3905      | 2      | 0           | 0      | 0                          | 0  |
| MESD<br>METTL15   | MESD_HUMAN<br>MET15_HUMAN         | 46        | 0      | 0      | 2,9089      | 3      | e                        | 0 | e                | 0  | 4,3905      | 4      | 1,7565      | 2      | 0<br>0                     | 5  |
| METTL16           | MET16_HUMAN                       | 64        | 0      | D      | 1,9393      | 2      | 0                        | 0 | 0                | 0  | 3,2929      | 2      | 5,2707      | 6      | 1,9932                     | 2  |
| METTL17           | MET17_HUMAN<br>MGAT2_HUMAN        | 51        | 0      | 0      | 1,9393      | 2      | 0                        | 0 | 0                | 0  | 8,781       | 6      | 4,3922      | 5      | 3,9853                     | 4  |
| MICU1             | ADADU1RRK1_HUMAN                  | 55        | 0      | 9      | 0           | o      | o                        | 0 | 2,1535           | 2  | 5,4881      | 3      | 5,2707      | 3      | 4,9829                     | 5  |
| MD1               | TRIB_HUMAN                        | 75        | 0      | D      | D           | 0      | 0                        | 0 | 0                | 0  | D           | D      | 0           | 0      | 0                          | D  |
| MINK1<br>MKS1     | MINK1_HUMAN<br>MKS1_HUMAN         | 150<br>65 | 0      | 0      | 0           | 0<br>0 | 0                        | 0 | 0<br>2,1535      | 2  | 10,976      | 4      | 0           | 0      | 0                          | 0  |
| MLF2              | MLF2_HUMAN                        | 28        | ő      | 0      | 0           | o      | o                        | 0 | 3,2303           | 2  | 5           | 0      | 0           | 0      | 0                          | 5  |
| MMTAG2            | MMTA2_HUMAN                       | 29        | 0      | 0      | 0           | 0      | 0                        | 0 | C                | 0  | 4,3905      | 2      | 1,7569      | 2      | 0                          | 0  |
| DEVEN             |                                   | 114       |        |        | u           | . U    | <ul> <li>Main</li> </ul> |   | 0,0000           |    | 10,000/     | 0      | • U         |        | <ul> <li>1.2537</li> </ul> |    |

| PHOSPHIC      | MPP13_HUMAN        | 79       | 0 | 9 | 0       | 0      | e   | 0   | 2,1555      | 2  | 2,1952 | 2  | 0      | e      | 0        | 0      |
|---------------|--------------------|----------|---|---|---------|--------|-----|-----|-------------|----|--------|----|--------|--------|----------|--------|
| MPPE          | 5872G1_HUMAN (+1)  | 49       | 0 | a | n       | 0      | 0   | 0   | 0           | 0  | 0      | D  | 0      | 0      | 0        | D      |
| MEPL14        | RM14_HUMAN         | 10       | 0 | 9 | 1,9393  | 2      | 0   | 0   | 0           | 0  | Т 6957 | 0  | 0      | 0      | 0        | 0      |
| MEPI 21       | RM21 HUMAN         | 23       | 0 | 0 | 0       | 0      | 0   | 0   | 0           | 0  | 2 1952 | 2  | 1 7569 | 2      | 0        | 2      |
| MRPL38        | RM38 HUMAN         | 45       | 0 | 0 | 0       | 0      | 0   | 0   | 0           | 0  | 2.1952 | 2  | 1,7569 | 2      | 0        | 0      |
| MRPL41        | RM41_HUM4N         | 15       | 0 | D | n       | 0      | 0   | 0   | 0           | 0  | 2,1952 | 2  | 0      | 0      | 0        | a      |
| MRPL43        | B1AL05_HUMAN (+2)  | 21       | 0 | D | 0       | 0      | 0   | 0   | o           | 0  | Э      | 0  | 1,7569 | 2      | 0        | Э      |
| MILPL55       | RM55_HUMAN         | 15       | 0 | 0 | D       | 0      | e   | 0   | e           | 0  | D      | D  | 1,7569 | 2      | Ó        | 0      |
| MKP.9         | RMUS_HUMAN         | 30       | 0 | 0 | 1 0 00  | 2      | 0   | 0   | 0           | 0  | 2,781  | 0  | 4,3522 | 4      | 1,9932   | 2      |
| MEPSIE        | TT11 HUMAN         | 23       | 0 | 5 | 4,8482  | 4      | 0   | 0   | 0           | 0  | 2,1552 | 0  | 0,0156 |        | 0        | 3      |
| MRPS12        | ST12 HUMAN         | 15       | 0 | 0 | 0       | 0      | 0   | 0   | 0           | 0  | 2,1952 | 2  | 1.7569 | 2      | 0        | 2      |
| MILPS14       | IT14_HUMAN         | 15       | 0 | D | 2,9089  | 2      | e   | ò   | e           | 0  | Э      | D  | 0      | e      | 0        | 0      |
| WRPS18A       | RT18A_HUMAN        | 22       | 0 | D | 0       | 0      | 0   | 0   | 0           | 0  | 3,2929 | 3  | 0      | 0      | 0        | D      |
| MRPS28        | RT28_HUMAN         | 21       | 0 | 0 | 3,8786  | 3      | C   | 0   | C           | 0  | Э      | D  | 1,7569 | 2      | 1,9932   | 2      |
| MRPS30        | RT30_HUMAN         | 50       | 0 | D | n       | 0      | 0   | 0   | 0           | 0  | D      | 0  | 1,7569 | 2      | 3,9853   | 4      |
| MRPS6         | RT06_HUMAN         | 14       | 0 | 0 | 5,8178  | 6      | 0   | 0   | 0           | 0  | 9      | 0  | 0      | 0      | 0        | 0      |
| MIRIO         | ADADADD2 HUNAAN    | 25       | 0 | 0 | 0       | 0      | 0   | 0   | 2 1525      | 2  | 3      | 0  | 0      | 0      | 0        | 2      |
| MSH5          | MO24RCV8 HUMAN (+  | 95       | 0 | 0 | 0       | e      | 0   | 0   | C           | 0  | 3      | 0  | 17569  | 2      | 0        | 3      |
| MT-CO2        | COX2_HUMAN         | 26       | 0 | D | 0       | 0      | 0   | 0   | 2,1535      | 2  | D      | D  | 0      | 0      | 0        | а      |
| MTG2          | MTG2_HUMAN (+1)    | 44       | 0 | 0 | 0       | 0      | C   | 0   | 0           | 0  | 3,2929 | 3  | 0      | 0      | 0        | 0      |
| MTM1          | MTM1_HUMAN         | 70       | 0 | 3 | D       | e      | 0   | ٥   | C           | ٥  | Э      | D  | e      | 0      | 0        | D      |
| MTX2          | MTX2_HUMAN         | 30       | 0 | 0 | 0       | 0      | 0   | 0   | 6,4605      | 5  | 0      | 0  | 0      | 0      | 0        | 0      |
| AVGEDIA       | MERIA HUMAN        | 140      | 0 | 2 | 5.9179  | 6      | 0   | 0   | 0 6008      |    | 75,726 | 26 | 20.746 | 25     | 24.014   | 10     |
| MYL12A        | J3QRS3 HUMAN (+2)  | 20       | 0 | 0 | 0       | 0      | 0   | 0   | 2 15 35     | 2  | 3      | 0  | 0      | 0      | 0        | 3      |
| MYO10         | ADAOMQX1_HUMAN (-  | 239      | 0 | D | Ð       | 0      | 0   | 0   | 9,6908      | 9  | D      | D  | e      | 0      | 0        | D      |
| MYO9A         | MYOSA_HUMAN        | 293      | 0 | 0 | 0       | 0      | 0   | 0   | 2,1535      | 2  | D      | 0  | 0      | 0      | 0        | 0      |
| MY095         | MOROP8_HUMAN (+2)  | 243      | 0 | 0 | U       | 0      | 0   | ٥   | 8,514       | 8  | 4,3905 | 4  | 5,2707 | 6      | 0        | Э      |
| NAA25         | NAA25_HUMAN        | 112      | 0 | 0 | 0       | 0      | 0   | 0   | 0           | 0  | 0      | 0  | 0      | 0      | 0        | 0      |
| NAGK          | H/CS69_HUMAN (+1)  | 57       | 0 | 0 | 0       | 0      | 0   | 0   | 2,1555      | 2  | 3      | 0  | 0 4080 | 0      | 0        | 0      |
| NAP114        | C91717 HUMAN (+1)  | 32       | 0 | 0 | 1,9393  | 2      | 0   | 0   | 0           | 0  | 3      | 0  | 2,6355 | 0      | 0        | 3      |
| NA 14         | NAT14_HUMAN        | 22       | 0 | D | U       | e      | e   | 0   | 2,1535      | 2  | Э      | D  | 0-     | e      | 0        | D      |
| NAV1          | ADAOMRI3_HUMAN (-  | 197      | 0 | D | D       | 0      | 0   | 0   | 0           | 0  | D      | 0  | 2,6353 | 3      | 0        | D      |
| NCBP3         | NCBP3_HUMAN        | 71       | 0 | 0 | 1,9393  | 2      | 0   | 0   | 0           | 0  | 3,2929 | 3  | 9,6629 | 10     | 0        | Э      |
| NCCRPI        | F6X50_HUMAN        | 31       | 0 | 0 | D       | 0<br>C | 0   | 0   | 0           | 0  | 0      | D  | 0      | 0      | 1,9932   | 2      |
| NCOA5         | NCOAS_HUMAN        | 66       | 0 | 0 | 0       | 0      | 0   | 0   | 0           | 0  | 5,4881 | 4  | 8,7845 | 8      | 1,9932   | 2      |
| NDCR0         | NDCS_HOMMN         | 70       | 0 | 0 | P       | , i    | 0   | 6   | 0           | 0  | 3,2929 | 3  | 0      | 0      | 0        | 2      |
| NDUFA4        | NDUA4_HUMAN        | 9        | 0 | 0 | 0       | 0      | c   | 0   | 2,1535      | 2  | 3      | 0  | 0      | 0      | 0        | 0      |
| NDUISS        | NDUSS_HUMAN        | 13       | 0 | D | D       | 0      | D   | 0   | C           | 0  | 0      | D  | 1,7569 | 2      | 0        | a      |
| NDUFS?        | F5GXI1_HUMAN (+2)  | 25       | 0 | Ð | 1,9393  | 2      | 0   | 0   | 2,1535      | 2  | 2,1952 | 2  | 1,7569 | 2      | 0        | 0      |
| NEFL          | NFL_HUMAN          | 62       | o | D | U       | 0      | e   | 0   | 8,514       | 6  | D      | 0  | 3,5138 | 3      | 5,9795   | *      |
| NEK1          | NEK1_HUMAN         | 143      | 0 | 0 | 5,8178  | 6      | 0   | 0   | 0           | 0  | 3,2929 | 3  | 0      | 0      | 0        | 0      |
| N254          | NEM4_HUMAN         | 55       | 0 | 0 | 0       | 0      | 0   | 0   | 0           | 0  | 2,1952 | 2  | 1,7569 | 2      | 2.0807   | 3      |
| NEURIA        | 131100_HUMAN (+2)  | 153      | 0 | 0 | 0       | 0      | 0   | 0   | 4307        | 3  | 3      | 0  | 0<br>0 | 0      | 2,9897   | 3      |
| NEC           | NFIC HUMAN (+1)    | 56       | 0 | D | D       | 0      | 0   | 0   | C           | 0  | 2,1952 | 2  | 1,7569 | 2      | 0        | D      |
| NFKB L1       | ADADMRT5_HUMAN (H  | 41       | 0 | D | 0       | 0      | 0   | 0   | 0           | 0  | 2,1952 | 2  | 0      | 0      | 0        | D      |
| NFS1          | NFS1_HUMAN         | 50       | 0 | 0 | 0       | 0      | 0   | 0   | 0           | 0  | Э      | 0  | 0      | 0      | 0        | Э      |
| NEX1          | NFX1_HUMAN         | 124      | 0 | D | D       | 0      | 0   | 0   | 0           | Ô  | 2,1952 | 2  | 0      | 0      | 0        | D      |
| NEXL1         | NEXL1_HUMAN        | 10-1     | 0 | 0 | 1,9393  | 2      | 0   | 0   | 0           | 0  | 0      | 0  | 0      | 0      | 2,9897   | 5      |
| NIP7          | NUDA_HOMMAN        | 20       | 0 | 0 | 0       | 0      | 0   | 0   | 2 1535      | 2  | 3,2929 | 2  | 1,7505 | 2      | 0        | 5      |
| NKR2-5        | NKX25 HUMAN        | 35       | 0 | 0 | 2,9089  | 3      | c c | 0   | 6           | ő  | 3      | 0  | e e    | 0<br>0 | 0        | 5      |
| NOB1          | NO81_HUMAN         | 47       | 0 | D | 2,9089  | 3      | 0   | 0   | 0           | 0  | 9,8786 | 5  | 5,2707 | 4      | 3,9853   | 4      |
| NOM1          | NOM1_HUMAN         | 96       | 0 | D | 1,9393  | 2      | 0   | 0   | 3,2305      | 3  | 5,4881 | 5  | 0      | 0      | 0        | D      |
| NOP14         | NOP14_HUMAN        | 98       | 0 | 0 | 3,8786  | 4      | 0   | 0   | 0           | 0  | 20,855 | 16 | 4,3922 | 5      | 2,9897   | 3      |
| NOP16         | NOP15_HUMAN        | 21       | 0 | 0 | D       | 0-     | e   | 0   | e           | 0  | 3,2929 | 3  | 0-     | e      | 0        | D      |
| NOP53         | NOP53_HUMAN        | 54       | 0 | 0 | 0       | 0      | 0   | 0   | 2,1535      | 2  | 2,1952 | 2  | 0      | 0      | 0        | 0      |
| NPLOCA        | NIZIA HUNSON       | 68       | ő | 0 | D       | 0      | 0   | 0   | 0           | 0  | 0,3837 | 5  | 0      | 0      | 0        | 5      |
| NRDF2         | NRDE2 HUMAN        | 133      | 0 | 0 | 0       | 0      | 0   | ő   | 0           | 0  | 0      | 0  | 2,6353 | 3      | 0        | 2      |
| NSF           | ISLONS HUMAN (+1]  | 82       | 0 | Ð | D       | 0      | 0   | 0   | e           | 0  | a      | D  | D      | 0      | 0        | 3      |
| NTSDC2        | NT502_HUMAN        | 61       | 0 | D | 0       | 0      | 0   | 0   | 6,4605      | 3  | D      | 0  | 0      | 0      | 3,9863   | 2      |
| NTHL1         | NTH_HUMAN          | 34       | 0 | 0 | 1,9393  | 2      | C   | 0   | e           | 0  | 3,2929 | 3  | 0      | 0      | 0        | Э      |
| NUMAI         | NUMA1_HUMAN        | 238      | 0 | D | 11,636  | 12     | 0   | ۵   | 9,6908      | 8  | 6,5857 | 5  | D      | 0      | ٥        | D      |
| NUMBL         | NUMBL_HUMAN        | 65       | 0 | 0 | 0       | 0      | 0   | 0   | 0           | 0  | 3      | 0  | 1,7569 | 2      | 0        | 0      |
| MUR160        | COULD HUMAN        | 123      | 0 | 0 | 0       | 0      | 0   | 0   | 2,1535      | 2  | 2      | 0  | 0      | 0      | 0        | 3      |
| NUP188        | NU188 HUMAN        | 196      | 0 | 0 | 0       | 0      | 0   | 0   | 21535       | 2  | 9      | 0  | 0      | 0      | 0        | 3      |
| NUP37         | NUP37_HUMAN        | 37       | 0 | D | D       | 0      | 0   | 0   | 3,2303      | 3  | D      | D  | 0      | 0      | 0        | 0      |
| NUP85         | J3QL54_HU MAN (+2) | 62       | 0 | Ð | 0       | 0      | 0   | o   | 3,2303      | 3  | Э      | 0  | 0      | 0      | 0        | Э      |
| NUSAP1        | NUSAP_HUMAN        | 49       | 0 | о | 1,9393  | 2      | 0   | 0   | 2,1535      | 2  | D      | D  | 2,6353 | 3      | 0        | Э      |
| OGFOD3        | OGFD3_HUMAN        | 36       | 0 | D | 0       | 0      | 0   | 0   | 0           | 0  | 2,1952 | 2  | 0      | 0      | 0        | 0      |
| 1001          | P2H1 HUMAN         | 117      | 0 | 3 | 0       | 0      | 0   | 0   | 2,1555      | 2  | 5      | 0  | 0      | 0      | 0        | 3      |
| P4HA2         | P4HA2 HUMAN        | 61       | 0 | 0 | 0       | 0      | 0   | 0   | 3,2305      | 2  | 2      | 0  | 0      | 0      | 0        | 0      |
| PAKt          | PAK4_HUMAN         | 64       | 0 | 0 | D       | 0      | e   | ò   | e           | 0  | D      | 0  | 3,5138 | 3      | 0        | Э      |
| PANK4         | PANK4_HUMAN        | 86       | 0 | D | 0       | 0      | 0   | 0   | 2,1535      | 2  | D      | 0  | 0      | 0      | 0        | D      |
| PARP2         | G3v167_HUMAN (-1)  | 60       | 0 | D | 0       | 0-     | C   | 0   | e           | 0  | 3,2929 | 2  | 0-     | e      | 0        | э      |
| PC8P2         | F8V2X2_HU_MAN (+2) | 34       | 0 | 0 | 0       | 0      | 0   | 0   | 7,5373      | 2  | 5,4881 | 2  | 5,2707 | 2      | 0        | 3      |
| PCID2<br>RCNA | PUIDZ HUMAN        | 20       | 0 | 3 | 1,9393  | 2      | 0   | 0   | 2,1555      | 2  | 0,5857 | 0  | 4,3922 | 0      | 0        | 3      |
| PC5K6         | A087WY68 HUMAN (H  | 107      | õ | 0 | 0       | 0      | 0   | 0   | 4307        | 3  | 0      | 0  | 0      | C C    | 0        | 0      |
| PDCD7         | PDCD7_HUMAN        | 55       | 0 | 9 | Ð       | 0      | 0   | 0   | 0           | 0  | Э      | 0  | 1,7569 | 2      | 0        | э      |
| PDF           | DEFM_HUMAN         | 27       | 0 | D | D       | 0      | o   | ۵   | 2,1535      | 2  | 5,4881 | 5  | 3,5138 | 4      | 8,9592   | 8      |
| PDIA4         | PDIA4_HUMAN        | 73       | 0 | 0 | 0       | 0      | e   | 0   | e           | 0  | 0      | 0  | 0      | 0      | 0        | 0      |
| PEXS          | PERS_HUMAN         | 42       | 0 | 9 | 0       | 0      | 0   | 0   | 0           | 0  | 2,1952 | 2  | 2 006  | 0      | 0 7 9776 | 3      |
| PEMS          | A087A/127 HUMAN (4 | 96<br>69 | 0 | 0 | 0       | 0      | 0   | 0   | 3 2305      | 3  | 3      | 0  | 7,900  | 0      | 1,9120   | -<br>- |
| PHEIO         | PHE10_HUMAN (+1)   | 56       | 0 | 5 | 0       | 0      | 0   | 0   | 0           | 0  | 5,4881 | 3  | 1,7569 | 2      | 0        | 5      |
| PHF3          | PHFS HUMAN         | 229      | o | Э | 0       | 0      | 0   | 0   | 0           | 0  | 3,2929 | 3  | 5,2707 | 6      | 1,9932   | 2      |
| PHKB          | KPBB_HUMAN         | 125      | 0 | D | Ð       | e      | e   | 0   | 3,2303      | 3  | D      | D  | 0      | e      | 0        | D      |
| PHLOBB        | PHL83_HUMAN        | 72       | 0 | 0 | 0       | 0      | 0   | 0   | 5,3838      | 5  | 0      | 0  | 0      | 0      | 0        | 0      |
| PIGS          | PIGS_HUMAN         | 62       | 0 | 3 | 0       | 0      | 0   | 0   | 0           | 0  | 3      | 0  | 1,7569 | 2      | 0        | 3      |
| PINYI         | PHSA_HUMAN         | 84       | 0 | 0 | 0       | 0      | 0   | 0   | 0           | 0  | 2 1952 | 2  | 2,6353 | 2      | 0        | 0      |
| PIP4P1        | PPOP1 HUMAN        | 29       | õ | 5 | D       | e      | c   | õ   | 75373       | 6  | 0      | 0  | 0      | e e    | 5.9795   | 5      |
| PIP4P2        | PP4P2_HUMAN        | 28       | 0 | 0 | 0       | 0      | 0   | 0   | 3,2303      | 2  | D      | 0  | 0      | 0      | 0        | 0      |
| PIP5K1C       | PI51C_HUMAN        | 73       | 0 | 0 | U       | 0-     | e   | 0   | e           | 0  | 0      | Ð  | 3,5138 | 2      | 0        | э      |
| PITX1         | PITX1_HUMAN        | 34       | ٥ | D | D       | 0      | 0   | 0   | D           | Ô  | 2,1952 | 2  | 0      | 0      | 0        | ۵      |
| PITX2         | PITX2_HUMAN        | 35       | 0 | 9 | 1,9393  | 2      | 0   | 0   | 0           | 0  | 3.2929 | 2  | 1,7569 | 2      | 0        | 0      |
| PKN3          | PKN3_HUMAN         | 99       | 0 | 9 | 0<br>C  | U C    | C C | 0   | 6 5 5 6 5 6 | 0  | 4,3905 | 2  | 0      | e<br>o | 0        | 3      |
| PLAT          | TPA HUMAN          | 97<br>64 | 0 | 0 | 0.9.996 | 0      | 0   | 0   | 3,3838      | 0  | 21962  | 2  | 0      | 0      | 0        | 2      |
| 21802         | PLBI2 HUMAN        | 65       | õ | 2 | p       | 0      | 0   | e e | 12,921      | 7  | 2,1952 | 2  | ő      | 0      | 0        | 0      |
| PLD2          | PLD2 HUMAN         | 106      | 0 | 0 | 0       | 0      | c   | 0   | 3,2305      | 3  | 3      | 0  | 0      | 0      | 5,9795   | 6      |
| PLDS          | P.DS_HUMAN         | 28       | 0 | D | D       | 0      | C   | 0   | 5,3838      | 5  | D      | D  | 0      | e      | 3,9853   | 4      |
| PLEKHAS       | PKHA5_HUMAN        | 127      | 0 | 0 | 3,8786  | 4      | 0   | 0   | 0           | 0  | 6,5857 | 5  | 3,5138 | 4      | 0        | 0      |
| PMPCA         | MPPA_HUMAN         | 58       | 0 | 0 | 0       | 0      | e   | 0   | e           | 0  | 3,2929 | 3  | 0      | 0      | 0        | 0      |
| PMPCB         | GISVOE4_HUMAN (=1) | 54       | 0 | 0 | 0       | 0      | 0   | 0   | 7,1535      | 2  | 0      | 0  | 0      | 0      | 0        | a<br>2 |
| PNKP          | MODYH2 HUMANULIN   | 50       | č | 0 | p       | p p    | c c | 0   | 5,2305      | 6  | 0      | 0  | 0<br>5 | 0      | 0        | 2      |
| PNMAZ         | PNMA2_HUMAN        | 42       | 0 | 0 | 0       | 0      | ō   | 0   | 35,533      | 13 | 15,367 | 8  | 1,7569 | 2      | 0        | 5      |
| PNN           | PININ_HUMAN        | 82       | 0 | 0 | D       | 0      | e   | 0   | e           | 0  | 4,3905 | 3  | 0      | e      | 0        | D      |
| PNP           | PNPH_HUMAN         | 32       | 0 | D | D       | 0      | 0   | 0   | 0           | 0  | D      | 0  | 0      | 0      | 1,9932   | 2      |
| POC1A         | POC1A_HUMAN        | 45       | 0 | 0 | 0       | 0      | 0   | 0   | 3,2505      | 3  | Э      | 0  | 0      | 0      | 3,9863   | 4      |
| 20/16         | POF16_HUMAN        | 68       | 0 | 0 | D       | e<br>c | 0   | 0   | 0           | 0  | 0      | 0  | 5,2707 | 5      | 0        | 0      |
| POL6 POL12 P2 | PDIP2 HUMAN        | 67       | 0 | 0 | 1751    | 0      | 0   | 0   | 0           | 0  | 2,1952 | 2  | 0      | 0      | 0        | 0      |
| POLE2         | DPOE2_HUMAN        | 60       | ő | 0 | 0       | ó      | 0   | 0   | 0           | ő  | 3      | 0  | 2,6353 | 3      | 0        | 5      |
| PO.815        | RPA2_HUMAN         | 128      | 0 | 0 | 2,9089  | 3      | 0   | 0   | 4,307       | 4  | 6,5857 | 6  | 3,5138 | 3      | 3,9863   | 4      |
| 201330        | DOCA HURSON        | 60       |   |   |         |        | 0   |     |             |    |        |    | 0.2022 | 1      | 2 0942   |        |

| POMGNT2            | PMGT2_HUMAN                           | 67       | 0 | 9      | 0            | 0      | 0      | 0   | 24,765   | 12     | 3                | 0   | 1,7569        | 2    | 23,918           | 14  |
|--------------------|---------------------------------------|----------|---|--------|--------------|--------|--------|-----|----------|--------|------------------|-----|---------------|------|------------------|-----|
| PPAN P2RY11        | ADAOB4J1V8 HUMAN                      | 88       | 0 | 0      | 0            | 0      | 0      | 0   | 4,307    | 4      | 3.2929           | 2   | 0             | é    | 0                | 0   |
| 22IA               | PPIA_HUMAN (+2)                       | 18       | 0 | D      | 1,9393       | 2      | e      | 0   | e        | 0      | Э                | D   | Đ             | e    | Ó                | D   |
| PPP1R10            | PPIRA_HUMAN                           | 99       | 0 | 0      | 0            | 0      | 0      | 0   | 0        | 0      | 3                | 0   | 2,6353        | 3    | 0                | 0   |
| PPP2R18            | 2AAB_HUMAN                            | 66       | ő | 5      | 0            | 0      | 0      | 0   | 11,844   | 3      | 0                | 0   | e e           | 0    | ő                | a   |
| PPP2R2A            | 2ABA_HUMAN                            | 52       | 0 | 0      | 0            | 0      | 0      | 0   | 53,858   | 16     | 3,2929           | 3   | 0             | 0    | 18,935           | 13  |
| PPP2RZD<br>PPP2RZD | 2ABD_HUMAN<br>2ASE_HUMAN              | 52       | 0 | 0      | 0            | 0      | 0      | 0   | 17,228   | 2      | 0                | 0   | 0             | 0    | 0                | 0   |
| PPPSC              | HOTDUS_HUMAN                          | 55       | 0 | 9      | Ð            | 0      | 0      | 0   | c        | 0      | э                | 0   | 0             | o    | õ                | 0   |
| PRCC               | PRCC_HUMAN                            | 52       | 0 | D      | D            | 0      | 0      | 0   | 0        | 0      | D                | D   | 0             | 0    | 0                | 3   |
| PUCK.E1            | PRICE HUMAN                           | 28       | 0 | 0      | 0            | e<br>e | e e    | 0   | 4307     | 4      | 3                | 0   | 0             | 0    | 0                | 3   |
| PRICK_E3           | PRIC3_HUMAN                           | 69       | o | D      | 0            | 0      | 0      | 0   | 5,3838   | 3      | D                | D   | 0             | 0    | 0                | D   |
| PRKCI              | KPCI_HUMAN                            | 68       | 0 | 0      | 0            | 0      | 0      | 0   | C C      | 0      | 0                | 0   | 4,3922        | 5    | 0                | 0   |
| PRKDS              | KPCD3 HUMAN                           | 100      | 0 | 0      | 2.9089       | 3      | 0      | 0   | 0        | 0      | 3,2929           | 3   | 2,6353        | 0    | 0                | 2   |
| PRPF38B            | PR3BB_HUMAN                           | 64       | ٥ | D      | D            | 0      | 0      | o   | c        | 0      | 2,1952           | 2   | 0             | e    | Ó                | D   |
| PRPEAS             | PRP39_HUMAN<br>PERCE HUMAN            | 78       | 0 | 0      | 0            | 0      | 0      | 0   | 7,5373   | 7      | 0<br>7           | 0   | 0             | 0    | 0                | 0   |
| PRPH               | PERI_HUMAN                            | 54       | 0 | a      | n            | 0      | ů.     | 0   | 8,614    | 2      | 5                | D D | ů.            | õ    | 0                | 2   |
| PSIP1              | PSIP1_HUMAN                           | 60       | 0 | 0      | 0            | 0      | C      | 0   | C        | 0      | 0                | 0   | 3,5138        | 4    | 0                | 0   |
| PSMA5<br>PSMA6     | PSA5_HUMAN<br>GBV295_HUMAN (+2)       | 28       | 0 | 9<br>9 | 0            | 0      | 0      | 0   | 0        | 0      | 3                | 0   | 0             | 0    | 3,99833          | 3   |
| P5M32              | PSB2_HUMAN                            | 23       | 0 | 0      | U            | 0-     | e      | ō   | 0        | 0      | 0                | Ð   | 0-            | C.   | 1,9932           | 2   |
| PSMB4              | PSB4_HUMAN                            | 29       | 0 | 0      | n            | 0      | 0      | 0   | 3,2303   | 3      | 0                | 0   | 0             | 0    | 0                | 5   |
| PSM35<br>PSM35     | PSB6 HUMAN                            | 25       | 0 | 0      | D D          | 0<br>0 | e e    | 0   | e e      | 0      | 5                | D   | 0<br>C        | 0    | 1,9932           | 2   |
| PSME4              | PSME4_HUMAN                           | 211      | 0 | 0      | 0            | 0      | C      | 0   | 0        | 0      | Э                | 0   | 2,6353        | 3    | 0                | 0   |
| PTDSS1<br>PTCFS2   | PTSS1_HUMAN<br>ASNEHO HUMAN           | 56       | 0 | 0      | 0            | 0      | 0      | 0   | 2 1535   | 0      | 3                | 0   | 0             | 0    | 2,9897           | 3   |
| PTOV1              | PTOV1_HUMAN                           | 47       | 0 | 0      | 3,8786       | 2      | 0      | 0   | 17,228   | 8      | 5,4881           | 3   | 1,7569        | 2    | 5,9795           | 5   |
| PTPRK              | E9PGC5_HUMAN (+1)                     | 166      | 0 | 0      | D            | 0      | 0      | 0   | 13,998   | 12     | ۵                | 0   | 0             | 0    | Ó                | 3   |
| PUMB<br>PUSL1      | PUMS_HUMAN<br>PUSL1_HUMAN             | 33       | 0 | 9      | 0            | 0      | 0      | 0   | 21535    | 2      | 4,3905           | 3   | 10,541        | 10   | 2,9897           | 5   |
| PW P1              | PWP1_HUMAN                            | 56       | 0 | D      | n            | 0      | 0      | 0   | 4,307    | 4      | 4,3905           | 4   | 3,5138        | 4    | 0                | a   |
| RAB11FIP2          | REP2_HUMAN                            | 58       | 0 | 0      | 0            | 0      | 0      | 0   | 4,307    | 3      | 2,1952           | 2   | 0             | 0    | 0                | 0   |
| RA514              | RABIA HUMAN                           | 24       | 0 | 0      | 3,0700       | 0      | 0      | 0   | 5,3838   | 3      | 5                | 0   | o<br>o        | 0    | 0                | 3   |
| KA532              | RAB32_HUMAN                           | 25       | 0 | Э      | D            | 0      | 0      | 0   | 3,2303   | 3      | Э                | D   | o             | e    | 0                | э   |
| RACGAPI            | RGAP1_HUMAN<br>RACK1_HUMAN            | 71       | 0 | 0      | 0            | 0      | 0      | 0   | 0.9.6908 | 0      | 0                | 0   | 2,6353        | 3    | 0                | 0   |
| RAD17              | ADG2JNH5_HUMAN (4                     | 57       | 0 | 5      | D D          | c C    | 0      | 0   | 0,0506   | °<br>0 | 5                | D   | 1,7569        | 2    | 0                | 3   |
| RAD54L2            | ARIP4_HUMAN                           | 163      | 0 | 0      | 1,9393       | 2      | 0      | 0   | 0        | 0      | 0                | 0   | 5,2707        | 6    | 3,9863           | 4   |
| RADK               | Q6NSH RADX_HUM                        | ?        | 0 | 0      | D O          | 0      | 0      | 0   | 3,2303   | 3      | 3                | 0   | 0 6620        | 0    | 0                | 0   |
| RANSP10            | ADDISEUS_HUMAN (+                     | 67       | 0 | 0      | 0            | 0<br>0 | c      | 0   | 2,1535   | 2      | 0                | 0   | 0             | C    | 0                | D   |
| RARS2              | SYRM_HUMAN                            | 66       | 0 | D      | Ð            | 0      | 0      | 0   | 10,768   | 9      | D                | D   | 1,7569        | 2    | 5,9795           | 4   |
| RBBPG              | R58P6_HUMAN                           | 202      | 0 | 0      | 0            | 0      | 0      | 0   | 0        | 0      | 4,3905           | 3   | 1,7569        | 2    | 0                | 0   |
| R3M15              | A087WWP4_HUMAN (                      | 102      | 0 | 0      | 0            | 0      | ō      | 0   | 0        | 0      | 3,2929           | 3   | 4,3922        | 5    | 0                | D D |
| R6M156             | RB15B_HUMAN                           | 97       | 0 | 0      | 1,9393       | 2      | 0      | 0   | c        | 0      | Э                | 0   | 0             | 0    | 0                | 0   |
| R3M19<br>R3M22     | R5M15_HUMAN<br>R5M22_HUMAN            | 107      | 0 | a<br>0 | 0            | 0      | 0      | 0   | 0        | 0      | 2,1952           | 2   | 0             | 0    | 0                | 2   |
| R3M23              | R5M23_HUMAN                           | 49       | o | D      | D            | e      | e      | 0   | c        | 0      | 2,1952           | 2   | e             | e    | 0                | D   |
| RBM4               | E9P851_HUMAN (+2)                     | 26       | 0 | 9      | 0            | 0      | 0      | 0   | 3,2303   | 3      | 2,1952           | 2   | 0             | 0    | 0                | 0   |
| R3M42              | REMAS HUMAN (+1)                      | 54       | 0 | 0      | 0            | 0<br>0 | 0      | 0   | e e      | 0      | 5                | 0   | 4,3922        | 0    | 1.9932           | 2   |
| RBPJ               | SUH_HUMAN                             | 56       | о | D      | 0            | 0      | 0      | o   | 0        | 0      | D                | D   | 0             | 0    | 0                | э   |
| RCC1L              | RCC1_HUMAN                            | 50       | 0 | 0      | 0            | 0      | 0      | 0   | 0        | 0      | 2,1952           | 2   | 0             | 0    | 0                | 0   |
| RCN1               | BCN1_HUMAN                            | 39       | 0 | 0      | 0            | 0      | 0      | 0   | 2,1535   | 2      | 5                | 0   | 0             | 0    | 0                | 3   |
| RCN2               | REN2_HUMAN                            | 37       | 0 | Э      | 0            | 0      | 0      | ٥   | 11,844   | 8      | Э                | 0   | 3,5138        | 4    | 6,9761           | 7   |
| RECOL4             | ADADB7WZBO_HUMAN<br>ESPOSE HUMAN (A1) | 133      | 0 | 0      | 1,9393       | 2      | 0      | 0   | 0        | 0      | 8,781            | 7   | 0             | 0    | 0                | 3   |
| RER1               | ADADMR06_HUMAN (                      | 21       | ò | 5      | D            | e e    | c      | 0   | c        | 0      | 2,1952           | 2   | ů.            | e    | 2,9897           | 2   |
| REST               | REST_HUMAN                            | 122      | 0 | 0      | 0            | 0      | 0      | 0   | 0        | 0      | D                | 0   | 1,7569        | 2    | 0                | 0   |
| REKO4<br>REM/D2    | REX04_HUMAN                           | 47       | 0 | 9      | 0            | 0      | 0      | 0   | 3,2505   | 3      | 5,4881           | 5   | 2,6353        | 3    | 0                | 0   |
| REXS               | F8W689_HUMAN (+1)                     | 63       | 0 | 0      | 0            | 0      | 0      | 0   | C        | 0      | 5                | 0   | 1,7569        | 2    | 0                | 0   |
| RHOBTB3            | RHBT3_HUMAN                           | 69       | 0 | 0      | Ð            | 0-     | e      | 0   | 3,2303   | 3      | D                | D   | Ð             | e    | 0                | э   |
| RHOT2              | H3BSTS HUMAN (+2)                     | 23       | 0 | 0      | 0            | 0      | 0      | 0   | 2 1535   | 2      | 3<br>3           | 0   | 0             | 0    | 2 9897           | 3   |
| RICTOR             | RICTR_HUMAN                           | 192      | 0 | 0      | D            | 0      | o      | 0   | 17,228   | 16     | D                | 0   | 1,7569        | 2    | 3,9853           | 4   |
| RIOKS              | 84E1Q4_HUMAN (=1)                     | 57       | 0 | 0      | 0            | 0      | 0      | 0   | 2,1535   | 2      | 3                | 0   | 0             | 0    | 0                | 0   |
| RUM                | RIGX2_HUMAN                           | 53       | 0 | 0      | 0            | 0      | 0      | 0   | 0        | 0      | 5                | 0   | 1,7565<br>0   | 0    | 3,9863           | 4   |
| RMDN3              | RMD5_HUMAN                            | 52       | 0 | 9      | 0            | 0      | 0      | 0   | 3,2505   | 3      | Э                | 0   | 0             | 0    | 0                | э   |
| RMNDSA             | RMDSA_HUMAN                           | 22       | 0 | 0      | 0            | 0      | 0      | 0   | 2,1535   | 2      | 0                | n   | 0             | 0    | 0                | 3   |
| RNASEL             | INSA_HUMAN                            | 84       | ő | 0      | 0            | e      | e      | õ   | 3,2303   | 3      | 0                | 0   | e e           | e    | õ                | 5   |
| RNF113A            | R113A_HUMAN                           | 39       | 0 | D      | 0            | 0      | 0      | 0   | 0        | 0      | D                | 0   | 0             | 0    | 0                | 0   |
| RNH1<br>RPA1       | RINI_HUMAN<br>BEAL HUMAN              | 50       | 0 | 0      | 0            | 0      | 0      | 0   | 3,2303   | 3      | 3                | 0   | 0             | 0    | 0                | 0   |
| RPL21              | RL21_HUMAN                            | 19       | 0 | 0      | 0            | 0      | 0      | 0   | 0        | 0      | 5,4881           | 4   | 2,6353        | 2    | 0                | 0   |
| RPL2211            | CSUYQ9_HUMAN (+2)                     | 14       | 0 | 0      | 0            | 0      | e<br>o | 0   | 0        | 0      | 3,2929           | 3   | 0             | 0    | 0                | 0   |
| RPL35              | F22388_HUMAN (+1)                     | 10       | 0 | 3      | 5,8178       | 2      | 0      | 0   | 0        | 0      | 4,3905           | 2   | 0             | 0    | 0                | 3   |
| RPL36              | RE36_HUMAN                            | 12       | 0 | n      | 1,9393       | 2      | 0      | 0   | 4,307    | 3      | 5,4881           | 3   | 1,7569        | 2    | 0                | а   |
| RPL36A<br>RPL7L1   | JSKON4_HUMAN (+1)<br>RU7L_HUMAN       | 16       | 0 | 0      | 7,7571       | 3      | 0      | 0   | e<br>p   | 0      | 4,3905           | 3   | D D           | 0    | 0                | 0   |
| RPP40              | RPP40_HUMAN                           | 42       | 0 | 0      | 0            | 0      | 0      | 0   | 0        | 0      | D                | 0   | 1,7569        | 2    | 0                | 0   |
| RPS6KA1            | E9PGT3_HUMAN (+1)                     | 81       | 0 | 0      | 0<br>b conce | 0      | C      | 0   | e        | 0      | 3                | 0   | 0             | C.   | 0                | 3   |
| RPUSD4             | RUSDA_HUMAN                           | 42       | 0 | 9      | 1,9393       | 2      | 0      | 0   | 2 1535   | 2      | 13.171           | 9   | 1.7569        | 2    | 0                | 3   |
| RRP12              | RRP12_HUMAN                           | 144      | 0 | 0      | 3,8786       | 3      | e      | 0   | e        | 0      | 10,976           | 9   | 3,5138        | 3    | 1,9932           | 2   |
| RRP7A              | RRP7A_HUMAN                           | 32       | 0 | 0      | 2,9089       | 3      | 0      | 0   | 2,1535   | 2      | 3,2929           | 3   | 0             | 0    | 0                | 0   |
| RESI               | RRS1 HUMAN                            | 41       | 0 | 0      | D            | 0      | 0      | 0   | 0        | 0      | 3                | 0   | 1,7569        | 2    | 0                | 3   |
| \$100A14           | SIGAE HUMAN                           | 12       | 0 | 0      | 2,9089       | 2      | 0      | 0   | c        | 0      | Э                | 0   | 0             | 0    | 0                | 0   |
| \$100A7<br>\$4582  | S1CA7_HUMAN<br>SACE2_HUMAN            | 11       | 0 | 0      | 1,9393       | 2      | 0      | 0   | 0        | 0      | 0                | 0   | 0 7 906       | 2    | 0                | 3   |
| SAMD1              | SAMD1_HUMAN                           | 56       | ő | 0      | 0            | 0      | e      | 0   | e        | 0      | 0                | 0   | 1,7569        | 2    | ő                | 3   |
| SAMM50             | SAM50_HUMAN                           | 52       | 0 | n      | D            | 0      | 0      | 0   | 9,6908   | 9      | ۵                | 0   | 0             | 0    | 2,9897           | 3   |
| SAPC02<br>SART1    | SAPC2_HUMAN<br>SNUT1_HUMAN            | 43<br>90 | 0 | 9<br>0 | 1,9393<br>p  | 2      | 0      | 0   | 4,307    | 4      | 2,1952<br>7,5834 | 2   | 1,7569 8,7845 | 2    | 5,9795<br>2,9897 | 5   |
| SAV1               | SAV1_HUMAN                            | 45       | 0 | 5      | 0            | 0      | 0      | 0   | 2,1535   | 2      | Э                | 0   | 0             | 0    | 3,9963           | 4   |
| SBOS               | 0A087X020_HUMAN (+                    | 29       | 0 | 0      | 1,9393       | 2      | 0      | 0   | 0        | 0      | 9                | 0   | 0             | 0    | 0                | 0   |
| SCAF4              | SFR15 HUMAN                           | 126      | 0 | 0      | 0            | 0      | 0      | 0   | 0        | 0      | 3<br>5,4881      | 3   | 0             | 0    | 0,9597           | 2   |
| SCCPDH             | SCPDL_HUMAN                           | 47       | 0 | a      | 1,9393       | 2      | 0      | ٥   | 6,4605   | 6      | 7,6834           | 6   | 1,7569        | 2    | 5,9795           | 5   |
| SDC1               | SDC1_HUMAN                            | 32       | 0 | 0      | 0            | 0      | 0      | 0   | 2,1535   | 2      | 0                | 0   | 0             | 0    | 0                | 0   |
| SDHA               | SDE2_HUMAN<br>SDHA_HUMAN              | 50<br>73 | 0 | 0      | 0            | 0      | 0      | 0   | 3,2303   | 3      | 5                | 0   | 0             | 0    | 0                | 3   |
| SEC13              | SEC13_HUMAN                           | 36       | 0 | 0      | 0            | 0      | 0      | 0   | 3,2503   | 3      | Э                | 0   | 0             | 0    | 0                | C   |
| SEMG1              | SEMGI_HUMAN                           | 52       | 0 | 0      | 0            | 0      | 0      | 0   | 0        | 0      | 0                | 0   | 0             | 0    | 0                | 3   |
| SENP1              | SENP1_HUMAN                           | 73       | 0 | 0      | 0            | c      | e      | 0   | 2,1535   | 2      | 0                | 0   | e e           | e    | 0                | 5   |
| SENP2              | SENP2_HUMAN                           | 68       | 0 | 0      | D            | 0      | 0      | 0   | 0        | 0      | 2,1952           | 2   | 0             | 0    | 0                | D   |
| SEPSECS<br>SESTID  | SPCS_HUMAN<br>SESD1_HUMAN             | 56<br>79 | 0 | 0      | 0<br>P       | 0      | 0      | 0   | 0        | 0      | 3                | 0   | 1,7569        | 2    | 0                | 0   |
| SETD2              | SETD2_HUMAN                           | 288      | 0 | 0      | 0            | 0      | õ      | 0   | 0        | 0      | 2,1952           | 2   | 1,7569        | 2    | 0                | 0   |
| SEXN2              | SEXN2_HUMAN                           | 36       | 0 | 0      | 0            | 0      | e      | 0   | 2,1535   | 2      | 9                | 0   | 0             | 0    | 0                | 0   |
| SGK3               | SGK3 HUMAN                            | 48<br>57 | 0 | 0<br>0 | 0            | 0      | 0      | 0   | 2,1535   | 6<br>2 | 0<br>0           | 0   | 6             | 0    | 2,9897           | 2   |
|                    |                                       |          |   | 100    |              | 32.8   | 100    | 1 Č |          | C      |                  |     |               | 1000 | 1                | 100 |

| SHTN1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SHOT1_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 72                                                                                                                                     | 0                                       | 9                                                                                           | 0                                                                                                                                                       | 0                                                                                                | 0                                                                                           | 0         | e                                                                                                                                                                                                                                                    | 0                                                                                                                         | Э                                                                                                                                             | 0                                                                                           | 0                                                                                                                                                       | e                                                                                                               | 0                                                                                                          | 0                                                                                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| SLAIN2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DERIES HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 45                                                                                                                                     | 0                                       | 0                                                                                           | 0                                                                                                                                                       | 0                                                                                                | 0                                                                                           | 0         | 0                                                                                                                                                                                                                                                    | 0                                                                                                                         | 0                                                                                                                                             | 0                                                                                           | 12 298                                                                                                                                                  | 2                                                                                                               | 0                                                                                                          | 3                                                                                                 |
| 5.025412                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CMC1_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 75                                                                                                                                     | 0                                       | D                                                                                           | Ð                                                                                                                                                       | e                                                                                                | e                                                                                           | 0         | 36,51                                                                                                                                                                                                                                                | 15                                                                                                                        | þ                                                                                                                                             | D                                                                                           | 9,6629                                                                                                                                                  | 5                                                                                                               | 26,908                                                                                                     | 13                                                                                                |
| SLC25A14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | F65L11_HUMAN (+1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 32                                                                                                                                     | 0                                       | 0                                                                                           | 0                                                                                                                                                       | 0                                                                                                | 0                                                                                           | 0         | 2,1535                                                                                                                                                                                                                                               | 2                                                                                                                         | 0                                                                                                                                             | 0                                                                                           | 0                                                                                                                                                       | 0                                                                                                               | 0                                                                                                          | 0                                                                                                 |
| SLC25A17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BOQYW5_HUMAN (+2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 26                                                                                                                                     | 0                                       | 0                                                                                           | 0                                                                                                                                                       | 0                                                                                                | 0                                                                                           | 0         | C                                                                                                                                                                                                                                                    | 0                                                                                                                         | 2,1952                                                                                                                                        | 2                                                                                           | 0                                                                                                                                                       | 0                                                                                                               | 2,9897                                                                                                     | 3                                                                                                 |
| SUC25A33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | S2533 HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 35                                                                                                                                     | 0                                       | 0                                                                                           | 0                                                                                                                                                       | 0                                                                                                | 0                                                                                           | 0         | 4.307                                                                                                                                                                                                                                                | 3                                                                                                                         | 3                                                                                                                                             | 0                                                                                           | 0                                                                                                                                                       | 0                                                                                                               | 1,9932                                                                                                     | 2                                                                                                 |
| \$1C27A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | \$27A1_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 71                                                                                                                                     | 0                                       | D                                                                                           | D                                                                                                                                                       | 0                                                                                                | 0                                                                                           | 0         | 9,307                                                                                                                                                                                                                                                | 3                                                                                                                         | Э                                                                                                                                             | D                                                                                           | D.                                                                                                                                                      | e                                                                                                               | 0                                                                                                          | D                                                                                                 |
| 51C27A4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | S27A4_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 72                                                                                                                                     | 0                                       | 0                                                                                           | 0                                                                                                                                                       | 0                                                                                                | 0                                                                                           | 0         | 51,684                                                                                                                                                                                                                                               | 23                                                                                                                        | 4,3905                                                                                                                                        | 4                                                                                           | 0                                                                                                                                                       | 0                                                                                                               | 32,887                                                                                                     | 24                                                                                                |
| SLC27Ab<br>SLC35F1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | S27A6_HUMAN (=1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 70                                                                                                                                     | 0                                       | 9                                                                                           | 0                                                                                                                                                       | 0                                                                                                | 0                                                                                           | 0         | 2,1535                                                                                                                                                                                                                                               | 2                                                                                                                         | 3                                                                                                                                             | 0                                                                                           | 0                                                                                                                                                       | 0                                                                                                               | 0                                                                                                          | 3                                                                                                 |
| SLIT2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SLIT2_HUMAN (+1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 170                                                                                                                                    | 0                                       | 0                                                                                           | 2,9089                                                                                                                                                  | 3                                                                                                | o                                                                                           | 0         | 2,1535                                                                                                                                                                                                                                               | 2                                                                                                                         | 3,2929                                                                                                                                        | 3                                                                                           | 1,7569                                                                                                                                                  | 2                                                                                                               | 2,9897                                                                                                     | 2                                                                                                 |
| SLTM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SLTM_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 117                                                                                                                                    | 0                                       | Ð                                                                                           | Ð                                                                                                                                                       | e                                                                                                | e                                                                                           | ٥         | e                                                                                                                                                                                                                                                    | 0                                                                                                                         | 2,1952                                                                                                                                        | 2                                                                                           | Ð                                                                                                                                                       | e                                                                                                               | Ó                                                                                                          | D                                                                                                 |
| SLU7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SLU7_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 68                                                                                                                                     | 0                                       | 0                                                                                           | 0                                                                                                                                                       | 0                                                                                                | 0                                                                                           | 0         | 0                                                                                                                                                                                                                                                    | 0                                                                                                                         | 0                                                                                                                                             | 0                                                                                           | 6,1491                                                                                                                                                  | 7                                                                                                               | 0                                                                                                          | D                                                                                                 |
| SMG6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ESTIA HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 160                                                                                                                                    | 0                                       | 0                                                                                           | 0                                                                                                                                                       | 0                                                                                                | 0                                                                                           | 0         | 0                                                                                                                                                                                                                                                    | 0                                                                                                                         | 5,4881                                                                                                                                        | 5                                                                                           | 6,1491                                                                                                                                                  | 7                                                                                                               | 3,9003                                                                                                     | õ                                                                                                 |
| SMTN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A087WVP4_HUMAN (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 105                                                                                                                                    | 0                                       | Э                                                                                           | 0                                                                                                                                                       | 0                                                                                                | 0                                                                                           | 0         | 2,1555                                                                                                                                                                                                                                               | 2                                                                                                                         | Э                                                                                                                                             | 0                                                                                           | 0                                                                                                                                                       | 0                                                                                                               | 0                                                                                                          | 0                                                                                                 |
| SNAP47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0A087X0B7_HUMAN (-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 47                                                                                                                                     | 0                                       | D                                                                                           | D                                                                                                                                                       | 0                                                                                                | 0                                                                                           | 0         | 7,5373                                                                                                                                                                                                                                               | 7                                                                                                                         | D                                                                                                                                             | D                                                                                           | 0                                                                                                                                                       | e                                                                                                               | 0                                                                                                          | D                                                                                                 |
| SNAPCZ<br>SNAPCZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SNPC2_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 30                                                                                                                                     | 0                                       | 0                                                                                           | 2,9089                                                                                                                                                  | 3                                                                                                | 0                                                                                           | 0         | 0                                                                                                                                                                                                                                                    | 0                                                                                                                         | 2 1952                                                                                                                                        | 0                                                                                           | 35138                                                                                                                                                   | 0                                                                                                               | 0                                                                                                          | 5                                                                                                 |
| SNRPC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ADAD MRR7_HUMAN (-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20                                                                                                                                     | 0                                       | D                                                                                           | 0                                                                                                                                                       | 0                                                                                                | 0                                                                                           | 0         | 0                                                                                                                                                                                                                                                    | 0                                                                                                                         | 0                                                                                                                                             | 0                                                                                           | 1,7569                                                                                                                                                  | 2                                                                                                               | 0                                                                                                          | a                                                                                                 |
| SNRPF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RUXF_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10                                                                                                                                     | 0                                       | 0                                                                                           | 0                                                                                                                                                       | 0                                                                                                | 0                                                                                           | 0         | C                                                                                                                                                                                                                                                    | 0                                                                                                                         | 2,1952                                                                                                                                        | 2                                                                                           | 2,6353                                                                                                                                                  | 2                                                                                                               | 0                                                                                                          | D                                                                                                 |
| SNRPG<br>EN1152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RUXG_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8                                                                                                                                      | 0                                       | 0                                                                                           | 0                                                                                                                                                       | e                                                                                                | 0                                                                                           | 0         | 0                                                                                                                                                                                                                                                    | 0                                                                                                                         | 0                                                                                                                                             | 0                                                                                           | 2,6353                                                                                                                                                  | 2                                                                                                               | 0                                                                                                          | 0                                                                                                 |
| SNX33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | H35PR3_HUMAN (+1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 34                                                                                                                                     | 0                                       | 0                                                                                           | D D                                                                                                                                                     | C C                                                                                              | e                                                                                           | 0         | c                                                                                                                                                                                                                                                    | 0                                                                                                                         | 3                                                                                                                                             | D                                                                                           | 1,7505                                                                                                                                                  | 2                                                                                                               | 0                                                                                                          | 5                                                                                                 |
| SNX6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ADAOMR 2_HUMAN (+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 48                                                                                                                                     | 0                                       | D                                                                                           | 0                                                                                                                                                       | 0                                                                                                | 0                                                                                           | 0         | 2,1535                                                                                                                                                                                                                                               | 2                                                                                                                         | D                                                                                                                                             | 0                                                                                           | 0                                                                                                                                                       | 0                                                                                                               | 0                                                                                                          | D                                                                                                 |
| SOGA1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | HOYDM2_HUMAN (+1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 142                                                                                                                                    | 0                                       | 0                                                                                           | 0                                                                                                                                                       | 0                                                                                                | 0                                                                                           | 0         | 2,1535                                                                                                                                                                                                                                               | 2                                                                                                                         | D                                                                                                                                             | 0                                                                                           | 0                                                                                                                                                       | 0                                                                                                               | 0                                                                                                          | 0                                                                                                 |
| SDR 1<br>SPIN4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SPINA HUMAN (+1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 92                                                                                                                                     | 0                                       | 0                                                                                           | 0                                                                                                                                                       | 0                                                                                                | 0                                                                                           | 0         | 5,58.98                                                                                                                                                                                                                                              | 4                                                                                                                         | 0                                                                                                                                             | 0                                                                                           | 1 2569                                                                                                                                                  | 2                                                                                                               | 0                                                                                                          | 5                                                                                                 |
| SPNS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | H38MP4_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 61                                                                                                                                     | 0                                       | 0                                                                                           | D                                                                                                                                                       | e                                                                                                | c                                                                                           | 0         | 2,1535                                                                                                                                                                                                                                               | 2                                                                                                                         | 3                                                                                                                                             | U                                                                                           | 0                                                                                                                                                       | ē.                                                                                                              | 0                                                                                                          | 5                                                                                                 |
| SPOUT1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CI114_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 42                                                                                                                                     | 0                                       | D                                                                                           | 1,9393                                                                                                                                                  | 2                                                                                                | 0                                                                                           | 0         | 0                                                                                                                                                                                                                                                    | 0                                                                                                                         | 8,781                                                                                                                                         | 4                                                                                           | 3,5138                                                                                                                                                  | 4                                                                                                               | 0                                                                                                          | D                                                                                                 |
| SPRR1A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SPR1A_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10                                                                                                                                     | 0                                       | 0                                                                                           | 5,878G                                                                                                                                                  | 2                                                                                                | C                                                                                           | 0         | C                                                                                                                                                                                                                                                    | 0                                                                                                                         | 0                                                                                                                                             | 0                                                                                           | 1,7569                                                                                                                                                  | 2                                                                                                               | 0                                                                                                          | 0                                                                                                 |
| SPR012E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SPICE_HUMAN (+1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | a<br>17                                                                                                                                | 0                                       | 0                                                                                           | 2,9089                                                                                                                                                  | 3                                                                                                | 0                                                                                           | 0         | 2,1535                                                                                                                                                                                                                                               | 2                                                                                                                         | 2,1952                                                                                                                                        | 2                                                                                           | 3,5138                                                                                                                                                  | 4                                                                                                               | 1,9932                                                                                                     | 2                                                                                                 |
| SPTLC2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SPIC2_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 63                                                                                                                                     | 0                                       | 0                                                                                           | Ð                                                                                                                                                       | e                                                                                                | e                                                                                           | 0         | 4,307                                                                                                                                                                                                                                                | 4                                                                                                                         | 2,1952                                                                                                                                        | 2                                                                                           | 2,6353                                                                                                                                                  | 3                                                                                                               | 2,9897                                                                                                     | 3                                                                                                 |
| SREK1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SREK1_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 59                                                                                                                                     | 0                                       | D                                                                                           | D                                                                                                                                                       | 0                                                                                                | 0                                                                                           | 0         | 0                                                                                                                                                                                                                                                    | 0                                                                                                                         | 3,2929                                                                                                                                        | 2                                                                                           | 1,7569                                                                                                                                                  | 2                                                                                                               | 0                                                                                                          | D                                                                                                 |
| SRF3P1<br>SPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SEFET_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 30                                                                                                                                     | 0                                       | 0                                                                                           | 0                                                                                                                                                       | 0                                                                                                | 0                                                                                           | 0         | 2 1535                                                                                                                                                                                                                                               | 2                                                                                                                         | 6,5857                                                                                                                                        | 5                                                                                           | 3,5138                                                                                                                                                  | 4                                                                                                               | 1,9932                                                                                                     | 2                                                                                                 |
| SR3M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A921X7 HUMAN (+1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 103                                                                                                                                    | 0                                       | 0                                                                                           | 1.9393                                                                                                                                                  | 2                                                                                                | o                                                                                           | 0         | 0                                                                                                                                                                                                                                                    | ó                                                                                                                         | 3,2929                                                                                                                                        | 3                                                                                           | 1.7569                                                                                                                                                  | 2                                                                                                               | 0                                                                                                          | 3                                                                                                 |
| SRSF10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | QSJRI1_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 21                                                                                                                                     | 0                                       | Ð                                                                                           | Ð                                                                                                                                                       | o                                                                                                | 0                                                                                           | ٥         | c                                                                                                                                                                                                                                                    | ٥                                                                                                                         | 2,1952                                                                                                                                        | 2                                                                                           | D                                                                                                                                                       | e                                                                                                               | 0                                                                                                          | э                                                                                                 |
| SRSF5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SRSF5_HUM4N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 31                                                                                                                                     | 0                                       | D                                                                                           | 0                                                                                                                                                       | 0                                                                                                | 0                                                                                           | 0         | 0                                                                                                                                                                                                                                                    | 0                                                                                                                         | 0                                                                                                                                             | 0                                                                                           | 5,2707                                                                                                                                                  | 3                                                                                                               | 0                                                                                                          | D                                                                                                 |
| SRSF7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SRSF7_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 27                                                                                                                                     | 0 7 8207                                | 0                                                                                           | 0                                                                                                                                                       | 0                                                                                                | 0                                                                                           | 0         | 5,5858                                                                                                                                                                                                                                               | 3                                                                                                                         | 8,781                                                                                                                                         | 4                                                                                           | 8,7845                                                                                                                                                  | 3                                                                                                               | 6,9761                                                                                                     | 3                                                                                                 |
| 5584                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SSRD HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 19                                                                                                                                     | 0                                       | 2                                                                                           | 1,000                                                                                                                                                   | 0                                                                                                | 0                                                                                           | 0         | 3,2303                                                                                                                                                                                                                                               | 2                                                                                                                         | 2,1952                                                                                                                                        | 0                                                                                           | 0                                                                                                                                                       | 0                                                                                                               | 4,9529                                                                                                     | õ                                                                                                 |
| STAU2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E9PHS2_HUMAN (+1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 59                                                                                                                                     | 0                                       | 0                                                                                           | D                                                                                                                                                       | e                                                                                                | e                                                                                           | 0         | 5,3838                                                                                                                                                                                                                                               | 2                                                                                                                         | Э                                                                                                                                             | U                                                                                           | 3,5138                                                                                                                                                  | 2                                                                                                               | Ó                                                                                                          | Э                                                                                                 |
| STK11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | K7EP59_HUMAN (+1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 48                                                                                                                                     | 0                                       | D                                                                                           | 0                                                                                                                                                       | 0                                                                                                | 0                                                                                           | 0         | 0                                                                                                                                                                                                                                                    | 0                                                                                                                         | 2,1952                                                                                                                                        | 2                                                                                           | 0                                                                                                                                                       | 0                                                                                                               | 0                                                                                                          | D                                                                                                 |
| 5143                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | STKI_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 56                                                                                                                                     | 0                                       | 0                                                                                           | 0                                                                                                                                                       | 0                                                                                                | 0                                                                                           | 0         | 7,5373                                                                                                                                                                                                                                               | 6                                                                                                                         | 5                                                                                                                                             | 0                                                                                           | 0                                                                                                                                                       | 0                                                                                                               | 4,9829                                                                                                     | 5                                                                                                 |
| STK40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | STK40_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 49                                                                                                                                     | 0                                       | 0                                                                                           | 0                                                                                                                                                       | 0                                                                                                | 0                                                                                           | 0         | 3,2303                                                                                                                                                                                                                                               | 3                                                                                                                         | D                                                                                                                                             | 0                                                                                           | 0                                                                                                                                                       | 0                                                                                                               | 0                                                                                                          | 5                                                                                                 |
| STRBP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | STREP_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 74                                                                                                                                     | 0                                       | D                                                                                           | Ð                                                                                                                                                       | 0                                                                                                | 0                                                                                           | 0         | c                                                                                                                                                                                                                                                    | Ó                                                                                                                         | 29,636                                                                                                                                        | 12                                                                                          | 36,895                                                                                                                                                  | 17                                                                                                              | 21,925                                                                                                     | 8                                                                                                 |
| STT3A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | STT3A_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 81                                                                                                                                     | 0                                       | D                                                                                           | 0                                                                                                                                                       | 0                                                                                                | 0                                                                                           | 0         | 3,2303                                                                                                                                                                                                                                               | 2                                                                                                                         | 3,2929                                                                                                                                        | 2                                                                                           | 1,7569                                                                                                                                                  | 2                                                                                                               | 1,9932                                                                                                     | 2                                                                                                 |
| ST051<br>STX10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | KZEIVA HUMAN (+3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 35                                                                                                                                     | 0                                       | 0                                                                                           | 0                                                                                                                                                       | 0                                                                                                | 0                                                                                           | 0         | 4,507                                                                                                                                                                                                                                                | 4                                                                                                                         | 3                                                                                                                                             | 0                                                                                           | 0                                                                                                                                                       | 0                                                                                                               | 0                                                                                                          | 3                                                                                                 |
| STX12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | STX12_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 32                                                                                                                                     | 0                                       | 0                                                                                           | 0                                                                                                                                                       | 0                                                                                                | 0                                                                                           | 0         | 4,307                                                                                                                                                                                                                                                | 4                                                                                                                         | 0                                                                                                                                             | 0                                                                                           | 0                                                                                                                                                       | 0                                                                                                               | 0                                                                                                          | 0                                                                                                 |
| STX17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | STX17_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 33                                                                                                                                     | 0                                       | D                                                                                           | Ð                                                                                                                                                       | e                                                                                                | e                                                                                           | 0         | 3,2303                                                                                                                                                                                                                                               | 3                                                                                                                         | э                                                                                                                                             | U                                                                                           | e                                                                                                                                                       | e                                                                                                               | 0                                                                                                          | D                                                                                                 |
| 5726                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | STX6_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 29                                                                                                                                     | 0                                       | D                                                                                           | 0                                                                                                                                                       | 0                                                                                                | 0                                                                                           | 0         | 4,307                                                                                                                                                                                                                                                | 4                                                                                                                         | D                                                                                                                                             | 0                                                                                           | 0                                                                                                                                                       | 0                                                                                                               | 0                                                                                                          | D                                                                                                 |
| 51X/<br>57X8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | STAZ_HUMAN<br>STAR_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30                                                                                                                                     | 0                                       | 0                                                                                           | 0                                                                                                                                                       | 0                                                                                                | 0                                                                                           | 0         | 9,6908                                                                                                                                                                                                                                               | 8                                                                                                                         | 0                                                                                                                                             | 0                                                                                           | 0                                                                                                                                                       | 0                                                                                                               | 3.9853                                                                                                     | 4                                                                                                 |
| SUGP2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MOR229_HUMAN (+1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 122                                                                                                                                    | 0                                       | D                                                                                           | 0                                                                                                                                                       | 0                                                                                                | 0                                                                                           | 0         | 3,2303                                                                                                                                                                                                                                               | 3                                                                                                                         | 10,976                                                                                                                                        | 10                                                                                          | 10,541                                                                                                                                                  | 12                                                                                                              | 1,9932                                                                                                     | 2                                                                                                 |
| SURF4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Q5T8U5_HUMAN (+1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 21                                                                                                                                     | 0                                       | 0                                                                                           | 0                                                                                                                                                       | 0                                                                                                | 0                                                                                           | 0         | 0                                                                                                                                                                                                                                                    | 0                                                                                                                         | D                                                                                                                                             | 0                                                                                           | 0                                                                                                                                                       | 0                                                                                                               | 1,9932                                                                                                     | 2                                                                                                 |
| SURFE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SURF6_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 41                                                                                                                                     | 0                                       | 0                                                                                           | Ð                                                                                                                                                       | e                                                                                                | e                                                                                           | 0         | e                                                                                                                                                                                                                                                    | 0                                                                                                                         | 2,1952                                                                                                                                        | 2                                                                                           | 0-                                                                                                                                                      | C                                                                                                               | 0                                                                                                          | 0                                                                                                 |
| TAPSU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TAFSL_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 68                                                                                                                                     | 0                                       | 0                                                                                           | 0                                                                                                                                                       | 0                                                                                                | 0                                                                                           | 0         | 5,5858                                                                                                                                                                                                                                               | 3                                                                                                                         | 3                                                                                                                                             | 0                                                                                           | 0                                                                                                                                                       | 0                                                                                                               | 0                                                                                                          | 0                                                                                                 |
| TARB?1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TARB1_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 182                                                                                                                                    | õ                                       | D                                                                                           | D                                                                                                                                                       | e                                                                                                | e                                                                                           | ő         | C                                                                                                                                                                                                                                                    | ő                                                                                                                         | 2,1952                                                                                                                                        | 2                                                                                           | 0                                                                                                                                                       | C C                                                                                                             | \$,9858                                                                                                    | 10                                                                                                |
| TAROBP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TADBP_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 45                                                                                                                                     | 0                                       | 0                                                                                           | 1,9393                                                                                                                                                  | 2                                                                                                | 0                                                                                           | 0         | 3,2303                                                                                                                                                                                                                                               | 3                                                                                                                         | D                                                                                                                                             | 0                                                                                           | 1,7569                                                                                                                                                  | 2                                                                                                               | 2,9897                                                                                                     | 3                                                                                                 |
| TBC10105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TE105_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 87                                                                                                                                     | 0                                       | 0                                                                                           | 2,9089                                                                                                                                                  | 2                                                                                                | 0                                                                                           | 0         | 0                                                                                                                                                                                                                                                    | 0                                                                                                                         | 6,5857                                                                                                                                        | 5                                                                                           | 0                                                                                                                                                       | 0                                                                                                               | 0                                                                                                          | 0                                                                                                 |
| TCAFI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TCAF1 HUMAN (+1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 102                                                                                                                                    | 0                                       | 0                                                                                           | 1,9393                                                                                                                                                  | e                                                                                                | 0                                                                                           | 0         | 3,2505                                                                                                                                                                                                                                               | 3                                                                                                                         | 2,1952                                                                                                                                        | 0                                                                                           | 0                                                                                                                                                       | 0                                                                                                               | 6 9761                                                                                                     | 6                                                                                                 |
| TCEB3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MO24RACE_HUMAN (+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 87                                                                                                                                     | 0                                       | a                                                                                           | D                                                                                                                                                       | 0                                                                                                | 0                                                                                           | ۵.        | 2,1535                                                                                                                                                                                                                                               | 2                                                                                                                         | 2,1952                                                                                                                                        | 2                                                                                           | 2,6353                                                                                                                                                  | 3                                                                                                               | 0                                                                                                          | 5                                                                                                 |
| TDRD3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TDRD3_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 73                                                                                                                                     | 0                                       | 0                                                                                           | 3,8786                                                                                                                                                  | 4                                                                                                | 0                                                                                           | 0         | 0                                                                                                                                                                                                                                                    | 0                                                                                                                         | 10,976                                                                                                                                        | 10                                                                                          | 3,5138                                                                                                                                                  | 4                                                                                                               | 0                                                                                                          | 0                                                                                                 |
| TEFM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TEFM_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <2                                                                                                                                     | 0                                       | 0                                                                                           | 0                                                                                                                                                       | 0<br>O                                                                                           | e                                                                                           | 0         | C                                                                                                                                                                                                                                                    | 0                                                                                                                         | 3,2929                                                                                                                                        | 3                                                                                           | 0                                                                                                                                                       | e                                                                                                               | 0                                                                                                          | 0                                                                                                 |
| TEX10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TEX10 HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 106                                                                                                                                    | 0                                       | 2                                                                                           | 0                                                                                                                                                       | 0<br>0                                                                                           | 0                                                                                           | 0         | 21535                                                                                                                                                                                                                                                | 2                                                                                                                         | 2,1932                                                                                                                                        | 2                                                                                           | 0,5136                                                                                                                                                  | 0                                                                                                               | 3,9303                                                                                                     | õ                                                                                                 |
| TFAP2A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C9UXZ2_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15                                                                                                                                     | ō                                       | D                                                                                           | D                                                                                                                                                       | 0                                                                                                | 0                                                                                           | 0         | Q                                                                                                                                                                                                                                                    | õ                                                                                                                         | 2,1952                                                                                                                                        | 2                                                                                           | 0                                                                                                                                                       | 0                                                                                                               | 0                                                                                                          | D                                                                                                 |
| TF82M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TF82M_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 45                                                                                                                                     | 0                                       | D                                                                                           | 0                                                                                                                                                       | 0                                                                                                | 0                                                                                           | 0         | 0                                                                                                                                                                                                                                                    | 0                                                                                                                         | Э                                                                                                                                             | 0                                                                                           | 1,7569                                                                                                                                                  | 2                                                                                                               | 0                                                                                                          | э                                                                                                 |
| TECP2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | FBVWLD_HUMAN (+1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20                                                                                                                                     | 0                                       | 0                                                                                           | 0                                                                                                                                                       | 0                                                                                                | 0                                                                                           | 0         | C C                                                                                                                                                                                                                                                  | 0                                                                                                                         | 2 2020                                                                                                                                        | 0                                                                                           | 0                                                                                                                                                       | 0                                                                                                               | 0                                                                                                          | 0                                                                                                 |
| THAP11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | THALL HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 28                                                                                                                                     | 0                                       | 0                                                                                           | 0                                                                                                                                                       | 0                                                                                                | 0                                                                                           | 0         | 0                                                                                                                                                                                                                                                    | 0                                                                                                                         | 3,2929                                                                                                                                        | 2                                                                                           | 6                                                                                                                                                       | 0                                                                                                               | 0                                                                                                          | 3                                                                                                 |
| THEM6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | THEME_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 24                                                                                                                                     | 0                                       | D                                                                                           | D                                                                                                                                                       | o                                                                                                | 0                                                                                           | 0         | 2,1535                                                                                                                                                                                                                                               | 2                                                                                                                         | D                                                                                                                                             | D                                                                                           | 0                                                                                                                                                       | 0                                                                                                               | 0                                                                                                          | а                                                                                                 |
| THOC3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | THOC3_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 39                                                                                                                                     | 0                                       | 0                                                                                           | 1,9393                                                                                                                                                  | 2                                                                                                | 0                                                                                           | 0         | 0                                                                                                                                                                                                                                                    | 0                                                                                                                         | 2,1952                                                                                                                                        | 2                                                                                           | 1,7569                                                                                                                                                  | 2                                                                                                               | 0                                                                                                          | 0                                                                                                 |
| TIMM1<br>TIMM13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TIM1_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 178                                                                                                                                    | 3 9149                                  | 2                                                                                           | 0                                                                                                                                                       | 0                                                                                                | 0                                                                                           | 0         | 25 5 2 3                                                                                                                                                                                                                                             | 0                                                                                                                         | 1,3905                                                                                                                                        | 0                                                                                           | 1,7565                                                                                                                                                  | 2                                                                                                               | 1,9932                                                                                                     | 2                                                                                                 |
| TIMM25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TIM23_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 22                                                                                                                                     | 0                                       | 0                                                                                           | 0                                                                                                                                                       | e                                                                                                | e                                                                                           | 0         | 3,2303                                                                                                                                                                                                                                               | 2                                                                                                                         | 3                                                                                                                                             | 0                                                                                           | 0                                                                                                                                                       | c                                                                                                               | 0                                                                                                          | 0                                                                                                 |
| TIMM29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TIM29_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 29                                                                                                                                     | 0                                       | D                                                                                           | D                                                                                                                                                       | 0                                                                                                | 0                                                                                           | 0         | 5,3838                                                                                                                                                                                                                                               | 5                                                                                                                         | D                                                                                                                                             | D                                                                                           | 0                                                                                                                                                       | 0                                                                                                               | 5,9795                                                                                                     | 5                                                                                                 |
| TIMM8A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TIM8A_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11                                                                                                                                     | 0                                       | 0                                                                                           | 0                                                                                                                                                       | 0                                                                                                | 0                                                                                           | 0         | 10,768                                                                                                                                                                                                                                               | 5                                                                                                                         | 0                                                                                                                                             | 0                                                                                           | 0                                                                                                                                                       | 0                                                                                                               | 3,9963                                                                                                     | 4                                                                                                 |
| TMC01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | JSJIE6_HUMAN (-1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 27                                                                                                                                     | 0                                       | 0                                                                                           | 2,9089                                                                                                                                                  | 3                                                                                                | 0                                                                                           | 0         | 0                                                                                                                                                                                                                                                    | 0                                                                                                                         | 2,1952                                                                                                                                        | 2                                                                                           | 0                                                                                                                                                       | 0                                                                                                               | 0                                                                                                          | 0                                                                                                 |
| TMEM1208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | T1208_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 40                                                                                                                                     | 0                                       | 9                                                                                           | 0                                                                                                                                                       | 0                                                                                                | 0                                                                                           | 0         | 3,2303                                                                                                                                                                                                                                               | 3                                                                                                                         | Э                                                                                                                                             | 0                                                                                           | 0                                                                                                                                                       | 0                                                                                                               | 1,9932                                                                                                     | 2                                                                                                 |
| TMEM214                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TM214_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 77                                                                                                                                     | 0                                       | 0                                                                                           | 0                                                                                                                                                       | 0                                                                                                | 0                                                                                           | 0         | 21575                                                                                                                                                                                                                                                | 0                                                                                                                         | 0                                                                                                                                             | 0                                                                                           | 3,5138                                                                                                                                                  | 4                                                                                                               | 0                                                                                                          | 2                                                                                                 |
| TMENS7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TMLH, HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 50                                                                                                                                     | 0                                       | 0                                                                                           | 0                                                                                                                                                       | e                                                                                                | e e                                                                                         | 0         | 2,1555                                                                                                                                                                                                                                               | 2                                                                                                                         | 3                                                                                                                                             | 0                                                                                           | e e                                                                                                                                                     | 0                                                                                                               | 0                                                                                                          | 3                                                                                                 |
| TN P2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TNIP2_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 49                                                                                                                                     | 0                                       | D                                                                                           | D                                                                                                                                                       | 0                                                                                                | 0                                                                                           | 0         | 23,689                                                                                                                                                                                                                                               | 15                                                                                                                        | D                                                                                                                                             | 0                                                                                           | 0                                                                                                                                                       | 0                                                                                                               | 10,962                                                                                                     | 10                                                                                                |
| TOEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TOE1_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 57                                                                                                                                     | 0                                       | 0                                                                                           | 0                                                                                                                                                       | 0                                                                                                | e                                                                                           | 0         | C C                                                                                                                                                                                                                                                  | 0                                                                                                                         | 0                                                                                                                                             | 0                                                                                           | 0                                                                                                                                                       | C.                                                                                                              | 0                                                                                                          | 0                                                                                                 |
| TOP38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TOP36 HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 97                                                                                                                                     | 0                                       | 9                                                                                           | 1,9393                                                                                                                                                  | 2                                                                                                | 0                                                                                           | 0         | 0                                                                                                                                                                                                                                                    | 0                                                                                                                         | 9,8786                                                                                                                                        | 9                                                                                           | 1,7569                                                                                                                                                  | 2                                                                                                               | 0                                                                                                          | 0                                                                                                 |
| TOPSP1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TOPB1_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 171                                                                                                                                    | õ                                       | D                                                                                           | 1,9393                                                                                                                                                  | 2                                                                                                | e                                                                                           | ō         | e                                                                                                                                                                                                                                                    | õ                                                                                                                         | 0                                                                                                                                             | D                                                                                           | 5,2707                                                                                                                                                  | é                                                                                                               | 1,9932                                                                                                     | 2                                                                                                 |
| TPM3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AGAG87WWU8_HUMAI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 26                                                                                                                                     | 0                                       | 0                                                                                           | 0                                                                                                                                                       | 0                                                                                                | 0                                                                                           | 0         | c                                                                                                                                                                                                                                                    | 0                                                                                                                         | 0                                                                                                                                             | 0                                                                                           | 0                                                                                                                                                       | 0                                                                                                               | 1,9932                                                                                                     | 2                                                                                                 |
| TRA2B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TRA28_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 34                                                                                                                                     | 0                                       | 9                                                                                           | 0                                                                                                                                                       | 0                                                                                                | 0                                                                                           | 2         | 0                                                                                                                                                                                                                                                    | 0                                                                                                                         | 5,4881                                                                                                                                        | 3                                                                                           | 4,3922                                                                                                                                                  | 5                                                                                                               | 0                                                                                                          | 3                                                                                                 |
| TRAF4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TRAF4, HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 54                                                                                                                                     | 0                                       | 0                                                                                           | 0                                                                                                                                                       | 0                                                                                                | e                                                                                           | 0         | e                                                                                                                                                                                                                                                    | 0                                                                                                                         | 0                                                                                                                                             | 0                                                                                           | 6,1491                                                                                                                                                  | 6                                                                                                               | 0                                                                                                          | 0                                                                                                 |
| TRAF7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TRAF7_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 75                                                                                                                                     | 0                                       | D                                                                                           | D                                                                                                                                                       | e                                                                                                | e                                                                                           | Ó         | 18,305                                                                                                                                                                                                                                               | 13                                                                                                                        | D                                                                                                                                             | D                                                                                           | 0                                                                                                                                                       | 0                                                                                                               | 1,9932                                                                                                     | 2                                                                                                 |
| TRAF01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TRAD1_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 65                                                                                                                                     | 0                                       | 0                                                                                           | 0                                                                                                                                                       | 0                                                                                                | 0                                                                                           | 0         | 0                                                                                                                                                                                                                                                    | 0                                                                                                                         | D                                                                                                                                             | 0                                                                                           | 1,7569                                                                                                                                                  | 2                                                                                                               | 0                                                                                                          | 0                                                                                                 |
| TRIM14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TRI14_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 50                                                                                                                                     | 0                                       | 0                                                                                           | 0                                                                                                                                                       | e<br>c                                                                                           | C C                                                                                         | 0         | C O                                                                                                                                                                                                                                                  | 0                                                                                                                         | 3,2929                                                                                                                                        | 3                                                                                           | 0                                                                                                                                                       | 0                                                                                                               | 0                                                                                                          | 0                                                                                                 |
| TR M27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TRI26 HEINAAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                        | 1                                       |                                                                                             | 0                                                                                                                                                       | 0                                                                                                | 0                                                                                           | 0         | 8,614                                                                                                                                                                                                                                                | 8                                                                                                                         | 0                                                                                                                                             | 0                                                                                           | 0                                                                                                                                                       | 0                                                                                                               | 3,9963                                                                                                     | 4                                                                                                 |
| TR/M32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TRI26_HUMAN<br>TRI27_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 58                                                                                                                                     | 0                                       |                                                                                             |                                                                                                                                                         |                                                                                                  | c                                                                                           | 0         | 2,1535                                                                                                                                                                                                                                               | 2                                                                                                                         | D                                                                                                                                             | D                                                                                           | 0                                                                                                                                                       | e                                                                                                               | 0                                                                                                          | 0                                                                                                 |
| TR M35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TRI26_HUMAN<br>TRI27_HUMAN<br>TRI32_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 58<br>72                                                                                                                               | 0                                       | 5                                                                                           | D                                                                                                                                                       | u.                                                                                               |                                                                                             |           | 2 2202                                                                                                                                                                                                                                               |                                                                                                                           |                                                                                                                                               |                                                                                             |                                                                                                                                                         |                                                                                                                 |                                                                                                            | 1000                                                                                              |
| and the second sec | TRI26_HUMAN<br>TRI27_HUMAN<br>TRI32_HUMAN<br>TRI35_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 58<br>72<br>57                                                                                                                         | 0 0 0                                   | 0<br>0<br>0                                                                                 | D<br>0                                                                                                                                                  | 0                                                                                                | 0                                                                                           |           | 3,2,303                                                                                                                                                                                                                                              | 2                                                                                                                         | D                                                                                                                                             | 0                                                                                           | 0                                                                                                                                                       | 0                                                                                                               | 0                                                                                                          | 0                                                                                                 |
| TRIM56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TRI26_HUMAN<br>TRI27_HUMAN<br>TRI32_HUMAN<br>TRI35_HUMAN<br>TRI56_HUMAN<br>TRI56_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 58<br>72<br>57<br>81<br>247                                                                                                            | 00000                                   | 9<br>9<br>9<br>9                                                                            | 0<br>0<br>0                                                                                                                                             | 0                                                                                                | 0                                                                                           | 0         | 2,1535                                                                                                                                                                                                                                               | 2                                                                                                                         | 0<br>0<br>0                                                                                                                                   | 0                                                                                           | 0 0 12569                                                                                                                                               | 0                                                                                                               | 0                                                                                                          | 0<br>0                                                                                            |
| TRIM56<br>TRIO<br>TRMT112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TRI26_HUMAN<br>TRI27_HUMAN<br>TRI32_HUMAN<br>TRI35_HUMAN<br>TRI56_HUMAN<br>TRI0_HUMAN<br>TRI12_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 58<br>72<br>57<br>81<br>347<br>14                                                                                                      | 0 0 0 0 0                               | 5<br>5<br>5<br>5<br>5<br>5                                                                  | 0<br>0<br>0<br>1,9393                                                                                                                                   | 0<br>0<br>0<br>2                                                                                 | 0<br>0<br>0                                                                                 | 0000      | 2,1535<br>9,6908<br>0                                                                                                                                                                                                                                | 2 9 0                                                                                                                     | 0<br>0<br>0<br>2,1952                                                                                                                         | 0<br>0<br>0<br>2                                                                            | 0<br>0<br>1,7569<br>1,7569                                                                                                                              | 0<br>0<br>2<br>2                                                                                                | 0<br>0<br>11,959<br>0                                                                                      | 0<br>0<br>12<br>0                                                                                 |
| TRIM56<br>TRIO<br>TRMT112<br>TRNAU1AP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TRI26_HUMAN<br>TRI27_HUMAN<br>TRI32_HUMAN<br>TRI35_HUMAN<br>TRI56_HUMAN<br>TRI56_HUMAN<br>TRI12_HUMAN<br>TRI12_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 58<br>72<br>57<br>81<br>347<br>14<br>32                                                                                                | 0 0 0 0 0 0                             | 0<br>0<br>0<br>0<br>0<br>0                                                                  | D<br>D<br>D<br>1,9393<br>D                                                                                                                              | 0<br>0<br>0<br>2<br>0                                                                            | 00000                                                                                       | 0000      | 2,1535<br>9,6908<br>0<br>3,2303                                                                                                                                                                                                                      | 2 9 0 2                                                                                                                   | 0<br>0<br>2,1952<br>0                                                                                                                         | 0<br>0<br>2<br>0                                                                            | 0<br>0<br>1,7569<br>1,7569<br>0                                                                                                                         | 0<br>2<br>2<br>0                                                                                                | 0<br>0<br>11,959<br>0<br>0                                                                                 | 0<br>0<br>12<br>0<br>0                                                                            |
| TRIMSE<br>TRIO<br>TRMT112<br>TRNAU1AP<br>TRPT1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TRI26_HUMAN<br>TRI27_HUMAN<br>TRI32_HUMAN<br>TRI32_HUMAN<br>TRI36_HUMAN<br>TRI36_HUMAN<br>TRI12_HUMAN<br>TSAP1_HUMAN<br>TSAP1_HUMAN<br>FSH8A0_HUMAN (+1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 58<br>72<br>57<br>81<br>347<br>14<br>32<br>21                                                                                          | 0000000                                 | 0<br>0<br>0<br>0<br>0<br>0                                                                  | 0<br>0<br>0<br>1,9393<br>0<br>0                                                                                                                         | 0<br>0<br>0<br>2<br>0                                                                            | 0 0 0 0 0                                                                                   | 00000     | 2,1535<br>9,6908<br>0<br>3,2303<br>0                                                                                                                                                                                                                 | 2 9 0 2 0                                                                                                                 | 0<br>0<br>2,1952<br>0<br>2,1952                                                                                                               | 0<br>0<br>2<br>0<br>2                                                                       | 0<br>0<br>1,7569<br>1,7569<br>0                                                                                                                         | 0<br>2<br>2<br>0                                                                                                | 0<br>11,959<br>0<br>0                                                                                      | 0<br>12<br>0<br>0<br>0                                                                            |
| TRIMSE<br>TRIO<br>TRMT112<br>TRNAU1AP<br>TRPT1<br>TRUB2<br>TSRV1 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TRI26_HUMAN<br>TRI27_HUMAN<br>TRI32_HUMAN<br>TRI32_HUMAN<br>TRI56_HUMAN<br>TRI56_HUMAN<br>TRI12_HUMAN<br>TSAT2_HUMAN<br>TSAT2_HUMAN<br>TSH8A0_HUMAN (+1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 58<br>72<br>57<br>81<br>347<br>14<br>32<br>21<br>37<br>20                                                                              | 0 0 0 0 0 0 0 0 0 0                     |                                                                                             | 0<br>0<br>0<br>1,9393<br>0<br>0<br>0                                                                                                                    | 0<br>0<br>0<br>2<br>0<br>0<br>0                                                                  | 00000000                                                                                    | 0000000   | 2,1535<br>9,6908<br>0<br>3,2303<br>0<br>0<br>0                                                                                                                                                                                                       | 2 8 0 2 0 0 2                                                                                                             | 0<br>0<br>2,1952<br>0<br>2,1952<br>4,5905<br>6,5657                                                                                           | 0<br>0<br>2<br>0<br>2<br>4<br>4                                                             | 0<br>0<br>1,7569<br>1,7569<br>0<br>0<br>0<br>0                                                                                                          | 0<br>2<br>2<br>0<br>0                                                                                           | 0<br>11,959<br>0<br>0<br>0                                                                                 | 0<br>12<br>0<br>0<br>0<br>0                                                                       |
| TRIM56<br>TRIO<br>TRMT112<br>TRNAU1AP<br>TRPT1<br>TRU82<br>TSPYL1<br>TSR3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TRI26, HUMAN<br>TRI22, HUMAN<br>TRI35, HUMAN<br>TRI35, HUMAN<br>TRI35, HUMAN<br>TRI36, HUMAN<br>TRI312, HUMAN<br>TSI32, HUMAN<br>TSI32, HUMAN<br>TSI32, HUMAN<br>TSI3, HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 58<br>72<br>57<br>81<br>347<br>14<br>32<br>21<br>37<br>49<br>34                                                                        | 0 0 0 0 0 0 0 0 0 0                     | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                     | 0<br>0<br>0<br>1,9393<br>0<br>0<br>0<br>0<br>1,9393                                                                                                     | 0<br>0<br>0<br>2<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                               | 0 0 0 0 0 0 0                                                                               | 000000000 | 2,1535<br>9,6908<br>0<br>3,2303<br>0<br>0<br>5,3838<br>0                                                                                                                                                                                             | 2 8 0 2 0 0 3 0                                                                                                           | 0<br>0<br>2,1952<br>0<br>2,1952<br>4,3905<br>6,5857<br>9,8786                                                                                 | 0<br>0<br>2<br>4<br>6<br>8                                                                  | 0<br>0<br>1,7569<br>1,7569<br>0<br>0<br>0<br>2,6353<br>0                                                                                                | 0<br>2<br>0<br>0<br>3<br>0                                                                                      | 0<br>11,959<br>0<br>0<br>0<br>0<br>0                                                                       | 0<br>0<br>12<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                         |
| TRIM56<br>TRIO<br>TRMT112<br>TRNAU1AP<br>TRPT1<br>TRU82<br>TSPVL1<br>TSR3<br>TSSC4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TRIZE HUMAN<br>TRIZE HUMAN<br>TRISE HUMAN<br>TRISE HUMAN<br>TRISE HUMAN<br>TRISE HUMAN<br>TRISE HUMAN<br>TSIZE HUMAN<br>TSIZE HUMAN<br>TSIZE HUMAN<br>TSIZE HUMAN<br>TSIZE HUMAN<br>COURT HUMAN (+1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 52<br>57<br>57<br>81<br>347<br>14<br>32<br>21<br>37<br>49<br>34<br>22                                                                  | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | D<br>D<br>D<br>1,9393<br>D<br>D<br>D<br>D<br>1,9393<br>1,9393                                                                                           | 0<br>0<br>2<br>0<br>0<br>0<br>0<br>2<br>2<br>2                                                   | 0 0 0 0 0 0 0 0                                                                             | 000000000 | 2,1535<br>9,6908<br>0<br>3,2303<br>0<br>0<br>5,3838<br>0<br>0<br>0<br>5,3838<br>0<br>0                                                                                                                                                               | 2 8 0 2 0 0 3 0 0                                                                                                         | 0<br>0<br>2,1952<br>0<br>2,1952<br>4,3905<br>6,5857<br>9,8786<br>5,4881                                                                       | 0<br>0<br>2<br>0<br>2<br>4<br>6<br>8<br>4                                                   | 0<br>0<br>1,7565<br>1,7565<br>0<br>0<br>2,6353<br>0<br>3,5138                                                                                           | 0<br>2<br>0<br>0<br>3<br>4                                                                                      | 0<br>11,959<br>0<br>0<br>0<br>0<br>0<br>0                                                                  | 0<br>0<br>12<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |
| TRIM56<br>TRIO<br>TRMT112<br>TRNAU1AP<br>TRPT1<br>TRU82<br>TSPYL1<br>TSR3<br>TSSC4<br>TSC4<br>TTC19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TRI26, HUMAN<br>TRI27, HUMAN<br>TRI35, HUMAN<br>TRI35, HUMAN<br>TRI35, HUMAN<br>TRI30, HUMAN<br>TRI312, HUMAN<br>TSI31, HUMAN<br>TSI31, HUMAN<br>TSI31, HUMAN<br>TSI31, HUMAN<br>TSI31, HUMAN<br>TSI31, HUMAN<br>TSI31, HUMAN<br>TSI31, HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 58<br>72<br>57<br>81<br>347<br>14<br>32<br>21<br>37<br>49<br>34<br>22<br>49<br>34<br>22<br>49                                          | 0 0 0 0 0 0 0 0 0 0 0 0                 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>1,9393<br>0<br>0<br>1,9393<br>1,9393<br>1,9393<br>1,9393<br>0                                                                                 | 0<br>0<br>2<br>0<br>0<br>0<br>0<br>2<br>2<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0000000000000                                                                               |           | 21535<br>9,6908<br>0<br>3,2303<br>0<br>0<br>5,3838<br>0<br>0<br>4,307<br>9,555                                                                                                                                                                       | 22802003004                                                                                                               | 0<br>0<br>2,1952<br>0<br>2,1952<br>4,3905<br>6,5857<br>9,8786<br>5,4881<br>0<br>0                                                             | 0<br>0<br>2<br>2<br>4<br>6<br>8<br>4<br>0                                                   | 0<br>0<br>1,7569<br>1,7569<br>0<br>0<br>2,6353<br>0<br>3,5138<br>0                                                                                      | 0022000304004                                                                                                   | 0<br>11,959<br>0<br>0<br>0<br>0<br>0<br>0                                                                  | 0<br>12<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |
| TRIMSE<br>TRIO<br>TRIMITI2<br>TRIMULAP<br>TRUE2<br>TRUE2<br>TSPYL1<br>TSR3<br>TSSC4<br>TTC19<br>TTC26<br>TTC31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TRIZE_HUMAN<br>TRIZE_HUMAN<br>TRIZE_HUMAN<br>TRIZE_HUMAN<br>TRIZE_HUMAN<br>TRIZE_HUMAN<br>TRIZE_HUMAN<br>TRIZE_HUMAN<br>SRRAD_HUMAN<br>TSRZE_HUMAN<br>TSRZE_HUMAN<br>TSRZE_HUMAN<br>TSRZE_HUMAN<br>TSRZE_HUMAN<br>TTCZE_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 58<br>72<br>57<br>81<br>347<br>14<br>32<br>21<br>37<br>49<br>34<br>22<br>42<br>42<br>64<br>57                                          | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>1,9393<br>0<br>0<br>0<br>1,9393<br>1,9393<br>0,9393<br>0<br>0                                                                                 | 0<br>0<br>0<br>2<br>0<br>0<br>0<br>0<br>2<br>2<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                     |           | 2,1535<br>9,5908<br>0<br>3,2303<br>0<br>0<br>5,3838<br>0<br>0<br>4,307<br>8,614<br>3,2303                                                                                                                                                            | 2290200300473                                                                                                             | 0<br>0<br>2,1952<br>2,1952<br>4,3905<br>6,5857<br>9,8786<br>5,4881<br>0<br>0<br>0                                                             | 0<br>0<br>2<br>2<br>4<br>6<br>8<br>4<br>0<br>0<br>0                                         | 0<br>0<br>1,7565<br>1,7569<br>0<br>0<br>2,6353<br>0<br>3,5138<br>0<br>0<br>0                                                                            | 0<br>2<br>2<br>0<br>0<br>3<br>0<br>4<br>0<br>0<br>0<br>0<br>0                                                   | 0<br>11,959<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      | 0<br>12<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |
| TRIMS6<br>TRIO<br>TRMT112<br>TRNAUJAP<br>TRPT1<br>TRU52<br>TSP11<br>TRU52<br>TSC4<br>TTC19<br>TTC26<br>TTC31<br>TU8828                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TRIZ + HUMAN<br>TRIZ + HUMAN<br>TRIZ + HUMAN<br>TRIZ + HUMAN<br>TRIZ + HUMAN<br>TRIZ + HUMAN<br>TRIZ + HUMAN<br>TSIZ + HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 58<br>72<br>57<br>81<br>347<br>14<br>32<br>21<br>37<br>49<br>34<br>22<br>49<br>34<br>22<br>49<br>57<br>50                              | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>1,9393<br>0<br>0<br>0<br>1,9393<br>1,9393<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                  | 0<br>0<br>2<br>0<br>0<br>0<br>0<br>2<br>2<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0           | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                     |           | 2,1535<br>9,5908<br>0<br>3,2303<br>0<br>0<br>5,3838<br>0<br>0<br>4,307<br>8,614<br>3,2303<br>190,59                                                                                                                                                  | 22902003004735                                                                                                            | 0<br>0<br>2,1952<br>1,3905<br>6,5857<br>9,8786<br>5,4881<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                   | 0<br>0<br>2<br>0<br>2<br>4<br>6<br>8<br>4<br>0<br>0<br>0<br>3                               | 0<br>0<br>1,7569<br>1,7569<br>0<br>0<br>2,6353<br>0<br>3,5138<br>0<br>3,5138<br>0<br>0<br>0<br>66,762                                                   | 0<br>2<br>2<br>0<br>0<br>4<br>0<br>4<br>0<br>4                                                                  | 0<br>11,959<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      | 0<br>12<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |
| TRIMSG<br>TRIO<br>TRMT112<br>TRNM112<br>TRP11<br>TRU52<br>TSP11<br>TRU52<br>TSC4<br>TTC19<br>TTC26<br>TTC31<br>TU8328<br>TU583                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ТП 27, Н. ИМАИ<br>TRI 27, Н.ИМАИ<br>TRI 25, Н.ИМАИ<br>TRI 25, Н.ИМАИ<br>TRI 26, Н.ИМАИ<br>TRI 26, Н.ИМАИ<br>TRI 27, Н.ИМАИ<br>TSI 27, Н.ИМАИ<br>TSI 27, Н.ИМАИ<br>TSI 27, Н.ИМАИ<br>TSI 27, Н.ИМАИ<br>TSI 27, Н.ИМАИ<br>TSI 27, Н.ИМАИ<br>TTG 31, Н.ИМАИ<br>TTG 31, Н.ИМАИ<br>TTG 32, Н.ИМАИ<br>TG 33, Н.ИМАИ<br>TG 33, Н.ИМАИ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 58<br>72<br>57<br>81<br>347<br>14<br>52<br>21<br>37<br>49<br>34<br>22<br>42<br>64<br>57<br>50<br>50                                    | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0         | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>1,9393<br>0<br>0<br>0<br>1,9393<br>1,9393<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                          | 0<br>0<br>2<br>0<br>0<br>0<br>0<br>2<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                 |           | 2,1555<br>9,6908<br>0<br>3,2303<br>0<br>0<br>5,3838<br>0<br>0<br>4,307<br>8,514<br>3,2303<br>190,59<br>150,75                                                                                                                                        | 229020030047352                                                                                                           | 0<br>0<br>1<br>2,1952<br>3<br>2,1952<br>4,3905<br>6,5857<br>9,8786<br>5,4881<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0           | 0<br>0<br>2<br>4<br>6<br>8<br>4<br>0<br>0<br>0<br>3<br>0<br>3<br>0                          | 0<br>0<br>1,7569<br>1,7569<br>0<br>0<br>2,6353<br>0<br>3,5138<br>0<br>0<br>0<br>66,762<br>0                                                             | 0<br>2<br>2<br>0<br>0<br>3<br>0<br>4<br>0<br>0<br>4<br>0<br>0<br>4<br>0<br>0                                    | 0<br>0<br>11,959<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>12<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |
| TRIMSE<br>TRIO<br>TRMT112<br>TRNAULAP<br>TRPT1<br>TRV1<br>TRV1<br>TRV1<br>TRV1<br>TSV2<br>TSV1<br>TC19<br>TC26<br>TTC31<br>TUB328<br>TUB33<br>TUB33<br>TUS01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TIR 25, HUMAN<br>TIR 25, HUMAN<br>TIR 25, HUMAN<br>TIR 35, HUMAN<br>TIR 35, HUMAN<br>TIR 35, HUMAN<br>TIR 37, HUMAN<br>TIR 30, HUMAN<br>TIR 31, HUMAN<br>TIR 31, HUMAN<br>TIR 31, HUMAN<br>TIR 31, HUMAN<br>TIR 32, HUMAN<br>TIR 32, HUMAN<br>TIR 32, HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 58<br>72<br>57<br>81<br>347<br>14<br>52<br>21<br>57<br>49<br>34<br>22<br>42<br>64<br>57<br>50<br>50<br>23<br>50<br>23                  | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 | 0<br>0<br>1,9393<br>0<br>0<br>0<br>1,9393<br>1,9393<br>1,9393<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      | 000000000000000000000000000000000000000                                                     |           | 2,1555<br>9,6908<br>0<br>3,2303<br>0<br>0<br>5,3838<br>0<br>0<br>4,307<br>8,514<br>3,2303<br>190,59<br>150,75<br>0                                                                                                                                   | 2 2 9 0 2 0 0 8 0 0 4 7 8 5 2 0 0                                                                                         | 0<br>0<br>1<br>2,1952<br>4,5905<br>6,5857<br>9,8786<br>5,4881<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>2,1952<br>2,1952 | 0<br>0<br>2<br>0<br>2<br>4<br>6<br>8<br>4<br>0<br>0<br>0<br>3<br>0<br>2<br>2                | 0<br>0<br>1,7565<br>1,2569<br>0<br>0<br>2,6353<br>0<br>3,5138<br>0<br>0<br>0<br>66,762<br>0<br>0<br>0<br>0                                              | 0<br>2<br>2<br>0<br>0<br>3<br>0<br>4<br>0<br>0<br>0<br>4<br>0<br>0<br>0<br>4<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>11,959<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                          |
| TRIMS6<br>TRIO<br>TRMT112<br>TRNAU1AP<br>TRPT1<br>TRUB2<br>TSPV11<br>TSR3<br>TSSC4<br>TTC19<br>TTC26<br>TTC31<br>TUB528<br>TUS53<br>TUS51<br>TUB53<br>TUS51<br>TXNOC5<br>TYK2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ТВ 25, НОМАЯ<br>ТВ 25, НОМАЯ<br>ТВ 25, НОМАЯ<br>ТВ 25, НОМАЯ<br>ТВ 26, НОМАЯ<br>Т | 58<br>72<br>57<br>81<br>347<br>14<br>21<br>37<br>49<br>34<br>22<br>49<br>34<br>22<br>42<br>64<br>57<br>50<br>50<br>23<br>48<br>134     | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>1,9393<br>0<br>0<br>0<br>0<br>1,9393<br>1,9393<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      | 0<br>0<br>0<br>2<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 000000000000000000000000000000000000000                                                     |           | 2,1555<br>9,6908<br>0<br>3,2303<br>0<br>0<br>5,3838<br>0<br>0<br>0<br>5,3838<br>0<br>0<br>4,307<br>8,614<br>3,2303<br>190,59<br>150,75<br>0<br>0<br>0<br>0<br>0<br>150,75<br>0<br>0<br>0<br>0<br>150,551                                             | 2<br>9<br>0<br>2<br>0<br>0<br>3<br>0<br>0<br>4<br>7<br>3<br>5<br>2<br>0<br>0<br>2<br>4<br>7                               | 0<br>0<br>1<br>2,1952<br>1,5905<br>6,5857<br>9,8786<br>5,4881<br>0<br>0<br>0<br>68,053<br>0<br>2,1952<br>2,1952<br>2,1952                     | 0<br>0<br>2<br>4<br>6<br>8<br>4<br>0<br>0<br>0<br>2<br>2<br>2<br>2<br>2                     | 0<br>1,7569<br>1,7569<br>0<br>0<br>2,4353<br>0<br>0<br>2,4353<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 007200030400040000                                                                                              | 0<br>11,959<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                               | 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                           |
| TRIMBE<br>TRIO<br>TRMT112<br>TRMT112<br>TRMT112<br>TRM1112<br>TRM11<br>TRM11<br>TRM11<br>TSM1<br>TSC4<br>TTC19<br>TTC26<br>TTC31<br>TU828<br>TU501<br>TU828<br>TU501<br>TMC5<br>TWC<br>TWC5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TIR 27, HUMAN           TIR 27, HUMAN           TIR 23, HUMAN           TIR 25, HUMAN           TIR 25, HUMAN           TIR 26, HUMAN           TIR 26, HUMAN           TIR 27, HUMAN           TIR 28, HUMAN           TIR 20, HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 58<br>72<br>57<br>81<br>347<br>14<br>22<br>34<br>22<br>42<br>49<br>34<br>22<br>42<br>64<br>57<br>50<br>23<br>48<br>48<br>43<br>9<br>50 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>1,9393<br>0<br>0<br>0<br>1,9393<br>1,9393<br>1,9393<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>2<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |           | 2,1555<br>9,6908<br>0<br>3,2303<br>0<br>0<br>5,3838<br>0<br>0<br>5,3838<br>0<br>0<br>4,307<br>8,614<br>3,2303<br>150,75<br>0<br>0<br>0<br>0<br>150,75<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 2<br>9<br>0<br>2<br>0<br>0<br>3<br>0<br>0<br>4<br>7<br>3<br>5<br>2<br>0<br>0<br>2<br>4<br>0<br>0<br>2<br>4<br>0<br>0<br>2 | 0<br>0<br>1<br>2,1952<br>4,3905<br>6,5875<br>5,4881<br>0<br>0<br>0<br>68,055<br>2,1952<br>2,1952<br>2,1952<br>2,1952<br>2,1952<br>0           | 0<br>0<br>2<br>2<br>4<br>6<br>8<br>4<br>0<br>0<br>0<br>0<br>3<br>0<br>2<br>2<br>2<br>2<br>0 | 0<br>0<br>1,7569<br>1,7569<br>0<br>0<br>0<br>2,4351<br>0<br>0<br>3,5138<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                | 0<br>2<br>2<br>0<br>0<br>0<br>3<br>0<br>4<br>0<br>0<br>0<br>4<br>0<br>0<br>0<br>0<br>4<br>0<br>0<br>0<br>0<br>0 | 0<br>11,853<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                               | 0 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                          |

| 10000   | I mark market I    | 2015 |     | 1 | 1      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.000   |     |           |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    | 1 0 1       |     |
|---------|--------------------|------|-----|---|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----|-----------|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-------------|-----|
| UB12    | UD12_HUMMN         | 201  | 5   | 5 | U      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2,1555  | 2   | 3         | U  | ů.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | U  | 0           | 5   |
| CHXNG   | UEXNS_HUMAN        | 50   | D   | a | n      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C C     | 0   | a         | n  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0  | 0           | a   |
| UGTS    | CGT_HUMAN          | 61   | 0   | 0 | 0      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2,1535  | 2   | 0         | 0  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0  | 0           | 0   |
| UHMK1   | UHMK1_HUMAN        | 47   | 0   | D | D      | 0-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2,1535  | 2   | э         | D  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | e  | 0           | Э   |
| UHRE1   | UHBET HUMAN        | 90   | 0   | 0 | 1.9393 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0       | 0   | 4,3905    | 4  | 2,6353                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3  | 0           | 0   |
| 11862   | RENT2 HUMAN        | 1.49 | 2   | 0 |        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0       | 0   | 0.9796    | 9  | 20226                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9  | 0.005.0     | 10  |
| 110.2.3 | M0512 HUG450       | 25.4 |     |   |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2 16 26 |     |           | 0  | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    | 0           |     |
| 0691    | NEALS_HUBBAN       | 2.14 | 5   |   | u      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2,1333  |     |           |    | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |             |     |
| 02/022  | USMG5_HUMAN        | 0    | 0   | 0 | 0      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2,1555  | 2   | 3         | 0  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0  | 1,9952      | 2   |
| USP30   | B3KUSS_HUMAN (=1)  | 55   | 0   | D | D      | C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | e       | 0   | а         | D  | C C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | e  | 1,9932      | 2   |
| USP46   | H78ZK6_HUMAN (+1)  | 40   | 0   | 0 | 0      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3,2303  | 3   | 0         | 0  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0  | 0           | D   |
| USP8    | UBP8_HUMAN         | 128  | 0   | 0 | Ð      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | e       | 0   | 3         | U  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0  | 0           | 0   |
| USPSY   | USPOY HUMAN        | 291  | 0   | D | D      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 162,59  | 2   | D         | D  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0  | 0           | D   |
| UTPIdA  | UT144 HUMAN        | 88   | 0   | 0 | 1,9393 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 21535   | 2   | 8 781     | 8  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0  | 0           | 0   |
| 1.17215 | UTPIS HUMAN        | 58   |     | 2 | D      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11800   | 8   | 2         | 0  | 5 2202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6  | 4 9829      |     |
| LTDIG   | UTDIG HUNDER       | 60   |     |   | 0      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.707   | ÷   |           |    | 2,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -  | 1,002.5     |     |
| CIPIS   | OTPIS_HUMAN        | 02   |     | 0 | U      | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4,507   | *   | 3         | 0  | 2,6353                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3  | 0           | 9   |
| UTP20   | UTP20_HUMAN        | 318  | 0   | 0 | U      | C-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C       | 0   | 3,2929    | 3  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0  | 0           | 5   |
| UTP4    | H335H7_HUMAN       | 78   | 0   | 9 | 2,9089 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0       | 0   | 2,1952    | 2  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0  | 1,9932      | 2   |
| UTPG    | UTPG_HUMAN         | 70   | 0   | D | 0      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2,1535  | 2   | Э         | 0  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0  | 0           | D   |
| UX51    | UXS1_HUMAN         | 48   | 0   | D | D      | 0-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2,1535  | 2   | D         | D  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0  | 0           | D   |
| VCL     | VINC HUMAN         | 124  | 0   | 0 | 0      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0       | 0   | 0         | 0  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0  | 3,9863      | 4   |
| 48516   | WESTS HE MAN       | 615  | 0   | 0 | n      | D.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6307    | 4   | 2         | n  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0  | 0           | 2   |
| VDC10   | VPC10 HI MAN       | 110  | ů ř |   | 0      | , in the second se |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | , in the second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ( 207   |     |           | 0  | č                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |             |     |
| VP310   | VP316_ACADES       | 110  | 5   |   |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -,      |     |           |    | , in the second s |    |             |     |
| VP5335  | PSHU08_HUMAN       | 68   | 0   | 0 | 0      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | e       | 0   | 3         | U  | U U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | U. | 0           | 5   |
| VP535   | VPS35_HUMAN        | 92   | 0   | D | D      | e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3,2303  | 3   | э         | D  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0  | 0           | 3   |
| VTA1    | 14087WY55_HUMAN (1 | 31   | 0   | D | 0      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0       | 0   | 0         | 0  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0  | 0           | D   |
| VILLA   | VITEA_HUMAN        | 25   | 0   | 0 | U      | 0-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4,307   | 4   | Э         | D  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0  | 0           | D   |
| WAPL    | WAPL_HUMAN         | 133  | 0   | D | 1,9393 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0       | 0   | 3,2929    | 3  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0  | 0           | 0   |
| WDR12   | WOR12 HUMAN        | 48   | 0   | 0 | 3.8786 | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0       | 0   | 7.6834    | 7  | 5.2707                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4  | 4,9829      | 5   |
| W0718   | ADADMOUD HUMAN (   | 67   | 0   | 0 | D      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3 2303  | 2   | 3         | D  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0  | 0           | 2   |
| W0220   | MID220 HUMAN       | 62   |     | 0 | 0      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2 2202  | 2   | 2         | 0  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0  | 2 09/52     |     |
| MUNIZS  | HUTRON MURAN       | 14   | ~   |   | 0      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | , in the second | 12 009  | 10  | 3         |    | Š.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0  | 1,0032      |     |
| 100120  | WORZD_HOWHW        | 12   | 5   |   | 0      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 13,555  | 10  | 5         | 0  | 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | 1,9952      | -   |
| WORA    | AKDR9-HODAKA       | The  |     | 0 | U      | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | u .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | U       | 0   | 3         | u  | 2,0353                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    | 0           |     |
| WDR4    | WDR4_HUMAN         | 45   | 0   | 0 | 0      | 0-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | e       | 0   | 3         | 0  | 1,7565                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2  | 0           | 0   |
| WDR\$1  | WORS1_HUMAN        | 34   | 0   | D | D      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0       | 0   | э         | D  | 2,6353                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3  | 0           | 3   |
| WDR70   | WDR70_HUMAN        | 73   | 0   | 0 | 0      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0       | 0   | 0         | 0  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0  | 0           | 0   |
| WDR74   | WD874_HUMAN        | 42   | 0   | Ð | U      | e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | e       | 0   | 3         | 0  | 1,7569                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2  | 0           | Э   |
| W0375   | WOR75_HUMAN        | 95   | 0   | D | 0      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0       | 0   | .0        | 0  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0  | 1,9932      | 2   |
| WOTC1   | WOTC1 HUMAN        | 76   | 0   | 0 | 0      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6,4605  | 5   | 3         | 0  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0  | 0           | 0   |
| WNT5A   | WNT5A HUMAN        | 42   | 0   | D | D      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2,1535  | 2   | 0         | D  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0  | 0           | D   |
| YBEY    | YBEY HUMAN         | 19   | 0   | 0 | 1.9393 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C       | 0   | 2         | 0  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0  | 0           | 2   |
| YPEIN   | YPELS HUMAN        | 10   | 0   | 0 | D      | p.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3,2505  | 3   | 3         | 0  | p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | D  | 0           | 0   |
| VTHOC1  | STOCI HUMAN        | 85   |     | 0 | 1 9393 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0       |     | 4 2905    | 0  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0  | a l         |     |
| VTHOUT  | VTHD1 HUMAN        | 61   | 0   | 0 | 0      | ñ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0       | 0   | 2         |    | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0  | 0           |     |
| THUT    | THOI_TOWNER        | 01   |     |   |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | ů.  | 3         |    | Č.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |             |     |
| TWHAD   | THESE HEIMPEY      | 20   |     |   | u      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0,014   |     | 3         | u  | u .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    | 0           |     |
| YWHAH   | 1453F_HUMAN        | 28   | 0   | 9 | 0      | 0-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0,4605  | 3   | 3         | 0  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0  | 0           | 3   |
| YWHAQ   | 14331_HUMAN        | 28   | 0   | 0 | D      | e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9,6908  | 5   | э         | 0  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | e  | 0           | э   |
| YMHAZ   | 14337_HUMAN        | 28   | 0   | D | 0      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6,4605  | 3   | 0         | 0  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0  | 3,9563      | 2   |
| YY1     | TYY1_HUMAN         | 45   | 0   | 0 | 0      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C       | 0   | 3,2929    | 3  | 3,5138                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4  | 1,9932      | 2   |
| 28ED5   | ZBEDS_HUMAN        | 79   | 0   | D | D      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | e       | 0   | 0         | D  | 4,3922                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5  | 0           | 3   |
| Z67310  | ZET10_HUMAN        | 95   | 0   | D | 0      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0       | 0   | 4,3905    | 4  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0  | 0           | Э   |
| Z6 524  | Z5129 HUMAN        | 78   | 0   | 0 | D      | C D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | c       | Ó   | 3         | D  | 3 5 1 3 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4  | 0           | 0   |
| 703-114 | G3V256_HUMAN (-1)  | 68   | 0   | D | 0      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0       | 0   | 0         | 0  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0  | 0           | 0   |
| 713 H4  | ZC3HA HUMAN        | 140  | 0   | 0 | 2 9099 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0       | 0   | 54881     | 5  | 3 5 1 3 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3  | 8 9692      | 9   |
| 703 89  | MADCADG71 HEIMAN G | 30   | ŏ   |   | D      | i î                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ő                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0       | ň   | 7.6834    | 6  | 2 6353                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3  | 0           | 5   |
| 200402  | 70402 401444       |      |     |   |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |     | 6 6 8 6 7 |    | 6 2202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    | ž           |     |
| 200405  | ZCHUS_HUMAN        |      | 5   | 0 | U      | U.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | U .     | 0   | 0,3837    |    | 3,2101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3  | 0           | 5   |
| ZCCHC4  | SCHC4_HUMAN        | 59   | 0   | 9 | 0      | e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | e       | 0   | 2,1952    | 2  | e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | e  | 0           | 9   |
| ZCCHC6  | TUT7_HUMAN         | 171  | 0   | 0 | 4,8482 | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0       | 0   | 17,562    | 16 | 26,353                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 27 | 14,949      | 15  |
| ZDHHC17 | ZDH17_HUMAN        | 73   | 0   | 0 | 0      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C       | 0   | D         | 0  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C  | 1,9932      | 2   |
| ZE-21   | ZEP1_HUMAN         | 48   | 0   | D | D      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2,1535  | 2   | 0         | D  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0  | 0           | D   |
| ZFPG4   | A2A2N5_HUMAN (+1)  | 25   | 0   | D | 0      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3,2303  | 3   | 3,2929    | 3  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0  | 0           | D   |
| ZKSCAN1 | ZKSC1_HUMAN        | 64   | 0   | D | 0      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2,1535  | 2   | 0         | 0  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0  | 1,9932      | 2   |
| ZN-121  | ZN121 HUMAN        | 45   | 0   | 0 | D      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | e       | 0   | 9         | 0  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0  | 1,9932      | 2   |
| 7NF145  | OZE HUMAN          | 33   | 0   | 0 | D      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3 2303  | 3   | 2         | 0  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0  | 0           | 2   |
| 7NF187  | MO24RCN4 HUMAN H   | 55   | 0   | 0 | 0      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0       | 0   | 2 1952    | 2  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0  | 0           | 3   |
| 7512207 | BORSE HUMAN (+2)   | 53   |     |   | D      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0       |     | 2         | 0  | ē.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0  | 0           |     |
| 71/2220 | 71/220 10/14/14    | 50   | 0   |   | 0      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e i ene |     | 0         |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    | 1 0010      |     |
| 211-239 | ZIV235_HUNDAN      | 32   | 0   | 0 | 0      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0,4000  | 3   |           | 0  | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0  | 1,9952      | 2   |
| 2012/1  | ZNTZ4_HOMMN        | 0Z   | 0   |   | U      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | U       | 0   | 2,1952    | 2  | 2,6353                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3  | 0           |     |
| ZN-275  | ZNZ75_HUMAN        | 48   | 0   | 0 | 0      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | D .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | D       | 0   | 2,1952    | 2  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0  | 0           | 0   |
| ZN-316  | 2N316_HUMAN        | 108  | 0   | 9 | 0      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | e       | 0   | 2,1952    | 2  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | e  | 0           | 0   |
| ZNF34S  | ZN346_HUMAN        | 33   | 0   | 0 | 1,9393 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C       | 0   | 9,8786    | 5  | 2,6353                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3  | 0           | 0   |
| ZN F391 | ZN391_HUMAN        | 41   | 0   | 0 | 0      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0       | 0   | Э         | 0  | 1,7569                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2  | 0           | 0   |
| ZNE48   | A087WVT1_HUMAN (   | 54   | 0   | Ð | U      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ó                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2,1535  | 2   | D         | Ð  | e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | e  | 0           | C   |
| ZN F629 | ZN629_HUMAN        | 97   | 0   | D | 0      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0       | 0   | 4,3905    | 4  | 1,7569                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2  | 0           | 0   |
| ZN-638  | ZNG38 HUMAN        | 221  | 0   | 0 | 0      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | o       | 0   | 9,8786    | 9  | 1,7569                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2  | 0           | 0   |
| ZN:855  | ZN655 HUMAN        | 57   | 0   | 0 | 0      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5,3838  | 3   | D         | 0  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0  | 0           | 0   |
| 7NF769  | ZNZ68 HUMAN        | 60   | 0   | 0 | 7.7571 | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5 3838  | 5   | 13,171    | 11 | 3 5 1 3 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4  | 3,9863      | 4   |
| 7111773 | 201771 MUMAN       | 26   | i š |   | 2 0090 | L Š                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , in the second s | ň                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0       | ő l | 10.976    |    | 1 7560                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2  | 0           |     |
| 7117787 | ADAGRIMUDI HUMAN   | 10   |     |   | .,     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         | 5   | 2 2020    | 2  | 4,7363                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2  | 0           |     |
| 7114175 | ZNU2 HINNAS        | 10   | 0   |   | 0      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0       | 0   | 3,2323    |    | l ő                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0  | 0           |     |
| 23012   | 2NRI2_RUMAN        | ~5   |     |   | 0      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |     |           |    | 1 75.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2  | 2 2 2 2 2 2 |     |
| ZNHUS   | BLUI_HUMAN         | 54   |     |   | 0      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0       | U U | 5,4881    | 3  | 1,7565                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -  | 2,9897      | 1 1 |
| ZRAN52  | ZRABZ_HUMAN        | 37   | 0   | 0 | 0      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0       | 0   | 9         | 0  | 3,5138                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4  | 0           | 1 3 |

### Supplemental table 2

|                           | Gen e nam e | molecular<br>excessover<br>LSM14A | molecular<br>excess over<br>LSM14B | molecular<br>excess over<br>4E-T |
|---------------------------|-------------|-----------------------------------|------------------------------------|----------------------------------|
|                           | CY FI P1    | 0,23                              | 2,42                               | 5,20                             |
|                           | DDX6        | 2.01                              | 20,75                              | 44,70                            |
|                           | 4E-T        | 0,04                              | 0,46                               | 1,00                             |
|                           | FMR1        | 0,1143                            | 1,1804                             | 2,5430                           |
|                           | FXR1        | 0.86                              | 8.85                               | 19.06                            |
|                           | FXR2        | 0.24                              | 2.49                               | 5.37                             |
| mRNA REPRESSION           | GIGY F1     | 0.04                              | 0.44                               | 0.95                             |
|                           | GIGY F2     | 0.16                              | 1.62                               | 3.48                             |
|                           | LSM14A      | 1.00                              | 10.33                              | 22.25                            |
|                           | LSM14B      | 0.10                              | 1.00                               | 2.15                             |
|                           | NU FIP1     | 0.00                              | 0.03                               | 0.07                             |
|                           | NU FIP2     | 0.57                              | 5.94                               | 12 79                            |
|                           | DCP1A       | 0.19                              | 1.91                               | 412                              |
|                           | DCP1B       | 0.03                              | 0.29                               | 0.63                             |
|                           | DCP2        | 0.02                              | 0.18                               | 0.40                             |
|                           | EDC3        | 0.16                              | 1.69                               | 3.64                             |
|                           | EDC4        | 0.32                              | 3 27                               | 7.05                             |
|                           | LSM1        | 1 78                              | 18.40                              | 39.64                            |
| DECAPPING/DECAY           | ISM11       | 0.02                              | 0.24                               | 0.53                             |
|                           | LSM12       | 0.97                              | 10.05                              | 21.68                            |
|                           | ISMR        | 4.52                              | 47.72                              | 107.81                           |
|                           | LSMA        | 1.24                              | 12 79                              | 27 56                            |
|                           | PAT 1B      | 0.14                              | 1 45                               | 21,50                            |
|                           | VDNI        | 0,14                              | 0.42                               | 0.92                             |
|                           | 4601        | 0,07                              | 0,75                               | 0,52                             |
|                           | AG01        | 0,05                              | 0,55                               | 1.22                             |
|                           | ATXN21      | 0,05                              | 7.02                               | 15.15                            |
| RNA interference          | ATYN2       | 0,00                              | 0.99                               | 2 13                             |
|                           | MOVIO       | 0,10                              | 1 75                               | 3.76                             |
|                           | TNPCEA      | 0,17                              | 1,75                               | 5,76                             |
|                           | TNRCOA      | 0,00                              | 0,02                               | 0,04                             |
|                           | CNOT2       | 0,05                              | 2,55                               | 7.54                             |
|                           | CNOTZ       | 0,34                              | 2,22                               | 6.07                             |
|                           | CNOTS       | 0.22                              | 2,02                               | 4.83                             |
|                           | CNOTEL      | 0,11                              | 1 12                               | 2.44                             |
| CCR4-NOT complex          | CNOTA       | 0,11                              | 0.29                               | 0.84                             |
|                           | CNOT 10     | 0,04                              | 0,35                               | 0.62                             |
|                           | CNOT1       | 0,00                              | 0.05                               | 0.10                             |
|                           | CNOTE       | 0,00                              | 0.02                               | 0.05                             |
|                           | EIE2B4      | 0,00                              | 1.40                               | 3.02                             |
|                           | FIF285      | 0.16                              | 1.65                               | 3 5 5                            |
|                           | FIERA       | 1 13                              | 11 72                              | 25.24                            |
|                           | EIF38       | 1.57                              | 16.20                              | 34.91                            |
|                           | FIERD       | 2 40                              | 24.83                              | 53.50                            |
|                           | ELEBE       | 1.69                              | 17.46                              | 37.62                            |
| INITIATION of TRANSLATION | EIEBG       | 4,38                              | 45 21                              | 97.40                            |
|                           | EIFRI       | 4.21                              | 43 51                              | 93.75                            |
|                           | EIEBI       | 0.19                              | 1.92                               | 4 27                             |
|                           | ELEBK       | 4.64                              | 47.92                              | 103 24                           |
|                           | EIE4A2      | 0.16                              | 1.64                               | 3 53                             |
|                           | FIF4FRP2    | 0.01                              | 0.13                               | 0.28                             |
|                           | FIF4G1      | 0.09                              | 0.94                               | 2.03                             |
|                           | ATADBA      | 2.84                              | 29.28                              | 63.08                            |
|                           | DHX9        | 2 20                              | 22.70                              | 48.90                            |
|                           | G3RP1       | 9.51                              | 98 21                              | 211 57                           |
|                           | HNRNPL      | 10.11                             | 104.42                             | 224.96                           |
| OTHER                     | ILES        | 0.42                              | 4 33                               | 932                              |
| C.T.L.N                   | PRAT1       | 0,42                              | 10.15                              | 21.97                            |
|                           | SICCEAE     | 22.00                             | 228.00                             | 491 10                           |
|                           | SLC25A5     | 2 16                              | 220,00                             | 491,10                           |
|                           | SYNCRIP     | 0.06                              | 0.60                               | 130                              |
|                           | FILE        | 3.67                              | 37.92                              | 81.69                            |
|                           | VPV1        | 12.42                             | 129 21                             | 276.42                           |
|                           | IGE28.P1    | 1 19                              | 12 33                              | 2656                             |

#### **Figure Legends**

#### Figure 1: Purification of LSM14A, LSM14B and 4E-T cytoplasmic complexes by TAP-tag.

HEK293 cells were transfected with plasmids coding either FLAG-LSM14A-HA, FLAG-LSM14B-HA, FLAG-4E-T-HA or FLAG-HA as a control.

(A) 48 h after transfection, cells were stained with anti-FLAG (red) and anti-EDC4 (green) antibodies to detect respectively the exogenous proteins and PBs. Scale bar:  $10 \mu m$ .

**(B)** Exogenous proteins were analyzed by Western blotting with anti-FLAG-M2 antibody (left panel). For comparison, the endogenous proteins were analysed in untransfected HEK293 cells with anti-LSM14A, anti-LSM14B, anti-4E-T and anti-RPS6 antibodies as indicated (right panel).

**(C)** 1/10th of each elution obtained after TAP-tag in RNAse and RNAse inhibitor conditions, in cells expressing either FLAG-HA, FLAG-LSM14A-HA, FLAG-LSM14B-HA or FLAG-4E-T-HA was migrated on a denaturing gel along with a molecular weight marker (MW) and silver stained. Yellow stars indicate fusion proteins according to their expected size.

### Figure 2: Functional description of LSM14A, LSM14B and 4E-T partners identified by mass spectrometry.

(A) Venn diagrams showing the number and corresponding percentages of partners identified in RNAse and/or RNAse inhibitor-conditions. In order to reduce the dataset complexity, only partners scoring above 20 were considered.

(B) Distribution into functional categories of LSM14A, LSM14B and 4E-T partners based on the literature. Proteins partners categorized in RNA metabolism (left panel) were subcategorized into seven classes: RNA localization/mRNA decay/repression of mRNA translation/mRNA translation effectors/RNA splicing factors/ tRNA metabolism/ others. (right panel). Note that arbitrary choices had to be made for partners involved in several pathways like some repressors of translation which can also act as decapping activators.

**(C)** Dot graph representing MS scores of LSM14A (upper panel), LSM14B (middle panel) and 4E-T (lower panel) partners from TAP-tag purification in RNAse (y axis) and RNAse inhibitor (x axis)-treated samples. Orange dots correspond to repressors of translation and red dots to

decay & decapping factors. Circles indicate main mRNP complexes related to repression of translation or mRNA decay.

#### Figure 3: Identification of potential new PB assembly factors.

(A) Venn diagram showing distribution of LSM14A, LSM14B, 4E-T and DDX6 partners identified from RNAse-treated lysates. Common partners that were also significantly enriched (p-value < 0,05) in the PB proteome dataset from (Hubstenberger et al., 2017) are listed on the right.

(B) Role of ILF3 in PB maintenance. HeLa cells transfected for 48h with siILF3 or siCTL and were analysed by immunofluorescence images using anti-EDC4 (upper panel), anti-XRN1(middle panel), or anti-DDX6(lower panel) antibodies to detect PBs. Scale bar 10  $\mu$ m.

**(C)** Quantification of ILF3 contribution to PB maintenance. PBs visualized by immunofluorescence imaging as described in (B) were counted using EDC4, XRN1 and DDX6 as PB marker in n=20 to 36 cells, in 2 independent experiments. \*\*p-value<0.05, two-tailed paired t-test.

**(D)** Role of ILF3 in PB assembly after arsenite treatment. HeLa cells transfected for 48h with siILF3 or siCTL and were treated with arsenite 30 min before fixation and analysed by immunofluorescence images using anti-EDC4 (upper panel), anti-XRN1(middle panel), or anti-DDX6(lower panel) antibodies to detect PBs. Scale bar 10 μm.

**(E)** Quantification of ILF3 contribution to PB assembly after arsenite treatment. PBs immunostained as described in (D) were counted for each PB marker in n=18 to 34 cells, in 2 independent experiments. n.s: non significative at threshold 0.95, two-tailed paired t-test.

#### Figure 4: Characterisation of LSM14A association to the translation initiation complex.

(A). Translation initiation factors and ribosomal proteins identified by mass spectrometry among LSM14A partners. In the upper panel, dot plot represents MS scores of RNA-independent (y axis) and RNA-dependent (x axis) LSM14A protein partners. mRNA translation factors are plotted in green. eIF3 subunits are labelled in pink and eIF2 subunits in purple. Table in the lower panel recapitulates distribution of 40S and 60S ribosomal proteins scoring above 20, across the MS dataset.

(B) Interaction of endogenous LSM14A with components of the translation initiation complex. Left panel: HEK293 cytoplasmic lysates treated with RNAse or RNAse inhibitor were

immunoprecipitated with anti-LSM14A antibodies and analysed by Western blotting for translation initiation factors eIF3a, eIF4E, LSM14A and the mitochondrial protein COXIV as a negative control. Immunoprecipitation efficiency estimated as described in Materials and methods is indicated below as percent values. **Right panel**: Reciprocal immunoprecipitation was carried out by analysing immunoprecipitation by anti-eIF3a antibody of LSM14A and RPS6 proteins.

**(C)** 2 mg of HEK293 cytoplasmic extracts were treated with RNAse and purified on agarose beads coated either with m<sup>7</sup>GTP or GTP as a control. Purified proteins were analysed by western blotting for LSM14A and DDX6 proteins, canonical cap-binding proteins eIF4E and 4E-T as well as COXIV as a negative control

(D) HEK293 cytoplasmic lysates were separated by ultra-centrifugation on 5-20% sucrose gradients for 2h45min. Upper panel: Absorbance profile of separated lysates was analysed by optical densitometry at 254nm. Middle panel: Proteins were extracted from the collected fractions and abundance of LSM14A, DDX6, RPS6 and 4E-T proteins in each fraction was analysed by Western blot (representative western blots are presented here). Lower panel: Quantification of LSM14A, DDX6, RPS6 and 4E-T distribution along the gradient was achieved by calculating for each protein, the average normalized signal densities associated to each band over n= 2 to 5 independent experiments, as described in Materials and Methods. \*\* p-value < 0.05, two tailed paired t-test comparing fractions sub 40S and 40S.

## Figure 5: Investigating LSM14A partners involved in LSM14A association to the translation initiation complex.

(A) Cytoplasmic lysates from HEK293 cells transfected with si4E-T or siControl were separated by ultra-centrifugation on 5-20% sucrose gradients. Inset shows verification of 4E-T silencing by Western blot analysis 48h post transfection **Upper panels**: Absorbance profile of separated lysates was analysed by optical densitometry at 254nm. **Middle panels**: representative western blots showing abundance of LSM14A and RPS6 proteins in each fraction. **Lower panels**: Quantification of LSM14A and RPS6 distribution along the gradient as described in Figure 4D.

**(B)** HEK293 cells were transfected either with si4E-T or siControl for 48h. Left panel: 4E-T silencing was verified by western blotting and efficiency of 4E-T silencing normalized to RPS6

expression is indicated below as percentages. **Right panel**: Cytosolic lysates from HEK293 cells transfected either with si4E-T or siControl for 48h treated with RNAseA were used for immunoprecipitation by anti-LSM14A antibody. Immunoprecipitates were analysed by Western blotting with eIF3a antibody.

#### Supplemental Figure 1: TAP-tag experimental strategy

(A). Cytoplasmic lysates from HEK293 cells transiently transfected for 48h with a plasmid coding either FLAG-LSM14A-HA, FLAG-LSM14B-HA, FLAG-4E-T-HA or FLAG-HA (control) were lysed in the presence of RNase inhibitor or RNAse. Lysates were immunoprecipitated using FLAG-M2 antibody coupled to magnetic beads. Bound proteins were eluted with M2 peptide, immunoprecipitated using HA-agarose beads and eluted in Laemmli. 9/10<sup>th</sup> of the elution was migrated on a denaturing gel for subsequent mass spectrometry analysis.

**(B).** Protein partners purified by TAP tag were separated using SDS-PAGE, gel was stained with Coomassie blue. Gel was cut in 5 lanes each one corresponding to a sample. These lanes were individually trypsinized and peptides obtained were identified by LC-MS/MS mass spectrometry in the Cambridge Centre for Proteomics.

#### Supplemental Figure 2: Comparison of TAP tag results to proteomes from the literature

(A) Dot graph representing MS scores of DDX6 partners from TAP-tag purification in RNAse (y axis) and RNAse inhibitor (x axis) treated samples according to results published in (Ayache et al., 2015). Orange dots correspond to repressors of translation and red dots to decay & decapping factors. Circles indicate main mRNP complexes related to repression of translation or mRNA decay.

**(B).** Dot plot representing MS scores of LSM14A or 4E-T partners from RNAse treated-lysates and the Fold Change values associated to LSM14A or 4E-T protein partners identified by BioID (*proximity*-dependent biotin identification) approach from (Youn et al., 2018). Blue dots represent significant interactions (FDR < 0,05) in the BioID dataset. Proteins functionally related to either degradation, repression of translation, CCR4-NOT complex, RNA interference or mRNP granules formation are labelled in the indicated colours.

**(C)** Dot plot representing MS scores of 4E-T partners from our TAP tag purification in RNAse conditions (y axis) and MS scores of 4E-T partners from an independent FLAG affinity-purification (Kamenska et al., 2016) (x axis). Orange dots represent top 50 partners in the MS

analysis from Kamenska and colleagues. Repressors of translation are labelled in brown, translation factors in purple and chaperone proteins in green.

#### **Supplemental Figure 3: Protein interactions in untransfected cells**

Protein partners co-immunoprecipitating with endogenous LSM14A (A), LSM14B (B) or 4E-T (C) and related to mRNA decapping (EDC4, EDC3) or repression of translation (4E-T, LSM14A, LSM14B, DDX6). HEK293 cytoplasmic lysates were treated with RNAse or RNAse out prior to immunoprecipitation as indicated. To avoid saturation, only 1/10<sup>th</sup> of the immunoprecipitate was loaded on the gel for LSM14A in (A), LSM14B in (B) and 4E-T in (C). Control: no antibody. Immunoprecipitation efficiency was calculated a described in Materials and Methods and indicated below each signal as percent values. Immunoprecipitations presented in this panel were performed by Michèle Ernoult-Lange.

#### Supplemental Figure 4: Control experiments for experiments described in Figures 3

(A) Verification of ILF3 silencing in HeLa cells 48h after siRNA transfection.

**(B)** Western blot analysis of EDC4, XRN1, LSM14A, LSM14B 4E-T and RPS6 (loading control) expression in HeLa cells, 48h after transfection with siILF3 or siControl.

## Supplemental Figure 5: Investigating LSM14A partners involved in LSM14A association to the translation initiation complex.

(A) Cytoplasmic lysates from HEK293 cells were separated by ultra-centrifugation on 10-50% sucrose gradients for 2h45min. Upper panels: Absorbance profile of separated lysates was analysed by optical densitometry at 254nm. Lower panels: representative western blots showing abundance of LSM14A and RPS6 proteins in each fraction.

(B) Cytoplasmic lysates from HEK293 cells transfected with siLSM14A or siControl were separated by ultra-centrifugation on 5-20% sucrose gradients for 2h45. Inset shows verification of LSM14A silencing by Western blot analysis 48h post transfection. Upper panels : Absorbance profiles of separated lysates was analysed by optical densitometry at 254nm. Middle panels: Representative western blots showing abundance of DDX6 and RPS6 proteins in each fraction. Lower panels Quantification of DDX6 and RPS6 distribution along the gradients was performed as described in Figure 4D.

(C). Cytoplasmic lysates from HEK293 cells transfected with siDDX6 or siControl were separated by ultra-centrifugation on 5-20% sucrose gradients for 2h45. Inset shows verification of DDX6 silencing by Western blot analysis 48h post transfection **Upper panels**: Absorbance profile of separated lysates was analysed by optical densitometry at 254nm. **Lower panels**: western blot showing abundance of LSM14A and RPS6 proteins in each fraction.

#### Supplemental Table 1 Mass spectrometry results

Table of mass spectrometry data (filtering details are described in Materials & Methods section), indicating for each identified protein normalized spectrum count (hereafter referred to as MS scores) and number of exclusive unique peptides from which proteins were identified.

#### Supplemental Table 2 Quantitative expression of relevant proteins

Expression relative to either LSM14A, LSM14B or 4E-T of several proteins relevant regarding our analysis was calculated from the quantitative proteomic analysis of human HeLa cells performed by Nagaraj and colleagues (Nagaraj et al., 2011).

#### Discussion

### 1) Mass spectrometry analysis of LSM14A LSM14B and 4E-T proteome highlights repressive complexes rather than degradation complexes

In order to better understand the mechanism of PB assembly, we undertook tandem-affinity purification coupled to high-resolution mass spectrometry identification of LSM14A, LSM14B and 4E-T protein partners. Characterization of LSM14A LSM14B and 4E-T interactome in human epithelial found DDX6 and the other components of the CPEB-like complex among top interacting partners, which was expected from studies on this complex in Xenopus (Minshall et al., 2007) and human cells (Ayache et al., 2015). However, while we previously showed that DDX6 was equally distributed between the decapping and the CPEB-like complex (Ayache et al., 2015), we did not detect any components of the decapping complex except for EDC3 in LSM14B and 4E-T interactomes. Concerning LSM14A, this is in contradiction with results from another approach that found all decapping activators interacting with LSM14A (Youn et al., 2018). Indeed, proximity-dependent labelling approach used by Youn and colleagues can detect interactions with higher sensitivity than our TAP-tag purification, hence we hypothesize that absence of decapping factors in our TAP tag might result from the transient nature of these interactions.

In parallel, we found components of several repressive complexes co-purified with LSM14A, LSM14B and 4E-T. These complexes included the FMRP (Fragile-X Mental retardation protein) complex composed of FMR1 and its partners FXR1, FXR2 CYFIP and NUFIP (Bardoni and Mandel, 2002; Bardoni et al., 2006), and the CRD (coding region instability determinant)-mediated complex composed of six RBPs: YBX1, HNRNPU, SYNCRIP, DHX9, IGF2BP1 and ILF3. In agreement with this finding, characterization of recombinant FMRP-TAD (Tandem Agenet Domain) interactors in HEK293 cells identified a hundredth of partners including LSM14A. *In vitro*, the interaction between FMRP and LSM14A is sensitive to mutations of the methyl-binding pocket of FMRP TAD domain and to deletion of RGG/RG motifs in LSM14A, suggesting that methylated RGG motif of LSM14A can mediate the interaction (He and Ge, 2017).

Speculating on how and why LSM14A could contribute to these repressive complexes, a possibility is that LSM14A could bind to mRNA 3' UTR and would therefore enable the

formation of repressive protein complexes with diverse composition. Another possibility would be that LSM14A coats the mRNA possibly with others RBPs hence sequestering mRNA from ribosomes and facilitating mRNA recruitment to RNA granules. Several points support this coating model and include that LSM14A possesses all the features of a multivalent RNA-binding protein: it contains a Lsm domain and two RGG motifs. (Tanaka et al., 2006) as well as PPI motifs (Brandmann et al., 2018). Moreover, LSM14A is more abundant than most of its partners which enables its binding in multiple copies along mRNA. Of note, such a "packaging model" has been described for LSM14A partner's, FMRP (Ivanyi-Nagy et al., 2005). An interesting prospect would be to assess whether and how these two RBP coordinate to regulate translation.

# 2) Comparison of PB assembly factors proteome reveals new candidates for PB formation

Liquid-liquid phase separation (LLPS), which is the physical principle currently thought to underly P-bodies assembly, is mainly mediated through multivalent interactions of RNAbinding proteins composed of structured folded domains, modular RNA-binding domains and disordered regions associating with mRNA molecules (Banani et al., 2017; Brangwynne et al., 2009). In human cells, three multivalent RBPs, DDX6, LSM14A and 4E-T, are able to interact one with another and have in common to be indispensable for PB assembly. Also, they are at the crossroad of several post-transcriptional regulation pathways including RNA-interference, general and targeted repression of translation, general and targeted mRNA decay whose molecular components are also found in PBs. The question is then how can contribution of DDX6, LSM14A and 4E-T to several translationally repressed mRNPs contribute to their concentration in supramolecular aggregates like PBs? In line with this question, two main scenari can be distinguished. On the one hand, DDX6, LSM14A, 4E-T possibly together with others yet unknown partners could form a nucleating PB complex to which other repressed mRNP complexes would aggregate to form PBs. On the other hand, contribution of DDX6 LSM14A and 4E-T to PB assembly could rely on their ability to achieve complete repression of translation of a large amount of transcripts possibly via different repression pathways and which would allow these mRNAs to condense into PBs.

To progress on this issue, we first tried to find other indispensable PB assembly factors by crossing proteomes of DDX6, LSM14A and 4E-T with PB proteome. Doing so we identified proteins of the CPEB-like complex which corroborates its central role in PB formation in epithelial cell lines (Ayache et al., 2015). Several other candidates emerged from this approach and included three RBPs related to mRNA metabolism: ILF3, DHX9 and HNRNPU, two ribosomal proteins RPS3 and RPS4X and three mitochondrial proteins ATAD3, SLC25A5 and SLC25A6. Looking for these proteins in a contaminant repository database for affinity purification mass spectrometry data (Mellacheruvu et al., 2013) did not find them among common contaminants suggesting that these proteins are not classical contaminant and could have a plausible biological importance with regards to PB formation.

Concerning the two ribosomal proteins, RPS3 and RPS4X, it is at first difficult to understand how ribosomal proteins could assemble PBs while the translation machinery is massively excluded from PBs and that repression of translation seems a prerequisite for PB recruitment. Yet in yeast, RPS3 has the particularity to be located at mRNA entry channel of the 40S subunit where it contacts mRNA (Dong et al., 2017). Moreover, RPS3 has been functionally characterized to act in a coordinated fashion with eIF3 to control translation termination (Poncová et al., 2019). However, if these proteins can bind mRNA in context of the ribosome, it is not known whether this happens with free cytosolic ribosomal RPS3 and RPS4X which would be a prerequisite for their involvement in PB assembly.

The three mitochondrial proteins ATAD3, SLC25A5 and SLC25A6 also present in our list of potential PB assembly factors have in common to be encoded by the nuclear genome, synthesized by cytoplasmic ribosomes and imported from cytosol to the inner mitochondria membrane (Ogunbona and Claypool, 2019; Pfanner et al., 2019), where they play a central role in the regulation of ATP production (Willis et al., 2018). Several studies based on RNA interactome capture <sup>6</sup> unvealed RNA-binding activities in proteins lacking classical RBD nor a predicted IDR like metabolic enzymes (Baltz et al., 2012; Castello et al., 2012, 2015). In agreement with these experiments it is possible that ATAD3, SLC25A5 and SLC25A6 are also

<sup>&</sup>lt;sup>6</sup> In RNA interactome capture, protein-RNA interactions are crosslinked by applying ultraviolet (UV) light to cultured cells which induces short-lived free radicals at the nucleotide base that can attack amino acids in close proximity. Because proteins do not efficiently absorb UV light at these wavelengths, protein-protein cross-linking is not detectable. After irradiation, stringent purification of polyadenylated (poly(A)) RNA is performed under denaturing conditions. Finally, co purified cross-linked proteins are identified by quantitative mass spectrometry (Hentze et al., 2018).

bifunctional and have a post-transcriptional regulative activity. Yet we noted that these proteins were absent from a recent RNA interactome performed in HEK293 (Trendel et al., 2019). Moreover, such an activity would require that a fraction of these proteins is not imported in mitochondria and can effectively be located to PB which remains to be demonstrated.

Coming to the 3 other candidates ILF3, DHX9, HNRNPU, we noted that these three RBP contain arginine/glycine (RGG) rich domains methylated by PRMT1 (Kiledjian and Dreyfuss, 1992; Lee and Pelletier, 2016; Tang et al., 2000). RGG domains are intrinsically disordered RNA binding domains commonly found in eucaryotes (Chong et al., 2018; Järvelin et al., 2016). Due to their disordered nature, they display a conformational plasticity and adaptability in the absence of RNA that may facilitate targeting to a variety of RNAs. Moreover, RGG domains enhance the binding affinity of other RNA Binding motifs *in vitro* which is known as an "avidity effect" (Ozdilek et al., 2017). Several RGG containing proteins including hnRNPs can self-assemble into large RNA-rich granules *in vitro* (Lin et al., 2015b; Patel et al., 2015). *In vivo*, methylation of LSM14A by PRMT1 is required for LSM14A localization to PBs. Thus, an engaging prospect would be to further assess importance of these RGG domains as well as the influence of post-translational modifications by methylation on PB formation *in vivo*.

Since localization of ILF3 to PBs had previously been confirmed by immunofluorescence we focused on the role of this protein in PB maintenance and assembly. We showed that ILF3 silencing decreased the number of PBs of 40% without affecting expression of indispensable PB assembly factors DDX6 LSM14A and 4E-T levels nor the expression of PB proteins XRN1 and EDC4 we demonstrated that ILF3 contributes to PB maintenance. Moreover, we showed that ILF3 had no influence on PB de novo assembly following arsenite treatment indicating that ILF3 is not involved in PB formation. Similar behaviour was observed for other PB proteins such as PAT1B (Ayache et al., 2015).

Concerning the possible mechanisms by which ILF3 can contribute to PB maintenance, several features of ILF3 are to be considered. First, ILF3 is a RBP associated to RNA by two RNA binding motifs (Parrott et al., 2007) plus an recently identified RBM UUUUUGAGA (Dotu et al., 2018).Additionally, ILF3 has a large number of cellular targets (2849 targets) as identified by CLIP approach in the CLIP dataset from POSTAR2 database (Zhu et al., 2019). Thus, it would be

possible that ILF3 contributes to PB maintenance by simultaneously targeting a large number of mRNAs there. This hypothesis could be investigated further on by comparing ILF3 CLIP results with our PB transcriptome.

#### 3) LSM14A is present in a subcomplex at the initiation complex

Unexpectedly, mass spectrometry analysis unveiled interaction of LSM14A with several components of the translation machinery including ribosomal proteins from the small subunit and translation initiation factors which at first glance seems to contradict a function of LSM14A in repression of mRNA translation or mRNA decay. Aiming to confirm those interactions in vivo, we found that a fraction of LSM14A co-immunoprecipitated with eIF3a, eIF4E and RPS6. However, we did not find that LSM14A co-immunoprecipitated with eIF4G as it has been shown in *S.cerevisiae* from *in vitro* experiments (Rajyaguru et al., 2012b). Among the possible explanations, we can speculate either that endogenous eIF4G is not abundant enough and/or that the fraction of eIF4G interacting with LSM14A is too weak to be detected by a co immunoprecipitation approach. Though, similar co immunoprecipitation technique was successful at detecting interaction in yeast. We therefore speculate that mechanism of interaction of LSM14A with the initiation complex is different between yeast and human .Interestingly, we noted from polysome gradient approach that LSM14A association to 40S could depend on 4E-T which is absent in yeast and binds to the same eIF4E as eIF4G in metazoans (Peter et al., 2015). A tempting hypothesis would be that 4E-T targets eIF4E and could subsequently accommodate LSM14A bound to the 43S before its binding to mRNA, thus strengthening the repressive mechanism by affecting different stages of translation initiation: eIF4F assembly and 48S formation. (Figure 6)



Figure 6 Model of translation initiation control by LSM14A and 4E-T

Interaction of 4E-T with eIF4E prevents formation of eIF4F complex (1) while interaction of LSM14A with 43S prevents its assembly on mRNA (2) thus strengthening repression of the initiation step.

In order to test this hypothesis experiments are in progress at the laboratory. I intend to assess whether recombinant LSM14A proteins deleted for either 4E-T interacting domain or for the RGG motif can be immunoprecipitated together with 4E-T and eIF3a with the same efficiency as full length LSM14A.

#### **Materials and methods**

#### Plasmids, Cell culture and transfection

Human embryonic kidney HEK293 and epithelioid carcinoma HeLa cells were cultivated in DMEM (Dulbecco's Modified Eagle's Medium)-glutamax (Invitrogen<sup>™</sup>) supplemented with 10% (v/v) fetal calf serum and 100U.mL<sup>-1</sup> penicillin/streptomycin, at 37°C, 5% CO2.

For PB induction, arsenite 0.5 mM was added to the culture medium for 30 min at 37°C.

For tandem-affinity purification, HEK293 cells were transfected with 45 µg plasmid DNA per 150-mm-diameter dish using a standard calcium phosphate procedure. Human 4E-T, LSM14A open reading frame (ORF) were subcloned into pcDNA3-FLAG vector (BamHI/NotI restriction sites). The HA tag was then introduced downstream and in-frame with DDX6 ORF, using the In-Fusion Advantage PCR cloning kit (Clontech). LSM14B ORF was subcloned into a pcDNA3-FLAG vector with a PSV40 promotor.

For siRNA reverse transfection, cells were transfected with 1.5  $\mu$ g siRNA per 35-mm-diameter dish using Lullaby (*OZ Biosciences*) according to the manufacturer's protocol. 48 h after transfection, cells were fixed in MetOH for immunofluorescence analysis or scrapped for subsequent protein extraction.

| siRNA     | Sequence (5'->3')           |
|-----------|-----------------------------|
| si4E-T    | (AGACUCUUCUCCCACUACA)TT     |
| siDDX6    | (GGAACUA MGAAGACUUAAATT)TTT |
| siLSM14A  | (UCA MGGUCC MGAACAU MGA)TT  |
| siLSM14B  | (CUAC MGAAG MGGCGCAUAA)TT   |
| siILF3    | (GAAGUAU MGAUAACACCAA)TT    |
| siControl | (UAA MGUAU MGGAACGCAUA) TT  |

Following oligonucleotides were used for reverse transfection:

#### Immunofluorescence

Cells grown on glass coverslips were fixed in MetOH for 3 min at -20°C. After rehydration in PBS, cells were incubated with the primary antibody for 1h, rinsed with PBS, incubated with

the fluorochrome-conjugated secondary antibody for 45 min, and stained with DAPI, all steps being performed at room temperature. Slides were mounted in Citifluor (Citifluor). Microscopy was performed on a Leica DMR microscope using a 63 × 1.32 oil-immersion objective. Photographs were taken using a Micromax CCD camera (Princeton Scientific Instruments, Monmouth Junction, NJ) driven by MetaMorph software (Molecular Devices, Sunnyvale, CA). Images were processed with the open bioimage informatics software Icy (http://icy.bioimageanalysis.org; de Chaumont et al., 2012 ►). P-bodies were counted manually.

#### Western blot

Proteins were separated on a NuPage 4–12% gel (Invitrogen, Life Technologies) and transferred to a nitrocellulose membrane (Perkin Elmer). After blocking in PBS containing 5% non-fat dry milk (wt/vol) for 30 min at room temperature, the membrane was incubated with the primary antibody over night at 4°C, rinsed in PBS, blocked again in PBS-milk for 30 min and incubated with HRP (HorseRadish Peroxidase)–conjugated secondary antibody for 1 h at room temperature. After 3 washing steps in PBS, immune complexes were detected using the Supersignal West Pico Chemiluminescent Signal kit (Pierce, Life Technologies) and visualized by exposure to CL-XPosure film (Pierce).

Following primary antibodies were used for western blot and immunofluorescence analysis:

| antigen | species | type           | source                       | dilution IF | dilution WB |
|---------|---------|----------------|------------------------------|-------------|-------------|
| COX IV  | mouse   | monoclonal     | Life<br>Technology<br>A21348 |             | 1/500       |
| 4E-T    | goat    | polyclonal     | Abcam<br>ab6034              | 1/250       | 1/400       |
| 4E-T    | rabbit  | polyclonal     | Abcam<br>ab95030<br>(1mg/ml) |             | 1/2500      |
| GFP     | mouse   | Monoclonal JL8 | Clontech                     |             | 1/1000      |
| EDC4    | mouse   | monoclonal     | Santa Cruz<br>sc-8416        | 1/1000      | 1/3000      |

| elF3a      | mouse  | Monoclonal         | Santa Cruz<br>sc-9976         |        | 1/1000  |
|------------|--------|--------------------|-------------------------------|--------|---------|
| eIF4E (P2) | mouse  | monoclonal         | Santa Cruz<br>sc-365789       |        | 1/1000  |
| elF4G1     | mouse  | monoclonal         | Santa Cruz<br>sc-373892       |        | 1/1000  |
| Flag HA    | mouse  | monoclonal clone 7 | Sigma<br>H3663                | 1/1000 | 1/4000  |
| LSM14A     | rabbit | polyclonal         | Millipore<br>ABE37            | 1/1000 | 1/5000  |
| LSM14A     | rabbit | polyclonal         | Bethyl<br>A305-102A           | 1/1000 | 1/5000  |
| LSM14B     | rabbit | polyclonal         | Sigma<br>HPA041274            | 1/300  | 1/1000  |
| Flag M2    | mouse  | monoclonal         | Sigma<br><u>F3165</u>         | 1/1000 | 1/4000  |
| DDX6 (D2)  | rabbit | polyclonal         | Bethyl<br>BL2142              | 1/2000 | 1/15000 |
| RPS6       | rabbit | polyclonal         | Cell<br>signaling ref<br>2217 |        | 1/5000  |
| XRN1       | mouse  | monoclonal         | Sigma sc-<br>165985           | 1/250  | 1/1000  |

Secondary antibodies Goat Anti-Mouse IgG coupled to horseradish-peroxidase (Jackson ImmunoResearch, 115-035-003) or Goat Anti rabbit IgG coupled to Horseradish peroxidase (Jackson ImmunoResearch, 111-035-144) were used in a 1/10000 dilution.

#### Immunoprecipitation

Cytoplasmic proteins were extracted as described previously (Ernoult-Lange et al., 2008  $\blacktriangleright$ ) from HEK293 cytoplasmic lysates. For immunoprecipitations, HEK293 cytoplasmic protein extracts were incubated at 4°C for 1 h with antibodies according to the following proportions in lysis buffer supplemented with either 65 U/ml RNaseOut recombinant ribonuclease inhibitor (Promega) or 20 µg/ml RNAse A (Euromedex).

| Antibody             | Antibody      | HEK293 cytoplasmic |
|----------------------|---------------|--------------------|
|                      | quantity (µg) | extract (mg)       |
| Anti DDX6            | 1             | 3                  |
| Anti LSM14A (Bethyl) | 5             | 4.5                |

| Anti LSM14B | 3 | 1.5 |
|-------------|---|-----|
| Anti elF3a3 | 5 | 4.5 |
| Anti 4-ET   | 4 | 2.5 |

Twenty-five microliters of Dynabeads protein A magnetic beads (Life Technologies) was added per sample. After 2h at 4°C with constant rotation, beads were washed three times in 500 µL lysis buffer. Associated proteins were eluted in 30µL Laemmli 1.5X and separated by SDS PAGE along with 30 µg cytoplasmic lysate as input. Fraction of each protein immunoprecipitated was estimated from OD profiles established from scanned X-ray films using Gel Analyse plugin of ImageJ software (ImageJ, Fiji, version 2.0.0-rc-49/1.51e, <u>https://fiji.sc/</u>), standardized for the amount of input and immunoprecipitated proteins loaded on the gel, and expressed as a percentage of protein immunoprecipitated by the antibody used in the same experiment.

#### Tandem-affinity purification and mass spectrometry

HEK293 cells were lysed in a NET buffer containing 50 mM Tris-HCl (pH 7.4), 150 mM NaCl, 1 mM EDTA, 1mM EGTA, 0.5% NP-40, and 1 mM dithiothreitol (DTT), supplemented with a protease inhibitor cocktail without EDTA (Roche Diagnostic), for 30 min on ice, in the presence of either 65 U/ml RNaseOut recombinant ribonuclease inhibitor (Promega) or 20 µg/ml RNAse A (Euromedex). Nuclei and cytoplasm were separated by centrifugation at 500g for 5 min at 4°C. Cytoplasmic proteins were quantified by Coomassie protein assay (Thermo Scientific). 35 mg of proteins were mixed with 150 µL of anti-FLAG M2 Magnet resin (Sigma) for 2 h at 4°C. After beads were washed in the lysis buffer lacking NP-40, bound complexes were eluted twice in 5mL of lysis buffer supplemented with 250  $\mu$ g/ml M2 peptide (Sigma-Aldrich) for 30 min at 4°C with constant rotation. Complexes were then incubated overnight with 120 µl of 50% slurry of the monoclonal anti-HA agarose (Sigma-Aldrich). After beads were washed, bound proteins were eluted in Laemmli 1.5X. One-tenth of each sample was separated on a Nu-PAGE 4%-12% Bis-Tris gel and stained with the Pierce Silver stain kit (Thermo Scientific). The remainder was briefly migrated on a Nu-PAGE 4%-12% Bis-Tris gel and stained with SimplyBlue SafeStain (Life Technologies). Each lane was sliced in 6 bands and processed for liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis in the Cambridge

Center for Proteomics, at the University of Cambridge (UK). A Mascot search algorithm (Matrix Science, London, UK) was used to search against the UniProt human database using a fixed modification of carbamidomethyl (C), a variable modification of oxidation (M), and a peptide tolerance of 25 ppm.

Scaffold proteome software (Scaffold, version4.4.7) was used to calculate normalized total spectra counts and to filter results. For each protein and peptide, False Discovery Rate was calculated by Scaffold using ProteinProphet algorithm based on assigned protein and peptides probabilities. Proteins with FDR < 0.2% and identified from at least 2 peptides with FDR < 0.1% and that did not correspond to common contaminants such as keratins, immunoglobins and several proteins of cytoskeleton were conserved for subsequent analysis.

#### m<sup>7</sup>GTP affinity chromatography

HEK293 cells were lysed for 30 min on ice with NET buffer supplemented with protease inhibitor, 20  $\mu$ g/ml RNAse A (Euromedex), DTT and 0.1 mM GTP. Lysates were centrifugedfor 15 minutes at 500g. 30  $\mu$ L of m<sup>7</sup>GTP-agarose beads or 30  $\mu$ L of GTP-agarose beads (Jena Bioscience) were incubated with 2mg of cytoplasmic extract for 1h at 4°C with constant rotation. Beads were washed with NET buffer supplemented with GTP 1mM. Associated proteins were eluted in 30 $\mu$ L Laemmli 1.5X and separated by SDS PAGE along with 30  $\mu$ g cytoplasmic lysate as input.

#### **Polysome gradients**

Cells grown to ~80% confluency were rinsed and scrapped in ice-cold PBS supplemented with cycloheximide 100  $\mu$ g/mL. Cell pellets were lysed in ice-cold lysis buffer (20 mM HEPES, pH 7.5, 250 mM KCl, 10 mM MgCl<sub>2</sub>, 5 mM DTT, 1 mM EDTA, 0.5% NP-40), supplemented with protease inhibitors and 65 U/ml of RNaseOut ribonuclease inhibitor (Promega), for 5 min. After centrifugation at 500g, supernatants were layered onto 5-20% or 10–50% sucrose gradients in Beckman centrifuge tubes 331372 and centrifuged at 39,000 rpm for 2h45min at 4°C in a Beckman SW41-Ti rotor. Equivalent volume of the first fraction was removed from the top of the gradient before collecting, and discarded to avoid contamination of following fractions by components that did not enter into the gradient. Optical density at 254 nm was monitored using a density gradient fractionator (Teledyne Isco, Lincoln, NE). For fraction collection, gradients were pushed up with FluorInert with the following settings: pump flow:
30, paper scroll rate: 60 cm.h<sup>-1</sup>, sensitivity 0.2, running 40s/fraction. Collected fractions were precipitated in 2 equivalent volumes of EtOH and freezed overnight at -80°C. Fractions were subsequently centrifuged at 15000 r.p.m for 30min at 4°C. Pellets were rinsed with EtOH 70%, centrifuged at 15000 r.p.m and dried at 37°C for at least 4h. Proteins were resuspended in 15 $\mu$ L Laemmli 1X and denaturated for 5 min at 100°C. Fractions were then pooled into pairs and separated by SDS PAGE.

For quantitation, signals associated to each pooled fraction of a given protein were quantified by densitometry from scanned X-ray films, using Gel Analyze pl µgin of ImageJ software and expressed as a percentage of total signal associated to the protein in the sedimentation profile.

# Part 2: Influence of mRNA GC content on mRNA localization to PBs and on its cytoplasmic post-transcriptional regulations

Analysis presented here details personal contribution to (Courel et al., 2019) (see Annexe).

#### Introduction

Post-transcriptional regulation of gene expression in eukaryotes relies on a balance between translation, storage and mRNA turnover. Some of these steps occur in specific places in the cytoplasm. For instance secreted proteins are locally translated at the surface of the endoplasmic reticulum (ER), which enables nascent peptides to translocate through the ER membrane and enter into the endomembrane system to be secreted (Aviram and Schuldiner, 2017). As another example, mRNAs excluded from the translation machinery transiently concentrate in mRNP granules called P-bodies (PBs). Recent purification of these granules by FAPS (Fluorescent Activated Particle Sorting) in human cells revealed that they store one third of the coding transcriptome with a striking prevalence of AU-rich transcripts, and hundreds of proteins among which a majority of RBPs, mainly involved in general and targeted repression of translation pathways including the miRNA pathway (Hubstenberger et al., 2017). Three of these proteins: LSM14A, the RNA helicase DDX6 and repressor of translation 4E-T, are of particular interest with regards to cytoplasmic post-transcriptional regulations. While in yeast these three factors are dispensable to form PBs, they are essential to PB assembly in human cells. Indeed, absence of one of these factors leads to PB disassembly and prevents their reinduction. (Ayache et al., 2015; Brandmann et al., 2018; Kamenska et al., 2016).

DDX6 is an abundant cytoplasmic protein, highly concentrated in PBs and able to bind singlestranded RNA molecules with high affinity and no sequence specificity *in vitro* (Ernoult-Lange et al., 2012). In yeast, its deletion results in the accumulation of full-length deadenylated mRNAs and leads to strong defects in mRNA decapping (Coller and Parker, 2005). Moreover, DDX6 specifically targets mRNAs containing suboptimal codons to decay (Presnyak et al., 2015). Recent transcriptome analysis in *patl1*Δ, *lsm1*Δ, *dhh1*Δ or *dcp2*Δ yeast strains found that rather than being global activators of decapping, Pat1, Lsm1, and Dhh1 directly regulate specific subsets of mRNAs and have suggested that Dhh1 and Pat1/Lsm1-7 respectively form a distinct decapping complex (He et al. 2018). Once the cap cleaved by Dcp1/2, mRNAs are decayed by the 5'-3' exonuclease Xrn1. Yet, Xrn1 can also act co-translationally (Heck and Wilusz, 2018; Hu et al., 2009) and Dhh1 is thought to couple translation and mRNA stability by sensing elongation rates (Radhakrishnan and Green, 2016). In mammalian cells as in yeast, DDX6 interacts with the enhancers of decapping DCP1/2, EDC3, PAT1B and the LSM1-7 heptamer ring (Ayache et al., 2015; Sharif et al., 2013; Vindry et al., 2017; Wu et al., 2014). As a regulator of translation, DDX6 takes part to the repressive CPEB1 complex in Xenopus oocytes (Minshall et al., 2007a) and to a "CPEB-like complex" in human epithelial cells along with LSM14A and 4E-T (Ayache et al., 2015). In Drosophila it is also involved in an SRE (Smaug Recognition Element)-dependent repressor complex where it oligomerizes along *nos* mRNA in association with Tral (LSM14A) (Amadei et al., 2015; Götze et al., 2017).

DDX6 partner, LSM14A, is also conserved from yeast to human (Marnef et al., 2009). Its yeast homolog Scd6 enhances decapping (Coller and Parker, 2005) and represses translation *in vitro* by associating to eIF4G *via* its methylated RGG motifs (Rajyaguru et al., 2012). Translational repression activity of LSM14A has been reported by tether assays in Xenopus (Tanaka et al., 2006c), Arabidopsis (Xu and Chua, 2009) and human (Brandmann et al., 2018).

The third PB assembly factor, 4E-T, is a global repressor of translation conserved among vertebrates whose repression mechanism relies on eIF4E-sequestering from the eIF4F complex (Ferraiuolo et al., 2005; Kamenska et al., 2014; Waghray et al., 2015). Yet, tether assays showed that full length 4E-T and a mutated version of 4E-T that cannot bind eIF4E both repress translation in human cells (Kamenska et al., 2014). Similar results were observed for the insect-specific 4E-BP CUP in Drosophila S2 cells (Igreja and Izaurralde, 2011), suggesting that 4E-T can repress translation in an eIF4E-dependent and eIF4E-independent ways. 4E-T also interacts with CNOT1 *via* DDX6 (Ozgur et al., 2015b; Waghray et al., 2015) and directly *via* additional binding sites (Räsch et al., 2020). Its interaction with CNOT1 promotes CCR4-NOT-mediated deadenylation of 4E-T-bound mRNAs, which can subsequently be stored in a repressed form in PBs (Räsch et al., 2020).

Among the selective gene expression silencing pathways, miRNA interference can regulate expression of 60% of the human transcriptome (Friedman et al., 2009). After being processed by DICER enzymes in the cytoplasm, mature miRNAs bind specific mRNA sequences known as

182

MRE (miRNA Responsive Elements), through imperfect base-pairing interactions. Of note, the 5' portion of miRNA sequence from 2-7nt, called the "seed", is particularly important for miRNA recognition of its targets (Bartel, 2018). These base-pairing interactions miRNA/mRNA take place in a miRISC complex (miRNA RNA-Induced Silencing Complex) that also includes one of the 4 AGOs paralogs and TNRC6A or TNRC6B. Depending on the RBPs further recruited by the miRISC complex, miRNA targeted mRNAs can be either translationally repressed and/or degraded (Duchaine and Fabian, 2019) though determinants of these two outcomes remain poorly understood. There has been extensive debates about whether miRNAs primarily inhibit translation or induce destabilization of their mRNA targets (Iwakawa and Tomari, 2015; Jonas and Izaurralde, 2015). Currently, it is quite consensual that translational repression of miRNA targets is either the cause of mRNA destabilization or at least occurs ahead of mRNA decay (Djuranovic et al., 2012; Radhakrishnan and Green, 2016). Among molecular downstream effectors of silencing, DDX6 and 4E-T are thought to play a central role in miRNA-mediated regulations through the CCR4-NOT/ 4E-T/DDX6 complex (Chen et al., 2014b; Kuzuoğlu-Öztürk et al., 2016; Rouya et al., 2014). Moreover, interaction of 4E-T with DDX6 is required to repress translation of a miRNA reporter (Kamenska et al., 2016). Interestingly, in mouse embryonic stem cells where Dgcr8 (DiGeorge syndrome chromosomal region 8, required for miRNA biogenesis) has been inactivated and which consequently lack all mature miRNAs, both inhibition of translation repression and mRNA destabilization of miRNA targets were observed whereas in ESCs inactivated for Ddx6, translation of the same miRNA targets was upregulated without simultaneous changes in mRNA stability (Freimer et al., 2018). These observations suggest that DDX6 is an essential effector for miRNA-driven translational repression, but not mRNA degradation in ESCs. Recently, it was also observed that 4E-T depletion prevented the accumulation of mRNA reporter artificially bound to TNRC6B hence suggesting that 4E-T recruitment protects miRNA targets from decay (Räsch et al., 2020)

In the context of this study, I took advantage of PBs, siDDX6, siDICER, siPAT1B and siXRN1 transcriptomes as well as other datasets including DDX6 and AGO CLIPs, and 4E-T RIP to address the following questions : (1) Which RBP could be responsible for the accumulation of AU-rich mRNAs in PBs considering as relevant candidates the 3 PB assembly factors DDX6, 4E-T and LSM14A; (2) what can be learnt from global localization of miRNA targets in/out PB in regards to relative importance of repression of translation versus decay in the miRNA pathway

?; (3) which other parameters apart from mRNA GC content could influence mRNA localization to PBs?

#### Results

# 1) Nucleotide preference and PB localization of mRNAs bound by PB assembly factors

## mRNAs bound by DDX6 and 4E-T are GC-biased and display opposite PB localization patterns

PBs store a large number of transcripts, more than 1/5<sup>th</sup> of the human transcriptome. Looking for broad determinants of mRNA localization in PBs, we considered mRNA GC content of human PB transcripts. PB localization strongly correlates (Rs= -0.57; p-value < 0.0001) with mRNA GC content, AU-rich transcripts (further defined as transcripts whose GC content is inferior to the median GC content of all HEK293 mRNAs, that is to say 49%) being the most enriched in PBs (Figure 1A, left panel). Moreover, a detailed analysis evidenced that CDS and 3'UTR GC contents similarly contribute to PB enrichment (Rs= -0.57 and Rs= -0.55 respectively; p-value< 0.0001 for both). By contrast, nucleotide composition of 5'UTR seems less influential (Rs= -0.22; p-value< 0.0001) (Figure 1A, right panel). A complementary analysis established that the GC bias of PB mRNAs occurs independently of several parameters including PB mRNA length, mRNA expression, genomic context and gene conservation (Courel et al., 2019). Thus, being AU-rich is a prime determinant of PB mRNAs.

PB formation relies on mRNA recruitment by RBPs and in human, three RBPs, DDX6 LSM14A and 4E-T, were demonstrated to be particularly important for PB *de novo* assembly. To assess whether one of these PB assembly factors may have a nucleotide preference that could account for accumulation of AU-rich transcripts in PBs, we took advantage of DDX6 eCLIP in the human myelogenous leukemia cell line K562, generated from the ENCODE dataset (accession codes ENCSR893EFU, see material and methods for further details ) and 4E-T RIP (Yang et al., 2014b). For the DDX6 eCLIP, we considered transcripts present in our HEK293 transcriptome dataset and with a DDX6 eCLIP enrichment > 1 (n=4555 bound mRNAs). Concerning the 4E-T RIP, as the experiment was performed in mouse E12 cortex cells, we selected mouse transcripts significantly enriched in 4E-T RIP (FC > 1.5) and retained as 4E-T-bound mRNAs, their human homologues expressed in HEK293 cells (n=967 bound mRNAs). For both DDX6 eCLIP and 4E-T RIP datasets, we defined as "non bound mRNAs" all the

transcripts expressed in HEK cells that were not identified as physically associated to either DDX6 or 4E-T (further defined as "bound mRNAs"). We observed that DDX6-bound mRNAs and 4E-T-bound mRNAs display opposite features: while DDX6 preferentially binds GC-rich transcripts, 4E-T associates with AU-rich transcripts (Figure 1A). In terms of cytoplasmic localization, DDX6-clipped mRNAs are mainly excluded from PBs whereas 4E-T-bound mRNAs are particularly enriched in these granules (Figure 1B).

## mRNAs bound by DDX6 and 4E-T are regulated in translation by DDX6 and in stability by PAT1B

DDX6 is a multifunctional protein that plays an evolutionary conserved role in translational repression and activation of mRNA decapping before degradation by XRN1(Carroll et al., 2011; Coller and Parker, 2005; Coller et al., 2001; Ernoult-Lange et al., 2012b; Fenger-Grøn et al., 2005; Minshall and Standart, 2004). Moreover, it is one of 4E-T main protein partners (Kamenska et al., 2016). In order to assess how DDX6 and 4E-T-bound mRNAs are regulated in terms of stability and translation, DDX6 eCLIP and 4E-T RIP datasets were crossed with : transcriptome after siDDX6 in HEK293 cells, transcriptome after siXRN1 in HeLa cells, transcriptome after siPAT1B in HEK293T cells and polysome profiling after siDDX6 in HEK293 cells (see materials and methods for details on these datasets) (Figure 1D). Compared to all mRNAs, transcripts bound by DDX6 are stabilized after DDX6 knockdown while stability of 4E-T-bound transcripts is not affected by DDX6 depletion .In parallel, 4E-T-bound mRNAs are translationally derepressed after DDX6 knockdown which is not the case of DDX6 boundmRNAs. Moreover, we noted that 4E-T-bound mRNAs are only weakly bound by DDX6 (Figure 1E). Overall these observations suggest that DDX6 and 4E-T-bound globally to distinct mRNAs subsets : GC-rich transcripts, excluded from PBs are preferentially targeted by DDX6 and regulated at the level of stability by DDX6, whereas AU-rich transcripts including 4E-T targets are more prone to be regulated at the level of translation by DDX6. Interestingly, we noted that DDX6 and 4E-T targets have opposite stability regulation patterns: DDX6 targets are stabilized after siXRN1 whereas 4E-T targets are destabilized. Conversely 4E-T targets are stabilized after PAT1B knockdown while DDX6 targets are not. This last observation might be consistent with 4E-T binding to the 5' extremity of mRNA and precluding its access to decapping enzymes.

#### LSM14A binds mRNA independently of its CDS GC content

In regards to the third PB assembly factor, LSM14A, we investigated influence of nucleotide composition on LSM14A RNA binding by performing RIP on cytoplasmic lysates from HEK293 cells that transiently co-expressed two versions of Renilla luciferase mRNA : a version with an AU-rich CDS (36 %GC) and a version with a GC-rich CDS (55% GC). To make sure that these reporters could recapitulate behaviour of endogenous transcripts with respect to PB localization, Marianne Bénard analysed their cellular localization by smiFISH (single molecule inexpensive Fluorescent In Situ Hybridation) using probes specific of the AU-rich or the GCrich reporter and concomitantly immuno-stained cells with DDX6 antibody to detect PBs. We observed that the GC-rich reporter is homogeneously distributed throughout cytoplasm and excluded from PBs (Figure 2A, left panel). In comparison, the AU-rich reporter also has a cytoplasmic expression but tend to cluster more often in PBs (Figure 2A, middle panel). Quantification from two independent experiments indicate that around 20% of PBs contain clusters of AU-rich reporter mRNAs (Figure 2A, right panel). These experiments confirmed that CDS GC content is sufficient to influence mRNA localization to PBs in vivo. It also indicates that these reporter mRNAs could be used to assess LSM14A sequence binding preference. To do so, we co-transfected plasmids encoding the 2 versions of Renilla luciferase in HEK293 cells. After 40hrs expression, transfection efficiency was checked by measuring luciferase activity (Supplemental Figure 1A). Then, mRNP complexes associated to LSM14A were immunoprecipitated by an anti-LSM14A antibody from HEK293 cytoplasmic lysates coexpressing both reporter mRNAs. In parallel, mRNP complexes associated to DDX6 were immunoprecipitated by an anti-DDX6 antibody. Immunoprecipitation with IgG was used to control immunoprecipitation specificity. Quantification of the amount of co-precipitated reporter mRNAs by qRT-PCR showed that GC-rich reporter is immunoprecipitated twice as efficiently as AU-rich reporter by DDX6 antibody (Figure 2B). This observation is consistent with the DDX6 eCLIP dataset showing that DDX6 preferentially targets GC-rich transcripts. However, AU-rich and GC-rich reporters were immunoprecipitated with the same efficiency by LSM14A antibody (Figure 2B). Hence, CDS GC content seems not to influence LSM14A association while DDX6 preferentially binds mRNAs with a GC-rich CDS.

In conclusion, out of the three proteins analysed, only 4E-T could be responsible of recruitment of AU-rich transcripts to PBs.

187

# 2) Influence of GC content on PB localization and post-transcriptional regulations of miRNA-targets

mRNAs targeted by miRNAs can be translationally repressed and/or/then degraded (Jakymiw et al., 2005) and these regulations involve DDX6 (Rouya et al., 2014). Moreover in human cells, PBs store repressed mRNAs protected from 5'->3' decay (Hubstenberger et al., 2017) including miRNA targets (Bhattacharyya et al., 2006; Liu et al., 2005; Pillai et al., 2005b). In order to assess if localization of miRNA targets in/out PBs is related to mRNA fate in terms of translational repression versus degradation, we compared GC content and PB localization of mRNAs targeted by the 22 most abundant miRNAs in HEK293 cells (19 from Hafner et al., 2010 and 3 from Patrick Brest quantitation's). Concomitantly, we analysed mRNAs bound to AGO 1,2,3 or 4 identified in CLIP experiments (Yang et al., 2015) and mRNA stabilized after DICER depletion in HEK293 cells (Rybak-Wolf et al., 2014). Compared to all mRNAs, targets of 18 out of the 22 miRNAs analysed are AU-rich, exceptions concerning targets of miR-10b-5p, miR 99a-5p and miR 99b-5p which have the same nucleotide GC content as all mRNAs (Figure 3A). Moreover, miRNA targets are overall enriched in PBs though to different extents, from targets of miR-99-5p which enrichment in PBs does not reach statistical significance to miR 21-5p targets which are the most enriched in PBs (Figure 3B). AGO 1,2, 3 and 4 targets display the same features: they are overall AU-rich (Figure 3A) and enriched in PBs (Figure 3B), though number of AGO4 targets is too small to reach statistical significance. Overall, these results evidence that miRNA targets tend to be AU-rich and accumulate in PBs.

In order to assess how these miRNA-targets are regulated in terms of translation and decay, we looked at their behaviour in siDDX6, siPAT1B, siXRN1 transcriptomes datasets and in DDX6 eCLIP dataset (Figure 3C). Neither stability of AGO 1,3,4 targets is sensible to DDX6 depletion nor are AGO 1,3,4 targets directly bound by DDX6. However, AGO2 targets are slightly bound by DDX6 and regulated in stability by this protein. Conversely, translation rate of AGOs targets is DDX6-dependant. Finally, AGO targets display opposite behaviour in XRN1 and PAT1B transcriptomes: they are destabilized after XRN1 depletion but stabilized after PAT1B knockdown (Figure 3C). We concluded from these results that AGO targets which reflects behaviour of miRNA targeted mRNAs, are regulated like other mRNAs enriched in PBs: DDX6

regulates their translation but not their stability except for AGO2 targets and PAT1B regulates their stability.

In parallel, we observed that mRNAs whose stability was enhanced following DICER depletion tend to be also stabilized after DROSHA silencing (Rp=0.44, p-value < 0.0001) (Supplemental Figure 2A), which suggests that mRNAs upregulated after siDICER are miRNA-regulated mRNAs and not passive DICER mRNA targets Transcripts upregulated after siDICER are slightly more GC-rich (Figure 3A) and less enriched in PBs compared to all transcripts (Figure 3B). Moreover, transcripts upregulated after siDICER are targeted by DDX6, stabilised after siDDX6 and after XRN1 silencing but are neither translationally upregulated following DDX6 depletion nor stabilised after PAT1B silencing (Figure 3C). Yet, magnitude of the observed effects is very weak (for instance mRNAs stabilized after siDICER are less than 1 point more GC-rich than all mRNAs) which makes interpretation of these results difficult.

Investigating whether the observed effects may depend on the miRNA itself, we noticed that median %GC content of miRNAs strongly correlates with median %GC content of their targets (Rp = 0.74, p-value < 0.0001) (Figure 4A). Moreover, the more AU-rich is the miRNA, the more its targets are enriched in PBs (Figure 4B). Thus, AU-rich miRNAs tended to target mRNAs themselves AU-rich and enriched in PBs and effect intensity seems proportional to the miRNA GC content. Because miRNAs bind their targets via Watson-Crick base-pairing where the miRNA seed sequence is particularly important for target selection, we wondered whether the correlation would be stronger when considering GC content of the seed sequence instead of the miRNA median GC content. Actually, it is not the case : correlation between GC content of the seed and GC content of the miRNA targets is weaker than between miRNAs and targets GC contents, presumably because the very short length of the seed sequence allows a limited number of seed GC content values (Figure 4C). Though, identical slopes (Figure 4A and Figure 4C) suggest similar influences of the miRNA GC content or GC content of the seed sequence with regards to miRNA targets GC content. However, pairwise correlations between GC contents of the miRNA seed and 3'UTR of miRNA targets is stronger than between GC contents of miRNA seed and CDS of miRNA targets. We also noted that median length of targets 3'UTR is not significantly different compared to other variables (Figure 4D). These observations indicate that 3'UTR GC content of the miRNA target is an important determinant of their post transcriptional regulation by miRNAs.

To assess whether miRNA GC content also affected post-transcriptional regulations we analysed behaviour of the 3 most AU-rich miRNAs (let7f, miR-101-3p, miR-301-3p) and the 3 most GC-rich miRNAs (miR 92a-3p, miR-24a-3p and miR-99b-5p) in the different silencing datasets (Figure 4E). Compared to all mRNAs, targets of the 6 miRNAs are not stabilized following DDX6 silencing except for miR-99b-5p nor bound by DDX6. Also, targets of the 6 miRNAs are destabilized after XRN1 silencing. In contrast, targets of the three most AU-rich miRNAs are up-translated after siDDX6 depletion while translation of the 3 most GC rich miRNA is unaffected by DDX6 silencing. mRNA targets of AU-rich miRNAs are also slightly more stabilized after PAT1B silencing than targets of GC-rich miRNAs. Thus, targets of AU-rich miRNAs recapitulate overall regulations of AU-rich mRNAs enriched in PBs: they are regulated in translation by DDX6 and in stability by PAT1B. Hence, miRNA GC bias contributes to orientate miRNA targets fate in terms of PB localization and regulations by general posttranscriptional factors DDX6, XRN1 and PAT1B.

#### 3) Localization of AU-rich mRNAs transcripts

GC content is a parameter strongly correlated with mRNA localization to PBs. Indeed, distribution of HEK293 transcripts according to their GC content evidenced that 61% of AUrich mRNAs selectively accumulate in PBs (Figure 5A). To investigate other determinants of mRNA localization, we considered the AU-rich transcripts excluded from PBs and compared them to all AU-rich mRNAs in a Gene Ontology overrepresentation test using the Cellular Component categories. Noteworthily, AU-rich transcripts excluded from PBs are enriched in transcripts coding proteins related to membranous organelles, such as mitochondria, ER, lysosomes, secretory granules, and to ribosomes (Figure 5B). According to the PB purification protocol, PBs were sorted from a cytoplasmic lysate centrifuged at 10000g hence containing organelle-and that was further used as a reference for PB enrichment analysis (Hubstenberger et al., 2017). This observation suggests that to be recruited to PBs, a given mRNA should be preferentially AU-rich and not be retained on membranous organelles and/or on ribosomes.

### Figures





в.



c.







## Figure 2

Α.



в.



Figure 3

Α.













miR-19b-3p



D.

| miRNA       | number of targets | CLIP    | Number of |
|-------------|-------------------|---------|-----------|
| miR-24-3p   | 758               |         | targets   |
| miR-10b-5p  | 280               | AGO1    | 1018      |
| miR-99a-5p  | 121               |         |           |
| miR-21-5p   | 553               | AGO2    | 413       |
| miR-93-5p   | 1096              | 0.2.2.2 | 1000000   |
| let-7a-5p   | 576               | AGO3    | 977       |
| miR-19a-3p  | 524               | AGO4    | 96        |
| miR-10a-3p  | 59                |         |           |
| miR-17-5p   | 1041              | RNAseq  | Number    |
| miR-20a-5p  | 956               |         | mRNAs     |
| let-7f-5p   | 355               |         |           |
| miR-92a-3p  | 1261              | siDICER | 9209      |
| miR-30e-5p  | 321               | (all)   |           |
| miR-186-5p  | 659               | CIDICER | 4552      |
| miR-101-3p  | 356               | SIDICER | 4552      |
| miR-301a-3p | 358               |         |           |
| miR-18a-5p  | 237               |         |           |
| miR-106b-5p | 913               |         |           |
| miR-16-5p   | 1399              |         |           |
| miR-25-3p   | 455               |         |           |
| miR-99b-5p  | 49                |         |           |

| 1 |  |  |
|---|--|--|
|   |  |  |
|   |  |  |

Figure 4

### Α.

Β.











Ε.









## **Supplemental Figure 1**



## **Supplemental Figure 2**



#### **Figure Legends**

## Figure 1: PB localization and post-transcriptional regulations of DDX6 and 4E-T-bound mRNAs

(A). GC content of mRNAs and PB localization in human cells. Transcripts expressed in HEK293 (n=14490) were subdivided into six to seven classes according to their mRNA GC content (from < 40% to >60%). Boxplots show mRNA enrichment in PBs according to either mRNA, 5'UTR, CDS or 3'UTR mRNA %GC content in HEK293 transcriptome. Boxes represent the 25-75 percentile and whiskers the [min-max] interval. Median of each class is indicated by horizontal bar inside boxes. Red dashes indicate median of the 14490 transcripts ("all mRNAs") analysed. Median %GC content of the whole dataset is indicated into brackets. Rs: Spearman correlation coefficient.

(B). GC bias and PB enrichment of DDX6 and 4E-T-bound mRNAs. Boxplots show enrichment in PB transcriptome dataset and mRNA %GC content of DDX6 (n=4555, pink boxes), 4E-T (n= 967, green boxes) targets from CLIP and RIP experiments (see material and methods for datasets details). For comparison, all mRNAs (n=14490), DDX6 non-bound (n=9935) and 4E-T non-bound (n=13523) are represented in grey. Red dashes indicate median of all mRNAs. Median of each class was compared to all mRNAs and statistical significance assessed by two-tail Mann-Whitney test. n.s: non significative. \*\*: p-value < 0.0001. \*: 0.0001</p>

**(C). Detail of nucleotide composition of DDX6 and 4E-T-bound mRNAs**. Boxplots show GC content of 5'UTR, CDS, and 3'UTR sequences of DDX6 or 4E-T-bound mRNAs. Analysis is similar to Figure 1B.

(D). Translational regulation by DDX6 and regulation in stability by DDX6, XRN1 and PAT1B of DDX6 and 4E-T-bound mRNAs. Boxplots show behaviour of DDX6 and 4E-T-bound mRNAs in the following transcriptomes datasets: siDDX6 (polysome profiling), siDDX6, siXRN1 and siPAT1B. Analysis is similar to Figure 1B.

**(E). Influence of 4E-T on DDX6 RNA binding.** Boxplots show behaviour of DDX6 and 4E-T-bound mRNAs in DDX6 CLIP dataset. Analysis is similar to Figure 1B.

Figure 2: Influence of nucleotide composition on LSM14A and DDX6 RNA-binding

201

(A). Preferential localization of AU-rich reporter mRNA in PBs. HEK293 cells were transfected with the GC-rich (left panel) or the AU-rich (middle panel) Renilla luciferase reporter construct. After 24hr, cells were analysed by smiFISH to localize GC or AU probe sets (red) and simultaneously by immunofluorescence with anti-DDX6 antibody (blue) to localize PBs White arrows indicate zoomed area. Scale bar: 5µm. Quantifications (right panel) indicate percentage of PBs containing clusters of Renilla luciferase mRNA in two independent experiments (#1, #2). Experience #1: 32 PBs were counted from 19 cells; Experience #2: 83 PBs counted from 41 cells.

(B). Comparison of DDX6 and LSM14A nucleotide preference. RNA-immunoprecipitation from HEK293 cytoplasmic lysates co-transfected or not with both AU-rich and GC rich Renilla luciferase reporter constructs was performed using antibodies against LSM14A or DDX6, or IgG as a negative control. In each immunoprecipitate, respective amounts of AU-rich and GC-rich Renilla luciferase reporters were quantified by qRT-PCR in two independent experiments. Enrichment was calculated comparatively to the amount of reporter mRNA extracted from 5% of the input used for the immunoprecipitation (see material and methods).

#### Figure 3: GC bias, PB enrichment and post-transcriptional regulations of miRNA targets

(A). GC content of human miRNA targets. Boxplot graphs show mRNA %GC content distribution of mRNAs targeted by the 22 most abundantly expressed miRNAs in HEK293, of AGO1-4 targets and of all and up-regulated transcripts following DICER depletion by RNA interference. For comparison we used transcripts from the PB transcriptome ("all mRNA", n = 14490). Analysis is performed similarly to Figure 1B.

**(B). Storage in PBs of human miRNA targets**. Boxplot graphs show PB enrichment of miRNA targets, AGO1-4 targets, all and upregulated mRNAs from the siDICER transcriptome. Analysis is performed similarly to Figure 1B.

(C) Regulation in translation by DDX6 and in stability by DDX6, XRN1 and PAT1B of AGO 1,2,3,4 and DICER mRNA targets. Boxplot graphs show regulation in translation by DDX6, regulation in stability by PAT1B, XRN1, DDX6, and direct binding by DDX6 of AGO1-4 targets and of transcripts up-regulated following DICER silencing. Analysis is similar to Figure 1B.

**(D)** Analysed mRNAs targeted by the miRNA pathway. Table recapitulating number of transcripts analysed in each dataset.

#### Figure 4: Effect of miRNA nucleotide composition on miRNA activity

**(A).** Dot plot graph showing median GC content of miRNA targets according to miRNA GC content. The 3 most AU-rich miRNAs are in blue and the 3 most-GC-rich miRNAs in orange. Rp : Pearson correlation coefficient.

**(B).** Dot plot graph showing enrichment in PBs of miRNA targets according to miRNA GC content.

(C). Dot plot graph showing GC content of miRNA targets according to miRNA seed GC content.

**(D).** Correlogram representing pairwise Spearman correlations between GC content of the 22 most abundantly expressed miRNAs, GC content of miRNA seed, median GC content of mRNA, CDS or UTRs of the targets of the 22 miRNAs and 3'UTR length of the targets. Statistically significant correlations (confidence interval 0.95) are written in white.

**(E).** Boxplot graphs showing regulation at the translation level by DDX6, regulation in stability by PAT1B, XRN1, DDX6, DICER and direct binding by DDX6 of the 3 most AU-rich miRNAs and the 3 most-GC-rich miRNAs. Analysis is similar to Figure 1B.

#### Figure 5: Concurrent cytoplasmic localizations of AU-rich mRNAs

**(A).** Distribution of all mRNAs (n=14490), mRNAs enriched in PBs ("PB-in", n= 5380), mRNAs excluded from PBs ("PB out", n=5014) according to their GC content binned by 0.7 % GC increment. Blue pointed line is drawn at GC= 49.1%. Median %GC content are indicated in brackets below each group.

(B). Volcano plot recapitulating Gene Ontology overrepresentation-test. Complete categories of Gene Ontology cellular components were used to compare PB-excluded and AU-rich mRNAs (%GC < 49.1 % and FC PB > 1, 579 mRNAs annotated) to all AU-rich mRNAs (%GC < 49.1%, 7164 mRNAs annotated). Enriched categories are represented by dots whose size is proportional to the number of genes related to each category. Category "others" includes miscellaneous GO annotations mostly related to membranes such as membrane protein complex (GO 0098796), vesicle (GO 0031982).

Supplemental Figure 1: Dosage of luciferase activity of AU-rich and GC-rich Renilla luciferase proteins

Cells co-transfected or not (mock) with RenLuc\_GC-rich and RenLuc\_AU-rich plasmids were harvested 40h after transfection and an aliquot was processed for protein luciferase quantification. Luciferase protein activity was measured with the Dual Glo Luciferase assay kit (Promega) according to the manufacturer's instructions. Relative light determinations were obtained in a Lumat LB 9507 luminometer (Berthold). #1 and #2 represent two independent transfections. RLU: Relative Light Unit.

#### Supplemental Figure 2: Transcriptome following DICER silencing

Dot plots representing total fold change after DROSHA silencing as a function of mRNA fold change following DICER silencing. Rp: Pearson coefficient correlation.

#### Discussion

## 1) Out of the 3 PB assembly factors, only 4E-T has a preference for AUrich mRNAs

Having noticed that CDS and 3'UTR GC content is a prime determinant of mRNA enrichment in PBs, we investigated whether RNA-binding preference of one of the 3 PB assembly factors, DDX6, LSM14A and 4E-T, could explain concentration of AU-rich mRNAs in PBs. From DDX6 eCLIP, we found that DDX6 binds GC-rich mRNAs mainly excluded from PBs. Concerning LSM14A, no large-scale transcriptomic analysis has yet been performed in human cells, thus we assessed LSM14A RNA-binding preference by RIP on two reporter mRNAs with a different CDS nucleotide composition. While GC-rich reporter was immunoprecipitated more efficiently with DDX6 than the AU-rich RenLuc mRNA, both reporters were immunoprecipitated by anti-LSM14A with the same efficiency, suggesting that LSM14A has no nucleotide preference. Finally, analysis of 4E-T RIP showed that 4E-T-bound-mRNAs are AU-rich including in their CDS and 3'UTR and enriched in PBs. This observation is compatible with a nucleotide preference of 4E-T involved in accumulation of AU-rich mRNAs in PBs. Yet, this statement calls for some nuance. Indeed, 4E-T is an "indirect RBP" since it has no RBD but interacts with the mRNA via eIF4E. Moreover, RIP approach does not discriminate between direct targets (i.e mRNAs physically bound to the RBP), and mRNAs bound indirectly via another protein partner. Thus, the observed effect may not directly come from 4E-T but from one of its partners, possibly a fourth PB assembly factor, that would display a nucleotide binding preference for AU-rich mRNAs. In light of this comment, our conclusion concerning LSM14A should similarly be tempered. Consequently, prospects to properly address the issue of a nucleotide binding preference of LSM14A and 4E-T include to identify their endogenous and directly bound mRNA targets in human cells, for instance by a CLIPseq approach.

Association of a RBP to RNA does not always correlate with direct regulation by this RBP. On these grounds, we looked at the post -transcriptional regulations of DDX6 and 4E-T-bound mRNAs. We noted that GC-rich mRNAs bound by DDX6 and mostly excluded from PBs are stabilized after DDX6 silencing, as well as after XRN1 silencing. This suggests that DDX6-bound mRNAs are mainly regulated in stability *via* a cytoplasmic and XRN1-dependent pathway. Existence of such a pathway would be consistent with data in yeast demonstrating that XRN1

can physically interact with 80S ribosome (Tesina et al., 2019), and also mediate cotranslational 5'-3' decay (Antic et al., 2015; Hu et al., 2009). Whether this pathway is conserved in human, as well as details of DDX6 implication in this process remain an issue for further investigation.

In parallel, we observed that 4E-T-bound mRNAs are derepressed after siDDX6 and regulated in stability by PAT1B, like most PB mRNAs. Actually, mRNA localization in PBs is intimately linked with mRNA translation status. Indeed, mRNAs from different repression pathways such as ARE-containing mRNAs targeted by ARE BP like TTP and BRF (Franks and Lykke-Andersen, 2007) and also targets of the miRNA pathway (Bhattacharyya et al., 2006; Pillai et al., 2005b; Pitchiaya et al., 2019) concentrate in PBs. Moreover, human AU-rich mRNAs are less efficiently translated due to their biased codon usage (Courel et al., 2019). Thus they could be more accessible to 4E-T, which would repress their translation and stabilize them by preventing access of decapping activators to the cap. Overall, this repression would favour concentration of AU-rich mRNAs in PBs. Overall, in addition to nucleotide binding preference, the repressive function of DDX6 and 4E-T also contributes to mRNA recruitment to PBs.

Looking for another hypothesis explaining the GC bias of PB mRNAs, it was demonstrated that helicase activity of DDX6 is necessary to form PBs *in vivo* (Minshall et al., 2009). This suggests that formation of these mRNP granules relies on mRNA and/or mRNP complex remodelling. An interesting issue to address is whether remodelling mRNA intermolecular interactions, for instance with helicases like those enriched in PBs, could preferentially favour phase separation of AU-rich mRNAs.

# 2) 3'UTR nucleotide composition of miRNA targets is a key parameter of their localization and repression into PBs

miRNAs mediate gene silencing through the miRISC complex, composed of several RBPs, including AGO1,2,3 or 4 and TNRC6A/B or C. Within this complex, the miRNA pairs to MRE site via a 7nt sequences called the seed sequence and which is evolutionary conserved across metazoan (Lewis et al., 2005). Meanwhile, AGO interacts with TNRC6, which recruits the PAN2/PAN3 and the CCR4/NOT déadénylation complexes to the target mRNA (Duchaine and Fabian, 2019). Consequences of CCR4/NOT recruitment can entail direct degradation or a prior translational repression stage. Different mechanisms have been proposed to explain miRNA-

mediated translational repression, involving interference with translation initiation (Humphreys et al., 2005; Meijer et al., 2013; Pillai et al., 2005), inhibition of ribosome elongation (Petersen et al., 2006) and ribosome drop-off (Nottrott et al., 2006).

In order to assess whether PB localization of miRNA targets could be informative in regards to the relative importance of repression of translation versus decay in the miRNA pathway, we analysed PB localization and general post-transcriptional regulations of mRNAs targeted by the 22 miRNAs most expressed in HEK293 and of AGO1-4 targets. We noted that miRNAs and AGO1,2,3,4 targets tend to be AU-rich. and preferentially enriched in PBs. Moreover AGO1-4 targets are regulated in translation by DDX6 and in stability by PAT1B, similarly as mRNAs enriched in PB. These observations are therefore not compatible with the hypothesis of GC content or localization in/out PBs of miRNA targets defining their fate towards either decay by DDX6 and XRN1 or translational repression by DDX6 and decay by PAT1B. Hence, we investigated whether outcome of miRNA-dependent regulations would depend on the miRNA itself. We observed that targets of the 3 most AU-rich miRNAs are translationally more active after DDX6 silencing while translation of targets of the 3 most GC-rich miRNAs were not sensible to DDX6 silencing. Targets of AU-rich and targets of GC-rich miRNAs are not affected by DDX6 nor XRN1 silencing in terms of stability. Thus, our observations suggest a model where AU-rich miRNAs target AU-rich mRNAs which are preferentially enriched in PBs and translationally repressed by DDX6 (Figure 6)



Figure 6 Model of translational repression miRNA-dependent

The biased GC content observed among miRNA targets was unexpected. Indeed since 60% of the genes can be regulated by the miRNA pathway (Friedman et al., 2009), we could have thought that GC content and PB localization of the studied population of miRNA targets would have reflected effects observed for all transcripts.

Trying to explain this GC bias, we considered the following points. First human AU-rich mRNAs correspond to AU-rich genes (Courel et al., 2019) which appeared earlier throughout Evolution than the GC-rich part of the human genome (Duret et al., 2002). Then, these AU-rich mRNAs tend to be targeted by AU-rich miRNAs (this study). Moreover, it was noted that most recent miRNA tend to be expressed at low levels, while more ancient miRNAs are expressed at higher levels (Liang and Li, 2009; Meunier et al., 2013). On these grounds, it would be interesting to assess whether GC content of the miRNAs (or at least GC content of their seed sequences which are well conserved throughout Evolution) also reflects their conservation throughout Evolution. If yes, we could speculate on a "target avoidance" model. According to this model, genes co-expressed with a miRNA evolve to avoid sites that are targeted by more recent miRNAs because they could perturb established regulatory networks (Iwama et al., 2018).

Interestingly, miRNA- binding sites are located near AU-rich sequences of 3'UTR (Lewis et al., 2005) which are more efficiently targeted by miRNAs possibly because structures in these regions have a lower stability and may be thus more accessible to miRNA (Farh et al., 2005; Grimson et al., 2007). Thus a second hypothesis concerning functional consequences of the GC bias observed in miRNA targets may imply increased efficiency of mRNA targeting.

#### 3) PB-excluded and AU-rich mRNAs are localized transcripts

Concentration to PBs concerns most AU-rich mRNAs. Nonetheless, 20% of AU- rich transcripts (940 mRNAs) escape this general trend and are significantly excluded from PBs. Our Gene Ontology analysis of this subset of transcripts reveals that most of them correspond to mRNAs encoding proteins related to membranous organelles, such as mitochondria, ER, lysosomes, secretory granules, or ribosomes. Since translation of mRNAs coding secreted or trans membranous proteins occurs on endoplasmic reticulum membrane and that translation of several mitochondrial proteins occurs on mitochondria membrane, we hypothesize that localization of these mRNAs onto membranous organelles prevents their recruitment to PBs.

In support of this hypothesis, a protein/mRNA screen based on a BAComics approach in HeLa cells found that *Hsp90b1* which is an AU-rich mRNA (42.4 %GC) significantly excluded from PBs (logFC =-0.495, p value <0.05) and encoding a resident ER protein, actually colocalizes with its protein in a translation-dependant way (*i.e* general translation inhibition by puromycin disrupts colocalization between *Hsp90b1* mRNA and its protein) (Chouaib et al., 2020). Prospects related to this issue may include to verify the colocalization between mRNA and protein, as well as the translation dependency of a larger number of AU-rich transcripts excluded from PBs.

#### Materials and methods

#### Cell culture and transfection

Human embryonic kidney HEK293 and epithelioid carcinoma HeLa cells were cultivated in DMEM (Dulbecco's Modified Eagle's Medium)-glutamax (Invitrogen<sup>™</sup>) supplemented with 10% (v/v) fetal calf serum and 100U.mL<sup>-1</sup> penicillin/streptomycin, at 37°C, 5% CO<sub>2</sub>.

For RNA immunoprecipitation assays, HEK293 cells were co-transfected with 12  $\mu$ g hRluc-GFP-GC-rich plasmid and 12  $\mu$ g of Rluc-GFP-AU-rich plasmid per 150-mm-diameter dish using GenJet Plus DNA (SignaGen Laboratories) according to the manufacturer's protocol. See (Courel et al., 2019) for details on plasmids design.

#### **RNA Immunoprecipitation**

Cells were scrapped 40h after transfection. Expression of plasmids Rluc-GFP-AU-rich and hRluc-GFP-GC-rich was checked by luciferase protein assay performed on a Lumat LB 9507 luminometer (Berthold)with the Dual Glo Luciferase assay kit (Promega) according to the manufacturer's instructions. Cytoplasmic lysates were prepared in NET buffer supplemented with RNAseOut 65U/mL as described in Material and methods part 1, section immunoprecipitation. 5 mg of cytoplasmic extract were incubated with either 2µg anti-DDX6 antibody, 4.5 µg anti-LSM14A antibody or 4.5 µg IgG as control for 1h at 4°C with constant rotation. 50 µL of protein A Dynabeads were added to the samples and incubated for 2 hrs at 4°C with constant rotation. Beads were washed with RIP buffer containing 50 mM Tris-HCl (pH 7.4), 150 mM NaCl, 1mM MgCl<sub>2</sub>, 1mM EGTA, 0.5% NP-40 and nucleic acids were eluted in RIP buffer supplemented with 0.1%, SDS 0.1%, 80U/mL RNAseOut and 30 µg/mL proteinase K for 30 min at 65°C.

#### RT-qPCR

Total RNA was extracted using standard Trizol /Choroform procedure. Purified RNAs were treated with DNAse using Turbo DNA free kit (Life Technologies). For reverse transcription, 135 ng of total RNA were pre amorced with random primers, sense oligonucleotides hRluc-GFP-GC-rich and Rluc-GFP-AU-rich and denaturated for 5min at 65°C. RT mix containing (10mM dNTP, Superscript II buffer 1X, 10 mM DTT, RNAse out 8U, Superscript II 8U) was added and the following thermal cycle was applied: 10 min at 30°C, 50 min at 42°C and 15 minutes

at 75 °C. RT product was diluted 10x and 2  $\mu$ L of the dilution was analysed in duplicate by qPCR on Light Cycler apparatus with the following primers pairs

| qPCR primer | SENS    | SEQUENCE               |
|-------------|---------|------------------------|
| RLuc-highGC | forward | CGAGAACGCCGTGATTTT     |
|             | reverse | GACGTGCCTCCACAGGTAG    |
| RLuc-lowGC  | forward | CCAGGATTCTTTTCCAATGC   |
|             | reverse | CTTGCGAAAAATGAAGACCTTT |

qPCR results were analysed with LightCycler<sup>®</sup>480 software and Cp were obtained *via* the 2d derivative method.

Primers efficiency (E) was calculated from the standards. RNA immunoprecipitation efficiency was calculated as the relative quantity of reporter mRNA between IP and 5% input sample and is given by the expression :  $\frac{(RNA \ total \ extracted \ in \ IP}{RNA \ total \ extracted \ in \ 5\% \ input} * E^{-(Cp \ IP - Cp \ input)}$ 

#### **Bioinformatic analysis**

Datasets used in the bioinformatic analysis came from the following sources

| dataset                                | reference                              |  |
|----------------------------------------|----------------------------------------|--|
| DDX6 CLIP (K562)                       | ENCODE Project Consortium, 2012        |  |
|                                        | (analysis: A. Hubstenberger)           |  |
| 4E-T RIP (mouse E12 cortex cells)      | (Yang et al., 2014a)                   |  |
| AGO1,2,3 ,4 CLIP (HEK293 cells)        | (Yang et al., 2015)                    |  |
| PAT1B transcriptome (HEK 293T cells)   | (Vindry et al., 2017b)                 |  |
| DICER transcriptome (HEK293 cells)     | (Rybak-Wolf et al., 2014)              |  |
| DROSHA transcriptome (HEK293 cells)    | (Rybak-Wolf et al., 2014)              |  |
| XRN1 transcriptome (HeLa cells)        | (Courel et al., 2019) from P.Brest lab |  |
| DDX6 transcriptome (HEK293 cells)      | (Courel et al., 2019)                  |  |
| DDX6 polysome profiling (HEK293 cells) | (Courel et al., 2019)                  |  |
| P-body transcriptome                   | (Hubstenberger et al., 2017)           |  |
| miRNA targets                          | miRTarBase (Hsu et al., 2014)          |  |

For each dataset we considered transcripts that were present in the HEK293 transcriptome. When replicates were available, we used mean of replicates.

For GC content, transcripts fasta sequences were downloaded from ENSEMBL and GC content of mRNA, CDS, 3'UTR, 5'UTR contents were obtained using the seqinr R package (https://cran.r-project.org/web/packages/seqinr/seqinr.) Boxplot representations and statistical tests were performed using the GraphPad Prism software (GraphPad software, Inc) and the R packages corrr (<u>https://github.com/tidymodels/corrr) and</u> corrplot (htttps://github.com/taiyun/corrplot). Pearson correlation coefficient was computed for near linear relationships (e.g. miRNA and targets GC contents) and Spearman correlation for non-linear relationships. Other graphical representations were generated using Excel.

The enrichment of the GO Complete Cellular component categories in AU-rich mRNA excluded from PB (Input database: 940 gene IDs, 579 annotated in GO categories) compared to AU-rich transcripts from the HEK293 transcriptome (Input database: 7266 gene IDs, 7164 annotated in GO categories) was assessed with PANTHER overrepresentation Test (<u>http://pantherdb.org/</u>, Mi et al., 2013). R package ggplot (<u>https://ggplot2.tidyverse.org</u>) was used for graphical representation.

#### Annexe: article



## GC content shapes mRNA storage and decay in human cells

Maïté Courel<sup>1</sup>, Yves Clément<sup>2</sup>, Clémentine Bossevain<sup>1</sup>, Dominika Foretek<sup>3</sup>, Olivia Vidal Cruchez<sup>4</sup>, Zhou Yi<sup>5</sup>, Marianne Bénard<sup>1</sup>, Marie-Noëlle Benassy<sup>1</sup>, Michel Kress<sup>1</sup>, Caroline Vindry<sup>6</sup>, Michèle Ernoult-Lange<sup>1</sup>, Christophe Antoniewski<sup>7</sup>, Antonin Morillon<sup>3</sup>, Patrick Brest<sup>4</sup>, Arnaud Hubstenberger<sup>5</sup>, Hugues Roest Crollius<sup>2</sup>, Nancy Standart<sup>6</sup>, Dominique Weil<sup>1</sup>\*

<sup>1</sup>Sorbonne Université, CNRS, Institut de Biologie Paris Seine (IBPS), Laboratoire de Biologie du Développement, Paris, France; <sup>2</sup>Ecole Normale Supérieure, Institut de Biologie de l'ENS, IBENS, Paris, France; <sup>3</sup>ncRNA, Epigenetic and Genome Fluidity, Institut Curie, PSL Research University, CNRS UMR 3244, Sorbonne Université, Paris, France; <sup>4</sup>Université Côte d'Azur, CNRS, INSERM, IRCAN, FHU-OncoAge, Nice, France; <sup>5</sup>Université Côte d'Azur, CNRS, INSERM, iBV, Nice, France; <sup>6</sup>Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom; <sup>7</sup>Sorbonne Université, CNRS, Institut de Biologie Paris Seine (IBPS), ARTbio Bioinformatics Analysis Facility, Paris, France

**Abstract** mRNA translation and decay appear often intimately linked although the rules of this interplay are poorly understood. In this study, we combined our recent P-body transcriptome with transcriptomes obtained following silencing of broadly acting mRNA decay and repression factors, and with available CLIP and related data. This revealed the central role of GC content in mRNA fate, in terms of P-body localization, mRNA translation and mRNA stability: P-bodies contain mostly AU-rich mRNAs, which have a particular codon usage associated with a low protein yield; AU-rich and GC-rich transcripts tend to follow distinct decay pathways; and the targets of sequence-specific RBPs and miRNAs are also biased in terms of GC content. Altogether, these results suggest an integrated view of post-transcriptional control in human cells where most translation regulation is dedicated to inefficiently translated AU-rich mRNAs, whereas control at the level of 5' decay applies to optimally translated GC-rich mRNAs.

\*For correspondence: dominique.weil@upmc.fr

**Competing interests:** The authors declare that no competing interests exist.

Funding: See page 26

Received: 26 June 2019 Accepted: 18 December 2019 Published: 19 December 2019

**Reviewing editor:** Karsten Weis, ETH Zurich, Switzerland

© Copyright Courel et al. This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

#### Introduction

Translation, storage, localization and decay of mRNAs in the cytoplasm are closely coupled processes, which are governed by a large number of RNA-binding proteins (RBPs) (*Hentze et al.*, *2018*). These RBPs have to act in a coordinated manner to give rise to a proteome both coherent with cellular physiology and responsive to new cellular needs. mRNA fate is also intimately linked with their localization in membrane-less organelles, such as P-bodies (PBs). We recently identified the transcriptome and proteome of PBs purified from human cells. Their analysis showed that human PBs are broadly involved in mRNA storage rather than decay (*Hubstenberger et al., 2017*; *Standart and Weil, 2018*), as also observed using fluorescent decay reporters (*Horvathova et al., 2017*). However, the mechanism underlying the large but specific targeting of mRNAs to PBs is still unknown, though it clearly results in the co-recruitment of particular RBPs (*Hubstenberger et al., 2017*).

Courel et al. eLife 2019;8:e49708. DOI: https://doi.org/10.7554/eLife.49708

1 of 32

(cc)
#### **Chromosomes and Gene Expression**

In mammalian cells, the RNA helicase DDX6, known for its involvement in mRNA decay and translation repression, is a key factor in PB assembly (Minshall et al., 2009). Patients with neurodevelopmental delay caused by heterozygous DDX6 missense mutations were recently identified, and their skin fibroblasts show a PB defect (Balak et al., 2019). Human DDX6 interacts with both translational repressors, and the decapping enzyme DCP1/2 and its activators (Ayache et al., 2015; Bish et al., 2015). Its yeast homologue Dhh1 is a cofactor of DCP2, as well as a translational repressor (Coller and Parker, 2005). The RBP PAT1B has also been defined as an enhancer of decapping, as it interacts with DDX6, the LSM1-7 heptamer ring and the decapping complex in mammalian cells (Vindry et al., 2017), while in yeast Pat1p activates Dcp2 directly (Nissan et al., 2010) and its deletion results in deadenylated but capped intact mRNA (Bonnerot et al., 2000; Bouveret et al., 2000). DDX6 and PAT1B interact with the CCR4-NOT deadenylase complex and the DDX6-CNOT1 interaction is required for miRNA silencing (Vindry et al., 2017; Chen et al., 2014; Mathys et al., 2014; Ozgur et al., 2015). DDX6 also binds the RBP 4E-T, another key factor in PB assembly, which in turn interacts with the cap-binding factor eIF4E and inhibits translation initiation, including that of miRNA target mRNAs (Kamenska et al., 2016). Altogether, DDX6 and PAT1B have been proposed to link deadenylation/translational repression with decapping. Finally, the 5'-3' exonuclease XRN1 decays RNAs following decapping by DCP1/2, a step triggered by deadenylation mediated by PAN2/3 and CCR4-NOT or by exosome activity (Labno et al., 2016).

A number of RBPs also control mRNA fate in a sequence-specific manner, some of them localizing in PBs as well. For instance, the CPEB complex, best described in *Xenopus* oocytes (*Minshall et al., 2007*), binds the CPE motif in the 3' untranslated region (UTR) of maternal transcripts through CPEB1, thus controlling their storage and their translational activation upon hormone stimulation (*Standart and Minshall, 2008*). Additional examples include the proteins which bind 3'UTR AU-rich elements (ARE), such as HuR and TTP, to control translation and decay, and play key roles in inflammation, apoptosis and cancer (*Wells et al., 2017*). Protein-binding motifs are generally not unique and rather defined as consensus sequence elements. In the case of RISC, binding specificity is given by a guide miRNA, which also hybridizes with some flexibility with complementary mRNA sequences. A variety of techniques have therefore been developed to identify the effective RNA targets of such factors, ranging from affinity purification (such as RIP or CLIP) to transcriptome and polysome profiling after RBP silencing, providing the groundwork to address systematic questions about post-transcriptional regulation.

In this study, we searched for broad determinants of mRNA storage and decay in unstressed human cell lines, using our transcriptome of purified PBs and several transcriptomic analyses performed after silencing of general translation and decay regulatory factors, including DDX6, PAT1B and XRN1. We also used datasets available from the literature, including a transcriptomic analysis after DDX6 silencing, a DDX6-CLIP experiment and various lists of RBP and miRNA targets. Their combined analysis revealed the central role of mRNA GC content which, by impacting codon usage, PB targeting and RBP binding, influences mRNA fate and contributes to the coordination between two opposite processes: decay and storage. Reporter mRNAs varying in their GC content confirmed that AU-rich mRNAs have a lower protein yield than GC-rich ones, that they preferentially localize to PBs, and that they have an enhanced capacity to form RNP granules in vitro.

#### Results

#### PBs mostly accumulate AU-rich mRNAs

We have previously shown that PBs store one third of the coding transcriptome in human epithelial HEK293 cells (*Hubstenberger et al., 2017*). Such a large transcript number led us to search for general distinctive sequence features that could be involved in PB targeting. We first analyzed transcript length, as it was reported to be key for mRNA accumulation in stress granules (*Khong et al., 2017*). When mRNAs were subdivided into six classes ranging from <1.5 kb to >10 kb, longer mRNAs appeared more enriched in PBs than shorter ones, with a moderate correlation between length and PB enrichment (Spearman r ( $r_s$ ) = 0.39, p<0.0001) (*Figure 1A, Figure 1—figure supplement 1A,B*). However, their increased length in PBs was less striking than previously observed for stress granule mRNAs (*Khong et al., 2017*) (*Figure 1—figure supplement 1C*).



Chromosomes and Gene Expression



**Figure 1.** PB mRNAs are AU-rich and longer than average. (A) Long mRNAs are particularly enriched in PBs. Transcripts were subdivided into six classes depending on their length (from <1.5 kb to >10 kb). The boxplots represent the distribution of their respective enrichment in PBs. The boxes represent the 25–75 percentiles and the whiskers the 10–90 percentiles. rs, Spearman correlation coefficient. (B) AU-rich mRNAs are particularly enriched in PBs. Transcripts were subdivided into six classes depending on their GC content (from <40 to >60%) and analyzed as in (A). (C) PBs mostly contain the AU-rich fraction of the transcriptome. The human transcriptome was binned depending on its GC content (0.7% GC increments). The graph represents the number of PB-enriched (PB-in, p<0.05, n = 5200) and PB-excluded (PB-out, p<0.05, n = 4669) transcripts in each bin. The distribution of all transcripts is shown for comparison (n = 14443). The median GC value is indicated below for each group. (D) mRNA localization in PBs mostly depends on the GC content of their CDS and 3'UTR. The analysis was repeated as in (B) using the GC content of the 5'UTR, CDS or 3'UTR, as indicated. For 5'UTRs, the >60% class was subdivided into three classes to take into account their higher GC content compared to CDSs and 3'UTRs. -0.57 and -0.55 are not significantly different (p=0.17), while -0.22 and -0.55 are (p<0.0001) (E) GC content is lower in PB-enriched (PB-out, p<0.05) mRNAs was analyzed as in (B).

The online version of this article includes the following figure supplement(s) for figure 1: **Figure supplement 1.** PB-enriched mRNAs tend to be long and AU-rich.

Courel et al. eLife 2019;8:e49708. DOI: https://doi.org/10.7554/eLife.49708

#### Chromosomes and Gene Expression

Most remarkably, mRNA accumulation in PBs was dependent on their global nucleotide composition, with a strong correlation between GC content and PB localization ( $r_s = -0.64$ , p<0.0001). When transcripts were subdivided into six classes ranging from <40% to >60% GC, PB enrichment was predominant for those <45% GC (*Figure 1B, Figure 1—figure supplement 1D,E*). While reminiscent of the low GC content reported for stress granule mRNAs in HEK293 cells (*Khong et al., 2017*), our reanalysis of the published dataset indicated that stress granule localization correlated weakly with the gene GC content ( $r_s = -0.12$ , p<0.0001) and almost not at all with the mRNA GC content ( $r_s = -0.06$ , p<0.0001). Indeed, comparing the GC content distribution of the transcripts that are enriched or excluded from PBs with all HEK293 cell transcripts, revealed that mRNA storage in PBs is confined to the AU-rich fraction of the transcriptome (*Figure 1C*).

As these transcripts also correspond to AU-rich genes (*Figure 1—figure supplement 1F*), it raised the possibility that the impact of GC content on PB enrichment resulted indirectly from the genomic context of the genes. To address this issue, we looked at the link between PB enrichment and meiotic recombination, which can influence GC content through GC-biased gene conversion (*Duret and Galtier, 2009*). The correlation between PB enrichment and meiotic recombination was much weaker than between PB enrichment and mRNA GC content ( $r_s = -0.16$  vs -0.64, p<0.0001 for both, significantly different from each other, p<0.0001). Moreover, the latter was almost unchanged when controlling for meiotic recombination ( $r_s = -0.65$  vs -0.64, p<0.0001). Finally, it was still significant when controlling for intronic or flanking GC content ( $r_s = -0.33$  and -0.45 respectively, all p<0.0001), showing that mRNA base composition and PB enrichment are associated independently of meiotic recombination or the genomic context. We also computed partial correlations to verify that the correlation between PB enrichment and GC content was not secondary to the correlation that exists between GC content and expression level, or between GC content and gene conservation (*Figure 1—figure supplement 1G*).

To refine the link between mRNA accumulation in PBs and their GC content, we analyzed separately the influence of their CDS and UTRs. Interestingly, mRNA accumulation in PBs correlated strongly with the GC content of both their CDS and 3'UTR ( $r_s = -0.57$  and -0.55, respectively, p<0.0001 for both), and weakly with the one of their 5'UTR ( $r_s = -0.22$ , p<0.0001) (*Figure 1D, Figure 1—figure supplement 1E*). Moreover, the lower GC content of PB-enriched mRNAs compared to PB-excluded ones was a feature independent of their length, since it was observed in all length ranges (*Figure 1E, Figure 1—figure supplement 1B*). Conversely, the longer length of PB mRNAs was a feature independent of their GC content (*Figure 1\_figure supplement 1E,H*).

In conclusion, while PB mRNAs tend to be longer than average, their most striking feature is that they correspond to an AU-rich subset of the transcriptome.

## GC bias in PBs impacts codon usage and protein yield

The strong GC bias in the CDS of PB mRNAs prompted us to compare the coding properties of PBstored and PB-excluded mRNAs. Consistently, we found that the frequency of amino acids encoded by GC-rich codons (Ala, Gly, Pro) was lower in PB-stored than in PB-excluded mRNAs, while the frequency of those encoded by AU-rich codons (Lys, Asn) was higher (Figure 2A). The difference could be striking, as illustrated by Lys, whose median frequency in PB-excluded mRNAs was 32% lower than in PB-enriched mRNAs, thus ranging within the lower 17th centile of their distribution (Figure 2-figure supplement 1A). In addition to different amino acid usage, we observed dramatic variation in codon usage between the two mRNA subsets. For all amino acids encoded by synonymous codons, the relative codon usage in PBs versus out of PBs was systematically biased towards AU-rich codons (log2 of the ratio >0, Figure 2B). For example, among the six Leu codons, AAU was used 4fold more frequently in PB-enriched than in PB-excluded mRNAs, whereas CUG was used 2-fold less frequently. This systematic trend also applied to Stop codons. Some additional codon bias independent of base composition (NNA/U or NNG/C) was also observed for 4 and 6-fold degenerated codons (Figure 2-figure supplement 1B,C). For instance, Leu was encoded twice more often by CUU than CUA in PB-enriched mRNAs, whereas the use of both codons was low in PB-excluded mRNAs. Similarly, Gly was encoded more often by GGG than GGC in PB mRNAs, whereas the use of both codons was similar in PB-excluded mRNAs (Figure 2C).

In human, 22 out of the 29 synonymous codons that are less frequently used (normalized relative usage <1) end with an A or U, and were therefore overrepresented in PB mRNAs (*Figure 2—figure supplement 1D*). Considering for each amino acid the codon with the lowest usage (called low



eLIFE Research article

Chromosomes and Gene Expression

Figure 2. Codon usage is strongly biased in PBs. (A) PB mRNAs and PB-excluded mRNAs encode proteins with different amino acid usage. The graph represents the frequency of each amino acid in the proteins encoded by mRNAs enriched or excluded from PBs, using the indicated PB enrichment thresholds. (B) Codon usage bias in and out of PBs follows their GC content. The relative codon usage for each amino acid was calculated in PB-enriched (PB-in) and PB-excluded (PB-out) mRNAs, using a PB enrichment threshold of +/- 1 (in log2). The graph represents the log2 of their ratio (PB-Figure 2 continued on next page

#### **Chromosomes and Gene Expression**

#### Figure 2 continued

in/PB-out) and was ranked by decreasing values for each amino acid. The GC content of each codon is gray-coded below, using the scale indicated on the right. (C) The usage of some codons is biased independently of their GC content. Two examples are shown encoding Leucine (L) and Glycine (G). (D) The frequency of low usage codons strongly correlates with the GC content of the CDS, independently of their PB localization. The frequency of low usage codons was calculated for mRNAs excluded (PB-out) and enriched (PB-in) in PBs using a PB enrichment threshold of +/-1 (in log2). It was expressed as a function of the CDS GC content at position 3 (GC3). Note that the slopes of the tendency curves are similar for PB-enriched and PB-excluded transcripts. The difference between the Spearman correlation coefficients (rs) are nevertheless statistically significant (p<0.0001). (E) PB mRNAs have longer CDS than PB-excluded mRNAs. The analysis was performed as in *Figure 1E.* (F) The number of low usage codons per CDS is a good determinant of both protein yield and PB localization. The protein yield was expressed as a function of the number of low usage codons for PB-enriched (PB-in) and PB-excluded (PB-out) mRNAs. rs, Spearman correlation coefficient.

The online version of this article includes the following figure supplement(s) for figure 2: Figure supplement 1. Amino acid usage and codon usage biases in PBs.

Figure supplement 2. Codon usage biases and abundance of amino-acylated tRNA.

usage codon thereafter), 14 out of 18 are NNA or NNU, with the exception of Thr, Ser, Pro, Ala. We calculated the frequency of low usage codons for each CDS, and plotted it as a function of the GC content at the third position (GC3) to avoid any confounding effects of the amino acid bias. As expected, the frequency of low usage codons correlated strongly and negatively with GC3, with AUrich CDS having a higher frequency of low usage codons than GC-rich CDS (*Figure 2D*). According to their distinct GC content, PB mRNAs had a higher frequency of low usage codons than PB-excluded mRNAs. However, the correlation coefficient between frequency of low usage codons and GC3 was very close for both mRNA subsets ( $r_s = -0.88$  for PB-enriched; -0.80 for PB-excluded mRNAs, p<0.0001 for both), meaning that their different frequency of low usage codons could be largely explained by their GC bias alone.

We previously reported that protein yield, defined as the ratio between protein and mRNA abundance in HEK293 cells, was 20-times lower for PB-enriched than PB-excluded mRNAs. This was not due to translational repression within PBs, as the proportion of a given mRNA in PBs hardly exceeded 15%, but rather to some intrinsic mRNA property (Hubstenberger et al., 2017). In this respect, the frequency of low usage codons correlated more with PB localization ( $r_s = 0.59$ , p<0.0001) than with protein yield ( $r_s = -0.21$ , p<0.0001, significantly different from 0.59, p<0.0001) (Figure 2-figure supplement 1E). Conversely, the CDS length correlated more with protein yield ( $r_s = -0.43$ , p<0.0001) than with PB localization ( $r_s = 0.26$ , p<0.0001, significantly different from -0.43, p<0.0001). Nevertheless, the length of the CDS and its GC content contributed independently to PB localization (Figure 2E). Finally, combining the frequency of low usage codons with the CDS length, that is, considering the absolute number of low usage codons per CDS, was a shared parameter of both protein yield ( $r_s = -0.46$ , p<0.0001, Figure 2F) and PB localization ( $r_s = 0.49$ , p<0.0001). Strikingly, CDS with more than 100 low usage codons were particularly enriched in PBs, while those under 100 were mostly excluded (Figure 2F). One of the mechanisms linking codon usage to translation yield could be the abundance of cognate tRNAs (Novoa and Ribas de Pouplana, 2012). However, codon usage in PB-excluded mRNAs was not more adapted to the abundance of amino-acylated tRNAs (Evans et al., 2017) than codon usage in PB-enriched mRNAs (Figure 2-figure supplement 2). In conclusion, the strong GC bias in PB mRNAs results in both a biased amino acid usage in encoded proteins and a biased codon usage. Furthermore, the high number of low usage codons in PB mRNAs is a likely determinant of their low protein yield.

# The PB assembly factor DDX6 has opposite effects on mRNA stability and translation rate depending on their GC content

In human, the DDX6 RNA helicase is key for PB assembly (*Minshall et al., 2009*). It associates with a variety of proteins involved in mRNA translation repression and decapping (*Ayache et al., 2015; Bish et al., 2015*), suggesting that it plays a role in both processes. To investigate how DDX6 activity is affected by mRNA GC content, we conducted a polysome profiling experiment in HEK293 cells transfected with DDX6 or control  $\beta$ -globin siRNAs for 48 hr. In these conditions, DDX6 expression decreased by 90% compared to control cells (*Figure 3—figure supplement 1A*). The polysome profile was largely unaffected by DDX6 silencing, implying that DDX6 depletion did not grossly disturb global translation (*Figure 3—figure supplement 1B*). Polysomal RNA isolated from the sucrose

#### Chromosomes and Gene Expression

gradient fractions (*Figure 3—figure supplement 1B*) and total RNA were used to generate libraries using random hexamers to allow for poly(A) tail-independent amplification. As expected, both total and polysomal DDX6 mRNA was markedly decreased (by 72%) following DDX6 silencing (*Figure 3—figure supplement 1C-E; Supplementary file 1*, sheet1). Since DDX6 is cytoplasmic (*Ernoult-Lange et al., 2009*) and has a role in mRNA decay, we assumed that changes in total mRNA accumulation generally reflected an increased stability of the transcripts, though we cannot exclude altered transcription levels for some of them. As polysomal accumulation can result from both regulated translation and a change in total RNA without altered translation, we then used the polysomal to total mRNA ratio as a proxy measurement of translation rate. Nevertheless, for few transcripts, polysomal enrichment may reflect an elongation block rather than an increased rate of initiation. Analysis of the whole transcriptome showed a link between mRNA fate following DDX6 depletion and their GC content, but, intriguingly, the correlation was positive for changes in total RNA ( $r_s = 0.45$ , p<0.0001; *Figure 3—figure supplement 1F*) and negative for changes in polysomal RNA ( $r_s = -0.32$ , p<0.0001; *Figure 3—figure supplement 1G*). Therefore, DDX6 depletion affected different mRNA subsets in total and polysomal RNA.

The extent of mRNA stabilization steadily increased with the GC content and became predominant for transcripts with >50% GC (*Figure 3A*, left panel, *Figure 3—figure supplement 2A*). This analysis was repeated on an independent dataset available from the ENCODE project (*ENCODE Project Consortium, 2012*), obtained in a human erythroid cell line, K562, following induction of a stably transfected DDX6 shRNA, and using an oligo(dT)-primed library. Despite the differences in cell type, depletion procedure and sequencing methods, again, mRNA stabilization preferentially concerned those with high GC content ( $r_s = 0.59$ , p<0.0001; *Figure 3A*, right panel, *Figure 3—figure supplement 2A*; *Supplementary file 1*, sheet2). In contrast, following DDX6 silencing in HEK293 cells, the translation rate predominantly increased for transcripts with less than 45% GC ( $r_s = -0.53$ , p<0.0001; *Figure 3B*, *Figure 3—figure supplement 2A*). As a result, mRNAs with the most upregulated translation rate were the least stabilized, and conversely (*Figure 3—figure supplement 2B*).

To investigate how DDX6 activity was related to its binding to RNA, we used the CLIP dataset of K562 cells, also available from the ENCODE project. In both HEK293 and K562 cells, the mRNAs clipped to DDX6 were particularly stabilized after DDX6 knockdown, as compared to all mRNAs



Figure 3. DDX6 silencing has opposite effects on mRNA fate depending on their GC content. (A) mRNA stabilization after DDX6 silencing in HEK293 and K562 cells applies to GC-rich mRNAs. The fold-changes (FC) in mRNA accumulation were analyzed as in *Figure 1B*. (B) mRNA translation derepression after DDX6 silencing in HEK293 cells applies to AU-rich mRNAs. The fold-changes in translation rate (polysomal/total mRNA ratio) were analyzed as in (A). (C) GC-rich mRNAs are particularly enriched in the DDX6 CLIP experiment. The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Polysome profiling following DDX6 silencing.

Figure supplement 2. Impact of DDX6 binding and mRNA length on DDX6 dependency. Figure supplement 3. Impact of the GC content on DDX6-dependency.

#### Chromosomes and Gene Expression

(Figure 3—figure supplement 2C; Supplementary file 1, sheet3), while they were not translationally derepressed in HEK293 cells (Figure 3—figure supplement 2D). In agreement, mRNAs with a high GC content were preferentially enriched in the DDX6 CLIP experiment ( $r_s = 0.41$ , p<0.0001; Figure 3C, Figure 3—figure supplement 2A). Then, as we previously showed that DDX6 can oligomerize along repressed transcripts (Ernoult-Lange et al., 2012), we also considered mRNA length. While DDX6-dependent decay had a marginal preference for short transcripts ( $r_s = -0.09$ , p<0.0001), as a combined effect of CDS and 3'UTR length (Figure 3—figure supplement 2E,F), DDX6-dependent translation repression was independent of the CDS length but higher on mRNAs with long 3'UTRs ( $r_s = 0.16$ , p<0.0001; Figure 3—figure supplement 2E,G). Interestingly, the GC content of the CDS and the 3'UTR were similarly predictive of DDX6 sensitivity, whether for mRNA stability ( $r_s = 0.42$  and 0.40 for CDS and 3'UTR, respectively, p<0.0001 for both) or for translation repression ( $r_s = -0.53$  and -0.52, respectively, p<0.0001 for both), while the 5'UTR was less significant ( $r_s = 0.18$  and -0.15 for stability and translation repression, respectively, p<0.0001 for both; Figure 3—figure supplement 3A-C).

Altogether, we showed that DDX6 knockdown affected differentially the mRNAs depending on the GC content of both their CDS and 3'UTR, with the most GC-rich mRNAs being preferentially regulated at the level of stability and the most AU-rich mRNAs at the level of translation.

# DDX6/XRN1 and PAT1B decrease the stability of separate sub-classes of mRNAs with distinct GC content

DDX6 acts as an enhancer of decapping to stimulate mRNA decay, upstream of RNA degradation by the XRN1 5'-3' exonuclease. To investigate whether XRN1 targets are similarly GC-rich, we performed XRN1 silencing experiments in two cell lines. HeLa cells were transfected with XRN1 siRNA (Figure 4—figure supplement 1A; Supplementary file 1, sheet4), while HCT116 cells stably transfected with an inducible XRN1 shRNA were induced with doxycyclin (Figure 4—figure supplement 1B; Supplementary file 1, sheet5), both for 48 hr. In both cell lines, XRN1-dependent decay preferentially acted on mRNAs which were GC-rich ( $r_s = 0.41$  for HeLa and 0.49 for HCT116, p<0.0001 for both; Figure 4—figure supplement 1A) and localized out of PBs ( $r_s = -0.35$ , p<0.0001; Figure 4—figure supplement 1C), as observed for DDX6.

PAT1B is a well-characterized direct DDX6 partner known for its involvement in mRNA decay (Vindry et al., 2017: Braun et al., 2010: Ozgur et al., 2010: Vindry et al., 2019). As for DDX6, we assume that changes in steady-state mRNAs following PAT1B silencing generally reflect their increased stability (though, again, we cannot exclude some changes at the transcription level). However, using our previous PAT1B silencing experiment in HEK293 cells (Vindry et al., 2017), we surprisingly found a negative correlation between mRNA stabilization after PAT1B and after DDX6 silencing ( $r_s = -0.31$ , p<0.0001; Figure 4—figure supplement 1D; Supplementary file 1, sheet6), suggesting that they largely target separate sets of mRNAs. Unexpectedly, the correlation was however positive with translational derepression after DDX6 silencing ( $r_s = 0.45$ , p<0.0001; Figure 4 figure supplement 1E), indicating that PAT1B preferentially targets mRNAs that are translationally repressed by DDX6. Accordingly, these transcripts are prone to PB storage ( $r_s = 0.49$ , p<0.0001; Figure 4-figure supplement 1F), as reported previously (Vindry et al., 2017). Indeed, in contrast to DDX6 and XRN1 decay targets, PAT1B targets tended to be AU-rich ( $r_s = -0.50$ , p<0.0001; Figure 4B. Figure 4—figure supplement 1A). To gain insight into the mechanism of regulation by PAT1B, we analyzed the read coverage in the PAT1B silencing experiment (Figure 4C) and found it to be unchanged over the whole transcriptome. In contrast, following XRN1 silencing, the 5' coverage was higher, confirming that such an analysis can reveal 5' decay (Figure 4D). Of note, in control cells PAT1B target mRNAs had a higher 5' coverage than average (Figure 4C), while XRN1 targets had a lower 5' coverage than average (Figure 4D). These results suggest that mRNA accumulation in the absence of PAT1B does not result from their 5' end protection.

In conclusion, DDX6 and PAT1B decrease the stability of distinct mRNA subsets, which strongly differ in their GC content. The results suggest that DDX6 is a cofactor of XRN1 5'-3' exonuclease, whereas PAT1B affects 3' to 5' degradation.

To obtain a global visualization of the results we conducted a clustering analysis of the various datasets (*Figure 4E*). Note that to avoid clustering interdependent datasets, we included the changes in polysomal RNA after DDX6 silencing rather than in the polysomal/total RNA ratio. Altogether, the heatmap shows that GC-rich mRNAs are excluded from PBs and tend to be decayed by





Figure 4. XRN1 and PAT1B targets have distinct GC content. (A) mRNA stabilization after XRN1 silencing in HeLa and HCT116 cells applies to GC-rich mRNAs. The analysis was performed as in *Figure 1B*. The GC content distribution for all mRNAs is presented for comparison (in gray). (B) mRNA stabilization after PAT1B silencing in HEX293 cells applies to AU-rich mRNAs. The analysis was performed as in (A). (C) Read coverage of PAT1B targets (FC >0.7, n = 330, solid lines) and all mRNAs (n = 16000, dashed lines) in the siPAT1B dataset. The read coverage was analyzed in each duplicate experiment and normalized as described in Materials and methods. The average value in control cells (gray lines) and after PAT1B silencing (peach *Figure 4 continued on next page* 

Courel et al. eLife 2019;8:e49708. DOI: https://doi.org/10.7554/eLife.49708

eLIFE Research article



Figure 4 continued

lines) was plotted, with the bars representing the duplicate values. An expanded view of the dashed box is presented on the right panel. (**D**) Read coverage of XRN1 targets (FC >0.8, n = 199, solid lines) and all mRNAs (n = 13760, dashed lines) in the siXRN1 dataset. The data were analyzed as in (**C**). (**E**) Clustering analysis of mRNAs depending on their GC content, their differential expression after silencing DDX6, XRN1 or PAT1B, and their enrichment in PBs. Raw GC content and log2 transformed ratio of the other datasets were used for the clustering of both transcripts (lines) and datasets (columns). The values were color-coded as indicated on the right scale, and the Spearman correlation matrix is presented below (all  $p < 10^{-48}$ ). The heatmap highlights the distinct fate of GC-rich and AU-rich mRNAs.

The online version of this article includes the following figure supplement(s) for figure 4: Figure supplement 1. Transcriptome analysis following XRN1 and PAT1B silencing.

-igure supplement 1. Transcriptome analysis following XKNT and PATTE silencing.

a mechanism involving DDX6 and XRN1, while AU-rich mRNAs are recruited in PBs, they undergo DDX6-dependent translation repression and their stability depends on PAT1B.

# Specific mRNA decay factors and translation regulators target mRNAs with distinct GC content

Having shown that GC content is a distinctive feature of DDX6 and XRN1 versus PAT1B targets, we investigated the link between this global sequence determinant and a variety of sequence-specific post-transcriptional regulators for which relevant genome-wide datasets are available (*Figure 5—figure supplement 1A*).

On the mRNA decay side (group I lists), we considered the Nonsense Mediated Decay (NMD) pathway, taking as targets the mRNAs cleaved by SMG6 (*Schmidt et al., 2015*), and the m<sup>6</sup>A-associated decay pathways, using the targets of the YTHDF2 reader defined by CLIP (*Wang et al., 2014*; *Yang et al., 2015*). We also analyzed mRNAs with a 5'UTR-located G4 motif, which have been shown to be preferential substrates of murine XRN1 in vitro (*Bashkirov et al., 1997*). On the translation regulation side (group II lists), we analyzed the TOP mRNAs, whose translation is controlled by a TOP motif at the 5' extremity (*Thoreen et al., 2012*), and targets of various PB proteins and/or DDX6 partners (*Hubstenberger et al., 2017*; *Ayache et al., 2015*): FXR1-2, FMR1, PUM1-2, IGF2BP1-3, the helicase MOV10, ATXN2, 4E-T, ARE-containing mRNAs and the targets of the two ARE-binding proteins HuR and TTP. We also included mRNAs with a CPE motif, since DDX6 is a component of the CPEB complex that binds CPEs (*Minshall et al., 2007*). Of note, among the group II factors, some are known to also affect mRNA half-life, as exemplified by the ARE-binding proteins (*Wells et al., 2017*). G4, ARE and CPE motifs have been defined in silico, while the targets of the various factors originate from RIP and CLIP approaches in human cells or mouse studies in the case of TOP mRNAs (see Materials and methods).

Intriguingly, compared to all mRNAs, group I list mRNAs were GC-rich, as well as TOP mRNAs and ATXN2 targets, whereas all other group II lists were AU-rich (*Figure 5A*). Furthermore, they shared common behavior in the various experiments. This is summarized in *Figure 5B* in a heatmap representing their median value in each dataset, while *Figure 5—figure supplements 1* and 2 provide detailed analysis, as described below.

Group I list mRNAs tended to be dependent on DDX6 and XRN1 but not on PAT1B for stability (*Figure 5—figure supplement 1B–D*), with nevertheless some variation between cell lines, as only SMG6 targets were sensitive to XRN1 depletion in HeLa cells (*Figure 5—figure supplement 1C*, upper panel). They did not accumulate in PBs and their translation rate was independent of DDX6 (*Figure 5—figure supplement 2A,B*). These results were consistent with their high GC content and our global analysis above. However, surprisingly, within PB-excluded mRNAs, there was little or no additional effect of being a SMG6 target, an YTHDF2 target or containing a G4 motif, neither for DDX6- nor for XRN1-dependent decay (*Figure 5—figure supplement 2C,D*).

Group II list mRNAs, except TOP mRNAs, ATXN2 and 4E-T targets, had the exact mirror fate compared to group I lists: they were stabilized following PAT1B silencing (*Figure 5—figure supplement 1D*), as previously reported for ARE-containing mRNAs and the targets of the ARE-BPS HuR and TTP (*Vindry et al., 2017*), but not following DDX6 or XRN1 silencing (*Figure 5—figure supplement 1B,C*); they were enriched in PBs and translationally more active after DDX6 silencing (*Figure 5—figure supplement 2A,B*), which is consistent with the reported presence of most of these regulatory proteins in PBs (*Hubstenberger et al., 2017; Franks and Lykke-Andersen, 2007*).

Courel et al. eLife 2019;8:e49708. DOI: https://doi.org/10.7554/eLife.49708



Figure 5. GC biases in the targets of various RNA decay factors, translation regulators and miRNAs. (A) GC content biases in the targets of various RBPs. The targets of the indicated factors were defined using CLIP experiments or motif analysis (see Materials and methods). The boxplots represent the distribution of the GC content of their gene. The distribution for all mRNAs is presented for comparison (in gray) and the red dashed line indicates its median value. (B) Heatmap representation of the different factors depending on the behavior of their mRNA targets in the different datasets. The Figure 5 continued on next page

Courel et al. eLife 2019;8:e49708. DOI: https://doi.org/10.7554/eLife.49708

XRN1-dependent decay (*Figure 6—figure supplement 1A*). However they were not more sensitive to DDX6-dependent decay (*Figure 6—figure supplement 1B*). This suggested that XRN1 preference for GC-rich mRNAs is at least in part related to their exclusion from PBs, whereas DDX6 has a true preference for GC-rich mRNAs.

Interestingly, these PB-excluded AU-rich mRNAs were strongly enriched in mRNAs encoding secreted proteins and proteins associated with membranous organelles, with GO categories related to mitochondria, intracellular organelles and extracellular matrix proteins representing up to 36% of the transcripts (*Figure 6—figure supplement 1C*). Thus, while mRNA localization in PBs is highly influenced by their GC content, it may also be outcompeted by retention on membranous organelles and plasma membrane.

#### Contribution of both the CDS and 3'UTR GC content to PB localization

The next major issue was to distinguish which of the CDS or 3'UTR is more important for PB localization, since they have very similar GC contents ( $r_s = 0.72$ , p<0.0001).

As a first approach, we analyzed PB localization of long non-coding RNAs (IncRNAs) (*Hubstenberger et al., 2017*). The correlation between their GC content and PB accumulation was significant ( $r_s = -0.20$ , p<0.0001), but much weaker than that observed for mRNAs (-0.64, *Figure 1B*) or 3'UTRs (-0.55, *Figure 1D*) (-0.20 and -0.55 are significantly different, p<0.0001). In fact, AU-rich IncRNAs poorly accumulated in PBs, while GC-rich IncRNAs were excluded (*Figure 6*—*figure supplement 1D,E*). This suggested that the coding capacity of mRNAs was important for PB localization. As a second approach, we directly analyzed the respective contribution of the GC content of CDS and 3'UTR to PB localization. On one side, we analyzed transcripts by groups of similar 3'UTR GC content. Their GC3 was systematically much lower in PB mRNAs than in PB-excluded mRNAs, with differences ranging between 9% and 13% GC (*Figure 6A*, *Figure 6*—*figure supplement 1E*). In a mirror analysis, we analyzed groups of transcripts with similar GC3. The importance of the 3'UTR GC content became visible only for GC3 higher than 50% GC (note that GC3 median value is 59% GC), with AU-rich 3'UTR allowing for their accumulation in PBs despite a GC-rich CDS (*Figure 6B*, *Figure 6*—*figure supplement 1E*). We concluded that both the CDS and 3'UTR GC content ter important for PB localization, with the CDS being the primary feature.

We speculate that suboptimal translation of AU-rich CDS makes mRNAs optimal targets for translation regulation, since any control mechanism has to rely on a limiting step. Conversely, optimally translated transcripts would be better controlled at the level of stability. One prediction is that proteins produced in limiting amounts, such as those encoded by haplo-insufficiency genes, are more likely to be encoded by PB mRNAs. Genome-wide haplo-insufficiency prediction scores have been defined for human genes, using diverse genomic, evolutionary, and functional properties trained on known haplo-insufficient and haplo-sufficient genes (*Huang et al., 2010; Steinberg et al., 2015*). Using these scores, we found that haplo-insufficient mRNAs were indeed significantly enriched in PBs (*Figure 6C*).

To add experimental support to the importance of GC content for PB assembly, we conducted two assays. First, we analyzed the localization of reporter transcripts that differ only by the GC content of their CDS. HEK293 cells stably expressing the PB marker GFP-LSM14A (*Hubstenberger et al., 2017*) were transfected with plasmids containing an AU-rich (36% GC) or GC-rich (58% GC) CDS that encodes the same Renilla luciferase (Rluc) protein. After 24 h cells were analyzed for luciferase activity and transcript localization. In agreement with our previous analyses, Rluc protein yield was considerably reduced (4.5-fold) using the AU-rich rather than the GC-rich version of the CDS, despite similar mRNA levels (*Figure 6D*). The localization of the Rluc transcripts was then analyzed by smiFISH using AU-rich or GC-rich specific probes (*Figure 6—figure supplement 2A, Supplementary file 2*) (*Tsanov et al., 2016*). PBs containing clusters of Rluc mRNA molecules were five times more frequent using the AU-rich than the GC-rich version of the CDS (*Figure 6E, F*). A similar result was obtained in HEK293 cells after PB immunostaining with DDX6 antibodies (*Figure 6F, Figure 6—figure supplement 2B*). Therefore, simply changing the GC content of this medium-size CDS (564 codons) was sufficient to modify mRNA localization in PBs.

Second, we tested the capacity of AU-rich and GC-rich RNA to form granules independently of translation. To this aim, we set-up a cell-free assay using HEK293 cells expressing GFP-LSM14A to monitor the formation of fluorescent PB-like granules and count them by flow cytometry, as previously performed for PBs (*Hubstenberger et al., 2017*). After lysis and elimination of preexisting PBs

Courel et al. eLife 2019;8:e49708. DOI: https://doi.org/10.7554/eLife.49708



Figure 6. The GC content of the CDS and the 3'UTR both contribute to PB localization. (A) General importance of the CDS. Transcripts were subdivided into six classes depending on the GC content of their 3'UTR (from <40 to >55%). The boxplots represent the distribution of their CDS GC content at position 3 (GC3) in PB-enriched (PB-in) and PB-excluded (PB-out) mRNAs. (B) Importance of the 3'UTR for GC-rich CDSs. Transcripts were subdivided into eight classes depending on their GC3 (from <40 to >70%). The boxplots represent the distribution of their 3'UTR GC content in PB-Figure 6 continued on next page

Courel et al. eLife 2019;8:e49708. DOI: https://doi.org/10.7554/eLife.49708



Figure 6 continued

enriched (PB-in) and PB-excluded (PB-out) mRNAs. (C) The transcripts of haplo-insufficiency genes are enriched in PBs. The haplo-insufficiency score is the probability that a gene is haplo-insufficient, as taken from the Huang et al. (2010) study. The analysis was performed for PB-enriched (PB-in, n = 4646, median score 0.26) and PB-excluded (PB-out, n = 4205, median score 0.17) mRNAs. The difference of distribution of haplo-insufficiency scores was statistically significant using a two tail Mann-Whitney test: p<0.0001. The results were similar using Steinberg et al. (2015) scores. (D) Protein yield is higher from a GC-rich than an AU-rich CDS. HEK293 cells were transfected with Rluc reporters differing by the GC content of their CDS, along with a control Fluc plasmid. After 24 hr, mRNA levels were measured by gPCR and protein levels by luciferase activity. The Rluc to Fluc ratio for the GC-rich reporter was set to 100 (n = 3). Error bars, SD. (E, F) Preferential localization of AU-rich transcripts in PBs. HEK293 cells expressing GFP-LSM14A were transfected with the AU-rich and GC-rich Rluc reporters and the localization of the Rluc transcripts (in red) was analyzed by smiFISH. Representative cells are shown in (E). Bar, 5 µm. Arrows indicate the PBs enlarged above. The experiment was performed in duplicate (exp. 1 and 2) and repeated in HEK293 cells where PBs were immunostained using DDX6 antibodies (exp. 3 and 4). The percentage of PBs containing clusters of Rluc transcripts in the four experiments is represented in (F). Exp.1: 56/75 PBs from 21/27 cells; exp.2: 87/75 PBs from 38/35 cells; exp.3: 31/32 PBs from 15/19 cells; exp.4: 72/ 83 PBs from 34/41 cells (G) Assembly of PB-like granules in cell-free extracts from HEK293 cells expressing GFP-LSM14A. The scheme recapitulates the main steps of the assay. Fluorescence microscopy images show that PBs in cells, PBs after cell lysis, and reconstituted PB-like granules have similar size. Bar, 10 µm. (H) AU-rich RNA favors the formation of PB-like granules. PB-like granules were assembled in cell-free extracts in the presence of AU-rich or GC-rich RNA, and counted by flow cytometry. Their number in the absence of added RNA was set to 100 (n = 3 experiments in duplicate, using two independent cell-free extracts and RNA preparations). Error bars, SD.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Role of PB localization in XRN1 and DDX6 sensitivity and importance of the coding property for PB localization. Figure supplement 2. The GC content of reporters RNAs is key for PB localization.

> by centrifugation, addition of recombinant DDX6 triggered the formation of new granules on ice, in a dose-dependent manner (*Figure 6—figure supplement 2C–E*). These granules had a similar size to endogenous PBs (*Figure 6G, Figure 6—figure supplement 2D*). This reconstitution assay was surprisingly efficient, as granule formation required rather low concentrations of both the lysate components (about 100-fold lower than in cells, see Materials and methods) and recombinant DDX6 (0.17  $\mu$ M versus 3.3  $\mu$ M in cells, *Ernoult-Lange et al., 2012*). Next, the cell-free extract was briefly treated with micrococcal nuclease to decrease the amount of cellular RNA, and the assay was repeated with or without addition of an either AU-rich or GC-rich 1700 nt-long synthetic RNA (*Figure 6H, Figure 6—figure supplement 2F*). The AU-rich RNA increased the number of PB-like granules in a dose-dependent manner, while GC-rich RNA prevented their formation. Therefore, in the complex lysate environment and at 0°C, uncapped non-polyadenylated AU-rich RNA specifically favor the condensation of granules that are DDX6-dependent and contain LSM14A, two proteins that play a major role in the assembly of cellular PBs.

> We conclude from these experimental data and our previous analyses that both the CDS and the 3'UTR contribute to PB localization. Low GC content in the CDS likely acts, at least in part, through codon usage and low translation efficiency. In the 3'UTR low GC content could allow for the binding of RBPs with affinity for AU-rich motifs and/or influence RNA secondary structure.

#### Discussion

#### An integrated model of post-transcriptional regulation

Our combined analysis of the transcriptome of purified PBs together with transcriptomes following the silencing of broadly-acting storage and decay factors, including DDX6, XRN1 and PAT1B, provided a general landscape of post-transcriptional regulation in human cells, where mRNA GC content plays a central role. As schematized in *Figure 7*, GC-rich mRNAs are excluded from PBs and mostly controlled at the mRNA level by a mechanism involving the helicase DDX6 and the 5'-3' exonuclease XRN1. In contrast, AU-rich mRNAs are enriched in PBs and rather controlled at the level of translation by a mechanism also involving DDX6, while their accumulation tend to depend on a mechanism involving the DDX6 partner PAT1B and most likely 3' decay. Accordingly, NMD and m6A-associated mRNA decay pathways tend to target GC-rich mRNAs, while most sequence-specific translation regulators and miRNAs tend to target AU-rich mRNAs. The distinct fate of GC-rich and AU-rich mRNAs correlates with a contrasting protein yield resulting from both different codon usage and CDS length. Thus, 5' mRNA decay appears to control preferentially mRNAs with optimal

Chromosomes and Gene Expression



Figure 7. Schematic representation recapitulating the features of mRNA post-transcriptional regulation depending on their GC content.

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Distribution of the gene GC content in various eukaryotic genomes.

translation, which are mostly GC-rich, whereas translation regulation is mostly used to control mRNAs with limiting translational efficiency, which are AU-rich.

It should be stressed that this model only applies to post-transcriptional regulation pathways that involve PBs, XRN1, DDX6 and PAT1B. Moreover, while the analysis was consistent in proliferating cells of various origins, giving rise to a general model, it is possible that changes in cell physiology, for instance at particular developmental stages or during differentiation, rely on a different mechanism. In addition, our analysis focused on trends common to most transcripts, which does not preclude that particular mRNAs could be exceptions to the general model, being GC-rich and translationally controlled, or AU-rich and regulated by 5' decay. In terms of translation yield and PB localization, this model is strongly supported by our experiments using AU-rich and GC-rich RNAs: AU-rich reporter mRNAs have a low protein yield compared to GC-rich ones, they preferentially localize in PBs in cells, and they enhance the formation of PB-like granules in a cell free extract.

#### GC content and codon usage

While the redundancy of the genetic code should enable amino acids to be encoded by synonymous codons of different base composition, the wide GC content variation between PB-enriched and PB-excluded mRNAs has consequences on the amino acid composition of encoded proteins. It also strongly impacts the identity of the wobble base: in PB mRNAs, the increased frequency of A/U at position 3 of the codon mechanically results in an increased use of low usage codons. As CDS are also longer in PB mRNAs, it further increases the number of low usage codons per CDS in these mRNAs. Interestingly, we showed that the absolute number of low usage codons per CDS best correlates with low protein yield. Thus, these results provide a molecular mechanism to a previously unexplained feature of PB mRNAs, that is, their particularly low protein yield, which we reported was

Courel et al. eLife 2019;8:e49708. DOI: https://doi.org/10.7554/eLife.49708

an intrinsic property of these mRNAs and not simply the result of their sequestration in PBs (*Hubstenberger et al., 2017*). Interestingly, the mRNAs of haplo-insufficiency genes, which by definition are expected to have a limited protein yield, are indeed enriched in PBs (*Figure 6C*).

In addition to the GC-dependent codon bias, we also observed some GC-independent codon bias in PB-enriched mRNAs. Interestingly, some important post-transcriptional regulation programs involve codon usage. This was shown for proliferation- versus differentiation-specific transcripts in human cells (*Gingold et al., 2014*) and for maternal mRNA clearance during the maternal-to-zygotic transition in zebrafish, *Xenopus*, mouse, and *Drosophila* (*Bazzini et al., 2016*). Codon usage could also enable the regulation of small subsets of mRNAs, depending on cellular requirements. In man, half of GO sets show more variability in codon usage than expected by chance (*Rudolph et al., 2016*). Based on GO analysis, we previously demonstrated that PB mRNAs tend to encode regulatory proteins, while PB-excluded mRNAs encode basic functions. Furthermore, proteins of the same scriptional regulons (*Hubstenberger et al., 2017; Standart and Weil, 2018*). We speculate that specific codon usage could also underlie these post-transcriptional regulons.

#### Distinct mechanisms of mRNA stability control

Our analysis distinguished separate modes of stability control, depending on mRNA GC content. Interestingly, our previous analysis of the read coverage of PB and non-PB RNAs alsosuggested the existence of distinct decay pathways related to 3' and 5' extremities, respectively (*Hubstenberger et al., 2017*). Part of the triage towards the PAT1B versus the DDX6/XRN1-dependent pathway could be somehow associated with the capacity of the transcripts to condense in PBs, since, among the AU-rich mRNAs, only the ones enriched in PBs were affected by PAT1B silencing (not shown). Nevertheless, PBs do not directly mediate the triage, since (i) TOP mRNAs were strongly excluded from PBs, but unaffected by either DDX6 or XRN1 silencing, and (ii) while PBs disappeared after DDX6 silencing (*Minshall et al., 2009*), causing the release of AU-rich mRNAs into the cytosol, only GC-rich mRNAs were stabilized.

Focusing on DDX6-dependent decay, the minor impact of the 5'UTR GC content, compared to CDS and 3'UTR, indicates that this helicase is not simply involved in allowing XRN1 access to the 5' end. It is tempting to propose rather that, by unwinding GC-rich double-stranded regions over the entire length of the mRNA, DDX6 facilitates XRN1 progression. UPF1, another RNA helicase involved in mRNA decay, has also been shown to preferentially affect the decay of GC-rich mRNAs (*Imamachi et al., 2017*). The same observation was made for targets of the NMD pathway, which involves UPF1, SMG6 and SMG7 (*Colombo et al., 2017*). Although the bias in these cases was restricted to the 3'UTR regions, it suggests that DDX6 could act in concert with other helicases for decay of GC-rich mRNAs. For AU-rich mRNAs, either such an active unfolding would be dispensable, or it would rely on other helicases that remain to be identified, with potential candidates being those enriched in purified PBs (*Hubstenberger et al., 2017*). Noteworthily, in agreement with the present study in cell lines, skin fibroblasts from patients with DDX6 missense mutations also showed significant accumulation of GC-rich mRNAs (*Balak et al., 2019*).

Concerning XRN1, we showed that it preferentially acts on PB-excluded mRNAs, that is, on GCrich mRNAs but also, to a lesser extent, on a subset of AU-rich mRNAs (*Figure 6—figure supplement 1A*). While XRN1 is described as a general decay factor, there is evidence that 5' decay shows some specificity in vivo. In *Drosophila*, mutations in XRN1 have specific phenotypes, including wound healing, epithelial closure and stem cell renewal in testes, suggesting that it specifically degrades a subset of mRNAs (*Pashler et al., 2016*). Of particular relevance, a recent study showed that yeast XRN1 associates with ribosomes and decays mRNAs during translation (*Tesina et al., 2019*). If the mechanism is conserved in human, it would explain why XRN1 preferentially acts on GC-rich mRNAs, since they are the most actively translated mRNAs.

Turning to PAT1B, we showed that its silencing did not affect the same mRNAs as DDX6 silencing. A recent yeast study also showed that Dhh1/DDX6 and Pat1/PAT1B decay targets poorly overlap, suggesting the existence of two separate pathways in yeast as well (*He et al., 2018*). However, the underlying mechanisms may differ in the two organisms, since both Pat1 and Dhh1 targets were poorly translated in yeast, while only PAT1B targets were poorly translated in our study. Previous studies reported that tethered PAT1B decreases the abundance of a reporter mRNA in human cells, as a result of enhanced deadenylation and decapping (*Ozgur et al., 2010; Kamenska et al., 2014*;

#### **Chromosomes and Gene Expression**

**Totaro et al., 2011**). However, we did not find any significant evidence of PAT1B-enhanced 5' to 3' decay in our read coverage analysis. Interestingly, genome-wide evidence in yeast too suggests that following decapping a significant fraction of the transcripts up-regulated in cells lacking Pat1 or Lsm1 is efficiently decayed from 3' to 5', rather than by the 5'-3' Xrn1 exonuclease (*He et al., 2018*). Moreover, CLIP experiments in yeast showed a preference for Pat1 and Lsm1 binding to the 3' end of mRNAs (*Mitchell et al., 2013*). Altogether, we therefore favor the possibility that the mechanism by which PAT1B affects mRNA stability in human cells relies prominently on 3' to 5' decay. It could involve the CCR4/CNOT deadenylase and the LMS1-7 complexes, as, despite their low abundance or small size, CNOT1 and LSM2/4 had high scores in our previous PAT1B interactome analysis (*Vindry et al., 2017*; *Vindry et al., 2019*).

PAT1B showed a strong preference for AU-rich targets, including those containing AREs. Many studies have demonstrated a link between AREs and mRNA stability, and its striking importance for processes such as inflammation (*Wells et al., 2017*). Most ARE-BPs promote mRNA destabilization while some ARE-BPs, such as HuR (*Lebedeva et al., 2011*; *Mukherjee et al., 2011*) and AUF1 for a subset of mRNAs (*Yoon et al., 2014*), can stabilize mRNAs. Altogether, these observations raise the possibility that ARE-BPs behave either as enhancers or inhibitors of PAT1B activity in mRNA decay. Similarly, the miRNA pathway could activate this PAT1B activity.

#### **Translation repression and PB accumulation**

DDX6 activity in translation repression has been documented in a variety of biological contexts. In Xenopus oocytes, DDX6 contributes to the repression of maternal mRNAs, as a component of the well characterized CPEB complex (Minshall et al., 2007). In Drosophila, Me31B/DDX6 represses the translation of thousands of mRNAs during the early stages of the maternal to zygotic transition (Wang et al., 2017). It also collaborates with FMRP and AGO proteins for translation repression in fly neurons (Barbee et al., 2006). In mammals, DDX6 is a general co-factor of the miRNA pathway (Chen et al., 2014; Mathys et al., 2014; Kamenska et al., 2016; Chu and Rana, 2006). The intriguing finding of our analysis was that the targets of most tested translation regulators (FRX1-2, FMR1, PUM1-2, most miRNAs...) were AU-rich and had a median behavior in all datasets similar to other mRNAs of same GC content. While the GC bias of the targets of the various RBPs and miRNAs are likely to reflect their sequence preference, some RBPs may not reach sufficient concentration to occupy a significant number of binding sites. Moreover binding does not mean activity, and these factors could require cofactors or post-translational modifications to become 'productive' in terms of mRNA regulation. Of note, while TOP mRNAs clearly constituted an exception in terms of GC content, they are particular too in terms of their translation repression mechanism, with a regulatory sequence located at the 5' end.

PBs add another layer to translation regulation, by storing translationally repressed mRNAs. It was already known that ARE-containing mRNAs bound to ARE-BPs such as TTP and BRF were recruited to PBs (*Franks and Lykke-Andersen, 2007*) and that miRNA targets accumulate in PBs upon miRNA binding in a reversible manner (*Bhattacharyya et al., 2006*; *Liu et al., 2005*). As DDX6 and 4E-T are key factors in PB assembly in mammalian cells (*Minshall et al., 2007*; *Ayache et al., 2015; Kamenska et al., 2014; Ferraiuolo et al., 2005*), it raises the question of whether these proteins contribute to translation repression by triggering the recruitment to PBs. While we have no answer for DDX6, we observed that 4E-T targets were particularly enriched in PBs, though rather insensitive to DDX6 or PAT1B depletion. First, this suggests that 4E-T function in PBs is partly independent of DDX6, agreeing with the previous observation that some PBs can still form when the DDX6 interaction domain of 4E-T is mutated (*Kamenska et al., 2016*). Second, it indicates that PB localization and translation repression by DDX6 can be separated, at least to some extent.

In addition to their high AU content, we observed that PB mRNAs were longer than mRNAs excluded from PBs. Long CDS could favor mRNA recruitment in PBs by decreasing translation efficiency, and hence increasing the fraction of polysome-free mRNAs. Long 3'UTR should increase the probability of binding translation regulators, contributing also to PB recruitment. In agreement, it is interesting that DDX6 preferentially repressed the translation of mRNAs with long 3'UTR, while the CDS length was irrelevant (*Figure 3—figure supplement 2G*). It is also possible that protein binding over the entire length of mRNA may contribute to PB recruitment. This would explain why the GC content of the 5'UTR has little impact as it is considerably shorter than CDS and 3'UTR. In this

Courel et al. eLife 2019;8:e49708. DOI: https://doi.org/10.7554/eLife.49708

#### **Chromosomes and Gene Expression**

regard, it is interesting to note that we and others have previously proposed from biochemical experiments and electron microscopy imaging that DDX6 and its partner LSM14A coat repressed mRNAs at multiple positions, according to their length (*Ernoult-Lange et al., 2012*; *Götze et al., 2017*).

#### Evolutionary issues

Our results raise intriguing issues in terms of evolution. While PBs have been observed in very diverse eukaryotes, animal and vegetal, the GC-rich part of the human genome only emerged in amniotes (the ancestor of birds and mammals) (*Duret et al., 2002*). In more distant organisms, such as yeast, *C. elegans, Drosophila* or *Xenopus*, genes have a narrow GC content distribution, most often AU-rich (*Figure 7—figure supplement 1*). Thus, despite the conservation of the DDX6, XRN1 and to a lesser extent PAT1B proteins in eukaryotes, distinct modes of mRNA stability control depending on GC content may have evolved more recently. Moreover, the enzymatic properties of DDX6 could have adapted to the higher GC content of human transcripts.

The GC-rich part of the human genome was acquired through GC-biased gene conversion (gBGC), a non-selective process linked with meiotic recombination affecting GC content evolution (*Duret and Galtier, 2009*). We considered the possibility that meiotic recombination occurred more frequently in genomic regions containing genes involved in basic functions, leading to stronger gBGC and, consequently, to higher GC content of PB-excluded mRNA. However, our analysis showed that mRNA base composition and PB enrichment are associated independently of meiotic recombination or the genomic context. We therefore put forward a model where the genome of higher eukaryotes has evolved partly to facilitate the control of regulators at the translation level, by limiting their protein yield. Regardless, the overall outcome of our study is that in human the GC content, a feature written in the genome, shapes in part mRNA fate and its control in a strikingly coherent system.

### **Materials and methods**

#### Key resources table

| Reagent type<br>(species) or resource | Designation                     | Source or reference        | Identifiers                      | Additional<br>information                                                         |
|---------------------------------------|---------------------------------|----------------------------|----------------------------------|-----------------------------------------------------------------------------------|
| Cell line<br>(Homo sapiens)           | HEK293                          | ATCC                       | Cat# PTA-4488,<br>RRID:CVCL_0045 |                                                                                   |
| Cell line<br>(Homo sapiens)           | HeLa                            | ATCC                       | Cat# CCL-2,<br>RRID:CVCL_0030    |                                                                                   |
| Cell line<br>(Homo sapiens)           | HCT116                          | ATCC                       | Cat# CCL-247,<br>RRID:CVCL_0291  |                                                                                   |
| Cell line<br>(Homo sapiens)           | HEK293 expressing<br>GFP-LSM14A | Hubstenberger et al., 2017 | PMID:28965817                    |                                                                                   |
| Transfected<br>construct (rabbit)     | siβ-Globin                      | Serman et al., 2007        | PMID:17604308                    | GGUGAAUGUGGAAGAAGUUdTdT<br>siRNA used as negative control<br>for the siDDX6 expt. |
| Transfected<br>construct (human)      | siDDX6                          | Minshall et al., 2009      | PMID:19297524                    | GGAACUAUGAAGACUUAAAdTdT                                                           |
| Transfected<br>construct (human)      | siXRN1                          | Thermofisher               | Cat# AM16708A                    | ID125199                                                                          |
| Transfected<br>construct (human)      | siRNA negative control          | Thermofisher               | Cat# 4390843                     | siRNA used as a negative control for the siXRN1 expt.                             |
| Transfected<br>construct (human)      | shXRN1                          | Thermofisher               | Cat# RHS<br>4696–99704634        | Lentiviral 'TRIPZ' construct<br>to transfect and express<br>the XRN1 shRNA.       |
| Transfected<br>construct (human)      | Non-silencing shRNA             | Thermofisher               | Cat# RHS 4743                    | Lentiviral 'TRIPZ' construct<br>to transfect and express<br>the control shRNA.    |
| Continued on next p                   | bage                            |                            |                                  |                                                                                   |

Courel et al. eLife 2019;8:e49708. DOI: https://doi.org/10.7554/eLife.49708



| Reagent type<br>(species) or resource | Designation                              | Source or reference             | Identifiers                         | Additional information                                                                                                                 |
|---------------------------------------|------------------------------------------|---------------------------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Antibody                              | anti DDX6<br>(rabbit polyclonal)         | Novus biological                | Cat# NB200-191,<br>RRID:AB_10003156 | WB (1:15000), IF (1:2000)                                                                                                              |
| Antibody                              | Anti XRN1<br>(rabbit polyclonal)         | Novus Biosciences               | Cat# NB 500–191,<br>RRID:AB_527572  | WB (1:5000)                                                                                                                            |
| Antibody                              | Anti XRN1<br>(rabbit polyclonal)         | Bethyl                          | Cat# A300-443A,<br>RRID:AB_2219047  | WB (1:1000)                                                                                                                            |
| Antibody                              | Anti ribosomal S6<br>(rabbit monoclonal) | Cell signalling<br>technologies | Cat# 2217,<br>RRID:AB_331355        | WB (1:5000)                                                                                                                            |
| Antibody                              | Anti Pol II<br>(rabbit polyclonal)       | Santa Cruz                      | Cat# sc-899,<br>RRID:AB_632359      | WB (1:100)                                                                                                                             |
| Antibody                              | Anti tubulin<br>(mouse monoclonal)       | Sigma-Aldrich                   | Cat# T9026,<br>RRID:AB_477593       | WB (1:30000)                                                                                                                           |
| Recombinant<br>DNA reagent            | hRluc-GFP-GC-rich                        | This paper                      |                                     | phRL-CMV vector bearing an<br>Rluc-GFP GC-rich insert,<br>used in PB-like reconstitution,<br>smiFISH and luciferase<br>reporter expts. |
| Recombinant<br>DNA reagent            | Rluc-GFP-AU-rich                         | This paper                      |                                     | phRL-CMV vector bearing an<br>Rluc-GFP GC-rich insert,<br>used in PB-like reconstitution,<br>smiFISH and luciferase<br>reporter expts. |
| Sequence-<br>based reagent            | ACTB qPCR primers                        | This paper                      |                                     | Fwd: TCCCTGGAGAAGAGCTACGA<br>Rev: AGCACTGTGTTGGCGTACAG                                                                                 |
| Sequence-<br>based reagent            | APP qPCR primers                         | Gift from R. Blaise             |                                     | Fwd: acttgcatgactacggc<br>Rev: actcttcagtgtcaaagttgt                                                                                   |
| Sequence-<br>based reagent            | BACE1<br>qPCR primers                    | Gift from R. Blaise             |                                     | Fwd: ctttgtggagatggtggac<br>Rev: aaagttactgctgcctgtat                                                                                  |
| Sequence-<br>based reagent            | LSM14A qPCR primers                      | This paper                      |                                     | Fwd: AGCAGTTTGGTGCTGTTGGT<br>Rev: AACCGCACTACTTTGGGGTA                                                                                 |
| Sequence-<br>based reagent            | LSM14B qPCR primers                      | This paper                      |                                     | Fwd: CGACAACATCTCTTCTGAACTCAA<br>Rev: GTGTTGAGCTTCCTCTCTTCG                                                                            |
| Sequence-<br>based reagent            | MFN2<br>qPCR primers                     | This paper                      |                                     | Fwd: GAACCTGGAGCAGGAAATTG<br>Rev: AACCAACCGGCTTTATTCCT                                                                                 |
| Sequence-<br>based reagent            | PNRC1<br>qPCR primers                    | This paper                      |                                     | Fwd: CCCCCTCAGGAAAGAGGTTTT<br>Rev: ACAAGTGTATACCATGAACAAGCTG                                                                           |
| Sequence-<br>based reagent            | TIMP2<br>qPCR primers                    | Blaise et al., 2012             | PMID:22260497                       | Fwd: gaagagcctgaaccacaggt<br>Rev: cggggaggagatgtagcac                                                                                  |
| Sequence-<br>based reagent            | TRIB1<br>qPCR primers                    | This paper                      |                                     | Fwd: ACCTGAAGCTTAGGAAGTTCGT<br>Rev: CTGACAAAGCATCATCTTCCCC                                                                             |
| Sequence-<br>based reagent            | HPRT1<br>qPCR primers                    | This paper                      |                                     | Fwd: TAATTGACACTGGCAAAACAATGCAGACT<br>Rev: GGGCATATCCTACAACAAACTTGTCTGGA                                                               |
| Sequence-<br>based reagent            | REN-lowGC<br>qPCR primers                | This paper                      |                                     | Fwd: CCAGGATTCTTTTCCAATGC<br>Rev: CTTGCGAAAAATGAAGACCTTT                                                                               |
| Sequence-<br>based reagent            | REN-highGC<br>qPCR primers               | This paper                      |                                     | Fwd: CGAGAACGCCGTGATTTT<br>Rev: GACGTGCCTCCACAGGTAG                                                                                    |
| Sequence-<br>based reagent            | FIREfly qPCR primers                     | This paper                      |                                     | Fwd: TGAGTACTTCGAAATGTCCGTTC<br>Rev: GTATTCAGCCCATATCGTTTCAT                                                                           |
| Sequence-<br>based reagent            | RenGFP-lowGC-24<br>DNA probe             | This paper                      |                                     | Set of 24 primary probes<br>specific of the RenGFP lowGC<br>mRNA used in smiFISH expts.<br>(See <b>Supplementary file</b> 2)           |

Continued on next page

Courel et al. eLife 2019;8:e49708. DOI: https://doi.org/10.7554/eLife.49708



Continued

| Reagent type<br>(species) or resource | Designation                         | Source or reference                              | Identifiers      | Additional<br>information                                                                                                                         |
|---------------------------------------|-------------------------------------|--------------------------------------------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Sequence-<br>based reagent            | RenGFP-highGC-24<br>DNA probe       | This paper                                       |                  | Set of 24 primary probes<br>specific of the RenGFP highGC<br>mRNA used in smiFISH expts.<br>(see <b>Supplementary file 2</b> )                    |
| Sequence-<br>based reagent            | FLAP-Y-Cy3<br>DNA probe             | Tsanov et al., 2016                              | PMID:27599845    | AA TGC ATG TCG ACG AGG<br>TCC GAG TGT AA<br>Secondary probe conjugated<br>to two Cy3 moieties at the 5'<br>and 3' termini. Used in smiFISH expts. |
| Peptide,<br>recombinant protein       | CBP-DDX6-HIS                        | Ernoult-Lange et al., 2012                       | PMID:22836354    |                                                                                                                                                   |
| Commercial<br>assay or kit            | miRNeasy Mini kit                   | Qiagen                                           | Cat# 217004      |                                                                                                                                                   |
| Commercial<br>assay or kit            | TruSeq Stranded<br>Total RNA kit    | Illumina                                         | Cat# RS-122–2201 |                                                                                                                                                   |
| Commercial<br>assay or kit            | Dual-Glo<br>Luciferase assay system | Promega                                          | Cat# E2920       |                                                                                                                                                   |
| Chemical<br>compound, drug            | Micrococcal Nuclease                | Thermo Scientific                                | Cat# 88216       |                                                                                                                                                   |
| Software, algorithm                   | Cluster 3.0                         | http://www.eisenlab.<br>org/eisen/?page_id=42    | RRID:SCR_013505  |                                                                                                                                                   |
| Software, algorithm                   | Java Treeview                       | https://sourceforge.<br>net/projects/jtreeview/  | RRID:SCR_016916) |                                                                                                                                                   |
| Software, algorithm                   | Morpheus                            | https://software.<br>broadinstitute.org/morpheus | RRID: SCR_017386 |                                                                                                                                                   |
| Software, algorithm                   | lcy                                 | http://icy.<br>bioimageanalysis.org/             | RRID:SCR_010587  |                                                                                                                                                   |
| Software, algorithm                   | WebGestalt                          | http://www.webgestalt.org/                       | RRID:SCR_006786  |                                                                                                                                                   |

#### Cell culture and transfection

Human embryonic kidney HEK293 cells, epithelioid carcinoma HeLa cells and colorectal carcinoma HCT116 cells were obtained from ATCC. All cells were tested negative for mycoplasma contamination. HEK293 and HeLa cells were maintained in DMEM supplemented with 10% (v/v) fetal calf serum. HCT116 cells were grown in McCoy's 5A modified medium supplemented with 10% (v/v) fetal bovine serum, 5% (v/v) sodium pyruvate and 5% (v/v) non-essential amino acids. The HEK293 cell line stably expressing GFP-LSM14A (*Hubstenberger et al., 2017*) was maintained under selection using 500 µg/ml Geneticin (Gibco, Life Technology).

For DDX6 silencing, 7.10<sup>5</sup> cells were transfected at the time of their plating (reverse transfection) with 50 pmoles DDX6 or control  $\beta$ -globin siRNAs (*Minshall et al., 2009*) per 3 cm diameter well, using Lipofectamine 2000 (Life Technologies, France), and split in two 24 hr later. Cells were lyzed 48 hr after transfection.

For XRN1 silencing with siRNAs, 2.10<sup>5</sup> cells/well were plated in 6-well plates and transfected 24 hr later with 50 nM siRNA negative Control or Silencer Pre-designed siRNA XRN1 (Thermofisher), using Lipofectamine RNAiMAX (Life Technologies). Cells were lyzed 48 hr after transfection.

For XRN1 silencing with shRNA, a doxycycline inducible construct provided by Thermofisher (TRIPZ) with shRNA against XRN1 or non-silencing shRNA was introduced by lentiviral transduction (MOI 0.5). After 10 days of puromycin selection, cells were tested for expression of the construct. For shRNA induction cells were grown to 30% confluency in 10 cm plates before adding 1  $\mu$ g/ml doxycycline. After 24 hr, cells were split in three and doxycycline was maintained until 48 hr.

For smiFISH experiments and luciferase reporter expression,  $2.10^5$  cells were plated in 35 mm diameter dish and transfected 24 hr later with 100 ng of hRluc-GFP-GC-rich or Rluc-GFP-AU-rich plasmids using GenJet Plus DNA (SignaGen Laboratories). For luciferase reporter assay, a Firefly luciferase plasmid (150 ng) was added for normalization. All transfection mixes were made up to 1  $\mu$ g with pUC19. Cells were processed 24 hr after transfection.

Courel et al. eLife 2019;8:e49708. DOI: https://doi.org/10.7554/eLife.49708

#### **Construction of DNA plasmids**

All plasmids were obtained using the InFusion Advantage PCR cloning kit (Clontech). To obtain medium-size CDS, we cloned the Rluc CDS in frame with the one of GFP. An AU-rich CDS of GFP was amplified from the pUC57-GFP(opt) plasmid (generous gift from N. Campo, *Martin et al., 2010*) and cloned in place of GFP into the BamHI/Notl sites of the pEGFP-N1 plasmid (Clontech) to generate the pGFP(opt)-N1 plasmid. The AU-rich CDS of Rluc was taken from the pRL-TK vector (Promega) and cloned in frame into the pGFP(opt)-N1 plasmid to obtain pRL-GFP(opt) plasmid. The GC-rich CDS of Rluc (hRluc) was taken from the phRL-CMV vector (Promega) and cloned in-frame into the pGFP-plasmid. Finally, hRluc-EGFP-GC-rich and Rluc-GFP-AU-rich CDS were cloned into the Nhel/Notl sites of the T7 promotor-containing phRL-CMV vector to generate hRluc-GFP-GC-rich and Rluc-GFP-AU-rich plasmids, respectively. The resulting plasmids differ by their AU-rich or GC-rich CDS but encode the same Rluc-GFP fusion protein.

#### **CBP-DDX6-HIS protein purification**

E.E. coli BL21-CodonPlus (Novagen) transformed with the CBP-p54-His expression vector (*Ernoult-Lange et al., 2012*) were induced in MagicMedia (Invitrogen) at 16°C during 72 hr to produce the CBP-DDX6-HIS protein. Crude protein extract was prepared and sequentially purified as described previously (*Ernoult-Lange et al., 2012*).

#### In vitro transcription and RNA purification

GC-rich and AU-rich RNAs (1707 and 1714 bp, respectively) were transcribed with T7 RNA polymerase (Promega) from linearized (NotI) hRluc-GFP-GC-rich and Rluc-GFP-AU-rich plasmids, purified using the Nucleospin RNA clean-up XS (Macherey-Nagel), quantified with Quantus Fluorometer (Promega) and visualized on 1% agarose gel in 1XTAE buffer containing ethidium bromide.

#### **Cell-free extract preparation**

Stable GFP-LSM14A HEK293 cells grown to 80–90% confluency in 15 cm plates were collected in PBS, cell pellets were frozen in liquid nitrogen and stored at –80°C. Pellets were resuspended in lysis buffer (50 mM Tris, pH 7.4, 1 mM EDTA, 150 mM NaCl, 0,2% Triton X-100) containing 65 U/mL RNa-seOut ribonuclease inhibitor (Promega) and EDTA-free protease inhibitor cocktail (Roche Diagnostics), incubated 20 min on ice and centrifuged at 500 xg for 5 min at 4°C to deplete nuclei. The cytoplasmic lysate was half diluted to 75 mM NaCl with buffer containing 50 mM Tris, pH 7.4, 1 mM EDTA, 10 mM CaCl2, 0,2% Triton X-100, and treated with 1000 u/ml of micrococcal nuclease (Thermo Scientific) for 15 min at 37°C. The micrococcal nuclease was inactived by adding EGTA, pH 8.0 to a final concentration of 20 mM. The cytoplasmic lysate was further spun at 11000 xg for 7 min at 4°C to obtain a surpernatant depleted of endogenous P-bodies. This supernatant containing the GFP-LSM14A soluble protein, called cell free extract, was quantified by the Coomassie protein assay (Thermo Scientific).

#### In vitro reconstitution assay of P-body like granules

To reconstitute P-body like granules, 1  $\mu$ g of purified CBP-DDX6-HIS protein was added to 200  $\mu$ g of cell free extract, mixed or not with RNA, in a 100  $\mu$ L reaction volume. After 2 hr on ice, 90  $\mu$ L of the reactions were run through a MACSQuant analyzer (Miltenyi Biotec). Particles were detected according to their Forward-scattered light (FSC) and their green fluorescence using the 488 nm excitation laser and counted in the total volume. We have previously reported that in HeLa cells, 15  $\mu$ g proteins (corresponding to 53,000 cells) contain 8.6 ng DDX6, and that DDX6 concentration is 0.56 mM in PBs and 3.3  $\mu$ M in cells (170-fold less) (*Ernoult-Lange et al., 2012*). In the assay, CBP-DDX6-HIS concentration is 0.17  $\mu$ M (1  $\mu$ g in 100  $\mu$ l, 61 kDa), and therefore about 20 fold less concentrated than in a cell, while the cell content (15  $\mu$ g/53000 cells, 1000  $\mu$ m<sup>3</sup>/cell, leading to 200  $\mu$ g/0.7  $\mu$ l) is diluted about 100 fold (200  $\mu$ g in 100  $\mu$ l).

For imaging experiments, the reactions were centrifuged at 11000 xg for 7 min at 4°C, resuspended in 5  $\mu$ L of Mowiol (PolySciences) mounting medium, mixed by vortexing and mounted between glass slide and coverslip. Microscopy was performed on a Leica DMR microscope (Leica) using a 63  $\times$  1.32 oil-immersion objective. Photographs were taken using a Micromax CCD camera

#### Chromosomes and Gene Expression

(Princeton Scientific Instruments) driven by MetaMorph software (Molecular Devices). Images were processed with NIH ImageJ software.

#### smiFISH experiments

Cells transfected for 24 hr with hRluc-GFP-GC-rich or Rluc-GFP-AU-rich plasmids were fixed with 4% paraformaldehyde for 20 min at RT and permeabilized in 70% ethanol overnight at 4°C. The sets of transcript-specific probes (*Supplementary file 2*) and the secondary Cy3 FLAP probe were designed, purchased and hybridized as previously described (*Tsanov et al., 2016*). Of note, none of the AU-rich probes and only 7 out of the 24 GC-rich probes hybridize to the GFP-LSM14A transcripts, resulting in either no signal or a faint signal which was easy to discriminate from the Rluc-GFP mRNA signal. Cells were further processed for immunostaining using rabbit polyclonal anti-DDX6 (1:2000; Novus Biological) and goat anti-rabbit Alexa Fluor 350 (1:300, Thermofisher) antibodies. Epifluorescence microscopy was performed on an inverted Zeiss Z1 microscope equipped with a motorized stage using a  $63 \times 1.32$  oil immersion objective. Images were processed with Icy software.

#### Luciferase reporter assay

Cells transfected for 24 hr with Firefly control plasmid and hRluc-GFP-GC-rich or Rluc-GFP-AU-rich plasmids were harvested and processed for RNA (4/5) and protein (1/5) luciferase quantification. Total RNA was purified using Trizol (Invitrogen) and DNAse-treated (Turbo DNAse, Invitrogen). qRT-PCR was carried out as described in the corresponding section, and Renilla mRNA levels were normalized to the Firefly control. Luciferase protein assay was performed with the Dual Glo Luciferase assay kit (Promega) according to the manufacturer's instructions. Relative light determinations were measured in a Lumat LB 9507 luminometer (Berthold).

#### Western blot analysis

Total cell lysates were obtained as described previously (*Courel et al., 2006*). Proteins were separated on SDS-PAGE on 4–12% polyacrylamide gel (NuPage, Invitrogen) and transferred onto nitrocellulose membrane (PerkinElmer, France). After blocking in 5% (w/v) nonfat dry milk in PBS for 30 min at RT, the membrane was incubated for 1 hr at 37°C with primary antibodies. After washing in PBS containing 0.05% (v/v) tween-20, blots were incubated for 40 min at RT with horseradish peroxidase-conjugated secondary anti-rabbit antibody (1:10000; Jackson Immunoresearch Laboratories). Immunoreactive bands were visualized by chemiluminescence detection of peroxidase activity (SuperSignal West Pico, Pierce) and exposure to CL-XPosure film (Pierce). Protein expression was evaluated by densitometry (NIH ImageJ).

For the shRNA XRN1 experiment, proteins were isolated using RIPA buffer with Halt Protease and Phosphatase Inhibitor Cocktail (Thermo Scientific), precipitated with acetone and separated on Tris-Acetate 3–8% polyacrylamide gel (NuPage, Invitrogen) before transfer to nitrocellulose membrane (GE Healthcare). After blocking with 5% (w/v) nonfat dry milk in TBST for 30 min at RT the membrane was incubated for 1 hr at RT or o/n at 4°C with primary antibodies. After washing in TBST, blots were subsequently incubated for 1 hr at RT with horseradish peroxidase-conjugated secondary anti-rabbit/mouse antibodies (1:10000; Sigma). Immunoreactive bands were visualized by chemiluminescence detection of peroxidase activity (SuperSignal West Dura, Pierce) and imaged using ImageQuant LAS 4000 (GE Healthcare). Protein expression was evaluated by densitometry (NIH ImageJ).

Primary antibodies were: rabbit polyclonal anti-DDX6 (1:15000; Novus Biological), rabbit polyclonal anti-ribosomal S6 (1:5000; Cell Signaling Technology), rabbit polyclonal anti-XRN1 (1:1000, Bethyl Laboratories, and 1:5000 Novus Bioscience), rabbit polyclonal anti-Pol II (1:100, Santa Cruz), mouse monoclonal anti-tubulin (1:30000, Sigma-Aldrich). *q-RT-PCR analysis* Total RNA (1 µg) was reverse transcribed for 1 hr at 50°C using the SuperScript II First-Strand Synthesis System for RT-PCR (Invitrogen) with 1 µg random primers (Promega). Reverse primers for Firefly and Renilla luciferases were also added for the luciferase reporter assay. No amplification was detected in negative controls omitting the reverse transcriptase. qPCR amplifications (12 µl) were done in duplicates using 1 µl of cDNA and the GoTaq Probe 2X Master Mix (Promega) on a LightCycler 480 (Roche), programmed as follows: 5 min, 95°C; 40 cycles [10 s, 95°C; 15 s, 60°C; 10 s, 72°C]. A last step (5 min progressive

95°C to 72°C) calculating the qPCR product Tm allowed for reaction specificity check. Primers for ACTB, APP, BACE1, LSM14A, LSM14B, MFN2, PNRC1, TIMP2, TRIB1, HPRT1, REN-low-GC, RENhigh-GC and FIREfly were either gifts from R. Blaise or designed using the Primer three software (*Untergasser et al., 2012*). The results were normalized using either HPRT1 or FIREfly.

#### Library preparation and RNA-Seq data processing

For polysome profiling after DDX6 silencing and transcriptome after PAT1B silencing in HEK293 cells, rRNA was depleted using the Ribo-Zero kit Human/Mouse/Rat (Epicentre), and libraries were prepared using random priming. Triplicate and duplicate libraries were generated from three and two independent experiments, respectively, and processed as detailed previously (*Hubstenberger et al., 2017; Vindry et al., 2017*).

For the transcriptome after XRN1 silencing in HeLa cells, libraries were prepared from 500 ng of total RNAs and oligo(dT) primed using TruSeq Stranded Total RNA kit (Illumina) with two technical replicates for each sample. Libraries were then quantified with KAPA Library Quantification kit (Kapa Biosystems) and pooled. 4 nM of this pool were loaded on a high output flowcell and sequenced on a NextSeq500 platform (Illumina) with 2  $\times$  75 nt paired-end chemistry.

For the shRNA XRN1 experiment RNA was isolated using Quiazol and miRNeasy Mini Kit (Quiagen), next subjected to DNase treatment (Quiagen) and quality control with Bioanalyzer. The rRNA was removed using rRNA Removal Mix. Libraries were prepared from 1 ug of RNA following TruSeq Stranded Total RNA kit (Illumina) with two technical replicates for each sample. 100nt paired-end RNA-Seq was performed on HiSeq - Rapid Run (Illumina). The results were aligned using hg19 genome and DESeq2, with standard settings, was used for determining FC and p-values.

For PB enrichment, libraries were prepared without prior elimination of rRNA and using random priming. Triplicate libraries were generated from three independent experiments and processed using the same pipeline as for DDX6 silencing (*Hubstenberger et al., 2017*).

For the transcriptome after induction of a stably transfected DDX6 shRNA for 48 hr in K562 cells, the .fastq files from experiments ENCSR119QWQ (DDX6 shRNA) and ENCSR913CAE (control shRNA) were processed according to the same pipeline as DDX6 silencing, except that the control and DDX6 shRNA experiments were not paired to compute the corrected p-values of RNA differential expression in EdgeR 3.6.2.

The ENCODE dataset of mRNAs clipped to DDX6 in K562 cells was generated using ENCODE . bam files aligned on the hg19 genome corresponding to (i) the DDX6 eClip experiment ENCS-R893EFU, and (ii) the total RNA-seq of K562 experiment ENCSR109IQO. The enrichment in the CLIP dataset compared to the total RNA sample was calculated as in the DDX6 shRNA experiment.

#### **Bioinformatic analysis**

Briefly, the read coverage was computed as follows. Raw reads were processed using trimmomatics. Alignment was performed on the longest transcript isoforms of Ensembl annotated genes with bowtie2 aligner. Isoforms shorter than 500 nucleotides were not considered. Only unique mapped reads were qualified for counting. Each transcript was subdivided in 20 bins from transcription start site (TSS) to transcript end site (TES) and the proportion of reads for each bin was computed. For the metagene analysis, the average distribution of reads along transcript length was computed so that each gene had the same weight independently of it expression level.

The protein yield was calculated as the ratio between protein abundance in HEK293 cells, taken from *Geiger et al. (2012)*, and mRNA abundance in HEK293 cells, taken from the control sample of our DDX6 polysome profiling experiment. The translation rate was defined as the polysomal to total mRNA ratio, since polysome accumulation can result from both regulated translation and a change in total RNA without altered translation.

For GC profiling of the transcripts in various organisms (*Figure 7—figure supplement 1*), transcripts were downloaded from ENSEMBL (version 92) with their associated gene GC content.

Boxplot representations and statistical tests were performed using the GraphPad Prism software (GraphPad software, Inc) and the R suite (https://www.R-project.org) (R Core Team 2018. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria). We chose to systematically use the Spearman correlation in the interest of consistency, since the variables under consideration showed both nearly linear (e.g. accumulation in PBs and GC

#### Chromosomes and Gene Expression

content of the mRNA) and non-linear (e.g. accumulation in PBs and mRNA length) relationships. Statistical tests for differences between Spearman correlation coefficients were performed using the R package cocor and the 'meng1992' test. Partial correlations were computed using the ppcor package. Other graphical representations were generated using Excel and the Excel Analysis ToolPak (Microsoft). Hierarchical clustering of all transcripts in *Figure 4E* was performed using the Cluster 3.0/Treeview softwares (Kendall's tau distance, average linkage, *de Hoon et al., 2004*). Heatmap representation of the targets of the various regulators in *Figure 5B and D* was performed online using Morpheus (https://software.broadinstitute.org/morpheus).

Gene meiotic recombination rates were computed as crossover rates between gene start and gene end using the genetic map from the HapMap project (*Frazer et al., 2007*). Rates were computed as the weighted average of crossover rates of chromosomal regions that overlap the window.

The enrichment of the GO SLIM categories of cellular component in AU-rich mRNA excluded from PB (Input database: 881 gene IDs, 558 annotated in GO categories) was assessed using the WebGestalt enrichment analysis web tool (*Liao et al., 2019*).

#### Datasets used in the bioinformatics analysis

The following datasets were downloaded from the supplementary material of the corresponding papers: 1) For mRNAs containing cis-regulatory motifs: (i) in silico identification: AREs (*Halees et al., 2008*); (ii) experimental determination: CPEs (*Piqué et al., 2008*), G4-containing (*Huppert et al., 2008*) and TOP mRNAs (*Thoreen et al., 2012*). G4-containing genes were restricted to those harboring a G4 in 5'UTR. 2) For RBP targets: (i) PARE in HeLa cells: SMG6 (mRNAs actually cleaved by SMG6) (*Schmidt et al., 2015*) (iii) CLIP in HEK293 cells: HuR and TTP (*Mukherjee et al., 2014*); (iii) CLIP in HeLa cells: YTHDF2 (*Wang et al., 2014*); (iv) RIP-CHIP in HeLa cells: PUM1 (*Galgano et al., 2008*); (v) RIP-CHIP in mouse neurons: 4E-T (*Yang et al., 2014*). In the case of HuR, the transcripts clipped only in 5'UTR/CDS/introns were removed, and the target list was restricted to transcripts clipped more than once. In the case of TTP, the transcripts clipped only in introns were removed.

For other RBP targets (ATXN2, MOV10, IGF2BP1-3, PUM2, FMR1, FXR1-2, AGO1-4, YTHDF2), CLIP data from different laboratories were previously processed through the same pipeline in the CLIPdb 1.0 database using the Piranha method (*Yang et al., 2015*). We retained those performed in epithelial cells (HeLa, HEK293, HEK293T). Moreover, when replicates were available, we selected the RNA-protein interactions detected in at least 50% of the replicates. Except for FXR1-2 targets, we determined whether protein-RNA interactions occurred in UTR or CDS by intersecting coordinates of the read peaks with the v19 gencode annotation, and we removed the transcripts clipped in their CDS.

For miRNA targets, we extracted the list of all experimentally documented targets from miRTar-Base (http://mirtarbase.mbc.nctu.edu.tw/php/index.php) (*Hsu et al., 2014*), and selected the targets of the 22 miRNAs of interest.

#### Acknowledgements

We thank Marina Pinskaya and Marc Gabriel for scientific discussions and technical assistance. We also thank Virginie Magnone, Kevin Lebrigand (NGS platform, UCA Genomix), Sylvain Baulande, Patricia Legoix-Né, Virginie Raynal (NGS platform, Institut Curie), Nathalie Campo (LMGM, Toulouse) and Régis Blaise (IBPS, Paris).

## **Additional information**

| Funding                                        |                        |                |  |
|------------------------------------------------|------------------------|----------------|--|
| Funder                                         | Grant reference number | Author         |  |
| Association pour la Recherche<br>sur le Cancer | Subvention Fixe        | Dominique Weil |  |
| Agence Nationale de la Re-<br>cherche          | ANR-14-CE09-0013-01    | Dominique Weil |  |

Courel et al. eLife 2019;8:e49708. DOI: https://doi.org/10.7554/eLife.49708

#### Chromosomes and Gene Expression

| European Research Council                                 | DARK consolidator grant | Antonin Morillon |
|-----------------------------------------------------------|-------------------------|------------------|
| Agence Nationale de la Re-<br>cherche                     | ANR-11-LABX-0028-01     | Antonin Morillon |
| Canceropôle PACA                                          |                         | Patrick Brest    |
| Biotechnology and Biological<br>Sciences Research Council |                         | Nancy Standart   |
| Isaac Newton Trust                                        |                         | Nancy Standart   |
| Fondation Philippe Wiener -<br>Maurice Anspach            |                         | Nancy Standart   |

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

#### Author contributions

Maïté Courel, Marianne Bénard, Conceptualization, Formal analysis, Supervision, Validation, Investigation, Visualization, Writing - original draft, Writing - review and editing; Yves Clément, Dominika Foretek, Olivia Vidal Cruchez, Michèle Ernoult-Lange, Conceptualization, Formal analysis, Validation, Investigation, Visualization, Writing - original draft, Writing - review and editing; Clémentine Bossevain, Conceptualization, Formal analysis, Investigation, Visualization, Writing - original draft, Writing - review and editing; Zhou Yi, Conceptualization, Software, Formal analysis, Validation, Investigation, Writing - original draft, Writing - review and editing; Marie-Noëlle Benassy, Formal analysis, Validation, Investigation, Visualization, Writing - original draft, Writing - review and editing; Michel Kress, Conceptualization, Formal analysis, Supervision, Validation, Investigation, Writing - original draft, Writing - review and editing; Caroline Vindry, Conceptualization, Formal analysis, Validation, Investigation, Writing - original draft, Writing - review and editing; Christophe Antoniewski, Conceptualization, Resources, Formal analysis, Writing - original draft, Writing - review and editing; Antonin Morillon, Patrick Brest, Nancy Standart, Conceptualization, Supervision, Funding acquisition, Writing - original draft, Writing - review and editing; Arnaud Hubstenberger, Conceptualization, Supervision, Writing - original draft, Writing - review and editing; Hugues Roest Crollius, Conceptualization, Formal analysis, Supervision, Writing - original draft, Writing - review and editing; Dominique Weil, Conceptualization, Formal analysis, Supervision, Funding acquisition, Validation, Investigation, Visualization, Writing - original draft, Project administration, Writing - review and editing

#### Author ORCIDs

Yves Clément () http://orcid.org/0000-0002-5932-9412 Christophe Antoniewski () http://orcid.org/0000-0001-7709-2116 Antonin Morillon () http://orcid.org/0000-0002-0575-5264 Hugues Roest Crollius () http://orcid.org/0000-0002-8209-173X Dominique Weil () https://orcid.org/0000-0001-7630-1772

#### Decision letter and Author response

Decision letter https://doi.org/10.7554/eLife.49708.sa1 Author response https://doi.org/10.7554/eLife.49708.sa2

#### **Additional files**

#### **Supplementary files**

• Supplementary file 1. Transcriptome datasets. Sheet1: polysome profiling after siDDX6 in HEK293 cells. Sheet2: transcriptome after shDDX6 in K562 cells. Sheet3: DDX6 CLIP in K562 cells. Sheet4: transcriptome after siXRN1 in HeLa cells. Sheet5: transcriptome after shXRN1 in HCT116 cells. Sheet6: transcriptome after siPAT1B in HEK293 cells.

- Supplementary file 2. SmiFISH probes sets. Sheet1: AU-rich probes Sheet2: GC-rich probes.
- Transparent reporting form

Courel et al. eLife 2019;8:e49708. DOI: https://doi.org/10.7554/eLife.49708

#### Data availability

RNA-Seq gene data have been deposited in SRA under accession codes E-MTAB-4091 for the polysome profiling after DDX6 silencing, E-MTAB-5577 for the transcriptome after PAT1B silencing, and E-MTAB-5477 for the PB transcriptome, all in HEK293 cells. RNA-Seq gene data have been deposited in GEO under accession codes GSE115471 and GSE114605 for the transcriptome after XRN1 silencing in HeLa and HCT116 cells, respectively. ENCODE datasets are available at https://www. encodeproject.org under accession codes ENCSR893EFU for the DDX6 eClip experiment, and ENCSR109IQO for the transcriptome after DDX6 silencing in K562 cells. All data generated or analyzed during this study are included in Supplementary file 1.

The following datasets were generated:

| Author(s)        | Year | Dataset title                                                                             | Dataset URL                                                          | Database and<br>Identifier    |
|------------------|------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------|
| Courel M, Weil D | 2017 | Large-scale study of total and<br>polysomial mRNA after DDX6<br>depletion in HEK293 cells | https://www.ebi.ac.uk/ar-<br>rayexpress/experiments/<br>E-MTAB-4091/ | ArrayExpress, E-<br>MTAB-4091 |
| Vindry C         | 2017 | RNA-seq of HEK293T cells treated<br>with control b-globin siRNA and<br>Pat1b siRNA        | https://www.ebi.ac.uk/ar-<br>rayexpress/experiments/<br>E-MTAB-5577/ | ArrayExpress, E-<br>MTAB-5577 |
| Hubstenberger A  | 2017 | RNA-Seq of purified P-bodies from<br>HEK293 cells                                         | https://www.ebi.ac.uk/ar-<br>rayexpress/experiments/<br>E-MTAB-5477/ | ArrayExpress, E-<br>MTAB-5477 |

#### References

- Ayache J, Bénard M, Ernoult-Lange M, Minshall N, Standart N, Kress M, Weil D. 2015. P-body assembly requires DDX6 repression complexes rather than decay or Ataxin2/2L complexes. *Molecular Biology of the Cell* **26**: 2579–2595. DOI: https://doi.org/10.1091/mbc.E15-03-0136. PMID: 25995375
- Balak C, Benard M, Schaefer E, Idbal S, Ramsey K, Ernoult-Lange M, Mattioli F, Llaci L, Geoffroy V, Courel M, Naymik M, Bachman KK, Pfundt R, Rump P, Ter Beest J, Wentzensen IM, Monaghan KG, McWalter K, Richholt R, Le Béchec A, et al. 2019. Rare de novo missense variants in RNA helicase DDX6 cause intellectual disability and dysmorphic features and lead to P-Body defects and RNA dysregulation. The American Journal of Human Genetics 105:509–525. DOI: https://doi.org/10.1016/j.inab.2019.07.010. PMID: 31422817
- Genetics 105:509–525. DOI: https://doi.org/10.1016/j.ajhg.2019.07.010, PMID: 31422817 Barbee SA, Estes PS, Cziko AM, Hillebrand J, Luedeman RA, Coller JM, Johnson N, Howlett IC, Geng C, Ueda R, Brand AH, Newbury SF, Wilhelm JE, Levine RB, Nakamura A, Parker R, Ramaswani M. 2006. Staufen- and FMRP-containing neuronal RNPs are structurally and functionally related to somatic P bodies. *Neuron* 52:997– 1009. DOI: https://doi.org/10.1016/j.neuron.2006.10.028. PMID: 17178403
- Bashkirov VI, Scherthan H, Solinger JA, Buerstedde JM, Heyer WD. 1997. A mouse cytoplasmic exoribonuclease (mXRN1p) with preference for G4 tetraplex substrates. *The Journal of Cell Biology* **136**:761–773. DOI: https:// doi.org/10.1083/jcb.136.4.761, PMID: 9049243
- Bazzini AA, Del Viso F, Moreno-Mateos MA, Johnstone TG, Vejnar CE, Qin Y, Yao J, Khokha MK, Giraldez AJ. 2016. Codon identity regulates mRNA stability and translation efficiency during the maternal-to-zygotic transition of the CMU stability and translation efficiency during the maternal-to-zygotic transition. The CMU stability and translation efficiency during the maternal-to-zygotic transition.
- transition. The EMBO Journal 35:2087–2103. DOI: https://doi.org/10.15252/embj.201694699, PMID: 27436874
  Bhattacharyya SN, Habermacher R, Martine U, Closs EI, Filipowicz W. 2006. Relief of microRNA-mediated translational repression in human cells subjected to stress. *Cell* **125**:1111–1124. DOI: https://doi.org/10.1016/j. cell.2006.00.031. PMID: 16727601.
- Bish R, Cuevas-Polo N, Cheng Z, Hambardzumyan D, Munschauer M, Landthaler M, Vogel C. 2015. Comprehensive protein interactome analysis of a key RNA helicase: detection of novel stress granule proteins.
- Biomolecules 5:1441–1466. DOI: https://doi.org/10.3390/biom5031441, PMID: 26184334 Blaise R, Mateo V, Rouxel C, Zaccarini F, Glorian M, Béréziat G, Golubkov VS, Limon I. 2012. Wild-type amyloid
- beta 1-40 peptide induces vascular smooth muscle cell death independently from matrix metalloprotease activity. Aging Cell **11**:384–393. DOI: https://doi.org/10.1111/j.1474-9726.2012.00797.x, PMID: 22260497 Bonnerot C, Boeck R, Lapeyre B. 2000. The two proteins Pat1p (Mrt1p) and Spb8p interact in vivo, are required
- Bonnerot C, Boeck R, Lapeyre B. 2000. The two proteins Pat1p (Mrt1p) and Spb8p interact in vivo, are required for mRNA decay, and are functionally linked to Pab1p. *Molecular and Cellular Biology* 20:5939–5946. DOI: https://doi.org/10.1128/MCB.20.16.5939-5946.2000, PMID: 10913177
- Bouveret E, Rigaut G, Shevchenko A, Wilm M, Séraphin B. 2000. A Sm-like protein complex that participates in mRNA degradation. *The EMBO Journal* **19**:1661–1671. DOI: https://doi.org/10.1093/emboj/19.7.1661, PMID: 10747033
- Braun JE, Tritschler F, Haas G, Igreja C, Truffault V, Weichenrieder O, Izaurralde E. 2010. The C-terminal alphaalpha superhelix of pat is required for mRNA decapping in metazoa. *The EMBO Journal* **29**:2368–2380. DOI: https://doi.org/10.1038/emboj.2010.124, PMID: 20543818

Courel et al. eLife 2019;8:e49708. DOI: https://doi.org/10.7554/eLife.49708

Chan LY, Mugler CF, Heinrich S, Vallotton P, Weis K. 2018. Non-invasive measurement of mRNA decay reveals translation initiation as the major determinant of mRNA stability. *eLife* **7**:e32536. DOI: https://doi.org/10.7554/eLife.32536, PMID: 30192227

Chen Y, Boland A, Kuzuoğlu-Öztürk D, Bawankar P, Loh B, Chang CT, Weichenrieder O, Izaurralde E. 2014. A DDX6-CNOT1 complex and W-binding pockets in CNOT9 reveal direct links between miRNA target recognition and silencing. *Molecular Cell* 54:737–750. DOI: https://doi.org/10.1016/j.molcel.2014.03.034, PMID: 24768540

Chu CY, Rana TM. 2006. Translation repression in human cells by MicroRNA-Induced gene silencing requires RCK/p54. PLOS Biology **4**:e210. DOI: https://doi.org/10.1371/journal.pbio.0040210, PMID: 16756390 Coller J, Parker R. 2005. General translational repression by activators of mRNA decapping. *Cell* **122**:875–886.

DOI: https://doi.org/10.1016/j.cell.2005.07.012, PMID: 16179257 Colombo M, Karousis ED, Bourquin J, Bruggmann R, Mühlemann O. 2017. Transcriptome-wide identification of

NMD-targeted human mRNAs reveals extensive redundancy between SMG6- and SMG7-mediated degradation pathways. RNA 23:189–201. DOI: https://doi.org/10.1261/rna.059055.116, PMID: 27864472
 Courel M, Rodemer C, Nguyen ST, Pance A, Jackson AP, O'connor DT, Taupenot L. 2006. Secretory granule

Courel M, Rodemer C, Nguyen ST, Pance A, Jackson AP, O'connor DT, Taupenot L. 2006. Secretory granule biogenesis in sympathoadrenal cells: identification of a granulogenic determinant in the secretory prohormone chromogranin A. The Journal of Biological Chemistry 281:38038–38051. DOI: https://doi.org/10.1074/jbc. M604037200\_PMID: 12032650

de Hoon MJ, Imoto S, Nolan J, Miyano S. 2004. Open source clustering software. *Bioinformatics* **20**:1453–1454. DOI: https://doi.org/10.1093/bioinformatics/bth078, PMID: 14871861

Duret L, Semon M, Piganeau G, Mouchiroud D, Galtier N. 2002. Vanishing GC-rich isochores in mammalian genomes. Genetics 162:1837–1847. PMID: 12524353

Duret L, Galtier N. 2009. Biased gene conversion and the evolution of mammalian genomic landscapes. Annual Review of Genomics and Human Genetics 10:285–311. DOI: https://doi.org/10.1146/annurev-genom-082908-150001. PMID: 19630562

ENCODE Project Consortium. 2012. An integrated encyclopedia of DNA elements in the human genome. Nature **489**:57–74. DOI: https://doi.org/10.1038/nature11247, PMID: 22955616 Ernoult-Lange M, Wilczynska A, Harper M, Aigueperse C, Dautry F, Kress M, Weil D. 2009. Nucleocytoplasmic

Ernoult-Lange M, Wilczynska A, Harper M, Aigueperse C, Dautry F, Kress M, Weil D. 2009. Nucleocytoplasn traffic of CPEB1 and accumulation in Crm1 nucleolar bodies. *Molecular Biology of the Cell* 20:176–187. DOI: https://doi.org/10.1091/mbc.e08-09-0904, PMID: 18923137

Ernoult-Lange M, Baconnais S, Harper M, Minshall N, Souquere S, Boudier T, Bénard M, Andrey P, Pierron G, Kress M, Standart N, le Cam E, Weil D. 2012. Multiple binding of repressed mRNAs by the P-body protein rck/ p54. RNA 18:1702–1715. DOI: https://doi.org/10.1261/rna.034314.112, PMID: 22836354

Evans ME, Clark WC, Zheng G, Pan T. 2017. Determination of tRNA aminoacylation levels by high-throughput sequencing. Nucleic Acids Research 45:e133. DOI: https://doi.org/10.1093/nar/gkx514, PMID: 28586482 Ferraiuolo MA, Basak S, Dostie J, Murray EL, Schoenberg DR, Sonenberg N. 2005. A role for the elF4E-binding

erraiuolo MA, Basak S, Dostie J, Murray EL, Schoenberg DR, Sonenberg N. 2005. A role for the elF4E-binding protein 4E-T in P-body formation and mRNA decay. The Journal of Cell Biology 170:913–924. DOI: https://doi. org/10.1083/jcb.200504039, PMID: 16157702

Franks TM, Lykke-Andersen J. 2007. TTP and BRF proteins nucleate processing body formation to silence mRNAs with AU-rich elements. *Genes & Development* **21**:719–735. DOI: https://doi.org/10.1101/gad.1494707, PMID: 17369404

Frazer KA, Ballinger DG, Cox DR, Hinds DA, Stuve LL, Gibbs RA, Belmont JW, Boudreau A, Hardenbol P, Leal SM, Pasternak S, Wheeler DA, Willis TD, Yu F, Yang H, Zeng C, Gao Y, Hu H, Hu W, Li C, et al. 2007. A second generation human haplotype map of over 3.1 million SNPs. *Nature* **449**:851–861. DOI: https://doi.org/10.1038/ nature06258. PMID: 17943122

Freimer JW, Hu TJ, Blelloch R. 2018. Decoupling the impact of microRNAs on translational repression versus RNA degradation in embryonic stem cells. *eLife* **7**:e38014. DOI: https://doi.org/10.7554/eLife.38014, PMID: 30044225

Galgano A, Forrer M, Jaskiewicz L, Kanitz A, Zavolan M, Gerber AP. 2008. Comparative analysis of mRNA targets for human PUF-family proteins suggests extensive interaction with the miRNA regulatory system. *PLOS ONE* **3**:e3164. DOI: https://doi.org/10.1371/journal.pone.0003164, PMID: 18776931

Geiger T, Wehner A, Schaab C, Cox J, Mann M. 2012. Comparative proteomic analysis of eleven common cell lines reveals ubiquitous but varying expression of most proteins. *Molecular & Cellular Proteomics* 11:M111. 014050. DOI: https://doi.org/10.1074/mcp.M111.014050. PMID: 22278370

Gingold H, Tehler D, Christoffersen NR, Nielsen MM, Asmar F, Kooistra SM, Christophersen NS, Christonsen LL, Borre M, Sørensen KD, Andersen LD, Andersen CL, Hulleman E, Wurdinger T, Ralfkiær E, Helin K, Grønbæk K, Ørntoft T, Waszak SM, Dahan O, et al. 2014. A dual program for translation regulation in cellular proliferation and differentiation. *Cell* **158**:1281–1292. DOI: https://doi.org/10.1016/j.cell.2014.08.011, PMID: 25215487

Götze M, Dufourt J, Ihling C, Rammelt C, Pierson S, Sambrani N, Temme C, Sinz A, Simonelig M, Wahle E. 2017. Translational repression of the Drosophila Nanos mRNA involves the RNA helicase Belle and RNA coating by Me31B and Trailer hitch. RNA 23:1552–1568. DOI: https://doi.org/10.1261/rna.062208.117, PMID: 28701521

Hafner M, Landthaler M, Burger L, Khorshid M, Hausser J, Berninger P, Rothballer A, Ascano M, Jungkamp AC, Munschauer M, Ulrich A, Wardle GS, Dewell S, Zavolan M, Tuschl T. 2010. Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. *Cell* 141:129–141. DOI: https://doi.org/10.1016/ j.cell.2010.03.009, PMID: 20371350

Courel et al. eLife 2019;8:e49708. DOI: https://doi.org/10.7554/eLife.49708

Halees AS, El-Badrawi R, Khabar KS. 2008. ARED organism: expansion of ARED reveals AU-rich element cluster variations between human and mouse. Nucleic Acids Research 36:D137-D140. DOI: https://doi.org/10.1093

He F, Celik A, Wu C, Jacobson A. 2018. General decapping activators target different subsets of inefficiently translated mRNAs. eLife 7:e34409. DOI: https://doi.org/10.7554/eLife.34409, PMID: 30520724 Hentze MW, Castello A, Schwarzl T, Preiss T. 2018. A brave new world of RNA-binding proteins. *Nature Reviews* 

Molecular Cell Biology 19:327–341. D 0.1038/nrr

Horvathova I, Voigt F, Kotrys AV, Zhan Y, Artus-Revel CG, Eglinger J, Stadler MB, Giorgetti L, Chao JA. 2017. The dynamics of mRNA turnover revealed by Single-Molecule imaging in single cells. *Molecular Cell* **68**:615– 625. 

Hsu SD, Tseng YT, Shrestha S, Lin YL, Khaleel A, Chou CH, Chu CF, Huang HY, Lin CM, Ho SY, Jian TY, Lin FM, Chang TH, Weng SL, Liao KW, Liao IE, Liu CC, Huang HD. 2014. miRTarBase update 2014: an information resource for experimentally validated miRNA-target interactions. Nucleic Acids Research 42:D78–D85. oi.ora/10.10

Huang N, Lee I, Marcotte EM, Hurles ME. 2010. Characterising and predicting haploinsufficiency in the human genome. PLOS Genetics 6:e1001154. DOI: https://c Hubstenberger A, Courel M, Bénard M, Souquere S, Ernoult-Lange M, Chouaib R, Yi Z, Morlot JB, Munier A,

Fradet M, Daunesse M, Bertrand E, Pierron G, Mozziconacci J, Kress M, Weil D. 2017. P-Body purification reveals the condensation of repressed mRNA regulons. Molecular Cell 68:144-157. DOI: http //doi.org/10 .09.003, PMID: 2896581

Huppert JL, Bugaut A, Kumari S, Balasubramanian S. 2008. G-quadruplexes: the beginning and end of UTRs. Nucleic Acids Research 36:6260–6268. DOI: https://doi.org/10.1093/nar/gkn511, PMID: 18832370 Imamachi N, Salam KA, Suzuki Y, Akimitsu N. 2017. A GC-rich sequence feature in the 3' UTR directs UPF1-

dependent mRNA decay in mammalian cells. Genome Research 27:407-418. DOI: https://doi.org/10.1101/gr

Kamenska A, Lu WT, Kubacka D, Broomhead H, Minshall N, Bushell M, Standart N. 2014. Human 4E-T represses translation of bound mRNAs and enhances microRNA-mediated silencing. Nucleic Acids Research 42:3298-3313. DO https://doi. 3/nar/gkt1265, PMID: 24335285

Kamenska A, Simpson C, Vindry C, Broomhead H, Bénard M, Ernoult-Lange M, Lee BP, Harries LW, Weil D, Standart N. 2016. The DDX6-4E-T interaction mediates translational repression and P-body assembly. Nucleic Acids Research 44:6318-6334. DOI: https://doi.org/10.1093/nar/ 5, PMID: 27342281

Khong A, Matheny T, Jain S, Mitchell SF, Wheeler JR, Parker R. 2017. The stress granule transcriptome reveals principles of mRNA accumulation in stress granules. Molecular Cell 68:808–820. DOI: https://doi ora/10.1016/i. PMID: 29

Łabno A, Tomecki R, Dziembowski A. 2016. Cytoplasmic RNA decay pathways - Enzymes and mechanisms Biochimica Et Biophysica Acta (BBA) - Molecular Cell Research 1863:3125–3147. DOI: https://doi.org/10.

Lebedeva S, Jens M, Theil K, Schwanhäusser B, Selbach M, Landthaler M, Rajewsky N. 2011. Transcriptome-wide analysis of regulatory interactions of the RNA-binding protein HuR. *Molecular Cell* **43**:340–352. DOI: https://

Liao Y, Wang J, Jaehnig EJ, Shi Z, Zhang B. 2019. WebGestalt 2019: gene set analysis toolkit with revamped Uls and APIs. Nucleic Acids Research 47:W199–W205. DOI: https://doi.org/10.1093/nar/gkz401, PMID: 31114916 Liu J, Valencia-Sanchez MA, Hannon GJ, Parker R. 2005. MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies. Nature Cell Biology 7:719-723. DOI: https://doi.org/10.1038/ncb1274, PMID: 15

Martin B, Granadel C, Campo N, Hénard V, Prudhomme M, Claverys JP. 2010. Expression and maintenance of ComD-ComE, the two-component signal-transduction system that controls competence of *Streptococcus* pneumoniae. Molecular Microbiology 75:1513–1528. DOI: https://doi.org/10.1111/j.136 MID: 201809

Mathys H, Basquin J, Ozgur S, Czarnocki-Cieciura M, Bonneau F, Aartse A, Dziembowski A, Nowotny M, Conti E, Filipowicz W. 2014. Structural and biochemical insights to the role of the CCR4-NOT complex and DDX6 ATPase in microRNA repression. *Molecular Cell* **54**:751–765. DOI: https://doi.org/10.1016/j.molcel.2014.03.

Minshall N, Reiter MH, Weil D, Standart N. 2007. CPEB interacts with an ovary-specific eIF4E and 4E-T in early xenopus oocytes. The Journal of Biological Chemistry 282:37389–37401. DOI: https://doi.org/10.1074/jbc. 00, PMID: 17

Minshall N, Kress M, Weil D, Standart N. 2009. Role of p54 RNA helicase activity and its C-terminal domain in translational repression, P-body localization and assembly. Molecular Biology of the Cell 20:2464–2472. Mitchell SF, Jain S, She M, Parker R. 2013. Global analysis of yeast mRNPs. Nature Structural & Molecular

Biology 20:127-133. DOI: https://doi.org/ mb.246

Mukherjee N, Corcoran DL, Nusbaum JD, Reid DW, Georgiev S, Hafner M, Ascano M, Tuschl T, Ohler U, Keene JD. 2011. Integrative regulatory mapping indicates that the RNA-binding protein HuR couples pre-mRNA processing and mRNA stability. *Molecular Cell* **43**:327–339. DOI: https://doi.org/10.1016/j.molcel.2011.06 el 2011 06 007 PMID: 21723170

Courel et al. eLife 2019;8:e49708. DOI: https://doi.org/10.7554/eLife.49708

Mukherjee N, Jacobs NC, Hafner M, Kennington EA, Nusbaum JD, Tuschl T, Blackshear PJ, Ohler U. 2014. Global target mRNA specification and regulation by the RNA-binding protein ZFP36. Genome Biology **15**:R12.

DOI: https://doi.org/10.1186/gb-2014-15-1-r12, PMID: 24401661
Nissan T, Rajyaguru P, She M, Song H, Parker R. 2010. Decapping activators in Saccharomyces cerevisiae act by multiple mechanisms. *Molecular Cell* **39**:773–783. DOI: https://doi.org/10.1016/j.molcel.2010.08.025, PMID: 20 832728

Nonhoff U, Ralser M, Welzel F, Piccini I, Balzereit D, Yaspo ML, Lehrach H, Krobitsch S. 2007. Ataxin-2 interacts with the DEAD/H-box RNA helicase DDX6 and interferes with P-bodies and stress granules. *Molecular Biology* of the Cell **18**:1385–1396. DOI: https://doi.org/10.1091/mbc.e06-12-1120, PMID: 17392519

Novoa EM, Ribas de Pouplana L. 2012. Speeding with control: codon usage, tRNAs, and ribosomes. *Trends in Genetics* **28**:574–581. DOI: https://doi.org/10.1016/j.tig.2012.07.006, PMID: 22921354 Ozgur S, Chekulaeva M, Stoecklin G. 2010. Human Pat1b connects deadenylation with mRNA decapping and

- Orgun S, Chekulaeva M, Stoecklin G. 2010. Human P41b connects deadenylation with mKNA decapping and controls the assembly of processing bodies. *Molecular and Cellular Biology* **30**:4308–4323. DOI: https://doi. org/10.1128/MCB.00429-10, PMID: 20584987
- Ozgur S, Basquin J, Kamenska A, Filipowicz W, Standart N, Conti E. 2015. Structure of a human 4E-T/DDX6/ CNOT1 complex reveals the different interplay of DDX6-Binding proteins with the CCR4-NOT complex. *Cell Reports* **13**:703–711. DOI: https://doi.org/10.1016/j.celrep.2015.09.033, PMID: 26489469
- Pashler AL, Towler BP, Jones CI, Newbury SF. 2016. The roles of the exoribonucleases DIS3L2 and XRN1 in human disease. *Biochemical Society Transactions* 44:1377–1384. DOI: https://doi.org/10.1042/BST20160107, PMID: 27911720
- Piqué M, López JM, Foissac S, Guigó R, Méndez R. 2008. A combinatorial code for CPE-mediated translational control. Cell 132:434–448. DOI: https://doi.org/10.1016/j.cell.2007.12.038, PMID: 18267074

Radhakrishnan A, Chen YH, Martin S, Alhusaini N, Green R, Coller J. 2016. The DEAD-Box protein Dhh1p couples mRNA decay and translation by monitoring Codon optimality. *Cell* **167**:122–132. DOI: https://doi.org/ 10.1016/j.cell.2016.08.053, PMID: 27641505

- Rudolph KL, Schmitt BM, Villar D, White RJ, Marioni JC, Kutter C, Odom DT. 2016. Codon-Driven translational efficiency is stable across diverse mammalian cell states. *PLOS Genetics* **12**:e1006024. DOI: https://doi.org/10. 1371/journal.pgen.1006024, PMID: 27166679
- Schmidt SA, Foley PL, Jeong DH, Rymarquis LA, Doyle F, Tenenbaum SA, Belasco JG, Green PJ. 2015. Identification of SMG6 cleavage sites and a preferred RNA cleavage motif by global analysis of endogenous NMD targets in human cells. Nucleic Acids Research 43:309–323. DOI: https://doi.org/10.1093/nar/gku1258, PMID: 25249978
- Serman A, Le Roy F, Aigueperse C, Kress M, Dautry F, Weil D. 2007. GW body disassembly triggered by siRNAs independently of their silencing activity. *Nucleic Acids Research* 35:4715–4727. DOI: https://doi.org/10.1093/ nar/gkm491. PMID: 17604308

Standart N, Minshall N. 2008. Translational control in early development: cpeb, P-bodies and germinal granules. Biochemical Society Transactions 36:671–676. DOI: https://doi.org/10.1042/BST0360671, PMID: 18631138

Standart N, Weil D. 2018. P-Bodies: cytosolic droplets for coordinated mRNA storage. Trends in Genetics 34: 612–626. DOI: https://doi.org/10.1016/j.tig.2018.05.005, PMID: 29908710

Steinberg J, Honti F, Meader S, Webber C. 2015. Haploinsufficiency predictions without study Bias. Nucleic Acids Research 43:e101. DOI: https://doi.org/10.1093/nar/gkv474, PMID: 26001969

Tesina P, Heckel E, Cheng J, Fromont-Racine M, Buschauer R, Kater L, Beatrix B, Berninghausen O, Jacquier A, Becker T, Beckmann R. 2019. Structure of the 80S ribosome-Xrn1 nuclease complex. Nature Structural & Molecular Biology 26:275–280. DOI: https://doi.org/10.1038/s41594-019-0202-5, PMID: 30911188

Thoreen CC, Chantranupong L, Keys HR, Wang T, Gray NS, Sabatini DM. 2012. A unifying model for mTORC1mediated regulation of mRNA translation. *Nature* **485**:109–113. DOI: https://doi.org/10.1038/nature11083, PMID: 22552098

Totaro A, Renzi F, La Fata G, Mattioli C, Raabe M, Urlaub H, Achsel T. 2011. The human Pat1b protein: a novel mRNA deadenylation factor identified by a new immunoprecipitation technique. *Nucleic Acids Research* **39**: 635–647. DOI: https://doi.org/10.1093/nar/gkq797, PMID: 20852261

Tsanov N, Samacoits A, Chouaib R, Traboulsi AM, Gostan T, Weber C, Zimmer C, Zibara K, Walter T, Peter M, Bertrand E, Mueller F. 2016. smiFISH and FISH-quant - a flexible single RNA detection approach with superresolution capability. Nucleic Acids Research 44:e165. DOI: https://doi.org/10.1093/nar/gkw784, PMID: 275 99845

Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG. 2012. Primer3–new capabilities and interfaces. *Nucleic Acids Research* **40**:e115. DOI: https://doi.org/10.1093/nar/gks596, PMID: 22730293

Vindry C, Marnef A, Broomhead H, Twyffels L, Ozgur S, Stoecklin G, Llorian M, Smith CW, Mata J, Weil D, Standart N. 2017. Dual RNA processing roles of Pat1b via cytoplasmic Lsm1-7 and nuclear Lsm2-8 complexes. *Cell Reports* 20:1187–1200. DOI: https://doi.org/10.1016/j.celrep.2017.06.091, PMID: 28768202
Vindry C, Weil D, Standart N. 2019. Pat1 rna-binding proteins: multitasking shuttling proteins. *Wiley* 

Vindry C, Veil D, Standart N. 2019. Patt Tra-binding proteins: multitasking strutting proteins. wiley Interdisciplinary Reviews. RNA 10:e1557. DOI: https://doi.org/10.1002/wrna.1557, PMID: 31231973 Wang X, Lu Z, Gomez A, Hon GC, Yue Y, Han D, Fu Y, Parisien M, Dai Q, Jia G, Ren B, Pan T, He C. 2014. Nó-

methylatenssine-dependent regulation of messenger RNA stability. *Nature* **505**:117–120. DOI: https://doi.org/ 10.1038/nature12730. PMID: 24284625

Courel et al. eLife 2019;8:e49708. DOI: https://doi.org/10.7554/eLife.49708

#### **Chromosomes and Gene Expression**

Wang M, Ly M, Lugowski A, Laver JD, Lipshitz HD, Smibert CA, Rissland OS. 2017. ME31B globally represses maternal mRNAs by two distinct mechanisms during the *Drosophila* maternal-to-zygotic transition. *eLife* **6**: e27891. DOI: https://doi.org/10.7554/eLife.27891, PMID: 28875934

- Wells ML, Perera L, Blackshear PJ. 2017. An ancient family of RNA-Binding proteins: still important!. Trends in
- Biochemical Sciences **42**:285–296. DOI: https://doi.org/10.1016/j.tibs.2016.12.003, PMID: 28096055 Yang G, Smibert CA, Kaplan DR, Miller FD. 2014. An elF4E1/4E-T complex determines the genesis of neurons from precursors by translationally repressing a proneurogenic transcription program. *Neuron* **84**:723–739. DOI: https://doi.o a/10.1016/i.n uron.2014.10.022. PMID
- DOI: https://doi.org/10.1016/j.neuron.2014.10.022, PMID: 25456498 Yang YC, Di C, Hu B, Zhou M, Liu Y, Song N, Li Y, Umetsu J, Lu ZJ. 2015. CLIPdb: a CLIP-seq database for protein-RNA interactions. BMC Genomics 16:51. DOI: https://doi.org/10.1186/s12864-015-1273-2,
- PMID: 25652745
  Yoon JH, De S, Srikantan S, Abdelmohsen K, Grammatikakis I, Kim J, Kim KM, Noh JH, White EJ, Martindale JL, Yang X, Kang MJ, Wood WH, Noren Hooten N, Evans MK, Becker KG, Tripathi V, Prasanth KV, Wilson GM, Tuschl T, et al. 2014. PAR-CLIP analysis uncovers AUF1 impact on target RNA fate and genome integrity. Nature Communications 5:5248. DOI: https://doi.org/10.1038/ncomms6248, PMID: 25366541

Courel et al. eLife 2019;8:e49708. DOI: https://doi.org/10.7554/eLife.49708

# Bibliographie

Adivarahan, S., Livingston, N., Nicholson, B., Rahman, S., Wu, B., Rissland, O.S., and Zenklusen, D. (2018). Spatial Organization of Single mRNPs at Different Stages of the Gene Expression Pathway. Mol. Cell *72*, 727-738.e5.

Afroz, T., Cienikova, Z., Cléry, A., and Allain, F.H.T. (2015). Chapter Nine - One, Two, Three, Four! How Multiple RRMs Read the Genome Sequence. In Methods in Enzymology, S.A. Woodson, and F.H.T. Allain, eds. (Academic Press), pp. 235–278.

Aizer, A., Kalo, A., Kafri, P., Shraga, A., Ben-Yishay, R., Jacob, A., Kinor, N., and Shav-Tal, Y. (2014). Quantifying mRNA targeting to P-bodies in living human cells reveals their dual role in mRNA decay and storage. J Cell Sci *127*, 4443–4456.

Alberti, S. (2017). Phase separation in biology. Current Biology 27, R1097–R1102.

Albrecht, M., and Lengauer, T. (2004). Novel Sm-like proteins with long C-terminal tails and associated methyltransferases. FEBS Letters *569*, 18–26.

Alekhina, O.M., Terenin, I.M., Dmitriev, S.E., and Vassilenko, K.S. (2020). Functional Cyclization of Eukaryotic mRNAs. Int J Mol Sci 21.

Algire, M.A., Maag, D., and Lorsch, J.R. (2005). Pi release from eIF2, not GTP hydrolysis, is the step controlled by start-site selection during eukaryotic translation initiation. Mol. Cell *20*, 251–262.

Amadei, G., Zander, M.A., Yang, G., Dumelie, J.G., Vessey, J.P., Lipshitz, H.D., Smibert, C.A., Kaplan, D.R., and Miller, F.D. (2015). A Smaug2-Based Translational Repression Complex Determines the Balance between Precursor Maintenance versus Differentiation during Mammalian Neurogenesis. J Neurosci *35*, 15666–15681.

Andrei, M.A. (2005). A role for eIF4E and eIF4E-transporter in targeting mRNPs to mammalian processing bodies. RNA *11*, 717–727.

Änkö, M.-L., Müller-McNicoll, M., Brandl, H., Curk, T., Gorup, C., Henry, I., Ule, J., and Neugebauer, K.M. (2012). The RNA-binding landscapes of two SR proteins reveal unique functions and binding to diverse RNA classes. Genome Biol *13*, R17.

Antic, S., Wolfinger, M.T., Skucha, A., Hosiner, S., and Dorner, S. (2015). General and MicroRNA-Mediated mRNA Degradation Occurs on Ribosome Complexes in Drosophila Cells. Molecular and Cellular Biology *35*, 2309–2320.

Araki, Y., Takahashi, S., Kobayashi, T., Kajiho, H., Hoshino, S., and Katada, T. (2001). Ski7p G protein interacts with the exosome and the Ski complex for 3'-to-5' mRNA decay in yeast. EMBO J *20*, 4684–4693.

Archer, S.K., Shirokikh, N.E., Hallwirth, C.V., Beilharz, T.H., and Preiss, T. (2015). Probing the closed-loop model of mRNA translation in living cells. RNA Biol *12*, 248–254.

Arribas-Layton, M., Wu, D., Lykke-Andersen, J., and Song, H. (2013). Structural and functional control of the eukaryotic mRNA decapping machinery. Biochim Biophys Acta *1829*, 580–589.

Ascano, M., Hafner, M., Cekan, P., Gerstberger, S., and Tuschl, T. (2012). Identification of RNA-protein interaction networks using PAR-CLIP. Wiley Interdiscip Rev RNA *3*, 159–177.

Aslam, A., Mittal, S., Koch, F., Andrau, J.-C., and Winkler, G.S. (2009). The Ccr4–Not Deadenylase Subunits CNOT7 and CNOT8 Have Overlapping Roles and Modulate Cell Proliferation. Mol Biol Cell *20*, 3840–3850.

Aviram, N., and Schuldiner, M. (2017). Targeting and translocation of proteins to the endoplasmic reticulum at a glance. J. Cell. Sci. *130*, 4079–4085.

Ayache, J., Bénard, M., Ernoult-Lange, M., Minshall, N., Standart, N., Kress, M., and Weil, D. (2015). Pbody assembly requires DDX6 repression complexes rather than decay or Ataxin2/2L complexes. Mol. Biol. Cell *26*, 2579–2595.

Baek, D., Villén, J., Shin, C., Camargo, F.D., Gygi, S.P., and Bartel, D.P. (2008). The impact of microRNAs on protein output. Nature 455, 64–71.

Bah, A., and Forman-Kay, J.D. (2016). Modulation of Intrinsically Disordered Protein Function by Post-translational Modifications. J Biol Chem *291*, 6696–6705.

Bah, A., Vernon, R.M., Siddiqui, Z., Krzeminski, M., Muhandiram, R., Zhao, C., Sonenberg, N., Kay, L.E., and Forman-Kay, J.D. (2015). Folding of an intrinsically disordered protein by phosphorylation as a regulatory switch. Nature *519*, 106–109.

Balak, C., Benard, M., Schaefer, E., Iqbal, S., Ramsey, K., Ernoult-Lange, M., Mattioli, F., Llaci, L., Geoffroy, V., Courel, M., et al. (2019). Rare De Novo Missense Variants in RNA Helicase DDX6 Cause Intellectual Disability and Dysmorphic Features and Lead to P-Body Defects and RNA Dysregulation. Am J Hum Genet *105*, 509–525.

Baltz, A.G., Munschauer, M., Schwanhäusser, B., Vasile, A., Murakawa, Y., Schueler, M., Youngs, N., Penfold-Brown, D., Drew, K., Milek, M., et al. (2012). The mRNA-Bound Proteome and Its Global Occupancy Profile on Protein-Coding Transcripts. Molecular Cell *46*, 674–690.

Banani, S.F., Lee, H.O., Hyman, A.A., and Rosen, M.K. (2017). Biomolecular condensates: organizers of cellular biochemistry. Nature Reviews Molecular Cell Biology *18*, 285–298.

Bardoni, B., and Mandel, J.-L. (2002). Advances in understanding of fragile X pathogenesis and FMRP function, and in identification of X linked mental retardation genes. Current Opinion in Genetics & Development *12*, 284–293.

Bardoni, B., Davidovic, L., Bensaid, M., and Khandjian, E.W. (2006). The fragile X syndrome: exploring its molecular basis and seeking a treatment. Expert Rev. Mol. Med. *8*, 1–16.

Barreau, C., Paillard, L., and Osborne, H.B. (2005). AU-rich elements and associated factors: are there unifying principles? Nucleic Acids Res *33*, 7138–7150.

Bartel, D.P. (2018). Metazoan MicroRNAs. Cell 173, 20-51.

Bashkirov, V.I., Scherthan, H., Solinger, J.A., Buerstedde, J.-M., and Heyer, W.-D. (1997). A Mouse Cytoplasmic Exoribonuclease (mXRN1p) with Preference for G4 Tetraplex Substrates. J Cell Biol *136*, 761–773.

Beckmann, B.M., Horos, R., Fischer, B., Castello, A., Eichelbaum, K., Alleaume, A.-M., Schwarzl, T., Curk, T., Foehr, S., Huber, W., et al. (2015). The RNA-binding proteomes from yeast to man harbour conserved enigmRBPs. Nature Communications *6*, 10127.

Behm-Ansmant, I., Rehwinkel, J., Doerks, T., Stark, A., Bork, P., and Izaurralde, E. (2006). mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes. Genes Dev. *20*, 1885–1898.

Béthune, J., Artus-Revel, C.G., and Filipowicz, W. (2012). Kinetic analysis reveals successive steps leading to miRNA-mediated silencing in mammalian cells. EMBO Rep *13*, 716–723.

Beznosková, P., Wagner, S., Jansen, M.E., von der Haar, T., and Valášek, L.S. (2015). Translation initiation factor eIF3 promotes programmed stop codon readthrough. Nucleic Acids Res. *43*, 5099–5111.

Bhandari, D., Raisch, T., Weichenrieder, O., Jonas, S., and Izaurralde, E. (2014). Structural basis for the Nanos-mediated recruitment of the CCR4-NOT complex and translational repression. Genes Dev. *28*, 888–901.

Bhattacharyya, S.N., Habermacher, R., Martine, U., Closs, E.I., and Filipowicz, W. (2006). Relief of microRNA-mediated translational repression in human cells subjected to stress. Cell *125*, 1111–1124.

Boeynaems, S., Alberti, S., Fawzi, N.L., Mittag, T., Polymenidou, M., Rousseau, F., Schymkowitz, J., Shorter, J., Wolozin, B., Van Den Bosch, L., et al. (2018). Protein Phase Separation: A New Phase in Cell Biology. Trends in Cell Biology *28*, 420–435.

Borja, M.S., Piotukh, K., Freund, C., and Gross, J.D. (2011). Dcp1 links coactivators of mRNA decapping to Dcp2 by proline recognition. RNA *17*, 278–290.

Bounedjah, O., Desforges, B., Wu, T.-D., Pioche-Durieu, C., Marco, S., Hamon, L., Curmi, P.A., Guerquin-Kern, J.-L., Piétrement, O., and Pastré, D. (2014). Free mRNA in excess upon polysome dissociation is a scaffold for protein multimerization to form stress granules. Nucleic Acids Res *42*, 8678–8691.

Bouveret, E., Rigaut, G., Shevchenko, A., Wilm, M., and Séraphin, B. (2000). A Sm-like protein complex that participates in mRNA degradation. EMBO J *19*, 1661–1671.

Brandmann, T., Fakim, H., Padamsi, Z., Youn, J.-Y., Gingras, A.-C., Fabian, M.R., and Jinek, M. (2018). Molecular architecture of LSM14 interactions involved in the assembly of mRNA silencing complexes. The EMBO Journal *37*, e97869.

Brangwynne, C.P. (2013). Phase transitions and size scaling of membrane-less organelles. The Journal of Cell Biology *203*, 875–881.

Brangwynne, C.P., Eckmann, C.R., Courson, D.S., Rybarska, A., Hoege, C., Gharakhani, J., Jülicher, F., and Hyman, A.A. (2009). Germline P Granules Are Liquid Droplets That Localize by Controlled Dissolution/Condensation. Science *324*, 1729–1732.

Brangwynne, C.P., Tompa, P., and Pappu, R.V. (2015). Polymer physics of intracellular phase transitions. Nature Phys *11*, 899–904.

Braun, J.E., Huntzinger, E., Fauser, M., and Izaurralde, E. (2011). GW182 proteins directly recruit cytoplasmic deadenylase complexes to miRNA targets. Mol. Cell 44, 120–133.

Braun, J.E., Truffault, V., Boland, A., Huntzinger, E., Chang, C.-T., Haas, G., Weichenrieder, O., Coles, M., and Izaurralde, E. (2012). A direct interaction between DCP1 and XRN1 couples mRNA decapping to 5' exonucleolytic degradation. Nat Struct Mol Biol *19*, 1324–1331.

Brengues, M., Teixeira, D., and Parker, R. (2005). Movement of Eukaryotic mRNAs Between Polysomes and Cytoplasmic Processing Bodies. Science *310*, 486–489.

Bulbrook, D., Brazier, H., Mahajan, P., Kliszczak, M., Fedorov, O., Marchese, F.P., Aubareda, A., Chalk, R., Picaud, S., Strain-Damerell, C., et al. (2018). Tryptophan-Mediated Interactions between Tristetraprolin and the CNOT9 Subunit Are Required for CCR4-NOT Deadenylase Complex Recruitment. J. Mol. Biol. *430*, 722–736.

Buxbaum, A.R., Haimovich, G., and Singer, R.H. (2015). In the right place at the right time: visualizing and understanding mRNA localization. Nat. Rev. Mol. Cell Biol. *16*, 95–109.

Calvo, S.E., Pagliarini, D.J., and Mootha, V.K. (2009). Upstream open reading frames cause widespread reduction of protein expression and are polymorphic among humans. Proc. Natl. Acad. Sci. U.S.A. *106*, 7507–7512.

Caput, D., Beutler, B., Hartog, K., Thayer, R., Brown-Shimer, S., and Cerami, A. (1986). Identification of a common nucleotide sequence in the 3'-untranslated region of mRNA molecules specifying inflammatory mediators. Proceedings of the National Academy of Sciences *83*, 1670–1674.

Carroll, J.S., Munchel, S.E., and Weis, K. (2011). The DExD/H box ATPase Dhh1 functions in translational repression, mRNA decay, and processing body dynamics. J Cell Biol *194*, 527–537.

Castello, A., Fischer, B., Eichelbaum, K., Horos, R., Beckmann, B.M., Strein, C., Davey, N.E., Humphreys, D.T., Preiss, T., Steinmetz, L.M., et al. (2012). Insights into RNA Biology from an Atlas of Mammalian mRNA-Binding Proteins. Cell *149*, 1393–1406.

Castello, A., Hentze, M.W., and Preiss, T. (2015). Metabolic Enzymes Enjoying New Partnerships as RNA-Binding Proteins. Trends in Endocrinology & Metabolism *26*, 746–757.

Castello, A., Fischer, B., Frese, C.K., Horos, R., Alleaume, A.-M., Foehr, S., Curk, T., Krijgsveld, J., and Hentze, M.W. (2016). Comprehensive Identification of RNA-Binding Domains in Human Cells. Mol Cell *63*, 696–710.

Cerutti, H., and Casas-Mollano, J.A. (2006). On the origin and functions of RNA-mediated silencing: from protists to man. Curr Genet *50*, 81–99.

Chang, C.-T., Bercovich, N., Loh, B., Jonas, S., and Izaurralde, E. (2014). The activation of the decapping enzyme DCP2 by DCP1 occurs on the EDC4 scaffold and involves a conserved loop in DCP1. Nucleic Acids Res. *42*, 5217–5233.

Chang, C.-T., Muthukumar, S., Weber, R., Levdansky, Y., Chen, Y., Bhandari, D., Igreja, C., Wohlbold, L., Valkov, E., and Izaurralde, E. (2019). A low-complexity region in human XRN1 directly recruits deadenylation and decapping factors in 5'-3' messenger RNA decay. Nucleic Acids Res. *47*, 9282–9295.

Chapat, C., Jafarnejad, S.M., Matta-Camacho, E., Hesketh, G.G., Gelbart, I.A., Attig, J., Gkogkas, C.G., Alain, T., Stern-Ginossar, N., Fabian, M.R., et al. (2017). Cap-binding protein 4EHP effects translation silencing by microRNAs. PNAS.

Charenton, C., Taverniti, V., Gaudon-Plesse, C., Back, R., Séraphin, B., and Graille, M. (2016). Structure of the active form of Dcp1–Dcp2 decapping enzyme bound to m7GDP and its Edc3 activator. Nat Struct Mol Biol *23*, 982–986. Chen, C.Y., and Shyu, A.B. (1995). AU-rich elements: characterization and importance in mRNA degradation. Trends Biochem. Sci. *20*, 465–470.

Chen, S., and Gao, G. (2017). MicroRNAs recruit eIF4E2 to repress translation of target mRNAs. Protein Cell *8*, 750–761.

Chen, C.Y., Gherzi, R., Ong, S.E., Chan, E.L., Raijmakers, R., Pruijn, G.J., Stoecklin, G., Moroni, C., Mann, M., and Karin, M. (2001). AU binding proteins recruit the exosome to degrade ARE-containing mRNAs. Cell *107*, 451–464.

Chen, C.-Y.A., Zheng, D., Xia, Z., and Shyu, A.-B. (2009). Ago-TNRC6 triggers microRNA-mediated decay by promoting two deadenylation steps. Nat. Struct. Mol. Biol. *16*, 1160–1166.

Chen, Y., Boland, A., Kuzuoğlu-Öztürk, D., Bawankar, P., Loh, B., Chang, C.-T., Weichenrieder, O., and Izaurralde, E. (2014). A DDX6-CNOT1 complex and W-binding pockets in CNOT9 reveal direct links between miRNA target recognition and silencing. Mol. Cell *54*, 737–750.

Chew, G.-L., Pauli, A., and Schier, A.F. (2016). Conservation of uORF repressiveness and sequence features in mouse, human and zebrafish. Nature Communications *7*, 11663.

Chin, A., and Lécuyer, E. (2017). RNA localization: Making its way to the center stage. Biochim Biophys Acta Gen Subj *1861*, 2956–2970.

Chong, P.A., Vernon, R.M., and Forman-Kay, J.D. (2018). RGG/RG Motif Regions in RNA Binding and Phase Separation. Journal of Molecular Biology *430*, 4650–4665.

Chouaib, R., Safieddine, A., Pichon, X., Imbert, A., Kwon, O.S., Samacoits, A., Traboulsi, A.-M., Robert, M.-C., Tsanov, N., Coleno, E., et al. (2020). A localization screen reveals translation factories and widespread co-translational RNA targeting. BioRxiv 2020.05.20.106989.

Chu, C., and Rana, T.M. (2006). Translation Repression in Human Cells by MicroRNA-Induced Gene Silencing Requires RCK/p54. PLOS Biology *4*, e210.

Chu, D., Kazana, E., Bellanger, N., Singh, T., Tuite, M.F., and von der Haar, T. (2014). Translation elongation can control translation initiation on eukaryotic mRNAs. EMBO J. *33*, 21–34.

Clemens, M.J. (2001). Initiation factor eIF2 alpha phosphorylation in stress responses and apoptosis. Prog. Mol. Subcell. Biol. *27*, 57–89.

Coller, J., and Parker, R. (2004). Eukaryotic mRNA decapping. Annu. Rev. Biochem. 73, 861–890.

Coller, J., and Parker, R. (2005). General Translational Repression by Activators of mRNA Decapping. Cell *122*, 875–886.

Coller, J.M., Tucker, M., Sheth, U., Valencia-Sanchez, M.A., and Parker, R. (2001). The DEAD box helicase, Dhh1p, functions in mRNA decapping and interacts with both the decapping and deadenylase complexes. RNA *7*, 1717–1727.

Colombo, M., Karousis, E.D., Bourquin, J., Bruggmann, R., and Mühlemann, O. (2017). Transcriptomewide identification of NMD-targeted human mRNAs reveals extensive redundancy between SMG6and SMG7-mediated degradation pathways. RNA *23*, 189–201.

Cordin, O., Banroques, J., Tanner, N.K., and Linder, P. (2006). The DEAD-box protein family of RNA helicases. Gene *367*, 17–37.

Corley, M., Burns, M.C., and Yeo, G.W. (2020). How RNA-Binding Proteins Interact with RNA: Molecules and Mechanisms. Mol. Cell *78*, 9–29.

Cougot, N., Babajko, S., and Séraphin, B. (2004). Cytoplasmic foci are sites of mRNA decay in human cells. J. Cell Biol. *165*, 31–40.

Courel, M., Clément, Y., Bossevain, C., Foretek, D., Vidal Cruchez, O., Yi, Z., Bénard, M., Benassy, M.-N., Kress, M., Vindry, C., et al. (2019). GC content shapes mRNA storage and decay in human cells. ELife *8*, e49708.

Darling, A.L., Liu, Y., Oldfield, C.J., and Uversky, V.N. (2018). Intrinsically Disordered Proteome of Human Membrane-Less Organelles. Proteomics *18*, 1700193.

Daubner, G.M., Cléry, A., and Allain, F.H.-T. (2013). RRM-RNA recognition: NMR or crystallography...and new findings. Curr. Opin. Struct. Biol. *23*, 100–108.

Decker, C.J., and Parker, R. (2012). P-bodies and stress granules: possible roles in the control of translation and mRNA degradation. Cold Spring Harb Perspect Biol *4*, a012286.

Decker, C.J., Teixeira, D., and Parker, R. (2007). Edc3p and a glutamine/asparagine-rich domain of Lsm4p function in processing body assembly in Saccharomyces cerevisiae. Journal of Cell Biology *179*, 437–449.

Dever, T.E., Kinzy, T.G., and Pavitt, G.D. (2016). Mechanism and Regulation of Protein Synthesis in Saccharomyces cerevisiae. Genetics *203*, 65–107.

Dhote, V., Sweeney, T.R., Kim, N., Hellen, C.U.T., and Pestova, T.V. (2012). Roles of individual domains in the function of DHX29, an essential factor required for translation of structured mammalian mRNAs. Proc Natl Acad Sci U S A *109*, E3150–E3159.

van Dijk, E., Cougot, N., Meyer, S., Babajko, S., Wahle, E., and Séraphin, B. (2002). Human Dcp2: a catalytically active mRNA decapping enzyme located in specific cytoplasmic structures. EMBO J. *21*, 6915–6924.

Djuranovic, S., Nahvi, A., and Green, R. (2012). miRNA-mediated gene silencing by translational repression followed by mRNA deadenylation and decay. Science *336*, 237–240.

D'Lima, N.G., Ma, J., Winkler, L., Chu, Q., Loh, K.H., Corpuz, E.O., Budnik, B.A., Lykke-Andersen, J., Saghatelian, A., and Slavoff, S.A. (2017). A human microprotein that interacts with the mRNA decapping complex. Nat Chem Biol *13*, 174–180.

Dong, J., Aitken, C.E., Thakur, A., Shin, B.-S., Lorsch, J.R., and Hinnebusch, A.G. (2017). Rps3/uS3 promotes mRNA binding at the 40S ribosome entry channel and stabilizes preinitiation complexes at start codons. Proc Natl Acad Sci U S A *114*, E2126–E2135.

Dostie, J., Ferraiuolo, M., Pause, A., Adam, S.A., and Sonenberg, N. (2000). A novel shuttling protein, 4E-T, mediates the nuclear import of the mRNA 5' cap-binding protein, eIF4E. EMBO J. *19*, 3142–3156.

Dotu, I., Adamson, S.I., Coleman, B., Fournier, C., Ricart-Altimiras, E., Eyras, E., and Chuang, J.H. (2018). SARNAclust: Semi-automatic detection of RNA protein binding motifs from immunoprecipitation data. PLOS Computational Biology *14*, e1006078.
Dresios, J., Chappell, S.A., Zhou, W., and Mauro, V.P. (2006). An mRNA-rRNA base-pairing mechanism for translation initiation in eukaryotes. Nature Structural & Molecular Biology *13*, 30–34.

Duchaine, T.F., and Fabian, M.R. (2019). Mechanistic Insights into MicroRNA-Mediated Gene Silencing. Cold Spring Harb Perspect Biol 11.

Durand, S., Cougot, N., Mahuteau-Betzer, F., Nguyen, C.-H., Grierson, D.S., Bertrand, E., Tazi, J., and Lejeune, F. (2007). Inhibition of nonsense-mediated mRNA decay (NMD) by a new chemical molecule reveals the dynamic of NMD factors in P-bodies. J Cell Biol *178*, 1145–1160.

Duret, L., Semon, M., Piganeau, G., Mouchiroud, D., and Galtier, N. (2002). Vanishing GC-Rich Isochores in Mammalian Genomes. Genetics *162*, 1837–1847.

Dutta, A., Zheng, S., Jain, D., Cameron, C.E., and Reese, J.C. (2011). Intermolecular Interactions within the Abundant DEAD-box Protein Dhh1 Regulate Its Activity in Vivo. J Biol Chem *286*, 27454–27470.

Eberle, A.B., Lykke-Andersen, S., Mühlemann, O., and Jensen, T.H. (2009). SMG6 promotes endonucleolytic cleavage of nonsense mRNA in human cells. Nat. Struct. Mol. Biol. *16*, 49–55.

Eichhorn, S.W., Guo, H., McGeary, S.E., Rodriguez-Mias, R.A., Shin, C., Baek, D., Hsu, S., Ghoshal, K., Villén, J., and Bartel, D.P. (2014). mRNA Destabilization Is the Dominant Effect of Mammalian MicroRNAs by the Time Substantial Repression Ensues. Molecular Cell *56*, 104–115.

Eliseev, B., Yeramala, L., Leitner, A., Karuppasamy, M., Raimondeau, E., Huard, K., Alkalaeva, E., Aebersold, R., and Schaffitzel, C. (2018). Structure of a human cap-dependent 48S translation preinitiation complex. Nucleic Acids Res *46*, 2678–2689.

Ernoult-Lange, M., Baconnais, S., Harper, M., Minshall, N., Souquere, S., Boudier, T., Bénard, M., Andrey, P., Pierron, G., Kress, M., et al. (2012). Multiple binding of repressed mRNAs by the P-body protein Rck/p54. RNA *18*, 1702–1715.

Eulalio, A., Rehwinkel, J., Stricker, M., Huntzinger, E., Yang, S.-F., Doerks, T., Dorner, S., Bork, P., Boutros, M., and Izaurralde, E. (2007a). Target-specific requirements for enhancers of decapping in miRNA-mediated gene silencing. Genes Dev. *21*, 2558–2570.

Eulalio, A., Behm-Ansmant, I., and Izaurralde, E. (2007b). P bodies: at the crossroads of post-transcriptional pathways. Nature Reviews Molecular Cell Biology *8*, 9–22.

Eystathioy, T., Jakymiw, A., Chan, E.K.L., Séraphin, B., Cougot, N., and Fritzler, M.J. (2003). The GW182 protein colocalizes with mRNA degradation associated proteins hDcp1 and hLSm4 in cytoplasmic GW bodies. RNA *9*, 1171–1173.

F, Z., Ak, S., Bs, S., J, N., and Ag, H. (2015). Conformational Changes in the P Site and mRNA Entry Channel Evoked by AUG Recognition in Yeast Translation Preinitiation Complexes (Nucleic Acids Res).

Faehnle, C.R., Walleshauser, J., and Joshua-Tor, L. (2014). Mechanism of Dis3l2 substrate recognition in the Lin28-let-7 pathway. Nature *514*, 252–256.

Fairman-Williams, M.E., Guenther, U.-P., and Jankowsky, E. (2010). SF1 and SF2 helicases: family matters. Curr. Opin. Struct. Biol. *20*, 313–324.

Farh, K.K.-H., Grimson, A., Jan, C., Lewis, B.P., Johnston, W.K., Lim, L.P., Burge, C.B., and Bartel, D.P. (2005). The widespread impact of mammalian MicroRNAs on mRNA repression and evolution. Science *310*, 1817–1821.

Fenger-Grøn, M., Fillman, C., Norrild, B., and Lykke-Andersen, J. (2005). Multiple Processing Body Factors and the ARE Binding Protein TTP Activate mRNA Decapping. Molecular Cell *20*, 905–915.

Feoktistova, K., Tuvshintogs, E., Do, A., and Fraser, C.S. (2013). Human eIF4E promotes mRNA restructuring by stimulating eIF4A helicase activity. PNAS *110*, 13339–13344.

Fernández, I.S., Bai, X.-C., Hussain, T., Kelley, A.C., Lorsch, J.R., Ramakrishnan, V., and Scheres, S.H.W. (2013). Molecular architecture of a eukaryotic translational initiation complex. Science *342*.

Fernández-Miranda, G., and Méndez, R. (2012). The CPEB-family of proteins, translational control in senescence and cancer. Ageing Res. Rev. 11, 460–472.

Ferraiuolo, M.A., Basak, S., Dostie, J., Murray, E.L., Schoenberg, D.R., and Sonenberg, N. (2005). A role for the eIF4E-binding protein 4E-T in P-body formation and mRNA decay. J. Cell Biol. *170*, 913–924.

Fonseca, B.D., Zakaria, C., Jia, J.-J., Graber, T.E., Svitkin, Y., Tahmasebi, S., Healy, D., Hoang, H.-D., Jensen, J.M., Diao, I.T., et al. (2015). La-related Protein 1 (LARP1) Represses Terminal Oligopyrimidine (TOP) mRNA Translation Downstream of mTOR Complex 1 (mTORC1). J. Biol. Chem. *290*, 15996–16020.

Ford, L., Ling, E., Kandel, E.R., and Fioriti, L. (2019). CPEB3 inhibits translation of mRNA targets by localizing them to P bodies. PNAS *116*, 18078–18087.

Franks, T.M., and Lykke-Andersen, J. (2007). TTP and BRF proteins nucleate processing body formation to silence mRNAs with AU-rich elements. Genes Dev. *21*, 719–735.

Freimer, J.W., Hu, T., and Blelloch, R. (2018). Decoupling the impact of microRNAs on translational repression versus RNA degradation in embryonic stem cells. ELife *7*, e38014.

Friedman, R.C., Farh, K.K.-H., Burge, C.B., and Bartel, D.P. (2009). Most mammalian mRNAs are conserved targets of microRNAs. Genome Res *19*, 92–105.

Fromm, S.A., Truffault, V., Kamenz, J., Braun, J.E., Hoffmann, N.A., Izaurralde, E., and Sprangers, R. (2012). The structural basis of Edc3- and Scd6-mediated activation of the Dcp1:Dcp2 mRNA decapping complex. EMBO J. *31*, 279–290.

Fukao, A., Mishima, Y., Takizawa, N., Oka, S., Imataka, H., Pelletier, J., Sonenberg, N., Thoma, C., and Fujiwara, T. (2014). MicroRNAs trigger dissociation of eIF4AI and eIF4AII from target mRNAs in humans. Mol. Cell *56*, 79–89.

Gallie, D.R. (1991). The cap and poly(A) tail function synergistically to regulate mRNA translational efficiency. Genes Dev. *5*, 2108–2116.

García-García, C., Frieda, K.L., Feoktistova, K., Fraser, C.S., and Block, S.M. (2015). Factor-dependent processivity in human eIF4A DEAD-box helicase. Science *348*, 1486–1488.

Garcia-Jove Navarro, M., Kashida, S., Chouaib, R., Souquere, S., Pierron, G., Weil, D., and Gueroui, Z. (2019). RNA is a critical element for the sizing and the composition of phase-separated RNA–protein condensates. Nat Commun *10*, 3230.

des Georges, A., Dhote, V., Kuhn, L., Hellen, C.U.T., Pestova, T.V., Frank, J., and Hashem, Y. (2015). Structure of mammalian eIF3 in the context of the 43S preinitiation complex. Nature *525*, 491–495.

Giess, A., Torres Cleuren, Y.N., Tjeldnes, H., Krause, M., Bizuayehu, T.T., Hiensch, S., Okon, A., Wagner, C.R., and Valen, E. (2020). Profiling of Small Ribosomal Subunits Reveals Modes and Regulation of Translation Initiation. Cell Rep *31*, 107534.

Gilks, N., Kedersha, N., Ayodele, M., Shen, L., Stoecklin, G., Dember, L.M., and Anderson, P. (2004). Stress granule assembly is mediated by prion-like aggregation of TIA-1. Mol. Biol. Cell *15*, 5383–5398.

Gingras, A.-C., Raught, B., and Sonenberg, N. (1999). eIF4 Initiation Factors: Effectors of mRNA Recruitment to Ribosomes and Regulators of Translation. Annu. Rev. Biochem. *68*, 913–963.

Godwin, A.R., Kojima, S., Green, C.B., and Wilusz, J. (2013). Kiss your tail goodbye: the role of PARN, Nocturnin, and Angel deadenylases in mRNA biology. Biochim. Biophys. Acta *1829*, 571–579.

Gomes, E., and Shorter, J. (2019). The molecular language of membraneless organelles. J. Biol. Chem. 294, 7115–7127.

Gönczy, P. (2012). Towards a molecular architecture of centriole assembly. Nat. Rev. Mol. Cell Biol. *13*, 425–435.

Gosselin, P., Martineau, Y., Morales, J., Czjzek, M., Glippa, V., Gauffeny, I., Morin, E., Le Corguillé, G., Pyronnet, S., Cormier, P., et al. (2013). Tracking a refined eIF4E-binding motif reveals Angel1 as a new partner of eIF4E. Nucleic Acids Research *41*, 7783–7792.

Götze, M., Dufourt, J., Ihling, C., Rammelt, C., Pierson, S., Sambrani, N., Temme, C., Sinz, A., Simonelig, M., and Wahle, E. (2017). Translational repression of the Drosophila nanos mRNA involves the RNA helicase Belle and RNA coating by Me31B and Trailer hitch. RNA *23*, 1552–1568.

Grimson, A., Farh, K.K.-H., Johnston, W.K., Garrett-Engele, P., Lim, L.P., and Bartel, D.P. (2007a). MicroRNA Targeting Specificity in Mammals: Determinants Beyond Seed Pairing. Mol Cell *27*, 91–105.

Grob, A., Colleran, C., and McStay, B. (2014). Construction of synthetic nucleoli in human cells reveals how a major functional nuclear domain is formed and propagated through cell division. Genes Dev. *28*, 220–230.

Grüner, S., Peter, D., Weber, R., Wohlbold, L., Chung, M.-Y., Weichenrieder, O., Valkov, E., Igreja, C., and Izaurralde, E. (2016). The Structures of eIF4E-eIF4G Complexes Reveal an Extended Interface to Regulate Translation Initiation. Molecular Cell *64*, 467–479.

Guca, E., and Hashem, Y. (2018). Major structural rearrangements of the canonical eukaryotic translation initiation complex. Current Opinion in Structural Biology *53*, 151–158.

von der Haar, T., Gross, J.D., Wagner, G., and McCarthy, J.E.G. (2004). The mRNA cap-binding protein eIF4E in post-transcriptional gene expression. Nat Struct Mol Biol *11*, 503–511.

Hafner, M., Landthaler, M., Burger, L., Khorshid, M., Hausser, J., Berninger, P., Rothballer, A., Ascano, M., Jungkamp, A.-C., Munschauer, M., et al. (2010). Transcriptome-wide Identification of RNA-Binding Protein and MicroRNA Target Sites by PAR-CLIP. Cell *141*, 129–141.

Haghandish, N., Baldwin, R.M., Morettin, A., Dawit, H.T., Adhikary, H., Masson, J.-Y., Mazroui, R., Trinkle-Mulcahy, L., and Côté, J. (2019). PRMT7 methylates eukaryotic translation initiation factor 2α and regulates its role in stress granule formation. Mol Biol Cell *30*, 778–793. Haimov, O., Sehrawat, U., Harush, A.T.-B., Bahat, A., Uzonyi, A., Will, A., Hiraishi, H., Asano, K., and Dikstein, R. (2018). Dynamic Interaction of Eukaryotic Initiation Factor 4G1 (eIF4G1) with eIF4E and eIF1 Underlies Scanning-Dependent and -Independent Translation. Molecular and Cellular Biology *38*.

Halstead, J.M., Lionnet, T., Wilbertz, J.H., Wippich, F., Ephrussi, A., Singer, R.H., and Chao, J.A. (2015). Translation. An RNA biosensor for imaging the first round of translation from single cells to living animals. Science *347*, 1367–1671.

Hanson, G., and Coller, J. (2018). Codon optimality, bias and usage in translation and mRNA decay. Nat Rev Mol Cell Biol *19*, 20–30.

Harvey, R.F., Smith, T.S., Mulroney, T., Queiroz, R.M.L., Pizzinga, M., Dezi, V., Villenueva, E., Ramakrishna, M., Lilley, K.S., and Willis, A.E. (2018). Trans-acting translational regulatory RNA binding proteins. Wiley Interdiscip Rev RNA *9*.

Hashem, Y., des Georges, A., Dhote, V., Langlois, R., Liao, H.Y., Grassucci, R.A., Hellen, C.U.T., Pestova, T.V., and Frank, J. (2013). Structure of the Mammalian Ribosomal 43S Preinitiation Complex Bound to the Scanning Factor DHX29. Cell *153*, 1108–1119.

He, Q., and Ge, W. (2017). The tandem Agenet domain of fragile X mental retardation protein interacts with FUS. Scientific Reports *7*.

He, C., Sidoli, S., Warneford-Thomson, R., Tatomer, D.C., Wilusz, J.E., Garcia, B.A., and Bonasio, R. (2016). High-Resolution Mapping of RNA-Binding Regions in the Nuclear Proteome of Embryonic Stem Cells. Mol. Cell *64*, 416–430.

He, F., Celik, A., Wu, C., and Jacobson, A. (2018). General decapping activators target different subsets of inefficiently translated mRNAs. Elife 7.

Heck, A.M., and Wilusz, J. (2018). The Interplay between the RNA Decay and Translation Machinery in Eukaryotes. Cold Spring Harb Perspect Biol *10*, a032839.

Helfer, S., Schott, J., Stoecklin, G., and Förstemann, K. (2012). AU-Rich Element-Mediated mRNA Decay Can Occur Independently of the miRNA Machinery in Mouse Embryonic Fibroblasts and Drosophila S2-Cells. PLoS One *7*.

Hentze, M.W., Castello, A., Schwarzl, T., and Preiss, T. (2018). A brave new world of RNA-binding proteins. Nat. Rev. Mol. Cell Biol. *19*, 327–341.

Herrmannová, A., Prilepskaja, T., Wagner, S., Šikrová, D., Zeman, J., Poncová, K., and Valášek, L.S. (2020). Adapted formaldehyde gradient cross-linking protocol implicates human eIF3d and eIF3c, k and l subunits in the 43S and 48S pre-initiation complex assembly, respectively. Nucleic Acids Research *48*, 1969–1984.

Hershey, J.W.B., Sonenberg, N., and Mathews, M.B. (2019). Principles of Translational Control. Cold Spring Harb Perspect Biol *11*, a032607.

Hia, F., Yang, S.F., Shichino, Y., Yoshinaga, M., Murakawa, Y., Vandenbon, A., Fukao, A., Fujiwara, T., Landthaler, M., Natsume, T., et al. (2019). Codon bias confers stability to human mRNAs. EMBO Rep. *20*, e48220.

Hilliker, A. (2021). mRNA Localization and Localized Translation. In Molecular Life Sciences: An Encyclopedic Reference, E. Bell, ed. (New York, NY: Springer), pp. 1–3.

Hinnebusch, A.G. (2014). The scanning mechanism of eukaryotic translation initiation. Annu. Rev. Biochem. *83*, 779–812.

Hinnebusch, A.G., and Lorsch, J.R. (2012). The mechanism of eukaryotic translation initiation: new insights and challenges. Cold Spring Harb Perspect Biol *4*.

Hinnebusch, A.G., Ivanov, I.P., and Sonenberg, N. (2016). Translational control by 5'-untranslated regions of eukaryotic mRNAs. Science *352*, 1413–1416.

Hofweber, M., and Dormann, D. (2019). Friend or foe—Post-translational modifications as regulators of phase separation and RNP granule dynamics. J. Biol. Chem. *294*, 7137–7150.

Hondele, M., Sachdev, R., Heinrich, S., Wang, J., Vallotton, P., Fontoura, B.M.A., and Weis, K. (2019). DEAD-box ATPases are global regulators of phase-separated organelles. Nature *573*, 144–148.

Horman, S.R., Janas, M.M., Litterst, C., Wang, B., MacRae, I.J., Sever, M.J., Morrissey, D.V., Graves, P., Luo, B., Umesalma, S., et al. (2013). Akt-mediated phosphorylation of argonaute 2 downregulates cleavage and upregulates translational repression of MicroRNA targets. Mol. Cell *50*, 356–367.

Horvathova, I., Voigt, F., Kotrys, A.V., Zhan, Y., Artus-Revel, C.G., Eglinger, J., Stadler, M.B., Giorgetti, L., and Chao, J.A. (2017). The Dynamics of mRNA Turnover Revealed by Single-Molecule Imaging in Single Cells. Molecular Cell *68*, 615-625.e9.

Hu, W., Sweet, T.J., Chamnongpol, S., Baker, K.E., and Coller, J. (2009). Co-translational mRNA decay in Saccharomyces cerevisiae. Nature *461*, 225–229.

Huang, Y.-S., Kan, M.-C., Lin, C.-L., and Richter, J.D. (2006). CPEB3 and CPEB4 in neurons: analysis of RNA-binding specificity and translational control of AMPA receptor GluR2 mRNA. EMBO J. *25*, 4865–4876.

Hubstenberger, A., Cameron, C., Noble, S.L., Keenan, S., and Evans, T.C. (2015). Modifiers of solid RNP granules control normal RNP dynamics and mRNA activity in early development. The Journal of Cell Biology *211*, 703–716.

Hubstenberger, A., Courel, M., Bénard, M., Souquere, S., Ernoult-Lange, M., Chouaib, R., Yi, Z., Morlot, J.-B., Munier, A., Fradet, M., et al. (2017). P-Body Purification Reveals the Condensation of Repressed mRNA Regulons. Molecular Cell *68*, 144-157.e5.

Hug, N., Longman, D., and Cáceres, J.F. (2016). Mechanism and regulation of the nonsense-mediated decay pathway. Nucleic Acids Res *44*, 1483–1495.

Humphreys, D.T., Westman, B.J., Martin, D.I.K., and Preiss, T. (2005). MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly(A) tail function. Proc. Natl. Acad. Sci. U.S.A. *102*, 16961–16966.

Huntzinger, E., Kashima, I., Fauser, M., Saulière, J., and Izaurralde, E. (2008). SMG6 is the catalytic endonuclease that cleaves mRNAs containing nonsense codons in metazoan. RNA *14*, 2609–2617.

Hyman, A.A., and Brangwynne, C.P. (2011). Beyond Stereospecificity: Liquids and Mesoscale Organization of Cytoplasm. Developmental Cell *21*, 14–16.

Hyman, A.A., Weber, C.A., and Jülicher, F. (2014). Liquid-Liquid Phase Separation in Biology. Annual Review of Cell and Developmental Biology *30*, 39–58.

Igreja, C., and Izaurralde, E. (2011). CUP promotes deadenylation and inhibits decapping of mRNA targets. Genes Dev. *25*, 1955–1967.

Igreja, C., Peter, D., Weiler, C., and Izaurralde, E. (2014). 4E-BPs require non-canonical 4E-binding motifs and a lateral surface of eIF4E to repress translation. Nat Commun *5*, 4790.

Imamachi, N., Salam, K.A., Suzuki, Y., and Akimitsu, N. (2017). A GC-rich sequence feature in the 3' UTR directs UPF1-dependent mRNA decay in mammalian cells. Genome Res. *27*, 407–418.

Imataka, H., Gradi, A., and Sonenberg, N. (1998). A newly identified N-terminal amino acid sequence of human eIF4G binds poly(A)-binding protein and functions in poly(A)-dependent translation. EMBO J. *17*, 7480–7489.

Ingelfinger, D., Arndt-Jovin, D.J., Luhrmann, R., and Achsel, T. The human LSm1-7 proteins colocalize with the mRNA-degrading enzymes Dcp1/2 and Xrnl in distinct cytoplasmic foci. 14.

Ingolia, N.T. (2014). Ribosome profiling: new views of translation, from single codons to genome scale. Nat. Rev. Genet. *15*, 205–213.

Ingolia, N.T., Ghaemmaghami, S., Newman, J.R.S., and Weissman, J.S. (2009). Genome-Wide Analysis in Vivo of Translation with Nucleotide Resolution Using Ribosome Profiling. Science *324*, 218–223.

Ingolia, N.T., Lareau, L.F., and Weissman, J.S. (2011). Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes. Cell *147*, 789–802.

Ivanyi-Nagy, R., Davidovic, L., Khandjian, E.W., and Darlix, J.-L. (2005). Disordered RNA chaperone proteins: from functions to disease. CMLS, Cell. Mol. Life Sci. *62*, 1409–1417.

Ivshina, M., Lasko, P., and Richter, J.D. (2014). Cytoplasmic polyadenylation element binding proteins in development, health, and disease. Annu. Rev. Cell Dev. Biol. *30*, 393–415.

Iwakawa, H., and Tomari, Y. (2015). The Functions of MicroRNAs: mRNA Decay and Translational Repression. Trends in Cell Biology *25*, 651–665.

Iwama, H., Kato, K., Imachi, H., Murao, K., and Masaki, T. (2018). Human microRNAs preferentially target genes with intermediate levels of expression and its formation by mammalian evolution. PLOS ONE *13*, e0198142.

Jackson, R.J., Hellen, C.U.T., and Pestova, T.V. (2010). The mechanism of eukaryotic translation initiation and principles of its regulation. Nat. Rev. Mol. Cell Biol. *11*, 113–127.

Jacobson, A., He, F., and Celik, A. (2018). General decapping activators target different subsets of inefficiently translated mRNAs.

Jain, S., Wheeler, J.R., Walters, R.W., Agrawal, A., Barsic, A., and Parker, R. (2016). ATPase-Modulated Stress Granules Contain a Diverse Proteome and Substructure. Cell *164*, 487–498.

Jakymiw, A., Lian, S., Eystathioy, T., Li, S., Satoh, M., Hamel, J.C., Fritzler, M.J., and Chan, E.K.L. (2005). Disruption of GW bodies impairs mammalian RNA interference. Nat. Cell Biol. *7*, 1267–1274.

Januszyk, K., and Lima, C.D. (2014). The eukaryotic RNA exosome. Curr Opin Struct Biol 0, 132–140.

Järvelin, A.I., Noerenberg, M., Davis, I., and Castello, A. (2016). The new (dis)order in RNA regulation. Cell Commun. Signal *14*, 9.

Jennings, M.D., and Pavitt, G.D. (2010). eIF5 has GDI activity necessary for translational control by eIF2 phosphorylation. Nature *465*, 378–381.

Jennings, M.D., and Pavitt, G.D. (2014). A new function and complexity for protein translation initiation factor eIF2B. Cell Cycle *13*, 2660–2665.

Jennings, M.D., Kershaw, C.J., Adomavicius, T., and Pavitt, G.D. (2017). Fail-safe control of translation initiation by dissociation of eIF2α phosphorylated ternary complexes. ELife *6*, e24542.

Jinek, M., Fabian, M.R., Coyle, S.M., Sonenberg, N., and Doudna, J.A. (2010). Structural insights into the human GW182-PABC interaction in microRNA-mediated deadenylation. Nat. Struct. Mol. Biol. *17*, 238–240.

Jinek, M., Coyle, S.M., and Doudna, J.A. (2011). Coupled 5' Nucleotide Recognition and Processivity in Xrn1-Mediated mRNA Decay. Molecular Cell *41*, 600–608.

Jing, Q., Huang, S., Guth, S., Zarubin, T., Motoyama, A., Chen, J., Di Padova, F., Lin, S.-C., Gram, H., and Han, J. (2005). Involvement of microRNA in AU-rich element-mediated mRNA instability. Cell *120*, 623–634.

Johnstone, T.G., Bazzini, A.A., and Giraldez, A.J. (2016). Upstream ORFs are prevalent translational repressors in vertebrates. EMBO J *35*, 706–723.

Jonas, S., and Izaurralde, E. (2013). The role of disordered protein regions in the assembly of decapping complexes and RNP granules. Genes & Development *27*, 2628–2641.

Jonas, S., and Izaurralde, E. (2015). Towards a molecular understanding of microRNA-mediated gene silencing. Nature Reviews Genetics *16*, 421–433.

Jones, C.I., Zabolotskaya, M.V., and Newbury, S.F. (2012). The 5'  $\rightarrow$  3' exoribonuclease XRN1/Pacman and its functions in cellular processes and development. WIREs RNA *3*, 455–468.

Joshi, B., Cameron, A., and Jagus, R. (2004). Characterization of mammalian eIF4E-family members. Eur. J. Biochem. *271*, 2189–2203.

Kahvejian, A., Roy, G., and Sonenberg, N. (2001). The mRNA closed-loop model: the function of PABP and PABP-interacting proteins in mRNA translation. Cold Spring Harb. Symp. Quant. Biol. *66*, 293–300.

Kaibara, K., Okazaki, T., Bohidar, H.B., and Dubin, P.L. (2000). pH-Induced Coacervation in Complexes of Bovine Serum Albumin and Cationic Polyelectrolytes. Biomacromolecules *1*, 100–107.

Kakumani, P.K., Harvey, L.-M., Houle, F., Guitart, T., Gebauer, F., and Simard, M.J. (2020). CSDE1 controls gene expression through the miRNA-mediated decay machinery. Life Science Alliance *3*.

Kamenska, A., Lu, W.-T., Kubacka, D., Broomhead, H., Minshall, N., Bushell, M., and Standart, N. (2014). Human 4E-T represses translation of bound mRNAs and enhances microRNA-mediated silencing. Nucleic Acids Research *42*, 3298–3313.

Kamenska, A., Simpson, C., Vindry, C., Broomhead, H., Bénard, M., Ernoult-Lange, M., Lee, B.P., Harries, L.W., Weil, D., and Standart, N. (2016). The DDX6–4E-T interaction mediates translational repression and P-body assembly. Nucleic Acids Research *44*, 6318–6334.

Kapp, L.D., and Lorsch, J.R. (2004). GTP-dependent Recognition of the Methionine Moiety on Initiator tRNA by Translation Factor eIF2. Journal of Molecular Biology *335*, 923–936.

Kato, M., Han, T.W., Xie, S., Shi, K., Du, X., Wu, L.C., Mirzaei, H., Goldsmith, E.J., Longgood, J., Pei, J., et al. (2012). Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels. Cell *149*, 753–767.

Kedersha, N., Stoecklin, G., Ayodele, M., Yacono, P., Lykke-Andersen, J., Fritzler, M.J., Scheuner, D., Kaufman, R.J., Golan, D.E., and Anderson, P. (2005). Stress granules and processing bodies are dynamically linked sites of mRNP remodeling. J. Cell Biol. *169*, 871–884.

Kervestin, S., and Jacobson, A. (2012). NMD: a multifaceted response to premature translational termination. Nat Rev Mol Cell Biol *13*, 700–712.

Kiledjian, M., and Dreyfuss, G. (1992). Primary structure and binding activity of the hnRNP U protein: binding RNA through RGG box. EMBO J. *11*, 2655–2664.

Kim, J.H., and Richter, J.D. (2006). Opposing polymerase-deadenylase activities regulate cytoplasmic polyadenylation. Mol. Cell *24*, 173–183.

King, H.A., Cobbold, L.C., and Willis, A.E. (2010). The role of IRES trans-acting factors in regulating translation initiation. Biochem. Soc. Trans. *38*, 1581–1586.

Koga, H., Kaushik, S., and Cuervo, A.M. (2011). Protein Homeostasis and Aging: the importance of exquisite quality control. Ageing Res Rev *10*, 205–215.

Komar, A.A., and Hatzoglou, M. (2011). Cellular IRES-mediated translation. Cell Cycle 10, 229–240.

Kozak, M. (1986). Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell *44*, 283–292.

Kozak, M. (1987). At least six nucleotides preceding the AUG initiator codon enhance translation in mammalian cells. Journal of Molecular Biology *196*, 947–950.

Kramer, S., Queiroz, R., Ellis, L., Hoheisel, J.D., Clayton, C., and Carrington, M. (2010). The RNA helicase DHH1 is central to the correct expression of many developmentally regulated mRNAs in trypanosomes. J Cell Sci *123*, 699–711.

Kumar, P., Hellen, C.U.T., and Pestova, T.V. (2016b). Toward the mechanism of eIF4F-mediated ribosomal attachment to mammalian capped mRNAs. Genes Dev. *30*, 1573–1588.

Kuzuoğlu-Öztürk, D., Bhandari, D., Huntzinger, E., Fauser, M., Helms, S., and Izaurralde, E. (2016). miRISC and the CCR4–NOT complex silence mRNA targets independently of 43S ribosomal scanning. The EMBO Journal e201592901.

Łabno, A., Tomecki, R., and Dziembowski, A. (2016). Cytoplasmic RNA decay pathways - Enzymes and mechanisms. Biochim. Biophys. Acta *1863*, 3125–3147.

Ladomery, M., and Sommerville, J. (2015). The Scd6/Lsm14 protein xRAPB has properties different from RAP55 in selecting mRNA for early translation or intracellular distribution in Xenopus oocytes. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms *1849*, 1363–1373.

Lahr, R.M., Fonseca, B.D., Ciotti, G.E., Al-Ashtal, H.A., Jia, J.-J., Niklaus, M.R., Blagden, S.P., Alain, T., and Berman, A.J. (2017). La-related protein 1 (LARP1) binds the mRNA cap, blocking eIF4F assembly on TOP mRNAs. ELife *6*, e24146.

Lau, N.-C., Kolkman, A., van Schaik, F.M.A., Mulder, K.W., Pijnappel, W.W.M.P., Heck, A.J.R., and Timmers, H.T.M. (2009). Human Ccr4-Not complexes contain variable deadenylase subunits. Biochem. J. *422*, 443–453.

Lavut, A., and Raveh, D. (2012). Sequestration of highly expressed mRNAs in cytoplasmic granules, Pbodies, and stress granules enhances cell viability. PLoS Genet. *8*, e1002527.

Lebreton, A., Tomecki, R., Dziembowski, A., and Séraphin, B. (2008). Endonucleolytic RNA cleavage by a eukaryotic exosome. Nature *456*, 993–996.

Lee, T., and Pelletier, J. (2016). The biology of DHX9 and its potential as a therapeutic target. Oncotarget 7, 42716–42739.

Lee, Y., Jeon, K., Lee, J.-T., Kim, S., and Kim, V.N. (2002). MicroRNA maturation: stepwise processing and subcellular localization. EMBO J *21*, 4663–4670.

Leppek, K., Das, R., and Barna, M. (2018). Functional 5' UTR mRNA structures in eukaryotic translation regulation and how to find them. Nat Rev Mol Cell Biol *19*, 158–174.

Lerner, R.S., and Nicchitta, C.V. (2006). mRNA translation is compartmentalized to the endoplasmic reticulum following physiological inhibition of cap-dependent translation. RNA *12*, 775–789.

Leung, A.K.L., Calabrese, J.M., and Sharp, P.A. (2006). Quantitative analysis of Argonaute protein reveals microRNA-dependent localization to stress granules. Proc Natl Acad Sci U S A *103*, 18125–18130.

Lewis, B.P., Burge, C.B., and Bartel, D.P. (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell *120*, 15–20.

Li, J.J., Bickel, P.J., and Biggin, M.D. (2014). System wide analyses have underestimated protein abundances and the importance of transcription in mammals. PeerJ *2*, e270.

Li, P., Banjade, S., Cheng, H.-C., Kim, S., Chen, B., Guo, L., Llaguno, M., Hollingsworth, J.V., King, D.S., Banani, S.F., et al. (2012). Phase transitions in the assembly of multivalent signalling proteins. Nature *483*, 336–340.

Li, X.-H., Chavali, P.L., Pancsa, R., Chavali, S., and Babu, M.M. (2018). Function and Regulation of Phase-Separated Biological Condensates. Biochemistry *57*, 2452–2461.

Liang, H., and Li, W.-H. (2009). Lowly expressed human microRNA genes evolve rapidly. Mol. Biol. Evol. *26*, 1195–1198.

Lin, Y., Protter, D.S.W., Rosen, M.K., and Parker, R. (2015). Formation and Maturation of Phase-Separated Liquid Droplets by RNA-Binding Proteins. Molecular Cell *60*, 208–219.

Liu, J., Valencia-Sanchez, M.A., Hannon, G.J., and Parker, R. (2005). MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies. Nat. Cell Biol. *7*, 719–723.

Loh, B., Jonas, S., and Izaurralde, E. (2013). The SMG5-SMG7 heterodimer directly recruits the CCR4-NOT deadenylase complex to mRNAs containing nonsense codons via interaction with POP2. Genes Dev. *27*, 2125–2138.

Lomakin, I.B., and Steitz, T.A. (2013). The initiation of mammalian protein synthesis and mRNA scanning mechanism. Nature *500*, 307–311.

Lomakin, I.B., Kolupaeva, V.G., Marintchev, A., Wagner, G., and Pestova, T.V. (2003). Position of eukaryotic initiation factor eIF1 on the 40S ribosomal subunit determined by directed hydroxyl radical probing. Genes Dev. *17*, 2786–2797.

Lui, J., Castelli, L.M., Pizzinga, M., Simpson, C.E., Hoyle, N.P., Bailey, K.L., Campbell, S.G., and Ashe, M.P. (2014). Granules Harboring Translationally Active mRNAs Provide a Platform for P-Body Formation following Stress. Cell Reports *9*, 944–954.

Lykke-Andersen, J. (2002). Identification of a Human Decapping Complex Associated with hUpf Proteins in Nonsense-Mediated Decay. Mol Cell Biol *22*, 8114–8121.

Lykke-Andersen, J., and Bennett, E.J. (2014). Protecting the proteome: Eukaryotic cotranslational quality control pathways. J Cell Biol *204*, 467–476.

Lykke-Andersen, J., and Wagner, E. (2005). Recruitment and activation of mRNA decay enzymes by two ARE-mediated decay activation domains in the proteins TTP and BRF-1. Genes Dev. *19*, 351–361.

Mackereth, C.D., and Sattler, M. (2012). Dynamics in multi-domain protein recognition of RNA. Current Opinion in Structural Biology *22*, 287–296.

Mader, S., Lee, H., Pause, A., and Sonenberg, N. (1995). The Translation Initiation Factor eIF-4E Binds to a Common Motif Shared by the Translation Factor eIF-42 and the Translational Repressors 4E-Binding Proteins. MOL. CELL. BIOL. *15*, 8.

Mancera-Martínez, E., Brito Querido, J., Valasek, L.S., Simonetti, A., and Hashem, Y. (2017). ABCE1: A special factor that orchestrates translation at the crossroad between recycling and initiation. RNA Biology *14*, 1279–1285.

Mangus, D.A., Evans, M.C., and Jacobson, A. (2003). Poly(A)-binding proteins: multifunctional scaffolds for the post-transcriptional control of gene expression. Genome Biol. *4*, 223.

Marcotrigiano, J., Gingras, A.-C., Sonenberg, N., and Burley, S.K. (1997). Cocrystal Structure of the Messenger RNA 5' Cap-Binding Protein (eIF4E) Bound to 7-methyl-GDP. Cell *89*, 951–961.

Marnef, A., and Standart, N. (2010). Pat1 proteins: a life in translation, translation repression and mRNA decay. Biochem Soc Trans *38*, 1602–1607.

Marnef, A., Sommerville, J., and Ladomery, M.R. (2009). RAP55: Insights into an evolutionarily conserved protein family. The International Journal of Biochemistry & Cell Biology *41*, 977–981.

Matheny, T., Rao, B.S., and Parker, R. (2019). Transcriptome-Wide Comparison of Stress Granules and P-Bodies Reveals that Translation Plays a Major Role in RNA Partitioning. Molecular and Cellular Biology *39*.

Mathys, H., Basquin, J., Ozgur, S., Czarnocki-Cieciura, M., Bonneau, F., Aartse, A., Dziembowski, A., Nowotny, M., Conti, E., and Filipowicz, W. (2014). Structural and Biochemical Insights to the Role of the CCR4-NOT Complex and DDX6 ATPase in MicroRNA Repression. Molecular Cell *54*, 751–765.

Matsumoto, K., Nakayama, H., Yoshimura, M., Masuda, A., Dohmae, N., Matsumoto, S., and Tsujimoto, M. (2012). PRMT1 is required for RAP55 to localize to processing bodies. RNA Biol *9*, 610–623.

Mauxion, F., Prève, B., and Séraphin, B. (2013). C2ORF29/CNOT11 and CNOT10 form a new module of the CCR4-NOT complex. RNA Biol *10*, 267–276.

McSwiggen, D.T., Mir, M., Darzacq, X., and Tjian, R. (2019). Evaluating phase separation in live cells: diagnosis, caveats, and functional consequences. Genes Dev. *33*, 1619–1634.

Meijer, H.A., Kong, Y.W., Lu, W.T., Wilczynska, A., Spriggs, R.V., Robinson, S.W., Godfrey, J.D., Willis, A.E., and Bushell, M. (2013). Translational repression and eIF4A2 activity are critical for microRNA-mediated gene regulation. Science *340*, 82–85.

Meijer, H.A., Schmidt, T., Gillen, S.L., Langlais, C., Jukes-Jones, R., de Moor, C.H., Cain, K., Wilczynska, A., and Bushell, M. (2019). DEAD-box helicase eIF4A2 inhibits CNOT7 deadenylation activity. Nucleic Acids Res *47*, 8224–8238.

Melero, R., Hug, N., López-Perrote, A., Yamashita, A., Cáceres, J.F., and Llorca, O. (2016). The RNA helicase DHX34 functions as a scaffold for SMG1-mediated UPF1 phosphorylation. Nature Communications *7*, 10585.

Mélèse, T., and Xue, Z. (1995). The nucleolus: an organelle formed by the act of building a ribosome. Curr. Opin. Cell Biol. 7, 319–324.

Mellacheruvu, D., Wright, Z., Couzens, A.L., Lambert, J.-P., St-Denis, N.A., Li, T., Miteva, Y.V., Hauri, S., Sardiu, M.E., Low, T.Y., et al. (2013). The CRAPome: a contaminant repository for affinity purification–mass spectrometry data. Nature Methods *10*, 730–736.

Mendez, R., and Richter, J.D. (2001). Translational control by CPEB: a means to the end. Nat Rev Mol Cell Biol 2, 521–529.

Merrick, W.C., and Pavitt, G.D. (2018). Protein Synthesis Initiation in Eukaryotic Cells. Cold Spring Harb Perspect Biol *10*, a033092..

Meunier, J., Lemoine, F., Soumillon, M., Liechti, A., Weier, M., Guschanski, K., Hu, H., Khaitovich, P., and Kaessmann, H. (2013). Birth and expression evolution of mammalian microRNA genes. Genome Res. *23*, 34–45.

Meyer, K.D., Patil, D.P., Zhou, J., Zinoviev, A., Skabkin, M.A., Elemento, O., Pestova, T.V., Qian, S.-B., and Jaffrey, S.R. (2015). 5' UTR m6A Promotes Cap-Independent Translation. Cell *163*, 999–1010.

Meyuhas, O., and Kahan, T. (2015). The race to decipher the top secrets of TOP mRNAs. Biochim. Biophys. Acta *1849*, 801–811.

Mi, H., Muruganujan, A., Casagrande, J.T., and Thomas, P.D. (2013). Large-scale gene function analysis with the PANTHER classification system. Nat Protoc *8*, 1551–1566.

Miller, J.E., Zhang, L., Jiang, H., Li, Y., Pugh, B.F., and Reese, J.C. (2017). Genome-Wide Mapping of Decay Factor–mRNA Interactions in Yeast Identifies Nutrient-Responsive Transcripts as Targets of the Deadenylase Ccr4. G3 (Bethesda) *8*, 315–330.

Minshall, N., and Standart, N. (2004). The active form of Xp54 RNA helicase in translational repression is an RNA-mediated oligomer. Nucleic Acids Res *32*, 1325–1334.

Minshall, N., Reiter, M.H., Weil, D., and Standart, N. (2007). CPEB Interacts with an Ovary-specific eIF4E and 4E-T in Early Xenopus Oocytes. J. Biol. Chem. *282*, 37389–37401.

Minshall, N., Kress, M., Weil, D., and Standart, N. (2009). Role of p54 RNA helicase activity and its C-terminal domain in translational repression, P-body localization and assembly. Molecular Biology of the Cell *20*, 2464–2472.

Mitchell, P., Petfalski, E., Shevchenko, A., Mann, M., and Tollervey, D. (1997). The exosome: a conserved eukaryotic RNA processing complex containing multiple 3'-->5' exoribonucleases. Cell *91*, 457–466.

Moon, S.L., Morisaki, T., Khong, A., Lyon, K., Parker, R., and Stasevich, T.J. (2019). Multicolour single-molecule tracking of mRNA interactions with RNP granules. Nature Cell Biology *21*, 162.

Morisaki, T., Lyon, K., DeLuca, K.F., DeLuca, J.G., English, B.P., Zhang, Z., Lavis, L.D., Grimm, J.B., Viswanathan, S., Looger, L.L., et al. (2016). Real-time quantification of single RNA translation dynamics in living cells. Science *352*, 1425–1429.

Mugridge, J.S., Coller, J., and Gross, J.D. (2018). Structural and molecular mechanisms for the control of eukaryotic 5'–3' mRNA decay. Nat Struct Mol Biol *25*, 1077–1085.

Muhlrad, D., and Parker, R. (1992). Mutations affecting stability and deadenylation of the yeast MFA2 transcript. Genes Dev. *6*, 2100–2111.

Müller-McNicoll, M., and Neugebauer, K.M. (2013). How cells get the message: dynamic assembly and function of mRNA–protein complexes. Nature Reviews Genetics *14*, 275–287.

Nadler-Holly, M., Breker, M., Gruber, R., Azia, A., Gymrek, M., Eisenstein, M., Willison, K.R., Schuldiner, M., and Horovitz, A. (2012). Interactions of subunit CCT3 in the yeast chaperonin CCT/TRiC with Q/N-rich proteins revealed by high-throughput microscopy analysis. Proc Natl Acad Sci U S A *109*, 18833–18838.

Nakashima, K.K., Vibhute, M.A., and Spruijt, E. (2019). Biomolecular Chemistry in Liquid Phase Separated Compartments. Front. Mol. Biosci. *6*.

Nandagopal, N., and Roux, P.P. (2015). Regulation of global and specific mRNA translation by the mTOR signaling pathway. Translation (Austin) *3*, e983402.

Napoli, I., Mercaldo, V., Boyl, P.P., Eleuteri, B., Zalfa, F., De Rubeis, S., Di Marino, D., Mohr, E., Massimi, M., Falconi, M., et al. (2008). The Fragile X Syndrome Protein Represses Activity-Dependent Translation through CYFIP1, a New 4E-BP. Cell *134*, 1042–1054.

Narula, A., Ellis, J., Taliaferro, J.M., and Rissland, O.S. (2019). Coding regions affect mRNA stability in human cells. RNA *25*, 1751–1764.

Nicastro, G., Taylor, I.A., and Ramos, A. (2015). KH-RNA interactions: back in the groove. Curr. Opin. Struct. Biol. *30*, 63–70.

Niewidok, B., Igaev, M., Pereira da Graca, A., Strassner, A., Lenzen, C., Richter, C.P., Piehler, J., Kurre, R., and Brandt, R. (2018). Single-molecule imaging reveals dynamic biphasic partition of RNA-binding proteins in stress granules. J Cell Biol *217*, 1303–1318.

Nishimura, T., Padamsi, Z., Fakim, H., Milette, S., Dunham, W.H., Gingras, A.-C., and Fabian, M.R. (2015). The eIF4E-Binding Protein 4E-T Is a Component of the mRNA Decay Machinery that Bridges the 5' and 3' Termini of Target mRNAs. Cell Reports *11*, 1425–1436.

Nissan, T., Rajyaguru, P., She, M., Song, H., and Parker, R. (2010). Decapping Activators in Saccharomyces cerevisiae Act by Multiple Mechanisms. Molecular Cell *39*, 773–783.

Noriega, T.R., Chen, J., Walter, P., and Puglisi, J.D. (2014). Real-time observation of signal recognition particle binding to actively translating ribosomes. ELife *3*, e04418.

Nott, T.J., Petsalaki, E., Farber, P., Jervis, D., Fussner, E., Plochowietz, A., Craggs, T.D., Bazett-Jones, D.P., Pawson, T., Forman-Kay, J.D., et al. (2015). Phase Transition of a Disordered Nuage Protein Generates Environmentally Responsive Membraneless Organelles. Mol Cell *57*, 936–947.

Nott, T.J., Craggs, T.D., and Baldwin, A.J. (2016). Membraneless organelles can melt nucleic acid duplexes and act as biomolecular filters. Nat Chem *8*, 569–575.

Nottrott, S., Simard, M.J., and Richter, J.D. (2006). Human let-7a miRNA blocks protein production on actively translating polyribosomes. Nat. Struct. Mol. Biol. *13*, 1108–1114.

Ogunbona, O.B., and Claypool, S.M. (2019). Emerging Roles in the Biogenesis of Cytochrome c Oxidase for Members of the Mitochondrial Carrier Family. Front. Cell Dev. Biol. *7*.

Orr, M.W., Mao, Y., Storz, G., and Qian, S.-B. (2020). Alternative ORFs and small ORFs: shedding light on the dark proteome. Nucleic Acids Res *48*, 1029–1042.

Otsuka, H., Fukao, A., Funakami, Y., Duncan, K.E., and Fujiwara, T. (2019). Emerging Evidence of Translational Control by AU-Rich Element-Binding Proteins. Front. Genet. *10*.

Ozdilek, B.A., Thompson, V.F., Ahmed, N.S., White, C.I., Batey, R.T., and Schwartz, J.C. (2017). Intrinsically disordered RGG/RG domains mediate degenerate specificity in RNA binding. Nucleic Acids Res *45*, 7984–7996.

Ozgur, S., Chekulaeva, M., and Stoecklin, G. (2010). Human Pat1b connects deadenylation with mRNA decapping and controls the assembly of processing bodies. Mol. Cell. Biol. *30*, 4308–4323.

Ozgur, S., Buchwald, G., Falk, S., Chakrabarti, S., Prabu, J.R., and Conti, E. (2015a). The conformational plasticity of eukaryotic RNA-dependent ATPases. The FEBS Journal *282*, 850–863.

Ozgur, S., Basquin, J., Kamenska, A., Filipowicz, W., Standart, N., and Conti, E. (2015b). Structure of a Human 4E-T/DDX6/CNOT1 Complex Reveals the Different Interplay of DDX6-Binding Proteins with the CCR4-NOT Complex. Cell Reports *13*, 703–711.

Pak, C.W., Kosno, M., Holehouse, A.S., Padrick, S.B., Mittal, A., Ali, R., Yunus, A.A., Liu, D.R., Pappu, R.V., and Rosen, M.K. (2016). Sequence Determinants of Intracellular Phase Separation by Complex Coacervation of a Disordered Protein. Mol. Cell *63*, 72–85.

Pakos-Zebrucka, K., Koryga, I., Mnich, K., Ljujic, M., Samali, A., and Gorman, A.M. (2016). The integrated stress response. EMBO Rep. *17*, 1374–1395.

Palade, G. (1975). Intracellular aspects of the process of protein synthesis. Science 189, 347–358.

Parker, R., and Sheth, U. (2007). P Bodies and the Control of mRNA Translation and Degradation. Molecular Cell *25*, 635–646.

Parrott, A.M., Walsh, M.R., and Mathews, M.B. (2007). Analysis of RNA:protein interactions in vivo: identification of RNA-binding partners of nuclear factor 90. Meth. Enzymol. *429*, 243–260.

Patel, A., Lee, H.O., Jawerth, L., Maharana, S., Jahnel, M., Hein, M.Y., Stoynov, S., Mahamid, J., Saha, S., Franzmann, T.M., et al. (2015). A Liquid-to-Solid Phase Transition of the ALS Protein FUS Accelerated by Disease Mutation. Cell *162*, 1066–1077.

Pause, A., Belsham, G.J., Gingras, A.C., Donzé, O., Lin, T.A., Lawrence, J.C., and Sonenberg, N. (1994). Insulin-dependent stimulation of protein synthesis by phosphorylation of a regulator of 5'-cap function. Nature *371*, 762–767. Pavitt, G.D. (2005). eIF2B, a mediator of general and gene-specific translational control. Biochem. Soc. Trans. *33*, 1487–1492.

Pechmann, S., and Frydman, J. (2013). Evolutionary conservation of codon optimality reveals hidden signatures of cotranslational folding. Nat. Struct. Mol. Biol. *20*, 237–243.

Pelletier, J., and Sonenberg, N. (2019). The Organizing Principles of Eukaryotic Ribosome Recruitment. Annual Review of Biochemistry *88*, 307–335.

Peran, I., and Mittag, T. (2020). Molecular structure in biomolecular condensates. Current Opinion in Structural Biology *60*, 17–26.

Peter, D., Igreja, C., Weber, R., Wohlbold, L., Weiler, C., Ebertsch, L., Weichenrieder, O., and Izaurralde, E. (2015). Molecular Architecture of 4E-BP Translational Inhibitors Bound to eIF4E. Molecular Cell *57*, 1074–1087.

Petersen, C.P., Bordeleau, M.-E., Pelletier, J., and Sharp, P.A. (2006). Short RNAs repress translation after initiation in mammalian cells. Mol. Cell *21*, 533–542.

Pfanner, N., Warscheid, B., and Wiedemann, N. (2019). Mitochondrial proteins: from biogenesis to functional networks. Nature Reviews Molecular Cell Biology *20*, 267–284.

Philippe, L., Vasseur, J.-J., Debart, F., and Thoreen, C.C. (2018). La-related protein 1 (LARP1) repression of TOP mRNA translation is mediated through its cap-binding domain and controlled by an adjacent regulatory region. Nucleic Acids Res *46*, 1457–1469.

Piao, X., Zhang, X., Wu, L., and Belasco, J.G. (2010). CCR4-NOT deadenylates mRNA associated with RNA-induced silencing complexes in human cells. Mol. Cell. Biol. *30*, 1486–1494.

Pilkington, G.R., and Parker, R. (2008). Pat1 contains distinct functional domains that promote P-body assembly and activation of decapping. Mol. Cell. Biol. *28*, 1298–1312.

Pillai, R.S. (2005). MicroRNA function: multiple mechanisms for a tiny RNA? RNA 11, 1753–1761.

Pillai, R.S., Bhattacharyya, S.N., Artus, C.G., Zoller, T., Cougot, N., Basyuk, E., Bertrand, E., and Filipowicz, W. (2005). Inhibition of translational initiation by Let-7 MicroRNA in human cells. Science *309*, 1573–1576.

Piqué, M., López, J.M., Foissac, S., Guigó, R., and Méndez, R. (2008). A combinatorial code for CPEmediated translational control. Cell *132*, 434–448.

Pisarev, A.V., Kolupaeva, V.G., Yusupov, M.M., Hellen, C.U., and Pestova, T.V. (2008). Ribosomal position and contacts of mRNA in eukaryotic translation initiation complexes. EMBO J *27*, 1609–1621.

Pitchiaya, S., Mourao, M.D.A., Jalihal, A.P., Xiao, L., Jiang, X., Chinnaiyan, A.M., Schnell, S., and Walter, N.G. (2019). Dynamic Recruitment of Single RNAs to Processing Bodies Depends on RNA Functionality. Molecular Cell.

Poncová, K., Wagner, S., Jansen, M.E., Beznosková, P., Gunišová, S., Herrmannová, A., Zeman, J., Dong, J., and Valášek, L.S. (2019). uS3/Rps3 controls fidelity of translation termination and programmed stop codon readthrough in co-operation with eIF3. Nucleic Acids Res. *47*, 11326–11343.

Poornima, G., Shah, S., Vignesh, V., Parker, R., and Rajyaguru, P.I. (2016). Arginine methylation promotes translation repression activity of eIF4G-binding protein, Scd6. Nucleic Acids Res *44*, 9358–9368.

Pop, C., Rouskin, S., Ingolia, N.T., Han, L., Phizicky, E.M., Weissman, J.S., and Koller, D. (2014). Causal signals between codon bias, mRNA structure, and the efficiency of translation and elongation. Mol. Syst. Biol. *10*, 770.

Preiss, T., and Hentze, M.W. (1998). Dual function of the messenger RNA cap structure in poly(A)-tail-promoted translation in yeast. Nature *392*, 516–520.

Presnyak, V., and Coller, J. (2013). The DHH1/RCKp54 family of helicases: An ancient family of proteins that promote translational silencing. Biochim Biophys Acta *1829*, 817–823.

Presnyak, V., Alhusaini, N., Chen, Y.-H., Martin, S., Morris, N., Kline, N., Olson, S., Weinberg, D., Baker, K.E., Graveley, B.R., et al. (2015). Codon optimality is a major determinant of mRNA stability. Cell *160*, 1111–1124.

Proud, C.G. (2018). Phosphorylation and Signal Transduction Pathways in Translational Control. Cold Spring Harb Perspect Biol a033050.

Radhakrishnan, A., and Green, R. (2016). Connections Underlying Translation and mRNA Stability. J. Mol. Biol. *428*, 3558–3564.

Rajyaguru, P., She, M., and Parker, R. (2012). Scd6 targets eIF4G to repress translation: RGG motif proteins as a class of eIF4G-binding proteins. Mol. Cell *45*, 244–254.

Räsch, F., Weber, R., Izaurralde, E., and Igreja, C. (2020). 4E-T-bound mRNAs are stored in a silenced and deadenylated form. Genes Dev. *34*, 847–860.

Reijns, M.A.M., Alexander, R.D., Spiller, M.P., and Beggs, J.D. (2008). A role for Q/N-rich aggregationprone regions in P-body localization. J. Cell. Sci. *121*, 2463–2472.

Rhoads, R.E. (2009). eIF4E: New Family Members, New Binding Partners, New Roles. J. Biol. Chem. 284, 16711–16715.

Rissland, O.S., Subtelny, A.O., Wang, M., Lugowski, A., Nicholson, B., Laver, J.D., Sidhu, S.S., Smibert, C.A., Lipshitz, H.D., and Bartel, D.P. (2017). The influence of microRNAs and poly(A) tail length on endogenous mRNA–protein complexes. Genome Biology *18*.

Rolfe, D.F., and Brown, G.C. (1997). Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol. Rev. *77*, 731–758.

Roux, K.J. (2013). Marked by association: techniques for proximity-dependent labeling of proteins in eukaryotic cells. Cell. Mol. Life Sci. *70*, 3657–3664.

Rouya, C., Siddiqui, N., Morita, M., Duchaine, T.F., Fabian, M.R., and Sonenberg, N. (2014). Human DDX6 effects miRNA-mediated gene silencing via direct binding to CNOT1. RNA *20*, 1398–1409.

Rüdel, S., Wang, Y., Lenobel, R., Körner, R., Hsiao, H.-H., Urlaub, H., Patel, D., and Meister, G. (2011). Phosphorylation of human Argonaute proteins affects small RNA binding. Nucleic Acids Res. *39*, 2330–2343.

Rybak-Wolf, A., Jens, M., Murakawa, Y., Herzog, M., Landthaler, M., and Rajewsky, N. (2014). A variety of dicer substrates in human and C. elegans. Cell *159*, 1153–1167.

Safaee, N., Kozlov, G., Noronha, A.M., Xie, J., Wilds, C.J., and Gehring, K. (2012). Interdomain allostery promotes assembly of the poly(A) mRNA complex with PABP and eIF4G. Mol. Cell *48*, 375–386.

Sawicka, K., Bushell, M., Spriggs, K.A., and Willis, A.E. (2008). Polypyrimidine-tract-binding protein: a multifunctional RNA-binding protein. Biochem. Soc. Trans. *36*, 641–647.

Scheper, G.C., van Kollenburg, B., Hu, J., Luo, Y., Goss, D.J., and Proud, C.G. (2002). Phosphorylation of Eukaryotic Initiation Factor 4E Markedly Reduces Its Affinity for Capped mRNA. J. Biol. Chem. *277*, 3303–3309.

Schirle, N.T., Sheu-Gruttadauria, J., and MacRae, I.J. (2014). Structural basis for microRNA targeting. Science *346*, 608–613.

Schirle, N.T., Sheu-Gruttadauria, J., Chandradoss, S.D., Joo, C., and MacRae, I.J. (2015). Watermediated recognition of t1-adenosine anchors Argonaute2 to microRNA targets. Elife 4.

Schmidt, H.B., and Görlich, D. (2016). Transport Selectivity of Nuclear Pores, Phase Separation, and Membraneless Organelles. Trends Biochem. Sci. *41*, 46–61.

Schütz, S., Nöldeke, E.R., and Sprangers, R. (2017). A synergistic network of interactions promotes the formation of in vitro processing bodies and protects mRNA against decapping. Nucleic Acids Res *45*, 6911–6922.

Schwanhäusser, B., Busse, D., Li, N., Dittmar, G., Schuchhardt, J., Wolf, J., Chen, W., and Selbach, M. (2011). Global quantification of mammalian gene expression control. Nature *473*, 337–342.

Selbach, M., Schwanhäusser, B., Thierfelder, N., Fang, Z., Khanin, R., and Rajewsky, N. (2008). Widespread changes in protein synthesis induced by microRNAs. Nature *455*, 58–63.

Serman, A., Le Roy, F., Aigueperse, C., Kress, M., Dautry, F., and Weil, D. (2007). GW body disassembly triggered by siRNAs independently of their silencing activity. Nucleic Acids Research *35*, 4715–4727.

Sharif, H., and Conti, E. (2013). Architecture of the Lsm1-7-Pat1 Complex: A Conserved Assembly in Eukaryotic mRNA Turnover. Cell Reports *5*, 283–291.

Sharif, H., Ozgur, S., Sharma, K., Basquin, C., Urlaub, H., and Conti, E. (2013a). Structural analysis of the yeast Dhh1-Pat1 complex reveals how Dhh1 engages Pat1, Edc3 and RNA in mutually exclusive interactions. Nucleic Acids Res. *41*, 8377–8390.

She, M., Decker, C.J., Svergun, D.I., Round, A., Chen, N., Muhlrad, D., Parker, R., and Song, H. (2008). Structural Basis of Dcp2 Recognition and Activation by Dcp1. Molecular Cell *29*, 337–349.

Sheth, U., and Parker, R. (2003). Decapping and Decay of Messenger RNA Occur in Cytoplasmic Processing Bodies. Science *300*, 805–808.

Shin, Y., and Brangwynne, C.P. (2017). Liquid phase condensation in cell physiology and disease. Science *357*.

Shoemaker, C.J., and Green, R. (2012). Translation drives mRNA quality control. Nat Struct Mol Biol *19*, 594–601.

Simonetti, A., Brito Querido, J., Myasnikov, A.G., Mancera-Martinez, E., Renaud, A., Kuhn, L., and Hashem, Y. (2016). eIF3 Peripheral Subunits Rearrangement after mRNA Binding and Start-Codon Recognition. Molecular Cell *63*, 206–217.

Simonetti, A., Guca, E., Bochler, A., Kuhn, L., and Hashem, Y. (2020). Structural Insights into the Mammalian Late-Stage Initiation Complexes. Cell Reports *31*.

Slavoff, S.A., Mitchell, A.J., Schwaid, A.G., Cabili, M.N., Ma, J., Levin, J.Z., Karger, A.D., Budnik, B.A., Rinn, J.L., and Saghatelian, A. (2013). Peptidomic discovery of short open reading frame-encoded peptides in human cells. Nat. Chem. Biol. *9*, 59–64.

Smillie, D.A., and Sommerville, J. RNA helicase p54 and mRNP assembly. 13.

Sokabe, M., and Fraser, C.S. (2014). Human eukaryotic initiation factor 2 (eIF2)-GTP-Met-tRNAi ternary complex and eIF3 stabilize the 43 S preinitiation complex. J. Biol. Chem. *289*, 31827–31836.

Sokabe, M., and Fraser, C.S. (2018). Toward a Kinetic Understanding of Eukaryotic Translation. Cold Spring Harb Perspect Biol a032706.

Sonenberg, N., and Hinnebusch, A.G. (2009). Regulation of Translation Initiation in Eukaryotes: Mechanisms and Biological Targets. Cell *136*, 731–745.

Sonenberg, N., Morgan, M.A., Merrick, W.C., and Shatkin, A.J. (1978). A polypeptide in eukaryotic initiation factors that crosslinks specifically to the 5'-terminal cap in mRNA. Proc. Natl. Acad. Sci. U.S.A. *75*, 4843–4847.

Sonenberg, N., Rupprecht, K.M., Hecht, S.M., and Shatkin, A.J. (1979). Eukaryotic mRNA cap binding protein: purification by affinity chromatography on sepharose-coupled m7GDP. Proceedings of the National Academy of Sciences *76*, 4345–4349.

Soto-Rifo, R., Rubilar, P.S., Limousin, T., de Breyne, S., Décimo, D., and Ohlmann, T. (2012). DEAD-box protein DDX3 associates with eIF4F to promote translation of selected mRNAs. EMBO J. *31*, 3745–3756.

Souquere, S., Mollet, S., Kress, M., Dautry, F., Pierron, G., and Weil, D. (2009). Unravelling the ultrastructure of stress granules and associated P-bodies in human cells. J. Cell. Sci. *122*, 3619–3626.

Stadler, M., and Fire, A. (2011). Wobble base-pairing slows in vivo translation elongation in metazoans. RNA *17*, 2063–2073.

Standart, N., and Weil, D. (2018). P-Bodies: Cytosolic Droplets for Coordinated mRNA Storage. Trends Genet. *34*, 612–626.

Staudacher, J.J., Naarmann-de Vries, I.S., Ujvari, S.J., Klinger, B., Kasim, M., Benko, E., Ostareck-Lederer, A., Ostareck, D.H., Bondke Persson, A., Lorenzen, S., et al. (2015). Hypoxia-induced gene expression results from selective mRNA partitioning to the endoplasmic reticulum. Nucleic Acids Res. *43*, 3219–3236.

Stoecklin, G., Mayo, T., and Anderson, P. (2006). ARE-mRNA degradation requires the 5'–3' decay pathway. EMBO Rep *7*, 72–77.

Stoneley, M., and Willis, A.E. (2004). Cellular internal ribosome entry segments: structures, transacting factors and regulation of gene expression. Oncogene *23*, 3200–3207.

Sweet, T., Kovalak, C., and Coller, J. (2012). The DEAD-box protein Dhh1 promotes decapping by slowing ribosome movement. PLoS Biol. *10*, e1001342.

Tanaka, K.J., Ogawa, K., Takagi, M., Imamoto, N., Matsumoto, K., and Tsujimoto, M. (2006). RAP55, a Cytoplasmic mRNP Component, Represses Translation in *Xenopus* Oocytes. J. Biol. Chem. *281*, 40096–40106.

Tang, J., Kao, P.N., and Herschman, H.R. (2000). Protein-arginine methyltransferase I, the predominant protein-arginine methyltransferase in cells, interacts with and is regulated by interleukin enhancer-binding factor 3. J. Biol. Chem. *275*, 19866–19876.

Tani, H., Mizutani, R., Salam, K.A., Tano, K., Ijiri, K., Wakamatsu, A., Isogai, T., Suzuki, Y., and Akimitsu, N. (2012). Genome-wide determination of RNA stability reveals hundreds of short-lived noncoding transcripts in mammals. Genome Res. *22*, 947–956.

Tanner, N.K., Cordin, O., Banroques, J., Doère, M., and Linder, P. (2003). The Q motif: a newly identified motif in DEAD box helicases may regulate ATP binding and hydrolysis. Mol. Cell *11*, 127–138.

Tarun, S.Z., and Sachs, A.B. (1995). A common function for mRNA 5' and 3' ends in translation initiation in yeast. Genes Dev. *9*, 2997–3007.

Tarun, S.Z., Wells, S.E., Deardorff, J.A., and Sachs, A.B. (1997). Translation initiation factor eIF4G mediates in vitro poly(A) tail-dependent translation. Proc Natl Acad Sci U S A *94*, 9046–9051.

Tauber, D., Tauber, G., Khong, A., Van Treeck, B., Pelletier, J., and Parker, R. (2020). Modulation of RNA Condensation by the DEAD-Box Protein eIF4A. Cell *180*, 411-426.e16.

Teixeira, D., and Parker, R. (2007). Analysis of P-Body Assembly in Saccharomyces cerevisiae. Mol Biol Cell *18*, 2274–2287.

Teixeira, D., Sheth, U., Valencia-Sanchez, M.A., Brengues, M., and Parker, R. (2005). Processing bodies require RNA for assembly and contain nontranslating mRNAs. RNA *11*, 371–382.

Tesina, P., Heckel, E., Cheng, J., Fromont-Racine, M., Buschauer, R., Kater, L., Beatrix, B., Berninghausen, O., Jacquier, A., Becker, T., et al. (2019a). Structure of the 80S ribosome–Xrn1 nuclease complex. Nat Struct Mol Biol *26*, 275–280.

Tharun, S., He, W., Mayes, A.E., Lennertz, P., Beggs, J.D., and Parker, R. (2000). Yeast Sm-like proteins function in mRNA decapping and decay. Nature *404*, 515–518.

Trendel, J., Schwarzl, T., Horos, R., Prakash, A., Bateman, A., Hentze, M.W., and Krijgsveld, J. (2019). The Human RNA-Binding Proteome and Its Dynamics during Translational Arrest. Cell *176*, 391-403.e19.

Tritschler, F., Eulalio, A., Helms, S., Schmidt, S., Coles, M., Weichenrieder, O., Izaurralde, E., and Truffault, V. (2008). Similar modes of interaction enable Trailer Hitch and EDC3 to associate with DCP1 and Me31B in distinct protein complexes. Mol. Cell. Biol. *28*, 6695–6708.

Tritschler, F., Braun, J.E., Eulalio, A., Truffault, V., Izaurralde, E., and Weichenrieder, O. (2009). Structural Basis for the Mutually Exclusive Anchoring of P Body Components EDC3 and Tral to the DEAD Box Protein DDX6/Me31B. Molecular Cell *33*, 661–668.

Tutucci, E., Vera, M., Biswas, J., Garcia, J., Parker, R., and Singer, R.H. (2018). An improved MS2 system for accurate reporting of the mRNA life cycle. Nat. Methods *15*, 81–89.

Uchida, N., Hoshino, S.-I., and Katada, T. (2004). Identification of a human cytoplasmic poly(A) nuclease complex stimulated by poly(A)-binding protein. J. Biol. Chem. *279*, 1383–1391.

Ustianenko, D., Hrossova, D., Potesil, D., Chalupnikova, K., Hrazdilova, K., Pachernik, J., Cetkovska, K., Uldrijan, S., Zdrahal, Z., and Vanacova, S. (2013). Mammalian DIS3L2 exoribonuclease targets the uridylated precursors of let-7 miRNAs. RNA *19*, 1632–1638.

Uversky, V.N. (2017). Intrinsically disordered proteins in overcrowded milieu: Membrane-less organelles, phase separation, and intrinsic disorder. Current Opinion in Structural Biology 44, 18–30.

Uversky, V.N., Kuznetsova, I.M., Turoverov, K.K., and Zaslavsky, B. (2015). Intrinsically disordered proteins as crucial constituents of cellular aqueous two phase systems and coacervates. FEBS Letters *589*, 15–22.

Van Treeck, B., Protter, D.S.W., Matheny, T., Khong, A., Link, C.D., and Parker, R. (2018). RNA selfassembly contributes to stress granule formation and defining the stress granule transcriptome. Proceedings of the National Academy of Sciences *115*, 2734–2739.

Vessey, J.P., Vaccani, A., Xie, Y., Dahm, R., Karra, D., Kiebler, M.A., and Macchi, P. (2006). Dendritic localization of the translational repressor Pumilio 2 and its contribution to dendritic stress granules. J. Neurosci. *26*, 6496–6508.

Vindry, C., Marnef, A., Broomhead, H., Twyffels, L., Ozgur, S., Stoecklin, G., Llorian, M., Smith, C.W., Mata, J., Weil, D., et al. (2017). Dual RNA Processing Roles of Pat1b via Cytoplasmic Lsm1-7 and Nuclear Lsm2-8 Complexes. Cell Rep *20*, 1187–1200.

Waghray, S., Williams, C., Coon, J.J., and Wickens, M. (2015). Xenopus CAF1 requires NOT1-mediated interaction with 4E-T to repress translation in vivo. RNA *21*, 1335–1345.

Wahle, E., and Winkler, G.S. (2013). RNA decay machines: deadenylation by the Ccr4-not and Pan2-Pan3 complexes. Biochim. Biophys. Acta *1829*, 561–570.

Wang, C., Schmich, F., Srivatsa, S., Weidner, J., Beerenwinkel, N., and Spang, A. Context-dependent deposition and regulation of mRNAs in P-bodies. ELife 7.

Wang, X., Flynn, A., Waskiewicz, A.J., Webb, B.L.J., Vries, R.G., Baines, I.A., Cooper, J.A., and Proud, C.G. (1998). The Phosphorylation of Eukaryotic Initiation Factor eIF4E in Response to Phorbol Esters, Cell Stresses, and Cytokines Is Mediated by Distinct MAP Kinase Pathways. J. Biol. Chem. *273*, 9373–9377.

Wang, Z., Jiao, X., Carr-Schmid, A., and Kiledjian, M. (2002). The hDcp2 protein is a mammalian mRNA decapping enzyme. Proc. Natl. Acad. Sci. U.S.A. *99*, 12663–12668.

Webster, M.W., Chen, Y.-H., Stowell, J.A.W., Alhusaini, N., Sweet, T., Graveley, B.R., Coller, J., and Passmore, L.A. (2018). mRNA Deadenylation Is Coupled to Translation Rates by the Differential Activities of Ccr4-Not Nucleases. Molecular Cell *70*, 1089-1100.e8.

Webster, M.W., Stowell, J.A., and Passmore, L.A. (2019). RNA-binding proteins distinguish between similar sequence motifs to promote targeted deadenylation by Ccr4-Not. ELife *8*, e40670.

Weidensdorfer, D., Stöhr, N., Baude, A., Lederer, M., Köhn, M., Schierhorn, A., Buchmeier, S., Wahle, E., and Hüttelmaier, S. (2009). Control of c-myc mRNA stability by IGF2BP1-associated cytoplasmic RNPs. RNA *15*, 104–115.

Weingarten-Gabbay, S., Elias-Kirma, S., Nir, R., Gritsenko, A.A., Stern-Ginossar, N., Yakhini, Z., Weinberger, A., and Segal, E. (2016). Systematic discovery of cap-independent translation sequences in human and viral genomes. Science *351*, aad4939.

Wells, S.E., Hillner, P.E., Vale, R.D., and Sachs, A.B. (1998). Circularization of mRNA by eukaryotic translation initiation factors. Mol. Cell *2*, 135–140.

Weston, A., and Sommerville, J. (2006). Xp54 and related (DDX6-like) RNA helicases: roles in messenger RNP assembly, translation regulation and RNA degradation. Nucleic Acids Res. *34*, 3082–3094.

Wethmar, K. (2014). The regulatory potential of upstream open reading frames in eukaryotic gene expression. WIREs RNA *5*, 765–768.

Wilczynska, A., Aigueperse, C., Kress, M., Dautry, F., and Weil, D. (2005). The translational regulator CPEB1 provides a link between dcp1 bodies and stress granules. J. Cell. Sci. *118*, 981–992.

Wilczynska, A., Gillen, S.L., Schmidt, T., Meijer, H.A., Jukes-Jones, R., Langlais, C., Kopra, K., Lu, W.-T., Godfrey, J.D., Hawley, B.R., et al. (2019). eIF4A2 drives repression of translation at initiation by Ccr4-Not through purine-rich motifs in the 5'UTR. Genome Biol *20*, 262.

Willis, W., Miranda-Grandjean, D., Hudgens, J., Willis, E., Finlayson, J., De Filippis, E., Bustos, R.Z., Langlais, P., Mielke, C., and Mandarino, L. (2018). Dominant and Sensitive Control of Oxidative Flux by the ATP-ADP Carrier in Human Skeletal Muscle Mitochondria: Effect of Lysine Acetylation. Arch Biochem Biophys *647*, 93–103.

Winter, J., Jung, S., Keller, S., Gregory, R.I., and Diederichs, S. (2009). Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat. Cell Biol. *11*, 228–234.

Wu, D., Muhlrad, D., Bowler, M.W., Jiang, S., Liu, Z., Parker, R., and Song, H. (2014). Lsm2 and Lsm3 bridge the interaction of the Lsm1-7 complex with Pat1 for decapping activation. Cell Research *24*, 233–246.

Wu, K., He, J., Pu, W., and Peng, Y. (2018). The Role of Exportin-5 in MicroRNA Biogenesis and Cancer. Genomics, Proteomics & Bioinformatics *16*, 120–126.

Wu, Q., Medina, S.G., Kushawah, G., DeVore, M.L., Castellano, L.A., Hand, J.M., Wright, M., and Bazzini, A.A. (2019). Translation affects mRNA stability in a codon-dependent manner in human cells. ELife *8*, e45396.

Xing, W., Muhlrad, D., Parker, R., and Rosen, M.K. (2020). A quantitative inventory of yeast P body proteins reveals principles of composition and specificity. BioRxiv 489658.

Xu, J., and Chua, N.-H. (2009). Arabidopsis Decapping 5 Is Required for mRNA Decapping, P-Body Formation, and Translational Repression during Postembryonic Development. Plant Cell *21*, 3270–3279.

Yamashita, A., Chang, T.-C., Yamashita, Y., Zhu, W., Zhong, Z., Chen, C.-Y.A., and Shyu, A.-B. (2005). Concerted action of poly(A) nucleases and decapping enzyme in mammalian mRNA turnover. Nat. Struct. Mol. Biol. *12*, 1054–1063.

Yan, X., Hoek, T.A., Vale, R.D., and Tanenbaum, M.E. (2016). Dynamics of Translation of Single mRNA Molecules In Vivo. Cell *165*, 976–989.

Yanagiya, A., Svitkin, Y.V., Shibata, S., Mikami, S., Imataka, H., and Sonenberg, N. (2009). Requirement of RNA binding of mammalian eukaryotic translation initiation factor 4GI (eIF4GI) for efficient interaction of eIF4E with the mRNA cap. Mol. Cell. Biol. *29*, 1661–1669. Yanagiya, A., Suyama, E., Adachi, H., Svitkin, Y.V., Aza-Blanc, P., Imataka, H., Mikami, S., Martineau, Y., Ronai, Z.A., and Sonenberg, N. (2012). Translational Homeostasis via the mRNA Cap-Binding Protein, eIF4E. Molecular Cell *46*, 847–858.

Yang, W.-H. (2006). RNA-associated protein 55 (RAP55) localizes to mRNA processing bodies and stress granules. RNA *12*, 547–554.

Yang, Z. (2004). GW182 is critical for the stability of GW bodies expressed during the cell cycle and cell proliferation. Journal of Cell Science *117*, 5567–5578.

Yang, Y., and Wang, Z. (2019). IRES-mediated cap-independent translation, a path leading to hidden proteome. J Mol Cell Biol *11*, 911–919.

Yang, G., Smibert, C.A., Kaplan, D.R., and Miller, F.D. (2014). An eIF4E1/4E-T Complex Determines the Genesis of Neurons from Precursors by Translationally Repressing a Proneurogenic Transcription Program. Neuron *84*, 723–739.

YANG, W.-H., YU, J.H., GULICK, T., BLOCH, K.D., and BLOCH, D.B. (2006). RNA-associated protein 55 (RAP55) localizes to mRNA processing bodies and stress granules. RNA *12*, 547–554.

Yang, Y.-C.T., Di, C., Hu, B., Zhou, M., Liu, Y., Song, N., Li, Y., Umetsu, J., and Lu, Z. (2015). CLIPdb: a CLIP-seq database for protein-RNA interactions. BMC Genomics *16*, 51.

Yanniotis, S., Skaltsi, S., and Karaburnioti, S. (2006). Effect of moisture content on the viscosity of honey at different temperatures. Journal of Food Engineering *72*, 372–377.

Ye, Y., Liang, Y., Yu, Q., Hu, L., Li, H., Zhang, Z., and Xu, X. (2015). Analysis of human upstream open reading frames and impact on gene expression. Hum. Genet. *134*, 605–612.

Yi, H., Park, J., Ha, M., Lim, J., Chang, H., and Kim, V.N. (2018). PABP Cooperates with the CCR4-NOT Complex to Promote mRNA Deadenylation and Block Precocious Decay. Molecular Cell *70*, 1081-1088.e5.

Yoshizawa, T., Nozawa, R.-S., Jia, T.Z., Saio, T., and Mori, E. (2020). Biological phase separation: cell biology meets biophysics. Biophys Rev *12*, 519–539.

Youn, J.-Y., Dunham, W.H., Hong, S.J., Knight, J.D.R., Bashkurov, M., Chen, G.I., Bagci, H., Rathod, B., MacLeod, G., Eng, S.W.M., et al. (2018). High-Density Proximity Mapping Reveals the Subcellular Organization of mRNA-Associated Granules and Bodies. Molecular Cell *69*, 517-532.e11.

Yu, C.-H., Dang, Y., Zhou, Z., Wu, C., Zhao, F., Sachs, M.S., and Liu, Y. (2015). Codon Usage Influences the Local Rate of Translation Elongation to Regulate Co-translational Protein Folding. Mol. Cell *59*, 744–754.

Yu, Y., Marintchev, A., Kolupaeva, V.G., Unbehaun, A., Veryasova, T., Lai, S.-C., Hong, P., Wagner, G., Hellen, C.U.T., and Pestova, T.V. (2009). Position of eukaryotic translation initiation factor eIF1A on the 40S ribosomal subunit mapped by directed hydroxyl radical probing. Nucleic Acids Res *37*, 5167–5182.

Zayat, V., Balcerak, A., Korczynski, J., Trebinska, A., Wysocki, J., Sarnowska, E., Chmielarczyk, M., Macech, E., Konopiński, R., Dziembowska, M., et al. (2015). HAX-1: A Novel P-Body Protein. DNA Cell Biol *34*, 43–54. ze, A.R., Feoktistova, K., Avanzino, B.C., and Fraser, C.S. (2011). Duplex Unwinding and ATPase Activities of the DEAD-Box Helicase eIF4A Are Coupled by eIF4G and eIF4B. Journal of Molecular Biology *412*, 674–687.

Zeidan, Q., He, F., Zhang, F., Zhang, H., Jacobson, A., and Hinnebusch, A.G. (2018). Conserved mRNAgranule component Scd6 targets Dhh1 to repress translation initiation and activates Dcp2-mediated mRNA decay in vivo. PLoS Genet *14*.

Zekri, L., Huntzinger, E., Heimstädt, S., and Izaurralde, E. (2009). The silencing domain of GW182 interacts with PABPC1 to promote translational repression and degradation of microRNA targets and is required for target release. Mol. Cell. Biol. *29*, 6220–6231.

Zhou, T., Weems, M., and Wilke, C.O. (2009). Translationally Optimal Codons Associate with Structurally Sensitive Sites in Proteins. Mol Biol Evol *26*, 1571–1580.

Zhu, Y., Xu, G., Yang, Y.T., Xu, Z., Chen, X., Shi, B., Xie, D., Lu, Z.J., and Wang, P. (2019). POSTAR2: deciphering the post-transcriptional regulatory logics. Nucleic Acids Res. *47*, D203–D211.

Zimmermann, R., Eyrisch, S., Ahmad, M., and Helms, V. (2011). Protein translocation across the ER membrane. Biochimica et Biophysica Acta (BBA) - Biomembranes *1808*, 912–924.

Zwicker, D., Decker, M., Jaensch, S., Hyman, A.A., and Jülicher, F. (2014). Centrosomes are autocatalytic droplets of pericentriolar material organized by centrioles. PNAS *111*, E2636–E2645.

A proximity biotinylation map of a human cell | bioRxiv.