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Théorie de la fonctionnelle de la densité relativiste à séparation de portée

Résumé

Cette thèse de doctorat constitue une contribution à l’extension relativiste de la théorie de la fonctionnelle
de la densité à séparation de portée, en combinant un calcul de fonction d’onde relativiste à quatre com-
posantes pour la contribution de longue portée avec une fonctionnelle de la densité relativiste à courte
portée complémentaire, basée sur l’Hamiltonien Dirac-Coulomb ou Dirac-Coulomb-Breit sans paire.

Nous avons étudié les propriétés du gaz d’électrons homogène relativiste dans l’approximation sans paire
pour développer des fonctionnelles de la densité d’échange-corrélation relativistes à courte portée dans
l’approximation de la densité locale (LDA). Nous avons implémenté un code de fonctionnelle de la
densité relativiste à séparation de portée en tant que module dans le logiciel QUANTUM PACKAGE 2.0
pour tester ces fonctionnelles. Nous avons étendu la fonctionnelle d’échange relativiste à courte portée
au niveau de l’approximation du gradient généralisée (GGA). Enfin, nous avons relevé le rôle important
de la densité de paire d’échange à coalescence dans l’évaluation correcte de l’énergie d’échange à très
courte portée.

Mots-clés

relativité restreinte; chimie quantique relativiste; approximation sans paire; théorie de la fonctionnelle de
la densité; décomposition longue portée/courte portée; échange électronique; corrélation électronique;
approximation de la densité locale; approximation du gradient généralisée; gaz d’électrons homogène
relativiste; atomes.
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Relativistic range-separated density functional theory

Abstract

This PhD thesis constitutes a contribution to the relativistic extension of the range-separated density
functional theory scheme, by combining a relativistic four-component wave function calculation for the
long-range contribution with a complementary relativistic short-range exchange-correlation density func-
tional based on the no-pair Dirac-Coulomb or Dirac-Coulomb-Breit Hamiltonian.

We have studied properties of the relativistic homogeneous electron gas in the no-pair approximation
to develop relativistic short-range exchange-correlation density functionals at the local density approx-
imation (LDA) level. We have implemented a four-component range-separated density functional code
as a plugin in the software QUANTUM PACKAGE 2.0 to test these functionals. We have extended the
relativistic short-range exchange density functional to the generalized-gradient approximation (GGA)
level. Finally, we have pointed out the important role of the on-top exchange pair density in the correct
evaluation of the exchange energy at very short-range.

Keywords

special relativity; relativistic quantum chemistry; no-pair approximation; density functional theory; long-
range/short-range decomposition; electronic exchange; electronic correlation; local density approxima-
tion; generalized-gradient approximation; relativistic homogeneous electron gas; atoms.
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General introduction

Quantum relativistic equations stem from the will to extend the quantum mechanical equation of a parti-
cle developed first in 1925 and published in 1926 [1] by E. Schrödinger, into the relativistic framework
of special relativity developed first in 1905 [2] by A. Einstein. The equation which forms the basis for
modern relativistic quantum chemistry is the Dirac equation, developed in 1928 [3,4] by P. A. M. Dirac.
As such, the fundamental equations describing the behaviour of particles of chemical interest date back
from the 1920s both in non-relativistic and relativistic framework.

However, due to the greater complexity, both mathematical and in term of computational cost, of
working within a relativistic framework and the fact that relativistic effects in chemical systems are
usually neglected for light atoms (with the notable exceptions of spin and spin-orbit coupling, which
must be added in an ad hoc fashion when one starts from the Schrödinger equation), ab initio relativistic
quantum chemistry methods are not widely used. Indeed, relativistic effects in quantum chemistry are
mostly related to high electronic densities, corresponding in practice to core electrons, and these electrons
do not play an essential role in most chemical reactions and spectroscopic methods. This line of thought
is the reason why relativistic effects are usually thought as non-important in quantum chemistry.

Nevertheless, this statement is at best correct only for light atoms and some very usual chemical
systems are on the contrary constituted of heavy atoms and show properties which cannot be predicted
without taking in account relativistic effects properly. The most common examples are the color of gold
and the liquid state of mercury at room temperature [5, 6], but the lead-acid battery electro-chemical
potential [7] is also one of these everyday and experimentally known results which non-relativistic quan-
tum chemistry cannot reproduce. Most chemically relevant system requiring to work within a relativistic
framework are lanthanides or heavier elements [8, 9] and as the atomic number increases so does the
number of electrons to treat if one works with a full-electron method, making relativistic calculations
necessarily costly in computational time if they are to be meaningful. Working within either a four-
component framework or a two-component framework further increases the computational cost as it
increases the number of matrix elements to calculate at all steps of a calculation, leading to a multiplica-
tive prefactor in the computational time [9], but not to a change of scaling with respect to the number of
basis functions.

In addition, working in a relativistic framework does imply many difficulties, such as non-bounded
Dirac Hamiltonians with a continuum of negative-energy solutions and either the absence of a true mini-
mization principle or the use of renormalization through a normal ordering of the Hamiltonian in second
quantization [10], leading to effects of vacuum polarization and electron-positron pair creation and de-
struction [11]. Although theses effects are correct and do lead to a very detailed and precise description
of the atomic or molecular electronic structure, thus bringing new information and understanding, it is
not strictly necessary to use all this apparatus to make meaningful relativistic quantum chemistry calcu-
lations if one is willing to sacrifice some precision.

The most common approximation to take care of negative-energy solutions and remove any need for
renormalization is the so-called no-pair approximation [12], which consists in projecting out negative-
energy eigenfunctions and considering only positive-energy electronic solutions to describe electrons.
Such approximation conserves the correct non-relativistic limit, such that it has close to no effect in
regions with low electronic densities such as valence regions of light atoms. Even within the no-pair
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14 GENERAL INTRODUCTION

approximation, wave function relativistic calculations are very computationally costly, and appear to
have quite slow convergence rates [11] with respect to the number of basis functions.

Even though density functional theory [13] is nowadays the most usual method to reduce computa-
tional costs for calculations in a non-relativistic framework, it suffers from many conceptual difficulties
in a relativistic framework [14,15] and relativistic density functional theory has not reached yet the level
of efficiency of its non-relativistic counterpart. Another approach to reduce computational costs is to
improve the convergence with the number of basis functions of wave function methods through range-
separated density functional theory [16, 17], which corresponds to a splitting of the electron-electron
interaction into a long-range interaction which is no longer divergent at coalescence and is to be treated
with a wave function method, and a complementary short-range interaction which decreases to zero very
quickly and is to be treated with a complementary density functional. The removal of the divergence in
the long-range interaction removes the electron-electron correlation cusp, making for an easier descrip-
tion with Gaussian basis sets and thus a faster convergence with respect to the basis set [18], while the
short-range interaction makes the local density approximation and all subsequent improvements less of
an approximation, the short-range local density approximation becoming even exact in the very short-
range limit. Furthermore, range-separated density functional theory has been shown to improve descrip-
tion of strong-correlation effects [19, 20] and weak intermolecular interactions [21–23] with respect to
standard density functional theory.

As such, range-separated density functional theory has been extended to also take in account relativis-
tic effects, first through the use of a standard scalar-relativistic effective-core potentials [24,25] in order to
account for the relativistic effects of core electrons, and then with the combination of a four-component
relativistic long-range second-order Møller-Plesset (MP2) perturbation theory [26] or coupled-cluster
theory [27] with a complementary non-relativistic short-range semi-local exchange-correlation density
functional approximation.

This PhD thesis proposes to extend the latter four-component relativistic range-separated density
functional theory and make it possibly more rigorous with the construction of adapted relativistic short-
range exchange-correlation density functional approximations, constructed such as to complement four-
component wave functions methods and based on the no-pair Dirac-Coulomb or Dirac-Coulomb-Breit
Hamiltonians. Such relativistic short-range exchange-correlation density functional approximations dif-
fer from previous relativistic density functional approximations which had been mostly derived in the
more complete quantum electrodynamics formalism [15, 28, 29], as there is the need for consistency in
the level of description of electron-electron interactions between the long-range wave function methods
and the complementary short-range density functional. As such, we started studying the properties of
the relativistic homogeneous electron gas in the no-pair approximation, first using plane wave 4-spinors
solutions of the non-interacting Dirac Hamiltonian to construct short-range exchange density functionals
at the local density approximation level for the Coulomb and Coulomb-Breit interaction and then using
non-interacting Green’s functions to construct a short-range correlation density functional at the local
density approximation level for the Coulomb interaction. The Dirac-Coulomb Hamiltonian containing
only charge-charge instantaneous interactions between particles, it uses the same two-electron integrals
as the usual non-relativistic Coulomb interaction and we readily implemented a four-component range-
separated density functional code based on the Dirac-Coulomb Hamiltonian as a plugin in the software
QUANTUM PACKAGE 2.0 [30] to test the short-range Coulomb exchange-correlation density functional
approximations.
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The manuscript is divided in 5 chapters.

Chapter 1 corresponds to the basics of special relativity, with equations of motion and electrodynamics
being worked out in a relativistic framework up to the non-quantized Lagrangian formalism that is one
step remote from quantum electrodynamics.

Chapter 2 corresponds to the basics of relativistic quantum chemistry, from the one-electron Dirac equa-
tion and its free-particle solutions to the many-electron Hamiltonians in first quantization and second
quantization, within both configuration and Fock space. We also write the basic equations of relativistic
density functional theory and give some informations as to practical calculations and implementations of
a four-component relativistic quantum chemistry method.

Chapter 3 corresponds to the construction of a relativistic short-range exchange density functional at
the local density approximation level, for the Coulomb and Coulomb-Breit interactions. We develop
these functionals first with the use of the exchange hole and then with two different kinds of expan-
sions, Padé approximants in powers of c/kF making no approximation on the dependence on the scaled
range-separation parameter µ/kF, and small and large-µ expansions making no approximations on the
dependence on c/kF.

Chapter 4 corresponds to tests and improvements of the previously defined short-range Coulomb ex-
change density functional. We start with tests on isoelectronic systems ranging from light atoms to
heavy ions, before making a first extension of the local density approximation using the on-top exchange
pair density, and finishing with a semi-local extension at the generalized-gradient approximation level.
In particular, we make use of a parameterized relativistic exchange gradient correction factor.

Chapter 5 corresponds to the construction of a relativistic short-range correlation density functional at
the local density approximation level, for the Coulomb interaction only. In particular, we make use of a
relativistic correlation correction factor to introduce relativistic effects locally while making use of pre-
vious non-relativistic short-range correlation density functionals.

After the general conclusion are appendices, containing explicit derivations of many formulas used in
the main chapters.

Atomic units (a.u.) are implicitly used throughout this manuscript when they are not explicitly written.
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Chapter 1

Special relativity and electrodynamics

This chapter corresponds to an introduction to special relativity, going from the very general principles
of relativity to the non-quantized Lagrangian formalism of electrodynamics. In particular, the behaviour
of electromagnetic fields, massive particles and their interactions in a relativistic framework are worked
out in some details.

1.1 General principles of special relativity

Classical mechanics traces back to Sir Isaac Newton with his work Philosophiae Naturalis Principia

Mathematica [1], which was published in 1687. He presented three laws of motion which are nowadays
written as

• Law I: There exists inertial frames, in which the motion of a particle remains constant unless acted

upon by an external force.

• Law II: The motion of a particle of constant mass m acted upon by an external force F in an inertial

frame obeys the equation of motion

F =
dp
dt

= m
dv
dt

= m
d2r
dt2 . (1.1)

• Law III: For any force F12 exerted from particle 1 onto particle 2 there is a force F21 = −F12

exerted from particle 2 onto particle 1, which is the principle of action-reaction.

These laws thus define classical mechanics for any and all inertial frames, relying on the Galilean prin-
ciple of relativity

All inertial frames are equivalent.

Newton’s laws of motion have the same form in all inertial frames.

Considering two inertial frames J′ and J with the same direction axes and where J′ moves relatively to J
with a uniform velocity v, the Galilean transformation of position and time is

r′ = r−vt

t ′ = t (1.2)

and states the existence of an absolute time, which does not match experimental results for high veloc-
ity particles [2, 3] and thus cannot be a fundamental law of nature. This relativity principle must be
abandoned to the profit of Einstein’s special principle of relativity [4]

19
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All inertial frames are equivalent.

The laws of physics have the same form in all inertial frames.

The speed of light c is a constant, independent of the relative motion of the source.

The latter postulate is a conclusion of numerous interferometer experiments which started with the
Michelson-Morley experiment [5].

1.1.1 Four-dimensional space-time

Considering two events E1(t1,r1) and E2(t2,r2) connected by a light signal, the measure of the speed of
light c within the inertial frames J′ and J leads to the relation

|r′2 − r′1|
t ′2 − t ′1

= c =
|r2 − r1|
t2 − t1

, (1.3)

such that the squared space-time interval s2
12 between the two events

s2
12 = c2(t ′2 − t ′1)

2 − (r′2 − r′1)
2 = c2(t2 − t1)

2 − (r2 − r1)
2, (1.4)

is invariant and equal to zero in both inertial frames. If we assume homogeneity of space and time as
well as isotropy of space we have conservation of the space-time interval between any two events, as
shown for example in the book of Reiher and Wolf [6], such that

s′212 = s2
12, (1.5)

where positive values of s2
12 corresponds to time-like distances, negative values to space-like distances

and vanishing values to light-like distances. To reflect the space-time structure of the four-dimensional
distance s12 we introduce the four-dimensional vector (4-vector) position

x = (xµ) =

(
ct

xi

)

=

(
ct

r

)

, (1.6)

where µ runs from 0 to 3 and i runs from 1 to 3, as well as the metric tensor

g = (gµν) =







1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1






, (1.7)

to construct a flat four-dimensional space denoted as the Minkowski space. We name 4-vectors with
superscript indices as contravariants and those with subscript indices as covariants. The metric tensor g

can raise or lower indices as

xµ = ∑
ν

gµνxν ⇐⇒ xν = ∑
µ

gνµxµ, (1.8)

with (gµν) = (gµν), such that

(xµ) =

(
ct

xi

)

=

(
ct

−r

)

. (1.9)



1.1. GENERAL PRINCIPLES OF SPECIAL RELATIVITY 21

Four-dimensional scalar product

This definition of covariants and contravariants 4-vectors enables us to define a scalar product between
two 4-vectors a and b

a ·b =
3

∑
µ=0

aµbµ

= a0b0 −
3

∑
i=1

aibi

= aµbµ, (1.10)

where the last line corresponds to Einstein’s summation convention, meaning that any Greek indices
occurring twice (once as a subscript and once as a superscript) are summed from 0 to 3, and any Latin
indices occurring twice are summed from 1 to 3. This convention will be adopted in the rest of the
manuscript, for the sake of brevity. Using this scalar products we can re-express the squared space-time
interval s2

12 between two events x1 and x2 as

s2
12 = (x2 − x1) · (x2 − x1), (1.11)

and the squared space-time interval ds2 between two infinitesimally close events x1 and x2 = x1 +dx as

ds2 = dx ·dx. (1.12)

1.1.2 Lorentz transformations

A coordinate transformation between two inertial frames within the four-dimensional space-time leaving
ds2 invariant is called a Lorentz transformation (written as a matrix Λ). The homogeneity of space and
time enforcing linearity between the two sets of coordinates, we have for two inertial frames J′ and J

x′ = Λx+a, (1.13)

where Λ is a real-valued 4×4 matrix

Λ =
(

Λ
µ
ν

)

=







Λ0
0 Λ0

1 Λ0
2 Λ0

3
Λ1

0 Λ1
1 Λ1

2 Λ1
3

Λ2
0 Λ2

1 Λ2
2 Λ2

3
Λ3

0 Λ3
1 Λ3

2 Λ3
3






, (1.14)

and a is a trivial temporal or spatial shift of the origin of J′ with respect to J, such that the space-time
coordinate differential is

dx′ = Λdx ⇐⇒ dx′µ = Λ
µ
νdxν. (1.15)

As such, the components of the transformation matrix Λ can be expressed as the derivative of the new
coordinates with respect to the old ones

Λ
µ
ν =

∂x′µ

∂xν
= ∂νx′µ, (1.16)

where the last expression makes use of the 4-gradient

∂ =
(
∂µ

)
=

(
∂

∂xµ

)

=





1
c

∂

∂t

∇∇∇



 , (1.17)

which we define using the usual gradient operator ∇∇∇ (Nabla).
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Lorentz transformations of position and time

Considering our two inertial frames J′ and J, coinciding at t = t ′ = 0 and where J′ moves relatively to J
with a uniform velocity v, the Lorentz transformation of position and time [see Appendix A.1] is

(
ct ′

r′

)

= Λ(v)
(

ct

r

)

=






γ
(

ct − v · r
c

)

r+(γ−1)
(r ·v)v

v2 − γvt




 , (1.18)

with the Lorentz factor γ = 1/

√

1− v2

c2 . It correctly reduces to the Galilei transformation when c → ∞,

which is called the non-relativistic limit.

1.1.3 Dynamical properties

Having worked out the proper Lorentz transformation of position and time, we make an extension of
dynamical quantities, that is velocity and momentum, in a covariant formalism. Such an extension
requires the construction of proper time τ such that an infinitesimal space-time interval ds can be written
as cdτ, which leads to

ds =
√

c2dt2 −dr2 = c

√

1− v2

c2 dt = c
dt

γ
, (1.19)

yielding

dτ =
dt

γ
. (1.20)

In particular, we have dτ = dt in the non-relativistic limit as well as within the rest frame of any moving
particle as γ → 1 when either c → ∞ or v → 0. We now extend the notion of three-dimensional velocity
v to the 4-velocity (uµ) by differentiating the 4-position with respect to proper time, leading to

(uµ) =
d
dτ

(xµ) = γ

(
c

v

)

. (1.21)

In the same way, we extend the three-dimensional momentum p to the 4-momentum (pµ) for massive
particles using the rest mass m such that

(pµ) = m(uµ) = mγ

(
c

v

)

=

(
E/c

p

)

, (1.22)

highlighting the fact that the relativistic momentum p = γmv and energy E = γmc2 cannot be considered
separately.

Energy-momentum dispersion relation

From the previous equations, we can derive the squared 4-momentum in two ways:

p · p = m2uµuµ = m2c2 and p · p = E2/c2 −p2, (1.23)

yielding

E2 = p2 c2 +m2c4, (1.24)

the energy-momentum dispersion relation. It features two roots for the energy, positive energy solutions
which are usually related to massive particles, and negative energy solution which are usually related to
massive anti-particles.
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Expansions at low momentum / velocity

One can always expand the energy in powers of the momentum, such that when |p| ≪ mc

E = mc2 +
p2

2 m
− 1

8
p4

m3c2
+ ... (1.25)

with mc2 the rest mass energy, and where care has to be taken to remember that p2/2m is not the non-
relativistic kinetic energy expressed in momentum formalism as the relativistic momentum contains the
Lorentz factor γ. One has to expand the relativistic energy in powers of the velocity to recover clearly
the non-relativistic kinetic energy, such that when |v| ≪ c

E = mc2 +
1
2

mv2 +
3
8

mv4

c2
+ ... (1.26)

with mc2 the rest mass energy,
1
2

mv2 the correct non-relativistic kinetic energy and the following terms

the relativistic corrections to the energy.

1.2 Covariant electrodynamics

Quantum chemistry being a science focused on the interactions between charged particles, we need to
account for such interactions in a relativistic formalism to tread the road to relativistic quantum chemistry.
We start by rewriting the equations of electrodynamics in a covariant form, where the charge-current
density must now be expressed as the 4-current j such that

j(x) = ( jµ(x)) =

(
cρ(x)
j(x)

)

=

(
cρ(t,r)
j(t,r)

)

, (1.27)

containing the charge density, defined for a system of N point-charge particles of electric charges qi at
positions ri as

ρ(t,r) =
N

∑
i=1

qi δ(3)
(
r− ri(t)

)
, (1.28)

such that the total charge of a system within a region of space Ω is obtained through spatial integration
of the charge density

QΩ(t) =

∫
Ω

ρ(t,r) dr =
1
c

∫
Ω

j0(x) dr, (1.29)

and the current density, defined for a system of N moving point charges of electric charges qi at positions
ri with velocities vi as

j(t,r) =
N

∑
i=1

qivi(t) δ(3)
(
r− ri(t)

)
. (1.30)

1.2.1 Electromagnetic field and gauge potential

The interactions between charges and currents are usually expressed using respectively electric (denoted
as E) and magnetic (denoted as B) fields, which are observable-s but do not represent independent vari-
ables, nor do they transform properly under Lorentz transformations. Their six components are uniquely
determined by the gauge field 4-vector A

A(x) =
(
Aµ(x)

)
=

(
φ(x)
A(x)

)

=

(
φ(t,r)
A(t,r)

)

, (1.31)

containing respectively the scalar (φ) and vector (A) potentials, such that

E =−∇∇∇φ− 1
c

∂A
∂t

and B = ∇∇∇× A. (1.32)
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Maxwell’s equations

The electromagnetic field respects, by construction, Gauss’s law of magnetism as well as Maxwell-
Faraday equation, respectively

∇∇∇ ·B = 0, (1.33)

and

∇∇∇×E =−1
c

∂B
∂t

, (1.34)

the relations between charges, currents and the electromagnetic field being denoted as Gauss’s law and
Ampère’s circuital law, respectively

∇∇∇ ·E = 4πρ, (1.35)

and

∇∇∇×B− 1
c

∂E
∂t

=
4π

c
j, (1.36)

where Eq. (1.33) to (1.36) are also known as Maxwell’s equations [7].

Continuity equation

The continuity equation ensuring the local conservation of the 4-current j is obtained, in a covariant
form, by taking the 4-gradient of the 4-current such that

∂µ jµ =
∂ρ

∂t
+∇∇∇ · j = 0, (1.37)

according to Gauss’s law [Eq. (1.35)] and Ampère’s circuital law [Eq. (1.36)].

1.2.2 Gauge invariance and field strength tensor

A very important characteristic of the electric and magnetic fields is that they are invariant under gauge
transformations [see Appendix B]

Aµ → A′µ = Aµ −∂µg, (1.38)

where g = g(x) is any sufficiently smooth gauge function. In order to have both a covariant and gauge
invariant quantity containing the observable E and B we use the field strength tensor

F =
(
Fµν
)
=
(
∂µAν −∂νAµ

)
=







0 −Ex −Ey −Ez

Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0






, (1.39)

which is an antisymmetric Lorentz tensor, and thus both gauge invariant and covariant by construction.
We can use this tensor to express Gauss’s law as well as Ampère’s circuital law, respectively

∇∇∇ ·E = 4πρ ⇐⇒ ∂µFµ0 =
4π

c
j0, (1.40)

and

∇∇∇×B− 1
c

∂E
∂t

=
4π

c
j ⇐⇒

(
∂µFµi

)

i=1,3 =

(
4π

c
ji

)

i=1,3
, (1.41)

in the very compact form

∂µFµν =
4π

c
jν. (1.42)
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Lorentz transformations of electromagnetic field

Considering once more our two inertial frames J′ and J, coinciding at t = t ′ = 0 and where J′ moves
relatively to J with a uniform velocity v, the transformation of electric and magnetic fields with a general
Lorentz boost derives from the Lorentz transformation of the field strength tensor [see Appendix A.2] as

E′
‖ = E‖ and E′

⊥ = γ(E⊥+
1
c

v×B),

B′
‖ = B‖ and B′

⊥ = γ(B⊥− 1
c

v×E), (1.43)

where fields with the ‖ subscripts are parallel to the velocity v, and fields with the ⊥ subscripts are their
orthogonal counterparts. As such, it means that a particle moving through an electric field experiences a
magnetic field in its own rest frame, which is the origin of the spin-orbit effect [8].

1.3 Covariant equation of motion

With a correct understanding of the transformation of time, position and the electromagnetic fields be-
tween inertial frames, we can now derive equations of motion and the forces related to electromagnetic
interaction between particles. We consider a particle of constant mass m moving at velocity v(t) within
the inertial frame J, and choose J′ to be the instantaneous rest frame of the particle at a given time t,
such that v′(t) = 0. Assuming that the acceleration of the particle is finite, and for an infinitesimal time
variation dt, the norm of the particle velocity at a time t +dt in J′ should be small with respect to c, such
that we can assume Newton’s equation of motion [see Eq. (1.1)] to hold exactly in J′ at this given time t.
As this reasoning does not impose any condition on the time t, we have at each time

F =
dp′

NR

dt ′
= m

dv′

dt ′
= m

d2r′

dt ′2
, (1.44)

where p′
NR = mv′ is the usual non-relativistic momentum vector (and not the relativistic momentum

p′ = mγv′ defined in Eq. (1.22)). This equation of motion holds in J′, and only in J′. To build an equation
of motion which holds in all inertial frames we extend it using only covariant quantities, yielding

f µ =
dpµ

dτ
= m

duµ

dτ
= m

d2xµ

dτ2 , (1.45)

where the three-dimensional force F has been extended to the 4-force f µ, known as the Minkowski force.

1.3.1 Minkowski force

We first check if the Minkowski force correctly reduces to the three-dimensional forces F within the rest
frame J′ of the particle. We have in all generality

m
duµ

dτ
= mγ

d
dt

[

γ

(
c

v

)]

= mγ 4 1
c2

dv
dt

.v
(

c

v

)

+mγ 2





0
dv
dt



 , (1.46)

such that in J′, where v′ = 0 and γ(v′) = 1,

f ′ =
(

f ′µ
)
= m





0
dv′

dt



=

(
0
F

)

, (1.47)

and we thus recover the correct three-dimensional force from the spatial components of the Minkowski
force. The general expression of the Minkowski force can be derived from its expression in the rest frame
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of the particle through a Lorentz transformation (in the same way as the 4-position [see Eq. (1.18)], but
with a −v Lorentz boost)

f = Λ(−v) f ′, (1.48)

such that

f =






γ
v ·F

c

F+(γ−1)
(F ·v)v

v2




 . (1.49)

A special case of Minkowski force: the Lorentz force

From this expression, we derive the 4-component Lorentz force between a charged particle and an exter-
nal electromagnetic field as a special case of Minkowski force. In the rest frame of the particle, we have
the three-dimensional Lorentz force FLorentz written as

FLorentz = q E′ = q
(

E′
‖+E′

⊥
)

= q
(

E‖+ γ
(
E⊥+

1
c

v×B
))

= q
(

E+
(
γ−1

)
E⊥+ γ

1
c

v×B
)

, (1.50)

where we explicitly split the electric field E′ (in the rest frame J′) into its longitudinal and orthogonal
components, and expressed each component as a function of the electromagnetic field E and B (in J)
such that

f Lorentz = q







γ
v ·E′

c

E′+(γ−1)
[E′ ·v]v

v2







= q






γ
v ·E

c
(

E+
(
γ−1

)
E⊥+ γ

1
c

v×B
)

+(γ−1)E‖






= γq






v ·E
c

E+
1
c

v×B




 . (1.51)

1.4 Covariant Lagrangian formulation

Having determined the covariant equation of motion of a massive charged particle within an external
electromagnetic field, we want to derive the covariant Lagrangian L(x,u) describing such a particle. The
Hamiltonian principle states that the trajectory of a system corresponds to a stationary point of the action
S in configuration space

δS = δ

∫ τ1

τ0

L(x,u) dτ = 0, (1.52)

for any variation of the four-dimensional path δxµ with vanishing variations at the extremities of the path.
The Euler-Lagrange equations are derived from a Taylor expansion of the Lagrangian, starting from the
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Hamiltonian principle such that

δS = S[x+δx]−S[x] =

∫ τ1

τ0

(
∂L

∂xµ
δxµ +

∂L

∂uµ
δuµ

)

dτ

=
∫ τ1

τ0

(
∂L

∂xµ
− d

dτ

∂L

∂uµ

)

δxµ dτ+
∂L

∂uµ
δxµ

∣
∣
∣
∣
∣

τ1

τ0

=
∫ τ1

τ0

(
∂L

∂xµ
− d

dτ

∂L

∂uµ

)

δxµ dτ

= 0, (1.53)

where the second line is obtained after integration by parts, and vanishing variations at the boundaries
ensure that the surface term is 0. Since this equation has to be valid for any infinitesimal variation δxµ,
the Hamiltonian principle is satisfied for any and all variations if and only if the integrand vanishes. From
this statement we extract the covariant Euler-Lagrange equations

(
∂L

∂xµ
− d

dτ

∂L

∂uµ

)

µ=0,3
= 0. (1.54)

1.4.1 Lagrangian of a relativistic particle

The covariant Lagrangian of a massive charged particle can be split into two parts. The first part cor-
responds to the covariant Lagrangian of a free particle of mass m [see Appendix C.1], which is written
as

Lfree(u) =−mc
√

uµuµ, (1.55)

where the prefactor is chosen arbitrarily to have the correct non-relativistic limit. The second part corre-
sponds to the covariant interaction Lagrangian for a particle of charge q within an external electromag-
netic field determined by the gauge field A [see Appendix C.2], which is written as

Lint(x,u) =−q

c
Aµ(x)u

µ, (1.56)

such that the covariant Lagrangian of a particle of mass m and charge q is

L(x,u) = Lfree(u)+Lint(x,u)

= −mc
√

uµuµ −
q

c
Aµ(x)u

µ. (1.57)

1.4.2 Minimal coupling of the gauge field to matter

In order to gain some insight we re-express the covariant Lagrangian of a massive charged particle as a
function of the time t, the three-dimensional position r and the three-dimensional velocity v such that
L(t,r,v) describes the same trajectory as before, and must therefore have the same action. We have thus

L(t,r,v) =−mc2

√

1− v(t)2

c2 −qφ(t,r)+
q

c
v(t).A(t,r) (1.58)

such that the generalized momentum for a charged particle is

p =

(
∂L

∂vi

)

i=1,2,3
= γmv+

q

c
A, (1.59)

and depends on the vector potential A, a dependency that is denoted as the minimal coupling.
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1.5 Toward Quantum electrodynamics

Quantum electrodynamics (QED) is hailed as the most accurate physical theory, describing electrons
and photons on equal footing in a fully covariant and quantized form [6, 9] with an extreme precision,
reaching up to twelve digits of concordance with experiments designed to test it [10]. The first building
blocks of this theory are usually expressed in a non-quantized covariant Lagrangian formulation, which
must be quantized later on to account for quantum mechanical properties of matter and electromagnetic
fields. It is therefore constituted of an electromagnetic Lagrangian part, describing the electromagnetic
field and its interaction with charged particles in a covariant formalism, and a matter Lagrangian part,
describing relativistic particles.

1.5.1 Electromagnetic Lagrangian

In order to build the electromagnetic Lagrangian, we need to step up from a Lagrangian describing
particles within an external electromagnetic field to a Lagrangian describing both electromagnetic field,
charges and currents on an even footing in covariant form. The gauge field A must now be treated as
the dynamical variable and no longer as an external potential, i.e. L = L(A,∂A) = L(A,∂A,x,u) with the
4-position x and 4-velocity u being treated as non-dynamical variables for the working of the equation of
motion of the electrodynamic field. Considering that the gauge field is a continuous real-valued function
of the 4-position as Aµ = Aµ(x), we need to construct an electromagnetic Lagrangian density Lem such
that its spatial integration over the available space Ω yields the electromagnetic Lagrangian Lem through

Lem =

∫
Ω

Lem dr, (1.60)

and such that an integration over time and the available space Ω yields the electromagnetic action Sem

through

Sem =
∫ t2

t1

[∫
Ω

Lem dr
]

dt

=
1
c

∫ ct2/c

ct1/c

∫
Ω

Lem dr d(ct)

=
1
c

∫
Lem dx. (1.61)

We derive the Euler-Lagrange equations for the electromagnetic Lagrangian density in the same spirit as
Eq. (1.53), such that

δS[A] = S[A+δA]−S[A] =
1
c

∫
dx

(
∂Lem

∂Aµ
δAµ +

∂Lem

∂(∂νAµ)
δ(∂νAµ)

)

=
1
c

∫
dx

(
∂Lem

∂Aµ
−∂ν ∂Lem

∂(∂νAµ)

)

δAµ +0

= 0, (1.62)

where the second line is obtained after integration by parts, with the surface term just written as 0 due
to its vanishing variations at the boundaries of the space-time integration domain. Since this equation
has to be valid for any infinitesimal variation δAµ, the Euler-Lagrange equations for the electromagnetic
Lagrangian density are

(
∂Lem

∂Aµ
−∂ν ∂Lem

∂(∂νAµ)

)

µ=0,3
= 0. (1.63)

The covariant electromagnetic Lagrangian density can be split into two parts. The first part corresponds
to the interaction Lagrangian density, which can be seen as a generalization of the interaction Lagrangian
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for a particle of charge q within an external electromagnetic field [see Eq. (1.56)] to an interaction
Lagrangian density for the dynamical gauge field A with its sources, the charged particles described by
the 4-current j [see Appendix C.3], and is written as

Lint(A,x,u) =−1
c

Aµ(x) jµ(x), (1.64)

such that this interaction Lagrangian density is Lorentz invariant by construction, and gauge invariant due
to the continuity equation of the four-current. The second part corresponds to the radiation Lagrangian
density, which describes the electromagnetic field itself [see Appendix C.4], and is written as

Lrad(∂A,x) = − 1
16π

FµνFµν, (1.65)

such that this radiation Lagrangian density is Lorentz invariant and gauge invariant by construction, as
it only depends of the field strength tensor [see Eq. (1.39)]. The covariant electromagnetic Lagrangian
density is therefore written as

Lem(A,∂A,x,u) = Lrad(∂A,x)+Lint(A,x,u)

= − 1
16π

FµνFµν −
1
c

Aµ(x) jµ(x), (1.66)

such that we have worked out a covariant Lagrangian taking in account electromagnetic fields and their
interactions with charged particles.

1.5.2 Matter Lagrangian

The only building bloc missing is now the matter Lagrangian describing charged particles, and we make
use of the Dirac equation with some advance here. While the Dirac equation is usually seen as an
equation describing quantum particles in covariant formalism, we regard here the Dirac wave function ψ

as a classical Dirac field [11], such that the matter Lagrangian is supposed to yield the Dirac equation as
an equation of motion for this classical Dirac field, which has to be quantized later on.
The matter Lagrangian is usually written Lmat(ψ,∂ψ, ψ̄,∂ψ̄), with two independent variables ψ and ψ̄ =
ψ†γ0 = ψ†βββ [see Eq. (D.16)] where ψ is the classical (i.e. non-quantized) Dirac matter field, and their
associated derivatives. Considering that the Dirac field is a continuous function of the 4-position, the use
of a matter Lagrangian density is mandatory and we thus express

Lmat =
∫

Ω
Lmat dr. (1.67)

In the same way as for Eq. (1.63) we can write the Euler-Lagrange equations for the matter Lagrangian
density, in the case of the ψ̄ field dynamical variable

∂Lmat

∂ψ̄
−∂ν ∂Lmat

∂(∂νψ̄)
= 0, (1.68)

where the use of the ψ̄ field makes for an easier determination of the matter Lagrangian density [see
Appendix C.5], which is written as

Lmat(ψ, ψ̄) = ψ̄
(
−i~cγγγµ∂µ +mc2I4

)
ψ. (1.69)

This matter Lagrangian density is manifestly covariant, as the use of the 4-gradient ensures that time and
space are treated identically.
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1.5.3 Complete Lagrangian and quantization

From this, we can now write the full non-quantized QED Lagrangian density as

LQED = Lrad(∂A,x)+Lint(A,x,u)+Lmat(ψ, ψ̄)

= − 1
16π

FµνFµν −
1
c

Aµ(x) jµ(x)+ ψ̄
(
−i~cγγγµ∂µ +mc2I4

)
ψ. (1.70)

This Lagrangian formulation is the last step before quantization must be considered, after what excita-
tions of the quantized Dirac field ψ can be interpreted as electrons and positrons [6]. While quantization
of the Dirac matter field is rather straightforward [see the book from S. S. Schweber [12] (Quantization
of the Dirac field, page 218)], quantization of the electromagnetic field is trouble from the start [13] with
redundant degrees of freedom and the different possible choices of gauge condition [see the book from
J. D. Bjorken and S. Drell [14] for the quantization in Coulomb gauge (Quantization of the electromag-
netic field, page 69), and the book from F. Mandl and G. Shaw [15] for the quantization in Lorenz gauge
(Covariant quantization page 86)]. Furthermore, quantization in QED comes with a heavy price, namely
the need for renormalization. As such, quantization of the matter field requires charge renormalization of
the electrons to account for the vacuum polarization [16], and quantization of the electromagnetic field
requires mass renormalization of the electron.
This apparatus of renormalization, as well as the fact that the QED formalism is so heavy that calculations
on chemical systems are all but out of reach for systems more complex than an atom with a couple
of electrons [6, 17], thus motivating the use of methods less complete but more tractable. While one
cannot abandon the quantization of particles for any kind of ab-initio quantum chemistry calculation, it
is not so for the quantization of the electromagnetic field. The next chapter focuses on the Hamiltonian
formulation rather than the Lagrangian formulation, mostly through the use of the Dirac equation where
electromagnetic interactions are treated in a purely classical way.
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Chapter 2

Relativistic quantum chemistry

In this chapter we work out the first-quantized and second-quantized Dirac Hamiltonians used in quan-
tum chemistry, starting from the momentum dispersion relation of special relativity. Additionally, we
introduce the main equations of relativistic density-functional theory as well as some practical details
about the implementation of a four-component relativistic quantum chemistry code.

2.1 Fundamental one-particle equation

While we already stated and used the Dirac equation in Section 1.5, it is interesting to see how and why
this four-component equation is at the core of most relativistic quantum chemistry ab-initio develop-
ments. We first review some properties of the Klein-Gordon equation, as this equation emerges naturally
from a quantization of the energy momentum dispersion relation [see Eq. (1.24)], before pointing out
some of the flaws that historically led to the abandon of this equation to the profit of the Dirac equation.

2.1.1 The Klein-Gordon equation

We want to derive the Klein-Gordon equation. We start from the classical relativistic energy-momentum
dispersion relation [see Eq. (1.24)]. It seems reasonable to isolate the expression of the positive energy
root, which is usually understood as describing particles, yielding

E =
√

p2 c2 +m2c4. (2.1)

In order to respect the correspondence principle, quantum mechanical equations can be derived from
classical equations using the substitutions

E → i~
∂

∂t
and p →−i~∇∇∇, (2.2)

such that, when acting upon a wave function ψ we obtain from Eq. (2.1) the quantum mechanical equation

i~
∂

∂t
ψ =

√

−~2c2∇∇∇2 +m2c4 ψ. (2.3)

This equation features a square-root operator which may be expanded as a power series

√

−~2c2∇∇∇2 +m2c4 = mc2

(

1− 1
2
~

2∇∇∇2

m2c2 − 1
8
~

4∇∇∇4

m4c4 − . . .

)

, (2.4)

which would lead to an equation which is not manifestly covariant, as time and space are not treated
identically. A way to circumvent this trouble is to start directly from the squared energy expression,

33
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that is from the energy-momentum dispersion relation [see Eq. (1.24)] E2 = p2 c2 +m2c4, such that the
substitutions from Eq. (2.2) yield, after acting upon a wave function ψ, the Klein-Gordon equation [1,2]

−~
2 ∂2

∂t2 ψ =
(

−~
2c2∇∇∇2 +m2c4

)

ψ, (2.5)

which is manifestly covariant as it treats time and space identically, as second-order derivatives. One
important consequence of having an equation with second-order derivative on time is that knowing the
wave function at a time t does not give enough information to know the wave function at later times, and
knowledge of the derivative of the wave function with respect to time at time t is also needed, setting this
equation apart from general equations of quantum mechanics. The Klein-Gordon equation [see Eq. (2.5)]
can be recast into a covariant formalism using the 4-gradient [see Eq. (1.17)], such that

(
~

2∂µ∂µ +m2c4) ψ = 0, (2.6)

which is somewhat more convenient for later manipulations.

Continuity equation of the 4-current

If one considers the wave function solutions of the Klein-Gordon equation to behave as probability am-
plitudes in the same way as a solution of the Schrödinger equation, it is possible to derive a continuity
equation for a free particle by multiplying Eq. (2.6) by ψ∗ on the left and subtracting its complex conju-
gate such that

0 = ψ∗ (
~

2∂µ∂µ +m2c4) ψ−ψ
(
~

2∂µ∂µ +m2c4) ψ∗

= ~
2 (ψ∗∂µ∂µψ−ψ∂µ∂µψ∗)

= ~
2∂µ (ψ

∗∂µψ−ψ∂µψ∗) , (2.7)

where we use the cancellation of the crossed terms ∂µψ∗∂µψ−∂µψ∂µψ∗ = 0. The ~2 has been arbitrarily
kept, and does not yield the correct dimension for a 4-current from this continuity equation. In order to
obtain the correct dimension we arbitrarily choose the prefactor to be the same as for the non-relativistic
current expression [3] for a free particle

j = − i~

2m
(ψ∗∇∇∇ψ−ψ∇∇∇ψ∗) , (2.8)

such that, taking in account the minus sign entering the equations from
(
∂i
)

i=1,3 we have the continuity
equation for the Klein-Gordon equation written as

0 =
∂ρ

∂t
+∇∇∇.j

= ∂µ jµ

= ∂µ

i~

2m
(ψ∗∂µψ−ψ∂µψ∗) . (2.9)

In particular, the particle density must be expressed as ρ = j0/c such that

ρ =
1
c

i~

2m

(
ψ∗∂0ψ−ψ∂0ψ∗) , (2.10)

with the correct dimension.
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Solution of the Klein-Gordon equation for a free particle

As the Klein-Gordon equation emerges from the energy-momentum dispersion relation [see Eq. (1.24)],
the free particle solutions of this equation corresponds to plane waves with positive or negative energies
[4] and a normalization constant N

ψ±
k (t,r) = N exp

[

−i

(

±|Ek|
~

t −k.r
)]

, (2.11)

such that

E2
k =

(
~

2c2k2 +m2c4) (2.12)

for a plane wave of wave vector k. The positive energy solutions are usually associated to particles,
while the negative energy solutions are less straightforwardly described in a wave function formalism.
The particle density yielded by such a plane wave of wave vector k would then be

ρ± =
1
c

i~

2m

(
ψ±∗

k ∂0ψ±
k −ψ±

k ∂0ψ±∗
k

)

= ±N 2 |Ek|
mc2 , (2.13)

where the particle probability density depends on the sign of the energy of the wave function, leading
to what appears like negative probability density if the squared normalization constant is positive. This
problem obviously propagates to the definition of the normalization constant, which requires that we
choose an inner product between two solutions of the Klein-Gordon equation [4]. Such an inner product
usually comes from the space integral of the continuity equation

0 =
∫

Ω
dr
(∂ρ

∂t
+∇∇∇.j

)

0 =
∂

∂t

∫
Ω

dr ρ+

∫
∂Ω

dS n.j

0 =
∂

∂t

∫
Ω

dr ρ, (2.14)

where we re-expressed the space integral over the divergence of the current j as a surface vanishing
surface integral through Ostrogradsky’s theorem. The vanishing of the time derivative of the space
integral of the density ρ ensures that this space integral must be a constant, and this constant should
logically be the number of particle described by the wave function. For two solutions of the Klein-
Gordon equation ψkm

(t,r) and ψkn
(t,r), we define the inner product

〈ψkm
,ψkn

〉 =

∫
Ω

dr
i~

2mc2

(

ψ∗
km

∂

∂t
ψkn

−ψkn

∂

∂t
ψ∗

km

)

, (2.15)

such that for wave function ψ±
k (t,r) describing exactly one free particle inside a box of volume V , its

squared norm is

〈ψ±
k ,ψ

±
k 〉=±N 2 V

|Ek|
2mc2 . (2.16)

Choosing a positive real normalization constant N =
(

V
|En|

2mc2

)−1/2
yields, for positive energy solution,

squared norms of +1 and, for negative energy solutions, squared norms of −1. This inconsistency led
historically to the rejection of the Klein-Gordon equation, but may be reinterpreted as charge densities
instead of particle densities [4]. Furthermore, as it does not explicitly take in account the spin the Klein-
Gordon equation is usually considered as describing spinless particles [5].
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2.1.2 The Dirac equation

In order to have an equation which describes particles of spin 1/2, as the electrons we focus on in
quantum chemistry, the Dirac equation [6,7] is usually favored. We derive this equation [see Appendix D]
and write it using the mono-electronic free particle Dirac Hamiltonian hD

free such that

i~
∂

∂t
ψ = hD

free ψ

=
(
cααα ·p+βββmc2) ψ, (2.17)

where p = −i~∇∇∇ is the three-dimensional momentum operator and ααα = (ααα1,ααα2,ααα3) is treated as a col-
umn vector with

ααα1 =

(
0 σσσ1

σσσ1 0

)

, ααα2 =

(
0 σσσ2

σσσ2 0

)

, ααα3 =

(
0 σσσ3

σσσ3 0

)

and βββ =

(
I2 0
0 −I2

)

, (2.18)

featuring the Pauli matrices σσσ1, σσσ2 and σσσ3 [see Eq. (D.12)]. The use of the Pauli matrices is most
significant and makes for an easy connection between the Dirac equation and the spin operator of the
electron sss = ~

2 σσσ [3], as electrons are fermions of spin quantum number s = 1/2. Contrary to the Klein-
Gordon equation, the Dirac equation is manifestly covariant but contains only first-order derivatives,
such that knowing the wave function at a given time t gives enough information to determine it at any
later time. Furthermore, considering that the ααα’s and βββ are 4× 4 matrices, the eigenfunctions ψ of the
Dirac equation must be of dimension four and are called 4-spinors such that

ψ =







ψ1

ψ2

ψ3

ψ4







=

(
ψL

ψS

)

(2.19)

where the block structures of the ααα’s and βββ matrices calls for a separation of the 4-spinor ψ into two
2-spinors ψL and ψS, respectively known the large (L) and small (S) components. In the same way as
the Klein-Gordon equation [see Eq. (2.6)], the Dirac equation may be recast into a covariant form [see
Eq. (D.14)], such that

0 =
(
−i~c∂0 − i~cαααi∂i +βββmc2) ψ. (2.20)

Continuity equation of the 4-current

We derive a continuity equation for the Dirac equation by multiplying Eq. (2.20) by ψ† on the left and
subtracting its transposed complex conjugate such that

0 = ψ† (−i~c∂0 − i~cαααi∂i +βββmc2) ψ−
(

ψ† (−i~c∂0 − i~cαααi∂i +βββmc2) ψ
)†

= −i~
[
ψ†c∂0ψ+ψ†cαααi∂iψ+

(
c∂0ψ†)ψ+

(
c∂iψ

†)αααi,†ψ
]
+mc2(ψ†βββψ−ψ†βββ

†
ψ
)

= c∂0
(
ψ†ψ

)
+
[

ψ†cαααi∂iψ+
(
∂iψ

†)cαααiψ
]

=
∂

∂t

(
ψ†ψ

)
+∇∇∇ ·

(
ψ†cαααψ

)
, (2.21)

where care has been taken to correctly consider ψ† as the conjugate transpose of the 4-spinor of ψ, i.e.
a line vector and not a column vector, and remarking that αααi† = αααi and βββ

† = βββ as they are Hermitian
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matrices [see Appendix D] before simplifying the remaining terms by −i~. We have correctly obtained
an equation of the form

0 =
∂ρ

∂t
+∇∇∇ · j, (2.22)

where the Dirac density distribution for a single particle is ρ = ψ†ψ and the Dirac current density is
j = ψ†cαααψ. It is interesting to indicate that the vector cααα which gives its structure to the Dirac current
density is known as the Dirac velocity operator, as the use of Heisenberg’s equation of motion [3] for the
position operator yields for a free particle, for k = 1,3

ẋk =
i

~

[

cααα ·p,xk
]

=
i

~
cα j
[

p j,x
k
]

= cαk, (2.23)

using the commutator relation between position and impulsion [p j,x
k] =−i~δ jk.

Solution of the Dirac equation for a free particle

The free particle solutions of this equation corresponds to plane waves [3] with a 4-spinor structure and
a normalization constant N

ψ±
k,σ(t,r) = N

(
ϕ±

k,σ
χ±

k,σ

)

exp

[

−i

(

±|Ek|
~

t −k.r
)]

, (2.24)

for a wave vector k and a “spin” index σ taking two values σ1,σ2 =↑,↓, with once more positive or
negative energy eigenvalues, with

|Ek|=
√

~2k2c2 +m2c4. (2.25)

For positive energy solutions we have [3]

(

ϕ+
k,↑

χ+
k,↑

)

=











1
0

~kzc

|Ek|+mc2

~(kx + iky)c

|Ek|+mc2











and

(

ϕ+
k,↓

χ+
k,↓

)

=











0
1

~(kx − iky)c

|Ek|+mc2

−~kzc

|Ek|+mc2











, (2.26)

while for negative energy solutions we have

(

ϕ−
k,↑

χ−
k,↑

)

=











~kzc

−|Ek|−mc2

~(kx + iky)c

−|Ek|−mc2

1
0











and

(

ϕ−
k,↓

χ−
k,↓

)

=











~(kx − iky)c

−|Ek|−mc2

−~kzc

−|Ek|−mc2

0
1











. (2.27)

As Eq. (2.14) is general for all continuity equation, we define for two solutions of the Dirac equation
ψkm,σm

(t,r) and ψkn,σn
(t,r) the inner product

〈ψkm,σm
,ψkn,σn

〉 =

∫
Ω

dr
(
ψ±

km,σm

)†
ψ±

kn,σn
, (2.28)
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such that for a wave function ψ±
k,σ(t,r) describing one free particle inside a box of volume V, its normal-

ization constant N is determined by

1 =

∫
Ω

dr
(
ψ±

k,σ

)†
ψ±

k,σ = N 2 V

(

1+
~

2k2c2

(
±|Ek|±mc2

)2

)

= N 2 V

(

1+
~

2k2c2

(
|Ek|+mc2

)2

)

, (2.29)

yielding

N 2 =
1
V

1

1+
~

2k2c2

(
|Ek|+mc2

)2

=
1
V

|Ek|+mc2

2|Ek|
, (2.30)

which is a purely positive quantity. As this expression depends neither of the sign of the energy eigen-
value nor of the “spin” index σ, all four 4-spinors solutions of the Dirac equation for a free particle have

the same positive normalization constant N =
(

V
|Ek|+mc2

2|Ek|

)−1/2
.

Dirac equation in the presence of external electromagnetic fields

In order to take in account the presence of non-quantized external electromagnetic potentials in a covari-
ant formalism, it is better to rewrite the Dirac equation [see Eq. (D.15)] to make it manifestly covariant

0 =
(
−i~cγγγµ∂µ +mc2I4

)
ψ, (2.31)

introducing the γγγ′s matrices such that

γγγ0 = βββ =

(
I2 0
0 −I2

)

, (2.32)

and

γγγ1 = βββααα1 =

(
0 σσσ1

−σσσ1 0

)

,γγγ2 = βββααα2 =

(
0 σσσ2

−σσσ2 0

)

,γγγ3 = βββααα3 =

(
0 σσσ3

−σσσ3 0

)

. (2.33)

We start from the minimal coupling that was derived in Eq. (1.59) for a particle of charge q, such that

pi −→ pi +
q

c
Ai, (2.34)

noting that pi =−pi = i~∂i and making a straightforward extension to the 4-momentum coupling to the
gauge field for an electron of charge qe we have

i~∂µ −→ i~∂µ −
qe

c
Aµ. (2.35)

such that the Dirac equations with an external electromagnetic field becomes

0 =
(

−cγγγµ
(
i~∂µ −

qe

c
Aµ

)
+mc2I4

)

ψ, (2.36)

which is manifestly covariant and also invariant under gauge transformations [see Appendix B]

ψ(x) −→ exp
[

i
qe

~c
g(x)

]

ψ(x) and Aµ(x)→ Aµ(x)−∂µ g(x). (2.37)

Separating once more the time and space variables and multiplying by γγγ0 from the left yields

i~
∂

∂t
ψ =

(

cααα ·
(
p− qe

c
A
)
+βββmc2 +qeφI4

)

ψ, (2.38)

where the minimal coupling from Eq. (1.59) appears once more clearly.
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Electrons and positrons

The 4-spinors [see Eq. (2.19)] solutions of the Dirac equation feature four degrees of freedom, cor-
responding to the descriptions of electrons and positrons with the spin considered explicitly, as both
electrons and positrons are fermions of spin 1/2. We thus write

ψ =







ψLα

ψLβ

ψSα

ψSβ






, (2.39)

with α and β denoting the two possible ” spin ” states. For a given external potential the positive-energy
solutions are describing electronic states, and in the non-relativistic limit the small components (ψS,α and
ψS,β) vanish while the large components (ψL,α and ψL,β) of the 4-spinor become the α and β components
of a spin-orbital, each spatial part being solution of the Schrödinger equation. For the same external
potential the negative-energy solutions describe [8] positronic states in an indirect fashion, as it requires
charge-conjugation to have the correct description of these positronic solutions. The charge-conjugation
operator can be written as [9]

C =







0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0







K0, (2.40)

with K0 the complex conjugation operator, such that application of this charge-conjugation operator C

on the Dirac equation in the presence of an electromagnetic field [see Eq. (2.38)] yields

i~
∂

∂t
Cψ =

(

cααα ·
(
p+

qe

c
A
)
+βββmc2 −qeφI4

)

Cψ, (2.41)

where we used Cβββ = −βββC and Cααα = αααC and multiplied both sides of the equation by −1, which cor-
responds to the Dirac equation in the presence of an electromagnetic field for a particle having the same
mass as the electron but the opposite charge. Thus, the solution of this equation are usually considered
to be anti-particles of the electron, i.e. positrons. As the eigenvectors of this equation are written as Cψ,
we can deduce positronic solutions of the Dirac equation by applying the charge-conjugation operator
on negative energy solutions of the Dirac equation [see Eq. (2.27)], yielding for example

C
[

ψ−
k,↓(t,r)

]

= C











N











~(kx − iky)c

−|Ek|−mc2

−~kzc

−|Ek|−mc2

0
1











exp

[

−i

(

±|Ek|
~

t −k.r
)]











= N











1
0

−~(kx + iky)c

|Ek|+mc2

−~kzc

|Ek|+mc2











exp

[

+i

(

±|Ek|
~

t −k.r

)]

= ψ+
−k,↑(−t,r), (2.42)

which would correspond to a 4-spinor solution of the Dirac equation, allowing us to interpret negative-
energy electronic solutions as positive-energy positronic solution with opposite momentum and moving
backwards in time.
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Kramers’ time-reversal symmetry

Considering that the Dirac Hamiltonian features spin-orbit coupling within its kinetic operator, the spin
symmetry that existed with the Schrödinger Hamiltonian does not exist anymore. Yet, the double de-
generacy of fermionic states in the absence of external magnetic field [3] still exists, and the 4-spinors
describing such a pair of states are denoted as a Kramers pair ψ and ψ̄, such that

ψ̄ = K ψ, (2.43)

with K the Kramers time-reversal operator

K =−i

(
σσσ2 0
0 σσσ2

)

K0, (2.44)

expressed using the Pauli matrix σσσ2 [see Eq. (D.12)] and K0 the complex conjugation operator. Writing

ψ =







ψLα

ψLβ

ψSα

ψSβ






, (2.45)

we derive the expression of ψ̄ with respect to the four-components of ψ using first a two component
decomposition as

ψ̄ = K ψ

= −i

(
σσσ2 0
0 σσσ2

)

K0

(
ψL

ψS

)

= −i

(
σσσ2ψL∗

σσσ2ψS∗

)

. (2.46)

Considering that, for X ={L,S}, we have

σσσ2ψX∗ =

(
0 −i

i 0

)(
ψXα∗

ψXβ∗

)

=

(
−iψXβ∗

iψXα∗

)

, (2.47)

we have then

ψ̄ = −i







−iψLβ∗

iψLα∗

−iψSβ∗

iψSα∗







=







−ψLβ∗

ψLα∗

−ψSβ∗

ψSα∗






. (2.48)

Finally, we write some properties of products of the Kramers time-reversal operator

K K = −I4, (2.49)

K †K = I4, (2.50)

and some properties of mixed products of the Kramers time-reversal operator and the ααα matrix

K αααK † = −ααα, (2.51)

ααα = −K †αααK , (2.52)

αααK = K †ααα. (2.53)
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2.2 Hamiltonians for chemical systems in first quantization

Quantum chemistry is usually expressed in Coulomb gauge [see Eq. (B.5)], such that the classical inter-
action potential [3, 8] between two point-charge particles of charges q1 and q2 is, to the first non-zero
relativistic correction, that is to the first-order in 1/c2,

V12 =
q1q2

r12

(

1− 1
2c2

[

v1 ·v2 +
(r12 ·v1)(r12 ·v2)

r2
12

])

(2.54)

with r12 = |r1 − r2|, ri and vi being respectively the position and speed of particle i. The first term
corresponds to a charge-charge interaction and the second to a current-current interaction. We first look
at the simplest physical system in quantum chemistry, with only one electron and one nucleus.

2.2.1 One-electron Hamiltonian

This section is evocated separately from the case featuring several electrons, as the Dirac equation can be
solved analytically for a one-electron atom with fairly few approximations, while giving still quite good
energy eigenvalues and wave functions and maintaining the correct non-relativistic limit [3, 9]. Both
electron and nucleus are usually considered to be point-charges, interacting through an instantaneous
Coulomb interaction corresponding to the scalar potential

vne = qeφ =
qeqnucl

|r−R| =−Ze2

r
, (2.55)

with r = |r−R|, r denoting the position of the electron and R the position of the nucleus. The charge
of the electron is written as qe = −e while the charge of the nucleus is qnucl = Ze, writing e as the unit
of charge. This interaction potential corresponds to keeping only the charge-charge interaction term of
Eq. (2.54), the nucleus being treated as an external source of scalar potential in what is called the clamped
nucleus approximation. It is justified in the same spirit as the Born-Oppenheimer approximation, with
a nucleus that is considered to be at rest as a single proton has already a mass around 2000 times larger
than the mass of the electron and moves much more slowly under the same external forces, the electron
density re-arranging around it adiabatically. Nevertheless, it corresponds to the choice of a frame of
reference that is the rest-frame of the nucleus, thus invalidating the Lorentz covariance of the equations.
The mass energy term of the nucleus is not considered as it is but an additive constant to the energy with
no impact on the electronic wave-function. Such derivation relies on the ansatz

ψ(t,r) = exp

[

−i
E

~
t

]

ψ(r), (2.56)

such that the Dirac equation in the presence of an external electromagnetic field [see Eq. (2.38)] for
this model system is written, after simplification by the time-part of the ansatz, as a time-independent
equation using the one-electron Dirac Hamiltonian hD, comprised of the sum of the one-electron free
particle Dirac Hamiltonian hD

free and any mono-electronic external potential vne such that

E ψ(r) = hD ψ(r)

=
(

hD
free + vne

)

ψ(r)

=
(

cααα ·p+βββmc2 + vneI4

)

ψ(r). (2.57)

This Hamiltonian in first quantization is usually taken as the basis for calculation on one-electron sys-
tems.
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2.2.2 Many-electron Hamiltonian

For more general cases, several electrons and several nuclei are usually considered and new interactions
appears such that the Dirac equation can no longer be solved analytically. For ground-state calculations,
it is still possible to use the ansatz from Eq. (2.56) and write a time-independent Dirac equation using the
many-electron Dirac Hamiltonian HD = ∑i hD(i) containing all one-electron terms, and adding the new
nucleus-nucleus (zero-electron terms) and electron-electron (two-electron terms) interaction potentials
such that

E Ψ =
(

HD +Vee +Vnn

)

Ψ

=

(

∑
i

[
cαααi ·pi +βββimc2 + vne(i)(I4)i

]
+Vee +Vnn

)

Ψ, (2.58)

with αααi, pi, βββi and (I4)i acting only on electron i. The kinetic energy and the mass energy terms are
explicitly written as simple sums over all elecrons, while the electromagnetic potential terms Vne, Vee,
and Vnn, corresponding respectively to the nucleus-electron and electron-electron and nucleus-nucleus
interaction potential terms, are slightly more complicated and detailed in the following subsections.

Nucleus-nucleus interaction

Theoretically several nuclei interact through a nucleus-nucleus interaction potential, usually written [8]
as an instantaneous Coulomb interaction between point-charges through the scalar potential as a sum
over nuclei

Vnn = ∑
A>B

ZAZBe2

|RA −RB|
, (2.59)

with R = |RA −RB|, RA and ZAe being respectively the position and charge of nucleus A, writing e

as the unit of charge, and where double counting has been properly taken care of. In the clamped
nucleus approximation these nuclei are supposed to be static sources of scalar potential, interacting with
one another but not in a dynamical way. This nucleus-nucleus interaction term thus yields a constant
repulsive energy term for adiabatic quantum chemistry calculations. It is interesting to mention that if,
in the case of a single nucleus, choosing to work in the rest frame of the nucleus is enough to ensure the
clamped nucleus approximation, no such frame can usually be found as nuclei will move relatively to
each others [8].

Electron-nucleus interaction

In the case of a general chemical system featuring several electrons and nuclei in the clamped nucleus
approximation one can still treat both electrons and nuclei as point-charges [8] such that a straightforward
extension of Eq. (2.55) yields for an electron i

vne(i) = ∑
A

−ZAe2

|ri −RA|
, (2.60)

with ri denoting the position of electron i, RA and ZAe denoting respectively the position and charge
of nucleus A. Another possibility is to consider finite-size nucleus [8, 10] as considering point-charge
nucleus causes weak singularity at the nucleus as the Dirac Hamiltonian contains only first-order space
derivatives, making for slower basis set convergence. As theoretical nuclear physics does not provide [3]
a unique charge distribution function for the nucleus, several charge distribution models [10] exist in
quantum chemistry. A very popular one is the Gaussian charge distribution model, making for an easy
implementation as electronic wave-function are usually also expanded in Gaussian type basis functions in
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most quantum chemistry codes, such that electron-nucleus interaction potentials can be calculated using
pre-existing primitive integrals. Several parameter choices exist for this one model, and L. Visscher and
K. G. Dyall [10] prescribe the use of the root-mean-square radius of the nucleus as a parameter. It can
be fitted as

√

〈R2〉= (0.8636A1/3 +0.570) fm, (2.61)

where A is the mass number of the considered isotope. The charge distribution is then expressed as

ρG(R) = Ze

(
3

2π〈R2〉

)

exp

[

− 3R2

2〈R2〉

]

, (2.62)

such that the scalar interaction potential of Eq. (2.60) becomes for an electron i

vne(i) = ∑
A

−ZAe2

|ri −RA|
erf

(√

3
2〈R2〉 |ri −RA|

)

, (2.63)

with the erf function removing the divergence at 0.

Electron-electron interaction

Interactions between electrons in relativistic quantum chemistry [8] are usually considered in the semi-
classical limit, corresponding to a classical treatment of electromagnetic fields. This level of description
can be obtained from a straightforward quantization of Eq. (2.54), yielding the Coulomb-Breit interaction
potential as a sum over pair-interactions between electrons

V CB
ee = ∑

i> j

wCB(i, j) = ∑
i> j

e2

ri j

(

(I4)i(I4) j −
1

2c2

[

(cαααi · cααα j)+
(ri j · cαααi)(ri j · cααα j)

r2
i j

])

, (2.64)

with ri j = |ri − r j|, ri denoting the position of electron i and (I4)i and αααi acting on electron i. We
observe that such quantization implies that the particles velocities of Eq. (2.54) are replaced by the Dirac
velocity operator [see Eq. (2.23)]. The Coulomb-Breit interaction can also be derived from the one-
photon exchange two-electron interaction, usually treated in QED as the exchange of virtual photons
between electrons through a photon propagator [11], by taking the zero-frequency limit. The first term
of Eq. (2.64) corresponds to the zeroth order of the interaction, that is the instantaneous charge-charge
Coulomb interaction,

V C
ee = ∑

i > j

wC(i, j) = ∑
i> j

e2

ri j

(I4)i(I4) j (2.65)

also labelled as the longitudinal interaction as it corresponds to the time-like element of the QED photon
propagator. The second term of Eq. (2.64) corresponds to the first-order in 1/c2 of the interaction, that
is the retarded current-current Breit interaction. It corresponds to the sum of two sub-terms [12] in the
Coulomb gauge, written as V B

ee = V G
ee +V

gauge
ee , where the first sub-term is the instantaneous current-

current Gaunt interaction,

V G
ee = ∑

i> j

wG(i, j) =− ∑
i> j

e2

ri j

1
c2 (cαααi · cααα j), (2.66)

and the second sub-term is the retardation term in Coulomb gauge

V gauge
ee = ∑

i > j

wgauge(i, j) =− ∑
i> j

e2

ri j

1
2c2

[

−(cαααi · cααα j)+
(ri j · cαααi)(ri j · cααα j)

r2
i j

]

, (2.67)
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which vanishes in the Lorenz gauge [8]. This retarded current-current interaction is also labelled as the
transverse interaction, as it derives from the transverse part of the QED photon propagator. Although the
Breit interaction potential has little impact on energetic and spectroscopic properties [13,14], it is needed
in order to get spin-orbit splitting correctly. While the Breit retardation potential [see Eq. (2.67)] requires
specific numerical integrals [15], the pure Gaunt current-current interaction potential [see Eq. (2.66)]
can be implemented using the same two-electron integrals as the charge-charge Coulomb interaction,
as is illustrated in section F.2, and thus makes for an easy implementation and a good choice to start
relativistic quantum chemistry calculations. Furthermore, keeping only the Gaunt part of the interaction,
that is considering instantaneous current-current interactions, is enough to introduce electron-electron
spin-orbit, also denoted spin-other-orbit coupling, into the calculations.

Dirac-Coulomb-Breit Hamiltonian in configuration space

We explicitly write down the full many-electron configuration space (cs) Dirac-Coulomb-Breit (DCB)
Hamiltonian in first quantization, removing from further expressions the nucleus-nucleus interaction
potential which is but a constant repulsive energy term for a given chemical system, such that

HDCB
cs = ∑

i

[

cαααi ·pi +βββimc2 +∑
A

−ZAe2

|ri −RA|
(I4)i

]

+ ∑
i > j

e2

ri j

(

(I4)i(I4) j −
1

2c2

[

(cαααi · cααα j)+
(ri j · cαααi)(ri j · cααα j)

r2
i j

])

, (2.68)

this Hamiltonian having been constructed in order to describe mixed systems of electrons and point-
charge nucleus, in the clamped nucleus approximation.
We saw in section 2.1.2 that the Dirac equation has positive and negative-energy solutions, with negative-
energy electronic solutions being related to positive-energy positronic solutions. The existence of these
negative energy electronic solution implies that there is a negative continuum of solutions for any elec-
tronic calculations starting from the Dirac Hamiltonian, which is not bounded from below. The impacts
of this negative continuum are discussed in the next section.

2.3 Hamiltonians for chemical systems in second quantization

2.3.1 Configuration space

The one-electron Dirac Hamiltonian [see Eq. (2.57)] in first quantization has eigenvalues which can
be positive or negative, where a positive eigenvalue means that the eigenfunction corresponds to an
electronic state, and a negative eigenvalue that the eigenfunction corresponds to a positronic state. Thus,
and only for a one-particle system, there is no indecision as to the type of particle as long as one knows
the sign of the energy. For more than one particle considered, the sign of the energy of the total system
does not give any informations on the type of particles any more [16]. Furthermore, the fact that this
Hamiltonian is not bounded from below brings new difficulties for variational procedures compared
to non-relativistic calculation based on the Schrödinger equation. In order to better understand these
phenomena we rewrite the configuration-space DCB Hamiltonian in second quantization

ĤDCB
cs = ĤD

cs +Ŵ CB
cs

=

∫
dr ψ̂†(r)hD(r)ψ̂(r)+

1
2

∫∫
dr1dr2 ψ̂†(r1)ψ̂

†(r2)w
CB(r12)ψ̂(r2)ψ̂(r1), (2.69)

where ψ̂(r) and ψ̂†(r) are the annihilation and creation field operators

ψ̂(r) = ∑
p

ψp(r) âp and ψ̂†(r) = ∑
p

ψ†
p(r) â†

p, (2.70)
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where the sum is over a set of orthonormal 4-component-spinor orbitals {ψp(r)} which are eigenfunc-
tions of a one-electron Dirac Hamiltonian, âp and â†

p being the corresponding annihilation and creation
operators of these orbitals such that [8, 16]

[â†
p, âq]+ = â†

pâq + âqâ†
p = δpq and [âp, âq]+ = [â†

p, â
†
q]+ = 0 (2.71)

No-pair Dirac-Coulomb-Breit Hamiltonian

The most usual approximation to remove difficulties coming from the existence of the negative-energy
continuum is, in configuration space, to simply prevent negative-energy states to be occupied. It is usually
done through the embedding of the Hamiltonian by a projection operator Λ+ onto positive-energy states,
and is known as the no-pair approximation [8, 17, 18], considering that negative-energy eigenfunctions
of the Dirac Hamiltonian can be understood as positronic states and that such projectors prevent the
apparition of any electron-positron pairs as positronic states are projected out. One thus writes the
configuration space no-pair DCB Hamiltonian in second quantization as

Ĥno-pair DCB
cs =

∫
dr ψ̂†

+(r)h
D(r)ψ̂+(r)+

1
2

∫∫
dr1dr2 ψ̂†

+(r1)ψ̂
†
+(r2)wCB(r12)ψ̂+(r2)ψ̂+(r1), (2.72)

where ψ̂+(r) and ψ̂†
+(r) are the projected annihilation and creation field operators

ψ̂+(r) = ∑
p+

ψp+(r) âp+ and ψ̂†
+(r) = ∑

p+

ψ†
p+
(r) â

†
p+
, (2.73)

where, compared to Eq. (2.70), the sum is over the positive-energy orthonormal 4-component-spinor
orbitals {ψp+(r)} which are eigenfunctions of a chosen Dirac Hamiltonian (the choice of this Hamil-
tonian depending of the choice of the projector Λ+ considered for the no-pair approximation). Several
different projectors Λ+ can be considered [12, 18, 19], among them the historical projectors Λfree

+ onto
the free particle solutions of the Dirac Hamiltonian hD

free [See Eq. (2.17)], which is much too drastic
an approximation and introduces quite important errors in the energy calculations even for two-electron
atoms [18], and the projector Λbare

+ onto the solutions of the one-electron Dirac Hamiltonian hD [See
Eq. (2.57)] which is often denoted as the Furry picture [20]. More efficient projectors would be ΛHF

+ onto
the positive-energy solutions of the relativistic Hartree-Fock calculation, which is often denoted as the
Fuzzy picture [19] as the projection operator is updated at each step of the self-consistent calculation,
and ΛMCSCF

+ onto the positive-energy solutions of the relativistic MCSCF calculations [18], where the
projection operator is self-consistently updated at the correlated level. One of the main consequences of
the fact that the Dirac Hamiltonian [see Eq. (2.69)] is not bounded from below is the absence of a true
minimization principle, the energy of the no-pair relativistic ground-state of a N-electron system being
written using a minmax principle [8, 18, 21] such that

E = min
Ψ

[

max
{ψp+}

〈Ψ|Ĥno-pair DCB
cs |Ψ〉

]

, (2.74)

where the maximization is done with respect to the set of positive-energy orbitals {ψp+} [see Eq. (2.73)]
by rotations with its complement set of negative-energy orbitals, and the minimization is done with
respect to normalized wave function Ψ within the N-electron space generated by the set of positive-
energy orbitals {ψp+}.

Hartree-Fock level

In order to better understand this projected minmax principle we look at the Hartree-Fock variational
ansatz [8, 18], which is written as

|ΦHF〉= exp [−κ̂] |Φ〉 with κ̂ = ∑
p,q

κpqâ†
pâq, (2.75)
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where κ̂ is the orbital rotation operator with κpq =−κ∗
qp, and |Φ〉 a reference determinant which can be

taken as the variational solution of the Dirac equation for non-interacting electrons, which corresponds
to the Slater determinants |ψ1,ψ2, ...,ψN〉 for a system of N electrons with ψi a solution of the one-
electron Dirac equation [see Eq. (2.57)] for electron i. This reference determinant is usually the lowest
bound state instead of the state with the lowest energy possible, as the Dirac Hamiltonian is not bounded
from below, which corresponds to an implicit projection by choosing ψi as a positive-energy bound
state for each electron i. The use of ΛHF

+ is then done implicitly during a relativistic Dirac Hartree-Fock
calculation by considering, at each step of the self-consistent calculation, the lowest positive-energy
orbitals as occupied and corresponding to electronic bound states, and all the negative-energy orbitals as
empty. This is easily done as long as there is an important energy gap between the bound states and the
negative continuum states [3]. The minmax principle then takes the form of a minimization of the energy
with respect to κa+i+ rotations, i.e. rotations between positive-energy occupied orbitals and positive-
energy virtual orbitals, which is exactly how a non-relativistic Hartree-Fock energy is minimized, but it
is accompanied by a maximization of the energy with respect to κa−i+ rotations, i.e. rotations between
positive-energy occupied orbitals and negative-energy virtual orbitals, as virtual orbitals (denoted using
the indices a,b,c,d, ...) can be either positive-energy virtual orbitals with an energy greater than that of
any occupied orbitals (denoted using the indices i, j,k, l, ...), or negative-energy virtual orbitals with an
energy lesser than that of any occupied orbitals. This minmax principle thus relates to a saddle point
optimization, the lowest bound state corresponding to an excited determinant with respect to negative-
energy states.

Correlated level

We make apparent the absolute necessity of the projection operators Λ+ in configuration space with
some insight from correlated level calculations, where it is necessary to go further than rotations between
orbitals by mixing out determinants. Taking the same indices convention as in the previous section, the
second-order Møller-Plesset correlation energy (MP2) [18, 22] is written, in all generality and using the
physicists’ notation convention, as

EMP2
c = −1

4 ∑
i, j

∑
a,b

|〈i j||ab〉|2
εa + εb − εi − ε j

, (2.76)

where the denominator of the second term brings new complications for relativistic calculations due to
spurious degeneracies linked to the very existence of the negative-energy virtual solutions of the Dirac
equation. Indeed, for systems having at least two electrons, any positive-energy electronic determinant
|Φ〉 is degenerated with an infinity of doubly-excited determinants |Φab

i j 〉, with one virtual orbital into
the positive-energy continuum and one virtual orbital into the negative-energy continuum. This phe-
nomenon, known as the Brown-Ravenhall disease [23], leads to a continuum dissolution [8] for any
system containing two electrons or more as soon as one considers electronic interactions between deter-
minants, such that no multiconfigurational electronic state could possibly be stable for the configuration-
space Dirac-Coulomb-Breit Hamiltonian. In order to get rid of these degeneracies Brown and Raven-
hall proposed the embedding of the Dirac-Coulomb-Breit Hamiltonian by projection operators onto the
positive-energy states, leading to the no-pair approximation. The use of the ΛMCSCF

+ projector ensures
the removal of any spurious degeneracy with a projector fully-optimized at the correlated level [18], such
that

Eno-pair MP2
c = −1

4 ∑
i+, j+

∑
a+,b+

|〈i+ j+||a+b+〉|2
εa+ + εb+ − εi+ − ε j+

, (2.77)

where the correlation energy now corresponds to the mixing of positive-energy determinants between
themselves.
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2.3.2 Fock space

In order to take care of the negative continuum in an Hamiltonian formalism without the use of projectors
another possibility is to rewrite it in the so-called Fock space formalism [16, 24]. We start by replacing
the annihilation and creation operators according to the particle-hole picture [8, 16], thus defining

b̂p+ = âp+ and b̂
†
p+

= â
†
p+

for p+ such that Ep+ > 0, (2.78)

and

b̂p− = â
†
p− and b̂

†
p− = âp− for p− such that Ep− < 0, (2.79)

such that the field annihilation and creation operators are now written as

ψ̂(r) = ∑
p+

ψp+(r) b̂p+ +∑
p−

ψp−(r)b̂
†
p− and ψ̂†(r) = ∑

p+

ψ†
p+
(r) b̂

†
p+

+∑
p−

ψ†
p−(r) b̂p− (2.80)

where, compared to Eq. (2.70), the sum is over either positive-energy orthonormal 4-component-spinor
orbitals {ψp+(r)} or negative-energy orthonormal 4-component-spinor orbitals {ψp+(r)} which are all
eigenfunctions of a chosen one-electron Dirac Hamiltonian.
For an Hamiltonian to be labelled as Fock space it must be in normal order, that is with all creation
operators on the left to all annihilation operators. Yet, once rewritten using the b̂′s operators the configu-
ration space DCB Hamiltonian [see Eq. (2.69)] is no longer in normal order as the field annihilation and
creation operators feature each both annihilation (b̂) and creation (b̂†) operators. Re-ordering all creation
and annihilation operators from the configuration space DCB Hamiltonian in the particle-hole picture
leads to the Fock space (fs) DCB Hamiltonian

ĤDCB
fs =

∫
dr : ψ̂†(r)hD(r)ψ̂(r) : +

1
2

∫∫
dr1dr2 : ψ̂†(r1)ψ̂

†(r2)w
CB(r12)ψ̂(r2)ψ̂(r1) :, (2.81)

where we write for any operator product O its normal-ordered product as : O :. This Fock space Dirac-
Coulomb-Breit Hamiltonian is the first step toward the effective QED Hamiltonian [24] and allows one
to take in account the vacuum polarization [16] (also called photon self-energy in Ref. [24]) which the
configuration space no-pair Dirac-Coulomb-Breit Hamiltonian neglected.
While the link between the two-electron parts of the Fock space and configuration space DCB Hamil-
tonians is quite complicated [8, 16], it is easy to grasp some understanding from the one-electron part
for which the normal re-ordering corresponds just to the permutation of two operators, and can be un-
derstood physically as the removal of its infinite vacuum expectation value [8, 16, 24]. We therefore
derive expressions and properties for the one-electron part of the Fock space DCB Hamiltonian in the
next subsection.

Non-interacting electrons in Fock space

Considering non-interacting electrons reduces the Dirac-Coulomb-Breit Hamiltonian to only a one-
electron Dirac Hamiltonian which may be written as

ĤD
cs = ∑

p,q

hD
pq â†

pâq = ∑
p,q

〈ψp|hD|ψq〉 â†
pâq

= ∑
p,q

Epδpq â†
pâq

= ∑
p

Ep â†
pâp. (2.82)

in configuration space. Replacing the â′s operators by the particle-hole picture b̂′s operators [see Eq. (2.79)],
this Hamiltonian can be rewritten as

ĤD
cs = ∑

p+

Ep+ b̂
†
p+

b̂p+ +∑
p−

Ep− b̂p− b̂
†
p− , (2.83)
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such that taking now the normal order of ĤD
cs to obtain the Fock space Hamiltonian ĤD

fs yields

ĤD
fs = : ĤD

cs : = ∑
p+

Ep+ b̂
†
p+

b̂p+ −∑
p−

Ep− b̂
†
p− b̂p−

= ∑
p

|Ep|b̂†
pb̂p, (2.84)

with the normal ordering adding a factor (−1)p with p the number of permutations between operators.
We represent in Fig. 2.1 the eigenvalues for both the configuration space and Fock space Dirac Hamilto-
nians [16], with electronic bound states taking place between the positive-energy electronic continuum
and the negative-energy positronic continuum in configuration space.

Figure 2.1: Comparison of the one-particle spectrum for the configuration and Fock space Dirac Hamiltonians

The Fock space Hamiltonian ensures that both electron and positron states have positive energies, such
that there is no negative continuum anymore and the energy of an electronic system can be variationaly
minimized without need of a minmax principle. For such a Fock space Dirac Hamiltonian, the vacuum
state |0〉 [16] is defined by

b̂p|0〉= 0, (2.85)

for all possible state p, such that this vacuum state contains neither electrons nor positrons. It corresponds
to a stable vacuum, corresponding to an eigenstate of ĤD

fs as

ĤD
fs |0〉= 0, (2.86)

with vanishing energy expectation value. Yet, this vacuum depends on the Dirac Hamiltonian hD, that is
the vacuum depends on the external potential, in what is known as the vacuum polarization [16]. Such
a vacuum polarization exists even in the absence of electrons as long as there is an external potential,
i.e. the presence of charged nuclei, and is closely related to the need for charge renormalization as a
consequence of the quantization of the fermionic Dirac field [see Section 1.5.3].
It is possible to work within the no-pair approximation starting from the Fock space Hamiltonian, but as
all states have positive energies it reduces to considering a variational subspace of electronic solutions,
which is much like the restriction to an active orbital subspace in the complete active space self-consistent
field (CASSCF) method.
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The Dirac sea

In order to explain the importance of normal ordering more naturally, we write out the equations describ-
ing the Dirac Sea [3, 9, 16] as an historical first step toward the Fock space. In order to conciliate the
observation of the physical world with the existence of an infinite negative continuum of solutions for
the Dirac equation, which very existence should mean that any fermion would gain stability by falling
into these negative-energy and high velocity states with emission of radiations, P. A. M. Dirac postu-
lated [25, 26] the fact that the vacuum must be considered as a state where all negative-energy states are
occupied by electrons, usually labeled as the Dirac sea [3, 9]. As such occupations would be completely
homogeneous, it would be unobservable save for small variation from uniformity, as the excitation of an
electron from such a negative-energy state to a positive-energy one, which would require an excitation
energy greater than 2mc2, i.e. greater than 37500 Hartree in atomic units. Such excitation would corre-
spond to the creation of an electron-positron pair [3], with an excited electron of positive energy and one
positron of negative energy, the total charge of the system being the conserved quantity instead of the
number of particle. Such a vacuum can be modelized by requiring

âp+ |0〉= 0 for p+ such that Ep+ > 0, (2.87)

and

â
†
p− |0〉= 0 for p− such that Ep− < 0, (2.88)

with an vacuum energy expectation value of ∑p− Ep− for the configuration space Dirac Hamiltonian [see
Eq. (2.82)], which corresponds to an infinitely negative energy. Re-normalizing the configuration space
Dirac Hamiltonian by removing this quantity, we get [16]

ĤD
cs −∑

p−
Ep− = ∑

p

Ep â†
pâp −∑

p−
Ep− .

= ∑
p+

Ep+ â
†
p+

âp+ +∑
p−

Ep−

(

â
†
p− âp− −1

)

= ∑
p+

Ep+ â
†
p+

âp+ −∑
p−

Ep− âp− â
†
p− , (2.89)

which corresponds to the Dirac Hamiltonian in Fock space [see Eq. (2.84)] if one introduces the b̂′s
operators from the particle-hole picture [See Eq. (2.79)]. Nevertheless this Dirac sea picture makes
for a very unbalanced description with a vacuum with infinite energy and infinite charge. The energy
renormalization corresponds to a first bridge between the Dirac sea picture in configuration space and
the Fock space, but one would also need to subtract an homogeneous charge distribution equal to the
charge distribution from the filled negative-energy states to get a stable vacuum once the electron-electron
interaction is turned on.

2.3.3 Hartree-Fock ansatz and the particle number

In the configuration space, we considered the Hartree-Fock ansatz [see Eq. (2.75)] using the orbital
rotation operator

κ̂ = ∑
p,q

κpqâ†
pâq. (2.90)

Considering that the particle number operator [8] is written as

N̂ = ∑
p

â†
pâp, (2.91)
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we remark that [κ̂, N̂] = 0, such that the orbital rotation operator is commutative with the particle number
operator. Relativistic quantum chemistry calculations starting from the Hartree-Fock ansatz in configu-
ration space thus conserve the number of particles.
On the contrary, in the Fock space we rewrite the Hartree-Fock orbital rotation operator κ̂ [8] in the
particle-hole picture such that

κ̂ = ∑
p+,q+

κp+q+ b̂
†
p+

b̂q+

︸ ︷︷ ︸

κ̂++

+ ∑
p+,q−

κp+q− b̂
†
p+

b̂
†
q−

︸ ︷︷ ︸

κ̂+−

+ ∑
p−,q+

κp−q+ b̂p− b̂q+

︸ ︷︷ ︸

κ̂−+

+ ∑
p−,q−

κp−q− b̂p+ b̂
†
q−

︸ ︷︷ ︸

κ̂−−

. (2.92)

From this expression, and defining the electron and positron number operator [8] respectively as

N̂e = ∑
p+

b̂
†
p+

b̂p+ and N̂p =∑
p−

b̂
†
p− b̂p− , (2.93)

one gets the commutators [κ̂, N̂e] = [κ̂, N̂p] = κ̂−+− κ̂+−, such that the orbital rotation operator commutes
with neither electron number operator nor the positron number operator. Instead, the charge operator

Q̂ = e
(
N̂p − N̂e) , (2.94)

does commute with the rotation operator, such that the charge of the system is conserved in the particle-
hole picture [8,24] but not the particle number. It corresponds to the possibility of creation or destruction
of electron-positron pairs, such that applying the rotation operator onto a given state may produce a state
having the same charge but with incremental or decremental electron-positron pairs.

2.4 Density functional theory

Non-relativistic density functional theory (DFT) relies on the Hohenberg-Kohn theorem [27], dating
from 1964 and stating that any given ground-state electronic density n(r) cannot be born from two
potentials differing by more than a constant. The knowledge of the electronic density of the ground-
state thus determines (up to a constant) the potential v(r), which in turns determines the many-electron
Schrödinger Hamiltonian such that the ground-state wave function ψ is a functional of the density n(r)
and written as ψ[n]. From this, Hohenberg and Kohn defined the universal functional (i.e. a functional
that is independent of the external potential) F[n] as

F[n] = 〈ψ[n]|T̂ +Ŵee|ψ[n]〉, (2.95)

where T̂ is the kinetic operator and Ŵee the electron-electron interaction operator, such that the electronic
energy functional is

E[n] = F[n]+

∫
dr vne(r)n(r), (2.96)

in all generality. This formalism has been extended to relativistic systems, first in the 70s’ [28–30] using
a QED Hamiltonian and the four-current j instead of the electronic density n but without all renormal-
ization counter-terms, and then in the 90s’ [31] with the correct renormalized quantities. The relativistic
Hohenberg-Kohn existence theorem thus states that the ground-state energy is a unique functional of the
ground-state four-current [11, 31, 32], including in the proof all radiative effects as well as relativistic
ones. Relativistic density functional theory (RDFT) can thus be formulated using the full QED appara-
tus, electromagnetic interactions being treated using the photon propagator in a covariant formalism and
taking care of all divergences through renormalization. It is also possible to use any approximation for
the electron-electron interaction (i.e. keeping only the Coulomb-Breit [see Eq. (2.64)] or the Coulomb
[see Eq. (2.65)] interaction). In practice for electronic structure calculations one usually works within
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the no-pair approximation [32], by neglecting all renormalization terms for both kinetic energy and four-
current, if RDFT calculations are to be tractable. It is interesting to specify that the use of the no-pair
approximation introduces a gauge dependence for the photon propagator [32, 33], such that any corre-
lation functional becomes gauge dependent. Nevertheless, the no-pair exchange energy remains gauge
independent [34].

2.4.1 Kohn-Sham density functional theory

The DFT scheme that is the most widely used nowadays is the Kohn-Sham DFT formulation [35], which
is an everyday method for electronic-structure calculations in condensed-matter physics and quantum
chemistry. It is straightforwardly generalized for relativistic systems [29, 30], and corresponds to the
separation of the universal functional into a kinetic part Ts[n, j], corresponding to the kinetic energy of
a fictitious non-interacting electronic system, and an Hartree-exchange-correlation functional EHxc[n, j].
Considering that the Hartree term corresponds to the direct interaction of the 4-current distribution with
itself, it consists of a charge-charge interaction term plus a current-current interaction term. It is by
definition a 4-current functional and as such usually explicitly used without approximations, while the
exchange-correlation part, i.e. Exc[n, j], has to be approximated and is for the moment written in all gen-
erality as an exchange-correlation functional. Within the no-pair approximation, using the clamped nu-
cleus approximation such that we have the external electron-nucleus interaction potential [see Eq. (2.60)]
written as vne(r) and in the absence of external magnetic field [36], one writes the Kohn-Sham RDFT
ground-state energy as

E[n, j] = TS[n, j]+
∫

dr vne(r)n(r)

+
1
2

∫∫
dr1dr2

n(r1)n(r2)

|r1 − r2|
− 1

2c2

∫∫
dr1dr2

j(r1) · j(r2)

|r1 − r2|
+Exc[n, j], (2.97)

where TS[n, j] corresponds to the kinetic energy of the electrons described by the Kohn-Sham orbitals,
the 4-spinor eigenfunctions ψi of the one-particle Dirac equation in the presence of an effective electro-
magnetic field [see Eq. (2.38)] such that

(

cααα ·
(
p− qe

c
Aeff
)
+βββmc2 +VeffI4

)

ψi = εi ψi, (2.98)

with the effective Kohn-Sham scalar potential

veff(r) = vne(r)+
∫

dr′
n(r′)
|r− r′| +

δExc

δn(r)
, (2.99)

and effective Kohn-Sham vector potential

Aeff(r) =− 1
c2

∫
dr′

j(r′)
|r− r′| +

δExc

δj(r)
. (2.100)

As only unpaired electrons are sources of current j, the first term of the Kohn-Sham vector potential
is usually neglected (and vanishes entirely for closed-shell calculations). Furthermore, for exchange-
correlation functionals which are pure density functional, i.e. Exc[n], the second term also vanishes.
Closed-shell calculations thus require only density exchange-correlation functionals instead of density-
current exchange-correlation functionals, and in the absence of external magnetic field the effective
Kohn-Sham vector potential vanishes entirely.
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2.5 Practical relativistic quantum chemistry

Practical four-component relativistic quantum chemistry calculations are computationally costlier than
non-relativistic ones, partly from the loss of spin-symmetry which removes some simplification and
partly from the use of a 4×4 Hamiltonian and its 4-spinors eigenfunctions. The matrix structure of the
Hamiltonian makes for more matrix elements, and the 4-spinor structure requires more complex basis
sets [see Section 2.5.1] than the non-relativistic spin-orbitals. Nevertheless, the computational cost has
the same scaling with the number of basis functions and the increase on computational cost is only a
prefactor.
Furthermore, the use of Kramers symmetry can help restoring some simplification. In particular, for a
ground-state closed-shell two-electron atom, that is two electrons described by one Kramers pair [see
Eq. (2.43)], we have for the Coulomb interaction the usual relation between the Hartree and exchange
energies as

EC
x =−1

2
EC

H, (2.101)

which is easily recovered [see Appendix E.1] with the use of Kramers symmetry. Considering that the
Coulomb interaction is but the zeroth order of the electron-electron interaction in relativistic quantum
chemistry, one can do the same derivation for the higher orders of interaction and obtain for the Gaunt
interaction [see Appendix E.2] a vanishing Hartree energy and the appearance of a current-current ex-
change energy.

2.5.1 Basis sets for implementation

Four-component relativistic calculations making use of 4-spinor orbitals instead of spin-orbitals, there
are several structures of basis sets that can be used [8, 9] for implementation.

2-spinor basis set

A first possibility is to write the 4-spinor ψ in a 2-spinor decomposition such that

ψ =

(
ψL

ψS

)

=

(

∑
NL
ν=1 aL

ν χL
µ

∑
NS
ν=1 aS

νχS
µ

)

, (2.102)

using a 2-spinors basis {χL,χS} such that NL and NS corresponding to the number of 2-spinors in the
large component basis set and small component basis set respectively.

Scalar basis set

Another possibility is to write the 4-spinor ψ in a scalar decomposition such that

ψ =







ψLα

ψLβ

ψSα

ψSβ







=











∑
NL
ν=1 aLα

ν χ
L(α)
ν

∑
NL
ν=1 a

Lβ
ν χ

L(β)
ν

∑
NS
ν=1 aSα

ν χ
S(α)
ν

∑
NS
ν=1 a

Sβ
ν χ

S(β)
ν











, (2.103)

using a scalar basis {χL,χS}. The (“spin”) parenthesis are but indicative of the position of the scalar basis
function within the 4-spinor, and are only kept to keep track. The basis functions are labelled between
1 and NL or NS, corresponding to the number of basis function for the expansion of the large and small
components respectively. The same scalar basis functions are used to describe each ”spin” component
and are thus used twice with different coefficients aXτ

ν .



2.5. PRACTICAL RELATIVISTIC QUANTUM CHEMISTRY 53

Kinetic balance

We have considered the use of two different basis sets {χL} and {χS} for the large and small component
respectively. It corresponds to a feature that is distinctive of relativistic quantum chemistry calculations
and is denoted as the kinetic balance. Indeed, in order to avoid divergences of the kinetic energy, [3,9,16],
it is necessary to use two different basis sets fulfilling some constraints, usually related to the expression
of the small component as a function of the large component of the 4-spinor in the non-relativistic
limit [3], which we write as

ψS ≈ cσσσ ·p
2mc2 ψL. (2.104)

As the small component of the 4-spinor is obtained from a differentiation of the large component, the
small component basis set {χS} must be obtained from a differentiation of the large component basis set
{χL}. There are once more several choices, among them the two simplest being the restricted kinetic
balance (RKB), for which all small component basis function obtained from the differentiation of the
same large component basis-function are kept with only one variational coefficient, and the unrestricted
kinetic balance (UKB), for which the variational coefficients of the small component basis functions all
change freely. The UKB makes for an easier implementation but for a bigger variational space, slowing
down calculations and increasing the risk of intruder states [37].

2.5.2 Application: four-component Hartree-Fock in a scalar basis set

The relativistic Hartree-Fock equations in the four-component formalism are most easily implemented
using a scalar basis set, as they make use of exactly the same two-electron integrals as the non-relativistic
equations even if the 4×4 structure of the Dirac Hamiltonian makes for a complicated block structure of
the Fock matrix. In the spirit of the book from K. G. Dyall and K. Fægri Jr. [9] we write in Appendix F
the relativistic Fock matrix elements in a scalar basis set for the Dirac-Coulomb-Gaunt Hamiltonian and
without use of Kramers symmetry. In particular, we show in Appendix F.2 how the Gaunt two-electron
integrals are rewritten using the same two-electron integrals as for the Coulomb interaction, which is
the main reason why the Gaunt interaction is much more easily implemented and used in relativistic
quantum chemistry calculations than the full Breit interaction.
The four-component Fock matrix explicitly written in Appendix F is the core of the four-component
relativistic unrestricted Hartree-Fock (UHF) based on the Dirac-Coulomb-Gaunt Hamiltonian that we
implemented as a plugin of the software QUANTUM PACKAGE 2.0 [38] in order to have a “sandbox” in
which to test and experiment on short-range relativistic density functionals.
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Chapter 3

Four-component relativistic
range-separated density-functional theory:
Short-range exchange local-density
approximation

This chapter corresponds to the article [J. Paquier and J.Toulouse, J. Chem. Phys. 149, 174110 (2018)].
https://doi.org/10.1063/1.5049773
We lay out the extension of range-separated density-functional theory to a four-component relativistic
framework using a Dirac-Coulomb-Breit Hamiltonian in the no-pair approximation. This formalism
combines a wave-function method for the long-range part of the electron-electron interaction with a
density(-current) functional for the short-range part of the interaction. We construct for this formalism a
short-range exchange local-density approximation based on calculations on a relativistic homogeneous
electron gas with a modified Coulomb-Breit electron-electron interaction. More specifically, we provide
the relativistic short-range Coulomb and Breit exchange energies per particle of the relativistic homoge-
neous electron gas in the form of Padé approximants which are systematically improvable to arbitrary
accuracy. These quantities, as well as the associated effective Coulomb-Breit exchange hole, show the
important impact of relativity on short-range exchange effects for high densities.

3.1 Introduction

Range-separated density-functional theory (RS-DFT) (see, e.g., Refs. [1, 2]) is an alternative to Kohn-
Sham density-functional theory (DFT) [3] for electronic-structure calculations of atoms, molecules, and
solids. It permits to rigorously combine an explicit wave-function calculation for the long-range part
of the electron-electron interaction with a compact density functional for the short-range part of the
electron-electron interaction. RS-DFT leads to a faster basis convergence than standard wave-function
methods [4] and can provide improvement over usual Kohn-Sham DFT approximations for the descrip-
tion of strong-correlation effects (see, e.g., Refs. [5, 6]), weak intermolecular interactions (see, e.g.,
Refs. [7–9]), fractionally charged subsystems (see, e.g., Refs. [10, 11]), and electronic excitation ener-
gies (see, e.g., Refs. [12–14]).

For the description of compounds with heavy elements, relativistic effects have to be incorporated
into RS-DFT. A simple approach that has been used consists in using standard scalar-relativistic effective-
core potentials in RS-DFT [15, 16]. A more sophisticated approach was developed by Kullie and
Saue [17] who extended RS-DFT to a four-component relativistic Dirac-Coulomb Hamiltonian, using
second-order Møller-Plesset (MP2) perturbation theory for the long-range part of the calculation and
usual non-relativistic short-range semi-local exchange-correlation density-functional approximations.
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To make this approach more rigorous and possibly more accurate, especially for core properties, rel-
ativistic short-range density-functional approximations should be used. A number of relativistic density-
functional approximations have been proposed for four-component relativistic Kohn-Sham DFT (see,
e.g., the review in Ref. [18]), but no relativistic short-range density-functional approximations has been
developed yet. This is unfortunate since relativistic effects are most important in spatial regions of
high density whose contribution to the energy in RS-DFT mainly comes from the short-range exchange-
correlation density functional.

In the present work, we remedy to this limitation by constructing a relativistic short-range exchange
local-density approximation (LDA) based on a relativistic homogeneous electron gas (RHEG) with a
modified electron-electron interaction. The choice to focus on the exchange energy and not on the cor-
relation energy is motivated by the fact that, at high densities where relativistic effects are important,
exchange largely dominates correlation, at least in not very strongly correlated systems. The choice to
target a LDA, as opposed to a generalized-gradient approximation (GGA), is motivated by the fact that
LDA is the standard first-level approximation to consider in DFT. Moreover, gradient corrections beyond
LDA for a short-range electron-electron interaction are much smaller than for the standard Coulomb
interaction [2, 19]. Beyond the goal of using this relativistic short-range exchange LDA in RS-DFT cal-
culations of molecular and solid-state systems, the present work also aims at analyzing the importance
of relativistic effects on the short-range exchange energy.

The paper is organized as follows. In Section 3.2, we briefly lay out the formalism of RS-DFT for
a four-component relativistic Dirac-Coulomb-Breit Hamiltonian. In Sections 3.3.1, 3.3.2, and 3.3.3, we
review the calculation of the full-range exchange energy per particle of the RHEG with the standard
Dirac-Coulomb-Breit Hamiltonian in a way that will prepare for the extension to the short-range case.
We discuss the importance of the separate Coulomb and Breit contributions to the exchange energy per
particle and to the exchange hole. In Section 3.3.4, we derive the exchange energy per particle of a RHEG
with the short-range version of the Coulomb-Breit electron-electron interaction. Whereas the exchange
energy per particle of a non-relativistic homogeneous electron gas with a short-range interaction can be
obtained analytically quite easily [1, 20, 21], the calculation of the relativistic analogue turned out to
be quite a formidable task. We did not manage to obtain a closed-form expression for the relativistic
short-range exchange energy per particle, but we could express it as a divergent series in inverse powers
of the speed of light that can be summed to high accuracy using Padé approximants, which is suitable
for all practical purposes. In Section 3.3.5, we derive expansions of the relativistic short-range exchange
energy per particle for small and large values of the range-separation parameter, and use them to construct
a simple approximation to the relativistic short-range exchange energy per particle which can be used as
an alternative to the Padé approximants. Finally, Section 4.7 contains our conclusions and prospects for
future work.

3.2 Relativistic range-separated density-functional theory

3.2.1 No-pair Dirac-Coulomb-Breit wave-function theory

For relativistic electronic-structure calculations, a good starting point is the Dirac-Coulomb-Breit (DCB)
electronic Hamiltonian in the no-pair approximation [22]

ĤDCB
+ = ĤD

+ +Ŵ CB
+ , (3.1)

where ĤD
+ is the one-electron Dirac Hamiltonian and Ŵ CB

+ is the two-electron Coulomb-Breit (CB) in-
teraction. In second-quantized position representation, ĤD

+ can be written as, in atomic units,

ĤD
+ =

∫
dr ψ̂†

+(r)
[
c (ααα ·p)+βββ mc2 + vne(r)I4

]
ψ̂+(r), (3.2)



3.2. RELATIVISTIC RANGE-SEPARATED DENSITY-FUNCTIONAL THEORY 59

where p =−i∇∇∇r is the momentum operator, c = 137.036 a.u. is the speed of light, and m = 1 a.u. is the
electron mass that has been kept for clarity, vne(r) is the electron-nuclei scalar potential, I4 is the 4× 4
identity matrix, and ααα and βββ are the 4×4 Dirac matrices

ααα =

(
02 σσσ

σσσ 02

)

and βββ =

(
I2 02

02 −I2

)

, (3.3)

where σσσ = (σσσx,σσσy,σσσz) is the 3-dimensional vector of the 2×2 Pauli matrices, and 02 and I2 are the 2×2
zero and identity matrices, respectively. In Eq. (3.2), ψ̂+(r) and ψ̂†

+(r) are the (projected) annihilation
and creation field operators

ψ̂+(r) =
+

∑
p

ψp(r) âp and ψ̂†
+(r) =

+

∑
p

ψ†
p(r) â†

p, (3.4)

where the sum is over a set of orthonormal 4-component-spinor orbitals {ψp(r)} which are positive-
energy eigenfunctions of a Dirac Hamiltonian with some potential [23], and âp and â†

p are the corre-
sponding annihilation and creation operators of these orbitals. The restriction in the sum to positive-
energy states corresponds to the no-pair approximation, in which negative-energy states corresponding
to positronic states are disregarded. The two-electron Coulomb-Breit interaction term is written as

Ŵ CB
+ =

1
2

∫∫
dr1dr2 ψ̂†

+(r1)ψ̂
†
+(r2)w

CB(r12)ψ̂+(r2)ψ̂+(r1), (3.5)

where wCB(r12) is the sum of the Coulomb and Breit contributions

wCB(r12) = wC(r12)+wB(r12), (3.6)

where r12 = r1 − r2 and r12 = |r12|. The Coulomb interaction is

wC(r12) = wee(r12) (I4)1 (I4)2, (3.7)

where wee(r12) = 1/r12, and (I4)1 and (I4)2 are the 4× 4 identity matrices acting on electron 1 and 2,
respectively. The Breit interaction is

wB(r12) =−1
2

wee(r12)

(

ααα1 ·ααα2 +
(ααα1 · r12) (ααα2 · r12)

r2
12

)

, (3.8)

where the Dirac matrices ααα1 and ααα2 act on electron 1 and 2, respectively. The Coulomb-Breit inter-
action corresponds to the single-photon exchange electron-electron scattering amplitude in quantum-
electrodynamics (QED) evaluated with the zero-frequency limit of the photon propagator in the Coulomb
electromagnetic gauge. More specifically, the instantaneous Coulomb interaction corresponds to the lon-
gitudinal component of the photon propagator, whereas the Breit interaction is obtained from to the
zero-frequency transverse component of the photon propagator. The Breit interaction comprises the in-
stantaneous magnetic Gaunt interaction and the lowest-order retardation correction (see, e.g., Ref. [24]).
The no-pair Hamiltonian is not unique since it depends on the choice of the set of orbitals {ψp}. It has
been proposed [25,26] to define the no-pair relativistic ground-state energy of a N-electron system using
a minmax principle, that we will formally write as

E = min
Ψ

[

max
{ψp}

〈Ψ|ĤD
+ +Ŵ CB

+ |Ψ〉
]

, (3.9)

where the maximization is done with respect to the set of positive-energy orbitals {ψp} [on which the
Hamiltonian is projected via Eq. (3.4)] by rotations with its complement set of negative-energy orbitals,
and the minimization is done with respect to normalized multideterminant wave functions Ψ within the
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N-electron space generated by the set of positive-energy orbitals {ψp}. In practice, Eq. (4.6) can be
realized with a multiconfiguration self-consistent-field (MCSCF) algorithm which targets a saddle point
in the parameter space [26–28]. For one-electron Dirac Hamiltonians, this type of minmax principle
appears well founded (see Refs. [29–32]). For the no-pair Dirac-Coulomb-Breit Hamiltonian with a
correlated wave function, to the best of our knowledge this minmax principle has not been rigorously
examined mathematically but the results of Ref. [26] on two-electron systems suggests that it is indeed a
reasonable definition of the no-pair ground-state energy.

3.2.2 No-pair Dirac-Coulomb-Breit range-separated density-functional theory

The Dirac-Coulomb RS-DFT introduced by Kullie and Saue [17] can be readily extended to a Dirac-
Coulomb-Breit Hamiltonian. We will do so using the general formalism of relativistic current-density-
functional theory [33–35], even though we do not consider any external vector potential. The starting
point is the following decomposition of the Coulomb-form electron-electron potential wee(r12) = 1/r12

appearing in Eqs. (3.7) and (3.8)

wee(r12) = wlr,µ
ee (r12)+wsr,µ

ee (r12), (3.10)

where w
lr,µ
ee (r12) = erf(µr12)/r12 and w

sr,µ
ee (r12) = erfc(µr12)/r12 are long-range and short-range poten-

tials, respectively. Here, erf(x) = (2/
√

π)
∫ x

0 e−t2
dt is the error function, erfc(x) = 1− erf(x) is the com-

plementary error function, and µ is the range-separation parameter acting like an inverse smooth cut-off
radius. We then assume that the no-pair relativistic ground-state energy can be expressed as

E = min
Ψ

[

max
{ψp}

{

〈Ψ|ĤD
+ +Ŵ

CB,lr,µ
+ |Ψ〉+ Ē

CB,sr,µ
Hxc [nΨ, jΨ]

}]

, (3.11)

where, as before, the maximization is over the set of projecting positive-energy orbitals {ψp} by ro-
tations with its complement set of negative-energy orbitals and the minimization is over normalized
multideterminant wave functions Ψ within the N-electron space generated by the set of positive-energy
orbitals. In Eq. (3.11), Ŵ

CB,lr,µ
+ is the long-range version of the two-electron Coulomb-Breit interaction

as defined by Eqs. (3.5)-(3.8) but with the substitution wee(r12) −→ w
lr,µ
ee (r12), and Ē

CB,sr,µ
Hxc [nΨ, jΨ] is a

complement short-range Coulomb-Breit Hartree-exchange-correlation functional of the electron density
nΨ(r) = 〈Ψ|n̂(r)|Ψ〉 and current electron density jΨ(r) = 〈Ψ|ĵ(r)|Ψ〉, where n̂(r) =

∫
dr ψ̂†

+(r)ψ̂+(r)
and ĵ(r) =

∫
dr ψ̂†

+(r)cαααψ̂+(r) are the density and current density operators, respectively. We note that,
even though Eq. (3.11) seems a natural extension of non-relativistic RS-DFT [1, 2], the existence of a
universal density-current functional Ē

CB,sr,µ
Hxc [n, j] giving the no-pair relativistic ground-state energy via

the minmax procedure of Eq. (3.11) is not established. Indeed, similarly to the problem of defining static
density functionals for excited-state energies (see, e.g., Refs. [36, 37]), it seems a priori only possible to
define a no-pair relativistic functional which either is universal but satisfies only a stationary principle
(instead of a minmax principle) or satisfies a minmax principle but is not universal (i.e., depending on
an external potential via the projecting orbitals {ψp}). It might be necessary to go at the QED level to
rigorously formulate a RS-DFT approach, as it was done for Kohn-Sham DFT [38]. These aspects are
beyond the scope of the present work.

The limiting cases of the relativistic RS-DFT approach of Eq. (3.11) should be mentioned. For µ→∞,
the long-range interaction reduces to the Coulomb form, w

lr,µ→∞
ee (r12) = 1/r12, and the complement

short-range functional vanishes, Ē
CB,sr,µ→∞
Hxc [n] = 0, so Eq. (3.11) reduces to the wave-function theory of

Eq. (4.6). For µ = 0, the long-range interaction vanishes, w
lr,µ=0
ee (r12) = 0, and the complement short-

range functional reduces to a full-range density functional, Ē
CB,sr,µ=0
Hxc [n] = ECB

Hxc[n], so it reduces to a
no-pair relativistic Kohn-Sham DFT method (see, e.g., Ref. [39]), and the corresponding minimizing
wave function in Eq. (3.11) is a single Slater determinant Ψµ=0 = Φ. We decompose now the short-range
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density-current functional into Hartree, exchange, and correlation contributions

Ē
CB,sr,µ
Hxc [n, j] = E

CB,sr,µ
H [n, j]+ECB,sr,µ

x [n, j]+ ĒCB,sr,µ
c [n, j].

(3.12)

The short-range Hartree contribution, containing Coulomb and Breit contributions, is an explicit func-
tional of the density n and the current j

E
CB,sr,µ
H [n, j] =

1
2

∫∫
wsr,µ

ee (r12) n(r1)n(r2) dr1dr2 −
1

4c2

[∫∫
wsr,µ

ee (r12) j(r1) · j(r2) dr1dr2

+

∫∫
wsr,µ

ee (r12)
j(r1) · r12 j(r2) · r12

r2
12

dr1dr2

]

. (3.13)

Note that, in relativistic Kohn-Sham DFT, the Hartree energy is usually defined with the full QED photon
propagator in the Feynman gauge [38]. Here, instead, we define the short-range Hartree energy with the
two-electron Coulomb-Breit interaction in the Coulomb gauge, in order to be consistent with the corre-
sponding long-range wave-function contribution. The short-range exchange density-current functional is
consequently defined by

ECB,sr,µ
x [n, j] = 〈Φ[n, j]| Ŵ

CB,sr,µ
+ |Φ[n, j]〉−E

CB,sr,µ
H [n, j],

(3.14)

where Φ[n, j] is the Kohn-Sham determinant associated with density n and current j, and Ŵ
CB,sr,µ
+ is the

short-range version of the two-electron Coulomb-Breit interaction obtained as in Eqs. (3.5)-(3.8) but
with the substitution wee(r12) −→ w

sr,µ
ee (r12). In Eq. (3.12), Ē

CB,sr,µ
c [n, j] is the complement short-range

correlation functional including all interaction effects beyond Hartree and exchange. Finally, note that,
for closed-shell systems, the current vanishes, j = 0, and thus we have simply short-range functionals of
the density only. We only consider this case in this work. In practice, the application of the relativistic
RS-DFT approach of Eq. (3.11) requires to use approximations for the long-range wave-function part
and for the short-range exchange and correlation functionals. For the long-range wave-function part, one
can use standard approximations: Hartree-Fock, MP2, MCSCF, etc. For the short-range functionals, no
approximation including the relativistic effects has been proposed so far. The rest of paper is devoted to
the development of a relativistic LDA for the short-range exchange functional

E
CB,sr,µ
x,LDA [n] =

∫
n(r) εCB,sr,µ

x

(

n(r)
)

dr, (3.15)

where ε
CB,sr,µ
x (n) is the exchange energy per particle of a RHEG with the short-range two-electron

Coulomb-Breit interaction. The calculation of the latter quantity is quite complicated and was performed
with the help of the software Wolfram Mathematica [40].

3.3 Exchange effects in the relativistic homogeneous electron gas

We consider a homogeneous electron gas, i.e. a box of volume V containing N electrons with electronic
density n = N/V characteristic of the system and a uniform background of positive charges with density
nb equal to n in order to ensure the electroneutrality of the system. The electron gas is studied in the
thermodynamic limit, i.e. N → ∞ and V → ∞ while n = N/V is kept constant, the positive background
cancelling the diverging Hartree energy term. Such an electron gas is considered to be relativistic when
the Fermi wave vector kF = (3π2n)1/3 is non negligible compared to the speed of light c. This must really
be understood as a comparison between the energy related to the Fermi wave vector ~kFc and the rest
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energy mc2 where we take these quantities in atomic units. In order to get an idea of the maximal value
of kF that one encounters in an heavy element, one may consider a 1s hydrogen-like orbital, ψ1s(r) =
(
Z3/π

)1/2
e−Zr where Z is the atomic number, and calculate the density of this doubly occupied 1s orbital

at the nucleus: n = 2 |ψ1s(0)|2 = 2 Z3/π corresponding to a Fermi wave vector of kF = (6π)1/3 Z =
2.66 Z. The heaviest elements having atomic numbers Z of about 100, this corresponds to a maximal
value of kF of nearly 300 a.u..

3.3.1 One-electron part

The form of the one-electron Dirac equation for this homogeneous electron gas is

(
c(ααα ·p)+βββmc2)ψk,σ(r) = Ek ψk,σ(r), (3.16)

where ψk,σ(r) is a one-electron wave function with wave vector k and “spin” index σ =↑,↓ associated
with the positive-energy eigenvalue

Ek =
√

k2c2 +m2c4. (3.17)

The wave functions ψk,σ(r) are four-component spinors of the form

ψk,σ(r) =

(
ϕk,σ(r)
χk,σ(r)

)

, (3.18)

where each component is itself a two-component spinor. The large component ϕk,σ(r) has a plane-wave
form

ϕk,σ(r) =
1√
V

√

Ek +mc2

2Ek

e−ik·rϕσ, (3.19)

and the small component is obtained from the large component by

χk,σ(r) =
c(σσσ ·k)

Ek +mc2 ϕk,σ(r), (3.20)

and ϕσ is a two-component spin part with ϕ↑ =
( 1

0

)

and ϕ↓ =
( 0

1

)

. What we call “spin” here really

refers to the index σ identifying the two components of the large-component spinor. It is easy to prove in
the non-relativistic formalism that the plane-wave solutions of the non-interacting Schrödinger equation
are also solution of the exchange operator, but to the best of our knowledge such a demonstration has not
been done for non-interacting plane-wave spinors. Nevertheless, we use these plane-wave spinors as is
usually done in a non-relativistic scheme to determine exchange energies in the following.

3.3.2 Full-range Coulomb-Breit exchange energy

As the preparation for the case of the short-range Coulomb-Breit interaction, we recall the form of the
full-range Coulomb-Breit exchange energy. The Coulomb exchange energy per particle can be expressed
as [35, 41] (see Appendix G)

εC
x = −3 kF

4π

(

5
6
+

1
3

c̃2 +
2
3

√

1+ c̃2 arcsinh

(
1
c̃

)

− 1
3

(

1+ c̃2

)2

ln

(

1+
1
c̃2

)

−1
2

(
√

1+ c̃2 − c̃2arcsinh

(
1
c̃

))2
)

, (3.21)
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where c̃ = c/kF. The Breit exchange energy per particle has a similar form [42] (see Appendix G)

εB
x =

3 kF

4π

(

1−2
(

1+ c̃2
)
(

1− c̃2

(

−2 ln(c̃)+ ln
(
1+ c̃2

)

))

+2

(
√

1+ c̃2 − c̃2arcsinh

(
1
c̃

))2
)

. (3.22)

The Breit exchange energy per particle is an approximation to the exchange energy per particle obtained
with the transverse component of the full QED photon propagator [34,35,41]. The exchange energy per
particle obtained with the full QED photon propagator has in fact a simpler expression than the Coulomb-
Breit one, thanks to the cancellation of many terms between the Coulomb and transverse components,

εQED
x =−3 kF

4π

(

1− 3
2

(
√

1+ c̃2 − c̃2arcsinh

(
1
c̃

))2
)

. (3.23)

It is interesting to consider the non-relativistic and ultra-relativistic limits of the Coulomb and Breit
exchange energies. In the non-relativistic (NR) limit c̃ → ∞ (or equivalently the low-density limit), only
the Coulomb contribution survives

εC,NR
x =−3 kF

4π
and εB,NR

x = 0, (3.24)

which is consistent with the fact that the Breit interaction is a purely relativistic phenomenon. In the
opposite ultra-relativistic (UR) limit c̃ → 0 (or equivalently the high-density limit), we have

εC,UR
x =−(1+ ln4) kF

4π
and εB,UR

x =
3 kF

4π
, (3.25)

i.e. the Breit contribution becomes the opposite of the non-relativistic Coulomb exchange energy, and is
larger in absolute value than the Coulomb contribution, implying that the total exchange energy becomes
positive. The different exchange energies per particle are plotted in Figure 3.1 as functions of the Fermi
wave vector kF, up to kF = 300 a.u. which is about the largest value that could be encountered in an heavy
element. We observe that, compared to the non-relativistic energy energy, relativity always reduces the
exchange energy in absolute value, and this effect increases with the density. The relativistic effects
for the Coulomb exchange contribution remain relatively small, even at high densities. By contrast, the
Breit exchange contribution has a much larger effect at sufficiently high densities. The Coulomb-Breit
exchange energy per particle is a good approximation to the exchange energy per particle obtained with
the full QED photon propagator for kF . c ≈ 137 a.u., which is consistent with the fact that the Breit
interaction constitutes only the leading term in the expansion of the QED photon propagator in 1/c.

3.3.3 Effective Coulomb-Breit exchange hole

A convenient way of analyzing the exchange effects in terms of the interelectronic distance r12 is to
introduce an effective Coulomb-Breit exchange hole nCB

x (r12) such that

εCB
x =

1
2

∫
nCB

x (r12) wee(r12) dr12. (3.26)
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Figure 3.1: Non-relativistic and relativistic exchange energies per particle for the Coulomb, Coulomb-Breit, and
QED photon propagator electron-electron interactions as functions of the Fermi wave vector kF.

For the case of the Coulomb interaction, the associated exchange hole was derived by Ellis [43] and
MacDonald and Vosko [35] (see Appendix G)

nC
x (r12) =−9

4
n

1
(kFr12)2

[

j1(kFr12)
2 +(1−λ)Aλ(kFr12)

2 +λBλ(kFr12)
2

]

, (3.27)

with λ = 1/(1+ c̃2) and

Aλ(kFr12) =
∞

∑
ν=0

(2ν+1)!!
(2ν+1)

jν+1(kFr12)

(
λ

kFr12

)ν

,

Bλ(kFr12) =
∞

∑
ν=0

(2ν+1)!!
(2ν+1)

jν+2(kFr12)

(
λ

kFr12

)ν

, (3.28)

where jν are the spherical Bessel functions. We have extended this result to the case of the Breit interac-
tion. The associated exchange hole is (see Appendix G)

nB
x (r12) =−9

2
n

1
(kFr12)2

[

− j1(kFr12)
2 +(1−λ)Aλ(kFr12)

2

]

. (3.29)

To the best of our knowledge this expression had not been derived before. This Breit exchange hole
should not be interpreted as a modification of the pair density, but simply as giving after integration the
Breit exchange energy. Like the non-relativistic exchange hole, the relativistic Coulomb exchange hole
is normalized to −1

∫
nC

x (r12)dr12 =−1, (3.30)

but the Breit exchange hole is not. When the density increases from the low-density limit to the high-
density limit, its integral varies from 0 to 1

0 ≤
∫

nB
x (r12)dr12 ≤ 1, (3.31)

which confirms that it should be considered as an effective exchange hole with only purpose to give the
Breit exchange energy.
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Figure 3.2: Effective Coulomb-Breit exchange pair-distribution function at different values of kF as a function of
kFr12.

In the non-relativistic limit, corresponding to λ = 0, the Coulomb exchange hole reduces to the well-
known non-relativistic form and the Breit exchange hole vanishes

nC,NR
x (r12) =−9

2
n

j1(kFr12)
2

(kFr12)2
and nB,NR

x (r12) = 0. (3.32)

In the opposite ultra-relativistic limit, corresponding to λ = 1, we have

nC,UR
x (r12) =−9

4
n

1
(kFr12)2

[

j1(kFr12)
2 +B1(kFr12)

2

]

and nB,UR
x (r12) =

9
2

n
j1(kFr12)

2

(kFr12)2 , (3.33)

where we observe again the ultra-relativistic limit of the Breit term is the exact opposite of the non-
relativistic limit of the Coulomb contribution.
In Figure 3.2, we plot the effective Coulomb-Breit exchange pair-distribution function

gCB
x (r12) = nCB

x (r12)/n, (3.34)

for different values of the density (or equivalently kF). For a low value of the density, kF = 1 a.u., gCB
x (r12)

has the usual shape of the exchange hole and is indistinguishable from the non-relativistic calculation,
with the on-top value being gCB

x (0) ≈ −1/2. For the higher values of the density, kF = 137 and 274
u.a., we observe that the Coulomb-Breit exchange hole becomes shallower. In particular, for kF = 274
a.u., the Coulomb-Breit exchange hole is almost flat, with a very small minimum not located at r12 = 0
anymore. These dramatic modifications of the exchange effects due to relativity underline the importance
of considering relativistic effects when calculating short-range exchange energies in systems containing
high-density regions.

3.3.4 Short-range Coulomb-Breit exchange energy per particle

Since we have previously calculated the Coulomb-Breit exchange hole, the most straightforward way of
calculating the short-range Coulomb-Breit exchange energy per particle is to integrate the exchange hole
with the short-range electron-electron interaction

εCB,sr,µ
x =

1
2

∫
nCB

x (r12) wsr,µ
ee (r12) dr12. (3.35)
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Unfortunately, we did not manage to calculate this integral analytically. We thus instead follow the same
route as for the calculation of the full-range exchange energy (see Appendix G), i.e. integrating over
space variables first. Similarly to Eq. (G.1), we obtain the short-range Coulomb exchange energy per
particle as a Fourier-space integral where each wave vector spans the volume of the Fermi sphere VkF

εC,sr,µ
x = − 1

2n(2π)6

∫∫
VkF

w̃sr,µ
ee (k12)

Ek1Ek2 +(k1 ·k2)c
2 + c4

Ek1Ek2

dk1dk2

=
3kF

4π

∫ 1

0

∫ 1

0
dk̃1dk̃2 k̃1k̃2

(

1
√

c̃2 + k̃2
1

√

c̃2 + k̃2
2

[

k̃1k̃2 +
(

e
−
(

k̃1+k̃2
2µ̃

)2

− e
−
(

k̃1−k̃2
2µ̃

)2)

µ̃2
]

+
2c̃2 + k̃2

1 + k̃2
2 +2

√

c̃2 + k̃2
1

√

c̃2 + k̃2
2

4
√

c̃2 + k̃2
1

√

c̃2 + k̃2
2

[

Ei

(

−
(

k̃1 + k̃2

2µ̃

)2
)

−Ei

(

−
(

k̃1 − k̃2

2µ̃

)2
)

+ln
(
(k̃1 − k̃2)

2)− ln
(
(k̃1 + k̃2)

2)
])

, (3.36)

where w̃
sr,µ
ee (k12) = (4π/k2

12)(1−e−k2
12/4µ2

) is the Fourier transform of the short-range interaction in terms
of the relative wave vector k12 = |k12| with k12 = k1 −k2, Ei(x) =−∫ ∞

−x e−t/t dt is the exponential inte-
gral function, and we have introduced the scaled variables µ̃ = µ/kF, k̃1 = k1/kF, and k̃2 = k2/kF. Unfor-
tunately we were unable to straightforwardly calculate the double integral in Eq. (3.36). To circumvent
this difficulty we first make an asymptotic expansion of the integrand for c̃ → ∞ and then integrate term
by term to obtain the asymptotic series

εC,sr,µ
x ∼ kF

∞

∑
i=0

α2i(µ̃)

c̃2i
, (3.37)

where the coefficients α2i(µ̃) can be obtained analytically. Their derivation being quite lengthy, it is
discussed in detail in Appendix I.2. We give here the first three coefficients.

α0(µ̃) =
1

4π

(

−3+4
√

π erf
(1

µ̃

)

µ̃+2
(

2e
− 1

µ̃2 −3
)

µ̃2 −2
(

e
− 1

µ̃2 −1
)

µ̃4

)

,

α2(µ̃) =
1

12π

(

1−6
√

π erf
(1

µ̃

)

µ̃3 −6
(

e
− 1

µ̃2 −3
)

µ̃4 +12
(

e
− 1

µ̃2 −1
)

µ̃6

)

,

α4(µ̃) =
1

240π

(

−13+12
√

π erf
(1

µ̃

) (

8+45µ̃2
)

µ̃3 +12
(

4e
− 1

µ̃2 −45
)

µ̃4

+24
(

13e
− 1

µ̃2 −40
)

µ̃6 −648
(

e
− 1

µ̃2 −1
)

µ̃8

)

. (3.38)

However, the asymptotic series of Eq. (3.37) diverges for c̃ < 1, i.e. for kF & 137 a.u.. To avoid this
divergence, we use a diagonal Padé approximant [44] of even order M

ε
C,sr,µ
x,Padé = kF

∑
M/2
i=0 A2i(µ̃)/c̃2i

∑
M/2
i=0 B2i(µ̃)/c̃2i

, (3.39)

with the choice B0(µ̃) = 1 without loss of generality, and the other coefficients A2i(µ̃) and B2i(µ̃) are
uniquely determined, for a given M, from the coefficients α2i(µ̃) so that the asymptotic expansion of the
Padé approximant matches the asymptotic expansion of Eq. (3.37) up to order 2M (see Appendix H).
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Figure 3.3: Left plot: Exact full-range Coulomb-Breit exchange energy per particle and its Padé approxi-
mants of orders 2, 4, and 6 as functions of the Fermi wave vector kF. Right plot: Relative errors, ∆εCB

x =
∣
∣
∣(εCB

x,Padé − εCB
x )/εCB

x

∣
∣
∣, of the Padé approximants compared to the exact full-range Coulomb-Breit exchange en-

ergy per particle.

For example, we give here the coefficients for the diagonal Padé approximant of order 2

A0(µ̃) = α0(µ̃) and A2(µ̃) = α2(µ̃)−
α0(µ̃)α4(µ̃)

α2(µ̃)
,

B2(µ̃) =−α4(µ̃)

α2(µ̃)
. (3.40)

We proceed similarly for the short-range Breit exchange energy per particle. Adapting Eq. (G.2) to the
case of the short-range interaction gives the Fourier-space integral

εB,sr,µ
x =

1
2n(2π)6

∫∫
VkF

w̃sr,µ
ee (k12)

c2

Ek1 Ek2

(

Ek2 + c2

Ek1 + c2 k2
1 +

Ek1 + c2

Ek2 + c2 k2
2

)

dk1dk2

=
3kF

4π

∫ 1

0

∫ 1

0
dk̃1dk̃2 k̃1k̃2

c̃2 −
√

c̃2 + k̃2
1

√

c̃2 + k̃2
2

√

c̃2 + k̃2
1

√

c̃2 + k̃2
2

[

Ei

(

−
(

k̃1 + k̃2

2µ̃

)2
)

−Ei

(

−
(

k̃1 − k̃2

2µ̃

)2
)

+ln
(
(k̃1 − k̃2)

2)− ln
(
(k̃1 + k̃2)

2)
]

, (3.41)

which, after asymptotically expanding the integrand for c̃ → ∞ and integrating term by term, turns into
the asymptotic series

εB,sr,µ
x ∼ kF

∞

∑
i=0

β2i(µ̃)

c̃2i
, (3.42)
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where the coefficients β2i(µ̃) can be obtained analytically. The first three of them are

β0(µ̃) = 0,

β2(µ̃) =
1

60π

(

25−12
√

π
(

3+5µ̃2
)

erf
(1

µ̃

)

µ̃+18
(

5−2e
− 1

µ̃2
)

µ̃2

+6
(

15−7e
− 1

µ̃2
)

µ̃4 −48
(

1− e
− 1

µ̃2
)

µ̃6

)

,

β4(µ̃) =
1

280π

(

−77+12
√

π
(

10+42µ̃2 +105µ̃4
)

erf
(1

µ̃

)

µ̃−60
(

7−2e
− 1

µ̃2
)

µ̃2

−12
(

140−37e
− 1

µ̃2
)

µ̃4 −24
(

70−37e
− 1

µ̃2
)

µ̃6 +792
(

1− e
− 1

µ̃2
)

µ̃8

)

. (3.43)

The fact that β0(µ̃) = 0 corresponds to the fact that the Breit exchange energy vanishes in the non-
relativistic limit. Again, the asymptotic series of Eq. (3.42) diverges for c̃ < 1, so we construct a diagonal
Padé approximant of even order M

ε
B,sr,µ
x,Padé = kF

∑
M/2
i=0 C2i(µ̃)/c̃2i

∑
M/2
i=0 D2i(µ̃)/c̃2i

, (3.44)

with D0(µ̃) = 1 and the other coefficients C2i(µ̃) and D2i(µ̃) are uniquely determined, for a given M, from
the coefficients β2i(µ̃). We give here the coefficients of the diagonal Padé approximant of order 2

C0(µ̃) = β0(µ̃) and C2(µ̃) = β2(µ̃)−
β0(µ̃)β4(µ̃)

β2(µ̃)
,

D2(µ̃) =−β4(µ̃)

β2(µ̃)
. (3.45)

The complete expressions of the large-c̃ expansions in Eqs. (3.37) and (3.42) and their associated Padé
approximants in Eqs. (3.39) and (3.44) are explicitly given up to an arbitrary order in the Mathematica
notebook available in Appendix I. We want to check the accuracy of these Padé approximants to the short-
range Coulomb-Breit exchange energy per particle and at which order M we can truncate the expansion.
For this, we may check for the most demanding case of µ = 0 corresponding to the full-range interaction
and for which we know the exact exchange energy per particle [Eqs. (3.21) and (3.22)]. We thus plot in
Figure 3.3 the exact full-range Coulomb-Breit exchange energy per particle and its Padé approximants of

orders 2, 4, and 6, as well as their relative errors ∆εCB
x =

∣
∣
∣(εCB

x,Padé − εCB
x )/εCB

x

∣
∣
∣, as functions of the Fermi

wave vector kF. We note in passing that the Padé approximants can be calculated either for the Coulomb
and Breit exchange energies per particle separately, or directly for the total Coulomb-Breit exchange
energy per particle, as done here for the plot. It turns out that these two ways of proceeding give very
similar Padé approximants for the Coulomb-Breit exchange energy per particle, for example differing by
at most about 10−4 % for the Padé approximants of order 6. As seen in Figure 3.3, the error of all Padé
approximants naturally increases with the density. The error of the Padé approximant of order 2 increases
most rapidly with the density, the relative error exceeding 5% as soon as kF & 200 a.u.. The relative error
in the Padé approximant of order 4 is less than 0.5% until about kF = 200 a.u. and increases to about 4%
at kF = 300 a.u.. The Padé approximant of order 6 has a maximal relative error of 0.5% at kF = 300 a.u..
We thus conclude that the Padé approximant of order 6 provides an excellent approximation for all the
density range in which we are interested. We have also explicitly checked that this accuracy of the Padé
approximant of order 6 is preserved for the short-range Coulomb-Breit exchange energy per particle for
a non-zero value of µ by comparing to results obtained by numerical integration in Eq. (3.35). Hence,
numerically, the Padé approximants appear to rapidly converge to the correct limit as M → ∞.
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Figure 3.4: Non-relativistic and relativistic Coulomb-Breit short-range exchange energies per particle as functions
of µ/kF. The relativistic Coulomb-Breit short-range exchange energy is obtained from the Padé approximant of
order 6.

In Figure 3.4 we plot the relativistic short-range Coulomb-Breit exchange energy per particle, using the
Padé approximant of order 6, as a function of the scaled range-separation parameter µ/kF for different
values of kF, and compare it to the non-relativistic short-range exchange energy per particle (whose
expression can be found in Refs. [1, 21]). For kF = 1 a.u., the relativistic exchange energy per particle is
indistinguishable from its non-relativistic counterpart, for all values of µ. For higher values of the Fermi
wave vector, kF = 137 and 274 a.u., the relativistic short-range Coulomb-Breit exchange energy per
particle becomes much smaller, in absolute value, than the non-relativistic short-range exchange energy
per particle. Also, it appears that, for large kF, the relativistic short-range exchange energy per particle
goes to zero when increasing µ/kF significantly faster than does its non-relativistic analogue.

3.3.5 Small- and large-µ expansions and simple approximation for the short-range Coulomb-
Breit exchange energy per particle

We have determined the short-range Coulomb and Breit exchange energies per particle ε
C,sr,µ
x and ε

B,sr,µ
x in

the form of Padé approximants with quite complicated coefficients. We now derive simple expressions
valid for small and large values of the range-separation parameter µ and use them to construct simple
approximations for ε

C,sr,µ
x and ε

B,sr,µ
x . In order to obtain the expansions of ε

C,sr,µ
x and ε

B,sr,µ
x for µ → 0, we

start from the asymptotic series in Eqs. (3.37) and (3.42), expand them with respect to µ, and extract the µ

and µ2 terms. For the short-range Coulomb exchange energy per particle, we obtain directly expressions
independent of c̃ for the linear and quadratic terms in µ

εC,sr,µ
x = εC

x +
µ√
π
− 3 µ2

2π kF
+O

(
µ3) , (3.46)
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and for the short-range Breit exchange energy per particle we obtain expansions in c̃ for the linear and
quadratic terms in µ

εB,sr,µ
x = εB

x − µ√
π

(
3

5c̃2 − 3
7c̃4 +

3
9c̃6 − 3

11c̃8 +O

(
1

c̃10

))

+
3 µ2

2π kF

(
1
c̃2 −

1
c̃4 +

1
c̃6 −

1
c̃8 +O

(
1

c̃10

))

+O
(
µ3) . (3.47)

In this expression, the series in 1/c̃ can be exactly summed, and we can write Eq. (3.47) as

εB,sr,µ
x = εB

x − µ√
π
(1− f (c̃))+

3 µ2

2π kF
(1−g(c̃))+O

(
µ3) ,

(3.48)

where

f (c̃) = 3 c̃2 −3 c̃3 arctan
(1

c̃

)

and g(c̃) =
1

1+ 1
c̃2

. (3.49)

We note that the linear term in µ in Eq. (3.48) can also been found by inserting into Eq. (3.41) the
Fourier transform of the linear term in µ of the expansion of the short-range interaction. However, such
an approach cannot be used for higher-order terms in µ because these terms lead to divergences when
inserting into Eq. (3.41). The expansion of the short-range Coulomb-Breit exchange energy per particle
for µ → 0 is thus

εCB,sr,µ
x = εCB

x +
µ√
π

f (c̃)− 3 µ2

2π kF
g(c̃)+O

(
µ3) . (3.50)

Therefore, near µ = 0, the linear and quadratic terms in µ of ε
CB,sr,µ
x depend on c̃. In the non-relativistic

limit, we have f (c̃ → ∞) = 1 and g(c̃ → ∞) = 1, and thus we correctly recover the non-relativistic
expansion µ/

√
π− 3 µ2/(2πkF) [2, 21]. In the ultra-relativistic limit, we have f (c̃ → 0) = 0 and g(c̃ →

0) = 0, and thus the linear and quadratic terms in µ vanish. In order to obtain the expansions of ε
C,sr,µ
x

and ε
B,sr,µ
x for µ → ∞, we start from the asymptotic expansion of the Fourier transform of the short-range

interaction

w̃sr,µ
ee (k12) =

π

µ2 +O

(
1
µ4

)

. (3.51)

Inserting then Eq. (3.51) into Eq. (3.36) leads to the expansion of the short-range Coulomb exchange
energy per particle

εC,sr,µ
x =− k3

F

24πµ2 (1+h(c̃))+O

(
1
µ4

)

, (3.52)

with

h(c̃) =
9
4
(c̃2 + c̃4)− 9

4
c̃4arcsinh

(1
c̃

)
(

2
√

1+ c̃2 − c̃2 arcsinh
(1

c̃

)
)

. (3.53)

Similarly, inserting Eq. (3.51) into Eq. (3.41) leads to the expansion of the short-range Breit exchange
energy per particle

εB,sr,µ
x =

k3
F

12πµ2 (1−h(c̃))+O

(
1
µ4

)

. (3.54)
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Figure 3.5: Relativistic Coulomb-Breit short-range exchange energy per particle, its small- and large-µ expansions
of Eqs. (3.50) and (3.55), and its simple approximation of Eqs. (3.56) and (3.58) as functions of µ/kF. The reference
relativistic Coulomb-Breit short-range exchange energy per particle is obtained from the Padé approximant of order
6.

The asymptotic expansion of the short-range Coulomb-Breit exchange energy per particle for µ → ∞ is
thus

εCB,sr,µ
x =− k3

F

24πµ2 (3h(c̃)−1)+O

(
1
µ4

)

. (3.55)

In the non-relativistic limit, we have h(c̃→∞)= 1 and we thus recover the leading term of the asymptotic
expansion of the non-relativistic short-range exchange energy per particle, −k3

F/(12πµ2) [2, 21]. In the
ultra-relativistic limit, we have h(c̃ → 0) = 0 and thus the leading term is k3

F/(24πµ2). We can see on
Figure 3.5 that these small- and large-µ expansions indeed reproduce well, at the scale of the plot, the
short-range Coulomb-Breit exchange energy per particle for µ/kF . 0.25 and µ/kF & 1, respectively.
We propose now simple approximations for ε

C,sr,µ
x and ε

B,sr,µ
x as rational interpolations between these

small- and large-µ expansions. The short-range Coulomb exchange energy per particle can be approxi-
mated by

εC,sr,µ
x ≈ εC

x +dCµ

1+aCµ+bCµ2 + cCµ3 , (3.56)

where the coefficients are determined to recover the µ and µ2 terms of the small-µ expansion of Eq. (3.46)
and the 1/µ2 term and the vanishing 1/µ3 term of the large-µ expansion of Eq. (3.52)

aC =
3

2π1/2kF
+

24π3/2

k3
F(1+h(c̃))

(εC
x )

2,

bC = − 24π

k3
F(1+h(c̃))

εC
x ,

cC = − 24π

k3
F(1+h(c̃))

dC,

dC =
1

π1/2
+aCεC

x . (3.57)

In a similar way, we propose to approximate the short-range Breit exchange energy per particle by

εB,sr,µ
x ≈ εB

x +dBµ

1+aBµ+bBµ2 + cBµ3 , (3.58)
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where the coefficients are again determined by imposing the small-µ expansion of Eq. (3.48) and the
large-µ expansion of Eq. (3.54).

aB =
3(1−g(c̃))

2π1/2kF(1− f (c̃))
+

12π3/2

k3
F(1−h(c̃))(1− f (c̃))

(εB
x )

2,

bB =
12π

k3
F(1−h(c̃))

εB
x ,

cB =
12π

k3
F(1−h(c̃))

dB,

dB = −(1− f (c̃))

π1/2
+aBεB

x . (3.59)

Using the same form of approximation on directly the short-range Coulomb-Breit exchange energy per
particle can lead to poles in µ, thus it is preferable to separately construct approximations for the Coulomb
and Breit contributions and to sum them to get an approximation of the short-range Coulomb-Breit
exchange energy per particle. This simple approximation is reported on Figure 3.5 where it can be seen
that it is a quite good approximation to the accurate short-range Coulomb-Breit exchange energy per
particle given by the Padé approximant of order 6. The relative error of this simple approximation is less
than 5% for all values of kF and µ. For higher accuracy, one could construct rational interpolations with
more coefficients determined from higher-order terms in the small- and large-µ expansions. However,
while the large-µ expansion could easily be obtained at an arbitrary order, higher-order terms in the
small-µ expansion would be obtained as large-c asymptotic series that might not be always easy to sum
into a closed form.

3.4 Conclusions

In this work, we have considered the extension of RS-DFT to a four-component relativistic framework
using a Dirac-Coulomb-Breit Hamiltonian, and we have constructed a short-range LDA exchange den-
sity functional based on calculations on the RHEG with a modified electron-electron interaction. More
specifically, we have provided the relativistic short-range Coulomb and Breit exchange energies per par-
ticle of the RHEG in the form of Padé approximants [Eqs. (3.39) and (3.44)], constructed from large-c
asymptotic expansions (but without involving expansions with respect to µ) and which are systematically
improvable to arbitrary accuracy. These quantities, as well as the associated effective Coulomb-Breit ex-
change hole of the RHEG, show the important impact of relativity on short-range exchange effects for
high densities. We have also provided simpler approximations for the relativistic short-range Coulomb
and Breit exchange energies per particle of the RHEG in the form of rational interpolations [Eqs. (3.56)
and (3.58)] constructed from the exact small- and large-µ expansions (but without involving expansions
with respect to c) of the short-range exchange energies per particle, which can also be used when a
limited accuracy is sufficient (relative error less than 5%).

Possible continuation of this work includes the construction of a relativistic short-range LDA corre-
lation density functional (even though relativistic effects are expected to be much smaller for correlation
than for exchange), the construction of relativistic short-range GGA functionals, the inclusion of the
dependence on the current for open-shell systems, and the implementation of these functionals in a four-
component relativistic RS-DFT program for tests on atomic and molecular systems. In particular, for
compounds with heavy elements, including relativistic effects in short-range functionals should have
significant effects on quantities sensitive to atomic cores, such as total energies, NMR and EPR parame-
ters, or X-ray spectra.
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Chapter 4

Relativistic short-range exchange energy
functionals beyond the local-density
approximation

This section corresponds to the article [J. Paquier, E. Giner and J.Toulouse, hal-02480263, to appear in
J. Chem. Phys.].
https://hal.sorbonne-universite.fr/hal-02480263
We develop relativistic short-range exchange energy functionals for four-component relativistic range-
separated density-functional theory using a Dirac-Coulomb Hamiltonian in the no-pair approximation.
We show how to improve the short-range local-density approximation exchange functional for large
range-separation parameters by using the on-top exchange pair density as a new variable. We also de-
velop a relativistic short-range generalized-gradient approximation exchange functional which further
increases the accuracy for small range-separation parameters. Tests on the helium, beryllium, neon, and
argon isoelectronic series up to high nuclear charges show that this latter functional gives exchange ener-
gies with a maximal relative percentage error of 3%. The development of this exchange functional repre-
sents a step forward for the application of four-component relativistic range-separated density-functional
theory to chemical compounds with heavy elements.

4.1 Introduction

Range-separated density-functional theory (RS-DFT) (see, e.g., Refs. [1, 2]) is an extension of Kohn-
Sham density-functional theory (DFT) [3] which rigorously combines a wave-function method account-
ing for the long-range part of the electron-electron interaction with a complementary short-range density
functional. RS-DFT has a faster basis convergence than standard wave-function methods [4] and can
improve over usual Kohn-Sham density-functional approximations (DFAs) for the description of strong-
correlation effects (see, e.g., Refs. [5, 6]) or weak intermolecular interactions (see, e.g., Refs. [7, 8]).

For the description of compounds with heavy elements, RS-DFT can be extended to a four-component
relativistic framework [9–11]. In particular, in Refs. [9, 10], second-order Møller-Plesset perturba-
tion theory and coupled-cluster theory based on a no-pair Dirac-Coulomb Hamiltonian with long-range
electron-electron interaction were combined with short-range non-relativistic exchange-correlation DFAs
and applied to heavy rare-gas dimers. One limitation, at least in principle, in these works is the neglect
of relativity in the short-range density functionals. It is thus desirable to develop appropriate short-range
relativistic exchange-correlation DFAs for four-component RS-DFT in order to quantify the error due to
the neglect of relativity in the short-range density functionals and possibly increase the accuracy of these
approaches. As a first step toward this, in Ref. [11] some of the present authors developed a short-range
relativistic local density-functional approximation (srRLDA) exchange functional based on calculations

75



76 CHAPTER 4. BEYOND FOUR-COMPONENT RELATIVISTIC SR-LDA EXCHANGE

on the relativistic homogeneous electron gas (RHEG) with the Coulomb and Coulomb-Breit electron-
electron interactions in the no-pair approximation.

In the present work we test this srRLDA exchange functional on atomic systems, namely the helium,
beryllium, neon, and argon isoelectronic series up to high nuclear charges Z, using a four-component
Dirac-Coulomb Hamiltonian in the no-pair approximation. We reveal that, for these relativistic ions
with large Z, the srRLDA exchange functional is quite inaccurate even for large values of the range-
separation parameter µ. We show how this functional can be improved by using the on-top exchange pair
density as a new variable. Finally, we further improve the short-range relativistic exchange functional
by constructing a generalized-gradient approximation (GGA), achieving a 3% maximal relative energy
error.

The paper is organized as follows. In Section 4.2 we lay out the formalism of RS-DFT for a four-
component relativistic Dirac-Coulomb Hamiltonian in the no-pair approximation. In Section 4.3 we give
the computational details for our calculations. In Section 4.4 we test the srRLDA exchange functional
and discuss its limitations. In Section 4.5 we improve the srRLDA exchange functional by using the on-
top exchange pair density. In Section 4.6, we construct and test short-range relativistic exchange GGAs.
Finally, Section 4.7 contains our conclusions.

4.2 Relativistic range-separated density-functional theory

Let us first discuss the choice of the relativistic quantum many-particle theory on which to base relativis-
tic RS-DFT and the general strategy that we follow in this work. Clearly, since RS-DFT combines WFT
and DFT, we need a relativistic framework which is convenient for both of them. Relativistic Kohn-Sham
DFT has been formulated based on quantum electrodynamics (QED) [12–14], even though the no-pair
approximation [15,16] is normally introduced at a later stage for practical calculations. As regards WFT,
the best tractable relativistic framework is the recently developed effective QED Hamiltonian [17–19]
incorporating all QED effects obtained with non-retarded two-particle interactions. In the present work,
we will stick however to the most common choice of the four-component Dirac-Coulomb Hamiltonian
in the no-pair approximation, which can be used for both WFT and DFT. As explained in Ref. [20], this
relativistic framework can be derived in several ways (see, e.g., Refs. [17–21]).

In the effective QED approach, the Hamiltonian is written in second quantization with normal order-
ing with respect to the vacuum state of empty positive-energy one-particle states and completely filled
negative-energy one-particle states, while incorporating charge-conjugation symmetry. This Hamiltonian
has a stable vacuum state and is physically meaningful. In this approach, the no-pair approximation, cor-
responding to projecting this Hamiltonian onto the many-electron subspace generated by positive-energy
one-particle states, is just a convenient approximation (but in principle not necessary), akin to the idea
of restricting the orbitals entering the wave function to an active orbital subspace in the complete-active-
space self-consistent field method. The no-pair Dirac-Coulomb Hamiltonian is then obtained by further
neglecting the effective QED one-particle potential corresponding to vacuum polarization and electron
self-energy. By contrast, in the configuration-space approach, the Hamiltonian is written either in first
quantization or, equivalently, in “naive” second quantization (i.e., without normal ordering with respect
to a stable vacuum state). The resulting Hamiltonian has thus an unstable vacuum state, correspond-
ing to empty positive-energy one-particle states and empty negative-energy one-particle states, it has
no bound states (the electronic states that should be normally bound being embedded in the continuum
of excitations to positive-energy states and deexcitations to negative-energy states), and hence is per se
unphysical. However, by projecting this Hamiltonian onto the many-electron subspace generated by
the positive-energy one-particle states, we recover the same physically relevant no-pair Dirac-Coulomb
Hamiltonian as the one obtained by starting with the effective QED approach.

One drawback of the no-pair approximation is that the projector onto the subspace of electronic
states depends on the separation between positive-energy and negative-energy one-particle states, and
therefore depends on the potential used to generate these one-particle states. If the projector is applied to
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the Hamiltonian, the whole resulting projected Hamiltonian is thus dependent on this potential. As men-
tioned in Ref. [14], this is problematic for formulating DFT since we cannot isolate, as normally done,
an universal part of the Hamiltonian, and we thus cannot define universal density functionals. However,
instead of thinking of the projector as being applied to the Hamiltonian, we can equivalently think of the
projector as being applied to the considered many-body state and optimize the projector simultaneously
with the wave function. In this way, we can introduce universal density functionals, similarly to non-
relativistic DFT, defined such that for a given density a constrained-search optimization of the projected
wave function will determine alone the optimal projector without the need of pre-choosing a particular
potential, at least for systems for which positive-energy and negative-energy one-particle states can be
unambiguously separated. Again, both the effective QED approach or the configuration-space approach
can a priori be used for doing so. In the effective QED approach, the projector would be optimized (by
rotations between positive-energy and negative-energy one-particle states) using an energy minimiza-
tion principle. In the configuration-space approach, the projector is optimized (by rotations between
positive-energy and negative-energy one-particle states) using a minmax principle [22–27].

In the present work, we follow the configuration-space approach and leave for future work the al-
ternative formulation based on the effective QED approach. We thus start with the Dirac-Coulomb
electronic Hamiltonian (see, e.g., Refs. [28, 29])

Ĥ = T̂D + V̂ne +Ŵee, (4.1)

where T̂D is the kinetic + rest mass Dirac operator, V̂ne is the nuclei-electron interaction operator, and Ŵee

is the Coulomb electron-electron interaction operator. Using four-component creation and annihilation
field operators ψ̂†(r) and ψ̂(r) without normal reordering with respect to a stable vacuum state. We thus
write T̂D as

T̂D =
∫

ψ̂†(r)
[
c (ααα ·p)+βββ mc2

]
ψ̂(r) dr, (4.2)

where p = −i∇∇∇r is the momentum operator, c = 137.036 a.u. is the speed of light, m = 1 a.u. is the
electron mass, and ααα and βββ are the 4×4 Dirac matrices

ααα =

(
02 σσσ

σσσ 02

)

and βββ =

(
I2 02

02 −I2

)

, (4.3)

where σσσ = (σσσx,σσσy,σσσz) is the 3-dimensional vector of the 2×2 Pauli matrices, and 02 and I2 are the 2×2
zero and identity matrices, respectively. Similarly, V̂ne and Ŵee have the expressions

V̂ne =

∫
vne(r) n̂(r) dr, (4.4)

where vne(r) is the nuclei-electron potential, and

Ŵee =
1
2

∫∫
wee(r12) n̂2(r1,r2) dr1dr2, (4.5)

where wee(r12)= 1/r12 is the Coulomb electron-electron potential, and n̂(r)= ψ̂†(r)ψ̂(r) and n̂2(r1,r2)=
ψ̂†(r1)ψ̂

†(r2)ψ̂(r2)ψ̂(r1) are the density and pair density operators, respectively. Introducing a set of
orthonormal 4-component-spinor orbitals {ψp(r)} which are eigenfunctions of a one-particle Dirac
Hamiltonian with some potential, and assuming that this set of orbitals can be partitioned into a set
of positive-energy (electronic) orbitals and a set of negative-energy (positronic) orbitals, {ψp(r)} =
{ψp(r)}εp>0 ∪{ψp(r)}εp<0, the no-pair [15, 16] relativistic ground-state energy of a N-electron system
can be defined using a minmax principle [22–27], that we will formally write as,

E0 = minmax
Ψ+

〈Ψ+|T̂D + V̂ne +Ŵee|Ψ+〉. (4.6)
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In this equation, we search over normalized wave functions of the form |Ψ+〉 = P̂+|Ψ〉, where P̂+ is the
projector on the N-electron-state space generated by the set of positive-energy orbitals {ψp(r)}εp>0 and
|Ψ〉 is a general N-electron antisymmetric wave function, and the notation minmaxΨ+ = minΨ maxP̂+

= maxP̂+
minΨ means a minimization with respect to Ψ and a maximization with respect to P̂+. This

maximization must be done by rotations of the positive-energy orbitals {ψp(r)}εp>0 with its comple-
ment set of negative-energy orbitals {ψp(r)}εp<0. Here, we have assumed that the optimum of the
minmax is a saddle point in the wave-function parameter space (which can be calculated with a multi-
configuration self-consistent-field (MCSCF) algorithm [27, 30, 31]), so that the same energy is obtained
whatever the order of minΨ and maxP̂+

. Note that, in the non-relativistic limit (c → ∞), the energy gap

between positive- and negative-energy orbitals of order 2mc2 goes to infinity and the maximization over
P̂+ becomes useless, and thus the minmax principle properly reduces to the non-relativistic minimization
principle. Now we attempt to formulate a relativistic DFT within this no-pair approximation. Following
the spirit of the constrained-search formulation of non-relativistic DFT [32,33], we propose to define the
no-pair relativistic universal density functional as

F[n] = minmax
Ψ+→n

〈Ψ+|T̂D +Ŵee|Ψ+〉

= 〈Ψ+[n]|T̂D +Ŵee|Ψ+[n]〉, (4.7)

where the minmax procedure is identical to that in Eq. (4.6) except for the additional constraint that Ψ+

yields the density n, i.e. 〈Ψ+|n̂(r)|Ψ+〉 = n(r). In Eq. (4.7), Ψ+[n] is the optimal wave function for
the density n. We will again assume that the optimum of the minmax is a saddle point in the density-
constrained wave-function parameter subspace. Of course, this functional is only defined for densities
which come from a wave function of the form of Ψ+, which we will refer to as Ψ+-represensable
densities. Note that, consistently with neglecting the Breit electron-electron interaction, we will only
consider functionals of the density and not of the density current. The no-pair relativistic ground-state
energy of Eq. (4.6) can be in principle obtained from F[n] as a stationary point with respect to variations
over Ψ+-represensable densities

E0 ∈ stat
n

{

F [n]+

∫
vne(r) n(r) dr

}

, (4.8)

where we have introduced the notation statn to designates the set of stationary energies with respect to
variations of n. Due to the minmax principle in Eqs. (4.6) and (4.7), we can only assume a stationary
principle in Eq. (4.8), instead of the usual non-relativistic minimization principle over densities. This
situation is in fact similar to the problem of formulating a pure-state time-independent variational exten-
sion of DFT for excited-state energies [34,35]. We now define a no-pair relativistic long-range universal
density functional, similarly to Eq. (4.7), as

F lr, µ[n] = minmax
Ψ+→n

〈Ψ+|T̂D +Ŵ lr, µ
ee |Ψ+〉

= 〈Ψµ
+[n]|T̂D +Ŵ lr, µ

ee |Ψµ
+[n]〉, (4.9)

with the long-range electron-electron interaction operator Ŵ
lr, µ

ee = (1/2)
∫∫

w
lr, µ
ee (r12) n̂2(r1,r2) dr1dr2

where w
lr, µ
ee (r12)= erf(µr12)/r12 is the long-range electron-electron potential and µ is the range-separation

parameter. In Eq. (4.9) Ψ
µ
+[n] is the optimal wave function for the density n and range-separation param-

eter µ. We can thus decompose the density functional F [n] as

F[n] = F lr, µ[n]+ Ē
sr, µ
Hxc [n], (4.10)

which defines the complement relativistic short-range Hartree-exchange-correlation density functional
Ē

sr, µ
Hxc [n]. Plugging Eq. (4.10) into Eq. (4.8), we conclude that the no-pair relativistic ground-state energy
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of Eq. (4.6) corresponds to a stationary point of the following range-separated energy expression over
Ψ+ wave functions

E0 ∈ stat
Ψ+

{
〈Ψ+|T̂D + V̂ne +Ŵ lr, µ

ee |Ψ+〉+ Ē
sr, µ
Hxc [nΨ+ ]

}
, (4.11)

where nΨ+ is the density of Ψ+. For practical calculations, we will assume that the no-pair relativistic
ground-state energy corresponds in fact to the minmax search over Ψ+

E0 = minmax
Ψ+

{
〈Ψ+|T̂D + V̂ne +Ŵ lr, µ

ee |Ψ+〉+ Ē
sr, µ
Hxc [nΨ+ ]

}
. (4.12)

Even though we do not see any guarantee that this is always true, it seems a reasonable working assump-
tion for practical calculations. In fact, it corresponds to what is done in practice in no-pair Kohn-Sham
DFT calculations [36–45], which corresponds to Eq. (4.12) in the special case of µ = 0, i.e.

E0 = minmax
Φ+

{
〈Φ+|T̂D + V̂ne|Φ+〉+EHxc[nΦ+ ]

}
, (4.13)

where the wave function can be restricted to a single determinant Φ+ and EHxc[n] is the relativistic Kohn-
Sham Hartree-exchange-correlation density functional. Another special case of Eq. (4.12) is for µ → ∞

for which we correctly recover the wave-function theory of Eq. (4.6). As usual, we can decompose
the complement relativistic short-range Hartree-exchange-correlation density functional into separate
components

Ē
sr, µ
Hxc [n] = E

sr, µ
H [n]+Esr, µ

x [n]+ Ēsr, µ
c [n]. (4.14)

In this expression, E
sr,µ
H [n] is the short-range Hartree density functional (which has the same expression

as in the non-relativistic case)

E
sr,µ
H [n] =

1
2

∫∫
wsr, µ

ee (r12) n(r1)n(r2) dr1dr2, (4.15)

where w
sr, µ
ee (r12) = wee(r12)− w

lr, µ
ee (r12) is the short-range electron-electron potential, E

sr, µ
x [n] is the

relativistic short-range exchange density functional

Esr,µ
x [n] = 〈Φ+[n]| Ŵ sr,µ

ee |Φ+[n]〉−E
sr,µ
H [n], (4.16)

where Φ+[n] = Ψ
µ=0
+ [n] is the relativistic Kohn-Sham single-determinant wave function and Ŵ

sr, µ
ee =

(1/2)
∫∫

w
sr, µ
ee (r12) n̂2(r1,r2) dr1dr2 is the short-range electron-electron interaction operator, and Ē

sr, µ
c [n]

is the complement relativistic short-range correlation density functional. In Appendix J, we show that the
relativistic short-range exchange density functional E

sr,µ
x [n] satisfies a uniform coordinate scaling relation

[Eq. (J.7)] which represents an important constraint to impose in approximations.
Even though the present formulation of relativistic range-separated DFT seems reasonable for practi-

cal chemical applications, it obviously calls for a closer mathematical examination of its domain of valid-
ity. In particular, it is clear that the minmax principle of the no-pair approximation in the configuration-
space approach breaks down in the strong relativistic regime (i.e., for nuclear charges Z & c). Of course,
in the non-relativistic limit (c → ∞), relativistic RS-DFT properly reduces to non-relativistic RS-DFT.

4.3 Computational setup

We consider the helium, beryllium, neon, and argon isoelectronic series, up to the uranium nuclear charge
Z = 92. The electronic density n(r) naturally increases at the nucleus with Z and can be conveniently
measured with kFmax , i.e. the maximal value taken at the nucleus by the local Fermi wave vector kF(r) =
(3π2n(r))1/3. The strength of the relativistic effects can be measured by comparing the local Fermi wave
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vector kF(r) to the speed of light c ≃ 137.036 a.u. (with ~ = me = 1 a.u.): very little relativistic effects
are expected in regions where kF(r) ≪ c, while strong relativistic effects are expected in regions where
kF(r) & c.

To test the different functionals, we have first performed four-component Dirac Hartree-Fock (DHF)
calculations based on the relativistic Dirac-Coulomb Hamiltonian with point-charge nucleus, using our
own program implemented as a plugin of the software QUANTUM PACKAGE 2.0 [46]. For the helium
series, we use the dyall_1s2.3z basis set of Ref. [27] except for Yb68+ and U90+ for which the basis set
was not available. For these systems, as well as for the beryllium, neon, and argon series, we construct
uncontracted even-tempered Gaussian-type orbital basis sets [47], following the primitive structure of
the dyall-cvdz basis sets for He, Be, Ne, and Ar [48]. For each system and angular momentum, the
exponents of the large-component basis functions are taken as the geometric series

ζν = ζ1 qν−1, (4.17)

where ζ1 is chosen among the largest exponents from the dyall-cvdz basis set for the given element
and angular momentum [48, 49], and the parameter q is optimized by minimizing the DHF total energy.
The small-component basis functions are generated from the unrestricted kinetic-balance scheme [?].
The basis-set parameters are given in Appendix L. Using the previously obtained DHF orbitals, we then
estimate the short-range exact exchange energy

Esr,µ
x =

1
2

∫∫
wsr,µ

ee (r12) n2,x(r1,r2)dr1dr2, (4.18)

where n2,x(r1,r2) is the exchange pair density

n2,x(r1,r2) =−Tr[γ(r1,r2)γ(r2,r1)], (4.19)

and γ(r1,r2)=∑N
i=1 ψi(r1)ψ

†
i (r2) is the 4×4 one-electron density matrix written with the four-component

spinor occupied orbitals {ψi(r)}. This short-range DHF exchange energy is used as the reference for
testing the different exchange energy functionals, which are evaluated with the DHF density n(r) =
Tr[γ(r,r)] (and the DHF exchange on-top pair density for some of them, see below) using a SG-2-type
quadrature grid [50] with the radial grid of Ref. [51].

4.4 Short-range exchange local-density approximations

The non-relativistic short-range local-density approximation (srLDA) for the exchange functional has
the expression

Esr,LDA,µ
x [n] =

∫
n(r)εsr,HEG,µ

x (n(r)) dr, (4.20)

where the non-relativistic short-range homogeneous electron gas (HEG) exchange energy per particle
ε

sr,HEG,µ
x (n) can be found in Refs. [1,52,53]. The relativistic generalization of this functional, referred to

as srRLDA, is

Esr,RLDA,µ
x [n] =

∫
n(r)εsr,RHEG,µ

x (n(r)) dr, (4.21)

where the short-range RHEG exchange energy per particle ε
sr,RHEG,µ
x (n) is given in Ref. [11] with arbi-

trary accuracy as systematic Padé approximants with respect to the dimensionless variable c̃ = c/kF =
c/(3π2n)1/3 (we employ here the Padé approximant of order 6) with coefficients written as functions of
the dimensionless range-separation parameter µ/kF. The dependence of ε

sr,RHEG,µ
x (n) on the dimension-

less parameters c̃ and µ/kF is a consequence of the uniform coordinate scaling relation of Eq. (J.7) which
is valid of the RHEG.
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Figure 4.1: Relative percentage error on the short-range exchange energy calculated with the srLDA, srRLDA,
srLDAot, srRLDAot functionals for three representative members of the neon isoelectronic series (Ne, Xe44+, and
Rn76+).

The relative percentage errors of the srLDA and srRLDA exchange functionals with respect to the short-
range DHF exchange energy, i.e. 100× (E

sr,DFA,µ
x −E

sr,µ
x )/|Esr,µ

x |, are plotted in Fig. 4.1 as a function
of the dimensionless range-separation parameter µ/kFmax for three representative members of the neon
isoelectronic series (Ne, Xe44+ and Rn76+). The relativistic effects go from very small for Ne to very
large for Rn76+. For µ = 0, the short-range interaction reduces to the full-range Coulomb interaction,
and we observe that both the non-relativistic and relativistic LDA exchange functionals underestimate (in
absolute value) the DHF exchange energy by 5% to 10 %. As previously noted [54], the non-relativistic
LDA exchange functional (evaluated with a relativistic density) fortuitously gives exchange energies with
lower errors than the relativistic LDA exchange functional for systems with significant relativistic effets
(Xe44+, and Rn76+). When µ increases, the srLDA and srRLDA exchange functionals show quite dif-
ferent behaviors for these relativistic systems. The relative error of the srLDA exchange energy changes
sign with µ and eventually goes to a negative constant for µ → ∞, corresponding to an overestimation in
absolute value. By contrast, the relative error of the srRLDA exchange energy always remains positive
and goes to a positive constant for µ → ∞, corresponding to an underestimation in absolute value. The
more relativistic the system is, the largest this overestimation or underestimation is. While for Ne at large
µ both the srLDA and srRLDA exchange functionals have almost vanishing relative errors, for Rn76+ at
large µ the srLDA exchange energy is too negative by a little more than 5% and the srRLDA exchange
energy is too positive by almost 20%. Clearly, both the srLDA and srRLDA exchange functionals are
not accurate for relativistic systems.

In non-relativistic theory, it is known that the srLDA exchange functional becomes exact for large
µ [2], which is one of the key advantages of RS-DFT. As apparent from Figure 4.1, for relativistic
systems, this nice property does not hold anymore for both the srLDA and srRLDA exchange functionals.
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This observation can be understood by using the distributional asymptotic expansion of the short-range
interaction for large µ [2]

wsr,µ
ee (r12) =

π

µ2 δ(r12)+O

(
1
µ3

)

, (4.22)

which directly leads to the asymptotic expansion of the short-range exact exchange energy

Esr,µ
x =

π

2 µ2

∫
n2,x(r,r) dr+O

(
1
µ4

)

, (4.23)

where n2,x(r,r) is the on-top exchange pair density. In the non-relativistic theory, considering the case of
closed-shell systems for the sake of simplicity, the on-top exchange pair density is simply given in terms
of the density as [55]

nNR
2,x (r,r) =−n(r)2

2
, (4.24)

and the srLDA exchange functional becomes indeed exact for large µ

Esr,LDA,µ
x [n] =

π

2 µ2

∫
n

HEG,0
2,x (n(r)) dr+O

(
1
µ4

)

, (4.25)

with the on-top exchange pair density of the non-relativistic HEG

n
HEG,0
2,x (n) =−n2

2
. (4.26)

In the relativistic theory, the on-top exchange pair density is no longer a simple function of the density

n2,x(r,r) =−Tr[γ(r,r)2], (4.27)

which is not equal to −n(r)2/2, except in the special case of two electrons in a unique Kramers pair (see
Appendix K). Therefore, for relativistic systems with more than two electrons, we see that the srLDA
exchange functional is not exact for large µ [Eq. (4.25)]. The srRLDA exchange functional is also not
exact for large µ. It takes the form

Esr,RLDA,µ
x [n] =

π

2 µ2

∫
n

RHEG,0
2,x (n(r)) dr+O

(
1
µ4

)

, (4.28)

with the on-top exchange pair density of the RHEG

n
RHEG,0
2,x (n) =−n2

4
(1+h(c̃)), (4.29)

and the function [11]

h(c̃) =
9
4

[

c̃2 + c̃4 − c̃4arcsinh

(
1
c̃

)(

2
√

1+ c̃2 − c̃2 arcsinh

(
1
c̃

))]

. (4.30)

For an alternative but equivalent expression for n
RHEG,0
2,x (n), see Eq. (A1) of Ref. [38]. The srRLDA

exchange functional is in fact not even exact at large µ for two electrons in a unique Kramers pair. In
Section 4.5, we show how to impose the large-µ behavior on the srLDA and srRLDA exchange function-
als.
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4.5 Short-range exchange local-density approximations with on-top ex-
change pair density

In order to impose the correct large-µ behavior of the srLDA and srRLDA exchange functionals for rela-
tivistic systems, we need to introduce a new ingredient in these functionals, namely the exact (relativistic)
on-top exchange pair density n2,x(r,r), or equivalently the on-top exchange hole

nx(r,r) =
n2,x(r,r)

n(r)
. (4.31)

A simple way to use nx(r,r) to correct the srLDA exchange functional is to find, at each position r, the
effective density neff(r) at which the on-top exchange hole of the HEG, n

HEG,0
x (n) = n

HEG,0
2,x (n)/n =−n/2,

is equal to the on-top exchange hole of the inhomogeneous system considered, nx(r,r), i.e.

nHEG,0
x (neff(r)) = nx(r,r), (4.32)

which simply gives neff(r) =−2nx(r,r). We then define the srLDA exchange functional with the on-top
exchange pair density (srLDAot) using this effective density as

Esr,LDAot,µ
x [n] =

∫
n(r) εsr,HEG,µ

x (neff(r)) dr. (4.33)

This approximation could be considered either as an implicit functional of the density alone since nx(r,r)
is an implicit functional of the density through the orbitals, or as an explicit functional of both the density
and the on-top exchange hole nx(r,r). This approximation corresponds to changing the transferability
criterion in the LDA: at a given point r, instead of taking the exchange energy per particle of the HEG
having the same density than the inhomogeneous system at that point, we now take the exchange en-
ergy per particle of the HEG having the same on-top exchange hole than the inhomogeneous system at
that point. Interestingly, this approximation can be thought of as a particular application of the recently
formalized connector theory [56, 57]. Similarly, we can correct the srRLDA exchange functional by
finding, at each position r, the effective density nR

eff(r) at which the on-top exchange hole of the RHEG,
n

RHEG,0
x (n) = n

RHEG,0
2,x (n)/n =−(n/4)(1+h(c̃)), is equal to the on-top exchange hole of the inhomoge-

neous system considered, nx(r,r), i.e.

nRHEG,0
x (nR

eff(r)) = nx(r,r). (4.34)

This equation is less trivial to solve than Eq. (4.32) since n
RHEG,0
x (n) is a complicated nonlinear function

of n (through c̃). However, at each point r, a unique solution nR
eff(r) exists since the function n 7→

n
RHEG,0
x (n) is monotonically decreasing and spans the domain ]− ∞,0] in which nx(r,r) necessarily

belongs. In practice, we easily find nR
eff(r) by a numerical iterative method, and we use it to define the

srRLDA exchange functional with the on-top exchange pair density (srRLDAot) as

Esr,RLDAot,µ
x [n] =

∫
n(r) εsr,RHEG,µ

x (nR
eff(r)) dr. (4.35)

Both the srLDAot and srRLDAot exchange functionals now fulfil the exact asymptotic expansion for
large µ [Eq. (4.23)]. In fact, restoring the correct on-top value of the exchange hole could be beneficial
for any value of µ, given the fact that the accuracy of non-relativistic Kohn-Sham exchange DFAs has
been justified by the exactness of the underlying LDA on-top exchange hole (in addition to fulfilling the
correct sum rule of the exchange hole) [58]. Finally, we note that, in the non-relativistic limit (c→∞), we
have neff(r) = nR

eff(r) = n(r) and all these short-range exchange functionals reduce to the non-relativistic
srLDA exchange functional (i.e., srLDAot = srRLDAot = srRLDA = srLDA).
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Figure 4.2: Relative percentage error on the short-range exchange energy calculated with the srPBE, srRLDA/PBE,
srPBEot, srRLDA/PBEot functionals for three representative members of the neon isoelectronic series (Ne, Xe44+,
and Rn76+).

The relative percentage errors of the srLDAot and srRLDAot exchange functionals for Ne, Xe44+, and
Rn76+ are reported in Figure 4.1. The most prominent feature is of course the correct recovery of the
large-µ asymptotic behavior for both the srLDAot and srRLDAot exchange functionals. It turns out
the srLDAot and srRLDAot exchange functionals give very similar exchange energies for all values of
µ. This comes from the fact that when going from srLDA to srLDAot Eq. (4.32) tends to make the
LDA exchange hole shallower and when going from srRLDA to srRLDAot Eq. (4.34) tends to make the
relativistic LDA exchange hole deeper, making finally for very close descriptions. The absolute relative
percentage errors of the srLDAot and srRLDAot exchange functionals are always below 10%, and below
about 2% for µ/kFmax ≥ 0.5.

4.6 Short-range exchange generalized-gradient approximations

In order to improve over the short-range LDA exchange functionals at small values of the range-separation
parameter µ, we now consider short-range GGA exchange functionals. We start with the non-relativistic
short-range extension of the Perdew-Burke-Ernzerhof (PBE) [59] of Refs. [60,61], referred to as srPBE,

Esr,PBE,µ
x [n] =

∫
n(r) εsr,HEG,µ

x (n(r)) [1+ f µ
x (n(r),∇n(r))]dr,

(4.36)

with the function

f µ
x (n,∇n) = κ− κ

1+b(µ̃)s2/κ
, (4.37)

where s = |∇n|/(2kFn) is the reduced density gradient and µ̃ = µ/(2kF ) is a dimensionless range-
separation parameter. In this expression, κ = 0.840 is a constant fixed by imposing the Lieb-Oxford
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bound (for µ= 0) and b(µ̃)= bPBE[bT(µ̃)/bT(0)]e−αx µ̃2
where bPBE = 0.21951 is the second-order gradient-

expansion coefficient of the standard PBE exchange functional, bT(µ̃) is a function coming from the
second-order gradient-expansion approximation (GEA) of the short-range exchange energy and given in
Refs. [62, 63], and αx = 19.0 is a damping parameter optimized on the He atom. For µ = 0, this srPBE
exchange functional reduces to the standard PBE exchange functional [59], and for large µ it reduces
to the srLDA exchange functional. A simple relativistic extension of this srPBE exchange functional
can be obtained by replacing the srLDA part by the srRLDA one while using the same density-gradient
correction f

µ
x (n,∇n), to which we will refer as srRLDA/PBE,

Esr,RLDA/PBE,µ
x [n] =

∫
n(r) εsr,RHEG,µ

x (n(r)) [1+ f µ
x (n(r),∇n(r))]dr, (4.38)

which reduces to the srRLDA exchange functional for large µ. The srPBE and srRLDA/PBE exchange
functionals have the same (incorrect) asymptotic expansions as the srLDA and srRLDA exchange func-
tionals [Eqs. (4.25) and (4.28)], and we can thus use the same effective densities in Eqs. (4.32) and (4.34)
to restore their large-µ behaviors, which defines the srPBEot and srRLDA/PBEot exchange functionals

Esr,PBEot,µ
x [n] =

∫
n(r) εsr,HEG,µ

x (neff(r)) [1+ f µ
x (neff(r),∇neff(r))]dr, (4.39)

where ∇neff(r) =−2∇nx(r,r), and

Esr,RLDA/PBEot,µ
x [n] =

∫
n(r) εsr,RHEG,µ

x (nR
eff(r))

[
1+ f µ

x (n
R
eff(r),∇nR

eff(r))
]

dr, (4.40)

where ∇nR
eff(r) = [dn

RHEG,0
x (nR

eff(r))/dnR
eff]

−1∇nx(r,r). In Figure 4.2, we report the relative percentage
errors of the srPBE, srRLDA/PBE, srPBEot, and srRLDA/PBEot exchange energies for Ne, Xe44+, and
Rn76+. For Ne, where the relativistic effects are very small, all these functionals give almost the same
exchange energy, as expected. For Xe44+ and Rn76+, even though the srPBE and srRLDA/PBE ex-
change functionals are more accurate than the srLDA and srRLDA exchange functionals at µ = 0 (see
Figure 4.1), they eventually suffer from the same large inaccuracy as srLDA and srRLDA as µ increases.
This problem is solved by using the effective densities from the on-top exchange pair density, the srP-
BEot and srRLDA/PBEot exchange functionals giving vanishing errors at large µ. Similarly to what
was observed for srLDAot and srRLDAot, the srPBEot and srRLDA/PBEot functionals give very close
exchange energies for all values of µ. Interestingly, we see that using the effective densities also reduces
the errors of srPBE and srRLDA/PBE at µ = 0, making srPBEot and srRLDA/PBEot quite accurate in
this full-range limit. Thus, the srPBEot and srRLDA/PBEot exchange functionals are definitely an im-
provement over srLDAot and srRLDAot. We observe a maximal absolute percentage error of about 3%
for Rn76+ for µ/kFmax ≈ 0.2.

In order to further reduce the errors, in particular for intermediate values of µ, we now consider a
relativistic correction to the density-gradient term in the srRLDA/PBEot exchange functional. We define
a short-range relativistic PBE exchange functional using the on-top exchange pair density, referred to as
srRPBEot,

Esr,RPBEot,µ
x [n] =

∫
n(r) εsr,RHEG,µ

x (nR
eff(r))

[
1+ f µ

x (n
R
eff(r),∇nR

eff(r)) φµ(nR
eff(r))

]
dr, (4.41)

where, in the spirit of the work of Engel et al. [54], we have introduced a multiplicative relativistic
correction φµ(n) to the term f

µ
x (n,∇n) of the form

φµ(n) =
1+ a1(µ/c)

c̃2 + a2(µ/c)
c̃4

1+ b1(µ/c)
c̃2 + b2(µ/c)

c̃4

. (4.42)

Since φµ(n) only depends on the dimensionless parameters c̃ and µ/c, it does not change the uniform
coordinate scaling of the functional which still fulfils the scaling relation of Eq. (J.7).
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Figure 4.3: Relativistic correction factor φµ(n) to the density-gradient term [Eq. (4.42)] as a function of kF for
several values of µ.

After some tests, we chose to impose a1(µ/c) = b1(µ/c) to avoid overcorrections in low-density regions
which have very small relativistic effects. We started to determine the coefficients for µ = 0 by minimiz-
ing the mean squared relative percentage error of the exchange energy with respect to the reference DHF
exchange energy for 7 systems of the neon isoelectronic series (Ne, Ar8+, Kr26+, Xe44+, Yb60+, Rn76+,
U82+), giving a1(0) = b1(0) = 1.3824, a2(0) = 0.3753, and b2 = 0.4096. The resulting relativistic cor-
rection factor φµ=0(n) can be seen in Figure 4.3. It correctly tends to 1 in the low-density (kF → 0) or
non-relativistic (c → ∞) limit, and remains very close to 1 for kF ≪ c. In regions with very high densi-
ties, the relativistic correction factor φµ=0(n) induces a slight reduction of the effective density-gradient
correction term in the functional, reducing a bit the relative error on the exchange energy for the heaviest
systems. For µ 6= 0, we have searched for coefficients in Eq. (4.42) which reduce the largest errors of
the srRLDA/PBEot exchange energy observed at intermediate values of µ (see Figure 4.2). We chose
coefficients depending on µ/c of the form

a1(µ/c) = b1(µ/c) = a1(0)[1− erf(µ/c)], (4.43)

a2(µ/c) = a2(0)[1− erf(µ/c)], (4.44)

b2(µ/c) = b2(0)[1−β erf(µ/c)], (4.45)

with β =−4.235 which has been found by minimizing the mean squared relative percentage error of the
short-range exchange energy for the same 7 systems of the neon isoelectronic series and for 4 interme-
diate values of the range-separation parameter (µ/kFmax = 0.05;0.1;0.2;0.4). The resulting relativistic
correction factor φµ(n) is reported in Figure 4.3. It still tends to 1 in the low-density limit, but goes down
to 0 when µ ≫ c in the high-density limit. The higher the value of µ the faster it decreases as a function
of kF. In Figure 4.4, we report the relative percentage errors of the srRPBEot exchange functional for
systems of the helium, beryllium, neon, and argon series. For µ = 0, this functional achieves an error of
at most about 1% for all systems, and it has the correct large-µ limit. The maximum absolute percentage
errors, which are found for intermediate values of µ, tend to grow with Z but remain at most about 3%
for the heavier systems. The srRPBEot exchange functional represents a significant improvement over
the srPBEot and srRLDA/PBEot exchange functionals for the heavier systems.
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Figure 4.4: Relative percentage error on the short-range exchange energy calculated with the srRPBEot functional
for systems of helium, beryllium, neon, and argon isoelectronic series.

4.7 Conclusions

In this work, we have tested the srRLDA exchange functional developed in Ref. [11] on three systems of
the neon isoelectronic series (Ne, Xe44+, and Rn76+) and compared it to the usual non-relativistic srLDA
exchange functional. Both functionals are quite inaccurate for relativistic systems and do not have the
correct asymptotic behavior for large range-separation parameter µ. In order to fix this large-µ behavior,
we have then defined the srLDAot and srRLDAot exchange functionals by introducing the exact on-top
exchange pair density as a new variable. These functionals recover the correct asymptotic behavior for
large µ but remain inaccurate for small values of µ. To improve the accuracy for small values of µ, we
have then developed a relativistic short-range GGA exchange functional also using the on-top exchange
pair density as an extension of the non-relativistic srPBE exchange functional. Tests on the systems of
the isoelectronic series of He, Be, Ne, and Ar up to Z = 92 show that this srRPBEot exchange functional
gives a maximal relative percentage error of 3% for intermediate values of µ and less than 1% relative
error for µ = 0. Of course, in the non-relativistic limit (c → ∞), all the relativistic functionals introduced
in this work properly reduce to their non-relativistic counterparts.

Possible continuations of this work include further tests on atoms and molecules, extension to the
Gaunt or Breit electron-electron interactions, development of the short-range relativistic correlation func-
tionals, and use of a local range-separation parameter.
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Chapter 5

Four-component relativistic
range-separated density-functional theory:
Short-range correlation local-density
approximation

In this chapter we work out a relativistic complementary short-range correlation density functional
scheme in the local density approximation (LDA), making use of a long-range correlation correction
factor parameterized at the random phase approximation (RPA) level to introduce relativistic effects lo-
cally.

5.1 Short-range correlation local density approximation

We want to build a short-range relativistic LDA (SR-RLDA) Coulomb correlation density functional in
order to have the correlation counterpart of the SR-RLDA Coulomb exchange density functional that
was developed within Chapter 3 as well as tested and improved within Chapter 4. Such a short-range
correlation functional must be defined as the complementary part of a long-range correlation functional
with respect to the full-range one, due the non-linearity of the correlation energy with respect to the
range-separation parameter. As such, we define the complementary short-range Coulomb correlation
density functional as

Esr,RLDA,µ
c [n] = ERLDA

c [n]−E lr,RLDA,µ
c [n]. (5.1)

Both in the spirit of Schmid et al. [1] and of the extension of the SR-RLDA to a short-range exchange
relativistic generalized gradient approximation (SR-RGGA) [see Chapter 4], we express the relativistic
correlation functional at the RLDA level using a relativistic correlation correction factor φc(n) in order
to introduce relativistic effects at the local level. We therefore write

ERLDA
c [n] =

∫
Ω

dr n(r) εRHEG
c (n)

=

∫
Ω

dr n(r) εHEG
c (n) φc(n), (5.2)

and

E lr,RLDA,µ
c [n] =

∫
Ω

dr n(r) εlr,RHEG,µ
c (n)

=

∫
Ω

dr n(r) εlr,HEG,µ̃
c (n) φlr,µ̃

c (n), (5.3)
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where εRHEG
c stands for the full-range correlation energy per particle of the relativistic homogeneous

electron gas (RHEG), εHEG
c for the full-range correlation energy per particle of the homogeneous electron

gas (HEG) and where we require φ
lr,µ̃
c → φc when µ̃ → ∞ for the sake of consistency, as the long-range

interaction reduces to the full-range one in this limit. We write φ
lr,µ̃
c using a superscript µ̃ = µ/kF =

µ/(3π2n)1/3, the scaled range-separation parameter which is the natural adimensional quantity reflecting
the link between the electronic density n and the range-separation parameter µ at a local scale. This
approach allows us to make use of the existing non-relativistic correlation functionals, both for the full-
range interaction [2] and short-range interaction [3, 4]. In the spirit of Schmid et al. [1] we define the
relativistic correlation correction factor φc using the correlation energies of the RHEG and HEG at the
RPA level, such that

φlr,µ̃
c = φlr,RPA,µ̃

c =
ε

lr,RRPA,µ̃
c

ε
lr,RPA,µ̃
c

, (5.4)

where ε
lr,RRPA,µ̃
c stands for the long-range Coulomb correlation energy of the RHEG at the relativistic

RPA (RRPA) level and ε
lr,RPA,µ̃
c stands for the long-range Coulomb correlation energy of the HEG at the

RPA level. The use of the RPA correlation energy appears consistent considering that relativistic effects
are important in the high-density regions of a system, which also correspond to regions where RPA is
a correct approximation to the correlation energy. In order to have a tractable expression for φ

lr,RPA,µ̃
c

we need to parameterize it, as there is no possibility to obtain an analytical expression of the correlation
energies per particle. We choose a Padé-like structure [see Chapter 3] for our parameterization, even
though the coefficients must be fitted instead of analytically derived

φlr,RPA,µ̃
c =

∑M
i=0 Ai(µ̃)/c̃i

∑M
i=0 Bi(µ̃)/c̃i

, (5.5)

with c̃ = mc/~kF, which is the natural adimensional quantity reflecting the impact of relativistic effects at
a local scale. Indeed, relativistic effects are usually negligible when mc≫ ~kF [see Chapter 3] , i.e. when
c̃ ≫ 1, and relativistic effects increase when c̃ decreases. In the spirit of Schmid et al. [1] we take for the
highest degree term of the numerator the opposite of the high-density limit of the long-range Coulomb
correlation energy of the RHEG at the RPA level, such that

AM =−εlr,RRPA,µ̃
c

∣
∣
∣
kF≫1

, (5.6)

and for the highest degree term of the denominator the opposite of the high-density limit of the long-range
Coulomb correlation energy of the HEG at the RPA level, such that

BM =−εlr,RPA,µ̃
c

∣
∣
∣
kF≫1

. (5.7)

It is important to specify that although we write the high-density limit of the long-range Coulomb corre-
lation energy of the RHEG using the subscript kF ≫ 1, it corresponds in practice to the ultra-relativistic
limit of the correlation energy, i.e. ~kF ≫ mc. The choice of the opposite of the correlation energies en-
sures the use of positive quantities and reduces the risk of introducing poles within the parameterization.

5.2 Long-range correlation random phase approximation

We want to derive the no-pair long-range Coulomb correlation energy per particle of the RHEG at the
RPA level, that is the RRPA energy per particle ε

lr,RRPA,µ̃
c . We consider thus only the Coulomb interaction,

that is the longitudinal part of the electron-electron interaction in QED parlance [see Section 2.2.2], and
neglect all transversal interactions as well as all renormalization terms due to the no-pair approximation.
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As we consider only the instantaneous Coulomb charge-charge interaction, it corresponds to working in
Coulomb gauge. We start from the expression of the no-pair long-range correlation energy per particle
[3, 5, 6] at the RPA level using only the Hartree kernel, such that

εlr,RRPA,µ̃
c =− ~ e2

2π n

∫
dq

(2π)3 vlr,µ̃(q)

∫ ∞

u=0
du

∫ 1

λ=0
dλ

[
χ0(q, i u)

]2
f

lr,µ̃,λ
H (q)

1−χ0(q, i u) f
lr,µ̃,λ
H (q)

, (5.8)

where χ0 is the non-interacting linear-response function of the RHEG in the no-pair approximation [see
Appendix N] such that for the wave-vector q and the imaginary frequency i u we have

χ0(q, i u)

=−m kF

~2

∫
dk′

(2π)3 θ(1− k′)

(√
k′2 + c̃2 +

√

|k′+q′|2 + c̃2
)2

−q′2

√
k′2 + c̃2

√

|k′+q′|2 + c̃2

c̃
(√

|k′+q′|2 + c̃2 −
√

k′2 + c̃2
)

ν2 + c̃2
(√

|k′+q′|2 + c̃2 −
√

k′2 + c̃2
)2

=−m kF

~2

∫ 1

k′=0

dk′

(2π)2 k′2
∫ π

θ=0
dθ

(√
k′2 + c̃2 +

√

k′2 +q′2 +2k′q′cosθ+ c̃2
)2

−q′2

√
k′2 + c̃2

√

k′2 +q′2 +2k′q′cosθ+ c̃2

c̃
(√

k′2 +q′2 +2k′q′cosθ+ c̃2 −
√

k′2 + c̃2
)

ν2 + c̃2
(√

k′2 +q′2 +2k′q′cosθ+ c̃2 −
√

k′2 + c̃2
)2 , (5.9)

which depends only on |q| = q = q′kF such that we write now χ0(q, i u), and where f
lr,µ,λ
H is the long-

range Hartree kernel such that for the wave-vector q it corresponds to the scaled Fourier transform of the
Coulomb interaction

f
lr,µ̃,λ
H (q) = λvlr,µ̃(q) = λ

4π

q′2k2
F

exp

[−q′2

4µ̃2

]

, (5.10)

using the adimensional variables k′ = k/kF, q′ = q/kF, µ̃ = µ/kF, c̃ = mc/~kF and ν = m u/~k2
F. This

linear-response function of the RHEG must, to the best of our knowledge, be integrated numerically
if one uses imaginary frequencies, its evaluation requiring two numerical integrals. On the contrary, it
reduces to the Lindhard function at imaginary frequency [7] in the non-relativistic limit, i.e. by taking
c̃ → ∞, which is analytically integrable and does not require any numerical integration.

Analytical integrations

The integrals over the two angular variables of q in Eq. (5.8) yield a factor 4π as the integrand only
depends on |q| and the integral over the coupling constant λ is analytical, yielding

εlr,RRPA,µ̃
c = − ~ e2

4π3 n

∫ ∞

q=0
dq q2 vlr,µ̃(q)

∫ ∞

u=0
du

vlr,µ̃(q)χ0(q, i u)+ ln
[
1− vlr,µ̃(q)χ0(q, i u)

]

vlr,µ̃(q)

= −~
2 e2

m

3
4π

∫ ∞

q′=0
dq′

∫ ∞

u=0
dν

(

4π exp

[−q′2

4µ̃2

]

χ0(q′kF, i u)

+ q′2k2
F ln

[

1− 4π

q′2k2
F

exp

[−q′2

4µ̃2

]

χ0(q′kF, i u)

])

, (5.11)
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using the adimensional variables and having explicitly written the Fourier transform of the Coulomb
interaction [see Eq. (5.10)] and expressed the electronic density as a function of kF in the last line. As
the no-pair long-range Coulomb correlation energy per particle of the RHEG at the RPA level contains
two integrals with no analytical solution, and recalling that the linear-response function of the RHEG
[see Eq. (5.9)] requires itself two numerical integrals, any evaluation of ε

lr,RRPA,µ̃
c (kF) thus requires four

simultaneous numerical integrations. Considering the non-relativistic limit brings simplifications as the
linear-response function has now an analytical expression, thus making for only two simultaneous nu-
merical integrations to evaluate ε

lr,RPA,µ̃
c (kF). The full-range Coulomb correlation energy can be seen as

a specific case of the long-range as it comes straightforwardly by taking µ̃ → ∞ within Eq. (5.11), thus
simply removing the exponential functions.

Numerical Integrations

The evaluation of Eq. (5.11) requiring four simultaneous numerical integrals. This brings some compli-
cations and increases the computational cost. As such, we calculated the numerical integrals using the
software Wolfram Mathematica [8] with only six digits of accuracy in order to have tractable numeri-
cal integrations for the relativistic correlation energies. For consistency we used the same precision for
non-relativistic calculations. We decided to sample the long-range correlation energies per particle with
respect to two variables, the Fermi wave vector kF = (3π2n)1/3 and the scaled range-separation parameter
µ̃ = µ/kF. For the Fermi wave vector kF we considered 41 different values [see Table 5.1].

Table 5.1: Fermi wave vectors sampling.

0.005 0.01 0.05 0.1 0.25 0.5 0.75 1.0 1.75 2.5 3.75 5.0 7.5
10 15 20 25 30 35 40 50 60 80 100 137.0359998 150
200 250 300 350 400 450 500 550 600 700 800 900 1000

1100 1200

This sampling of Fermi wave vectors ranges up to more than twice the core electronic densities of heavy
ions we studied in the previous chapter [see Fig. 4.2] with our four-component Hartree-Fock code [see
Section 2.5.2], thus encompassing all electronic density chemically relevant for the creation of a rela-
tivistic long-range correction factor φ

lr,RPA,µ̃
c . In order to better understand this sampling of Fermi wave

vectors we recall the formula

kF = (3π2n)1/3 =

(

3π2 3
4πr3

s

)1/3

=

(
3
2

)2/3

π1/3 1
rs
, (5.12)

such that a Fermi wave vector of kF = 0.005 a.u. corresponds to a Wigner-Seitz radius rs ≈ 384 a.u. and
a Fermi wave vector of kF = 1200 a.u. corresponds to a Wigner-Seitz radius rs ≈ 0.0016 a.u., yet even
though most non-relativistic correlation energy functionals are usually discussed using the Wigner-Seitz
radius as variable, we favor the use of kF for its easy comparison in the relativistic formalism with the
speed of light c = 137.035998 a.u.. For the scaled range-separation parameter µ̃ = µ/kF we considered
26 different values [see Table 5.2].

Table 5.2: Scaled range-separation parameter sampling.

0.005 0.01 0.025 0.05 0.075 0.1 0.15 0.2 0.3 0.4 0.5 0.6 0.7
0.8 0.9 1.0 1.25 1.5 2.0 3.0 5.0 7.5 10.0 15.0 20.0 → ∞

We denote as µ̃ → ∞ the use of the full-range Coulomb interaction. These two-variable samplings make
for 41∗26 = 1066 reference points that we use for the following parameterizations.
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5.2.1 Non-relativistic long-range correlation energy

We represent in Fig. 5.1 the long-range Coulomb RPA correlation energy per particle of the HEG for
several values of µ̃ and we recall the usual high-density expansion of the full-range Coulomb RPA cor-
relation energy per particle of the HEG [3, 9, 10] as a logarithmic expansion

εRPA
c =

1− ln2
π2 lnrs −0.071100+O(rslnrs)

= −1− ln2
π2 lnkF −0.0508324+O

(
1
kF

lnkF

)

, (5.13)

for the full-range Coulomb interaction in non-relativistic formalism at the RPA level, where we made
use of Eq. (5.12) to introduce the Fermi wave vector as a new variable.
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Figure 5.1: Non-relativistic long-range Coulomb RPA correlation energy per particle of the HEG.

We observe neatly the logarithmic behaviour and remark that when µ̃ goes from infinity down to 20
there is barely any variations on the actual correlation energy per particle. Furthermore, the high-density
logarithmic behaviour seems to be conserved on this range of Fermi wave vector for values of µ̃ higher
than 0.1.

5.2.2 Relativistic long-range correlation energy

We represent in Fig. 5.2 the no-pair long-range Coulomb RPA correlation energy per particle of the
RHEG. We observe a very different behaviour than its non-relativistic counterpart as it appears to become
almost linear with respect to kF in the high-density limit. This behaviour is a known feature of the
relativistic RPA correlation energy [1, 11] for the full-range two-electron Coulomb interaction, and it
appears to be conserved for the long-range interaction when µ̃ decreases. We once more observe that
when µ̃ goes from infinity down to 20 there is barely any variations on the actual correlation energy per
particle.
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Figure 5.2: Relativistic long-range Coulomb RPA correlation energy per particle of the RHEG.

5.2.3 Relativistic long-range correlation factor

We represent in Fig. 5.3 the coefficient φ
lr,RPA,µ̃
c as a function of kF for several values of µ̃.
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Figure 5.3: Relativistic correlation correction factor φ
lr,RPA,µ̃
c as a function of kF

While it appears at first sight that φlr,RPA,µ̃ is a monotonic decreasing function of µ̃, it is in fact more
complicated and best understood with the use of a representation in Fig. 5.4 of φ

lr,RPA,µ̃
c as a function of

µ̃ for several values of kF. For clarity, we represent only the correction coefficient for values of kF lower
than 200, but the behaviour is similar for the whole range of Fermi wave vectors considered. It appears
that, and for any value of kF, φlr,RPA,µ̃ starts as an increasing function of µ̃ until it reaches a maximum
value, which we will denote as µ̃max(kF), after which it becomes a decreasing function of µ̃ converging
to a constant value for the full-range Coulomb interaction.
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Figure 5.4: Relativistic correlation correction factor φ
lr,RPA,µ̃
c as a function of µ̃

The value of µ̃max is itself an increasing function of kF, going from µ̃max(10) ≈ 0.5 to µ̃max(1200) ≈ 1.5.
Furthermore, while φlr,RPA,µ̃ increases greatly before µ̃max, its variations close to it are much smaller and
its value decreases only slightly afterward. This behaviour explains why all curves for µ̃ higher than 1
appear to be superposed in Fig. 5.3 as there is little variation of φlr,RPA,µ̃ with respect to µ̃ for these values,
and why we observe such a neat separation of the coefficients φlr,RPA,µ̃ and a monotonic decreasing
behaviour with respect to µ̃ only for lower values of µ̃. This non-linear behaviour of φlr,RPA,µ̃ with respect
to µ̃ can be understood as a very slight increase of the relativistic effects on the long-range correlation
energy when goes µ̃ goes from infinity down to µ̃max(kF), and then as a decrease of the relativistic effects
on the long-range correlation energy as µ̃ decreases further. It appears that for µ̃ → 0 the correction factor
goes to 1 for all values of kF, such that relativistic effects on the long-range correlation all but disappear.
Obviously, as the long-range correlation energy vanishes when µ̃→ 0, this property will not dominate and
relativistic effects will only be reduced for non-negligible values of the long-range correlation energy.

5.3 High-density limit of the long-range correlation energy

We now look in detail at the high-density limit in order to have the first building blocks for a parameter-
ization of φlr,RPA,µ̃.

5.3.1 High-density limit of the non-relativistic long-range correlation energy

The high-density limit parameterization for the non-relativistic correlation energy is done through the
combination of two separate parameterizations, the first one for high values of µ̃ and the second one for
low values of µ̃.

High values of µ̃

For values of the scaled range-separation parameter higher than 0.1 the logarithmic behaviour of the
non-relativistic long-range correlation energy of the HEG [see Eq. (5.13)] appears to be conserved, and
we found out that its dependence on the scaled range-separation parameter is accurately approximated in
the high-density limit by

εlr,RPA,µ̃
c ≈

kF≫1
εhd1,lr,RPA,µ̃

c =−1− ln2
π2 lnkF +

(

−0.0508324+
1+a1µ̃

a2 +a3µ̃+a4µ̃2 +a5µ̃3

)

. (5.14)
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Table 5.3: Parameters for the high-density limit ε
hd1,lr,RPA,µ̃
c valid for high values of µ̃

x ax

1 3.72862
2 3.53869
3 43.4382
4 40.2625
5 53.1731

The notation hd1 stands for the first part of the high-density limit parameterization, which is the high-µ̃
part. The parameters from Table 5.4 have been fitted using the software Wolfram Mathematica [8], on
values obtained through numerical integration of ε

lr,RPA,µ̃
c + 1−ln2

π2 lnkF at a “high enough” Fermi wave
vector to reach the high-density limit and for the scaled range-separation parameters from Table 5.2
higher or equal to 0.1, thus making for a sampling of 21 points over which the root-mean-square deviation
of the absolute error in percentage of the fitted function is 0.225%. We chose the “high enough” Fermi
wave vector to be kF = 9600 a.u. in order to make similar calculations on the relativistic correlation
energy tractable. The absolute error in percentage of the parameterized high-density formula ε

hd1,lr,RPA,µ̃
c

[see Eq. (5.14)] with respect to the numerically integrated ε
lr,RPA,µ̃
c is represented in Fig. 5.5. We observe

that the establishment of the logarithmic behaviour with less than 1% of absolute error for the high-
density limit is reached around kF = 20 a.u. for the full-range interaction, while it is not reached before
kF = 200 a.u. for the long-range interaction with µ̃ = 0.5 and it is barely reached at kF = 1200 a.u. for the
long-range interaction with µ̃ = 0.2.
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Figure 5.5: Non-relativistic high-density limit absolute errors: high µ̃ approximation.

For values of the scaled range-separation parameter lower than 0.2, the logarithmic behaviour is not
established in the studied range of Fermi wave vector. This justifies the use of only the scaled range-
separation parameters from Table 5.2 higher than 0.1 for our parameterization, as Eq. (5.14) is no longer
a good approximation of the high-density limit for values of µ̃ < 0.2 in the chemically relevant range of
electronic densities. This can be perceived as a change of regime, such that a change of parametrization
is required for lower values of the scaled range-separation parameter.
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Low values of µ̃

In order to have a high-density formula which remains correct at low values of µ̃, we make use of a
parameterization from Paziani et al. [4], which is correct for small µ

√
rs, that is for small µ and/or small

rs. This can be understood, once re-expressed in our variables, as a parameterization correct for small√
KFµ̃, that is for small values of µ̃ and high values of kF. Their parameterized expression of the high-

density long-range correlation energy of an unpolarized HEG corresponds to

εlr
c (rs,µ)

∣
∣
∣
µ,rs→0

=
2ln2−2

π2 ln

[
1+b1x+b2x2 +b3x3

1+b1x+b4x2

]

, (5.15)

with x = µ
√

rs, such that once rewritten with our variables it yields

εhd2,lr,RPA,µ̃
c =

2ln2−2
π2 ln






1+b1

(
3
√

π
2

)1/3√
kFµ̃+b2

(
3
√

π
2

)2/3 (√
kFµ̃
)2

+b3
3
√

π
2

(√
kFµ̃
)3

1+b1

(
3
√

π
2

)1/3√
kFµ̃+b4

(
3
√

π
2

)2/3 (√
kFµ̃
)2




 . (5.16)

Table 5.4: Parameters for the high-density limit ε
hd2,lr,RPA,µ̃
c valid for low values of µ̃, taken from Ref. [4].

x bx

1 5.84605
2 7.44953
3 3.91744
4 3.44851

The notation hd2 stands for the second part of the high-density limit parameterization, which is the low-
µ̃ part. The absolute error in percentage of the parameterized high-density formula ε

hd2,lr,RPA,µ̃
c [see

Eq. (5.16)] with respect to the numerically integrated ε
lr,RPA,µ̃
c is represented in Fig. 5.6.
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Figure 5.6: Non-relativistic high-density limit absolute errors : low µ̃ approximation.

We first observe that the absolute error decreases with µ̃ between 1 and 0.025 (full lines in Fig. 5.6).
For values of the scaled range-separation parameter higher than 1 this parameterization is not a correct
approximation to the long-range correlation energy, and for values of the scaled range-separation param-
eter lower than 0.025 (dotted lines in Fig. 5.6) the absolute error slightly increases up to 3% of absolute
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error for µ̃ = 0.005. This behaviour mostly comes from the very low value of the correlation energy
per particle [see Fig. 5.1] at such low values of the scaled range-separation parameter which magnifies
the absolute error for a similar accuracy of the parameterization. This parameterization from Paziani
et al. [4] appears thus to be complementary to our parameterization [see Eq. (5.14)] with respect to the
scaled range-separation parameter. In order to have a high-density parameterization correct for the whole
range of µ̃ we found out that a continuation using a power of the error function works quite correctly, and
settled on the use of erf[3µ̃]4 which is represented in Fig. 5.7.
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Figure 5.7: Continuation function for the two parts of the non-relativistic high-density correlation energy.

The use of the fourth power of the error function allows for a steep enough continuation, and taking 3µ̃

as the variable makes for a transition between the two different parameterizations around µ̃ = 0.3. We
thus propose for the high-density non-relativistic long-range correlation energy of the HEG the parame-
terization

εhd,lr,RPA,µ̃
c = erf[3µ̃]4εhd1,lr,RPA,µ̃

c +(1− erf[3µ̃]4)εhd2,lr,RPA,µ̃
c , (5.17)

which allows for a very neat transition between the previous two parameterizations [see Eq. (5.14) and
Eq. (5.16)]. This expression correctly reduces to the usual logarithmic expansion

εhd,RPA
c =−1− ln2

π2 lnkF −0.0508324, (5.18)

for the full-range Coulomb interaction. The absolute error in percentage of the parameterized high-
density formula ε

hd,lr,RPA,µ̃
c [see Eq. (5.17)] with respect to the numerically integrated ε

lr,RPA,µ̃
c is repre-

sented in Fig. 5.8. We observe that for high electronic densities we have now a parameterization with less
than 0.2% of absolute error for all values of µ̃ higher than 0.025. We do not represent the graphs for µ̃

equal to 0.01 and 0.005 as they would be strictly similar to those represented in Fig. 5.6 with around 3%
of absolute error due to the very low values of the correlation energies per particle. Any improvement
of the precision for values of the scaled range-separation parameter lower than 0.025 would require to
rework the parameterization that was done by Paziani et al. [4], and does not appear to be necessary as
the behaviour of the long-range correlation energy is still correct albeit with slightly lesser precision.

5.3.2 High-density limit of the relativistic long-range correlation energy

For the relativistic long-range correlation energy of the RHEG, it appears that a linear behaviour emerges
for kF high enough [1], which we observe in Fig. 5.2. Due to the computational cost of the numerical
integrations we decided on the use of a “high enough” Fermi wave vector for parameterizing the high-
density limit of the relativistic long-range correlation energy of the RHEG.
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Figure 5.8: Non-relativistic high-density limit absolute errors.

To determine such a “high enough” Fermi wave vector we calculated the full-range correlation energy
per particle εRHEG

c at three values of kF high enough to observe the establishment of the linear behaviour.
Calculations for kF in {2400,4800,9600} allowed us to check the variation in slopes, and while there
is 0.6% of variations in absolute value of the slope between 1200 and 9600, there is less than 0.03%
between 4800 and 9600, thus validating the use of kF = 9600 a.u. as a “high enough” Fermi wave vector
for the range that interests us. We found out that the high-density limit of the relativistic long-range
correlation energy per particle is accurately approximated by

εhd,lr,RRPA,µ̃
c =−0.185345

(

1− 1+ c1µ̃+ c2µ̃2 + c3µ̃3 + c4µ̃4

1+ c5µ̃+ c6µ̃2 + c7µ̃3 + c8µ̃4 + c9µ̃5

)

/c̃, (5.19)

and reduces to

εhd,RRPA
c =−0.185345/c̃. (5.20)

for the full-range Coulomb interaction.

Table 5.5: Parameters for the high-density limit ε
hd,lr,RRPA,µ̃
c .

x cx

1 63.6213
2 161.703
3 58.4589
4 -0.55375
5 63.7034
6 467.578
7 624.653
8 952.370
9 159.956

The parameters from Table 5.5 have been fitted using the software Wolfram Mathematica [8], on values
obtained through numerical integration of ε

lr,RRPA,µ̃
c /c̃ at kF = 9600 a.u. and for all scaled range-separation

parameters from Table 5.2, thus making for a sampling of 26 points over which the root-mean-square
deviation of the absolute error in percentage of the fitted function is 0.033%. The absolute error in
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percentage of the parameterized high-density formula ε
hd,lr,RRPA,µ̃
c [see Eq. (5.19)] with respect to the

numerically integrated ε
lr,RRPA,µ̃
c is represented in Fig. 5.9.
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Figure 5.9: Relativistic high-density limit absolute errors.

We observe that the establishment of the linear behaviour with less than 1% of absolute error for the
high-density limit is reached around kF = 1000 a.u. for the full-range interaction. Contrary to the non-
relativistic case, the high-density limit behaviour is established for lower values of kF for the long-range
Coulomb interaction, such that we reach less than 1% of absolute error for the parameterized high-density
limit around kF = 300 a.u. for a long-range interaction with µ̃ = 0.005. The relativistic long-range high-
density limit appears to be simpler than the non-relativistic one as there is seemingly no change of regime
and we thus have a unique parameterization working for all values of µ̃.

5.4 Parameterization of the relativistic correlation correction factor

Having worked out parameterizations for the high-density limit of the long-range correlation energy per
particle of both the HEG and RHEG, we now use these expressions to build the Padé-like expression
of the relativistic correlation correction factor φ

lr,RPA,µ̃
c [see Eq. (5.5)]. We found out that the relativistic

long-range correlation energy correction at the no-pair RPA level is accurately approximated by

φlr,RPA,µ̃
c =

1+
a1,1 +a1,2µ̃

a1,4 + µ̃
/c̃+

a2,1 +a2,2µ̃+a2,3µ̃2

a2,4 +a2,5µ̃+ µ̃2 /c̃2 +
a3,1 +a3,2µ̃+a3,3µ̃2

a3,4 +a3,5µ̃+ µ̃2 /c̃3 − εhd,lr,RRPA,µ̃
c /c̃4

1+
a1,1 +b1,2µ̃

a1,4 + µ̃
/c̃+

a2,1 +b2,2µ̃+b2,3µ̃2

a2,4 +b2,5µ̃+ µ̃2 /c̃2 +
a3,1 +b3,2µ̃+b3,3µ̃2

a3,4 +b3,5µ̃+ µ̃2 /c̃3 − εhd,lr,RPA,µ̃
c /c̃4

.

(5.21)

The parameters from Table 5.6 have been fitted using the software Wolfram Mathematica [8], on values
obtained through numerical integration of ε

lr,RRPA,µ̃
c /ε

lr,RPA,µ̃
c for all Fermi wave vectors from Table 5.1

and all scaled range-separation parameters from Table 5.2, thus making for a sampling of 1066 points
over which the root-mean-square deviation of the absolute error in percentage of the fitted function is
0.053%, with a maximum absolute error in percentage reaching less than 0.4% for the smallest values of
µ̃ considered. We emphasize that the relativistic full-range Coulomb correlation energy correction at the
no-pair RPA level reduces to

φRPA
c =

1+a1,2/c̃+a2,3/c̃2 +a3,3/c̃3 − εhd,RRPA
c /c̃4

1+b1,2/c̃+b2,3/c̃2 +b3,3/c̃3 − εhd,RPA
c /c̃4

, (5.22)



5.5. CONCLUSION 103

Table 5.6: Parameters for correlation correction factor φ
lr,RPA,µ̃
c .

x a1,x a2,x a3,x b1,x b2,x b3,x

1 2.22080 d-2 9.66045 d-2 1.59065 d-4 - - -
2 7.04721 d-1 2.66457 9.62993 d-2 7.09439 d-1 2.91597 d-1 -2.40333 d-3
3 - 9.24891 d-1 6.30881 d-1 - 5.62594 d-1 6.077222 d-3
4 1.16165 d-1 1.50127 d-1 5.30353 d-3 - - -
5 - 3.07852 5.32685 d-1 - 7.56679 d-1 8.30363 d-1

with a root-mean-square deviation of the absolute error in percentage of 0.039% over the full range of
Fermi wave vectors from Table 5.1, and with a maximum absolute error in percentage reaching less than
0.1%. It is important that the full-range correction factor be as precise as possible, as this coefficient
multiplies the full-range non-relativistic Coulomb correlation energy [see Eq. (5.2)], which is always
bigger than its long-range counterpart. As such, a small loss of precision of the long-range correction
factor for the lowest values of µ̃ is acceptable as it multiplies only very reduced long-range correlation
energies and has a smaller impact on the overall correlation energy.

5.5 Conclusion

We have extended the complementary short-range correlation density functional scheme to a relativistic
framework, with the use of a relativistic correlation correction factor. This correction factor has been
constructed from ratio of the correlation energy per particle of the RHEG and HEG at the RPA level of
theory, and requires a parametrization as these correlation energies have no analytical expressions. In
particular, the parametrization we built relies heavily on the high-density limit of both relativistic and
non-relativistic RPA correlation energies, which we studied as function of kF and µ̃. We first emphasize
that both correlation energies per particle share the common traits of being monotonic decreasing func-
tions of kF for any given value of µ̃ and monotonic decreasing functions of µ̃ for any given values of
kF. We found out that the known linear behaviour of the relativistic high-density limit of the full-range
Coulomb correlation energy at the RPA level extends to its long-range counterpart with a slope being
a simple monotonic decreasing function of µ̃, making for an easy parametrization. On the contrary, the
known logarithmic behaviour of the non-relativistic high-density limit of the full-range Coulomb cor-
relation energy at the RPA level does not straightforwardly extend to its long-range counterpart, and
requires for our purpose the linear combination of two separate parametrizations with the use of a con-
tinuation function. The long-range correlation correction factor constructed is, for any given value of µ̃,
an increasing function of kF starting from 1 for very low values of kF, such that relativistic effects in-
crease the correlation energy per particle in absolute value at the RPA level. Nevertheless, the variations
with respect to µ̃ of this correction factor is not simply a monotonic decrease but reaches a maximum
at a value µ̃max(kF), which is itself an increasing function of kF. For any values of kF a decrease of the
scaled range-separation parameter from infinity, that is going from full-range interaction to a long-range
interaction, leads to a slight increase of the correlation energy per particle until µ̃max(kF) is reached, after
which the correlation energy per particle decreases quicly to zero when µ̃ → 0. We have parameter-
ized this relativistic correlation correction factor at the RPA level with a Padé-like formula yielding a
root-mean-square deviation of the absolute error in percentage of 0.053% with respect to our numerical
integrations.



104 BIBLIOGRAPHY

Bibliography

[1] R. N. Schmid, E. Engel and R. M. Dreizler, Adv. Quantum Chem. 33, 209 (1998).

[2] S. J. Vosko, L. Wilk and M. Nusair, Can. J. Phys. 58, 1200 (1980).

[3] J. Toulouse, Phys. Rev. B 72, 035117 (2005).

[4] S. Paziani, S. Moroni, P. Gori-Giorgi and G. B. Bachelet, Phys. Rev. B 73, 155111 (2006).

[5] M. Lein, E. K. U. Gross and J. P. Perdew, Phys. Rev. B 61, 13431 (2000).

[6] E. Engel and R. M. Dreizler, Density Functional Theory, An Advanced Course (Springer-Verlag
Berlin Heidelberg, 2011).

[7] U. von Barth and L. Hedin, J. Phys. C 5, 1629 (1972).

[8] Wolfram Research, Inc., Mathematica, Version 11.1, Champaign, IL (2017).

[9] J. P. Perdew and Y. Wang, Phys. Rev. B 46, 12947 (1992).

[10] P. Gori-Giorgi, F. Sacchetti and G. B. Bachelet, Phys. Rev. B 61, 7353 (2000).

[11] A. F. Bonetti, E. Engel, R. M. Dreizler, I. Andrejkovics and H. Müller, Phys. Rev. A 58, 993 (1998).



General conclusion

This PhD thesis constitutes a contribution to the relativistic extension of the range-separated density
functional theory scheme, by combining a relativistic four-component wave function calculation for the
long-range contribution with a complementary relativistic short-range exchange-correlation density func-
tional based on the no-pair Dirac-Coulomb or Dirac-Coulomb-Breit Hamiltonian.

We have developed four-component relativistic short-range exchange Coulomb and Coulomb-Breit
density functionals at the local density approximation (LDA) level, based on the relativistic homoge-
neous electron gas. The most precise functionals are expressed as Padé approximants, making no ap-
proximation on the dependence on the scaled range-separation parameter µ/kF and being systematically
improvable to arbitrary accuracy with respect to the parameter c/kF as we explicitly derived the analytical
expression of the corresponding expansion coefficients.

Numerical tests of the relativistic short-range exchange Coulomb functional with respect to the exact
Dirac-Hartree-Fock short-range exchange Coulomb energy have been realized using the four-component
range-separated density functional code that we implemented as a plugin in the software QUANTUM

PACKAGE 2.0. We found out that, within the four-component relativistic framework, the local density
approximation does not become exact in the very short-range limit but instead shows an increasing
discrepancy when relativistic effects increase. This phenomenon comes from the explicit dependence
of the exact short-range exchange Coulomb energy on the on-top exchange pair density, which reduces
to a dependence on the electronic density only in the non-relativistic limit. As such, it is necessary to
consider the on-top exchange pair density as a separate variable from the electronic density to recover
the correct very short-range behaviour of the local density approximation in a relativistic framework, and
we proposed for correction the use of a local density approximation “on top” (LDAot) with a modified
transferability criterion, such that the short-range exchange energy is now calculated by integrating over
the short-range exchange energy per particle of an homogeneous system having locally the same on-top
exchange pair density as the inhomogeneous system, instead of the same electronic density.

In order to go further than the LDAot approximation, which is only exact in the very-short range
limit and is no more accurate than the standard local density approximation for low values of the range-
separation parameter, we extended the proposed density functional up to the generalized gradient ap-
proximation (GGA) level, using the non-relativistic short-range PBE gradient correction corrected by
a parameterized multiplicative relativistic correction factor, and we proposed a short-range relativistic
PBE “on top” (srRPBEot) exchange Coulomb density functional with less than 1% of absolute error
with respect to the exact Dirac-Hartree-Fock short-range exchange Coulomb energy for low values of
the range-separation parameter according to our calculations on the isoelectronic series of He, Be, Ne,
and Ar up to atomic number Z = 92.

We have developed a relativistic complementary short-range correlation Coulomb density functional
scheme at the local-density approximation level, introducing relativistic effects locally by correcting the
non-relativistic correlation energy per particle with a parameterized multiplicative relativistic correction
factor at the random phase approximation level. The proposed correction factor has a root-mean-square
deviation of the absolute error in percentage of 0.053% with respect to numerical integrations over our
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parameterization set and shows less than 0.5% of absolute error for any chemically relevant values of the
scaled parameters µ/kF and c/kF.

Possible continuations of this work include implementation and tests of the relativistic short-range
exchange Coulomb-Breit LDA functional, which would require the implementation of the Breit two-
electron integrals to compute the exact Dirac-Hartree-Fock short-range exchange Coulomb-Breit energy,
implementation and tests of the relativistic complementary short-range correlation Coulomb LDA func-
tional, tests on heavy ions to observe the impact of the relativistic correction factor on the correlation
energy of inhomogeneous systems, and a generalization to a relativistic complementary short-range cor-
relation Coulomb GGA functional. Considering the importance of the on-top exchange pair density for
the short-range Coulomb exchange density functional we expect the very short-range Coulomb-Breit
exchange and correlation energies to show the same kind of discrepancy and to require some further
corrections.

One of the obvious limitations of the relativistic range-separated density functional theory that was
worked out within this PhD thesis is the use of a constant range-separation parameter µ. Indeed, com-
pared to non-relativistic systems containing only light atoms where the electronic densities in terms of
kF range usually from 0 a.u. up to 50 a.u., in the case of relativistic systems containing heavy atoms the
electronic densities in terms of kF range rather from 0 a.u. up to 500 a.u. (in the presence of a uranium
atom for example). This increase in electronic density range implies that for any given constant value
of µ, if there is to be any range separation in the valence regions, then the core electrons will be treated
with almost pure density functional theory, and on the contrary if there is to be any range separation in
the core regions, then the valence electrons will be treated with almost pure wave function theory. To
ensure that we do not lose the benefit of range separation in any regions of space the use of a local range-
separation parameter µ(r) appears to be a possible solution, albeit not straightforward to implement in
an computationally efficient fashion.
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Appendix A

Lorentz transformations

A.1 Lorentz transformation of position and time

We want to derive the explicit form of the Lorentz transformation of position and time for a general
Lorentz boost (see, e.g., Ref. [1]). We start with two inertial frames J and J′ coinciding at t = t ′ = 0,
the motion of J′ relative to J being the constant velocity v = v ex along the x axis such that the y and
z directions are unaffected. The homogeneity of space and time enforces linearity between the old and
new sets of coordinates, with only the time and the x axis being affected
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. (A.1)

In order to determine explicitly the four remaining Λν
µ parameters we consider two light signals emitted

at t = t ′ = 0 from the origin of the inertial frames x = x′ = 0, a first one in the negative x direction and a
second one in the positive x direction. At a time t1, the first light signal defines an event E1 given by

x1 + ct1 = 0 (A.2)

x′1 + ct ′1 = (Λ1
1 +Λ0

1) x1 +(Λ0
0 +Λ1

0) ct1 = 0, (A.3)

such that multiplication of Eq. (A.2) by (Λ0
0 +Λ1

0) and subtraction of Eq. (A.3) leads to

0 = (Λ0
0 +Λ1

0)(x1 + ct1)− [(Λ1
1 +Λ0

1) x1 +(Λ0
0 +Λ1

0) ct1]

= (Λ0
0 +Λ1

0 −Λ1
1 −Λ0

1)x1.

= Λ0
0 +Λ1

0 −Λ1
1 −Λ0

1, (A.4)

where x1 6= 0 has been simplified in the last line. At a time t2, the second light signal defines an event E2

given by

x2 − ct2 = 0 (A.5)

x′2 − ct ′2 = (Λ1
1 −Λ0

1) x2 − (Λ0
0 −Λ1

0) ct2 = 0, (A.6)

such that multiplication of Eq. (A.5) by (Λ0
0 −Λ1

0) and subtraction of Eq. (A.6) leads to

0 = (Λ0
0 −Λ1

0)(x2 − ct2)− [(Λ1
1 −Λ0

1) x2 − (Λ0
0 −Λ1

0) ct2]

= (Λ0
0 −Λ1

0 −Λ1
1 +Λ0

1)x2,

= Λ0
0 −Λ1

0 −Λ1
1 +Λ0

1, (A.7)

109



110 APPENDIX A. LORENTZ TRANSFORMATIONS

where x2 6= 0 has been simplified in the last line. Addition of Eq. (A.4) and Eq. (A.7) yields Λ0
0 =

Λ1
1 while subtraction of Eq. (A.4) from Eq. (A.7) yields Λ1

0 = Λ0
1, reducing the problem to only two

parameters. We can determine relations between these parameters by considering O′ the origin of J′. We
have x′O′ = 0 and xO′ = vt, such that

x′O′ = Λ1
0ct +Λ1

1xO′ = Λ1
0ct +Λ1

1vt = 0, (A.8)

yielding Λ1
0 =−v/c Λ0

0 and the relevant Lorentz transformation
(

ct ′

x′

)

=

(
Λ0

0 −v/c Λ0
0

−v/c Λ0
0 Λ0

0

)(
ct

x

)

. (A.9)

The relativity principle implies that the Lorentz coordinate transformation from J′ to J must have the
same form with an opposite velocity, yielding

(
ct

x

)

=

(
Λ0

0 v/c Λ0
0

v/c Λ0
0 Λ0

0

)(
ct ′

x′

)

. (A.10)

We can now write the back and forth coordinate transformation (from J to J′ to J again) as

x = Λ0
0(x

′+ vt ′)

= Λ0
0

(

Λ0
0(x− vt)+ vΛ0

0

(

t − v

c2 x
)
)

=
(
Λ0

0

)2
(

1− v2

c2

)

x, (A.11)

such that

Λ0
0 =

1
√

1− v2

c2

≡ γ, (A.12)

with γ a coefficient called the Lorentz factor. We thus express the Lorentz transformation of the 4-position
as
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. (A.13)

Considering that a three-dimensional position r can be split into a parallel part plus an orthogonal part
r = r‖+ r⊥ where the parallel part has the same direction as the Lorentz boost, we have

(
ct ′

r′

)

=




γ
(

ct −
v · r‖

c

)

r⊥+ γ(r‖−vt)



 , (A.14)

or, re-writing r⊥ = r− r‖ and r‖ = [r ·v] v/v2

(
ct ′

r′

)

=






γ
(

ct − v · r
c

)

r+(γ−1)
[r ·v]v

v2 − γvt




 , (A.15)

which reduces to the Galilei transformation when c → ∞, in the non-relativistic limit.
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A.2 Lorentz transformation of electric and magnetic fields

We want to derive the explicit form of the Lorentz transformation for the electromagnetic field for a
general Lorentz boost (see, e.g., Ref. [1]). As neither the electric nor the magnetic fields are Lorentz
4-vectors, we have to consider the Lorentz transformation of the field strength tensor which determine
both fields uniquely. We start with two inertial frames J and J′ which coincide at t = t ′ = 0, the motion
of J′ relative to J is the constant velocity v = v ex along the x axis so that the y and z directions are
unaffected. The transformation of the second-rank tensor Fµν is given by

F ′ = ΛFΛT ⇐⇒ F ′µν = Λ
µ
σFστΛν

τ (A.16)

Considering the results of Section A.1 we have thus
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and using γ2(1− v2

c2 ) = 1 we obtain the transformation behaviours, under an x direction Lorentz boost, of
the electric and magnetic fields respectively





E ′
x

E ′
y

E ′
z



=








Ex

γ(Ey −
v

c
Bz)

γ(Ez +
v

c
By)








and





B′
x

B′
y

B′
z



=








Bx

γ(By +
v

c
Ez)

γ(Bz −
v

c
Ey)







. (A.18)

For a general motion of J′ relative to J with a speed v we have thus

E′
‖ = E‖ and E′

⊥ = γ(E⊥+
1
c

v×B) (A.19)

as well as

B′
‖ = B‖ and B′

⊥ = γ(B⊥− 1
c

v×E). (A.20)
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Appendix B

Electromagnetic gauge conditions

We want to derive the explicit electromagnetic gauge conditions (see, e.g., Ref. [1]). We start by high-
lighting the gauge invariance of the electric and magnetic fields, rewriting Eq. (1.32) and explicitly in-
troducing a gauge transformation Aµ → A′µ = Aµ −∂µg where g = g(x) is any sufficiently smooth gauge
function, such that for the electric field we have

E′ = −∇∇∇φ′− 1
c

∂A′

∂t

= −∇∇∇

(

φ− 1
c

∂g

∂t

)

− 1
c

∂(A+∇∇∇g)

∂t

= −∇∇∇φ− 1
c

∂A
∂t

+
1
c

(

∇∇∇
∂g

∂t
− ∂∇∇∇g

∂t

)

= −∇∇∇φ− 1
c

∂A
∂t

= E, (B.1)

where the order of the derivatives, being arbitrary according to Young’s theorem, can be inverted such
that the gauge terms cancel each other. For the magnetic field we have

B′ = ∇∇∇× A′

= ∇∇∇× (A+∇∇∇g)

= ∇∇∇× A+∇∇∇×∇∇∇g

= ∇∇∇× A

= B, (B.2)

where the curl of a gradient ∇∇∇×∇∇∇g vanishes according to the vector calculus identities, whatever the
properties of the gauge function g.
Rewriting Gauss’s law [see Eq. (1.35)] and Ampère’s circuital law [see Eq. (1.36)] using the scalar
potential φ and vector potential A yield respectively

∇∇∇.E = 4πρ ⇐⇒ ∇∇∇.

(

−∇∇∇φ− 1
c

∂A
∂t

)

= 4πρ

−∆φ− 1
c

∂

∂t
(∇∇∇.A) = 4πρ, (B.3)

and

∇∇∇×B− 1
c

∂E
∂t

=
4π

c
j ⇐⇒ ∇∇∇× (∇∇∇×A)− 1

c

∂

∂t

(

−∇∇∇φ− 1
c

∂A
∂t

)

=
4π

c
j

−∆A+
1
c2

∂2A
∂t2 +∇∇∇(

1
c

∂φ

∂t
+∇∇∇.A) =

4π

c
j, (B.4)
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where we used the vector calculus identities ∇∇∇.∇∇∇φ = ∆φ and ∇∇∇× (∇∇∇×A) = ∇∇∇(∇∇∇.A)−∆A. Equations
(B.3) and (B.4) are thus equivalent to the Maxwell equations, and valid for each and any gauge trans-
formations of the gauge field A. This makes for redundant degrees of freedom, which can be restricted
by the choice of a gauge. Among the many existing gauges, two of the most prominent ones are the
Coulomb gauge and the Lorenz gauge, respectively

∇∇∇.A = 0, (B.5)

and

1
c

∂φ

∂t
+∇∇∇.A = ∂µAµ = 0. (B.6)

B.1 Coulomb gauge

The use of the Coulomb gauge [see Eq. (B.5)] simplifies Eq. (B.3) into Poisson’s equation

−∆φ = 4πρ, (B.7)

which solution is Poisson’s integral

φ(t,r) =

∫
Ω

dr′
ρ(t,r′)
|r− r′| . (B.8)

The scalar potential φ at time t is thus defined by the instantaneous Coulomb potential created by the
charge density ρ at time t, making for no retardation in the transmission of the scalar potential. This
propriety comes from the removal of the time derivative of Eq. (B.3), and as the time derivatives of
Eq. (B.4) have not been removed retardation effects still show up within the scalar potential in Coulomb
gauge. The Coulomb gauge condition and Poisson’s equation makes for two constraints on the gauge
field A, such that it has only two independent dynamical variables instead of four.

B.2 Lorenz gauge

The use of the Lorenz gauge [see Eq. (B.6)] simplifies Eq. (B.3) and Eq. (B.4) into wave equations,
respectively

−∆φ+
1
c2

∂2φ

∂t2 = ∂µ∂µφ = 4πρ, (B.9)

and

−∆A+
1
c2

∂2A
∂t2 = ∂µ∂µA =

4π

c
j, (B.10)

separating neatly the scalar potential φ and vector potential A. The Lorenz gauge condition makes
for one constraint on the gauge field A, such that it has only three independent dynamical variables
instead of four. As such, the Lorenz gauge does not completely fix the potentials and restricted gauge
transformations of the form A′µ = Aµ −∂µg are still possible for constrained gauge functions such that

∂µ∂µg = 0. (B.11)

Indeed, applying the 4-gradient onto such a gauge field (A′µ) yields

∂µA′µ = ∂µ(A
µ −∂µg)

= ∂µAµ −∂µ∂µg

= ∂µAµ, (B.12)

thus satisfying the Lorenz gauge as long as the gauge function fulfils Eq. (B.11).
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Appendix C

Derivations of covariant Lagrangians

C.1 Lagrangian of a relativistic massive particle

We want to derive the covariant Lagrangian of a relativistic free particle of mass m (see, e.g., Ref. [1]).
Due to translational invariance in time-space it cannot depend on the 4-position x, and due to rotational
invariance it cannot depend on the direction of the 4-velocity u, the only remaining parameter is thus the
norm of the 4-velocity

√
uµuµ, such that L= L(u) = L

(√
uµuµ

)
. The covariant Euler-Lagrange equations

[see Eq. (1.54)] for the massive free particle reduces to
(

d
dτ

∂L

∂uµ

)

µ=0,3
= 0, (C.1)

such that, for µ = 0,3, we have

d
dτ

(

uµ
√

uµuµ

L′(
√

uµuµ)

)

=
L′(c)

c

duµ

dτ
= 0, (C.2)

where L′ is the derivative of the function L with respect to its variable, and we take the norm of the
4-velocity

√
uµuµ = c, which is independent of time, to evaluate the function after differentiation. The

equation of motion of the relativistic free particle is thus

duµ

dτ
= 0, (C.3)

which corresponds, up to a trivial multiplication by the mass of the particle, exactly to the one that
derives from Eq. (1.45) for a particle with vanishing Minkowski force. Considering that this equation
gives no information as to the form of the function L as it does not depend on it, we gain informations by
re-expressing the Lagrangian as a function of the three-dimensional velocity v such that L(v) describes
the same trajectory as before, and must therefore have the same action. The Euler-Lagrange equations
for the free particle are now written as

(
d
dt

∂L

∂vi

)

i=1,3
= 0, (C.4)

which must correspond to the spatial component of Eq. (1.45) for a particle with vanishing Minkowski
force which we rewrite, for i = 1,3, as

dm ui

dτ
= γ

d γ
(
v(t)

)
m vi(t)

dt
= γ

d
dt




m vi(t)
√

1− v2(t)
c2



= 0, (C.5)
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yielding the equality

d
dt

∂L

∂vi

=
d
dt




m vi(t)
√

1− v2(t)
c2



 , (C.6)

such that after integrations we have

L(v) =−mc2

√

1− v2

c2
, (C.7)

where the prefactor mc2 is kept arbitrarily to recover the correct Lagrangian for a free particle in the
non-relativistic limit, which corresponds to the kinetic energy (up to the rest mass energy). We can now
determine the structure of our covariant Lagrangian, since any infinitesimal action has to be the same for
a given trajectory whatever the variables we express the Lagrangian with, such that

L(v)dt = −mc2

√

1− v2

c2 dt

= −mc
√

γ2c2 − γ2v2dτ

= −mc
√

uµuµdτ

= L(u)dτ, (C.8)

and we can write the covariant Lagrangian of a free particle as

Lfree(u) =−mc
√

uµuµ, (C.9)

where we recover correctly the dependency in
√

uµuµ.

C.2 Interaction Lagrangian of a relativistic massive charged particle

We want to derive the covariant interaction Lagrangian of a particle of mass m and charge q within an
external electromagnetic field (see, e.g., Ref. [1]). Once inserted within the Euler-Lagrange equations the
Lagrangian must yield the equation of motion taking in account the Lorentz electromagnetic force, which
is linear in the fields E and B and the velocity of the particle v. Considering that the electromagnetic
field is not a Lorentz invariant quantity, the interaction term of the covariant Lagrangian must depend on
the gauge field A directly. We propose as an interaction term, up to an undetermined constant prefactor
Cst, Lint = Cst Aµuµ, where Aµ is only an external potential on which the Lagrangian does not depend
dynamically. The Lagrangian of a massive charged particle is thus

L(x,u) =−mc
√

uµuµ +Cst Aµ(x)u
µ. (C.10)

We evaluate the two terms of the covariant Euler-Lagrange equations [see Eq. (1.54)] for such a massive
charged particle

∂L

∂xµ
= Cst

∂Aν

∂xµ
uν (C.11)

− d
dτ

∂L

∂uµ
= m

duµ

dτ
−Cst

dAµ

dτ
= m

duµ

dτ
−Cst

∂Aµ

∂xν
uν, (C.12)

such that, considering that the sum of the two previous terms must vanish, we have

m
duµ

dτ
= Cst

(
∂Aµ

∂xν
− ∂Aν

∂xµ

)

uν

= Cst
(
∂νAµ −∂µAν

)
uν

= Cst Fνµ uν, (C.13)
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where we recovered the covariant field strength tensor

(
∂νAµ −∂µAν

)
=
(
Fνµ

)
=
(
gνλgµσ Fλσ

)
=







0 Ex Ey Ez

−Ex 0 −Bz By

−Ey Bz 0 −Bx

−Ez −By Bx 0






. (C.14)

The prefactor Cst can now be extracted by calculation of any component of this equation of motion. We
use µ = 0

m
du0

dτ
= Cst Fν0uν = Cst γ(−Exvx −Eyvy −Ezvz) =− Cst γE.v. (C.15)

From a comparison to the Lorentz force from Eq. (1.51), we extract Cst =−q/c such that the covariant
Lagrangian of a particle of mass m and charge q within an external electromagnetic field determined by
the gauge field A is written as

L(x,u) =−mc
√

uµuµ −
q

c
Aµ(x)u

µ. (C.16)

C.3 Electromagnetic field interaction Lagrangian density

We want to derive the covariant interaction Lagrangian density of an electromagnetic field (see, e.g.,
Ref. [1]). Considering that the usual current j can be written as

(
ji = qvi

)

i=1,3, we propose as an inter-
action term

Lint(A,∂A,x,u) =−1
c

Aµ(x) jµ(x), (C.17)

which corresponds to an extension of Eq. (C.16) using the 4-current. To test the validity of this interaction
Lagrangian density, we want to check if it correctly yields the same action as the interaction Lagrangian
[see Eq. (C.16)] for a moving charged particle. As a first step, we express the 4-current j for one charged
particle of charge q moving with a velocity v, its position as a function of time t being denoted r1(t). At
the 4-position x corresponding to the time t = x0/c and position r we have

j(x) =

(
cρ(t,r)
j(t,r)

)

= qδ(3)
(
r− r1(t)

)
(

c

v(t)

)

=
q

γ
δ(3)
(
r− r1(t)

)
u(x0)

=
q

γ
δ(3)
(
r− r1(t)

)
∫

dx0
1δ
(
x0 − x0

1

)
u(x0

1)

=
q

γ
δ(3)
(
r− r1(t)

)
∫

dτ1 cγ δ
(
x0 − x0

1(τ1)
)
u(x0

1(τ1))

= c q

∫
dτ1 δ(4)

(
x− x1(τ1)

)
u(τ1) (C.18)

where we first used the definitions of the charge density [see Eq. (1.28)] and current density [see Eq. (1.30)]
before re-writing the 4-velocity as an integral over the proper time τ1 of the particle. We now express the
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action of the interaction Lagrangian density, such that

Sint =
1
c

∫
dx

(

−1
c

Aµ(x) jµ(x)

)

= − 1
c2

∫
dx Aµ(x) c

∫
dτ1 δ(4)

(
x− x1(τ1)

)
uµ(τ1)

= −q

c

∫
dτ1

(∫
dx Aµ(x) δ(4)

(
x− x1(τ1)

)
)

uµ(τ1)

= −q

c

∫
dτ1 Aµ(x1(τ1))u

µ(τ1)

=

∫
dτ1

(

−q

c
Aµ(x1(τ1))u

µ(τ1)
)

, (C.19)

which is the exact definition of the action of the interaction Lagrangian from Eq. (C.16), thus validating
the interaction Lagrangian density proposed. We show explicitly the gauge invariance of this interaction
Lagrangian density through

S′int =
1
c

∫
dx Lint(A

′,∂A′,x,u)

=
1
c

∫
dx

(

−1
c

A′
µ jµ

)

=
1
c

∫
dx

(

−1
c

Aµ jµ

)

+
1
c

∫
dx

(
1
c

∂µg jµ

)

= Sint −
1
c

∫
dx

(
1
c

g ∂µ jµ

)

+0

= Sint, (C.20)

where we expressed A′µ using the gauge transformation A′µ = Aµ −∂µg [see Eq. (1.38)] before doing an
integration by parts, with the surface term vanishing because it is proportional to the 4-current which is an
integrable quantity and must therefore vanish at the boundaries of the available space, and the remaining
integral vanishing due to the continuity equation of the 4-current [see Eq. (1.37)].

C.4 Electromagnetic field radiation Lagrangian density

We want to derive the covariant radiation Lagrangian density of an electrodynamic field (see, e.g.,
Ref. [1]). We start from the decomposition of the electromagnetic Lagrangian density

Lem(A,∂A,x,u) = Lrad(∂A,x)+Lint(A,x,u)

= Lrad(∂A,x)− q

c
Aµ(x)u

µ, (C.21)

such that inserting this Lagrangian density within the Euler-Lagrange equations [see Eq. (1.63)] must
yield the equations of motion for the gauge field A [see Eq. (1.42)]. We first rewrite these equations in
compact form with indices suiting Eq. (1.63), abandoning Einstein’s summation convention for the sake
of clarity during the rest of this section.

3

∑
ν=0

∂νFνµ =
4π

c
jµ, (C.22)
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and then insert the expression of our electromagnetic Lagrangian density Eq. (C.21) within the Euler-
Lagrange equations such that

∂Lem

∂Aµ
−

3

∑
ν=0

∂ν ∂Lem

∂(∂νAµ)
= 0 ⇐⇒

3

∑
ν=0

∂ν ∂Lrad

∂(∂νAµ)
=

∂Lint

∂
(

∑3
α=0 Aα gαµ

)

3

∑
ν=0

∂ν ∂Lrad

∂(∂νAµ)
=

∂Lint

∂Aµ

1
gµµ

3

∑
ν=0

∂ν ∂Lrad

∂(∂νAµ)
= −1

c
jµ 1

gµµ
(C.23)

as only the radiation part depends dynamically on derivatives of the gauge field, and only the interaction
part depends dynamically on the gauge field itself, and where we made use of the metric tensor to
raise indices and then kept only the non-zero coefficients of the metric tensor. The right-hand sides
of Eq. (C.22) and Eq. (C.23) are equal up to a coefficient −4π gµµ, such that the radiation Lagrangian
density must verify

3

∑
ν=0

∂ν ∂Lrad

∂(∂νAµ)
=− 1

4π gµµ

3

∑
ν=0

∂νFνµ. (C.24)

As the field strength tensor is Fνµ = ∂νAµ−∂µAν, it is linear in the derivative of the gauge field. Therefore,
this equality requires Lrad to be quadratic in the derivative of the gauge field in order for its derivative
to be proportional to the field strength tensor. In order to have a radiation Lagrangian density which is
Lorentz invariant, gauge invariant and quadratic in the derivative of the gauge field, we propose, up to an
undetermined constant prefactor Cst, Lrad = Cst FλσFλσ. We have thus

FλσFλσ =
3

∑
λ,σ=0

(
∂λAσ −∂σAλ

)(
∂λAσ −∂σAλ

)

=
3

∑
λ,σ=0

(
∂λAσ −∂σAλ

) 3

∑
α,β=0

(
∂αAβ −∂βAα

)
gαλgβσ

=
3

∑
λ,σ=0

(
∂λAσ −∂σAλ

)2
gλλgσσ, (C.25)

where we once more made use of the metric tensor to raise indices and then kept only the non-zero
coefficients of the metric tensor, such that for any ν and µ between 0 and 3 both

(
∂µAν − ∂νAµ

)2
and

(
∂νAµ − ∂µAν

)2
have non-vanishing derivatives with respect to (∂νAµ). Therefore, for any µ between 0

and 3 we have

3

∑
ν=0

∂ν ∂Lrad

∂(∂νAµ)
=

3

∑
ν=0

∂ν Cst
[

2
(
∂νAµ −∂µAν

)
−2
(
∂µAν −∂νAµ

)]

gννgµµ

= Cst 4 gµµ

3

∑
ν=0

∂νgνν

(
∂νAµ −∂µAν

)

= Cst 4 gµµ

3

∑
ν=0

∂ν Fνµ, (C.26)

The equality of Eq. (C.24) and Eq. (C.26) determines the prefactor Cst, such that Cst =−gµµ/(16π gµµ)
= −1/(16π) due to the structure of the metric tensor. We thus have the covariant radiation Lagrangian
density

Lrad(∂A,x) = − 1
16π

FµνFµν. (C.27)



122 APPENDIX C. DERIVATIONS OF COVARIANT LAGRANGIANS

C.5 Matter Lagrangian density

We want to derive the covariant matter Lagrangian density (see, e.g., Ref. [1, 2]). The insertion of Lmat

into the Euler-Lagrange equations [see Eq. (1.68)] must yield the Dirac equation [see Eq. (D.15)], which
we rewrite here

0 =
(
−i~cγµ∂µ +mc2) ψ, (C.28)

and as this equation does not depends on ψ̄ nor on its derivative, it is enough to consider as a matter
Lagrangian density

Lmat(ψ, ψ̄) = ψ̄
(
−i~cγγγµ∂µ +mc2I4

)
ψ, (C.29)

such that the Euler-Lagrange equations [see Eq. (1.68)] yield

∂Lmat

∂ψ̄
−∂ν ∂Lem

∂(∂νψ̄)
= 0 ⇐⇒ 0 =

∂Lmat

∂ψ̄

0 =
(
−i~cγγγµ∂µ +mc2I4

)
ψ, (C.30)

as the matter Lagrangian density depends only on ψ̄ and ψ and not on their derivatives, thus recovering
correctly the Dirac equation as the equation of motion for the Dirac field ψ.



BIBLIOGRAPHY 123

Bibliography

[1] M. Reiher and A. Wolf, Relativistic Quantum Chemistry: The Fundamental Theory of Molecular

Science (WILEY-VCH, 2009).

[2] F. Gross, Relativistic Quantum Mechanics and Field Theory (Wiley-VCH Verlag GmbH & Co.
KGaA, 2004).



124 BIBLIOGRAPHY



Appendix D

Derivation of the Dirac equation

We want to derive the Dirac equation (see, e.g.,i Ref. [1, 2]). This equation can be derived starting from
an ansatz containing first order derivatives in time and space to ensure covariance,

i~
∂

∂t
Ψ =

(
cααα.p+βββmc2) Ψ, (D.1)

where p =−i~∇∇∇ is the three-dimensional momentum operator and writing ααα as

ααα =





ααα1

ααα2

ααα3



 , (D.2)

such that this ansatz features four matrices as parameters, (αααi)(i=1,3) and βββ. These matrices have to
be Hermitian in order for the eigenvalues of this equation to describe real-valued energies of particles.
Considering that the energy-momentum dispersion relation [see Eq. (1.24)] must be satisfied by this
equation, conditions on these parameters can be determined through

(
p2c2 +m2c4) Ψ = E2 Ψ = −~

2 ∂2

∂t2 Ψ

= i~
∂

∂t

(
cααα.p+βββmc2) Ψ

=
(
cααα.p+βββmc2

)
i~

∂

∂t
Ψ

=
(
cααα.p+βββmc2)2

Ψ, (D.3)

which must hold for all and any function Ψ. We have thus, writing the sums explicitly for the sake of
clarity,

3

∑
i=1

(pi)
2c2 +m2c4 =

(
3

∑
i=1

cαααi pi +βββmc2

)2

= βββ
2
m2c4 +

3

∑
i, j=1

c2αααiααα j pi p j +
3

∑
i=1

c
(
αααiβββ+βββαααi

)
pimc2

= βββ
2
m2c4 +

1
2

3

∑
i, j=1

c2
(
αααiααα j +ααα jαααi

)
pi p j +

3

∑
i=1

c
(
αααiβββ+βββαααi

)
pimc2. (D.4)

This equation yields constraints on the parameters (αααi)(i=1,3) and βββ, such that

βββ
2 = 1 ⇐⇒ βββ = βββ

−1, (D.5)
(
αααiααα j +ααα jαααi

)

i=1,3 = 2δi j =⇒
(
αααi
)2

i=1,3 = 1, (D.6)
(
αααiβββ+βββαααi

)

i=1,3 = 0. (D.7)
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These constraints allow us to determine properties of these four matrices. Considering that they are
Hermitian matrices, the equations

(
αααi
)2

i=1,3 = 1 [see Eq. (D.6)] and βββ
2 = 1 [see Eq. (D.5)] yields that

eigenvalues of both ααα′s and βββ matrices are necessarily +1 or −1. Furthermore, by multiplying Eq. (D.7)
by βββ

−1 from the left, we have for i = 1,3

αααiβββ+βββαααi = 0 ⇐⇒ βββ
−1

αααiβββ+βββ
−1

βββαααi = 0

βββ
−1

αααiβββ+αααi = 0

αααi =−βββ
−1

αααiβββ

αααi =−βββαααiβββ (D.8)

where the last line makes use of βββ = βββ
−1 [see Eq. (D.5)]. Taking the trace of Eq. (D.8) yields

Tr
[
αααi
]

= Tr
[
−βββαααiβββ

]

= −Tr
[
βββαααiβββ

]

= −Tr
[
αααiββββββ

]

= −Tr
[
αααi
]
, (D.9)

such that necessarily Tr
[
αααi
]
= 0. In the same way, by multiplying Eq. (D.7) by (αααi)−1 from the left, we

have for i = 1,3

αααiβββ+βββαααi = 0 ⇐⇒ (αααi)−1αααiβββ+(αααi)−1βββαααi = 0

βββ+(αααi)−1βββαααi = 0

βββ =−(αααi)−1βββαααi

βββ =−αααiβββαααi (D.10)

where the last line makes use of αααi = (αααi)−1 [see Eq. (D.6)]. Taking the trace of Eq. (D.10) yields

Tr [βββ] = Tr
[
−αααiβββαααi

]

= −Tr
[
αααiβββαααi

]

= −Tr
[
βββαααiαααi

]

= −Tr [βββ] , (D.11)

such that necessarily Tr [βββ] = 0. The fact that all four Hermitian matrices have vanishing traces implies
that they each have an equal number of positive and negative eigenvalues, which means that these matri-
ces are of an even dimension. We may consider dimension two, where we know exactly four independent
Hermitian matrices forming a basis of the vector-space of 2× 2 matrices, the identity matrix of order 2
and the three Pauli matrices (σσσ1,σσσ2,σσσ3), corresponding respectively to

I2 =

(
1 0
0 1

)

and σσσ1 =

(
0 1
1 0

)

, σσσ2 =

(
0 −i

i 0

)

, σσσ3 =

(
1 0
0 −1

)

. (D.12)

but as only the three Pauli matrices possess a vanishing trace, one cannot find four independent 2× 2
matrices fulfilling the constraints from Eq. (D.5) to Eq. (D.7). The next possible dimension is four, with
a vector-space of 4× 4 matrices being described by a basis of sixteen independent Hermitian matrices,
among which one can find four independent 4× 4 matrices fulfilling these constraints. The standard
representation of the Dirac equation [3, 4] uses the four following 4×4 matrices

ααα1 =

(
0 σσσ1

σσσ1 0

)

, ααα2 =

(
0 σσσ2

σσσ2 0

)

, ααα3 =

(
0 σσσ3

σσσ3 0

)

and βββ =

(
I2 0
0 −I2

)

, (D.13)



127

written using the 2× 2 matrices of Eq. (D.12) and such that these four matrices correctly satisfy the
constraints from Eq. (D.5) to Eq. (D.7). The Dirac equation can be recast into a covariant formalism
using the 4-gradient [see Eq. (1.17)] such that it becomes

i~
∂

∂t
Ψ =

(
cααα.p+βββmc2) Ψ ⇐⇒ 0 =

(

−i~
∂

∂t
− i~cααα.∇∇∇+βββmc2

)

Ψ

0 =
(
−i~c∂0 − i~cαααi∂i +βββmc2

)
Ψ, (D.14)

or, by multiplying from the left by βββ

0 =
(
−i~cβββ∂0 − i~cβββαααi∂i +mc2I4

)
Ψ

0 =
(
−i~cγγγµ∂µ +mc2I4

)
Ψ, (D.15)

where we defined for i = 1,3

γγγ0 = βββ =

(
I2 0
0 −I2

)

and γγγi = βββαααi =

(
0 σσσi

−σσσi 0

)

. (D.16)
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Appendix E

Hartree and exchange energies for
two-electron systems

We want to prove some simple results on ground-state two-electrons systems by making use of the
Kramers symmetry [see section (2.1.2)], such that the two electrons are described by two spinors forming
a Kramers’ pair.

E.1 Coulomb interaction

E.1.1 Hartree energy

We start with the expression of the Coulomb Hartree energy as

EC
H = +

1
2

∫∫
Ω

1
r12

2

∑
i, j=1

ψ†
i (r1)I4ψi(r1) ψ†

j(r2)I4ψ j(r2) dr1dr2

= +
1
2

∫∫
Ω

1
r12

(

ψ†
1(r1)ψ1(r1)

[

ψ†
1(r2)ψ1(r2)+ψ†

1(r2)K
†K ψ1(r2)

]

+ψ†
1(r1)K

†K ψ1(r1)
[

ψ†
1(r2)ψ1(r2)+ψ†

1(r2)K
†K ψ1(r2)

]
)

dr1dr2

= +
1
2

∫∫
Ω

1
r12

4 ψ†
1(r1)ψ1(r1) ψ†

1(r2)ψ1(r2) dr1dr2, (E.1)

where we used Kramers’ time inversion operator [see Eq. (2.44)], such that K †K = I4.

E.1.2 Exchange energy

We continue with the expression of the Coulomb exchange energy as

EC
X = −1

2

∫∫
Ω

1
r12

2

∑
i, j=1

ψ†
i (r1)I4ψ j(r1) ψ†

j(r2)I4ψi(r2) dr1dr2

= −1
2

∫∫
Ω

1
r12

(

ψ†
1(r1)ψ1(r1) ψ†

1(r2)ψ1(r2)+ψ†
1(r1)K

†K ψ1(r1) ψ†
1(r2)K

†K ψ1(r2)

+(K ψ1)
†(r1)ψ1(r1) ψ†

1(r2)(K ψ1)(r2)+ψ†
1(r1)(K ψ1)(r1) (K ψ1)

†(r2)ψ1(r2)

)

dr1dr2

= −1
2

∫∫
Ω

1
r12

2 ψ†
1(r1)ψ1(r1) ψ†

1(r2)ψ1(r2) dr1dr2, (E.2)
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with

ψ†
1(K ψ1) =

(

ψLα∗
1 ψ

Lβ∗
1 ψSα∗

1 ψ
Sβ∗
1

)








−ψ
Lβ∗
1

ψLα∗
1

−ψ
Sβ∗
1

ψSα∗
1








= 0, (E.3)

such that we correctly find that EC
x =− 1

2EC
H for two electrons described by one Kramers pair.

E.2 Gaunt interaction

E.2.1 Hartree energy

We start with the expression of the Gaunt Hartree energy as

EG
H = +

1
2

∫∫
Ω

1
r12

2

∑
i, j=1

ψ†
i (r1)ααα1ψi(r1) . ψ†

j(r2)ααα2ψ j(r2) dr1dr2

= −1
2

∫∫
Ω

1
r12

(

ψ†
1(r1)ααα1ψ1(r1) . ψ†

1(r2)ααα2ψ1(r2)+ψ†
1(r1)K

†ααα1K ψ1(r1) . ψ†
1(r2)K

†ααα2K ψ1(r2)

+ψ†
1(r1)K

†ααα1K ψ1(r1) . ψ†
1(r2)ααα2ψ1(r2)+ψ†

1(r1)ααα1ψ1(r1) . ψ†
1(r2)K

†ααα2K ψ1(r2)

)

dr1dr2

= −1
2

∫∫
Ω

1
r12

(

ψ†
1(r1)ααα1ψ1(r1) . ψ†

1(r2)ααα2ψ1(r2)+ψ†
1(r1)ααα1ψ1(r1) . ψ†

1(r2)ααα2ψ1(r2)

−ψ†
1(r1)ααα1ψ1(r1) . ψ†

1(r2)ααα2ψ1(r2)−ψ†
1(r1)ααα1ψ1(r1) . ψ†

1(r2)ααα2ψ1(r2)

)

dr1dr2

= 0, (E.4)

where, using the relations of the Kramers operator with the ααα matrices [see Eq. (2.53)], we correctly find
that for the Hartree energy for the Gaunt interaction vanishes. It corresponds, in all generality, to the
vanishing of the current-current direct interaction for any closed-shell system.

E.2.2 Exchange energy

We continue with the expression of the Gaunt exchange energy as

EG
X = −1

2

∫∫
Ω

1
r12

2

∑
i, j=1

ψ†
i (r1)ααα1ψ j(r1) . ψ†

j(r2)ααα2ψi(r2) dr1dr2

= −1
2

∫∫
Ω

1
r12

(

ψ†
1(r1)ααα1ψ1(r1) . ψ†

1(r2)ααα2ψ1(r2)+ψ†
1(r1)K

†ααα1K ψ1(r1) . ψ†
1(r2)K

†ααα2K ψ1(r2)

+ψ†
1K †ααα1(r1)ψ1(r1) . ψ†

1(r2)ααα2K ψ1(r2)+ψ†
1(r1)ααα1K ψ1(r1) . ψ†

1(r2)K
†ααα2ψ1(r2)

)

dr1dr2

= −1
2

∫∫
Ω

1
r12

2

(

ψ†
1(r1)ααα1ψ1(r1) . ψ†

1(r2)ααα2ψ1(r2)+ψ†
1(r1)ααα1K ψ1(r1) . ψ†

1(r2)ααα2K ψ1(r2)

)

dr1dr2,

(E.5)

which does not vanish but corresponds to current-current exchange interactions between the two electrons
described by one Kramers pair.



Appendix F

Four-component Dirac-Hartree-Fock

F.1 One-electron Fock matrix

We wish to express the one-electron Fock matrix in four-component formalism for the Dirac Hamiltonian
using a scalar Gaussian basis set (see, e.g., Ref. [1]). We first rewrite the one-electron Dirac Hamiltonian
hD [see Eq. (2.57)] in explicit 4 × 4 matrix form after having removed the mass energy term of the
electron, such that

hD
−mc2 = hD −mc2I4 =







V 0 cΠz cΠ−
0 V cΠ+ −cΠz

cΠz cΠ− V −2mc2 0
cΠ+ −cΠz 0 V −2mc2







(F.1)

where V is the external scalar potential, and using the notation

Πz =−i~
∂

∂z
and Π± =−i~

(
∂

∂x
±i

∂

∂y

)

. (F.2)

The Dirac equation, shifted by the mass energy term of the electron, is written for a 4-spinor ψp as

hD
−mc2 ψp = ψpεp, (F.3)

such that using the scalar basis set decomposition for a spinor ψp [see Eq. (2.103)] yields







V 0 cΠz cΠ−
0 V cΠ+ −cΠz

cΠz cΠ− V −2mc2 0
cΠ+ −cΠz 0 V −2mc2

















∑
NL
ν=1 aLα

ν χ
L(α)
ν

∑
NL
ν=1 a

Lβ
ν χ

L(β)
ν

∑
NS
ν=1 aSα

ν χ
S(α)
ν

∑
NS
ν=1 a

Sβ
ν χ

S(β)
ν











=











∑
NL
ν=1 aLα

ν χ
L(α)
ν

∑
NL
ν=1 a

Lβ
ν χ

L(β)
ν

∑
NS
ν=1 aSα

ν χ
S(α)
ν

∑
NS
ν=1 a

Sβ
ν χ

S(β)
ν











εp. (F.4)

Following the development from the book of A. Szabo and N. S. Ostlund [2] we want to transform the
integro-differential equation into a pure matrix equation by multiplication by a single Gaussian basis
function χ∗

µ on the left and integrating over the available space. Care has to be taken to consider this
basis function within the spinor structure, i.e. as a four-dimensional vector with only one non-vanishing
component. Using the labels X and Y running over L,S and the labels τ and υ running over α,β, we
write for any 4×4 operator O its matrix element in the scalar basis set

{
χL,χS

}
as OXτYυ

µν for the OXτYυ

operator element. Its decomposition on the scalar basis set is then

OXτYυ
µν = 〈χX(τ)

µ |O|χY(υ)
ν 〉

=
∫

dr
(

χ
X(τ)
µ

)†
O χ

Y(υ)
ν . (F.5)
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In order not to do the work four times we shall consider basis functions for all four components at once,
with 1 ≤ µ1 ≤ NL, 1 ≤ µ2 ≤ NL, 1 ≤ µ3 ≤ NS, 1 ≤ µ4 ≤ NS such that

∫
dr











χ
L(α)
µ1

χ
L(β)
µ2

χ
S(α)
µ3

χ
S(β)
µ4











†







V 0 cΠz cΠ−
0 V cΠ+ −cΠz

cΠz cΠ− V −2mc2 0
cΠ+ −cΠz 0 V −2mc2

















∑
NL
ν=1 aLα

ν χ
L(α)
ν

∑
NL
ν=1 a

Lβ
ν χ

L(β)
ν

∑
NS
ν=1 aSα

ν χ
S(α)
ν

∑
NS
ν=1 a

Sβ
ν χ

S(β)
ν











=
∫

dr











χ
L(α)
µ1

χ
L(β)
µ2

χ
S(α)
µ3

χ
S(β)
µ4











†









∑
NL
ν=1 aLα

ν χ
L(α)
ν

∑
NL
ν=1 a

Lβ
ν χ

L(β)
ν

∑
NS
ν=1 aSα

ν χ
S(α)
ν

∑
NS
ν=1 a

Sβ
ν χ

S(β)
ν











εp. (F.6)

Expanding the left-hand side of Eq. (F.6) yields

NL

∑
ν=1

aLα
ν,p

(

V LαLα
µ1ν + c(Πz)

SαLα
µ3ν + c(Π+)

SβLα
µ4ν

)

+
NL

∑
ν=1

a
Lβ
ν,p

(

V
LβLβ

µ2ν + c(Π−)
SαLβ
µ3ν − c(Πz)

SβLβ
µ4ν

)

+
NS

∑
ν=1

aSα
ν,p

(

c(Πz)
LαSα
µ1ν + c(Π+)

LβSα
µ2ν +V SαSα

µ3ν −2mc2SSαSα
µ3ν

)

+
NS

∑
ν=1

a
Sβ
ν,p

(

c(Π−)
LαSβ
µ1ν − c(Πz)

LβSβ
µ2ν +V

SβSβ
µ4ν −2mc2S

SβSβ
µ4ν

)

, (F.7)

and expanding the right-hand side of Eq. (F.6) yields

(
NL

∑
ν=1

aLα
ν,p SLαLα

µ1ν +
NL

∑
ν=1

a
Lβ
ν,p S

LβLβ
µ2ν +

NS

∑
ν=1

aSα
ν,p SSαSα

µ3ν +
NS

∑
ν=1

a
Sβ
ν,p S

SβSβ
µ4ν

)

εp, (F.8)

such that we may rewrite this system of equations, which is a four-component version of the Roothaan
equations in scalar basis set, in a matrix form as

FDA = SAεεε (F.9)

with the one-electron four-component Fock matrix written as

FD =








VLαLα 0 cΠΠΠLαSα
z cΠΠΠ

LαSβ
−

0 VLβLβ cΠΠΠ
LβSα
+ −cΠΠΠLβSβ

z

cΠΠΠSαLα
z cΠΠΠ

SαLβ
− VSαSα −2mc2SSαSα 0

cΠΠΠ
SβLα
+ −cΠΠΠSβLβ

z 0 VSβSβ −2mc2SSβSβ








(F.10)

where all α and β have been kept for clarity but may be removed due to the use of the same basis set for
each “spin” component. The eigenvectors matrix (with each column corresponding to the coefficients of
an eigenfunction ψp) is written as

A =







aLα
1,1 ... aLα

1,2(NL+NS)
...

. . .
...

a
Sβ
NS,1

... a
Sβ
NS,2(NL+NS)






, (F.11)
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emphasizing the fact that we use 2(NL +NS) basis functions even though there is only NL +NS which
are different front one another. We thus describe 2(NL+NS) eigenvectors, 2NL positive-energy ones and
2NS negative-energy ones. The overlap matrix is written as

S =







SLαLα 0 0 0
0 SLβLβ 0 0
0 0 SSαSα 0
0 0 0 SSβSβ







with SXτXτ =






SXτXτ
1,1 ... SXτXτ

1,NX

...
. . .

...
SXτXτ

NX ,1
... SXτXτ

NX ,NX




 , (F.12)

where there is no overlap between basis functions which do not describe the same component, and the
diagonal matrix of orbital energies is written as

εεε =






ε1 0
. . .

0 ε2(NL+NS)




 . (F.13)

Implementation technicalities

In practice, within an implementation the eigenvectors matrix would appear as

A =






a1,1 ... a1,2(NL+NS)
...

. . .
...

a2(NL+NS),1 ... a2(NL+NS),2(NL+NS)




 , (F.14)

describing 2(NL +NS) eigenvectors ψp written as

ψp =











∑
NL
ν=1 aν,pχ

L(α)
ν

∑
2NL
ν=NL+1 aν,pχ

L(β)
ν

∑
2NL+NS
ν=2NL+1 aν,pχ

S(α)
ν

∑
2(NL+NS)
ν=2NL+NS+1 aν,pχ

S(β)
ν











, (F.15)

where we removed all “spin” labels as all information is contained within the number ν of aν,p.

F.2 Two-electron Fock matrix

We wish to express the two-electron Fock matrix in four-component formalism for the Dirac-Coulomb-
Gaunt Hamiltonian using a scalar Gaussian basis set (see, e.g., Ref. [1]).

F.2.1 Coulomb interaction

We start with the two-electron Fock matrix for the Coulomb interaction. We first rewrite the 4-spinor ψp

such that

ψp = p =











∑
NL
ν=1 aLα

ν χ
L(α)
ν

∑
NL
ν=1 a

Lβ
ν χ

L(β)
ν

∑
NS
ν=1 aSα

ν χ
S(α)
ν

∑
NS
ν=1 a

Sβ
ν χ

S(β)
ν











(F.16)
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The indices p,q,r,s denoting 4-spinors and the indices µ,ν,κ,λ denoting Gaussian basis functions, the
general two electrons integral for the Coulomb interaction is written as

(
pq | rs

)
=

∫
dr1

∫
dr2 ψ†

p(r1)ψq(r1)
1

|r1 − r2|
ψ†

r (r2)ψs(r2)

= ∑
X ,Y,τ,υ

∑
µ,ν,κ,λ

(
aXτ

µ,p

)∗
aXτ

ν,q

(
aYυ

κ,r

)∗
aYυ

λ,s

∫
dr1

∫
dr2

(

χ
X(τ)
µ

)†
(r1)χ

X(τ)
ν (r1)

1
|r1 − r2|

(

χ
Y (υ
κ

)†
(r2)χ

Y (υ)
λ (r2)

= ∑
X ,Y,τ,υ

∑
µ,ν,κ,λ

(
aXτ

µ,p

)∗
aXτ

ν,q

(
aYυ

κ,r

)∗
aYυ

λ,s

(
µX(τ)νX(τ) | κY (υ)λY (υ)

)
. (F.17)

where X and Y run over {L,S} and τ and υ run over {α,β}. Writing (FC)XτYυ
µν the general formula for a

specific matrix element of a specific block, we have for the diagonal blocks

(FC)XτXτ
µν =

N

∑
p=1

[(
µX(τ)νX(τ) | pp

)
−
(

µX(τ)p | pνX(τ)
)]

= ∑
Y,υ

∑
κ,λ

[ N

∑
p=1

aY υ
λ,p

(
aY υ

κ,p

)∗ ] (
µX(τ)νX(τ) | κY (υ)λY (υ)

)

−∑
κ,λ

[ N

∑
p=1

aXτ
λ,p

(
aXτ

κ,p

)∗ ] (
µX(τ)λX(τ) | κX(τ)νX(τ)

)

= ∑
Y,υ

∑
κ,λ

DYυYυ
λ,κ

(
µX(τ)νX(τ) | κY(υ)λY (υ)

)

−∑
κ,λ

DXτXτ
λ,κ

(
µX(τ)λX(τ) | κX(τ)νX(τ)

)
, (F.18)

writing for a system containing N electrons the density matrix elements as

DXτYυ
λ,κ =

N

∑
p=1

aXτ
λ,p

(
aY υ

κ,p

)∗
, (F.19)

with the sum running over the N lower positive-energy eigenfunctions. For τ 6= υ, we have

(FC)XτXυ
µν =

N

∑
p=1

[

0−
(

µX(τ)p | pνX(υ)
)]

= −∑
κ,λ

DXτXυ
λ,κ

(
µX(τ)λX(τ) | κX(υ)νX(υ)

)
. (F.20)

For X 6= Y , we have

(FC)XτY τ
µν =

N

∑
p=1

[

0−
(

µX(τ)p | pνY (τ)
)]

= −∑
κ,λ

DXτYτ
λ,κ

(
µX(τ)λX(τ) | κY (τ)νY (τ)

)
. (F.21)

For X 6= Y and τ 6= υ, we have

(FC)XτYυ
µν =

N

∑
p=1

[

0−
(

µX(τ)p | pνY (υ)
)]

= −∑
κ,λ

DXτYυ
λ,κ

(
µX(τ)λX(τ) | κY (υ)νY (υ)

)
. (F.22)
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F.2.2 Gaunt interaction

We first show that the two-electron Fock matrix for the Gaunt interaction can be expressed using the
same two-electron integral as for the Coulomb interaction [see Eq. (F.17)]. The two-electron integral for
the Gaunt interaction is written as

(
pαααq | rαααs

)
, (F.23)

such that we have in a two-spinor form

ψ†
pαααψq =

(
ψL

p

ψS
p

)†(
0 σσσ

σσσ 0

)(
ψL

q

ψS
q

)

=
(
ψL

p

)†
σσσψS

q +
(
ψS

p

)†
σσσψL

q . (F.24)

For each of the three Pauli matrices we have

(
ψX

p

)†
σ1ψY

q =

(

ψXα
p

ψ
Xβ
p

)†(
0 1
1 0

)(

ψYα
q

ψ
Yβ
q

)

=
(

ψXβ
p

)∗
ψYα

q +
(
ψXα

p

)∗
ψYβ

q , (F.25)

(
ψX

p

)†
σ2ψY

q =

(

ψXα
p

ψ
Xβ
p

)†(
0 −i

i 0

)(

ψY α
q

ψ
Yβ
q

)

= i
(

ψXβ
p

)∗
ψY β

q − i
(
ψXα

p

)∗
ψYβ

q , (F.26)

(
ψX

p

)†
σ3ψY

q =

(

ψXα
p

ψ
Xβ
p

)†(
1 0
0 −1

)(

ψY α
q

ψ
Yβ
q

)

=
(
ψXα

p

)∗
ψYα

q −
(

ψXβ
p

)∗
ψY β

q . (F.27)

We then rewrite the two-electron integral for the Gaunt interaction as

(
pαααq | rαααs

)

=
(

pLβqSα + pLαqSβ + pSβqLα + pSαqLβ | rLβsSα + rLαsSβ + rSβsLα + rSαsLβ
)

−
(

pLβqSα − pLαqSβ + pSβqLα − pSαqLβ | rLβsSα − rLαsSβ + rSβsLα − rSαsLβ
)

+
(

pLαqSα − pLβqSβ + pSαqLα − pSβqLβ | rLαsSα − rLβsSβ + rSαsLα − rSβsLβ
)

= 2
(

pLβqSα + pSβqLα | rLαsSβ + rSαsLβ
)

+2
(

pLαqSβ + pSαqLβ | rLβsSα + rSβsLα
)

+
(

pLαqSα − pLβqSβ + pSαqLα − pSβqLβ | rLαsSα − rLβsSβ + rSαsLα − rSβsLβ
)

,

(F.28)

which indeed corresponds to combinations of the same two-electron integrals as for the Coulomb in-
teraction. Writing (FG)XτYυ

µν the general formula for a specific matrix element of a specific block, and
considering X 6= Y and τ 6= υ, we have for the diagonal elements

(FG)XτXτ
µν = −

N

∑
p=1

[

0−
(

µX(τ)αααp | pααανX(τ)
)]

= −
(

−∑
κ,λ

(

2DYυYυ
λ,κ +DYτYτ

λ,κ

) (
µX λY | κY νX

)

)

, (F.29)
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where we removed the (”spin”) from the expression to allow factorization. The following formulas
corresponds to all off-diagonal elements, with

(FG)XτXυ
µν = −

N

∑
p=1

[

0−
(

µX(τ)αααp | pααανX(τ)
)]

= −
(

∑
κ,λ

DYτYυ
λ,κ

(
µX λY | κY νX

)

)

, (F.30)

(FG)XτYτ
µν = −

N

∑
p=1

[(
µX(τ)ααανX(τ) | pαααp

)
−
(

µX(τ)αααp | pααανX(τ)
)]

= −
(

∑
κ,λ

[
(

DSτLτ
λ,κ −DSυLυ

λ,κ

) (
µX νY | κLλS

)
+
(

DLτSτ
λ,κ −DLυSυ

λ,κ

) (
µX νY | κSλL

)

−
(

2DYυXυ
λ,κ +DYτXτ

λ,κ

) (
µX λY | κX νY

)

])

, (F.31)

(FG)XτY υ
µν = −

N

∑
p=1

[(
µX(τ)ααανX(τ) | pαααp

)
−
(

µX(τ)αααp | pααανX(τ)
)]

= −
(

∑
κ,λ

[

2DSτLυ
λ,κ

(
µX νY | κLλS

)
+2DLτSυ

λ,κ

(
µX νY | κSλL

)
+DYτXυ

λ,κ

(
µX λY | κX νY

)

])

.

(F.32)
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Appendix G

Coulomb-Breit exchange energy per
particle and exchange hole of the
relativistic homogeneous electron gas

In this appendix, we review the calculation of the Coulomb-Breit exchange energy per particle and the
exchange hole of the relativistic homogeneous electron gas (RHEG) that we used in Chapter 3.

G.1 Coulomb-Breit exchange energy per particle

The Coulomb exchange energy per particle of the RHEG can be straightforwardly calculated by summing
over spins [see Appendix I.1], integrating over each space coordinates in the volume V , and finally
integrating over each wave vector in the volume of the Fermi sphere VkF

εC
x = − 1

2N

V 2

(2π)6

∫∫
VkF

∫∫
V

∑
σ1,σ2=↓,↑

wee(r12) ψ†
k1,σ1

(r1)ψk2,σ2(r1)ψ
†
k2,σ2

(r2)ψk1,σ1(r2) dr1dr2dk1dk2

= − 1
2N(2π)6

∫∫
VkF

∫∫
V

wee(r12) e−ik12·r12
Ek1Ek2 +(k1 ·k2)c

2 + c4

Ek1Ek2

dr1dr2dk1dk2

= − 1
2n(2π)6

∫∫
VkF

w̃ee(k12)
Ek1Ek2 +(k1 ·k2)c

2 + c4

Ek1Ek2

dk1dk2

= −3 kF

4π

(

5
6
+

1
3

c̃2 +
2
3

√

1+ c̃2 arcsinh

(
1
c̃

)

− 1
3

(

1+ c̃2
)2

ln

(

1+
1
c̃2

)

−1
2

(
√

1+ c̃2 − c̃2arcsinh

(
1
c̃

))2
)

, (G.1)

where we have introduced k12 = k1 −k2, k12 = |k12|, w̃ee(k12) = 4π/k2
12 which is the Fourier transform

of the Coulomb interaction potential, and c̃ = c/kF. The final expression in Eq. (G.1) corresponds to the
expression given in Refs. [1, 2]. The Breit exchange energy per particle of the RHEG can be calculated
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in a similar way

εB
x =

1
4N

V 2

(2π)6

∫∫
VkF

∫∫
V

∑
σ1,σ2=↓,↑

wee(r12)

(

ψ†
k1,σ1

(r1)ααα1ψk2,σ2(r1) · ψ†
k2,σ2

(r2)ααα2ψk1,σ1(r2)

+
ψ†

k1,σ1
(r1)(ααα1 · r12)ψk2,σ2(r1) ψ†

k2,σ2
(r2)(ααα2 · r12)ψk1,σ1(r2)

r2
12

)

dr1dr2dk1dk2

=
1

2N(2π)6

∫∫
VkF

∫∫
V

wee(r12) e−ik12·r12
c2

Ek1Ek2

(

Ek2 + c2

Ek1 + c2 k2
1 +

Ek1 + c2

Ek2 + c2 k2
2

)

dr1dr2dk1dk2

=
1

2n(2π)6

∫∫
VkF

w̃ee(k12)
c2

Ek1 Ek2

(

Ek2 + c2

Ek1 + c2 k2
1 +

Ek1 + c2

Ek2 + c2 k2
2

)

dk1dk2

=
3 kF

4π

(

1−2
(

1+ c̃2
)
(

1− c̃2

(

−2 ln(c̃)+ ln
(
1+ c̃2

)

))

+2

(
√

1+ c̃2 − c̃2arcsinh

(
1
c̃

))2
)

, (G.2)

which corresponds to the expression given in Ref. [3]. The sums over spins in Eqs. (G.1) and (G.2) are
explicitly calculated in the Supplementary Information [see Appendix I.1].

G.2 Effective Coulomb-Breit exchange hole

The Coulomb exchange hole can be written as an integral over the wave vectors

nC
x (r12)

= − 1
(2π)6n

∫∫
VkF

e−ik12·r12
Ek1Ek2 +(k1 ·k2)c

2 + c4

Ek1Ek2

dk1dk2

= − 2
16π4n

( [∫ kF

0
k2 j0(kr12)

(

1+
c√

k2 + c2

)

dk

]2

+

[∫ kF

0
k2 j0(kr12)

(

1− c√
k2 + c2

)

dk

]2

+2

[∫ kF

0

k3

√
k2 + c2

j1(kr12)dk

]2 )

, (G.3)

where the last expression is obtained after integration over the angle coordinates, and jν are the spherical
Bessel functions. After repeated integrations by parts, using for a general function f ,

∫ kF

0
kν+2 jν(kr12) f (k)dk =

[
kν+2

r12
jν+1(kr12) f (k)

]kF

0
−

∫ kF

0

kν+2

r12
jν+1(kr12) f ′(k)dk, (G.4)

we obtain the expression of the Coulomb exchange hole as

nC
x (r12) =−9

4
n

1
(kFr12)2

[

j1(kFr12)
2 +(1−λ)Aλ(kFr12)

2 +λBλ(kFr12)
2

]

, (G.5)

where λ = 1/(1+ c̃2) and

Aλ(kFr12) =
∞

∑
ν=0

(2ν+1)!!
(2ν+1)

jν+1(kFr12)

(
λ

kFr12

)ν

,

Bλ(kFr12) =
∞

∑
ν=0

(2ν+1)!!
(2ν+1)

jν+2(kFr12)

(
λ

kFr12

)ν

. (G.6)
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This is the expression given in Refs. [2, 4]. Note that there are some typos in the expression given in
Ref. [4]. We now extend the previous derivation to the case of the Breit interaction. The associated
exchange hole can be expressed as

nB
x (r12) =

1
(2π)6n

∫∫
VkF

e−ik12·r12
c2

Ek1Ek2

(

Ek2 + c2

Ek1 + c2 k2
1 +

Ek1 + c2

Ek2 + c2 k2
2

)

dk1dk2

=
1

2π4n

∫ kF

0
k2

1 j0(k1r12)
(

1− c
√

k2
1 + c2

)

dk1 ×
∫ kF

0
k2

2 j0(k2r12)
(

1+
c

√

k2
2 + c2

)

dk2,(G.7)

which, after using the same integration by parts as before, gives

nB
x (r12) =−9

2
n

1
(kFr12)2

[

− j1(kFr12)
2 +(1−λ)Aλ(kFr12)

2

]

. (G.8)
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Appendix H

Padé approximants

In this appendix, we recall how to calculate diagonal Padé approximants [1] that we used in Chapter 3 to
express the short-range relativistic exchange energy per particle of the relativistic homogeneous electron
gas. For a general (divergent) power series

∞

∑
i=0

αix
i, (H.1)

the diagonal Padé approximant of order M is

PM
M (x) =

∑M
i=0 Aix

i

∑M
i=0 Bixi

, (H.2)

where B0 = 1 without loss of generality, and the other 2M + 1 coefficients Ai and Bi are determined so
that the power expansion of Eq. (H.2) matches the power series of Eq. (H.1) up to order 2M. This gives
the following matrix equation for the determining the coefficients B1,B2, ...,BM








αM αM−1 ... α1

αM+1 αM ... α2
...

...
. . .

...
α2M−1 α2M−2 ... αM















B1

B2
...

BM








=−








αM+1

αM+2
...

α2M







, (H.3)

and then the coefficients A0,A1, ...,AM are simply given by

Ai =
i

∑
j=0

αi− j B j. (H.4)

In order to have some insight as to the convergence of the Padé approximants used in this paper
and noting that the range-separation scheme does not modify the convergence of the large c̃ expansions
we express the full-range Coulomb and Breit exchange energies as large-c̃ expansions to see if they are
Stieltjes series, as prescribed in [1] and make full use of the known analytical expressions of the full-
range interactions. We define FC

x as the opposite of the Coulomb exchange energy per particle with the
asymptotic series

FC
x (c̃) =−εC

x ∼−
∞

∑
i=0

α2i

c̃2i
(H.5)

and FB
x as the Breit exchange energy per particle with the asymptotic series

FB
x (c̃) = εB

x ∼
∞

∑
i=0

β2i

c̃2i
. (H.6)

143



144 APPENDIX H. PADÉ APPROXIMANTS

After careful numerical investigations it appears safe to say that both FC
x and FB

x are analytic in the
cut plane, that both have positive limit values for c̃ → 0 and that both asymptotic series is alternating.
Furthermore −FC

x appears to be Herglotz and thus FC
x is a Stieltjes function. We have thus

lim
M→∞

PM
M+1(c̃)≤ FC

x (c̃)≤ lim
M→∞

PM
M (c̃) (H.7)

and we observe numerically that there is a unique limit to these Padé approximants. On the contrary
−FB

x appears not to be Herglotz and thus FB
x is not a Stieltjes function, yet we observe numerically the

same unique convergence of its Padé approximants. This does not come as a surprise given that the Padé
approximants are known to converge for functions which are not Stieltjes.
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Appendix I

Calculations of the Coulomb-Breit
exchange energy per particle of the
relativistic homogeneous electron gas

In this appendix, we review mathematical steps of the calculation of the full-range and short-range
Coulomb-Breit exchange energy per particle of the relativistic homogeneous electron gas (RHEG) that
we used in Chapter 3 and Appendix G.

A mathematica [1] notebook containing all calculations related to the Padé approximants used to ex-
press the short-range Coulomb-Breit exchange energy per particle of the RHEG [see chapter 3 and
appendix H] has been published [2] and can be downloaded at:

https://aip.scitation.org/doi/suppl/10.1063/1.5049773

Care has to be taken to change its extension from .tex to .nb before opening it with Mathematica.

I.1 Sums over spin combinations

We give here the expressions of the sums over the “spin” combinations that are needed to calculate
the exchange energy per particle of the relativistic homogeneous electron gas for the Coulomb-Breit
electron-electron interaction [Eq. (A1) of the main paper]. The notations used here are the same as in
the main paper [see in particular Section III A]. We first consider the Coulomb contribution, and then the
Breit contribution which contains the ααα matrices and is thus slightly more complex to calculate.

I.1.1 Coulomb contribution

We wish to calculate the expression

∑
σ1,σ2=↓,↑

ψ†
k1,σ1

(r1)ψk2,σ2(r1)ψ
†
k2,σ2

(r2)ψk2,σ1(r2), (I.1)

which means that we have to consider four spin combinations, and contrary to the non-relativistic case
none of these combinations is zero.
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Calculation of the ↑/↑/↑/↑ and ↓/↓/↓/↓ terms for the Coulomb interaction: We consider the
expression of the product of two ↑-spinors

ψ†
k1,↑(r1)ψk2,↑(r1) =

(

ϕ†
k1,↑(r1) χ†

k1,↑(r1)
)( ϕk2,↑(r1)

χk2,↑(r1)

)

=
(

ϕ†
k1,↑(r1)ϕk2,↑(r1)+χ†

k1,↑(r1)χk2,↑(r1)
)

=
1
V

√

Ek1 + c2

2Ek1

√

Ek2 + c2

2Ek2

e−i(k2−k1).r1

(

1+
c2(k1.k2 + i(k1 ×k2)z)

(Ek1 + c2)(Ek2 + c2)

)

, (I.2)

so that

ψ†
k1,↑(r1)ψk2,↑(r1)ψ

†
k2,↑(r2)ψk1,↑(r2)

=
1

V 2 e−i(k2−k1).(r1−r2)

(
(Ek1 + c2)(Ek2 + c2)

4Ek1 Ek2

+
c2(k1.k2)

2Ek1 Ek2

+
c4((k1.k2)

2 +(k1 ×k2)
2
z )

4(Ek1 + c2)(Ek2 + c2)Ek1 Ek2

)

, (I.3)

with the ↓/↓/↓/↓ term being equal to this one.

Calculation of the ↑/↓/↓/↑ and ↓/↑/↑/↓ terms for the Coulomb interaction: We consider the
expression of the product of a ↑-spinor and a ↓-spinor

ψ†
k1,↑(r1)ψk2,↓(r1) =

(

ϕ†
k1,↑(r1) χ†

k1,↑(r1)
)( ϕk2,↓(r1)

χk2,↓(r1)

)

= (ϕ†
k1,↑(r1)ϕk2,↓(r1)+χ†

k1,↑(r1)χk2,↓(r1))

=
1
V

√

Ek1 + c2

2Ek1

√

Ek2 + c2

2Ek2

e−i(k2−k1).r1
c2i((k1 ×k2)x − i(k1 ×k2)y)

(Ek1 + c2)(Ek2 + c2)
, (I.4)

thus giving us

ψ†
k1,↑(r1)ψk2,↓(r1)ψ

†
k2,↓(r2)ψk1,↑(r2)

=
1

V 2 e−i(k2−k1).(r1−r2)

(
c4((k1 ×k2)

2
x +(k1 ×k2)

2
y)

4(Ek1 +mc2)(Ek2 +mc2)Ek1Ek2

)

, (I.5)

with the ↓/↑/↑/↓ term being equal to this one.

Sum of the four Coulomb spin combinations: The sum of the four spin combinations previously
determined is, using the relative variables k12 = k1 −k2 and r12 = r1 − r2,

∑
σ1,σ2=↓,↑

ψ†
k1,σ1

(r1)ψk2,σ2(r1)ψ
†
k2,σ2

(r2)ψk1,σ1(r2)

= 2
1

V 2 e−ik12.r12

(
(Ek1 + c2)(Ek2 + c2)

4Ek1Ek2

+
c2(k1.k2)

2Ek1 Ek2

+
c4((k1.k2)

2 +(k1 ×k2)
2)

4(Ek1 + c2)(Ek2 + c2)Ek1Ek2

)

=
1

V 2 e−ik12.r12
Ek1Ek2 +(k1.k2)c

2 + c4

Ek1Ek2

. (I.6)

I.1.2 Breit contribution

We wish to calculate the expression

∑
σ1,σ2=↓,↑

(

ψ†
k1,σ1

(r1)ααα1ψk2,σ2(r1) . ψ†
k2,σ2

(r2)ααα2ψk1,σ1(r2)

+
ψ†

k1,σ1
(r1)(ααα1.r12)ψk2,σ2(r1) ψ†

k2,σ2
(r2)(ααα2.r12)ψk1,σ1(r2)

r2
12

)

. (I.7)
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We work in two steps: first, we calculate the four spin combinations for the first Gaunt-type part (which
we shall simply refer to as Gaunt in the following), and then we calculate the four spin combinations for
the Gauge retardation part (which we shall simply refer to as Gauge in the following).

Calculation of the ↑/↑/↑/↑ and ↓/↓/↓/↓ terms for the Gaunt part of the Breit interaction: We
consider the expression of the product of two ↑-spinors

ψ†
k1,↑(r1)ααα1ψk2,↑(r1) =

(

ϕ†
k1,↑(r1) χ†

k1,↑(r1)
)( 0 σσσ

σσσ 0

)(
ϕk2,↑(r1)
χk2,↑(r1)

)

=
(

χ†
k1,↑(r1)σσσϕk2,↑(r1)+ϕ†

k1,↑(r1)σσσχk2,↑(r1)
)

=
1
V

√

Ek1 + c2

2Ek1

√

Ek2 + c2

2Ek2

e−i(k2−k1).r1

[

c

Ek1 + c2





(k1)x − i(k1)y

i(k1)x +(k1)y

(k1)z



+
c

Ek2 + c2





(k2)x + i(k2)y

−i(k2)x +(k2)y

(k2)z





]

, (I.8)

thus we have

ψ†
k1,↑(r1)ααα1ψk2,↑(r1).ψ

†
k2,↑(r2)ααα2ψk1,↑(r2)

=
1

V 2

e−ik12.r12

4Ek1 Ek2

(

c2(Ek2 + c2)

(Ek1 + c2)
(2k2

1 − (k1)
2
z )+

c2(Ek1 + c2)

(Ek2 + c2)
(2k2

2 − (k2)
2
z )+2c2(k1)z(k2)z

)

, (I.9)

with the ↓/↓/↓/↓ term equal to this one.

Calculation of the ↑/↓/↓/↑ and ↓/↑/↑/↓ terms for the Gaunt part of the Breit interaction: We
consider the expression of the product of a ↑-spinor and a ↓-spinor

ψ†
k1,↑(r1)ααα1ψk2,↓(r1) =

(

ϕ†
k1,↑(r1) χ†

k1,↑(r1)
)( 0 σσσ

σσσ 0

)(
ϕk2,↓(r1)
χk2,↓(r1)

)

=
(

χ†
k1,↑(r1)σσσϕk2,↓(r1)+ϕ†

k1,↑(r1)σσσχk2,↓(r1)
)

=
1
V

√

Ek1 + c2

2Ek1

√

Ek2 + c2

2Ek2

e−i(k2−k1).r1




c

Ek1 + c2





(k1)z

−i(k1)z

−(k1)x + i(k1)y



+
c

Ek2 + c2





−(k2)z

i(k2)z

(k2)x − i(k2)y







 , (I.10)

so that

ψ†
k1,↑(r1)ααα1ψk2,↓(r1).ψ

†
k2,↓(r2)ααα2ψk1,↑(r2)

=
1

V 2

e−ik12.r12

4Ek1 Ek2

(

c2(Ek1 + c2)

(Ek1 + c2)
(k2

1 +(k1)
2
z )+

c2(Ek1 + c2)

(Ek2 + c2)
(k2

2 +(k2)
2
z )−2c2(k1.k2 +(k1)z(k2)z

)

)

, (I.11)

with the ↓/↑/↑/↓ term equal to this one.
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Calculation of the ↑/↑/↑/↑ and ↓/↓/↓/↓ term for the Gauge part of the Breit interaction: We
consider the expression of the product of two ↑-spinors

ψ†
k1,↑(r1)(ααα1.r)ψk2,↑(r1) =

(

ϕ†
k1,↑(r1) χ†

k1,↑(r1)
)( 0 σσσ.r

σσσ.r 0

)(
ϕk2,↑(r1)
χk2,↑(r1)

)

=
(

χ†
k1,↑(r1)(σσσ.r)ϕk2,↑(r1)+ϕ†

k1,↑(r1)(σσσ.r)χk2,↑(r1)
)

=
1
V

√

Ek1 + c2

2Ek1

√

Ek2 + c2

2Ek2

e−i(k2−k1).r1

(
c

Ek1 + c2 (k1.r+ i(k1 × r)z))+
c

Ek2 + c2 (k2.r− i(k2 × r)z))

)

, (I.12)

so that

ψ†
k1,↑(r1)(ααα1.r)ψk2,↑(r1)ψ

†
k2,↑(r2)(ααα2.r)ψk1 ,↑(r2)

=
1

V 2

e−ik12.r12

4Ek1 Ek2

(

c2(Ek2 + c2)

(Ek1 + c2)

(
(k1.r)

2 +(k1 × r)2
z

)

+
c2(Ek1 + c2)

(Ek2 + c2)

(
(k2.r)

2 +(k2 × r)2
z

)
+2c2 ((k1.r)(k2.r)− (k1 × r)z(k2 × r)z)

)

, (I.13)

with the ↓/↓/↓/↓ term being equal to this one.

Calculation of the ↑/↓/↓/↑ and ↓/↑/↑/↓ term for the Gauge part of the Breit interaction: We
consider the expression of the product of a ↑-spinor and a ↓-spinor

ψ†
k1,↑(r1)(ααα1.r)ψk2 ,↓(r1) =

(

ϕ†
k1,↑(r1) χ†

k1,↑(r1)
)( 0 σσσ.r

σσσ.r 0

)(
ϕk2,↓(r1)
χk2,↓(r1)

)

=
(

χ†
k1,↑(r1)(σσσ.r)ϕk2,↓(r1)+ϕ†

k1,↑(r1)(σσσ.r)χk2,↓(r1)
)

=
1
V

√

Ek1 + c2

2Ek1

√

Ek2 + c2

2Ek2

e−i(k2−k1).r1

(

c

Ek1 + c2 (i(k1 × r)x +(k1 × r)y))+
c

Ek2 + c2 (−i(k2 × r)x − (k2 × r)y)

)

, (I.14)

so that

ψ†
k1,↑(r1)(ααα1.r)ψk2 ,↓(r1)ψ

†
k2,↓(r2)(ααα2.r)ψk1,↑(r2)

=
1

V 2

e−ik12.r12

4Ek1 Ek2

(

c2(Ek2 + c2)

(Ek1 + c2)

(
(k1 × r)2

x +(k1 × r)2
y

)

+
c2(Ek1 + c2)

(Ek2 + c2)

(
(k2 × r)2

x +(k2 × r)2
y

)
−2c2 ((k1 × r)x(k2 × r)x +(k1 × r)y(k2 × r)y)

)

, (I.15)

with the ↓/↑/↑/↓ term equal to this one.
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Sum of the four Gaunt and four Gauge terms: The sum of the eight spins combinations previously
determined is

∑
σ1,σ2=↓,↑

(

ψ†
k1,σ1

(r1)ααα1ψk2,σ2(r1) . ψ†
k2,σ2

(r2)ααα2ψk1,σ1(r2)

+
ψ†

k1,σ1
(r1)(ααα1.r12)ψk2,σ2(r1) ψ†

k2,σ2
(r2)(ααα2.r12)ψk1,σ1(r2)

r2
12

)

= 2
e−ik12.r12

V 2

c2

4Ek1Ek2

(

Ek2 + c2

Ek1 + c2

(

3k2
1 +

(k1.r)2 +(k1 × r)2

r2

)

+
Ek1 + c2

Ek2 + c2

(

3k2
2 +

(k2.r)2 +(k2 × r)2

r2

)

+2
(

−k1.k2 +
(k1.r)(k2.r)

r2 − (k1 × r)(k2 × r)
r2

)
)

= 2
e−ik12.r12

V 2

c2

Ek1Ek2

(

Ek2 + c2

Ek1 + c2 k2
1 +

Ek1 + c2

Ek2 + c2 k2
2

)

, (I.16)

where the last expression has been simplified considering that

(

−k1.k2 +
(k1.r)(k2.r)

r2 − (k1 × r)(k2 × r)
r2

)

=−2k1k2 sin(θ1)sin(θ2)cos (φ1 −φ2), (I.17)

reduces to zero once integrated over φ1 or φ2 on [0,2π], and therefore this term can be removed with the
understanding that the expression must always be used in an integral over φ1 or φ2.
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I.2 Large-c̃ asymptotic expansion

We explain here the key steps involved in the analytical calculation of the coefficients of the large-c̃
asymptotic expansions of the short-range Coulomb [see Eq. (3.37)] and Breit [see Eq. (3.42)] exchange
energies per particle. The Coulomb and Breit terms being of similar forms, we only explicitly consider
the short-range Coulomb exchange energy per particle. We start from its expression in Eq. (3.36)

εC,sr,µ
x =

3kF

4π

∫ 1

k̃1=0

∫ 1

k̃2=0
dk̃1dk̃2 k̃1k̃2

(

1
√

c̃2 + k̃2
1

√

c̃2 + k̃2
2

[

k̃1k̃2 +
(

e
−
(

k̃1+k̃2
2µ̃

)2

− e
−
(

k̃1−k̃2
2µ̃

)2)

µ̃2
]

+
2c̃2 + k̃2

1 + k̃2
2 +2

√

c̃2 + k̃2
1

√

c̃2 + k̃2
2

4
√

c̃2 + k̃2
1

√

c̃2 + k̃2
2

[

Ei

(

−
(

k̃1 + k̃2

2µ̃

)2
)

−Ei

(

−
(

k̃1 − k̃2

2µ̃

)2
)

+ln
(
(k̃1 − k̃2)

2
)
− ln

(
(k̃1 + k̃2)

2
)]
)

. (I.18)

From now on, for simplicity, we drop the tilde notation and it will be implicit that k1,k2,c, and µ are in
units of kF. We want to find the expansion for c → ∞. The expansion of the first part of the integrand is

1
c2

√

1+ k2
1

c2

√

1+ k2
2

c2

=
1
c2 −

(
k2

1

2
+

k2
2

2

)
1
c4 +

(
3k4

1

8
+

k2
1k2

2

4
+

3k4
2

8

)
1
c6 +O

(
1
c8

)

, (I.19)

and the expansion of the second part of the integrand is

2+(k2
1 + k2

2)
1
c2 +2

√

1+ k2
1

c2

√

1+ k2
2

c2

4
√

1+ k2
1

c2

√

1+ k2
2

c2

= 1+

(
k4

1

16
− k2

1k2
2

8
+

k4
2

16

)
1
c4 +O

(
1
c6

)

. (I.20)

Permuting the sum and the integrals, we integrate the general term of the large-c̃ expansion. For the first
part of the exchange energy, we need to calculate the general term

am,n

c2m+2n+2

∫ 1

k1=0

∫ 1

k2=0
k1+2m

1 k1+2n
2

[

k1k2 +
(

e
−
(

k1+k2
2µ

)2

− e
−
(

k1−k2
2µ

)2)

µ2
]

dk2dk1, (I.21)

and for the second part of the exchange energy, we need to calculate the general term

bm,n

c2m+2n

∫ 1

k1=0

∫ 1

k2=0
k1+2m

1 k1+2n
2

[

Ei

(

−
(k1 + k2

2µ

)2
)

−Ei

(

−
(k1 − k2

2µ

)2
)

+ln
(
(k1 − k2)

2)− ln
(
(k1 + k2)

2)
]

dk2dk1, (I.22)

with m and n positive integers, am,n and bm,n being expressed using the coefficients of Eqs. (I.19)
and (I.20) and are determined uniquely by the pair {m,n}. We observe a symmetry in m and n, so
that only half the terms needs to be calculated.

These integrals are analytically calculated in the following pages because, although they can be
calculated using the program Wolfram Mathematica [1] for a given value of 2m+ 2n, the general term
for an unspecified value of 2m+ 2n cannot be directly integrated by the program. It is convenient to
have the analytical expression of the general term in order to calculate the expansion for large orders.
The final complete expressions of the large-c̃ expansions and their associated Padé approximants are
explicitly given up to an arbitrary order in the accompanying Mathematica notebook.
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I.2.1 First part of the exchange energy (I)

I =

∫ 1

k1=0

∫ 1

k2=0
k1+2m

1 k1+2n
2

[

k1k2 +

(

e
−
(

k1+k2
2µ

)2

− e
−
(

k1−k2
2µ

)2
)

µ2

]

dk2dk1. (I.23)

First integral of the first part (I1)

The first integral of the first part gives

I1 =

∫ 1

k1=0

∫ 1

k2=0
k2+2m

1 k2+2n
2 dk2dk1 =

1
9+6m+6n+4mn

. (I.24)

which is about the only easy integral in all this glorious mess.

Second integral of the first part (I2)

The second integral of the first part is

I2 =

∫ 1

k1=0

∫ 1

k2=0
k1+2m

1 k1+2n
2 e

−
(

k1+k2
2µ

)2

dk2dk1, (I.25)

which can be calculated using changes of variables, binomial expansions, and integrations by parts. It
will be more or less the same procedure for all the following integral calculations, we shall do it once in
full. We start with a change of variable, k2 = 2µk− k1, so that we have

I2 = 2µ

∫ 1

k1=0

∫ 1+k1
2µ

k=
k1
2µ

k1+2m
1 (2µk− k1)

1+2ne−k2
dkdk1, (I.26)

then we use a binomial expansion to express our integral as

I2 =
1+2n

∑
i=0

(
1+2n

i

)

(−1)1−i(2µ)1+i

∫ 1

k1=0
k

2+2(m+n)−i

1

(∫ 1+k1
2µ

k=
k1
2µ

kie−k2
dk

)

dk1. (I.27)

We now consider the two last integrals successively, first the one over k and then the one over k1.

Integration over k in I2: We calculate the integral over k with repeated integrations by parts using
at each step

d

dk
ki−1 = (i−1)ki−2 and

∫ k

x e−x2
dx =−1

2
e−k2

. (I.28)

For the first step of the integration by parts, we have

∫ 1+k1
2µ

k=
k1
2µ

ki−1k e−k2
dk

= −1
2





(1+ k1

2µ

)i−1
e
−
(

1+k1
2µ

)2

−
( k1

2µ

)i−1
e
−
(

k1
2µ

)2


+
i−1

2

∫ 1+k1
2µ

k=
k1
2µ

ki−3k e−k2
dk. (I.29)

The repeated integrations by parts lead to two different cases for the last integral, depending on the parity
of the integer i.
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If i is even, the final integral obtained is

∫ 1+k1
2µ

k=
k1
2µ

e−k2
dk =

√
π

2

[

erf
(1+ k1

2µ

)

− erf
( k1

2µ

)]

, (I.30)

so that we have

∫ 1+k1
2µ

k=
k1
2µ

kie−k2
dk = −

i
2−1

∑
lp=0

1

2lp+1

(i−1)!!
(i−1−2lp)!!





(1+ k1

2µ

)i−1−2lp
e
−
(

1+k1
2µ

)2

−
( k1

2µ

)i−1−2lp
e
−
(

k1
2µ

)2




+
(i−1)!!

2
i
2

√
π

2

[

erf
(1+ k1

2µ

)

− erf
( k1

2µ

)]

. (I.31)

If i is odd, the final integral obtained is

∫ 1+k1
2µ

k=
k1
2µ

ke−k2
dk =

−1
2



e
−
(

1+k1
2µ

)2

− e
−
(

k1
2µ

)2


 , (I.32)

so that we have

∫ 1+k1
2µ

k=
k1
2µ

kie−k2
dk = −

i−1
2 −1

∑
li=0

1
2li+1

(i−1)!!
(i−1−2li)!!





(1+ k1

2µ

)i−1−2li
e
−
(

1+k1
2µ

)2

−
( k1

2µ

)i−1−2li
e
−
(

k1
2µ

)2




+
(i−1)!!

2
i−1

2

−1
2



e
−
(

1+k1
2µ

)2

− e
−
(

k1
2µ

)2


 . (I.33)

Integration over k1 in I2: We calculate the remaining integral as the sum of two sums over two
different indices, ip and ii with i = 2ip if i is even and i = 2ii + 1 if i is odd, which both run between 0
and n so that we have indeed 2+2n terms

I2 =
1+2n

∑
i=0

(
1+2n

i

)

(−1)1−i(2µ)1+i

∫ 1

k1=0
k

2+2(m+n)−i

1

(∫ 1+k1
2µ

k=
k1
2µ

kie−k2
dk

)

dk1

= −
n

∑
ip=0

(
1+2n

2ip

)

(2µ)1+2ip

∫ 1

k1=0
k

2+2(m+n)−2ip
1

(

(2ip −1)!!

2ip

√
π

2

[

erf
(1+ k1

2µ

)

− erf
( k1

2µ

)]

−
ip−1

∑
lp=0

1

2lp+1

(2ip −1)!!

(2ip −1−2lp)!!
1

(

2µ
)2ip−1−2lp




(
1+ k1

)2ip−1−2lp
e
−
(

1+k1
2µ

)2

− k
2ip−1−2lp
1 e

−
(

k1
2µ

)2




)

dk1

+
n

∑
ii=0

(
1+2n

2ii +1

)

(2µ)2+2ii

∫ 1

k1=0
k

1+2(m+n)−2ii
1

(

(2ii)!!
2ii

−1
2



e
−
(

1+k1
2µ

)2

− e
−
(

k1
2µ

)2




−
ii−1

∑
li=0

1
2li+1

(2ii)!!
(2ii −2li)!!

1
(

2µ
)2ii−2li




(
1+ k1

)2ii−2li e
−
(

1+k1
2µ

)2

− k
2ii−2lp
1 e

−
(

k1
2µ

)2




)

dk1. (I.34)
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Sum over ip: There are four sub-integrals in the sum over ip.

- First sub-integral:

−
√

π

2

∫ 1

k1=0
k

2+2(m+n−ip)
1 erf

( k1

2µ

)

dk1

= −
∫ 1

k1=0
k

2+2(m+n−ip)
1

∫ k1
2µ

t=0
e−t2

dtdk1

= −
∫ 1

k1=0
k

2+2(m+n−ip)
1

∫ k1

k=0
e
−
(

k
2µ

)2

1
2µ

dkdk1

=
1

3+2(m+n− ip)

(

−
√

π

2
erf
( 1

2µ

)

+
1

2µ

∫ 1

k1=0
k

2+2(m+n−ip)
1 k1e

−
(

k1
2µ

)2

dk1

)

=
1

3+2(m+n− ip)

(

−
√

π

2
erf
( 1

2µ

)

+
1

2µ

(

(2µ2)1+m+n−ip (2+2(m+n− ip))!! (−2µ2)



e
−
(

1
2µ

)2

−1





−
m+n−ip

∑
λi=0

(2µ2)λi+1 (2+2(m+n− ip))!!
(2+2(m+n− ip)−2λi)!!

e
−
(

1
2µ

)2) )

=
1

3+2(m+n− ip)

(

−
√

π

2
erf
( 1

2µ

)

+
1

2µ
Si[1+m+n− ip]

)

, (I.35)

where we used first the change of variable t = k
2µ

, then an integration by parts with

d

dk1

√
π

2
erf
( k1

2µ

)

=
d

dk1

∫ k1

k=0
e
−
(

k
2µ

)2

1
2µ

dk =
e
−
(

k1
2µ

)2

2µ
and

∫ k1

x2+2(m+n−ip)dx =
k

3+2(m+n−ip)
1

3+2(m+n− ip)
, (I.36)

to get rid of the error function. We then used repeated integrations by parts with the first step being

d

dk
k2+2(m+n−ip) = (2+2(m+n− ip))k

1+2(m+n−ip) and
∫ k1

xe
−( x

2µ)
2

dx =−2µ2e
−
(

k1
2µ

)2

, (I.37)

and the final step is

∫ 1

k1=0
k1e

−
(

k1
2µ

)2

dk1 = (−2µ2)



e
−
(

1
2µ

)2

−1



 . (I.38)

We also define a convenient notation for the result of the repeated integrations by parts over k1 as

∫ 1

k1=0
k2N

1 e
−
(

k1
2µ

)2

dk1 = Sp[N] and
∫ 1

k1=0
k2N+1

1 e
−
(

k1
2µ

)2

dk1 = Si[N]. (I.39)
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- Second sub-integral:

√
π

2

∫ 1

k1=0
k

2+2(m+n−ip)
1 erf

(1+ k1

2µ

)

dk1

=

∫ 1

k1=0
k

2+2(m+n−ip)
1

∫ 1+k1
2µ

t=0
e−t2

dtdk1

=
∫ 1

k1=0
k

2+2(m+n−ip)
1

∫ k1

k=0
e
−
(

1+k
2µ

)2

1
2µ

dkdk1

=
1

3+2(m+n− ip)

(√
π

2
erf
(1

µ

)

− 1
2µ

∫ 1

k1=0
k

3+2(m+n−ip)
1 e

−
(

1+k1
2µ

)2

dk1

)

=
1

3+2(m+n− ip)

(√
π

2
erf
(1

µ

)

− 1
2µ

3+2(m+n−ip)

∑
j=0

(
3+2(m+n− ip)

j

)

(−1)3− j

∫ 1

k1=0
(1+ k1)

je
−
(

1+k1
2µ

)2

dk1

)

=
1

3+2(m+n− ip)

(√
π

2
erf
(1

µ

)

+
1
2µ

1+m+n−ip

∑
jp=0

(
3+2(m+n− ip)

2 jp

)[

(2µ2) jp(2 jp −1)!! 2µ

√
π

2

[

erf
(1

µ

)

− erf
( 1

2µ

)]

−
jp−1

∑
λp=0

(2µ2)λp+1 (2 jp −1)!!

(2 jp −1−2λp)!!



22 jp−1−2λpe
−
(

1
µ

)2

− e
−
(

1
2µ

)2




]

− 1
2µ

1+m+n−ip

∑
ji=0

(
3+2(m+n− ip)

2 ji +1

)[

(2µ2) ji(2 ji)!! (−2µ2)



e
−
(

1
µ

)2

− e
−
(

1
2µ

)2




−
ji−1

∑
λi=0

(2µ2)λi+1 (2 ji)!!
(2 ji −2λi)!!



22 ji−2λi e
−
(

1
µ

)2

− e
−
(

1
2µ

)2




] )

=
1

3+2(m+n− ip)

( √
π

2
erf
(1

µ

)

+
1

2µ

1+m+n−ip

∑
jp=0

(
3+2(m+n− ip)

2 jp

)

S+p [ jp]

− 1
2µ

1+m+n−ip

∑
ji=0

(
3+2(m+n− ip)

2 ji +1

)

S+i [ ji]

)

, (I.40)

where we used the binomial expansion

k
3+2(m+n−ip)
1 =

3+2(m+n−ip)

∑
j=0

(
3+2(m+n− ip)

j

)

(−1)3− j (1+ k1)
j, (I.41)

and split the sum over j into two sums over jp and ji. We also introduced the definitions

∫ 1

k1=0
(1+ k1)

2Ne
−
(

1+k1
2µ

)2

dk1 = S+p [N] and
∫ 1

k1=0
(1+ k1)

2N+1e
−
(

1+k1
2µ

)2

dk1 = S+i [N]. (I.42)
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- Third sub-integral:

−
∫ 1

k1=0
k

1+2(m+n−lp)
1 e

−
(

k1
2µ

)2

dk1

= −Si[m+n− lp]. (I.43)

- Fourth sub-integral:

∫ 1

k1=0
k

2+2(m+n−ip)
1 (1+ k1)

2ip−1−2lpe
−
(

1+k1
2µ

)2

dk1

=
2+2(m+n−ip)

∑
j=0

(
2+2(m+n− ip)

j

)

(−1) j

∫ 1

k1=0
(1+ k1)

j+2(ip−lp)−1e
−
(

1+k1
2µ

)2

dk1

=
1+m+n−ip

∑
jp=0

(
2+2(m+n− ip)

2 jp

) ∫ 1

k1=0
(1+ k1)

2( jp+ip−lp)−1e
−
(

1+k1
2µ

)2

dk1

−
m+n−ip

∑
ji=0

(
2+2(m+n− ip)

2 ji +1

) ∫ 1

k1=0
(1+ k1)

2( ji+ip−lp)e
−
(

1+k1
2µ

)2

dk1

=
1+m+n−ip

∑
jp=0

(
2+2(m+n− ip)

2 jp

)

S+i [ jp + ip − lp −1]

−
m+n−ip

∑
ji=0

(
2+2(m+n− ip)

2 ji +1

)

S+p [ ji + ip − lp]. (I.44)

Sum over ii: There are also four sub-integrals in the sum over ii.

- First sub-integral:

−
∫ 1

k1=0
k

1+2(m+n−ii)
1 e

−
(

k1
2µ

)2

dk1

= −Si[m+n+ ii]. (I.45)

- Second sub-integral:

∫ 1

k1=0
k

1+2(m+n−ii)
1 e

−
(

1+k1
2µ

)2

dk1

=
1+2(m+n−ii)

∑
j=0

(
1+2(m+n− ii)

j

)

(−1)1− j

∫ 1

k1=0
(1+ k1)

j e
−
(

1+k1
2µ

)2

dk1

= −
m+n−ii

∑
jp=0

(
1+2(m+n− ii)

2 jp

)

S+p [ jp] +
m+n−ii

∑
ji=0

(
1+2(m+n− ii)

2 ji +1

)

S+i [ ji]. (I.46)
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- Third sub-integral:

−
∫ 1

k1=0
k

1+2(m+n−li)
1 e

−
(

k1
2µ

)2

dk1

= −Si[m+n− li]. (I.47)

- Fourth sub-integral:

∫ 1

k1=0
k

1+2(m+n−ii)
1 (1+ k1)

2(ii−li) e
−
(

1+k1
2µ

)2

dk1

=
1+2(m+n−ii)

∑
j=0

(
1+2(m+n− ii)

j

)

(−1)1− j

∫ 1

k1=0
(1+ k1)

j e
−
(

1+k1
2µ

)2

dk1

= −
m+n−ii

∑
jp=0

(
1+2(m+n− ii)

2 jp

)

S+p [ jp + ii − li]+
m+n−ii

∑
ji=0

(
1+2(m+n− ii)

2 ji +1

)

S+i [ ji + ii − li]. (I.48)

Expression of integral I2: We have found each sub-integral of the second integral I2 of the first part
of the exchange energy. The expression of I2 is thus

I2

=
∫ 1

k1=0

∫ 1

k2=0
k1+2m

1 k1+2n
2 e

−
(

k1+k2
2µ

)2

dk2dk1

= −
n

∑
ip=0

(
1+2n

2ip

)

(2µ)1+2ip

{

(2ip −1)!!

2ip

1
3+2(m+n− ip)

(√
π

2

[

erf
(1

µ

)

− erf
( 1

2µ

)]

+
1

2µ

[

Si[1+m+n− ip]+
1+m+n−ip

∑
jp=0

(
3+2(m+n− ip)

2 jp

)

S+p [ jp]−
1+m+n−ip

∑
ji=0

(
3+2(m+n− ip)

2 ji +1

)

S+i [ ji]

] )

−
ip−1

∑
lp=0

1

2lp+1

(2ip −1)!!
(2ip −1−2lp)!!

1
(

2µ
)2ip−1−2lp

(

−Si[m+n− lp]

+
1+m+n−ip

∑
jp=0

(
2+2(m+n− ip)

2 jp

)

S+i [ jp + ip − lp −1] −
m+n−ip

∑
ji=0

(
2+2(m+n− ip)

2 ji +1

)

S+p [ ji + ip − lp]

) }

+
n

∑
ii=0

(
1+2n

2ii +1

)

(2µ)2+2ii

{

(2ii)!!
2ii

−1
2

(

−Si[m+n− ii]

−
m+n−ii

∑
jp=0

(
1+2(m+n− ii)

2 jp

)

S+p [ jp] +
m+n−ii

∑
ji=0

(
1+2(m+n− ii)

2 ji +1

)

S+i [ ji]

)

−
ii−1

∑
li=0

1
2li+1

(2ii)!!
(2ii −2li)!!

1
(

2µ
)2ii−2li

(

−Si[m+n− li]

+
m+n−ii

∑
jp=0

(
1+2(m+n− ip)

2 jp

)

S+p [ jp + ii − li] −
m+n−ii

∑
ji=0

(
1+2(m+n− ii)

2 ji +1

)

S+i [ ji + ii − li]

) }

. (I.49)

Most of the following calculations use exactly the same steps. They are written now with less details.
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Third integral of the first part (I3)

I3 =
∫ 1

k1=0

∫ 1

k2=0
k1+2m

1 k1+2n
2 e

−
(

k1−k2
2µ

)2

dk2dk1

=
1+2n

∑
i=0

(
1+2n

i

)

(−1)1+i(2µ)1+i

∫ 1

k1=0
k

2+2(m+n)−i

1

(∫ k1−1
2µ

k=
k1
2µ

kie−k2
dk

)

dk1. (I.50)

where we used the change of variable k2 = 2µk+ k1.

Integration over k in I3: Once again, we can calculate the integral over k with repeated integrations
by parts, with two different cases depending on the parity of i. If i is even we have

∫ k1−1
2µ

k=
k1
2µ

kie−k2
dk

=−
i
2−1

∑
lp=0

1

2lp+1

(i−1)!!
(i−1−2lp)!!





(k1 −1
2µ

)i−1−2lp
e
−
(

k1−1
2µ

)2

−
( k1

2µ

)i−1−2lp
e
−
(

k1
2µ

)2




+
(i−1)!!

2
i
2

√
π

2

[

erf
(k1 −1

2µ

)

− erf
( k1

2µ

)]

, (I.51)

while if i is odd we have

∫ k1+1
2µ

k=
k1
2µ

kie−k2
dk

=−
i−1

2 −1

∑
li=0

1
2li+1

(i−1)!!
(i−1−2li)!!





(k1 −1
2µ

)i−1−2li
e
−
(

k1−1
2µ

)2

−
( k1

2µ

)i−1−2li
e
−
(

k1
2µ

)2




+
(i−1)!!

2
i−1

2

−1
2



e
−
(

k1−1
2µ

)2

− e
−
(

k1
2µ

)2


 . (I.52)
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Integration over k1 in I3: We write the integral I3 as the sum of two sums over two indices, ip and ii
with i = 2ip if i is even and i = 2ii +1 if i is odd, which both run between 0 and n so that we have indeed
2+2n terms. We have

I3 =
1+2n

∑
i=0

(
1+2n

i

)

(−1)1+i(2µ)1+i

∫ 1

k1=0
k

2+2(m+n)−i

1

(∫ k1−1
2µ

k=
k1
2µ

kie−k2
dk

)

dk1

= −
n

∑
ip=0

(
1+2n

2ip

)

(2µ)1+2ip

∫ 1

k1=0
k

2+2(m+n)−2ip
1

(

(2ip −1)!!

2ip

√
π

2

[

erf
(k1 −1

2µ

)

− erf
( k1

2µ

)]

−
ip−1

∑
lp=0

1

2lp+1

(2ip −1)!!

(2ip −1−2lp)!!
1

(

2µ
)2ip−1−2lp




(
k1 −1

)2ip−1−2lp
e
−
(

k1−1
2µ

)2

− k
2ip−1−2lp
1 e

−
(

k1
2µ

)2




)

dk1

+
n

∑
ii=0

(
1+2n

2ii +1

)

(2µ)2+2ii

∫ 1

k1=0
k

1+2(m+n)−2ii
1

(

(2ii)!!
2ii

−1
2



e
−
(

k1−1
2µ

)2

− e
−
(

k1
2µ

)2




−
ii−1

∑
li=0

1
2li+1

(2ii)!!
(2ii −2li)!!

1
(

2µ
)2ii−2li




(
k1 −1

)2ii−2li
e
−
(

k1−1
2µ

)2

− k
2ii−2lp
1 e

−
(

k1
2µ

)2




)

dk1. (I.53)

Sum over ip: There are four sub-integrals in the sum over ip.

- First sub-integral:

−
√

π

2

∫ 1

k1=0
k

2+2(m+n−ip)
1 erf

( k1

2µ

)

dk1

=
1

3+2(m+n− ip)

(

−
√

π

2
erf
( 1

2µ

)

+
1
2µ

Si[1+m+n− ip]

)

. (I.54)
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- Second sub-integral:

√
π

2

∫ 1

k1=0
k

2+2(m+n−ip)
1 erf

(k1 −1
2µ

)

dk1

=
∫ 1

k1=0
k

2+2(m+n−ip)
1

∫ k1−1
2µ

t=0
e−t2

dtdk1

=

∫ 1

k1=0
k

2+2(m+n−ip)
1

∫ k1

k=0
e
−
(

k−1
2µ

)2

1
2µ

dkdk1

=
1

3+2(m+n− ip)

(

0− 1
2µ

∫ 1

k1=0
k

3+2(m+n−ip)
1 e

−
(

k1−1
2µ

)2

dk1

)

=
1

3+2(m+n− ip)

(

0− 1
2µ

3+2(m+n−ip)

∑
j=0

(
3+2(m+n− ip)

j

) ∫ 1

k1=0
(k1 −1) je

−
(

k1−1
2µ

)2

dk1

)

=
1

3+2(m+n− ip)

−1
2µ

(
1+m+n−ip

∑
jp=0

(
3+2(m+n− ip)

2 jp

)[

(2µ2) jp(2 jp −1)!! 2µ

√
π

2

[

0− erf
(−1

2µ

)]

−
jp−1

∑
λp=0

[(2µ2)λp+1 (2 jp −1)!!

(2 jp −1−2λp)!!



0− (−1)2 jp−1−2λpe
−
(

−1
2µ

)2




]

+
1+m+n−ip

∑
ji=0

(
3+2(m+n− ip)

2 ji +1

)[

(2µ2) ji(2 ji)!! (−2µ2)



1− e
−
(

−1
2µ

)2




−
ji−1

∑
λi=0

[(2µ2)λi+1 (2 ji)!!
(2 ji −2λi)!!



0− (−1)2 ji−2λi e
−
(

−1
2µ

)2




] )

=
1

3+2(m+n− ip)

−1
2µ

(
1+m+n−ip

∑
jp=0

(
3+2(m+n− ip)

2 jp

)

S−p [ jp]

+
1+m+n−ip

∑
ji=0

(
3+2(m+n− ip)

2 ji +1

)

S−i [ ji]

)

, (I.55)

where we used the binomial expansion

k
3+2(m+n−ip)
1 =

3+2(m+n−ip)

∑
j=0

(
3+2(m+n− ip)

j

)

(k1 −1) j, (I.56)

and split the sum over j into two sums over jp and ji. We also introduced the notations

∫ 1

k1=0
(k1 −1)2Ne

−
(

k1−1
2µ

)2

dk1 = S−p [N] and
∫ 1

k1=0
(k1 −1)2N+1e

−
(

k1−1
2µ

)2

dk1 = S−i [N]. (I.57)

- Third sub-integral:

−
∫ 1

k1=0
k

1+2(m+n−lp)
1 e

−
(

k1
2µ

)2

dk1

= −Si[m+n− lp]. (I.58)
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- Fourth sub-integral:

∫ 1

k1=0
k

2+2(m+n−ip)
1 (k1 −1)2ip−1−2lpe

−
(

k1−1
2µ

)2

dk1

=
2+2(m+n−ip)

∑
j=0

(
2+2(m+n− ip)

j

) ∫ 1

k1=0
(k1 −1) j+2(ip−lp)−1e

−
(

k1−1
2µ

)2

dk1

=
1+m+n−ip

∑
jp=0

(
2+2(m+n− ip)

2 jp

)

S−i [ jp + ip − lp −1]

+
m+n−ip

∑
ji=0

(
2+2(m+n− ip)

2 ji +1

)

S−p [ ji + ip − lp]. (I.59)

Sum over ii: There are four sub-integrals in the sum over ii.

- First sub-integral:

−
∫ 1

k1=0
k

1+2(m+n−ii)
1 e

−
(

k1
2µ

)2

dk1

= −Si[m+n+ ii]. (I.60)

- Second sub-integral:

∫ 1

k1=0
k

1+2(m+n−ii)
1 e

−
(

k1−1
2µ

)2

dk1

=
1+2(m+n−ii)

∑
j=0

(
1+2(m+n− ii)

j

) ∫ 1

k1=0
(k1 −1) j e

−
(

k1−1
2µ

)2

dk1

=
m+n−ii

∑
jp=0

(
1+2(m+n− ii)

2 jp

)

S−p [ jp] +
m+n−ii

∑
ji=0

(
1+2(m+n− ii)

2 ji +1

)

S−i [ ji]. (I.61)

- Third sub-integral:

−
∫ 1

k1=0
k

1+2(m+n−li)
1 e

−
(

k1
2µ

)2

dk1

= −Si[m+n− li]. (I.62)
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- Fourth sub-integral:

∫ 1

k1=0
k

1+2(m+n−ii)
1 (k1 −1)2(ii−li) e

−
(

k1−1
2µ

)2

dk1

=
1+2(m+n−ii)

∑
j=0

(
1+2(m+n− ii)

j

) ∫ 1

k1=0
(k1 −1) j e

−
(

k1−1
2µ

)2

dk1

=
m+n−ii

∑
jp=0

(
1+2(m+n− ii)

2 jp

)

S−p [ jp + ii − li]

+
m+n−ii

∑
ji=0

(
1+2(m+n− ii)

2 ji +1

)

S−i [ ji + ii − li]. (I.63)

Expression of integral I3: We have found each sub-integral of the third integral I3 of the first part
of the exchange energy. The expression of I3 is thus

I3

=

∫ 1

k1=0

∫ 1

k2=0
k1+2m

1 k1+2n
2 e

−
(

k1−k2
2µ

)2

dk2dk1

= −
n

∑
ip=0

(
1+2n

2ip

)

(2µ)1+2ip

{

(2ip −1)!!

2ip

1
3+2(m+n− ip)

(√
π

2

[

0− erf
( 1

2µ

)]

+
1
2µ

[

Si[1+m+n− ip]−
1+m+n−ip

∑
jp=0

(
3+2(m+n− ip)

2 jp

)

S−p [ jp]−
1+m+n−ip

∑
ji=0

(
3+2(m+n− ip)

2 ji +1

)

S−i [ ji]

] )

−
ip−1

∑
lp=0

1

2lp+1

(2ip −1)!!

(2ip −1−2lp)!!
1

(

2µ
)2ip−1−2lp

(

−Si[m+n− lp]

+
1+m+n−ip

∑
jp=0

(
2+2(m+n− ip)

2 jp

)

S−i [ jp + ip − lp −1] +
m+n−ip

∑
ji=0

(
2+2(m+n− ip)

2 ji +1

)

S−p [ ji + ip − lp]

) }

+
n

∑
ii=0

(
1+2n

2ii +1

)

(2µ)2+2ii

{

(2ii)!!
2ii

−1
2

(

−Si[m+n− ii]

+
m+n−ii

∑
jp=0

(
1+2(m+n− ii)

2 jp

)

S−p [ jp] +
m+n−ii

∑
ji=0

(
1+2(m+n− ii)

2 ji +1

)

S−i [ ji]

)

−
ii−1

∑
li=0

1
2li+1

(2ii)!!
(2ii −2li)!!

1
(

2µ
)2ii−2li

(

−Si[m+n− li]

+
m+n−ii

∑
jp=0

(
1+2(m+n− ip)

2 jp

)

S−p [ jp + ii − li] +
m+n−ii

∑
ji=0

(
1+2(m+n− ii)

2 ji +1

)

S−i [ ji + ii − li]

) }

. (I.64)

This expression has to be subtracted from the one of the second integral I2, many terms in fact cancel
each other.
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I.2.2 Second part of the exchange energy (II)

II =

∫ 1

k1=0

∫ 1

k2=0
k1+2m

1 k1+2n
2

[

Ei

(

−
(

k1 + k2

2µ

)2
)

−Ei

(

−
(

k1 − k2

2µ

)2
)

+ln
(
(k1 − k2)

2)− ln
(
(k1 + k2)

2)
]

dk2dk1. (I.65)

First integral of the second part (II1)

II1 =
∫ 1

k1=0

∫ 1

k2=0
k1+2m

1 k1+2n
2 ln

(
(k1 + k2)

2)dk2dk1

=
1+2n

∑
i=0

(
1+2n

i

)

(−1)1−i

∫ 1

k1=0
k

1+2(m+n)−i

1

(∫ 1+k1

k=k1

ki 2 ln(k)dk

)

dk1, (I.66)

where we used the change of variable k2 = k− k1.

Integration over k in II1:

∫ 1+k1

k=k1

ki 2 ln(k)dk

= 2
1

(1+ i)2

(

k1+i
1 − (1+ k1)

1+i − (1+ i)k1+i
1 ln(k1) + (1+ i)(1+ k1)

1+iln(1+ k1)

)

. (I.67)

Integration over k1 in II1:

II1 =
1+2n

∑
i=0

(
1+2n

i

)

(−1)1−i

∫ 1

k1=0
k

1+2(m+n)−i

1

(∫ 1+k1

k=k1

ki 2 ln(k)dk

)

dk1

=
1+2n

∑
i=0

(
1+2n

i

)
2 (−1)1−i

(1+ i)2

∫ 1

k1=0
k

1+2(m+n)−i

1

(

k1+i
1 − (1+ k1)

1+i − (1+ i)k1+i
1 ln(k1)

+(1+ i)(1+ k1)
1+iln(1+ k1)

)

dk1, (I.68)

which we will integrate term by term over k1.

- First sub-integral:

∫ 1

k1=0
k

2+2(m+n)+1
1 dk1

=
1

4+2(m+n)
. (I.69)



I.2. LARGE-C̃ ASYMPTOTIC EXPANSION 165

- Second sub-integral:

−
∫ 1

k1=0
k

2+2(m+n)−i

1 (1+ k1)
i+1dk1

= −
1+i

∑
j=0

(
1+ i

j

)∫ 1

k1=0
k

2+2(m+n)−i+ j

1 dk1

= −
1+i

∑
j=0

(
1+ i

j

)
1

3+2(m+n)− i+ j
. (I.70)

- Third sub-integral:

−(1+ i)
∫ 1

k1=0
k

2+2(m+n)+1
1 ln(k1)dk1

= (1+ i)
1

4(2+m+n)2 . (I.71)

- Fourth sub-integral:

(1+ i)

∫ 1

k1=0
k

2+2(m+n)−i

1 (1+ k1)
i+1 ln(1+ k1)dk1

= (1+ i)
2+2(m+n)−i

∑
j=0

(
2+2(m+n)− i

j

)

(−1)−i− j

∫ 1

k1=0
(1+ k1)

1+i+ j ln(1+ k1)dk1

= (1+ i)
2+2(m+n)−i

∑
j=0

(
2+2(m+n)− i

j

)
(−1)−i− j

(2+ i+ j)2

(

1+22+i+ j
(

−1+(i+ j)ln(2)+ ln(4)
)
)

, (I.72)

where we used the binomial relation in Eq. (I.41).

Expression of integral II1: We have found each sub-integral of the first integral II1 of the second
part of the exchange energy. The expression of II1 is thus

II1

=

∫ 1

k1=0

∫ 1

k2=0
k1+2m

1 k1+2n
2 ln

(
(k1 + k2)

2
)

dk2dk1

=
1+2n

∑
i=0

(
1+2n

i

)
2(−1)1−i

(1+ i)2

{

1
4+2(m+n)

−
1+i

∑
j=0

(
1+ i

j

)
1

3+2(m+n)− i+ j
+(1+ i)

1
4(2+m+n)2

+(1+ i)
2+2(m+n)−i

∑
j=0

(
2+2(m+n)− i

j

)
(−1)−i− j

(2+ i+ j)2

(

1+22+i+ j
(

−1+(i+ j)ln(2)+ ln(4)
)
)}

. (I.73)

Second integral of the second part (II2)

II2 =

∫ 1

k1=0

∫ 1

k2=0
k1+2m

1 k1+2n
2 ln

(
(k1 − k2)

2)dk2dk1

=
1+2n

∑
i=0

(
1+2n

i

)

(−1)1+i

∫ 1

k1=0
k

1+2(m+n)−i

1

(∫ k1−1

k=k1

ki 2 ln(k)dk

)

dk1, (I.74)

where we used the change of variable k2 = k1 − k and a binomial expansion.
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Integration over k in II2:

∫ k1−1

k=k1

ki 2 ln(k)dk1

= 2
1

(1+ i)2

(

k1+i
1 − (k1 −1)1+i − (1+ i)k1+i

1 ln(k1) + (1+ i)(k1 −1)1+iln(k1 −1)

)

. (I.75)

Integration over k1 in II2:

II2 =
1+2n

∑
i=0

(
1+2n

i

)

(−1)1+i

∫ 1

k1=0
k

1+2(m+n)−i

1

(∫ k1−1

k=k1

ki 2 ln(k)dk

)

dk1

=
1+2n

∑
i=0

(
1+2n

i

)
2 (−1)1−i

(1+ i)2

∫ 1

k1=0
k

1+2(m+n)−i

1

(

k1+i
1 − (k1 −1)1+i − (1+ i)k1+i

1 ln(k1)

+(1+ i)(k1 −1)1+iln(1− k1)

)

dk1, (I.76)

which we integrate term by term over k1.

- First sub-integral:

∫ 1

k1=0
k

2+2(m+n)+1
1 dk1

=
1

4+2(m+n)
. (I.77)

- Second sub-integral:

−
∫ 1

k1=0
k

2+2(m+n)−i

1 (k1 −1)i+1dk1

= −
1+i

∑
j=0

(
1+ i

j

)

(−1)1+i− j

∫ 1

k1=0
k

2+2(m+n)−i+ j

1 dk1

= −
1+i

∑
j=0

(
1+ i

j

)

(−1)1+i− j 1
3+2(m+n)− i+ j

. (I.78)

- Third sub-integral:

−(1+ i)

∫ 1

k1=0
k

2+2(m+n)+1
1 ln(k1)dk1

= (1+ i)
1

4(2+m+n)2 . (I.79)
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- Fourth sub-integral:

(1+ i)
∫ 1

k1=0
k

2+2(m+n)−i

1 (k1 −1)i+1 ln(1− k1)dk1

= (1+ i)
2+2(m+n)−i

∑
j=0

(
2+2(m+n)− i

j

) ∫ 1

k1=0
(k1 −1)1+i+ j ln(1− k1)dk1

= (1+ i)
2+2(m+n)−i

∑
j=0

(
2+2(m+n)− i

j

)
(−1)i+ j

(2+ i+ j)2 , (I.80)

where we used the binomial relation in Eq. (I.56).

Expression of integral II2: We have found each sub-integral of the second integral II2 of the second
part of the exchange energy. The expression of II2 is thus

II2

=
∫ 1

k1=0

∫ 1

k2=0
k1+2m

1 k1+2n
2 ln

(
(k1 − k2)

2)dk2dk1

=
1+2n

∑
i=0

(
1+2n

i

)
2(−1)1−i

(1+ i)2

{

1
4+2(m+n)

−
1+i

∑
j=0

(
1+ i

j

)

(−1)1+i− j 1
3+2(m+n)− i+ j

+ (1+ i)
1

4(2+m+n)2 + (1+ i)
2+2(m+n)−i

∑
j=0

(
2+2(m+n)− i

j

)
(−1)i+ j

(2+ i+ j)2

}

. (I.81)

Third integral of the second part (II3)

II3 =
∫ 1

k1=0

∫ 1

k2=0
k1+2m

1 k1+2n
2 Ei

(

−
(

k1 + k2

2µ

)2
)

dk1dk2

=
∫ 1

k1=0

∫ 1

k2=0
k1+2m

1 k1+2n
2

(

−
∫ ∞

(
k1+k2

2µ

)2

e−t

t
dt

)

dk1dk2

=
1+2n

∑
i=0

(
1+2n

i

)

(−1)1−i(2µ)1+i

∫ 1

k1=0
k

2+2(m+n)−i

1

(∫ 1+k1
2µ

k=
k1
2µ

ki

(

−
∫ ∞

k2

e−t

t
dt

)

dk

)

dk1, (I.82)

where we used the change of variable k2 = 2µk− k1.

Integration over k in II3: We calculate the integral over k with an integration by parts using

d

dk
Ei
(
−k2)=

2 e−k2

k
and

∫ k

xidx =
ki+1

i+1
, (I.83)

so that we have
∫ 1+k1

2µ

k=
k1
2µ

ki

(

−
∫ ∞

k2

e−t

t
dt

)

dk

=
1

i+1
1

(

2µ
)i+1

[

(1+ k1)
i+1Ei

(

−
(

1+ k1

2µ

)2
)

− (k1)
i+1Ei

(

−
(

k1

2µ

)2
)]

− 2
i+1

∫ 1+k1
2µ

k=
k1
2µ

kie−k2
dk. (I.84)
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We can observe that the integral over k is now exactly the integral that has been calculated for the second
integral of the first part of the exchange energy but for a −2/(1+ i) factor. We introduce the notation

(
1+2n

i

)

(−1)1−i(2µ)1+i

∫ 1

k1=0
k

2+2(m+n)−i

1

∫ 1+k1
2µ

k=
k1
2µ

kie−k2
dkdk1 = {I2,i}, (I.85)

for the following calculations.

Integration over k1 in II3: We now can split the sum over ip and ii

II3 =
1+2n

∑
i=0

(
1+2n

i

)

(−1)1−i(2µ)1+i

∫ 1

k1=0
k

2+2(m+n)−i

1

(∫ 1+k1
2µ

k=
k1
2µ

ki

(

−
∫ ∞

k2

e−t

t
dt

)

dk

)

dk1

=
n

∑
ip=0

(

−2
2ip +1

{I2,2ip} −
(

1+2n

2ip

) ∫ 1

k1=0

k
2+2(m+n)−2ip
1

2ip +1

[

(1+ k1)
2ip+1Ei

(

−
(

1+ k1

2µ

)2
)

− (k1)
2ip+1Ei

(

−
(

k1

2µ

)2
)]

dk1

)

+
n

∑
ii=0

(

−2
2ii +2

{I2,2ii+1} +

(
1+2n

2ii +1

) ∫ 1

k1=0

k
1+2(m+n)−2ii
1

2ii +2

[

(1+ k1)
2ii+2Ei

(

−
(

1+ k1

2µ

)2
)

− (k1)
2ii+2Ei

(

−
(

k1

2µ

)2
)]

dk1

)

.(I.86)

Sum over ip: There are two sub-integrals in the sum over ip.

- First sub-integral:
We calculate this integral over k1 with an integration by parts using

d

dk
Ei



−
(

k1

2µ

)2


=
2 e

−
(

k1
2µ

)2

k1
and

∫ k

x3+2(m+n)dx =
k4+2(m+n)

4+2(m+n)
, (I.87)

so that we have

−
∫ 1

k1=0
k

2+2(m+n)+1
1 Ei

(

−
(

k1

2µ

)2
)

dk1

= −
Ei
(

−
(

1
2µ

)2
)

4+2(m+n)
+

2
4+2(m+n)

∫ 1

k1=0
k

3+2(m+n)
1 e

−
(

k1
2µ

)2

dk1

= −
Ei
(

−
(

1
2µ

)2
)

4+2(m+n)
+

2
4+2(m+n)

Si[m+n+1]. (I.88)
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- Second sub-integral:

∫ 1

k1=0
k

2+2(m+n−ip)
1 (1+ k1)

2ip+1Ei

(

−
(

1+ k1

2µ

)2
)

dk1

=
2+2(m+n−ip)

∑
j=0

(
2+2(m+n− ip)

j

)

(−1)− j

∫ 1

k1=0
(1+ k1)

j+2ip+1Ei

(

−
(1+ k1

2µ

)2
)

dk1

=
2+2(m+n−ip)

∑
j=0

(
2+2(m+n− ip)

j

)
(−1)− j

j+2ip +2

[

2 j+2ip+2Ei

(

−
(

1
µ

)2
)

− Ei

(

−
( 1

2µ

)2
)]

−
1+m+n−ip

∑
jp=0

(
2+2(m+n− ip)

2 jp

)
1

2 jp +2ip +2
S+i [ jp + ip]

+
m+n−ip

∑
ji=0

(
2+2(m+n− ip)

2 ji +1

)
1

2 ji +2ip +3
S+p [ ji + ip +1], (I.89)

where we used a binomial expansion, the same integration by parts as before, and then split the sum over
j.

Sum over ii: There are two sub-integrals in the sum over ii.

- First sub-integral:

−
∫ 1

k1=0
k

2+2(m+n)+1
1 Ei

(

−
(

k1

2µ

)2
)

dk1

= −
Ei

(

−
(

1
2µ

)2
)

4+2(m+n)
+

2
4+2(m+n)

Si[m+n+1]. (I.90)

- Second sub-integral:

∫ 1

k1=0
k

1+2(m+n−ii)
1 (1+ k1)

2ii+2Ei

(

−
(

1+ k1

2µ

)2
)

dk1

=
1+2(m+n−ii)

∑
j=0

(
1+2(m+n− ii)

j

)

(−1)− j

∫ 1

k1=0
(1+ k1)

j+2ii+2Ei

(

−
(

1+ k1

2µ

)2
)

dk1

=
1+2(m+n−ii)

∑
j=0

(
1+2(m+n− ii)

j

)
(−1)1− j

j+2ii +3

[

2 j+2ii+3Ei

(

−
(

1
µ

)2
)

− Ei

(

−
(

1
2µ

)2
)]

+
m+n−ii

∑
jp=0

(
1+2(m+n− ii)

2 jp

)
1

2 jp +2ii +3
S+p [ jp + ii +1]

−
m+n−ii

∑
ji=0

(
1+2(m+n− ii)

2 ji +1

)
1

2 ji +2ii +4
S+i [ ji + ii +1]. (I.91)
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Expression of integral II3: We have found each sub-integral of the third integral II3 of the second
part of the exchange energy. The expression of II3 is thus

II3

=
∫ 1

k1=0

∫ 1

k2=0
k1+2m

1 k1+2n
2 Ei

(

−
(

k1 + k2

2µ

)2
)

dk2dk1

=
n

∑
ip=0

{

−2
2ip +1

{I2,2ip} − 1
2ip +1

(
1+2n

2ip

)[

−
Ei

(

−
(

1
2µ

)2
)

4+2(m+n)
+

2
4+2(m+n)

Si[m+n+1]

+
2+2(m+n−ip)

∑
j=0

(
2+2(m+n− ip)

j

)
(−1)− j

j+2ip +2

[

2 j+2ip+2Ei

(

−
(

1
µ

)2
)

− Ei

(

−
(

1
2µ

)2
)]

+
m+n−ip+1

∑
jp=0

(
2+2(m+n− ip)

2 jp

)
1

2 jp +2ip +2
S+i [ jp + ip]

−
m+n−ip

∑
ji=0

(
2+2(m+n− ip)

2 ji +1

)
1

2 ji +2ip +3
S+p [ ji + ip +1]

] }

+
n

∑
ii=0

{

−2
2ii +2

{I2,2ii+1} − 1
2ii +2

(
1+2n

2ii +1

)[

−
Ei

(

−
(

1
2µ

)2
)

4+2(m+n)
+

2
4+2(m+n)

Si[m+n+1]

+
1+2(m+n−ii)

∑
j=0

(
1+2(m+n− ii)

j

)
(−1)1− j

j+2ii +3

[

2 j+2ii+3Ei

(

−
(

1
µ

)2
)

− Ei

(

−
(

1
2µ

)2
)]

+
m+n−ii

∑
jp=0

(
1+2(m+n− ii)

2 jp

)
1

2 jp +2ii +3
S+p [ jp + ii +1]

−
m+n−ii

∑
ji=0

(
1+2(m+n− ii)

2 ji +1

)
1

2 ji +2ii +4
S+i [ ji + ii +1]

] }

. (I.92)

Fourth integral of the second part (II4)

II4 =
∫ 1

k1=0

∫ 1

k2=0
k1+2m

1 k1+2n
2 Ei

(

−
(

k1 − k2

2µ

)2
)

dk2dk1

=
∫ 1

k1=0

∫ 1

k2=0
k1+2m

1 k1+2n
2

(

−
∫ ∞

(
k1−k2

2µ

)2

e−t

t
dt

)

dk2dk1

=
1+2n

∑
i=0

(
1+2n

i

)

(−1)1+i(2µ)1+i

∫ 1

k1=0
k

2+2(m+n)−i

1

(∫ k1−1
2µ

k=
k1
2µ

ki

(

−
∫ ∞

k2

e−t

t
dt

)

dk

)

dk1, (I.93)

where we used the change of variable k2 =−2µk+ k1.
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Integration over k in II4: We calculate the integral over k using the usual integration by parts

∫ k1−1
2µ

k=
k1
2µ

ki

(

−
∫ ∞

k2

e−t

t
dt

)

dk

=
1

i+1
1

(

2µ
)i+1

[

(k1 −1)i+1Ei

(

−
(

k1 −1
2µ

)2
)

− (k1)
i+1Ei

(

−
(

k1

2µ

)2
)]

− 2
i+1

∫ k1−1
2µ

k=
k1
2µ

kie−k2
dk. (I.94)

We observe that the integral on k is now exactly the integral that has been calculated for the third integral
of the first part of the exchange energy but for a −2/(1+ i) factor. We introduce the notation

(
1+2n

i

)

(−1)1−i(2µ)1+i

∫ 1

k1=0
k

2+2(m+n)−i

1

∫ k1−1
2µ

k=
k1
2µ

kie−k2
dkdk1 = {I3,i}, (I.95)

for the following calculations.

Integration over k1 in II4: We split the sum over ip and ii

II4 =
1+2n

∑
i=0

(
1+2n

i

)

(−1)1+i(2µ)1+i

∫ 1

k1=0
k

2+2(m+n)−i

1

(∫ k1−1
2µ

k=
k1
2µ

ki

(

−
∫ ∞

k2

e−t

t
dt

)

dk

)

dk1

=
n

∑
ip=0

(

−2
2ip +1

{I3,2ip} −
(

1+2n

2ip

) ∫ 1

k1=0

k
2+2(m+n)−2ip
1

2ip +1

[

(k1 −1)2ip+1Ei

(

−
(

k1 −1
2µ

)2
)

− (k1)
2ip+1Ei

(

−
(

k1

2µ

)2
)]

dk1

)

+
n

∑
ii=0

(

−2
2ii +2

{I3,2ii+1} +

(
1+2n

2ii +1

) ∫ 1

k1=0

k
1+2(m+n)−2ii
1

2ii +2

[

(k1 −1)2ii+2Ei

(

−
(

k1 −1
2µ

)2
)

− (k1)
2ii+2Ei

(

−
(

k1

2µ

)2
)]

dk1

)

.(I.96)

Sum over ip: There are two sub-integrals in the sum over ip.

- First sub-integral:

−
∫ 1

k1=0
k

2+2(m+n)+1
1 Ei

(

−
(

k1

2µ

)2
)

dk1

= −
Ei

(

−
(

1
2µ

)2
)

4+2(m+n)
+

2
4+2(m+n)

Si[m+n+1]. (I.97)
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- Second sub-integral:

∫ 1

k1=0
k

2+2(m+n−ip)
1 (k1 −1)2ip+1Ei

(

−
(

k1 −1
2µ

)2
)

dk1

=
2+2(m+n−ip)

∑
j=0

(
2+2(m+n− ip)

j

) ∫ 1

k1=0
(k1 −1) j+2ip+1Ei

(

−
(

k1 −1
2µ

)2
)

dk1

=
2+2(m+n−ip)

∑
j=0

(
2+2(m+n− ip)

j

)
1

j+2ip +2

[

0 − (−1) j+2ip+2 Ei

(

−
(−1

2µ

)2
)]

−
1+m+n−ip

∑
jp=0

(
2+2(m+n− ip)

2 jp

)
1

2 jp +2ip +2
S−i [ jp + ip]

−
m+n−ip

∑
ji=0

(
2+2(m+n− ip)

2 ji +1

)
1

2 ji +2ip +3
S−p [ ji + ip +1]. (I.98)

Sum over ii: There are two sub-integrals in the sum over ii.

- First sub-integral:

−
∫ 1

k1=0
k

2+2(m+n)+1
1 Ei

(

−
(

k1

2µ

)2
)

dk1

= −
Ei

(

−
(

1
2µ

)2
)

4+2(m+n)
+

2
4+2(m+n)

Si[m+n+1]. (I.99)

- second sub-integral:

∫ 1

k1=0
k

1+2(m+n−ii)
1 (k1 −1)2ii+2Ei

(

−
(

k1 −1
2µ

)2
)

dk1

=
1+2(m+n−ii)

∑
j=0

(
1+2(m+n− ii)

j

) ∫ 1

k1=0
(k1 −1) j+2ii+2Ei

(

−
(

k1 −1
2µ

)2
)

dk1

=
1+2(m+n−ii)

∑
j=0

(
1+2(m+n− ii)

j

)
1

j+2ii +3

[

0 − (−1) j+ii+3Ei

(

−
(−1

2µ

)2
)]

−
m+n−ii

∑
jp=0

(
1+2(m+n− ii)

2 jp

)
1

2 jp +2ii +3
S+p [ jp + ii +1]

−
m+n−ii

∑
ji=0

(
1+2(m+n− ii)

2 ji +1

)
1

2 ji +2ii +4
S+i [ ji + ii +1]. (I.100)
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Expression of integral II4 We have found each sub-integral of the fourth integral II4 of the second
part of the exchange energy. The expression of II4 is thus

II4

=

∫ 1

k1=0

∫ 1

k2=0
k1+2m

1 k1+2n
2 Ei

(

−
(

k1 − k2

2µ

)2
)

dk2dk1

=
n

∑
ip=0

{

−2
2ip +1

{I3,2ip} − 1
2ip +1

(
1+2n

2ip

)[

−
Ei

(

−
(

1
2µ

)2
)

4+2(m+n)
+

2
4+2(m+n)

Si[m+n+1]

+
2+2(m+n−ip)

∑
j=0

(
2+2(m+n− ip)

j

)
1

j+2ip +2

[

0 − Ei

(

−
(−1

2µ

)2
)]

−
m+n−ip+1

∑
jp=0

(
2+2(m+n− ip)

2 jp

)
1

2 jp +2ip +2
S−i [ jp + ip]

−
m+n−ip

∑
ji=0

(
2+2(m+n− ip)

2 ji +1

)
1

2 ji +2ip +3
S−p [ ji + ip +1]

] }

+
n

∑
ii=0

{

−2
2ii +2

{I3,2ii+1} − 1
2ii +2

(
1+2n

2ii +1

)[

−
Ei

(

−
(

1
2µ

)2
)

4+2(m+n)
+

2
4+2(m+n)

Si[m+n+1]

+
1+2(m+n−ii)

∑
j=0

(
1+2(m+n− ii)

j

)
1

j+2ii +3

[

0 − Ei

(

−
(−1

2µ

)2
)]

+
m+n−ii

∑
jp=0

(
1+2(m+n− ii)

2 jp

)
1

2 jp +2ii +3
S−p [ jp + ii +1]

−
m+n−ii

∑
ji=0

(
1+2(m+n− ii)

2 ji +1

)
1

2 ji +2ii +4
S−i [ ji + ii +1]

] }

. (I.101)
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Appendix J

Uniform coordinate scaling relation for the
relativistic no-pair short-range exchange
density functional

Here, we generalize the uniform coordinate scaling relation of the non-relativistic exchange density
functional [1] and of the non-relativistic no-pair short-range exchange density functional [2] to the case
of the relativistic short-range exchange density functional of Eq. (4.16) that we used in Chapter 4. Since
the scaling relation involves scaling the speed of light c, we will explicitly indicate in this section the
dependence on c.
First, we introduce the non-interacting Dirac kinetic + rest mass energy density functional T c

s [n] defined
by Eq. (4.9) in the special case of a vanishing range-separation parameter, µ = 0,

T c
s [n] = minmax

Φ+→n
〈Φ+|T̂ c

D|Φ+〉= 〈Φc
+[n]|T̂ c

D|Φc
+[n]〉, (J.1)

where Φc
+[n] is the relativistic Kohn-Sham single-determinant wave function. Let us now consider the

scaled wave function Φc
+,γ[n] defined by, for N electrons,

Φc
+,γ[n](r1, ...,rN) = γ3N/2Φc

+[n](γr1, ...,γrN), (J.2)

where γ > 0 is a scaling factor. The wave function Φc
+,γ[n] yields the scaled density nγ(r) = γ3n(γr) and

is the minmax optimal wave function of 〈Φ+|T̂ cγ
D |Φ+〉 since it can be checked that

〈Φc
+,γ[n]|T̂

cγ
D |Φc

+,γ[n]〉 = γ2〈Φc
+[n]|T̂ c

D|Φc
+[n]〉, (J.3)

and the right-hand side is minmax optimal by definition of Φc
+[n]. Therefore, we conclude that

Φc
+,γ[n] = Φ

cγ
+ [nγ]. (J.4)

From the definition of the relativistic short-range exchange energy density functional

Esr,µ,c
x [n] = 〈Φc

+[n]| Ŵ sr,µ
ee |Φc

+[n]〉−E
sr,µ
H [n], (J.5)

we then arrive at the scaling relation

Esr,µγ,cγ
x [nγ] = γEsr,µ,c

x [n], (J.6)

or, equivalently,

Esr,µ,c
x [nγ] = γE

sr,µ/γ,c/γ
x [n]. (J.7)
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This scaling relation is an important constraint which is satisfied by our approximate density functionals.
Besides, it shows that the low-density limit (γ → 0) corresponds to the non-relativistic limit (c → ∞),
while the high-density limit (γ → ∞) corresponds to the ultra-relativistic limit (c → 0). It also shows that,
for a fixed value of the range-separation parameter µ, low-density regions explore the functional in the
short-range limit (µ → ∞) and high-density regions explore the functional in the full-range limit (µ = 0).
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Appendix K

Four-component on-top exchange
pair-density

We wish to derive the expression of the four-component on-top exchange pair-density that we used in
Chapter 4, in a no-pair relativistic framework. Using the four-component-spinor orbitals

ψi(r) =








ψLα
i (r)

ψ
Lβ
i (r)

ψSα
i (r)

ψ
Sβ
i (r)







, (K.1)

the on-top value of the 4×4 one-electron density matrix has the expression

γ(r,r) =
N

∑
i=1

ψi(r) ψ†
i (r)

=








ψLα
i (r)ψLα

i (r)∗ ψLα
i (r)ψLβ

i (r)∗ ψLα
i (r)ψSα

i (r)∗ ψLα
i (r)ψSβ

i (r)∗

ψ
Lβ
i (r)ψLα

i (r)∗ ψ
Lβ
i (r)ψLβ

i (r)∗ ψ
Lβ
i (r)ψSα

i (r)∗ ψ
Lβ
i (r)ψSβ

i (r)∗

ψSα
i (r)ψLα

i (r)∗ ψSα
i (r)ψLβ

i (r)∗ ψSα
i (r)ψSα

i (r)∗ ψSα
i (r)ψSβ

i (r)∗

ψ
Sβ
i (r)ψLα

i (r)∗ ψ
Sβ
i (r)ψLβ

i (r)∗ ψ
Sβ
i (r)ψSα

i (r)∗ ψ
Sβ
i (r)ψSβ

i (r)∗







, (K.2)

which leads to the density

n(r) = Tr[γ(r,r)] =
N

∑
i=1

|ψLα
i (r)|2 + |ψLβ

i (r)|2 + |ψSα
i (r)|2 + |ψSβ

i (r)|2. (K.3)

The on-top exchange pair density has the expression

n2,x(r,r) = −Tr[γ(r,r)2]

= −
N

∑
i=1

N

∑
j=1

(

|ψLα
i (r)|2|ψLα

j (r)|2 + |ψLβ
i (r)|2|ψLβ

j (r)|2 +2ψLα
i (r)ψLβ

i (r)∗ψ
Lβ
j (r)ψLα

j (r)∗

+|ψSα
i (r)|2|ψSα

j (r)|2 + |ψSβ
i (r)|2|ψSβ

j (r)|2 +2ψSα
i (r)ψSβ

i (r)∗ψ
Sβ
j (r)ψSα

j (r)∗

+2ψLα
i (r)ψSα

i (r)∗ψSα
j (r)ψLα

j (r)∗+2ψ
Lβ
i (r)ψSβ

i (r)∗ψ
Sβ
j (r)ψLβ

j (r)∗ (K.4)

+2ψLα
i (r)ψSβ

i (r)∗ψ
Sβ
j (r)ψLα

j (r)∗+2ψ
Lβ
i (r)ψSα

i (r)∗ψSα
j (r)ψLβ

j (r)∗
)

.

In the non-relativistic limit, each orbital has a definite spin state, i.e. ψi(r) = (ψLα
i (r),0,0,0) or ψi(r) =

(0,ψLβ
i (r),0,0), and we recover the well-known expression of the on-top exchange pair density in terms
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of the spin densities

nNR
2,x (r,r) = −

N

∑
i=1

N

∑
j=1

(

|ψLα
i (r)|2|ψLα

j (r)|2 + |ψLβ
i (r)|2|ψLβ

j (r)|2
)

= −nα(r)2 −nβ(r)
2, (K.5)

or, for closed-shell systems, nNR
2,x (r,r) = −n(r)2/2. However, in the relativistic case, n2,x(r,r) can no

longer be generally expressed explicitly with the density, as seen from the presence of terms mixing
different spinor components in Eq. (K.5). There are however two exceptions. The first exception is
provided by one-electron systems for which it is easy to check that n2,x(r,r) = −n(r)2, as in the non-
relativistic case. The second exception is provided by systems of two electrons in an unique Kramers
pair, for which n2,x(r,r) = −n(r)2/2, as in the non-relativistic case. Indeed, for closed-shell systems,
the one-electron density matrix can be decomposed into Kramers contributions

γ(r,r) = γ+(r,r)+ γ−(r,r), (K.6)

where γ+(r,r) = ∑
N/2
i=1 ψi(r)ψ†

i (r) and γ−(r,r) = ∑
N/2
i=1 ψ̄i(r) ψ̄†

i (r), and ψ̄i(r) is the Kramers partner of
ψi(r)

ψ̄i(r) =








−ψ
Lβ
i (r)∗

ψLα
i (r)∗

−ψ
Sβ
i (r)∗

ψSα
i (r)∗







. (K.7)

In this case, the density can then be expressed as n(r) = 2Tr[γ+(r,r)], and the on-top exchange pair
density as

n2,x(r,r) =−2
(
Tr[γ+(r,r)

2]+Tr[γ+(r,r)γ−(r,r)]
)
, (K.8)

where we have used Tr[γ+(r,r)2] = Tr[γ−(r,r)2]. For an unique Kramers pair (i.e. for N = 2), it is easy
to check that Tr[γ+(r,r)2] = (Tr[γ+(r,r)])2 and Tr[γ+(r,r)γ−(r,r)] = 0, and thus

n2,x(r,r) =−2(Tr[γ+(r,r)])
2 =−n(r)2

2
for N = 2. (K.9)

The reason why systems with one electron or two electrons in a single Kramers pair constitute excep-
tions is that in these systems exchange only represents in fact a self-interaction correction, and we have
E

sr,µ
x [n] =−E

sr,µ
H [n] for one electron and E

sr,µ
x [n] = −(1/2)Esr,µ

H [n] for two electrons in a single Kramers
pair, as for the non-relativistic theory.



Appendix L

Even-tempered basis sets parameters for
the He, Be, Ne, and Ar isoelectronic series

We give the parameters of the even-tempered basis sets that we used for the calculations in chapter 4.

Table L.1: Parameters ζ1 and q for generating all the exponents ζν = ζ1 qν−1 of our uncontracted even-tempered
large-component basis functions for the Yb68+ and U90+ systems of the helium isoelectronic series. We use ten s
basis functions, two sets of p basis functions, and one set of d basis functions. The small-component basis functions
are generated from the unrestricted kinetic-balance scheme.

Ten s basis functions Two p basis functions One d basis function
ζ1 q ζ1 q ζ1

Yb68+ 1.39601904E+07 0.30 3.39128349E+06 0.25 4.75587491E+03
U90+ 5.58567332E+07 0.295 2.64721605E+07 0.25 3.34172062E+04

Table L.2: Parameters ζ1 and q for generating all the exponents ζν = ζ1 qν−1 of our uncontracted even-tempered
large-component basis functions for the beryllium isoelectronic series. We use ten s basis functions, six sets of
p basis functions, and one set of d basis functions. The small-component basis functions are generated from the
unrestricted kinetic-balance scheme.

Ten s basis functions Six p basis functions One d basis function
ζ1 q ζ1 q ζ1

Be 6.40943779E+03 0.25 1.31800101E+01 0.25 2.71217265E-01
Ne6+ 2.63937466E+04 0.30 1.01356529E+02 0.25 2.16640868E+00
Ar14+ 2.16279421E+05 0.26 4.94782136E+02 0.25 1.13941141E+01
Kr32+ 4.14098736E+06 0.23 9.01590791E+03 0.25 2.25939509E+02
Xe50+ 9.04292743E+06 0.23 2.81773747E+05 0.25 1.95959651E+03
Yb66+ 1.39601904E+07 0.236 3.39128349E+06 0.25 4.75587491E+03
Rn82+ 1.46794059E+07 0.25 1.72824122E+07 0.25 1.25385658E+03
U88+ 1.46346866E+07 0.26 2.64721605E+07 0.25 3.34172062E+04
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Table L.3: Parameters ζ1 and q for generating all the exponents ζν = ζ1 qν−1 of our uncontracted even-tempered
large-component basis functions for the neon isoelectronic series. We use ten s basis functions, six sets of p
basis functions, and one set of d basis functions. The small-component basis functions are generated from the
unrestricted kinetic-balance scheme.

Ten s basis functions Six p basis functions One d basis function
ζ1 q ζ1 q ζ1

Ne 2.63937466E+04 0.30 1.01356529E+02 0.30 2.16640868E+00
Ar8+ 2.16279421E+05 0.29 4.94782136E+02 0.32 1.13941141E+01
Kr26+ 4.14098736E+06 0.25 9.01590791E+03 0.25 2.25939509E+02
Xe44+ 9.04292743E+06 0.255 9.36856349E+03 0.31 1.95959651E+03
Yb60+ 1.39601904E+07 0.235 2.61264417E+04 0.32 4.75587491E+03
Rn76+ 1.46794059E+07 0.25 5.70898829E+04 0.30 1.25385658E+03
U82+ 1.46346866E+07 0.26 1.22880210E+05 0.28 3.34172062E+04

Table L.4: Parameters ζ1 and q for generating all the exponents ζν = ζ1 qν−1 of our uncontracted even-tempered
large-component basis functions for the argon isoelectronic series. We use twelve s basis functions, eight sets of
p basis functions, and three set of d basis functions. The small-component basis functions are generated from the
unrestricted kinetic-balance scheme.

Twelve s basis functions Eight p basis functions Three d basis functions
ζ1 q ζ1 q ζ1 q

Ar 2.16279421E+05 0.30 4.94782136E+02 0.325 1.13941141E+01 0.25
Kr18+ 4.14098736E+06 0.25 9.01590791E+03 0.30 2.25939509E+02 0.25
Xe36+ 9.04292743E+06 0.25 9.36856349E+03 0.36 1.95959651E+03 0.25
Yb52+ 1.39601904E+07 0.26 2.61264417E+04 0.33 4.75587491E+03 0.25
Rn68+ 1.46794059E+07 0.30 1.92412503E+05 0.30 1.25385658E+03 0.25
U74+ 1.46346866E+07 0.29 1.22880210E+05 0.29 4.95593590E+02 0.25



Appendix M

No-pair one-particle non-interacting
Green’s function of the RHEG

We derive the expression of the one-particle non-interacting Green’s function of a RHEG, following the
logic of the book from Fetter and Walecka [1] (Example:free fermions, page 70). We first define the pos-
itive energy plane-wave solution of the Dirac equation for the non-interacting relativistic homogeneous
electron gas

ψk,σ(xt) =
1√
V

√

Ek +mc2

2Ek

eik.xe−iωktΦk,σ (M.1)

where Ek =
√
~2k2c2 +m2c4 and ωk = Ek/~. For the two possible values of σ for spin −1/2 fermions,

we have

Φk,↑ =

(
ϕ↑

c σσσ.k
Ek+mc2 ϕ↑

)

and Φk,↓ =

(
ϕ↓

c σσσ.k
Ek+mc2 ϕ↓

)

(M.2)

with ϕ↑ =
( 1

0

)

, ϕ↓ =
( 0

01

)

, and σσσ being the vector composed of the three Pauli matrices. For the

no-pair one-particle non-interacting Green’s function of the RHEG we have in matrix form

i G0(xt,x′t ′) = ∑
k,σ

ψk,σ(xt)ψ†
k,σ(x

′t ′)

×[θ(t − t ′)θ(k− kF)−θ(t ′− t)θ(kF − k)]

=
1
V

∑
k

Ek +mc2

2Ek

eik.(x−x′)e−iωk(t−t ′)∑
σ

Φk,σΦ†
k,σ

×[θ(t − t ′)θ(k− kF)−θ(t ′− t)θ(kF − k)] (M.3)

where we have summed over all wave vectors k for the positive energy solutions only, and where

∑
σ

Φk,σΦ†
k,σ (M.4)

is a 4x4 matrix non-diagonal matrix. In the limit of an infinite volume, the summation over k becomes
an integration,

∑
k
→ V

(2π)3

∫
d3k. (M.5)
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We therefore express

i G0(xt,x′t ′) =
1

(2π)3

∫
d3k

Ek +mc2

2Ek
∑
σ

Φk,σΦ†
k,σ eik.(x−x′)e−iωk.(t−t ′)

×[θ(t − t ′)θ(k− kF)−θ(t ′− t)θ(kF − k)]. (M.6)

We introduce the following integral representation for the step function

θ(t − t ′) =−
∫ ∞

−∞

dω

2πi

e−iω(t−t ′)

ω+ iη
and θ(t ′− t) =

∫ ∞

−∞

dω

2πi

e−iω(t−t ′)

ω− iη
(M.7)

with η → 0+, such that

G0(xt,x′t ′) =
1

(2π)4

∫
d3k

∫ ∞

−∞
dω eik.(x−x′)e−iω.(t−t ′)

×Ek +mc2

2Ek
∑
σ

Φk,σΦ†
k,σ

[
θ(k− kF)

ω−ωk + iη
+

θ(kF − k)

ω−ωk − iη

]

. (M.8)

which immediately yields

G0(k,ω) =
Ek +mc2

2Ek
∑
σ

Φk,σΦ†
k,σ

[
θ(k− kF)

ω−ωk + iη
+

θ(kF − k)

ω−ωk − iη

]

. (M.9)

In the non-relativistic limit, we have

Ek +mc2

2Ek

−→
c→∞

1 and Φk,σ −→
c→∞

(
ϕσ

0

)

(M.10)

such that the sum over spin is the sparse matrix

∑
σ

Φk,σΦ†
k,σ =







1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0







(M.11)

and the matrix elements of non-relativistic Green’s function of the homogeneous electron gas are

G
0,NR
α,β (k,ω) = δα,β

[
θ(k− kF)

ω−ωk + iη
+

θ(kF − k)

ω−ωk − iη

]

. (M.12)

We recover correctly the expression published in the book from Fetter and Walecka [1].
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Appendix N

Longitudinal no-pair non-interacting
linear response function of the RHEG

We construct the non-interacting linear response function of the RHEG in the no-pair approximation,
following the logic of the book from Fetter and Walecka [1] (Evaluation of Π0, page 158). For the non-
interacting RHEG in the no-pair approximation, the linear response-function in momentum space can be
calculated using Green’s functions (see Appendix.M), such that

χ0(q,q0)

=
−i

~(2π)4

∫
dk

∫ +∞

−∞
dω Tr

[
G0(k,ω)G0(k+q,ω+q0)

]

=
1
~

∫
dk

(2π)3

∫ +∞

−∞

dω

2πi

[
θ(k− kF)

ω−ωk + iη
+

θ(kF − k)

ω−ωk − iη

][
θ(|k+q|− kF)

ω+q0 −ω|k+q|+ iη
+

θ(kF −|k+q|)
ω+q0 −ω|k+q|− iη

]

{

Ek +mc2

2Ek

E|k+q|+mc2

2E|k+q|
∑
σ,σ′

Tr

[

Φk,σΦ†
k,σΦk+q,σΦ†

k+q,σ

]}

=
1
~

∫
dk

(2π)3

∫ +∞

−∞

dω

2πi

[
θ(k− kF)

ω−ωk + iη
+

θ(kF − k)

ω−ωk − iη

][
θ(|k+q|− kF)

ω+q0 −ω|k+q|+ iη
+

θ(kF −|k+q|)
ω+q0 −ω|k+q|− iη

]

{

Ek +mc2

2Ek

E|k+q|+mc2

2E|k+q|
∑
σ,σ′

Φ†
k,σΦk+q,σΦ†

k+q,σΦk,σ

}

=
1
~

∫
dk

(2π)3

∫ +∞

−∞

dω

2πi

[
θ(k− kF)

ω−ωk + iη
+

θ(kF − k)

ω−ωk − iη

][
θ(|k+q|− kF)

ω+q0 −ω|k+q|+ iη
+

θ(kF −|k+q|)
ω+q0 −ω|k+q|− iη

]

(

1+
~

2k.(k+q)c2 +m2c4

EkE|k+q|

)

(N.1)

where the equation between curly braces has been simplified through the same summation as developed
in Appendix I.1. From this, we start by isolating the frequency integral and expand the integrand into
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four terms before doing a contour integration∫ +∞

−∞

dω

2πi

[
θ(k− kF)

ω−ωk + iη
+

θ(kF − k)

ω−ωk − iη

][
θ(|k+q|− kF)

ω+q0 −ω|k+q|+ iη
+

θ(kF −|k+q|)
ω+q0 −ω|k+q|− iη

]

=

∫ +∞

−∞

dω

2πi

{

θ(k− kF)

ω−ωk + iη

θ(|k+q|− kF)

ω+q0 −ω|k+q|+ iη
+

θ(kF − k)

ω−ωk − iη

θ(kF −|k+q|)
ω+q0 −ω|k+q|− iη

+
θ(k− kF)

ω−ωk + iη

θ(kF −|k+q|)
ω+q0 −ω|k+q|− iη

+
θ(kF − k)

ω−ωk − iη

θ(|k+q|− kF)

ω+q0 −ω|k+q|+ iη

}

= −θ(k− kF)θ(kF −|k+q|)
q0 +ωk −ω|k+q|− iη

+
θ(kF − k)θ(|k+q|− kF)

q0 +ωk −ω|k+q|+ iη
(N.2)

where the first and second terms have vanishing contour integrals due to their poles being all on the same
side of the real axis (respectively, all under and all above the real axis), and the third and fourth term
yield non-vanishing contributions with residues at ω = ωk when closing the contour, respectively, from
under and from above the real axis. After this contour integration we have the no-pair non-interacting
linear response-function

χ0(q,q0) =
1
~

∫
dk

(2π)3

(

1+
~

2k.(k+q)c2 +m2c4

EkE|k+q|

)

[

− θ(k− kF)θ(kF −|k+q|)
q0 +ωk −ω|k+q|− iη

+
θ(kF − k)θ(|k+q|− kF)

q0 +ωk −ω|k+q|+ iη

]

=
1
~

∫
dk

(2π)3

(

1+
~

2k.(k+q)c2 +m2c4

EkE|k+q|

)

θ(|k+q|− kF)θ(kF − k)

[

−1
q0 +ω|k+q|−ωk − iη

+
1

q0 +ωk −ω|k+q|+ iη

]

(N.3)

where we used the change of variable k′ = −(k+q) in the first term and then, due to the infinite inte-
gration space, removed the superfluous prime. We use the identity of the step function θ(|k+q|− kF) =
1−θ(kF −|k+q|) and consider an analytical continuation to an imaginary frequency q0 = i u with u > 0
such that, as η → 0+ we can now neglect η in front of u and evaluate the linear no-pair non-interacting
linear response-function as

χ0(q, i u) =
1
~

∫
dk

(2π)3

(

1+
~

2k.(k+q)c2 +m2c4

EkE|k+q|

)
(

1−θ(kF −|k+q|)
)

θ(kF − k)

[

−1
i u+ω|k+q|−ωk

+
1

i u+ωk −ω|k+q|

]

=
1
~

∫
dk

(2π)3

(

1+
~

2k.(k+q)c2 +m2c4

EkE|k+q|

)
(

1−θ(kF −|k+q|)
)

θ(kF − k)

2
ω|k+q|−ωk

(i u)2 −
(
ω|k+q|−ωk

)2 . (N.4)

As both the coefficient coming from the sum over states and the product of the two step functions are even
under an interchange k ⇋ k+q while ω|k+q|−ωk is obviously odd, the integral of the term featuring
two step functions vanishes leaving only

χ0(q, i u) =
−1
~

∫
dk

(2π)3

(

1+
~

2k.(k+q)c2 +m2c4

EkE|k+q|

)

θ(kF − k)2
ω|k+q|−ωk

u2 +
(
ω|k+q|−ωk

)2 . (N.5)
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As the pulsation and energies are related through Ek = ~ωk, we have

χ0(q, i u) = −
∫

dk
(2π)3 θ(kF − k)2

(

1+
~

2k.(k+q)c2 +m2c4

EkE|k+q|

)

E|k+q|−Ek

~2u2 +
(
E|k+q|−Ek

)2 , (N.6)

which, using

2EkE|k+q|+2~2k.(k+q)c2 +2m2c4

=
(
~

2k2c2 +m2c4
)

+2EkE|k+q|+
(
~

2k2c2 +2~2k.qc2 +~
2q2c2 +m2c4

)
−~

2q2c2

=
(
Ek +E|k+q|

)2 −~
2q2c2 (N.7)

can be rewritten as

χ0(q, i u) = −
∫

dk
(2π)3 θ(kF − k)

[
(
Ek +E|k+q|

)2 −~
2q2c2

]
(
E|k+q|−Ek

)

EkE|k+q|

[

~2u2 +
(
E|k+q|−Ek

)2
] . (N.8)

This expression is equal, up to a trivial sign convention choice, to the first term of the longitudinal
non-interacting linear response function of the RHEG Q00(q,ω) as written by M. V. Ramana and A. K.
Rajagopal [2]. The expression determined in their work is not within the frame of the no-pair approxi-
mation, and their first term is thus counterbalanced by a second one due to the renormalization process.
The longitudinal no-pair non-interacting linear-response function of the RHEG χ00

0,np(q) as written by A.
Facco Bonetti et al. [3] has been analytically integrated for real frequencies within the general frame-
work of the QED full photon propagator and, to the best of our knowledge, the expression published
in this article is not straightforwardly extended to imaginary frequencies. The longitudinal no-pair non-
interacting linear response-function of the RHEG for imaginary frequencies of Eq N.8 is thus most easily
evaluated through numerical integration. To simplify the numerical integration, we express wave vectors
in units of kF through the change of variables k = k′ kF and q = q′ kF, such that

χ0(q, i u)

= −
∫

dk′ k3
F

(2π)3 θ(kF − k′ kF)

(√

~2k′2k2
Fc2 +m2c4 +

√

~2|k′+q′|2k2
Fc2 +m2c4

)2
−~

2q′2k2
Fc2

√

~2k′2k2
Fc2 +m2c4

√

~2|k′+q′|2k2
Fc2 +m2c4

√

~2|k′+q′|2k2
Fc2 +m2c4 −

√

~2k′2k2
Fc2 +m2c4

~2u2 +
(√

~2|k′+q′|2k2
Fc2 +m2c4 −

√

~2k′2k2
Fc2 +m2c4

)2

= −
∫

dk′ k3
F

(2π)3 θ(1− k′)

(√
k′2 + c̃2 +

√

|k′+q′|2 + c̃2
)2

−q′2

√
k′2 + c̃2

√

|k′+q′|2 + c̃2

~kFc
(√

|k′+q′|2 + c̃2 −
√

k′2 + c̃2
)

~2u2 +~2k2
Fc2
(√

|k′+q′|2 + c̃2 −
√

k′2 + c̃2
)2

= −m kF

~2

∫
dk′

(2π)3 θ(1− k′)

(√
k′2 + c̃2 +

√

|k′+q′|2 + c̃2
)2

−q′2

√
k′2 + c̃2

√

|k′+q′|2 + c̃2

c̃
(√

|k′+q′|2 + c̃2 −
√

k′2 + c̃2
)

ν2 + c̃2
(√

|k′+q′|2 + c̃2 −
√

k′2 + c̃2
)2 ,

(N.9)
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where we have introduced the dimensionless variables

c̃ =
mc

~kF
and ν = ~u

m

~2k2
F

, (N.10)

and kept the primed quantities for clarity in order to avoid any confusion between the dimensional vari-
able q and the adimensional one q′. In the non-relativistic limit, the non-interacting linear response
function of the HEG reduces to

χ0,NR(q, i u) = −m kF

~2

∫
dk′

(2π)3 θ(1− k′)2
2q′.(1

2q′+k′)
(
q′.(1

2 q′+k′)
)2

+ν2

= − m kF

2~2π2

(

1+
1

2q′

((
q′

2

)2

−1−
(

ν

q′

)2
)

log






(

1− q′

2

)2
+
(

ν
q′

)2

(

1+ q′
2

)2
+
(

ν
q′

)2






− ν

q′
arctan

(
q′

ν

(

1− q′

2

))

− ν

q′
arctan

(
q′

ν

(

1+
q′

2

)))

, (N.11)

which is the Lindhard function at imaginary frequency [4], written here using the dimensionless variables
defined previously.
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