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d’avoir fait des efforts pour comprendre mon travail et d’avoir lancé des discussions scientifiques.
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Résumé français

La technologie CMOS est de plus en plus utilisée pour réaliser les imageurs. Cette tendance

s’accompagne de nouvelles exigences sur les convertisseurs analogiques-numériques (ADC).

En particulier, afin d’améliorer la vitesse de conversion, on fait appel à des ADC colonne en

parallèle. Aussi, afin de répondre aux besoins d’applications haut de gamme, des ADC à haute

résolution sont nécessaires. Typiquement dans le contexte d’imageurs dédiés aux applications

d’observation de la Terre, des imageurs Haute Définition (1920x1080) avec des vitesses de 100

Frames par seconde sont requis. Pour un ADC colonne, ces spécifications conduisent à une

exigence de l’ordre de 200 kS/s avec une résolution de 14 bit tout en respectant une largeur de

10 um, largeur typique d’une colonne de pixel. Ainsi, un ADC de type Sigma-Delta incrémental à

deux étapes, capable de répondre aux exigences de résolution et de vitesse de conversion a été

conçu au sein de notre équipe. Le choix architectural a été guidé par la contrainte de largeur de

l’ADC colonne.

Le cœur d’un ADC de type Sigma-Delta (Σ∆) ou Sigma-Delta incrémental (IΣ∆) est un mod-

ulateurs Sigma-Delta. Après des décennies de développement, il existe diverses architectures

de modulateurs Sigma-Delta. L’ordre des modulateurs Sigma-Delta a été augmenté, du premier

ordre jusqu’au quatrième ordre, afin d’obtenir une résolution plus élevée avec le même nombre

de cycles d’horloge autrement dit à facteur de sur-échantillonnage (OSR) constant. Cependant,

la stabilité n’est pas assurée dans les architectures de modulateurs d’ordre élevé. Afin d’éviter le

problème de stabilité du modulateur d’ordre élevé, les architectures des ADC à plusieurs étages

sont apparues. En plus des ADC composés purement d’un modulateur Sigma-Delta, il existe

également des ADC combinant un modulateur Sigma-Delta avec un ADC d’une autre architec-

ture, dans le but d’augmenter la résolution sans sacrifier la vitesse de conversion. On parle alors

d’ADC hybride. Et enfin il existe la solution retenue par notre équipe qui consiste à faire la con-

version en deux étapes en utilisant la même architecture pour les deux étapes de conversion, ce

qui nous permet d’obtenir 14 bits de résolution avec un OSR de 72.

Toutefois, il est évident que les imperfections du circuit vont dégrader la résolution. Nous
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Figure 1: Architecture du modulateur Σ∆ incrémental

envisageons alors d’appliquer une technique de calibration. De manière générale, dans les mod-

ulateurs Sigma-Delta, autant les erreurs linéaires sont aisément corrigées, autant les erreurs

non-linéaires sont plus difficiles à calibrer. Certaines techniques de linéarisation pour les ADC

Sigma-Delta ont été développées pour les blocs d’intégration qui sont les constituants princi-

paux d’un modulateur Sigma-Delta. Malheureusement, il est difficile pour nous de profiter ces

méthodes car elles s’appuient sur des architectures incluant un quantificateur multi-bit or notre

architecture met en œuvre un quantificateur mono-bit. Plus précisément dans les ADC Sigma-

Delta incrémentaux il n’y a pas à notre connaissance de méthode corrigeant spécifiquement les

erreurs non-linéaires. Il existe en revanche des techniques de reconstruction numériques recon-

struisant au mieux les entrées du convertisseur linéairement à partir des bits de sortie. L’objectif

de mon travail est donc d’étudier et proposer de nouvelles techniques de correction pour un ADC

Sigma-Delta incrémental. Toutes mes recherches se baseront sur l’architecture et les résultats

du circuit réalisé par l’équipe qui s’intitule Pieretta.

Les ADC de type Sigma-Delta incrémental peuvent être considérés comme des ADC de type

Sigma-Delta avec une de réinitialisation au début de conversion. Il comprend généralement un

modulateur Sigma-Delta et un filtre de reconstruction numérique. L’architecture du modulateur de

Pieretta a été choisie par Monsieur Pierre Bisiaux. Comme le montre la Fig. 1, c’est une architec-

ture de modulateur à intégrateur en cascade du second ordre avec feedforward . L’avantage de

cette architecture est qu’elle annule le signal d’entrée à l’entrée du filtre de boucle pour qu’il n’y

ait que le bruit de quantification à traiter dans la boucle.

La Fig. 2 montre le schéma du circuit analogique de Pieretta. Les transistors dans le circuit

ont été dimensionnés par la méthode gm/Id. A noter que les amplificateurs dans les intégrateurs
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Figure 2: Schéma de la partie analogique du modulateur Σ∆ incrémental

sont des inverseurs avec ”gain-boosting” dont le schéma est montré dans la Fig. 3.8. Grâce à

l’utilisation des intégrateurs basés sur des inverseurs, la taille du circuit est minimisée par rapport

l’utilisation d’intégrateurs conventionnels.

Figure 3: Schéma de l’amplificateur basé sur l’inverseur avec ”gain-boosting”

Un circuit numérique non représenté sur le schéma génère les signaux contrôlant les interrup-

teurs. Ce aurait se compose Il d’une machine d’état et d’un bloc de non-overlap.

Compte tenu de la nécessité de caractériser le circuit une fois fabriqué, nous avons conçu

le circuit pour qu’il soit programmable. Avec des paramètres configurable, nous pouvons faire

fonctionner le modulateur Σ∆ dans divers modes de conversion. Cette idée a été réalisée par

une machine d’état codée en Verilog. La machine d’état génère des signaux d’activation en

fonction des réglages des paramètres. Le bloc non-overlap reçoit les signaux d’activation de la

machine d’état puis génère les signaux de commande avec les retards appropriés vers le circuit

analogique afin d’assurer le bon séquencement des activations d’interrupteurs.

Le circuit a été conçu avec la technologie de 180 nm de XFAB. La simulation post-layout du
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Figure 4: Résultats de simulation: (a) du modèle idéal; (b) en post-layout, avec le filtre théorique;
(c) en post-layout, avec la correction de gain et d’offset.

modulateur en deux étapes a mis en évidence une forte dégradation de la résolution, comme le

montre la Fig. 4b, par rapport à modèle idéal dont l’erreur de quantification est montrée dans la

Fig. 4a. Après une correction de gain et d’offset, nous obtenons une résolution équivalente (ER)

de 9.8 bits, comme le montre la Fig. 4c, à noter que les points en bleu servent à estimer des

paramètres et ceux en rouge servent à vérifier. ER ne correspondant pas à notre résolution cible

de 14 bits, une correction est donc nécessaire.

Notre but a d’abord été de trouver un algorithme pour reconstruire l’entrée du modulateur à

partir des combinaisons de bits des sorties du modulateur en considérant le modulateur comme

un boı̂te noire. Un tel algorithme sera implémenté dans un filtre numérique de reconstruction.

En plus de la correction de gain et d’offset, la méthode de correction habituelle est un filtre

optimal dont le principe est de pondérer les coefficients de chaque bit ainsi que l’offset. La

Fig. 5 montre les résultats corrigés où le filtre optimal n’est appliqué que sur les bits issus de la

première étape. Même si l’ER atteint notre but, nous cherchons encore à améliorer la résolution

sans aucune restriction sur la complexité de l’algorithme dans un premier temps.

Après avoir analysé les signaux dans la simulation en post-layout, nous avons trouvé que

les erreurs de certains signaux internes étaient corrélées aux séquences des bits de sortie du

modulateur. C’est pour quoi nous proposons une méthode de correction qui reconstruit l’entrée du

modulateur en fonction de la séquence des bits. Nous rappelons cette méthode: filtre de pattern-

correcting. Le principe de cet algorithme est de détecter la combinaison (ou motif) de paquets de

3 bits consécutifs dans la séquence de bits de sortie du modulateur. La Fig. 6 illustre technique

de détection. Huit nouveaux vecteurs cbi, (i = 1, 2, ..., 8) sont créés. En balayant la séquence des

bits de sortie S par paquets de 3 bits, on va activer le bit à la position courante dans le vecteur cbi

correspondant au pattern détecté. Après avoir scanné tous les paquets, les séquences de bits cbi

8



Figure 5: Comparaison des résultats corrigés par les méthodes existées basées sur la simulation
en post-layout: (a) avec la correction de gain et d’offset; (b) avec le filtre optimal pour la première
étape.

sont filtrées par des filtres à réponse impulsionnelle finie (FIR) et recombinées comme le montre

la Fig. 7. On n’applique le filtre de pattern-correcting que pour la première étape, car la correction

de la deuxième étape améliore très peu la résolution si l’erreur résiduelle dans la première étape

reste importante. Enfin, l’entrée de modulateur est reconstruite à partir de la sortie du filtre de

pattern-correcting et de la double intégration de la deuxième étape et d’un offset.
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Figure 6: Illustration de détection de pattern
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Figure 7: Algorithme du filtre de pattern-
correcting

Les résultats après la correction du filtre de pattern-correcting dans la simulation en post-

layout sont montrés dans la Fig. 8. Nous observons une amélioration de la résolution jusqu’à 15

bits.

Comme dit précédemment, une résolution de 14 bits a été obtenue en appliquant le filtre

optimal, ce qui nécessite 38 coefficients. Mais dans notre contexte, parce que nous gérons des

ADC colonne pour un imageur HD, le nombre total de coefficients risque d’être inacceptable.

Afin de réduire le nombre de coefficients tout en ciblant 14 bits, nous proposons de simplifier

la méthode de correction basée sur la correction du filtre optimal. Comparé à un FIR, un filtre
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Figure 8: Résultat de la correction avec un filtre de pattern-correcting
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Figure 9: Comparaison des résultats corrigés par : (a) le filtre optimal ; (b) le filtre simplifié

à réponse impulsionnelle infinie (IIR) nécessite moins de coefficients. Pour cette raison, nous

essayons de trouver un IIR dont la réponse impulsionnelle s’approche de celle de notre filtre FIR.

Dans ce cas-là, l’entrée du modulateur peut être estimée comme suit:

̂Vpixel,si = Dsi,1 +Dgo,2 +Osi (1)

où Dsi,1 est la sortie de filtre simplifié pour la première étape, Dgo,2 est la double intégration des

sorties dans la deuxième étape et Osi est le terme pour corriger l’offset.

La comparaison des résultats des corrections avec le filtre optimal et le filtre optimal simplifié

dans la simulation post-layout est représentée sur la Fig. 9. L’ER après la correction de filtre

optimal simplifié est proche de 13, 1 bits et donc un peu moins bon qu’avec le filtre optimal. Mais

le filtre simplifié requient 8 coefficients au lieu de 38 pour le filtre optimal. Puisque le filtre optimal

simplifié est une approximation d’un filtre optimal, une dégradation en ER est normale. Afin de

compenser cette perte de résolution, un filtre de correction de motif de paquet de 3 bits (n = 3)

est utilisé pour corriger les combinaisons des premiers 3 MSBs de la sortie du modulateur dans
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Figure 10: Résultat corrigé par le filtre hybride

la première étape. En combinant la correction du filtre optimal simplifié et la correction du filtre

pattern-correcting, l’entrée de l’ADC peut être estimée comme suit:

̂Vpixel,hy = Dsi,1 +Dpa3,mbit +Dgo,2 +Ohy (2)

où Dsi,1 est la sortie du filtre optimal simplifié de la première étape, Dpa3,mbit =
∑8

i=1 cbi · fi est

la somme des sorties de FIRi correspondant, Dgo,2 est la double intégration des sorties dans la

deuxième étape et Ohy est le terme pour corriger l’offset. On appelle ce filtre, filtre hybride.

Les résultats de correction avec le filtre hybride dans la simulation post-layout sont présentés

sur la Fig. 10. La résolution cible est atteinte et cette méthode nécessite 16 coefficients. Cette

complexité est plus acceptable pour notre ADC colonne.

Bien que nous ayons réussi à corriger la sortie de l’ADC et à obtenir la résolution cible, nous

souhaitons tout de même comprendre la raison de la dégradation dans la simulation post-layout.

Pour cet objectif, une simulation en post-layout a d’abord été effectuée où les valeurs de tous les

signaux internes à chaque cycle d’horloge ont été sauvegardées. En analysant les comporte-

ments de certains signaux, nous proposons un modèle au niveau circuit pour les intégrateurs

à capacités commutées basés sur un inverseur impliquant des capacités parasites raisonnables

à notre avis. Ces capacités parasites ont été identifiées et estimées selon certains signaux in-

ternes aux intégrateurs dans des simulations post-layout. Le schéma de l’intégrateur avec des

capacités parasites identifiées est présenté dans la Fig. 11. Ces modèles d’intégrateur perme-

ttent de simuler les intégrateurs dans la simulation en post-layout avec une erreur quadratique

moyenne de 10−4V.

Au cours de la troisième année de ma thèse, nous avons reçu la puce de circuit fabriqué. Selon

les résultats des tests, le circuit réel est pollué exceptionnellement par un bruit d’une puissance

élevée anormale. Le bruit cause des problèmes dans le test à la fois lors de l’échantillonnage
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Figure 12: Résultats de mesure après corrctions: (a) filtre optimal; (b) filtre pattern-correcting; (c)
filtre simplifié; (d) filtre hybride.

et lors du post-traitement. Toutefois les résultats de mesure filtrés montrent qu’indépendamment

d’une dégradation globale de l’ER, comme le montre dans la Fig. 12 le filtre optimal et toutes les

méthodes de correction proposées peuvent améliorer la résolution du circuit réel. La dégradation

résiduelle est sans doute causée par le bruit restant ou les capacités parasites.

En conclusion, cette thèse se concentre sur la calibration et la correction d’un ADC Σ∆

inrémental en deux étapes et propose de nouvelles méthodes de correction pour compenser des

défauts de réalisation. L’effet de ces méthodes a été validé par des simulations post-layout même

aussi sur un circuit réel. Un nouveau modèle d’intégrateur basé sur un inverseur a aussi été pro-

posé. Ces modèles permettent d’évaluer la sensibilité de l’ADC après correction aux valeurs des

capacités parasites. En identifiant ainsi la ou les capacités parasites les plus critiques, on peut
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ainsi optimiser plus efficacement un futur design.
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3 Schéma de l’amplificateur basé sur l’inverseur avec ”gain-boosting” . . . . . . . . . 7

4 Résultats de simulation: (a) du modèle idéal; (b) en post-layout, avec le filtre
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(c) filtre simplifié; (d) filtre hybride. . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.1 CMOS image sensor applied in digital camera . . . . . . . . . . . . . . . . . . . . 14

1.2 CMOS image sensor architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3 Pepline ADC architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.4 Multi-step ADC architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.5 Pixel Matrix with two columns of ADCs in parallel. . . . . . . . . . . . . . . . . . . . 17

1.6 Architecture of a second-order IΣ∆ modulator. . . . . . . . . . . . . . . . . . . . . 18

4



1.7 Quantization errors of the IΣ∆ modulator in the function of the input amplitude when

25 clock cycles are applied. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.8 Equivalent number of bits of the IΣ∆ modulator in the function of the input amplitude

for some values of OSR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.9 Relatively occurrence frequency of the residues of each steps when 200 clock cy-

cles are applied. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.10 Diagrams of inverter-based amplifiers: (a) Simple inverter; (b) Cascaded inverter;

(c) Cascaded inverter with gain boosting. . . . . . . . . . . . . . . . . . . . . . . . 21

1.11 A typical op-amp’s DCG versus output voltage with the rail-to-railvoltage of Vdd. . . 23

1.12 The FDCG and DCG linearity required for the output SNDR nearly 90dB. . . . . . 24

1.13 The PSDs of the modulator output with the first integrator nonlinear DCG of 9, 18,

and 37 dB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.1 A/D converter based on PCM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2 A basic sigma-delta A/D converter implemented with bipolar . . . . . . . . . . . . . 29

2.3 Uni-polar first-order incremental sigma-delta A/D converter . . . . . . . . . . . . . 30

2.4 High-order IΣ∆ ADC architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5 MASH 1-1 IΣ∆ ADC architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.6 Architecture of two-step pipeline IΣ∆ ADC . . . . . . . . . . . . . . . . . . . . . . . 32

2.7 Hybrid SAR-IΣ∆ ADC architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.8 Architecture of a Extended Counting IΣ∆ ADC in IΣ∆ conversion . . . . . . . . . . 33

2.9 Topology of a second-order Σ∆ modulator . . . . . . . . . . . . . . . . . . . . . . . 33

2.10 Polynomial model of the output-signal-dependent amplifier gain . . . . . . . . . . . 34

2.11 Equivalent model of a non-ideal first-order modulator . . . . . . . . . . . . . . . . . 35

2.12 Equivalent model of a non-ideal second-order modulator . . . . . . . . . . . . . . . 35

2.13 Proposed adaptive digital calibration schematic of a first-order Σ∆ modulator: (a)

Architecture, (b) error filter (Ha), and (c) LMS update block . . . . . . . . . . . . . 36

2.14 MASH 2− 2 Σ∆ modulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.15 Block diagram of (a) integrator output approximation, (b) modulator correction, (c)

error estimation, and (d) error parameter identification. . . . . . . . . . . . . . . . . 37

2.16 MASH 2-0 ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.17 (a) MASH 2-0 ADC with digital noise-leakage compensation, (b) scheme of the

digital noise-leakage compensation filter and the correlator. . . . . . . . . . . . . . 38

2.18 ADC in calibration mode: parallel LMS coefficient estimation . . . . . . . . . . . . 39

5



2.19 Improved first-order converter with second-order filtering and dither. . . . . . . . . 40

2.20 Quantization error of a 10-bit first-order converter around zero input. (a) Using first-

order digital filter. (b) Using second-order digital filter (two integrators).(c) Using

second-order filter with dither signal injected into the loop . . . . . . . . . . . . . . 41

2.21 Block diagram of a typical IΣ∆ ADC with thermal noise at the input. . . . . . . . . 42

3.1 High level architecture of an IΣ∆ ADC . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2 A second-order CIFF modulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 Numbers of clock cycles required in the function of ENOB . . . . . . . . . . . . . . 47

3.4 Comparison of numbers of clock cycles required in one-step and two-step conver-

sions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5 Schematic of the IΣ∆ modulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.6 Timing diagram of the command signals and corresponding states of components 51

3.7 Schematic of inverter-based SC integrator . . . . . . . . . . . . . . . . . . . . . . . 52

3.8 Schematic of gain-boosting inverter-based amplifier . . . . . . . . . . . . . . . . . 53

3.9 Schematic of Sampling-and-hold block . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.10 Timing diagram of the signals commanding S/H block . . . . . . . . . . . . . . . . 55

3.11 Schematic of adder-and-comparator . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.12 Timing diagram of command signals in adder and comparator . . . . . . . . . . . 56

3.13 Schematic of double-tail comparator . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.14 Schematic of non-overlap block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.15 Examples of timing in finite mode and infinite mode . . . . . . . . . . . . . . . . . . 59

3.16 Diagram of states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.17 Diagram of the inputs generation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.18 Inputs generated with new method. . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.19 Equivalent resolution in one-step mode using the theoretical filter: (a) for the model

of ideal ADC; (b) in post-layout simulation; (c) in post-layout simulation after the

correction of gain and offset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.20 Equivalent resolution in two-step mode using the theoretical filter: (a) for the ideal

ADC model; (b) in post-layout simulation; (c) in post-layout simulation after the

correction of gain and offset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.1 Diagram of calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2 Diagram of correction methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3 Diagram of the correction of gain and offset. . . . . . . . . . . . . . . . . . . . . . 71

6



4.4 Diagram of the optimal filter correction. . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.5 Correction results in the one-step mode of an ideal IΣ∆ modulator : (a) with the

correction of gain and offset; (b) with the optimal filter correction . . . . . . . . . . 73

4.6 Correction results in the two-step mode of an ideal IΣ∆ modulator: (a) with the

correction of gain and offset; (b) with the optimal filter correction in plan B . . . . . 74

4.7 Correction results in the one-step mode in post-layout simulation: (a) with the cor-

rection of gain and offset; (b) with the optimal filter correction . . . . . . . . . . . . 75

4.8 Impulse responses of the filters of existing methods for one-step conversion. . . . 76

4.9 Correction results in the two-step mode: (a) with the correction of gain and offset;

(b) with the optimal filter correction in plan B. . . . . . . . . . . . . . . . . . . . . . 77

4.10 Impulse responses of the filters of existing methods for two-step conversion. . . . 77

4.11 Errors in S/H block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.12 Illustration of pattern identification . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.13 Algorithm of Pattern-correcting filter . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.14 Correction result in one-step mode with the pattern-correcting filter correction,n = 3 80

4.15 Impulse responses of the pattern-correcting filters for one-step conversion. . . . . 80

4.16 Impulse responses of the pattern-correcting filters for two-step conversion. . . . . 82

4.17 Diagram of correction methods for two-step conversion after simplification . . . . . 84

4.18 Comparison of correction results in the two-step mode: (a) with the optimal filter

correction in plan A; (b) with the simplified optimal filter correction in plan A . . . . 85

4.19 Comparison of the impulse responses in the optimal filter and the simplified filter. 85

4.20 Correction result in the two-step mode with the hybrid filter correction in plan A . . 86

4.21 Correction result in the two-step mode with the simplified hybrid filter correction in

plan A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.22 Comparison of the simplified hybrid filter and the hybrid filter in plan A with different

m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.23 Summary of correction methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.24 With the optimal filter correction in plan B, global equivalent resolution in two-step

mode in the function of M1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.25 Conversion error when M1 = 48 using simplified hybrid correction in plan A with

n = 3,m = 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.2 ER in the function of Amax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.3 ER in the function of capacitor mismatch ratios: (a) Cs/Ci; (b) Cx/Ci . . . . . . . . 95

7



5.4 Vx,b in the function of the integrator outputs Vo,b . . . . . . . . . . . . . . . . . . . . 96

5.5 Vx,b in the function of difference between the integrator outputs in two phases Vo,b−

Vo,a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.6 An inverter-based SC integrator with parasitic capacitors . . . . . . . . . . . . . . . 97

5.7 Comparison of the estimation errors in the first integrator respectively of the ideal

integrator model and of the new proposed model. . . . . . . . . . . . . . . . . . . . 104

5.8 Comparison of the estimation errors in the second integrator respectively of the

ideal integrator model and of the new proposed model. . . . . . . . . . . . . . . . . 104

5.9 Conversion errors in one-step mode. . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.10 Conversion error in one-step mode in functional model simulations with non-linear

finite amplifier gain: (a) with theoretical filter; (b) with correction of gain and offset;

(c) with optimal filter correction; (d) with pattern-correcting filter correction of 3-bit

package (n = 3); (e) with simplified filter; (f) with hybrid filter of 3-bit package,m = 3 108

5.11 Conversion errors in two-step mode in post-layout simulation: (a) with theoretical

filter; (b) with correction of gain and offset; (c) with optimal filter correction in plan A;

(d)with optimal filter correction in plan A; (e) with pattern-correcting filter correction

of 3-bit package (n = 3) in plan A; (f) with pattern-correcting filter correction of 3-bit

package (n = 3) in plan B; (g) with simplified filter in plan A; (h) with hybrid filter

with n = 3,m = 3 in plan A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.12 Conversion errors in two-step mode in functional model simulations with infinite

amplifier gain: (a) with theoretical filter; (b) with correction of gain and offset; (c)

with optimal filter correction in plan A; (d)with optimal filter correction in plan A;

(e) with pattern-correcting filter correction of 3-bit package (n = 3) in plan A; (f)

with pattern-correcting filter correction of 3-bit package (n = 3) in plan B; (g) with

simplified filter in plan A; (h) with hybrid filter with n = 3,m = 3 in plan A. . . . . . . 109

5.13 Conversion errors in two-step mode in functional model simulations with non-linear

finite amplifier gain: (a) with theoretical filter; (b) with correction of gain and offset;

(c) with optimal filter correction in plan A; (d)with optimal filter correction in plan A;

(e) with pattern-correcting filter correction of 3-bit package (n = 3) in plan A; (f)

with pattern-correcting filter correction of 3-bit package (n = 3) in plan B; (g) with

simplified filter in plan A; (h) with hybrid filter with n = 3,m = 3 in plan A. . . . . . . 110

5.14 Equivalent resolution in one-step mode respectively with the optimal filter correction

and the patter-correcting filter correction (package of 3 bits): (a) sweep of Cp1 and

Cp2 and Co1 = Co2 = 0; (b)sweep of Co1 and Co2 and Cp1/Cx1 = Cp2/Cx2 = 0.01; . 112

8



5.15 Equivalent resolution in one-step mode respectively with theoretical filter and with

the optimal filter correction and the simplified filter correction (package of 3 bits): (a)

sweep of Cp1 and Cp2 and Co1 = Co2 = 0; (b)sweep of Co1 and Co2 and Cp1/Cx1 =

Cp2/Cx2 = 0.01; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.16 Equivalent resolution in two-step mode respectively with the optimal filter correction

and the patter-correcting filter correction (package of 3 bits): (a) sweep of Cp1 and

Cp2 and Co1 = Co2 = 0; (b)sweep of Co1 and Co2 and Cp1/Cx1 = Cp2/Cx2 = 0.01; . 113

5.17 Equivalent resolution in two-step mode respectively with theoretical filter and with

the optimal filter correction and the simplified filter correction (package of 3 bits): (a)

sweep of Cp1 and Cp2 and Co1 = Co2 = 0; (b)sweep of Co1 and Co2 and Cp1/Cx1 =

Cp2/Cx2 = 0.01; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.18 Diagram of the IΣ∆ modulator with noise sources. . . . . . . . . . . . . . . . . . . 114

5.19 Equivalent resolution in the function of noise amplitude in one-step mode: (a) only

with noise source N1; (b) only with noise source N2; (c) only with noise source Ny;

(d) with noise sources N1 + N2 + Ny . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.20 Equivalent resolution in the function of noise amplitude in two-step mode: (a) only

with noise source N1; (b) only with noise source N2; (c) only with noise source Ny;

(d) with noise sources N1 + N2 + Ny . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.21 ER in the function of Cp applying different reconstruction filters in the simulation of

the proposed IΣ∆ modulator model . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.1 Layout of the IΣ∆ modulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.2 Layout of the core of Pieretta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.3 Schematic of test-bench . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.4 Timing diagram of clk out and the modulator output . . . . . . . . . . . . . . . . . 127

6.5 Timing diagram of signals in asynchronous sampling mode . . . . . . . . . . . . . 128

6.6 Generation of clk out′ and the voting mechanism for deciding the values of BS . . 128

6.7 Comparison between the first 8 MSBs in outputs of different modulators for the

same input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.8 Comparison between the modulator outputs and the modulator inputs . . . . . . . 129

6.9 Original conversion errors of the real circuits . . . . . . . . . . . . . . . . . . . . . . 130

6.10 Filter before correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.11 Conversion errors after correction, choice 1: (a) optimal filter in plan A; (b) pattern-

correcting filter in plan A, m = 3; (c) simplified filter; (d) hybrid filter, m = 3, mbit = 3; 131

9



6.12 Tendency of ER in two-step simulations. . . . . . . . . . . . . . . . . . . . . . . . . 132

A.1 Differences of the values estimated of the coefficients correcting gain and offset in

the function of the numbers of samples used for coefficient estimation. . . . . . . . 136

A.2 Differences of the values estimated ofthe coefficients correcting offset and D2 in

the optimal in the function of the numbers of samples used for coefficient estimation.137

A.3 Differences of the values estimated of the coefficients of the first three MSBs in the

optimal in the function of the numbers of samples used for coefficient estimation. . 137

A.4 Differences of the values estimated of the coefficients correcting offset and D2 in

the simplified filter in the function of the numbers of samples used for coefficient

estimation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

A.5 Differences of the values estimated of the coefficients in IIR filter in the simplified

filter in the function of the numbers of samples used for coefficient estimation. . . . 138

A.6 Differences of the values estimated of the coefficients of certain patterns in the

hybrid filter in the function of the numbers of samples used for coefficient estimation. 139

10



List of Tables

1.1 Summary of performances of different ADCs. . . . . . . . . . . . . . . . . . . . . . 16

1.2 Summary of inverter-based amplifiers designed by Pierre. . . . . . . . . . . . . . . 21

1.3 Summary of the IΣ∆ modulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1 Dimensions of transistors in the gain-boosting inverter . . . . . . . . . . . . . . . . 54

3.2 Dimensions of transistors in the comparator . . . . . . . . . . . . . . . . . . . . . . 56

3.3 Dimensions of transistors in switch . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4 Descriptions of conversion modes with different configurations . . . . . . . . . . . 60

3.5 Descriptions of states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.6 Descriptions of transfer conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.1 ERs applying the existing correction methods in the simulation of the ideal IΣ∆ ADC 74

4.2 ERs applying the existing correction methods in post-layout simulation . . . . . . . 76

4.3 Comparison of the pattern-correcting filters in one-step mode based on post-layout

simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.4 Comparison of the pattern-correcting filters in two-step mode based on post-layout

simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.5 ERs after correction of gain and offset in multi-step modes. . . . . . . . . . . . . . 83

4.6 ERs corrected with the optimal filter in plan B of multi-step modes. . . . . . . . . . 83

4.7 ERs corrected with the pattern-correcting filter in plan B of multi-step modes. . . . 83

4.8 Numbers of bits to code a coefficient in the FIRs of different corrections . . . . . . 88

4.9 Numbers of bits to code a coefficient in simplified optimal filter (type IIR) . . . . . . 88

4.10 Comparison of some correction methods in two-step mode with quantized coefficients 88

4.11 Comparison of ER when M1 = 36 and M1 = 48, using simplified hybrid correction

in plan A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

11



5.1 Comparison of correction results of the proposed model in two-step mode to post-

layout simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.1 Descriptions of conversion modes with different configurations . . . . . . . . . . . 125

12



Chapter 1

Introduction

Complementary metal-oxide-semiconductor (CMOS) image sensor technology has been well de-

veloped during the past few decades. The requirements to analog-to-digital converter (ADC)

come along with the improvements of CMOS image sensor performance. In order to improve the

conversion rate, column-parallel ADCs are widely used in CMOS image sensor applications.

The use of column-parallel ADCs only increases conversion rate. However, for many high-

end image sensor applications which are supposed to provide high dynamic range, ADCs of high

resolution are required. Apart of this, column-parallel ADC has special constraint on its size: the

width should not be too large so that the column-parallel ADCs in ADC array can align with pixels.

Aiming at CMOS image sensors for the Earth observation which needs high-resolution ADCs,

a two-step incremental Σ∆ ADC was designed by our team which is able to answer the require-

ments of resolution and conversion speed. To respect the constraint of size, inverter-based am-

plifiers have been chosen when the ADC was designed. The use of inverter-based amplifiers

might lead to resolution degradation. For the purpose of steadying the ADC resolution, a calibra-

tion technique is required. Therefore, here is my PhD subject: development of new calibration

technique for a two-step incremental Σ∆ ADC.

1.1 From CMOS Image Sensor to Column-parallel ADC

The first devices with CMOS image sensor (CIS) technology on the market for the public use

raised in 1990s. Despite of its low image quality in early years, CIS technology survived in the

game thanks to following facts: capability to integrate peripheral functional circuit on the same

die as the image sensor; less size and lower power consumption. In a past few decades, CIS

technology has significant improvement by overcoming these draw-backs: increased noise and
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reduced sensitivity which makes them offer picture quality that meets or exceeds the capabilities

of Charge-coupled devices (CCDs) [1]. Today CISs are suitable for many consumer domains (we-

bcams, cell phones, digital cameras...). Fig. 1.2[2] shows a classical CMOS active pixel sensor

Figure 1.1: CMOS image sensor applied in digital camera

(APS) architecture. An APS consists of 4 main parts: active pixel array, analog signal proces-

sors, analog-to-digital converter (ADC) and peripheral logic control circuits. The active pixels are

responsible for converting the number of photons into a voltage, via photodiodes. Analog Sig-

nal Processors perform functions such as charge integration, gain sample and hold, correlated

double sampling (CDS) and FPN suppression [3]. ADCs, as the name, convert analog signals to

digital so that they can be used for the following signal processing.

After market revolution at the beginning of 2000, HD (high definition) is becoming the standard

all around the world which means increased number of pixels in image sensor and decreased

pixel array readout speed. To ensure frame rate, single ADC covering all pixels should work in

very high speed which results in undesirably high power consumption. In order to release the

constraint of ADC conversion frequency, the column-parallel ADC architecture was proposed.

Amount the existing column-parallel ADC dedicated to CMOS image sensor, single-slope ADC

(SS ADC) are friendly in size. [4][5] provide a conversion rate higher than 100 kS/s and a maximum

resolution of 10-11 bits. [6] Uses hybrid column counters and achieves 12 bits. Although it is

possible to modify to the ADC in [6] in order to get higher resolution, the clock frequency of

the counter in the ADC should be very high. Cyclic ADCs [7][8] which are compatible in size
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Figure 1.2: CMOS image sensor architecture

can achieve 12 to 13 bits resolution and operate faster. However highly requiring of components

linearity makes it hardly achieve more. SAR ADCs provide low power consumption and a relatively

high speed compared to other ADCs. However requiring of large area caused by capacitors in

DAC decreases the compatibility with the size of pixel pitch. With a segmented capacitor DAC,

[9]and[10], of which sizes are adapted to widths of their pixels, and achieve 12-bit resolution. Over-

sampling ADC, such as sigma-delta (Σ∆) ADC has been investigated for CMOS image because it

requires relatively low precision analog components and reduces input temporal noise, compared

to conventional Nyquist-rate converters. Although S/H module is suppressed, Σ∆ ADC works

as incremental Σ∆ (IΣ∆) ADC in image sensor application for the reason that modulator is reset

before every conversion beginning. Column-parallel Σ∆ ADC in [11] compatible with pixel pitch by

using invertor-based amplifier[12] instead of operational amplifier, achieves 12-bit resolution and

220-kS/s conversion rate. It’s possible to obtain higher resolution by doubling the conversion time

in theory. Also using invertor-based amplifier, [13] has 14-bit resolution and 100-kS/s conversion

rate with the width of 70µm. The summary of different type column-parallel ADCs are shown in

Table 1.1

Pure one-step ADCs can hardly take care of both speed and resolution. Furthermore, gener-

ally high resolution ADC relies on analog components linearity. In order to achieve high resolu-

tion without scarifying conversion time and increasing circuit complexity significantly, multi-stage

ADCs are developed. Pipeline ADC, as shown in Fig. 1.3 can be considered as the most typical

multi stage ADC. It is relatively easy to achieve high resolution and medium conversion speed[14]
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ADC Type Resolution Conversion Speed Size

SS ADC ++ ++ ++

Cyclic ADC ++ + + + +

SAR ADC ++ + + + +

Σ∆ ADC or IΣ∆ ADC + + + ++ ++

Table 1.1: Summary of performances of different ADCs.

[15][16]while it requires an operational amplifier (OTA) for each stage. It results in immense area

and difficulty in integration as column-parallel ADC. It’s also feasible to use different ADC at each

stage, which is hybrid ADC. With a combination of an IΣ∆ ADC and a cyclic ADC, [17] achieves

14 bits operating at 5 MHz and [18] provides 17 bits with 30-kS/s conversion rate. IΣ∆+SAR is an

other choice for column-parallel hybrid ADC. In[19], a 16-bit, 12.8-kS/s ADC is developed, whose

width is 40 µm. [20] proposed a 14-bit, 150-kS/s ADC with relatively large width. Anyway, multi-

Figure 1.3: Pepline ADC architecture

stage ADCs require additional circuit resulting in area increasing. On the other hand, multi-step

ADCs, whose basic structure is shown in Fig. 1.4, collect the residue(Ri) of each step and esti-

mate the Ri in step i + 1 in order to have fine estimation of ADC input. Though conversion over

multi steps cannot be operated in pipeline as certain multi-stage ADCs, it simplifies the circuit by

reusing materials for all the steps. Two-step single-slope ADC [21][22] can achieve 12 bits with

an acceptable conversion time. While Two-step SAR ADCs respectively proposed in [23] and [24]

have 14-bit resolution. Although their widths are compatible to the pixel pitch size, their length are

much larger than other ADCs. In[25], an IΣ∆ ADC in two-step is developed, obtaining 15 bits and

20-kS/s conversion rate. Converting in two steps, overall number of clock cycles decreases from

2n to 2
n
2 . Despite of its low clock frequency, another two-step IΣ∆ ADC[26], reduces further more

the overall number of clock cycles by using a second-order IΣ∆ modulator.
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Figure 1.4: Multi-step ADC architecture Figure 1.5: Pixel Matrix with two columns of
ADCs in parallel.

1.2 Challenge of ADC in the Earth Observation Application

Featuring significant advantages over CCD sensors (lower power consumption, integration mono-

lithic...), CMOS technology is also expanding in some high-end space applications, such as the

Earth observation which requires high-resolution, medium-speed as well as high-dynamic-range

image sensors. [27] developed a 750 × 750 pixels CIS specifically designed in order to fit star

trackers. Nowadays we use a full HD CIS with 1080 × 1920 pixels and 100-frame/s date rate to

increase resolution and speed. Therefore, the ADC conversion rate should not be lower than 100

kS/s to allow CIS reading out 100 images per seconds. To guarantee high dynamic range, we

challenge to design a column-parallel ADC with high resolution of effective 14 bits. To release the

constraint of the ADC width, we place half of column-parallel ADCs at the top of pixel array and

half of them at the bottom, as the CIS architecture shown in Fig. 1.5. However the width of each

ADC still should not exceed the width of two pixels.

1.3 Pieretta: Chip of New Proposed Two-step IΣ∆ ADCs

Pieretta[28] is our response to the challenge. It is the name of the chip of two-step IΣ∆ col-

umn ADCs. This ADC architecture was proposed by a previous PhD student Pierre Bisiaux who

defensed in 2016.

Acting as a Nyquist rate converter, IΣ∆ ADC is an ideal candidate for medium-frequency and

high-resolution application. Different from Σ∆ which focus on the output’s spectral properties,

IΣ∆ ADC provides an accurate estimation for every individual sample. What’s more, because of

its memory-less conversion, it can be easily switched between different signal sources. These

characters make it suitable for image sensor applications. For this reason, Pierre decided to
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develop the ADC based on IΣ∆ ADC.

Conversion rate was an important consideration when the architecture of IΣ∆ ADC (modu-

lator) was chosen. The use of 2nd order Σ∆ modulator provides a good trade-off between the

number of clock cycles needed for a conversion and the circuit complexity. Once the order of the

IΣ∆ modulator has been chosen, he found out the modulator input range based on Fig. 1.6 so

that the quantization errors stay in a reasonable zone as the effective number of bits depends

on the range of quantization errors. Fig. 1.7 shows the quantization errors in the function of the

input of the IΣ∆ modulator when 25 clock cycles (OSR) are applied. According to it, if the input

amplitude is limited to 0.8 reference voltage (the value of full scale voltage equals to two times the

value of reference voltage), the quantization errors coverge to a normal range. This conclusion is

also valid for OSR = 50 and OSR = 100, as shown in Fig. 1.8.

Figure 1.6: Architecture of a second-order IΣ∆ modulator.

By choosing a two-step conversion approach, we can further reduce the number of clock

cycles without extra circuit. Mr.Bisiaux also optimized the coefficients of the integrators in the IΣ∆

modulator for two purposes: first, making the range of residue in of first step close to the range

of the modulator input, in order to eliminate inter-step gain, second, minimizing the residue of the

second step so that to minimize the conversion errors. As shown in Fig. 1.9, the distribution of the

residue of the first step is more ”uniform” than that of the residue of the second step. Thus for our

architecture, if the ADC operates at a 20 MHz system clock with 72 clock periods, it is possible

to achieve a conversion rate of 250 KS/s with a resolution of 14 bits, which provides the same

performance as a one-step ADC with 286 clock periods.

As a column ADC, in order to fit its width with the pixel pitch, inverter-based amplifiers are

employed instead of operational amplifiers (OTAs). CMOS inverters have also been found in the

literature as being used for realizing OTAs for Σ∆ ADCs, because of it simple structure and[12][29]

[30]. For low power applications, to reduce the power consumption of inverter-based OTAs, they

are operated at lower supply voltages[31][32]. It is namely class-C operation where the supply
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Normalized Input

Figure 1.7: Quantization errors of the IΣ∆ modulator in the function of the input ampli-
tude when 25 clock cycles are applied.

Figure 1.8: Equivalent number of bits of the IΣ∆ modulator in the function of the input
amplitude for some values of OSR.

voltage is chosen slightly lower than the sum of the threshold voltages of NMOS and PMOS

transistors (|Vthn| + |Vthp| > VDD). However, in our application, power consumption isn’t critical

for design. To the opposite, a strong current is required in order to ensure a sufficient GBW and

slew rate which are not guaranteed by class-C OTA. In order to use a minimum area to deliver

this high current, a class-AB amplifier is therefore used. For this type of inverter, it is easy to

obtain a GBW of 100 MHz, a value necessary in order to satisfy the time constraints of the chosen

architecture. Since these OTAs are used for implementing integrators, significantly high dc gain is

desirable, in order to minimizing the error of the integrators. To increase the DC gain of amplifier,
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Figure 1.9: Relatively occurrence frequency of the residues of each steps when 200 clock cycles
are applied.

cascading and gain-boosting techniques, as shown in Fig. 1.10, have been applied[33][34][35].

These techniques increases the output impedance and thereby increases the DC gain of the

amplifiers. To ensure 14 bits ADC resolution, a DC gain of 80 dB of amplifiers is sufficient. Finally,

Mr.Bisiaux employed cascading and gain-boosting techniques for designing the amplifiers in our

circuit. Table 1.2 shows the summary of the inverter-based amplifiers designed by Mr.Bisiaux.

Pierre also finished the design of analog circuit as well as a testing digital circuit of the IΣ∆

modulator and validated his design by post-layout simulation. The summary of the IΣ∆ modulator

is shown in Table 1.3.

1.4 Motivation and Problematic

The OTA non-idealities are responsible for incomplete or inaccurate transfer of charge between

the capacitors in integrators[36], that is so call a leakage in the integrator[37]. Orla Feely and

Leon O Chua study the effect of integrator leak in a first-order single-loop Σ∆ modulator in [37]
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(a)
Simple Inverter

(b)
Cascaded Inverter

(c)
Cascaded Inverter with Gain Boosting

Figure 1.10: Diagrams of inverter-based amplifiers: (a) Simple inverter; (b) Cascaded inverter; (c)
Cascaded inverter with gain boosting.

Class AB

Power supply 1.8 V

Biasing Current 76 µA

Load capacitance CL 400 fF

DC gain 80 dB

linear input range 0.9 V

linear input range 0.9 V

GBW 386 MHz V

Power consumption 136 µW

Table 1.2: Summary of inverter-based amplifiers designed by Pierre.

by looking at the dynamic range of the integrator values in each cycle. With an ideal integrator,

applying a DC input, the modulator outputs are periodic (with a number of limit cycles) and its

average equal to the input[38]. And with the integrator leak, the modulator outputs may still be

periodic, however the number of limit cycles varies in the function of the modulator inputs. As a

results, using a fixed number of limit cycles to calculate the average modulator output, we may

obtain a value different to the modulator input.

Finite DC gain (DCG) is one of the source leading to integrator leakage. Many researches

about its impacts on SC integrators and Σ∆ modulators have been done by modeling the transfer

function of SC integrator in z domain[39][40][41][42]. Finite DC gain, in z-domain, leads to the shift

of poles and zeros in the transfer function of the integrators. Further more, if the gain is non-linear

(output signal-depending, as shown in Fig. 1.11), the coefficients of the poles and zeros are in
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States Descriptions

Technology 180 nm

Power supply 1.8 V

Sampling Frequency 250 kHz

Power Consumption 460µW

Surface 25µm × 370µm

SNDR 72.8 dB

Table 1.3: Summary of the IΣ∆ modulator.

the transfer function are not constant. Charge transfer error (leakage) of integrators finally results

in distortion of the Σ∆ modulator outputs in frequency domain. [43] and [42] study the effects of

finite and nonlinear DCG of the Amplifiers in Σ∆ Modulators employing SC integrators by defining

two indicators: Finite DC-Gain (FDCG) which refers to the maximal DC gain and DC-Gain (DCG)

Linearity indicating the degree of amplifier gain linearity (A0 in Fig. 1.11). The simulation results

(in Fig. 1.12) of a second-order Σ∆ modulator on SIMULINK MATLAB shows that: to ensure a

SNDR of 90 dB, (a) if the amplifier gain is very non-linear (DCG linearity < 10 dB), a very high

FDCG is required (above 10000). (b) There is a linear-gain part of the curve in (in Fig. 1.12) where

the required DCG linearity increases by 20dB/oct of the required FDCG. (c) if DCG linearity s

above 50dB, the FDCG of 100 is enough. [42] indicates that non-linear finite OTA gain introduces

odd harmonic distortion to the output of the modulator and moreover increases the in-band noise

level. As shown in Fig. 1.13, for the same Σ∆ modulator in [43], when DC gain (DCG) linearity

drops from a moderate value (37dB) to very low value (9dB), SNDR decreases from 96 dB to 69

dB. Unfortunately, one of the well-known issue of inverter-based amplifiers is its non-linear finite

amplifier gain. [39] points out that the finite amplifier gain may even endanger the modulator

stability.

Other OTA non-idealities such as finite GBW (gain-bandwidth product) and SR (slew rate) of

OTA may degrade the performance of SC integrators. WJ Wolski in [44] points out that SR of

the op-amp (operational amplifier) and time constants caused by non-zero switch-on resistance

are main effects which limit the maximal frequency of sampling in SC network. The finite gain-

bandwidth product and switch-on resistance introduce the parasitic poles and zeros in the trans-

fer function of integrator, thus producing error of amplitude and phase frequency characteristics.

However, when sampling frequency is small, the finite gain-bandwidth product and switch-on re-

sistance effect only the integrator gain as the parasitic poles and zeros lie very near by the z-plane

origin. For Σ∆ modulators, the SC integrator non-imperfection caused by the finite GBW and SR

of OTA produce dynamic errors and harmonic distortion, thus degrading the SNDR performance
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of the Σ∆ modulators[40][36].

Apart from it, different to differential inverter-based OTAs in [45][46][47][48], our amplifiers

have only single input. Thus the common mode voltage Vcm of input makes difference to the

amplifier characters as it cannot be eliminated. Additionally, for a high resolution ADC, any

other defects (causing linear or non-linear errors) such as capacitor mismatch[49][50] and charge

injection[51][52] in switches may also hinder it from achieving the desired accuracy.

We can obtain a conclusion of the previous small research of ADC circuit non-idealities and

their impacts: just designing ADC is not the end of our work for a goal of high resolution. Some

techniques should be considered to compensate the degradation brought by these circuit non-

idealities. We call these techniques as calibration techniques. The objective of my research is

to developer a calibration technique for our two-step Σ∆ ADC so that it can achieve the target

resolution regardless of circuit imperfections.

Figure 1.11: A typical op-amp’s DCG versus output voltage with the rail-to-railvoltage of Vdd.

1.5 Thesis Organization

This dissertation is organized as follows:

Chapter 2 first narrates evolution of incremental sigma-delta analog-to-digital converter (IΣ∆

ADC). Then it introduces conventional calibration techniques for Σ∆ ADCs and optimization tech-

niques for IΣ∆ ADCs and describes the limitation of each existing technique.

Chapter 3 introduces circuit Pieretta in terms of mathematical modeling and circuit design.

The mathematical model shows that our IΣ∆ ADC performs over two steps has great advantage
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Figure 1.12: The FDCG and DCG linearity required for the output SNDR nearly 90dB.

Figure 1.13: The PSDs of the modulator output with the first integrator nonlinear DCG of 9, 18,
and 37 dB.

in conversion rate compared to classical one-step IΣ∆ ADCs. Apart from it, reuse of circuit during

two-step conversion avoid auxiliary components that saves circuit area. Circuit design includes
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two parts: the analog part shows schematics and dimensions of transistors of each component

while the digital part illustrates control flow of the digital circuit and interfaces of our circuit.

the proposes the output-referred distortion analysis of the Σ∆ modulator, which takes into

account the error circulation in the DTI. From this analysis, the universal model including multiple

nonlinear error sources is proposed. The similarity with the exiting method is provided to give

more insight into the proposed approach. The mismatch effect of PN injection in modeling is also

considered in this chapter.

Chapter 4 first presents classical correction methods for IΣ∆ ADCs. However according to

post-layout simulation, these classical correction methods are not completely suitable for our cir-

cuit. Therefore, it then proposes a new correction methods considering the ADC as a black-box.

According to post-layout simulation, it is able to improve resolution significantly. Next, it simplified

this new proposed correction method to make it implementable. At the end, our ADC achieve the

target resolution after the correction with an acceptable complexity.

Chapter 5 proposes an error model of inverter-based integrators which are employed in our

IΣ∆ ADC. This error model can well explicate the behavior of our circuit in post-layout simulation

as well as most part of the degradation. With the help of the error model, we can further study

characters of our ADC and correction methods.

Chapter 6 presents test-bench, sampling and filtering method of the ADC as well as measure-

ment results. Regardless of a global shift in resolution for all correction methods in measurement,

the tendency is coherent to that in post-layout simulation.

Chapter 7 concludes and summarizes this research and discuss the future work as well.
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Chapter 2

State of the art

The core of Σ∆ ADCs or IΣ∆ ADCs are Σ∆ modulators. After decades of development, there

are diverse architecture of Σ∆ modulators. The order of Σ∆ modulators have been increased

from first order at the beginning to until fourth order so as to obtain higher resolution during the

same clock cycles. In order to enhance the stability of Σ∆ modulators, multi-stage architectures

appeared. Apart from pure Σ∆ ADCs, there are also some ADCs combined Σ∆ modulator with

other ADC architectures also for the purpose of increasing resolution without sacrificing conver-

sion speed.

In reality, sometimes we cannot get the resolution as we expected because of circuit imperfec-

tions, especially for the high-order ADCs. Therefore, a calibration is required. Some calibration

methods for Σ∆ ADCs already exist, however, they are only suitable for those with multi-bit quan-

tizer. Even if the architectures of IΣ∆ ADCs are similar to those of Σ∆ ADCs, there are few

calibration methods for IΣ∆ ADCs with circuit imperfections. Most of the researches about IΣ∆

ADCs focus on finding a better way to reconstruct the inputs of ideal IΣ∆ ADCs.

2.1 Incremental Σ∆ ADC

The principle of incremental Σ∆(IΣ∆) ADCs is Σ∆ modulation which is a method of pulse-code

modulation (PCM) encoding. [38] proposes to apply PCM in an analog-to-digital converter, the

architecture of which is shown in Fig. 2.1. It uses a negative feedback loop including an integrator

and a quantizer. The digital outputs of the quantizer are accumulated during certain cycles and

an output is taken from the accumulator. Then its content sets to zero before cycling for the

next sample. An A/D converter of basic Σ∆ modulator is implemented in the form of a bipolar

integrated circuit [53]. Its schematic is shown in Fig. 2.2. Implemented with CMOS, [54] applies
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Figure 2.1: A/D converter based on PCM

reset signal not only in the digital counter but also in the Σ∆ modulator, as shown in Fig. 2.3.

It can be considered as the origin of IΣ∆ ADCs. With Vin ∈ [0, VR], at the beginning of a new

conversion, the integrator and the counter are both reset. Then, a fixed number (N = 2nbit) of

discrete integration steps are performed, where nbit is the target resolution in bits. Whenever the

input of the comparator exceeds zero, its output becomes 1, and VR added to the input of the

analog integrator. After N = 2nbit clock cycles, the next output of the delaying integrator (which is

bounded by (−V ref, V in]) would become:

Vout[N + 1] = NVin −NoutVR (2.1)

where Nout is the number of clock cycles when feedback was applied. Since the known reference

voltage VR is applied to the integrator input only when the output of the comparator is 1, it is called

unipolar. As Vout[i] always satisfies −VR < Vout[i] ≤ Vin ≤ VR, we have:

Vin =
NoutVR
N

+ ε (2.2)

where ε ∈ [−VR

N , VR

N ]. Thus, NoutVR

N is a digital representation of Vin, with a quantization error ε.

The incremental converter can also be implemented in bipolar ways by enabling bipolar input

signal ( V in ∈ [−VR, VR)) and feeding back bipolar reference signal instead of unipolar. In this

way, the digital representation of Vin becomes VR

∑N
i=1 s(i)

N , where s(i) is the output of comparator.

Over 40 years, the architectures of Σ∆ modulator have been developed and improved several

way, because of the fundamental drawback of the first-order Σ∆ A/D converter: it must be oper-

ated through 2nbit clock cycles to achieve nbit-bit resolution. Therefore, the conversion (output)

rate is extremely slow compared to the circuit’s clock frequency. To solve this problem, there are
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Figure 2.2: A basic sigma-delta A/D converter implemented with bipolar

two ideas.

One ideal searches for different modulator structure which leads to the raise of second or

high-order Σ∆ modulator structure[55][56][57]. An example of the architecture of a third-order

IΣ∆ ADC in [58] is shown in Fig. 2.4.

After a M clock cycles conversion, the ADC input Vin can be presented as:

d =
VR · 3!

(M − 2)(M − 1)M

M−1∑
k=0

k−1∑
j=0

j−1∑
i=1

s(i) (2.3)

And the equivalent value of the LSB voltage can be found as:

VLSB =
2 · 3!VR

(M − 2)(M − 1)M
· 1

c1c2
(2.4)

Thus the equivalent number of bits (ENOB) can be estimated by:

nbit= log2(
2VR
VLSB

)

= log2(
c1c2(M − 2)(M − 1)M

3!
)

≈ 3log2(M) + log2(c1c2)− 2.6 (2.5)

29



Figure 2.3: Uni-polar first-order incremental sigma-delta A/D converter

For single-loop Σ∆ modulators, we can even see an architecture of fourth order[59]. Another

extension structure of Σ∆ modulator is that described in [60]: multi-stage noise shaping (MASH),

which consists of two first-order Σ∆ loops, as shown in Fig. 2.5. In this architecture, the digital

representation of the ADC input, d can be expressed as:

d =
VR
2

(

p∑
i=1

a1(i) · (p+ 1− i) +

p+1∑
i=2

b2(i)) (2.6)

where p is the number of clock cycles in one conversion. In this case, VLSB = 4VR/p(p + 1) and

ENOB can be estimated by:

nbit= log2(
2VR
VLSB

)

≈ 2log2(p)− 1 (2.7)

For 16-bit accuracy, N is reduced to 362 instead of 216. In addition, by detecting the sign of the

output of the integrator in the second stage at the end of the conversion, an extra bit of resolution

can be obtained. In this way, N can be further reduced to 257.

Thanks to development of Σ∆ modulator structures many high resolution IΣ∆ ADCs have

been realized in the last 20 years [61, 62, 63, 64, 65]. The other solution to reduce N is to refine

30



𝒛−𝟏

𝟏 − 𝒛−𝟏

DAC

a1

Vin

q
e s(k)

-

𝒛−𝟏

𝟏 − 𝒛−𝟏
𝒛−𝟏

𝟏 − 𝒛−𝟏

a2

a3c1 c2

1−𝒛−𝟏s(k)
d

1−𝒛−𝟏 1−𝒛−𝟏

Figure 2.4: High-order IΣ∆ ADC architecture

Figure 2.5: MASH 1-1 IΣ∆ ADC architecture

the quantization error.

[66] proposes a two-step pipeline IΣ∆ ADC (as shown in Fig. 2.6) which doubles the second-

order IΣ∆ modulators. The first stage IΣ∆ modulator gives a coarse estimation of the ADC input

while the second stage allows refining the quantization error by estimating the residue of the first

step. In this case, global numbers accuracy equal to the sum of accuracy of each IΣ∆ modulator.

On the other hand, also for the purpose of increasing conversion speed, many attempts have

been made to combine IΣ∆ ADCs with other ADCs. [67] is composed of an 11-bit SAR and a

4-bit IΣ∆ ADCs for the coarse and fine conversions, and its architecture is shown in Fig. 2.7.

At the coarse SAR conversion, the circuits VCDL in Fig. 2.7 play the role of an open-loop

pre-amplifier. And VCDL and the quantizer operates as a comparator that decides the polarity

for the 11-bit SAR ADC conversions with the INLS switching procedure which decides the bottom

plate potential of SAR capacitor array. After the SAR conversion, the residue voltage remains on

the top plates of the capacitor arrays and it is maintained along during the fine IΣ∆ conversion.

In the IΣ∆ conversion, VCDL acts as an oscillator. To be noticed that these two different ADCs
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Figure 2.6: Architecture of two-step pipeline IΣ∆ ADC

Figure 2.7: Hybrid SAR-IΣ∆ ADC architecture

share the same operational amplifiers to save circuit area. The share-amplifier idea is applied in

[17][68], as shown in Fig. 2.8, which combines IΣ∆ ADC and cycle ADC together.

2.2 Linearization Techniques for Σ∆ ADCs

Since both Σ∆ ADCs and IΣ∆ ADCs employ a Σ∆ modulator, the linearization and calibration

methods for Σ∆ ADCs may provide inspiration to us. Compared to linear error, non-linear error

is more difficult to calibrate for Σ∆ ADCs. The linearization techniques Σ∆ ADCs are usually

developed for two main functional blocks, the integrators or the feedback DACs[69][70]. Since our

circuit employs a one-bit DAC, we only focus on the linearization techniques for the integrators.

One idea of the linearization techniques is to enhance the amplifier linearity in the integrators
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Figure 2.8: Architecture of a Extended Counting IΣ∆ ADC in IΣ∆ conversion

(a) Traditional topology. (b) Reduced distortion topology.

Figure 2.9: Topology of a second-order Σ∆ modulator

by applying low distortion structures in [71][72][73]. Fig. 2.9a[74] shows an example of a low

distortion Σ∆ modulator topology comparing to a traditional one shown in Fig. 2.9b. A direct

feed-forward path from the analogue input to the quantizer is added, which ideally enables the

perfect cancellation of the input signal at the input of the loop filter. Therefore the integrator

does not process the input signal but only handles the quantization noise shaping. However, it is

essentially an optimization in design step rather than a calibration technique.

The other idea of the linearization techniques is to find the calibration techniques for different

Σ∆ ADC structures. For a calibration method, generally there are three parts: error modeling,

cancellation, and parameter identification.

[75] proposes a classical model of an non-ideal integrator which is one of the main functional

blocks determining the linearity in Σ∆ ADCs as it is well known that the amplifier gain is finite

and non-linear. For weakly nonlinear amplifiers, the non-linear amplifier gain A(n) can be well

approximated by an N th-order power series of current amplifier output y(n):

y(n)

A(n)
≈

∑i=1
N kiy

i(n)

Amax
(2.8)

where Amax is the maximum amplifier gain and k1 = 1 while the higher-order coefficients are

determined by the amplifier character as shown in Fig. 2.10. This is equivalent to stating that the

amplifier gain is time-varying depending on its output Y .
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Figure 2.10: Polynomial model of the output-signal-dependent amplifier gain

A typical processing of the finite non-linear amplifier gain error leads to the pole and zero move-

ments embodied in a z-domain model of an integrator (whose architecture is shown in Fig. 2.11.)

given by:

Y (z) = β(A)z−1Y (z) + α(A)z−1W (z) (2.9)

where W and Y are respectively integrator input and output while β(A) and α(A) are functions of

the amplifier gain. According to equation (2.8), the value of A depends on the current amplifier

output, as a consequence, β(A) and α(A) are also signal-depend functions. That means that

their values are not constant because of the varying amplifier output in each cycle.

Based on a non-ideal integrator model, [75] proposes calibration techniques for the first-order

or second-order Σ∆ ADCs. However, despite of different order Σ∆ ADCs, the principles of cali-

bration method are the same.

The equivalent model of a non-ideal first-order Σ∆ ADC with time-varying α and β, as shown

in Fig. 2.11, can be treated as an ideal modulator plus a time-varying error term Ea which is

function of the outputs of each integrator. The equivalent model of a non-ideal second-order Σ∆

ADC is shown in Fig. 2.12. The objective is to compensate Ea (Ea1 + Ea2 for second order) with

Ed (the estimation of Ea) in order to have a corrected ADC output Dc. The schematic of the

ADC with calibration part is shown in Fig. 2.13 (a). Since the integrator outputs are analog values

and inaccessible, we usually use the original ADC output D to calculate Ed. In each cycle, the

equivalent error ed(n) is :

ed(n) = −
N∑
i=1

aid
i(n) +

N∑
i=1

bid
i(n− 1) (2.10)
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Figure 2.11: Equivalent model of a non-ideal
first-order modulator

Figure 2.12: Equivalent model of a non-ideal
second-order modulator

where d(n) is the ADC output in cycle n and ai, bi are functions of Amax and ki. Equation (2.10)

is implemented in Ha (as shown in Fig. 2.13 (b)). As a consequence, Ed is only an approximation

of Ea and the precision is decided by the precision of the quantizer. For a multi-bit quantizer, we

consider Ed is close to Ea. Now we turn the question into how to find the constant coefficients ai

and bi.

Therefore we need a parameter identification block as shown in Fig. 2.13 (c) to estimate the

coefficients ki in functionHa. The criteria to choose coefficient values is least-mean-square (LMS)

of error between Dc and X. Usually a gradient-descent algorithm is employed for parameter

learning process. The coefficients finally converge to some stable values when the correlator

output is null. A pseudo-random test signal T is injected somewhere in the circuit and removed

before Dc. As Ea is the function of integrator outputs, as well as the function of integrator inputs

therefor, with test signal, now Ea depends on both ADC input X and test signal T . When Ea is

completely compensated by Ed, Dc can represent X, which means correlation between T and Dc

is zero as T is pseudo-random.

This calibration can adapt to a MASH Σ∆ ADC in [76] for compensating the noise leakage due

to the transfer function mismatch between two stages. The architecture of the MASH Σ∆ ADC

is shown in Fig. 2.14. Also utilizing the outputs of quantizers Y1 and Y2, the integrator outputs

Yik (k = 1, 2, 3, 4) can be approximated as Ydi (i = 1, 2, 3, 4) as shown in Fig. 2.15 (a). With Ydi

(i = 1, 2, 3, 4), we can further estimate Efdi (i = 1, 2, 3, 4) , as shown in Fig. 2.15 (c), which is the

approximation of Ei. Fig. 2.15 (b) shows the diagram of correction of the ADC output Y where Yc

is the corrected ADC output. The parameter identification block of ai1 and ai2 using LMS algorithm
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Figure 2.13: Proposed adaptive digital calibration schematic of a first-order Σ∆ modulator: (a)
Architecture, (b) error filter (Ha), and (c) LMS update block

is shown in Fig. 2.15 (d).

[77][78] develop a calibration method for a 2-0 MASH Σ∆ ADC of which structure is shown

in Fig. 2.16 by applying FIR Lc (as shown in Fig. 2.17 (a)) to compensate the leaked noise. A

test signal is also employed for the parameter identification performed by the correlator whose

scheme is shown in Fig. 2.17 (b).

However, the digital approximation algorithm of the integrator outputs introduced in [75] and

[76] is no longer valid for the Σ∆ modulator where a 1-bit quantizer is employed (our circuit).

The same problem occurs in the calibration technique in [77] and [78] which compensates analog

circuit imperfections for cascaded Σ∆ ADCs.

There are also other calibration techniques which do not require neither a precise error model
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Figure 2.14: MASH 2− 2 Σ∆ modulator.

Figure 2.15: Block diagram of (a) integrator output approximation, (b) modulator correction, (c)
error estimation, and (d) error parameter identification.
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Figure 2.16: MASH 2-0 ADC

Figure 2.17: (a) MASH 2-0 ADC with digital noise-leakage compensation, (b) scheme of the digital
noise-leakage compensation filter and the correlator.

of integrator nor a test signal for parameter identification. Treating the ADC as a black-box, lin-

earization techniques in [79][80] model error in the ADC output by an odd-order polynomial of

ADC input. By making the nonlinear ADC output pass through an inverse function, g(), of the

ADC transfer function f(), the non-linearities are corrected. The LMS algorithm is used to identify

the inverse function g() by minimizing the error between the output of g() and the output of the

high linear reference ADC. In normal mode, it is a fourth-order IΣ∆ ADC. However in the cali-

bration mode, the fourth-order IΣ∆ ADC is split into two second-order IΣ∆ ADC, as shown in

Fig. 2.18. One ADC plays the role of the reference ADC, while the other is to be calibrated. The

use of reference ADC simplifies calibration in both error modeling and parameter identification.

However without reference ADC, to calibrate the ADC, it is supposed to know some details of the

38



ADC structure.

s(k)∑∆ Modulator
𝒇()

Digital Filter
M↓

Reference ADC

 𝒈()
-u(n)

d(n)

e(n)
r(n)

dc(n)

Figure 2.18: ADC in calibration mode: parallel LMS coefficient estimation

2.3 Researches on IΣ∆ ADC Reconstruction Filter

For an IΣ∆ ADC, the correction and calibration are usually implemented in the digital filter. Even

though IΣ∆ ADCs and Σ∆ ADCs can share this non-ideal integrator model, so far there isn’t any

calibration technique dedicated to IΣ∆ADC while there are several researches on the IΣ∆ ADC

digital reconstruction filters for the purpose of resolution improvement.

As an example in Fig. 2.19, applying a digital reconstruction filter whose order is higher than

the order of analog modulator allows increasing resolution and the average accuracy, but the

range of quantization error around zero remains the same[81]. As shown in Fig. 2.20 (b), com-

pared to Fig. 2.20 (a), quantization errors applying higher order digital filter are more smooth

except the peak around zero input. To eliminate this peak, we can inject a dither signal into the

loop before quantizer as it prevents the oscillation of the integrator output. The quantization er-

rors with dither signal are shown in Fig. 2.20 (c). Since it can be considered as a high frequency

quantization noise, it will be filtered by modulator.

A sinc filter can provide the suppression of a periodic disturbing signal and it is advised to

chose its order L as La + 1, where La is the order of the analog modulator[81].

However they are also only valid in ideal circuit.

For IΣ∆ ADCs, [82] proposes a digital decimation filter (whose transfer function in z domain is

H(z)) which is able to minimize the sum of modulator input thermal noise and quantization error.

By knowing modulator STF and NTF with finite-length impulse response, this digital filter can be

mathematically derived. The noise model of an IΣ∆ ADC can be abstracted as the model shown

in Fig. 2.21. Since the incremental ADC is reset every M clock period, the final result of the nth
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Figure 2.19: Improved first-order converter with second-order filtering and dither.

conversion cycle can be calculated as follows:

v(n) = [stf ′(k) ∗ u(k)]M,n + [stf ′(k) ∗ t(k)]M,n + [ntf ′(k) ∗ q(k)]M,n (2.11)

where stf ′(k) is theM sample impulse response of the overall signal transfer function STF (z)H(z),

and ntf ′(k) is the M sample impulse response of the overall noise transfer function NTF (z)H(z).

Supposing that t(k) and q(k) are both signal-independent, the M -length impulse response of

decimation filter H(z) allowing minimizing [stf ′(k) ∗ t(k)]M,n + [ntf ′(k) ∗ q(k)]M,n can be derived

analytically by the Lagrange multiplier technique. Nevertheless, this method is based on the hy-

pothesis that the quantization error can be considered as white noise and it is uncorrelated with

signals, which is not true for an ADC with 1-bit quantizer (in our circuit). In addition, these kind of

digital filters are not able to correct the conversion error including noise and distortion due to the

circuit non-ideality.

An optimal filtering algorithm is proposed in [83] which allows reducing overall quantization

error by taking into account the order of occurrence of 1 or −1 in modulator output bit sequence.

A counter is usually used for reconstructing the modulator input, the estimation of the modulator

input x̂ is calculated by:

x̂ =

∑n
i=1 b(i)

n
(2.12)

where n is the number of clock cycles and b(i) is the modulator output at cycle i. This algorithm

only takes into account the average of these n-bit modulator output sequence. However the

modulator output sequence b(1), b(2), ..., b(i) can indicate the limit of x as following illustration. In
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Figure 2.20: Quantization error of a 10-bit first-order converter around zero input. (a) Using first-
order digital filter. (b) Using second-order digital filter (two integrators).(c) Using second-order
filter with dither signal injected into the loop

cycle i, the integrator output y(i) can be expressed as:

y(i) = ix−
i∑

j=1

b(j) (2.13)

and the modulator output b(i) is decided by:

b(i) =

1 y(i) > 0

−1y(i) < 0
(2.14)

So according the value of b(i), in each cycle, we can conjecture
∑i

j=1 b(j)

i is an upper or a lower

limit of x. We define xmin is the biggest value among the lower limit values while xmax is the least

value among the upper limit values until cycle n. Finally, the modulator input can be estimated as:

x̂′ =
xmax + xmin

2
(2.15)
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Figure 2.21: Block diagram of a typical IΣ∆ ADC with thermal noise at the input.

This algorithm can better bind the estimated modulator input compared to the counter. As a

result, it reduces the quantization error. The optimal filtering algorithm can also be adapted for

other cases: first-order IΣ∆ ADCs with sweep input[84] or second-order IΣ∆ ADCs[84] or even

MASH IΣ∆ ADCs[84]. However the key of this optimal filtering is to know exactly the expression

of the comparator input. In other words, the optimal filtering algorithm works well for an ideal IΣ∆

ADC, however it is not suitable for a non-ideal one unless we can identify precisely the defaults.

For this reason, it has never been applied in a real circuit as it cannot resist noise.

2.4 Conclusion

After decades of research, the Σ∆ ADCs are well developed. Significant improvement in accu-

racy and conversion speed are achieved by applying new Σ∆ ADC structures. Meanwhile, in

the company of diverse Σ∆ ADC structures, some calibrations techniques for Σ∆ ADC are also

developed to compensate the degradation due to circuit imperfections. However, these calibration

methods can be hardly applied in our circuit as we employ a one-bit quantizer. In addition, we

can scarcely find calibrations techniques for IΣ∆ ADCs but some optimizations of digital recon-

struction filters which only for ideal IΣ∆ ADCs. So it is a challenge to find a calibration or even a

correction method for Pieretta.
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Chapter 3

Two-Step IΣ∆ ADC and Circuit

Pieretta

A chip of IΣ∆ modulator has been designed by our team and it is called Pieretta. All my research

revolves around Pieretta, including comprehension of its architecture, understanding design de-

tails and its calibration. Before the beginning of my PhD, the IΣ∆ modulator architecture has

been defined and the analog circuit design has been designed by a previous PhD student: Pierre

Bisiaux. Then I designed the digital circuit. Since the objective of my research is to develop a

calibration method, it is indispensable to figure out the characteristics of the IΣ∆ modulator. For

this consideration, the modulator has been designed as programmable though the digital circuit

so that we could determine the modulator parameters maximally in the test.

This chapter will introduce Pieretta from the following aspects: ADC modeling, circuit design

and simulation results. In the first section, the mathematical model of the IΣ∆ modulator will be

given. In the next section, the circuit design is presented, including the analog and the digital

parts. Although the analog part is not my work, I will also introduce it so that we can better

understand the details of the operation sequence of the IΣ∆ modulator. This is important for the

illustrations in following chapters. At the end, the results of post-layout simulations are presented.

3.1 IΣ∆ADC Modeling

At first approach, IΣ∆ ADCs can be considered as Σ∆ ADCs with reset. It generally includes

a Σ∆ modulator and a digital reconstruction filter. Fig. 3.1 shows the architecture of an IΣ∆

ADC where X is the analog input to be converted while D is the converted digital output. In a
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∑∆ modulator

Reset
Digital 

reconstruction filter
↓ M

Reset

X {S(1),…,S(M)} D

Figure 3.1: High level architecture of an IΣ∆ ADC

conversion, the Σ∆ modulator converts an analog input to a set of digital outputs (either in the

form of binary bits or multi-bit digital values) during a fixed number of clock cycles M . The digital

reconstruction filter aims at interpreting the digital modulator outputs into a quantified value which

is the estimation of the ADC input.

The principle of both Σ∆ ADCs and IΣ∆ ADCs is Σ∆ modulation which is a method for en-

coding analog signals into digital signals. The difference between Σ∆ ADCs and IΣ∆ ADCs is

that there is no memory effect between conversions in an IΣ∆ ADCs. Because of the absence of

memory effect, IΣ∆ ADCs can provide accurate estimation of ADC inputs in each individual con-

version while Σ∆ ADCs focus more on the spectral characteristics of input signals. This character

makes IΣ∆ ADCs suitable for sensor applications such as biology, medicine and image.

No matter whether a sampling and hold block is employed or not in an IΣ∆ ADC, the informa-

tion of a DC input signal of the ADC is converted into two parts: the digital outputs of modulator (

such as Nout in equation (2.1)) and the last value of the analog modulator intern signal known as

the residue (such as Vout(N +1) in equation (2.1) ). In other words, an error-free estimation of the

ADC input can be obtained if we know exactly this information. However, for classical IΣ∆ ADCs,

the residue is an analog value, so it is inaccessible. Generally, we ignore it and that results in the

quantization error. It is easy to think that if the residue can be measured, we will be able to get a

fine estimation of the ADC input. It is similar to the idea of pipeline ADCs. To do that, the second

step conversion is required and the residue of the first step should be sampled and maintained

during all along the second step. That is why a S/H is indispensable in our circuit.

There are diverse architectures of Σ∆ modulators such as high-order, MASH, multi-loop and

multi-bit ones, all their objectives are high resolution. High-order single-loop modulators have

better noise-shaping performance for quantization error but it may be unstable. The multi-bit

quantizer is a solution for the instability, however it requires dynamic element matching tech-

niques (DEM)[85] which requires additional current consumption for the additional blocks and

increases the circuit complexity. Another approach for realizing higher-order Σ∆ modulators is
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to use a cascade structure [86]. Although, it is possible to make the cascade of several first-

order or second-order modulators or any other ADCs which is inherently stable for any order and

over all regions of operation, the performance of cascaded modulators is more sensitive to the

imperfections of the analog components than that of single-loop modulators. As the mismatch

of noise transfer function (NTF) in digital reconstruction filter leads to noise leakage, it degrades

the quantization error cancellation. In summary, the second-order modulator is a good compro-

mise between resolution and circuit complexity. Among diverse architectures of second-order Σ∆

modulator, feed-forward topology is popular in recent papers[71][72][73], as it cancels the input

signal at the input of loop filters so that they only have to process quantization noise. In addition

to this, since there is no DC component in all integrator’s output, the dynamic range requirements

in all integrators are relived. Because of all the previous considerations, a second-order cascade

integrator feed forward (CIFF) modulator architecture has been chosen for Pieretta.

3.1.1 Second-Order IΣ∆ Modulator

As presented previously, a reset action occurs at the beginning of each conversion in an IΣ∆

modulator. The architecture of our IΣ∆ modulator is shown in Fig. 3.2. In order to adjust the

range of the residue (whose definition will be introduced later) so that it can be as large as the

range of the ADC input as possible, the values of coefficients are determined as a1 = a2 = 0.5,

a3 = 2.

Figure 3.2: A second-order CIFF modulator

As the modulator is reset at the beginning of each conversion cycle and its input is sampled

and maintained during the conversion, in time domain we have V1(0) = V2(0) = 0, and at the end
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of cycle i, the two values of this two integrators can be expressed respectively as:

V1(i) = V1(i− 1) + a1(X − VrefS(i)) (3.1)

V2(i) = V2(i− 1) + a2V1(i− 1) (3.2)

where X is the modulator input, and S is the binary output sequence of the comparator as well as

the outputs of the modulator. Thus after M cycles, a modulator output bit sequence of M bits is

obtained. By iterating equation (3.1) and equation (3.2), the value of the second integrator output

is expressed as:

V2(M) = a1a2

M−1∑
j=1

j∑
i=1

(X − VrefS(i)) (3.3)

where Vref is the reference voltage in feedback. Arranging equation (3.3), the modulator input X

can be expressed as:

X =
2V ref

M(M − 1)

M−1∑
j=1

j∑
i=1

S(i) +
2

a1a2M(M − 1)
V2(M) (3.4)

The value of the second integrator at cycle M , V2(M), is called the residue. If M is great enough,

the term involving V2(M) is negligible regarding X. Therefore, X can be estimated by:

X̂ =
2V ref

M(M + 1)

M∑
j=1

j∑
i=1

S(i) (3.5)

And the quantization error

Eq =
2

a1a2M(M − 1)
V2(M) (3.6)

is guaranteed below a very little value since the value of integrator is bound by ±V ref as long as

the input signal remains in a limited domain. In this case, the equivalent LSB quantization error

ELSB can be expressed as:

ELSB =
2Vref

a1a2M(M + 1)
(3.7)

and the effective number of bits (ENOB) can be estimated by:

ENOB= log2(
2Vref
ELSB

)

≈ log2(
Vin,max

Vref
· a1a2M

2

2
)

(3.8)
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where Vin,max is the input dynamic range. It should be noticed that the value of ENOB given by

equation (3.8) is the value in worst case because ELSB represents the worst quantization error.

According to equation (3.8), to obtain a greater ENOB, M can be increased in order to reduce the

contribution of the residue in the quantization error. However, with a linear increase of ENOB, M

should increase in exponential way, as shown in Fig. 3.3. There is also another method: a second

Figure 3.3: Numbers of clock cycles required in the function of ENOB

step can be added to measure this residue. That is actually the fundamental of the two-step

ADCs[87].

3.1.2 Two-step conversion

The objective of carrying out a conversion over two steps is to get a higher resolution without a

significant increasing of conversion time. For the first step, the modulator input is a sampled pixel

output previously stored in a S/H circuit. Omitting the derivation details presented in 3.1.1, at the

end of the conversion of the first step, we have:

X1 = Vpixel =
2V ref

M1(M1 + 1)

M1∑
j=1

j∑
i=1

S1(i) +
2V21(M1)

a1a2M1(M1 + 1)
(3.9)

where S1 is the modulator output and M1 is the number of clock cycles during the first step.

V21(M1) is the residue. The conversion in this step gives a coarse estimation of the pixel output.

To get a fine estimation of the pixel output, the second step is taken to estimate the residue. After

the M2-cycle conversion of the second step, we have :

X2 = V21(M1) =
2V ref

M2(M2 + 1)

M2∑
j=1

j∑
i=1

S2(i) +
2V22(M2)

a1a2M2(M2 + 1)
(3.10)
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where S2 is modulator output and V22(M2) is the value of the second integrator after M2 clock

cycles in the second step. Replacing V21(M1) in equation (3.9) by (3.10), we obtain:

Vpixel=
2Vref

M1(M1 + 1)

M1∑
j=1

j∑
i=1

S1(i) +
4Vref

a1a2M1(M1 + 1)M2(M2 + 1)

M2∑
j=1

j∑
i=1

S2(i)

+
4V22(M2)

(a1a2)2M1(M1 + 1)M2(M2 + 1)
(3.11)

Based on equation (3.11), Vpixel can be considered as an estimation term plus a new term of

quantization error Eq2:

Vpixel = V̂pixel + Eq2 (3.12)

where the estimation term is composed of the functions of S1, S2

V̂pixel =
2Vref

M1(M1 + 1)

M1∑
j=1

j∑
i=1

S1(i) +
4Vref

a1a2M1(M1 + 1)M2(M2 + 1)

M2∑
j=1

j∑
i=1

S2(i) (3.13)

and

Eq2 =
4V22(M2)

(a1a2)2M1(M1 + 1)M2(M2 + 1)
(3.14)

Thus the new equivalent LSB can be recalculated as:

ELSB2=
4Vref

a1a2M1(M1 + 1)M2(M2 + 1)

≈ 4Vref
a1a2M2

1M
2
2

(3.15)

And the effective number of bits for the two-step conversion is given by:

ENOB2= log2(
2Vref
ELSB2

)

≈ log2(
Vin,max

Vref
· (a1a2)2M2

1M
2
2

4
)

(3.16)

For the same value of total number of clock cycle M (M = M1 + M2), when M1 = M2, ENOB2

has its maximum value. Fig. 3.4 shows the comparison of the global numbers of clock cycles M

required for the one-step conversion and the two-step conversion. According this Fig. 3.4, for the

same resolution, the two-step conversion largely reduces conversion time compared to the one-

step conversion one. Since equation (3.5) and equation (3.13) have well shown the expressions

of estimation of the modulator input respectively in one-step mode and two-step mode, what we
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need now is to implement these algorithms in digital filters which will be presented in the following.
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Figure 3.4: Comparison of numbers of clock cycles required in one-step and two-step conversions

3.1.3 Digital Reconstruction Filter

A digital filter is required in order to transfer the modulator output bit sequence to a quantified

value. The output of the digital reconstruction filter is the final estimation of the ADC input. For

one-step conversion, equation (3.5) can be used for estimating the ADC input:

V̂pixel = X̂ = Vref
2

M(M + 1)

M∑
j=1

j∑
i=1

S(i) (3.17)

For a two-step conversion, equation (3.13) can be used for estimating the ADC input, and it can

also be written as:

V̂pixel=
2Vref

M1(M1 + 1)

M1∑
j=1

j∑
i=1

S1(i)

+
4Vref

a1a2M1(M1 + 1)M2(M2 + 1)

M2∑
j=1

j∑
i=1

S2(i)

= k1D1 + k2D2 (3.18)

where d1 and d2 share the same expression:

Dk =
2

Mk(Mk + 1)

Mk+1∑
j=1

j∑
i=1

Sk(i), k = 1, 2 (3.19)

where k1 = Vref , k2 =
2Vref

a1a2M1(M1+1) .
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So algorithms to reconstruct the ADC input (in both one-step and two step conversions) can

be realized by a FIR filter or a dual integrator. And each term of Dk can be seen as the output of

the FIR, whose transfer function in z domain is:

Fth(z) =
2

Mk(Mk + 1)
(z−1 + 2z−2 + ...+ (Mk − 1)z−Mk+1) (3.20)

To distinguish it from other digital reconstruction filters introduced later, we call this filter ”theoreti-

cal filter”.

3.2 Design of IΣ∆ Modulator

As the modulator outputs are binary bits, post-processing can be performed off line on data pro-

cessing software. Therefore, only the IΣ∆ modulators have been implemented in Pieretta while

the algorithm of digital reconstruction filter will be tested on Matlab. In the circuit of IΣ∆ modu-

lator, there are also the analog circuit and the digital circuit. The analog circuit at transistor-level

has been designed by a previous PhD student. The transistors have been dimensioned with an

approach of gm/Id[88]. Understanding the details of the analog circuit and completing the digital

control circuit are steps before the research of calibration techniques.

3.2.1 Analog Circuit Part

Modulator Schematic and Operation Sequences

Generally, a low-pass single-bit Σ∆ modulator includes integrators and a comparator. In addition

to this, an adder is required in the CIFF architecture. In particular, our IΣ∆ modulator performs a

two-step conversion so a S/H block is employed to sample the residue at the end of the first step

and maintain it during all along the second step. Of course the S/H is also used in the first step

to sample and maintain the voltage of pixel. Fig. 3.5 shows the schematic of the analog circuit

of the IΣ∆ modulator. The IΣ∆ modulator is controlled by two main signals: p1 and p2. And

other signals are derived from p1 and p2 by adding different delays, such as p1. Fig. 3.6 shows

the timing of the command signals p1 and p2 and operation sequences of the components of the

IΣ∆ modulator. We can see that both integrators operate in a complementary way: when the first

integrator works in the phase of sampling (phase a), the second one is in the phase of integration

(phase b); when the first integrator executes integration (in phase b), the second one is in the

phase a where it samples the value of the first integrator. Each cycle, a comparison occurs at the
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end of phase b of the second integrator and just slightly before phase b of the first one. So for a

conversion of M clock cycles, S(M) is decided at the end of the M th cycle. However the second

integrator integrates at the beginning of (M + 1)th cycle.
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Figure 3.5: Schematic of the IΣ∆ modulator
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Figure 3.6: Timing diagram of the command signals and corresponding states of components

Inverter-Based Integrator with Auto-Zeroing

Fig. 3.7 shows the schematic of an ideal inverter-based SC integrator with auto-zeroing (black

part). In order to cancel the offset (red part), the capacitor Cx (Cx = Ci) is added. The operation

of an inverter-based SC integrators and its offset cancellation are explained as following. The

integrator performs in two steps: the phase of sampling (phase a) and the phase of integration

(phase b). During phase a, the integrator input Vi is sampled in Cs and on the other hand, one

plate of Ci is switched to the amplifier input. This feedback connection forms a negative unity gain

of Vof which is the offset voltage at the amplifier input. Therefore, its contribution to the amplifier
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Figure 3.7: Schematic of inverter-based SC integrator

output is −Vof . So in phase a, integrator input and output at cycle n is given by:

Vo,a(n) = Vo,b(n− 1)− Vof (3.21)

At the same time, Vof is sampled in Cx and we have Vx,a = Vcm, where Vcm is the common

mode voltage of the circuit, for the potential at node X in phase a. During phase b, node X is

disconnected from ground and one plate of Ci is switched to node X. Since no charge passes

through the amplifier input, the charge in Cx remains constant. Thus we still have Vx,b = Vcm,

for the potential at node X in phase b. As a consequence, all charge in Cs is transferred to Ci.

Besides, as the potential of one side of Ci shifts from Vof to Vcm, the contribution of Vof to amplifier

output is canceled. In phase b, the relationship between the integrator input and output at cycle n

is given by:

Vo,b(n) = Vo,a(n) +
Cs

Ci
Vi(n) + Vof (3.22)

The final integrator output (Vo) is the value of integrator in phase b (Vo,b) and its expression is:

Vo(n) = Vo(n− 1) +
Cs

Ci
Vi(n) (3.23)

Gain-Boosting Inverter as an Amplifier

Amplifier is important component of both S/H block and integrators. In the context of image

sensors where the width of the ADC is an important criterion, a saving in size on the amplifiers

is to be achieved. In order to reduce the size of the amplifiers, architectures of inverter-based

amplifiers were introduced by Chae [89]. In order to enhance the amplifier gain, architectures of
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cascade inverters[90] or even gain-boosting have been created[91]. According to the analysis of

Pierre Bisiaux in [92], a gain of 80 dB is sufficient to achieve 14 bits. For this architecture, the

Figure 3.8: Schematic of gain-boosting inverter-based amplifier

inverter-based amplifier can operate in class-AB or class-C depending on the supply voltage. For

class-AB, supply voltage needs to meet the conditions: |VTp| + |VTn| < V dd. In this situation,

transistors are in medium or strong inversion that gives a non-zero static current which can be

significant, increasing the speed of the inverter. However, in strong inversion, the amplifier gain

is relatively low. In our application, as the system clock is 20 MHz, a strong current is required

in order to ensure a sufficient GBW and make the slew rate at least ten times greater than the

system clock frequency. In order to use a minimum area to deliver this high current, an amplifier

in class-AB is therefore used. For this type of inverter, it is easy to obtain a GBW of 100 MHz, a

sufficient value to satisfy the time constraints of the system[92].

Combining the above requirements of speed and gain in terms of amplifier performance, an

architecture operating in class-AB and using a boosting gain is used. This architecture is shown

in Fig. 3.8, and in the condition IN = IP = 1µA, the dimensions of transistors are shown in Table

3.1. M1 to M4 are polarized as medium inversion to strong inversion in order to have a stable and

relatively little gm as it is at the first stage of the cascaded amplifier, is gm is too large, the second

stage risk to be saturated. While the ”low-Vth” transistors M5 and M6 are in weak inversion in

order to enhance the amplifier gain. M7 to M10 play a role to provide the current IN = IP = 1µA.

The use of inverter-based amplifiers is one of the major distinguishing feature in this ADC design.
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Transistors W/L, Gm/Id

M1 20/0.36 7

M2 5/0.36 7

M3 30/0.36 7

M4 7.5/0.36 7

M5 8/0.36 20

M6 2/0.36 20

M7,M9 1/0.36 15

M8,M10 3/0.36 15

Table 3.1: Dimensions of transistors in the gain-boosting inverter

Sampling-and-Hold Block

It is necessary to carry out a S/H block to maintain the modulator input constant during the con-

version in each step. The inverter-based amplifier designed for integrators has sufficient charac-

teristics in terms of gain or GBW because the input of S/H is DC voltage. So the inverter-based

amplifier can also be used in the S/H circuit. The schematic in different states of the S/H block with

auto-zeroing technique is shown in Fig. 3.9, where the command signals’ chronograph is shown

in Fig. 3.10. For the first step, when S1 and S3 are in state ON, the value of pixel is sampled.

Then S1 and S3 become OFF and S4 is ON, during this time, the output of the S/H is maintained

constant and it is equal to the value of pixel. While in the second step, S2 and S3 are first ON

to sample the residue then they are switched off and S4 is switched on so that the S/H output

remains constant during all along the second step conversion.

Adder and Comparator

In any second-order modulator with feed-forward, an adder is required to sum the X, V1 and

V2 in front of the comparator. It is a passive adder composed of capacitors and switches. The

architecture of the adder-comparator is shown in Fig. 3.11 and the chronograph of the command

signals is shown in Fig. 3.12. a1 and a2 are derivative of p1 while a2 is only enabled at the first

clock cycle of each step to compare the modulator input (X) to the common voltage (Vcm) directly.

On the opposite, clkcmp and p2dR are derivative of p2.

We chose a double-tail comparator. This architecture is widely used in imagery systems for

its low consumption and its low kickback. The schematic of the comparator is shown in Fig. 3.13

with the dimensions of transistors shown in Table 3.2. When clkcmp = 0, In+ and In− are both

connected to Vcm and values of OUT+ and OUT− are set as Vcm. While a decision is made

when clkcmp changes to 1. At this moment, the bottom M0 switch is closed to allow current to
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Figure 3.10: Timing diagram of the signals commanding S/H block

flow through the input pair. if a difference of voltage appears between In+ and In−, a difference

of current is created in branches, making a double reversed decision of the comparison.

Switches

In analog circuit, switches should be designed carefully to avoid the distortion of the analog sig-

nal. An NMOS or a PMOS is a simple switch. However, when this switch is opened, the charge

present in the channel of drain-source will be distributed over the elements on both sides of the
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Figure 3.11: Schematic of adder-and-
comparator
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Figure 3.12: Timing diagram of command signals in
adder and comparator
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Figure 3.13: Schematic of double-tail comparator

Transistors W/L

M1 8/0.18

M2 8/0.18

M3 1/0.18

M4 1/0.18

M5,M7,M9 0.56/0.18

M6,M8,M10 0.56/0.18

Table 3.2: Dimensions of transistors in the comparator

switch. This phenomenon is called charge injection. It brings an error to the analog signals in

the modulators. In order to minimize this charge injection, dummy transistors are then added on

the source and drain side, in order to absorb the charge. In order to reduce the channel resis-

tance, ”low-Vt” CMOS switches are used. For the same channel resistances, these transistors
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Transistors W/L

NMOS 0.44/0.18

PMOS 1/0.18

Table 3.3: Dimensions of transistors in switch

are smaller, allowing for easier integration. In order to obtain a linear resistance above all the

transmission range, the dimension of PMOS transistors is larger than that of CMOS transistors.

The dimension of transistors are summarized in Table 3.3. To be noticed that all the schematics

of switches and dimensions of the transistors in the circuit are the same.

Non-overlap block

As two integrators in the modulator are forced to operate in a complementary by commanding the

switches in the modulator with p1 and p2 and their derivatives with different delay, p1 and p2 must

not be active at the same time so as not to make certain switches closed at the same time. If so,

there will be short circuit. A commonly adopted solution is to use non-overlapping block to add

a slight delay to p2, so that p2 start rising after p1 drops to level-low completely. The schematic

diagram of non-overlapping block is shown in Fig. 3.14.

p1
p1d

p2d
p2

Figure 3.14: Schematic of non-overlap block

3.2.2 Digital Circuit

The digital circuit in the IΣ∆ modulator serves to generate signals to control the switches in the

analog circuit so that the IΣ∆ modulator can work correctly. It includes two components: a state

machine and a non-overlap block.
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Considering the circuit characterization in the testing session after tape-out, we designed the

circuit to be programmable. With different parameter settings, we can make the IΣ∆ modulator

work in diverse conversion modes with different configuration. This idea is realized by a state

machine coded in Verilog. It generates enable signals according to the parameter settings.

The non-overlap block receives the enable signals from the state machine then it generates

the command signals with proper delay to the analog circuit.

Conversion Modes and Configurations

There are two input control signals and a external clock : rst sys, start and clk40. The modulator

is reset immediately when rst sys = 1 while a conversion is triggered by start. The external clock,

clk40, is divided by 2 in digital circuit.

The IΣ∆ modulator is able to perform conversions in two modes: the default mode and the

programmable mode. In the default mode, the IΣ∆ modulator is supposed to converts over two

steps with 36 clock cycles in each step. While in the programmable mode, the parameters of IΣ∆

modulator, namely the number of steps, the length of sampling phase, the number of clock cycles

in each step, can be configured.

To distinguish the default mode and the programmable mode, we define a one-bit variable

Mode prog. By setting the 1-bit parameter Mode prog as 0 through interfaces, the IΣ∆ modulator

functions in the default mode. While when Mode prog is set as 1, the ADC is in programmable

mode.

There are another three variables to configure the parameters of conversion. They are:NB step,

NB samp and OSR. Although the ADC is supposed to perform conversions in two-step mode,

we can also make it work in one-step, three-step even in four-step conversion modes by setting

the value of the 2-bit parameter NB step from 0 to 3. It is possible to choose the number of

clock cycles for all the steps through the parameter of 6 bits, OSR. The number of clock cycles

is decided by 4 × (OSR + 1). There are also possibility to change the length of sampling phase

(the number of clock cycles taken in sampling phases) by setting the value of the 2-bit parameter

NB samp and the length of sampling phase varies from 1 clock cycles to 4 clock cycles.

To be mentioned that in the programmable mode, there are two sub modes: the finite mode

and the infinite mode. The differences between them are the way to trigger the IΣ∆ modulator

and the way to stop a conversion. In the finite mode, during the standby mode, the IΣ∆ modulator

reads the input start. If start = 1, it it reads and registers the values of parameters and launches a

new conversion as configured. After finishing a conversion, the ADC returns to the standby mode

and keeps testing start until it becomes 1. In this mode, if start is always kept in high voltage
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level, conversions are triggered automatically one by one. The numbers of clock cycles in each

step are equal and the maximum value is limited to 256. While in the infinite mode, if start = 1,

the modulator will continue converting permanently. It means if the period of start = 1 is long

enough, the IΣ∆ modulator performs its preceding steps as configuration and loops in the last

step without stop until start change from 1 to 0. Then the IΣ∆ modulator returns to the standby

mode and waits for the next start in high voltage level. In this case, the number of clock cycles of

the last step in a conversion can be set as we want by applying the start with a proper length. We

use two parameters to describe the configuration in this mode: M for the global number of clock

cycles and M1 for that of every step except the last one.

The variable Mode inf is reserved to configure the sub-modes. When Mode inf = 0, the

IΣ∆ modulator perform in the finite mode while if Mode inf = 0, it performs in the infinite mode.

Fig. 3.15a and Fig. 3.15b show examples in programmable mode respectively when Mode inf =

0 and Mode inf = 1, in both cases, we configure OSR = 1 (M1 = 8), NB step = 1 (two steps)

and NB samp = 0 (one clock cycle). Table 3.4 shows the summary of all conversion modes.

0 0.5 1 1.5 2 2.5

Time (us) 10
-6

rst_sys

p2

Conversion 1 Conversion 2start

mode_inf = 0

(a) Diagram of timing in finite mode

0 0.5 1 1.5 2 2.5

Time (us) 10
-6

rst_sys

start

p2

Conversion 1 Conversion 2

mode_inf = 1

(b) Diagram of timing in infinite mode

Figure 3.15: Examples of timing in finite mode and infinite mode
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Default mode: Mode prog = 0

ADC operates in two steps with M1 = M2 = 36

taking 1 clock cycle to sample in each step

Programmable mode: Mode prog = 1,

Finite mode: Mode inf = 0 Infinite mode: Mode inf = 1

Number of steps, number of clock cycles The number of steps, the number of clock cycles

and length of sampling in each step of the ADC and the length of sampling in each step of the ADC

only depend on NB step, OSR, NB samp. depend on NB step, OSR, NB samp and start.

The ADC will finish a complete conversion The ADC stop converting once

once it is triggered. start changes to 0.

Table 3.4: Descriptions of conversion modes with different configurations

State Machine

The state machine serves to read input parameters and generate enable signals to non-overlap

block according parameter configuration as well as clk20 which is the external clock clk40 divided

by 2. The diagram of its states is shown in Fig. 3.16. Descriptions of each states and transfer

conditions are shown in Table 3.5 and Table 3.6.
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E5

E6
E7

E10

E9

E8

E11

C1

C4

C6
C7

C8

C0

Figure 3.16: Diagram of states

In brief, state machine controls the modulator to complete a series of actions as: sampling,

converting, finishing conversion or going into next step.

3.3 Post-layout simulation results

With a complete design of the IΣ∆, simulations in post-layout have been perform. It allowed

estimating the original performances of the modulator and characterizing the circuit to the greatest
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States Descriptions

E1 Standby mode

E2 Sampling phase of the first step

E3 Gap clock cycle between sampling phase and conversion phase

E4 The first p1 of the first step.

E5 The first p2 of the first step. During this period, only the modulator input is compared to Vcm
E6 The rest of clock cycles of the first step.

E7 Sampling phase of the second step

E8 Gap clock cycle between sampling phase and conversion phase

E9 The first p1 of the second step.

E10 The first p2 of the second step. During this period, only the modulator input is compared to Vcm
E11 The rest of clock cycles of the second step.

Table 3.5: Descriptions of states

Labels Descriptions Conditions

C0 Reset or conversion stops in infinite mode. rst sys = 1 or

(mode inf = 1 and start = 0)

C1 Conversion begins. rst sys = 0 and start = 1

C2 Sampling1 doesn’t finish 1. rst sys = 0 and cpt samp1 < NB samp

C3 Sampling1 finishes. cpt samp1 = NB samp

C4 The first step conversion doesn’t finish . rst sys = 0 and cpt osr1 < OSR

C5 One-step Conversion finishes. cpt osr1 = OSR and NB step = 0

C6 Multi-step conversion. NB samp > 0

C7 Sampling2 doesn’t finish 1. rst sys = 0 and cpt samp2 < NB samp

C8 Sampling2 finishes. cpt samp2 = NB samp

C9 The current step in multi step mode doesn’t finish . rst sys = 0 and cpt osr2 < OSR

C10 The current step in multi step mode finishes, cpt osr2 = OSR and cpt step < NB step

cpt osr2 will be reset.

C11 The multi-step conversion finishes. cpt osr2 = OSR and cpt step = NB step

Table 3.6: Descriptions of transfer conditions

extent.

3.3.1 Equivalent resolution

We use Equivalent Resolution (ER) to represent the performance of the ADC in simulations in

bits. For a set of ramp signal distributing uniformly in [0, Vin,max], ER can be calculated using the

following formula:

ER =
10 log10 (

V 2
in,max

3Perror
)

6.02
(3.24)
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where Perror is the average of conversion error powers. All the ER in this paper are calculated

using equation (3.24).

3.3.2 Parallel Simulations and Choice of the Modulator Input Values

We planned to test a set of inputs whose values varying between ±Vin,max, where Vin,max is the

amplitude of the modulator input, in post-layout simulation. The number of samples should be

sufficient large to ensure a stable estimation of ER, however, the post-layout simulation will take

extremely long time for thousands of samples. We took two weeks for about 1500 samples in the

post-layout simulation for one-step modes. In order to reduce the simulation time, we divided the

whole simulation into four short simulations executed by different cores in parallel. And the input

amplitude of each short simulations became 0.25Vin,max. To avoid overload of integrator, Vin,max

was chosen as 0.8Vref .

It is simple to generate a set of ramp signals in the range of [VminVmas] with constant step.

However, there is a great inconvenience performing simulations with this kind of signals: we

cannot stop simulations at whenever we want. To solve this problem, we generated the input

signals in each short simulation in a new way. Furthermore, the inputs are correlated and do not

change very much between each value. This may hide some non-idealities issues that appear

with large input steps.

N loops should be taken to generate all the inputs. During each loops, the input values are

coded by a definitive number of binary bits. One bit is used for the inputs generated in the first

loop so there are two different values in the input set. Then two bits are used for those generated

in the second loop and after the second loop, two more inputs of different values are added to

the input set. In each loop, we add 1-bit precision to code the input values and the length of the

input set doubles. So in the last loop, the precision of the input is N bits. The diagram of inputs

generation is shown in Fig. 3.17. Fig. 3.18 shows an example of the inputs generated with this

method.

3.3.3 Post-layout Simulation of One-Step Conversion

In order to understand the circuit characteristics, we first make the ADC execute the one-step

conversion. From equation (3.8), a 14-bit resolution is guaranteed by applying 286 clock cycles in

one conversion. In practice, we chose 400 clock cycles with some margin. And finally there were

5600 input samples. According the simulation of an ideal Σ∆ modulator model on Matlab, the ER

of the one-step conversion with 400 clock cycles is 15.4 bits, as shown in Fig. 3.19 (a).
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Loop 2

Loop 3
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New Inputs in Loop 3

New Inputs in Loop N

MSB LSB

Figure 3.17: Diagram of the inputs generation.

In the post-layout simulation, the circuit is supplied by an ideal 1.8V DC voltage, driven by a

20 MHz clock. The ADC inputs and corresponding output bit sequences are recorded. For 5600

samples, the post-layout simulations took two weeks. The input reconstruction is done based on

these post-layout simulation results in Matlab.

We use the theoretical filter to reconstruct the modulator inputs and obtain only ER = 4.6 bits.

According Fig. 3.19 (b), there is a significant gain and offset in conversion errors. This resolution

is far away from the target. Considering that conventionally, the ADC resolution we talk about is

the one after the correction of gain and offset. Therefore, we do this simple correction and obtain

ER = 12.3 bits, as shown in Fig. 3.19 (c). To be noticed that the blue points are the samples for

parameter estimation while the red points are samples for testing. The details of the correction of

gain and offset will be presented in Chapter 4.
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Figure 3.18: Inputs generated with new method.
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Figure 3.19: Equivalent resolution in one-step mode using the theoretical filter: (a) for the model
of ideal ADC; (b) in post-layout simulation; (c) in post-layout simulation after the correction of gain
and offset.

3.3.4 Post-layout Simulation of Two-Step Conversion

From equation (3.16), to guarantee a 14-bit resolution, 36 clock cycles are required for both steps.

Simulations have been run for 2100 input samples. According the simulation of an ideal Σ∆

modulator model on Matlab, the ER of the two-step conversion with 36 clock cycles in both steps

is 15.4 bits. Fig. 3.20 (a) shows the form of its quantization error. A post-layout simulation of

two-step conversion has also been done in the same conditions.

Still using the theoretical filter, we obtain ER = 4.8 bits this time. Similar to the result in one

step, ER is largely degraded by the gain and offset, as shown in Fig. 3.20 (b). After the correction

of gain and offset, we finally obtain ER = 12.0 bits, as shown in Fig. 3.20 (c). These results are

similar to those of the one-step conversion. Obviously, for both modes, resolutions are far away
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Figure 3.20: Equivalent resolution in two-step mode using the theoretical filter: (a) for the ideal
ADC model; (b) in post-layout simulation; (c) in post-layout simulation after the correction of gain
and offset.

from our target. Just completing the design of the IΣ∆ modulator is not the destination, we are

supposed to do more researches about calibration methods to make the IΣ∆ modulator has the

desired resolution.

3.4 Conclusion

In this chapter, we introduced mathematical model of IΣ∆ modulator and illustrated its limit in

the high-resolution applications. In order to achieve higher resolution without a large sacrifice

of conversion speed, we proposed a two-step IΣ∆ modulator. The second step is applied to

estimate the residue so that we have a fine estimation of the ADC input. The proposed two-step

IΣ∆ modulator is able to provide a good trade-off between conversion speed and resolution.

The design of the analog circuit has been introduced briefly. In order to meet the size con-

straint of column-parallel ADCs, we employ inverter-based amplifiers with gain boosting in stead

of conventional operational amplifiers. That is the main feature of the analog circuit.

We planned to make the parameters of the IΣ∆ modulator configurable to the maximum extent

so that we can study its characters after tape-out. This tentative idea was realized by the digital

circuit design. In the control of the digital circuit, IΣ∆ modulator can perform in several modes

with different configuration.

Post-layouts simulations have highlighted grave degradation in resolution for both one-step

and two-step conversions. Even after simply correcting gain and offset, ER still cannot achieve

14 bits. For this reason, calibration is required. The most important objective of my following

research is to improve ER based on the values after the correction of gain and offset.
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Chapter 4

IΣ∆ ADC correction technique

From last chapter, we already know that in the post-layout simulations, the resolution of ADC is

largely degraded. Therefore, a calibration is required.

Calibration techniques can be divided into two categories: foreground calibrations and back-

ground calibrations. Both consist on two tasks: a parameter identification phase and a correc-

tion phase based on the identified parameters. In a background calibration, the parameters are

identified while the main function of the circuit is running. In a foreground calibration, during a

learning phase, a learning signal is given at the input of the circuit and the corresponding out-

puts are recorded. The recorded outputs are then processed and a correction algorithm is built

by minimizing the difference between the corrected signal and the expected one. In our case,

a foreground calibration strategy is chosen because it is the most appropriate strategy for ADCs

dedicated to imaging sensors.

Fig. 4.1 shows the block diagram of the calibration process. In order to validate the correction

we proposed, we chose the following methodology: During a first phase, we present a learning

ADCV𝒑𝒊𝒙𝒆𝒍
𝑫𝒐𝒖𝒕

Parameter
Identification

Correction
𝑫𝒄

Figure 4.1: Diagram of calibration
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signal at the input of the ADC and we record the output bits. The parameters are then determined

by minimizing a reconstruction square error. Then in the second step we put a test signal at

the input of the ADC and we record the output of the correction algorithm. The correction block

outputs are compared to the ADC input signal in order to evaluate the reconstruction error. In

order to guarantee the robustness of our techniques, we have ensured that the learning signal

and the test signal are not the same. The learning signal is a regular sampling of a ramp voltage

signal. The test signal is a sequence of random voltages, chosen with a uniform distribution in

the input range. Also because of the large difference between the post-layout results and the

transistor-level results, we guess that a correction based on the ideal model of IΣ∆ ADCs is not

sufficient and we chose to find out correction algorithms by considering the ADC as a black box.

In this chapter, we will first analyse, in a high level model, how the elementary conversion

errors in each step degrade the global resolution. Then some state-of-art correction methods

will be applied to post-layout simulation. Since the existing correction methods are not sufficient

for our application, we propose some new correction methods. The new proposed correction

methods will be presented and they will also be verified based on post-layout simulation. In order

to make the proposed correction methods implementable, we go further to simplify them. The

simplified correction methods and the associated results are shown. A correction method with the

best trade-off between resolution and complexity will be selected for our two-step IΣ∆ ADC. At

the end, we will explore if the distribution of clock cycles between both steps has an impact on

resolution.

4.1 Global error model

In each clock cycle, the modulator input X and its output S participate into the system loop. And

after M clock cycles, we obtain a bit sequence S and a residue V2(M). Due to the circuit defects

in the modulator (including S/H), we can no longer use equation (3.3) to express V2(M), but the

following express:

V2(M) = g(X,S) (4.1)

where g(X,S) is a non-linear function of X and S. If we isolate the linear term in X in g(X,S)

function, after arranging, we have:

X = f(X,S) + k(X,S)V2(M) (4.2)
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where f(X,S),k(X,S) are non-linear functions of X and S (except the linear term of X). Accord-

ing to the theory of IΣ∆ ADCs, k(X,S) is negligible regarding 1 so that the impact of the residue

is minimized in (3.4). To simplify in expression, we use k to replace k(X,S) in the following illus-

tration. Let us assume that this is still true in spite of the defaults. Then, if we use the theoretical

filter to reconstruct X (equation (3.17)), equation (4.2) can be written in an equivalent way:

X = X̂ + kV2(M) + ε (4.3)

where ε contains non-linear terms of X and S. It indicates that an equivalent error term (ε) is

added if we use the theoretical filter to reconstruct the input of a non-ideal ADC. In this situation,

the total conversion error is the sum of kV2(M) and ε. ε is the accumulation of the errors of all

cycles. So, we can guess that it much larger that the error term kV2(M). Therefore, the conversion

error may exceed the LSB limit of the target resolution. This justifies why the theoretical algorithm

is no longer sufficient for the input reconstruction for a one-step conversion mode.

For a two-step mode, after the first step, using the theoretical filter to process the modulator

outputs S1, we have:

X1 = Vpixel = X̂1 + k1V21(M1) + ε1 (4.4)

where k1 << 1. And after the second step which is for estimating V21(M1), we have:

X2 = V21(M1) = X̂2 + k2V22(M2) + ε2 (4.5)

where k2 << 1. Replacing V21(M1) in equation (4.4) by equation (4.5), finally, the ADC input is

equivalent to the sum of the outputs of the theoretical filter plus several error terms:

Vpixel = X̂1 + k1X̂2 + k1k2V22(M2) + ε1 + k1ε2 (4.6)

Logically the error in the first step ε1 dominates the conversion error as the impact of ε2 is

decreased by k1. Normally, we have ε1 >> ε2 >> k1k2V22(M2). Due to ε1 and ε2, the theoretical

filter (equation (3.18)) is no longer a good estimation of the ADC input. Therefore, a new correction

algorithm is required to minimized the conversion error.
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Figure 4.2: Diagram of correction methodology

4.2 Correction methodology

Our purpose is to find an algorithm that reconstructs the ADC input in a linear way regarding

modulator output bits or combinations of those. Also, the algorithm should contain an offset

correction term. Thus it is equivalent to find a FIR filter plus an offset correction. Namely let

denote Vpixel the column vector of the input voltages and ˆVpixel the estimators of those input

voltages. ˆVpixel is expressed as S ·hT where S is a matrix generated from the bit stream S and h

is the line vector of the coefficients of the filter with the offset. The elements of h are then obtained

by minimizing the criterion ||Vpixel − S · hT ||2 in a mean square sense as shown in Fig. 4.2. As

mentioned in the last chapter, two post-layout simulations were executed respectively in one-step

and two-step and all the ADC inputs and the modulator outputs were recorded. All the correction

methods are verified on Matlab using these post-layout simulation results.

In order to verify the correction methods, we divided randomly data set into two groups. One

group is the learning group which contains 80 percent of the samples in data set while the other

group is the testing one which contains the rest of 20 percent samples. The coefficients are

estimated using the learning group, then the estimated coefficients are applied directly to the

testing group. ER is calculated only using the testing group.

4.3 State-of-the-art correction methods

There exist only few correction methods for IΣ∆ ADCs and these correction methods are generally

implemented in the digital domain. We first applied them to the post-layout simulation results to

see whether we were able to achieve the target resolution.
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(b) For two-step conversion.

Figure 4.3: Diagram of the correction of gain and offset.

4.3.1 Correction of gain and offset

The simplest correction is to correct gain in conversion errors by multiplying the coefficients of

theoretical filter by the same factor and adding a constant to correct the offset. The transfer

function of the filter to correct gain is:

Fgo(z) = G(1 + 2z−1 + 3z−2 + ...+Mz−M+1) (4.7)

where M is the number of bits used for the correction. To be noticed that the input of filter is

directly the modulator output bit sequence. Now we explicate how to apply the correction filter for

the conversion modes one-step and two-step respectively. For one-step conversion, as shown in

Fig. 4.3a, the ADC input can be estimated as:

̂Vpixel,go1 = Dgo +Ogo1 (4.8)

where Dgo is the output of Fgo and Ogo1 is the term to correct offset.

For a conversion in two-step mode, as shown in Fig. 4.3b, we use two Fgo filters with different

values of G, and a common offset.The ADC input is finally estimated by:

̂Vpixel,go1 = Dgo,1 +Dgo,2 +Ogo2 (4.9)

where D1go and D2go are respectively the output of Fgo and Ogo2 is to correct offset.

In terms of complexity, by simply correcting gain and offset, only 2 coefficients are required for

a one-step conversion while 3 coefficients are required for a two-step one (because the offset is

global to both steps).
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(a) For a one-step conversion.

𝑭𝒐𝒑S1
Dop,1

Oopa

 𝑽𝒑𝒊𝒙𝒆𝒍 ,op𝒂

𝑭𝒕𝒉S2 G2

Dgo,2

(b) For a two-step conversion, in plan A.
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(c) For a two-step conversion, in plan B.

Figure 4.4: Diagram of the optimal filter correction.

4.3.2 Optimal filter

An optimal filtering consists in adjusting the coefficients of each bit separately as weel as the

offset. Thus we can expect a finer correction, with the counterpart of a higher complexity. The

transfer function of the optimal filter can be written as:

Fop(z) = (α0 + α1z
−1 + α2z

−2 + ...+ α1−Mz
−M+1) (4.10)

where M is the number of clock cycles. Thus for a one-step conversion, as shown in Fig. 4.4a,

the ADC input is reconstructed as:

̂Vpixel,op = Dop +Oop (4.11)

where Dop is the output of Fop and Oop is the term to correct the offset. In this case, the number

of coefficients required increases to M + 1.

For a two-step conversion, we can either keep the modulator outputs in each step separate

or merge them to a global one, depending on situations. Thus we have two plans to apply the

optimal filter. In the plan A, as shown in Fig. 4.4b, the optimal filter is only applied to the modulator

outputs of the first step and the theoretical filter with corrected gain is applied to the modulator

outputs of the second step. Thus the ADC input is reconstructed by:

̂Vpixel,opa = Dop,1 +Dgo,2 +Oa (4.12)
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where Dop,1 is the output of Fop, Dgo,2 is the output of Fgo and Oa is the term to correct offset. In

this case, the number of coefficients required is M1 + 2 (M1 is the number of clock cycles in the

first step).

In plan B, as shown in Fig. 4.4c, the modulator outputs of both steps are merged into a single

bit sequence. One optimal filter is applied to this new bit sequence. The ADC input is recon-

structed by: ̂Vpixel,opb = Dop,12 +Ob (4.13)

The plan B is similar to the optimal filter correction for the one-step conversions and M + 1

coefficients are necessary, where M = M1 +M2 is the global number of clock cycles.

4.3.3 Correction results of existing methods

Correction results of the simulation with ideal models

Table 4.1 shows the correction results by employing diverse correction methods to the ideal circuit-

level model of our 2nd order IΣ∆ ADC. We find that in one-step conversions with M = 400, after

correcting gain and offset, we obtain ER = 15.6 bits, which is nearly to that without correction

(15.5 bits), as there is no intrinsic error of gain and offset in an ideal IΣ∆ modulator. Fig. 4.5

(a) shows the conversion errors after the correction of gain and offset. When the optimal filter is

applied, the ER is improved significantly to 17.2 bits, as the optimal filter can largely minimize the

quantization error as shown in Fig. 4.5 (b). To be noticed that the blue points are the samples of

group learning while the red points are samples for testing.
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Figure 4.5: Correction results in the one-step mode of an ideal IΣ∆ modulator : (a) with the
correction of gain and offset; (b) with the optimal filter correction

In two-step conversions, after correcting gain and offset, we obtain ER = 16.1, which is the

same value as the one without correction. With the optimal filter correction, we observe that if

we only correct bit-by-bit for the first step (with plan A), there is no improvement in ER compared

to the case without correction. While when we correct bit-by-bit for both second steps (plan B),
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One step Two steps

Theoretical filter 15.5 16.1

Correction of gain and offset 15.6 16.1

Optimal filter correction 17.2 Plan A 16.1

Plan B 16.6

Table 4.1: ERs applying the existing correction methods in the simulation of the ideal IΣ∆ ADC

we gain the improvement in ER about half a bit. It is due to the fact that the quantization error

in a two-step conversion is proportional to the residue (V22(M))of the second step which closely

depends on the modulator output of the second step. Comparing the conversion errors in Fig. 4.6

(b) (with the optimal filter in plan B) to those in Fig. 4.6 (a) (with the correction of gain and offset),

we find that the conversion errors applying the optimal filter are further minimized. It indicates

that for the ideal two-step IΣ∆ ADC, the correction of the first step helps only a little to the global

resolution.

Correction results of post-layout simulation

The post-layout simulation results in the last chapter are reused to test the correction methods.

Table 4.2 shows the summary of correction results in post-layout simulation. Fig. 4.7 (a) shows

the form of conversion errors with the correction of gain in offset in the one-step mode. We

find that conversion errors are much larger than the target ELSB . In Fig. 4.7 (b), the form of

conversion errors seems to be compressed thanks to the optimal filter, and the ER is 13.6 bits,

almost achieving our target.

Fig. 4.8a shows the impulse responses of the theoretical filter and the filter of correction gain

and offset in one-step mode. It highlights the gain correction that is necessary to have a better

ER. Fig. 4.8b shows the impulse responses of the optimal filter in one-step mode. To be noticed
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Figure 4.6: Correction results in the two-step mode of an ideal IΣ∆ modulator: (a) with the cor-
rection of gain and offset; (b) with the optimal filter correction in plan B
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Figure 4.7: Correction results in the one-step mode in post-layout simulation: (a) with the correc-
tion of gain and offset; (b) with the optimal filter correction

that there several negative coefficients, that is abnormal. It means that these bits are supposed to

have negative contribution to the modulator input estimation. This phenomenon will be explicated

in the next chapter.

For two-step mode, as shown in Fig. 4.9(a) left, with post-layout results, by only correcting gain

and offset, we obtain only ER = 12.0 bits. It seems that the second step is limited. It it because

that after the first step, ε1 is created and it cannot be estimated by the second step. According

to equation (4.6), the contribution of the second step to the final input estimation is multiply by

k1, as k1 << 1, it is possible that ε1 >> k1X̂2. That means the first step conversion error level

decides the upper limit of ER. We then apply the optimal filter corrections to the two-step mode

respectively with plan A and B. With both plan A and B, the ERs are around 14 bits. Fig. 4.9(b)

shows the form of conversion errors using optimal filter correction in plan B. The fact that plan

B improves scarcely ER can be explicated as: after the optimal filter correction in plan A, a part

of ε1 is compensated while there is residue of ε1 which cannot be completely canceled. And the

residue of ε1 is as important as ε2, or even more important than ε2. That confirms our previous

deduction: ε1 is more critical than ε2. In other words, if ε1 is not well corrected, the correction of the

second step helps little. Fig. 4.10a shows the impulse response of the theoretical filter and that

of the filter of correction gain and offset in two-step mode. Compared to the theoretical filter, the

values of impulse response of the filter correcting gain and offset for the second step are small. It

indicates that the correction of the second step has little contribution to increase the global ER.

Fig. 4.10b shows the impulse responses of the optimal filter in two-step mode. Compared to that

for one-step conversion, the forms of impulse responses of the optimal filter match better to the

theoretical filter.

Table 4.9 shows also the summary of the numbers of coefficients required of the existing

correction methods and strengthen the advantage of the two-step mode versus the one-step mode

for high resolution.
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Figure 4.8: Impulse responses of the filters of existing methods for one-step conversion.

ER (One step) Number of ER (Two steps) Number of

coefficients coefficients

Correction of gain and offset 12.3 2 12.0 3

Optimal filter correction 13.4 401 Plan A 13.9 38

Plan B 14.0 73

Table 4.2: ERs applying the existing correction methods in post-layout simulation

In conclusion, by applying the existing correction methods, we are almost able to achieve 14

bits in the two-step mode, however in the one-step mode, these techniques are not enough. In

the purpose of a characterization of our circuit, we then look for new methods to achieve a ER.
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Figure 4.9: Correction results in the two-step mode: (a) with the correction of gain and offset; (b)
with the optimal filter correction in plan B.
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(a) Impulse responses of the theoretical filter and the filter correcting gain and offset for two-step
conversion.
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Figure 4.10: Impulse responses of the filters of existing methods for two-step conversion.

4.4 New proposed correction methods

At this stage, our goal is to find a correction method which is able to make the ADC achieve a

higher resolution, without consideration of complexity.

As mentioned, ε is a non-linear function of X and S. Despite of the fact that we consider

the ADC as a black-box, we look for clues from some internal signals in order to understand
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Figure 4.11: Errors in S/H block

the correlation between the conversion errors and the modulator outputs, as they are the only

information accessible at the outside of the circuit.

We launched a post-layout simulation in one-step mode with M = 16 and recorded the input

of S/H vin as well as its output vmod and the modulator outputs at the end of the phase b of the

first integrator in each clock cycle. The error of S/H is calculated by vin − vmod. We traced the

errors of S/H together with the inputs of S/H in Fig. 4.11 and we found that the errors of S/H are

not constant. However, since the S/H block only samples vin at the beginning of the conversion,

its errors are supposed to be constant. As shown in Fig. 4.11, we discover that the errors between

the inputs and the outputs of the S/H block are highly correlated to the current modulator output

bit as well as its last two consecutive bits. Therefore, we guess that the conversion errors are

also correlated to packages of the modulator output bits. That means not only the value of each

modulator output bit but its sequence may make difference to the conversion error as if there

was a memory effect. However, the optimal filter correction processes each modulator output bit

independently, that may explicate why it is not sufficient. So we should propose a technique taking

account of output bit sequence.

4.4.1 Pattern-correcting filter

The proposition of a new algorithm of correction called Pattern-correcting filter is one of my im-

portant work. The principle of this algorithm is to detect the combination (pattern) of a pack-
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ages of n consequent bits in modulator output bit sequence. In the detection, 2n new vectors

cbi, (i = 1, 2, ..., 2n) of binary bit are created to restore the occurrence of each combination in the

package of position m in the modulator output bit sequence. If a certain combination appears in

the package of position m, the mth element of the corresponding vector is marked as 1 while the

elements in the same position in other vectors are marked as 0. After scanning all packages, the

modulator output bit sequence of M bits is expended into 2n vectors of bit sequence of M −n+ 1

elements. Fig. 4.12 shows an example of the pattern detection in modulator output bit sequence

S for n = 3. For each new set of bits, a FIR as equation (4.10) without the offset term is required.

And finally, the modulator input is the sum of all the FIR outputs plus a term of offset, as shown in

Fig. 4.13. Its expression is:

X̂ ′ =

2n∑
i=1

(cbi·fi) +O3 (4.14)

Where fi is the vector of coefficients of corresponding FIR.
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Figure 4.12: Illustration of pattern identifica-
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Figure 4.13: Algorithm of Pattern-correcting filter

Analogizing the optimal filter correction for the two-step conversions, we also have plan A,B to

apply the pattern-correcting filter correction.

4.4.2 Correction results of pattern-correcting filter techniques applied to

post-layout simulation

In order to have a reference, once again, the correction method is first employed to the outputs of

the ideal ADC. We apply the pattern-correcting filter with n = 3 in one-step conversion as well as

in two-step conversion with plan B. The ERs are respectively 17.5 and 16.2. For both conversion

modes, the pattern-correcting filter correction has almost the same performance as the optimal

filter correction. In other words, there is no need to apply the pattern-correcting filter correction to

an ideal IΣ∆ ADC, as the optimal filter correction is enough to minimize the quantization error.
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Figure 4.14: Correction result in one-step mode with the pattern-correcting filter correction,n = 3
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Figure 4.15: Impulse responses of the pattern-correcting filters for one-step conversion.

The correction result of the pattern-correcting filter with n = 3 in one-step mode in post-layout

simulation is shown in Fig. 4.14. We find that the ER is improved significantly, from 13.4 bits to

14.3 bits. We also try with n = 2 and n = 4. The correction results of the pattern-correcting filter

with different values of n in one-step mode and the number of coefficients are shown in Table 4.3.

Compared to the optimal filter correction, generally, the pattern-correcting filter bring about better

ER and the best one is when n = 3. It is consistent with the simulation result of the errors in the

S/H block. Of course, the price to have a higher resolution is the exponentially increasing number

of coefficients required.

According to Fig. 4.15 shows the impulse responses of the pattern-correcting filters for one-

step conversion. The coefficients in the pattern-correcting filters are irregularly and most of them

are 0 because of the absence of the pattern at certain position. Fortunately, in two-step mode,

there are less bits for the correction. Since it has been illustrated in the last section that ε1 is more

critical than ε2, at this time, we only employ the pattern-correcting filter with plan A and B. The

correction results of the pattern-correcting filter with different values of n in two-step mode and
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Configuration ER (bits) Number of coefficients

n = 2 13.9 1596

n = 3 14.3 3184

n = 4 14.0 6352

Table 4.3: Comparison of the pattern-correcting filters in one-step mode based on post-layout
simulation

Configuration ER (bits) Number of coefficients Figure of Merit (FM )

n = 2 plan A 14.5 142 0.0035

plan B 14.6 285 0.002

n = 3 plan A 15.0 274 0.0036

plan B 15.2 561 0.0021

n = 4 plan A 15.1 530 0.0020

plan B 15.4 1105 0.0012

n = 5 plan A 15.2 1026 0.0012

plan B 15.6 2177 0.00073

Table 4.4: Comparison of the pattern-correcting filters in two-step mode based on post-layout
simulation

the number of coefficients are shown in Table 4.4. It is possible to have a resolution over 15 bits

by applying the pattern-correcting filter corrections. Generally, the more coefficients we employ,

the better resolution we obtain. In addition, the larger the pattern size n, the more improvement

in plan B compared to plan A, because ε1 is better corrected with large n. However, there is a

special case of plan A with n = 3, in this case, with less coefficients, we gain higher ER compared

to the case of plan B with n = 2.

We define a figure of Merit FM = (ER − 14)/Number of coefficients so that to quantify the

price paid for the increase of each bit, from 14 bits. As shown in Table 4.4, considering the

resolution and the complexity of the correction, n = 3 in plan A is a choice with good cost-effective

ratio.

Fig. 4.16 shows the impulse responses of the pattern-correcting filters for two-step conversion.

In general, it is similar to that in one-step mode.

The ADC can achieve higher ER , until 15.6 bits, applying the pattern-correcting filter correc-

tion. In fact, the pattern-correcting filters only provide a theoretical possibility of ER as, they need

significant numbers of coefficients. That is hard to realize in in reality.
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Figure 4.16: Impulse responses of the pattern-correcting filters for two-step conversion.

4.5 Corrections results for multi-step conversions

We just found that, in two-step mode with M = 72, after the optimal filter correction in plan B, the

ER is around 14 bits. According to the theory of the IΣ∆ ADC, if we increase the global number

of clock cycles M , we suppose to obtain a high resolution. However, due to the constraint of

conversion speed, M = 72 is almost the limit of the global number of clock cycles when applying

a 20 MHz system clock. So we cannot increase M largely. While the slight increasing of M

cannot bring a significant improvement of ER. Thus it is nature that we think about executing the

conversions in three even four steps which are able to achieves higher ER with the same value

of M .

Another four post-layout simulations with different configurations have been done both for the

three-step and four-step conversions with the same simulation conditions. The simulations in

multi-step conversions are configured in infinite mode, respectively with M1 = 8 and M1 = 16,

keeping global number of clock cycles M = 72.

We correct firstly the gain of each step as well as the offset to see whether we can obtain a

better ER with increase of very few coefficients. The ERs after correction of gain and offset in

each configuration are shown in Table 4.5. We can find that with the correction of gain and offset,

ERs correlate to M1. Apart from it, all ERs of multi steps after the correction of gain and offset

are much worse than that of two steps, as M1 in multi-step mode is little than that in two-step

mode. These phenomena prove once again that the final correction results mainly depend on the

first step.

Then we apply respectively the optimal filter and the pattern-correcting filter in plan B to the

modulator outputs in multi-step conversions, in order to see whether it is possible to achieve a

82



Configuration ER (bits) of ER (bits) after correcting Number of coefficients

theoretical model gain and offset

3 steps, M1 = 8 15.3 9.2 4

3 steps, M1 = 16 19.1 10.8 4

4 steps, M1 = 8 19.0 9.2 5

4 steps, M1 = 16 19.3 10.8 5

Table 4.5: ERs after correction of gain and offset in multi-step modes.

Configurations three-step mode four-step mode

M1 = 8 M1 = 16 M1 = 8 M1 = 16

ER of theoretical model 15.9 19.2 19.1 19.5

ER in post-layout simulation 11.6 12.8 11.7 12.8

Numbers of coefficients 73

Table 4.6: ERs corrected with the optimal filter in plan B of multi-step modes.

Filter configuration, Type of model three-step mode four-step mode

numbers of coefficients M1 = 8 M1 = 16 M1 = 8 M1 = 16

n = 2, 285 Theoretical 15.9 19.3 18.9 19.7

Post-layout 12.2 13.4 12.3 13.4

n = 3, 561 Theoretical 16.0 19.6 19.5 19.7

Post-layout 13.2 14.1 13.2 14.1

n = 4, 1105 Theoretical 16.1 19.6 19.5 19.6

Post-layout 13.4 14.2 13.3 14.2

n = 5, 2177 Theoretical 16.1 19.6 19.6 19.6

Post-layout 13.5 14.2 13.4 14.2

Table 4.7: ERs corrected with the pattern-correcting filter in plan B of multi-step modes.

higher ER with more complex corrections. As shown in Table 4.6 and Table 4.7, ERs of multi-

step conversions are not better than that of two-step conversion and ER also strongly depends

on the accuracy of the first step. The degradation in multi-step mode may be caused by the inter-

stage errors. According to the correction results, multi-step conversions do not help to obtain a

higher resolution.

4.6 Correction method simplification

The case around or achieving 14 bits with least number of correction coefficients is the conversion

in two steps with the optimal filter correction in plan A, which requires 38 coefficients. But in our

context, because we handle column-parallel ADCs for an HD image sensor, the total number of

coefficients may be overwhelming. In order to reduce the number of coefficients while targeting

83



𝑭𝒔𝒊S1
Dsi,1

Osi

 𝑽𝒑𝒊𝒙𝒆𝒍 ,𝒔𝒊

𝑭𝒕𝒉S2 G2

Dgo,2

(a) The simplified filter correction.

𝑭𝒔𝒊S1
Dsi,1

Ohy

 𝑽𝒑𝒊𝒙𝒆𝒍 ,𝒉𝒚

𝑭𝒕𝒉S2 G2

Dgo,2

𝑭𝒑𝒂𝟑S1(1)…S1(mbit)
Dpa3,mbit

(b) The hybrid filter correction.

Figure 4.17: Diagram of correction methods for two-step conversion after simplification

14-bit, we propose to simplify the correction methods. Taking the case of a conversion over two

steps applying the optimal filter correction in plan A which requires 38 coefficients as a starting

point, we try to simplify the correction methods as possible and keep the ADC resolution stay over

14 bits in two-step mode.

4.6.1 Simplified Filter

Compared to a FIR, an IIR filter requires less coefficients. For this reason, we attempt to find

an IIR whose impulse response approaches that of the optimal filter over M inputs. The transfer

function of that filter is:

Fsi(z) =
p0 + p1z

−1 + ..+ pnz
−n

q0 + q1z−1 + ..+ qmz−m
(4.15)

To do that, we can use Steiglitz-McBride iteration which allows finding an IIR filter with a prescribed

time-domain impulse response by knowing the expected impulse response and the number of

zeros and the number of poles.

Thus in two-step mode, as shown in Fig. 4.17a, using the simplified optimal filter correction

with plan A, the ADC input can be estimated as:

̂Vpixel,si = Dsi,1 +Dgo,2 +Osi (4.16)

where dsi,1 is the output of Fsi for the first step, dgo,2 is the output of Fgo for the second step and

Osi is to correct offset.

With the help of the Steiglitz-McBride algorithm, an IIR with 2 poles and 2 zeros is found to

approximate the 36th-order optimal filter in the last section which corrects the first step. Since

it has only 2 poles, there is no risk of instability of the IIR. The comparison of correction results

with the optimal filter and the simplified optimal filter in plan A in post-layout simulation are shown

in Fig. 4.18. The ER after applying the simplified optimal filter correction is close to 13.1 bits.
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Figure 4.18: Comparison of correction results in the two-step mode: (a) with the optimal filter
correction in plan A; (b) with the simplified optimal filter correction in plan A
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Figure 4.19: Comparison of the impulse responses in the optimal filter and the simplified filter.

However, it the simplified filter reduces number of coefficients to 8 bits.

Fig. 4.19 shows the impulse response of the optimal filter and the impulse response of the

simplified filter with 36 impulse inputs. According to Fig. 4.19, the coefficients for MSBs are

relatively poorly estimated. That is the reason of the degradation in ER applying the simplified

filter.

We also tried to increase the order of IIR to see if we could get a higher ER. For 3 poles

and 3 zeros, ER is still 13.1 bits while for 4 poles and 4 zeros, ER slightly increase to 13.3 bits.

However, when numbers of poles and zeros increase to 5, ER degrades significantly to 11.6 bits.

Considering stability, we chose 2 poles and 2 zeros in priority.

4.6.2 Hybrid filter

Since the simplified optimal filter is an approximation of an optimal filter, degradation in ER is

expected. In order to compensate the loss of resolution, a pattern-correcting filter of 3-bit package

(n = 3) is employed to correct the combinations of the first m MSBs of the modulator output in

the first step. As shown in Fig. 4.17b, combining the simplified optimal filter correction and the

pattern-correcting filter correction, the corrected ADC input is estimated as:

̂Vpixel,hy = Dsi,1 +Dpa3,mbit +Dgo,2 +Ohy (4.17)
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Figure 4.20: Correction result in the two-step mode with the hybrid filter correction in plan A

where dsi,1 is the output of simplified optimal filter Fsi for the first step, andDpa3,mbit =
∑8

i=1 cbi·fi

which is the sum of the outputs of corresponding FIRi, dgo,2 is the output of Fgo for the second

step and Ohy is the term to correct offset.

The correction results of hybrid filter with n = 3 in post-layout simulation are shown in Fig. 4.20.

In our application, m = 3 is enough to achieve the desired resolution and the number of coeffi-

cients necessary is 16.

We also tried to increase the order of IIR (the simplified filter), however, for the order varying

from 2 to 4, ER stays at 14.1 bits and for an IIR of 5th order, ER is only 12.3 bits. Combine previous

results of the simplified filter, we can conjecture that an IIR with 4 poles and 4 zeros could better

approximate the MSB of the impulse response of the FIR. That is why the ER of the simplified

filter increases. However, since the hybrid filter corrects the first 3 MSB supplementary according

their pattern, the advantage of the IIR of fourth order becomes no longer notable. Considering the

complexity and the stability, we chose an IIR of second order as the simplified filter.

4.6.3 Simplified hybrid correction

In fact, due to circuit characteristics, not all patterns of a given number of bits appear at the same

frequency. For this case of 3 bits, occurrences of patterns {-1-11}, {-11-1}, {1-1-1}, {1-11} are

more frequent than the others. If we only take into account these 4 combinations rather than 8,

the pattern-correcting filter correction can be simplified and its number of coefficients will be cut

in half. The correction results of simplified hybrid filter with m = 3 in post-layout simulation are

shown in Fig. 4.21. The result seems to be exactly the same as that of the hybrid filter correction.

However, the number of coefficients required is further decreased to 12.

Fig. 4.22 shows the comparison of performances of the hybrid correction and the simplified
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Figure 4.21: Correction result in the two-step mode with the simplified hybrid filter correction in
plan A
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Figure 4.22: Comparison of the simplified hybrid filter and the hybrid filter in plan A with different
m

hybrid correction with different value of m in pattern-correcting filter. For m = 3 and m = 4, there

is no degradation in ER owing to the absence of other combinations. For other values of m, the

difference in ER are also very small while we gain more in complexity with the increase of m.

4.7 Coefficient quantization

It should be noticed that not only the number of coefficients, but also the number of bits to encode

these coefficients has impacts on complexity. After a parametric simulation, the minimum numbers

of bits to encode a coefficient in different types of filters are found, under the condition that the

degradation of ER is lower than 0.1 bit. Table 4.8 shows the number of bits to memorize a

coefficient in a FIR filter while Table 4.9 shows the numbers of bits respectively to memorize a

coefficient of numerator and of denominator in IIR filter. Table 4.10 shows the total numbers of

bits to memorize all coefficients as well as the performance of some correction methods. In brief,

the simplified hybrid correction cost less compared to optimal filter correction for an equal ER of
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Correction method number of coding-bits

Gain and offset 14

Optimal filter 18

Simplified optimal filter (Osi) 18

Hybrid (kalt and Ohy) 20

Table 4.8: Numbers of bits to code a coefficient in the FIRs of different corrections

position number of coding-bits

Numerator 16

Denominator 18

Table 4.9: Numbers of bits to code a coefficient in simplified optimal filter (type IIR)

Correction method Number of coefficients, ER (bits)

number of encoding bits

Gain and offset 3; 42 12.0

Optimal filter in plan A 38; 684 14.0

Simplified optimal filter in plan A 8; 142 13.1

hybrid filter in plan A, m = 3 16; 306 14.1

Simplified hybrid filter in plan A, m = 3 12; 222 14.1

Table 4.10: Comparison of some correction methods in two-step mode with quantized coefficients

14-bits.

The comparison of corrections methods in two-step mode is shown in Fig. 4.23. Considering

the resolution and the complexity, we find a best trade-off correction method: the simplified hybrid

filter in plan A with m = 3. With this correction, we finally obtain 14 bits only with 12 coefficients

end 222 encoding bits.

4.8 Resolution optimization for two-step conversion

According to previous analysis, as ε1 is the main contributor to the conversion error, improving the

resolution of the first step is more effective to global resolution improvement. Since increasing M1

provides more information to the correction of step 1 while the number of coefficients required for

the corrections of simplified optimal filter or optimal filter with plan B will not increase, the ER may

be optimized without additional complexity. Fig. 4.24 shows the global ER in the function of M1

corrected by a 72-order optimal filter in post-layout simulation, (the coefficients are non-quantized).

WhenM1 is increased to 48, ER is improved while ifM1 is further increased to 60, ER is degraded

compared to M1 = 36. This is because as M1 = 60, regardless of the well-corrected first step,
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Figure 4.24: With the optimal filter correction in plan B, global equivalent resolution in two-step
mode in the function of M1

Correction ER (bits) Number of bits

methods m M1 = 36 M1 = 48 to code

Simplified optimal 13.2 13.7 142

Simplified hybrid, m = 3 14.1 14.2 222

Simplified hybrid, m = 4 14.1 14.3 302

Simplified hybrid, m = 8 14.6 14.6 622

Table 4.11: Comparison of ER when M1 = 36 and M1 = 48, using simplified hybrid correction in
plan A.

the theoretical global resolution is too low. Table 4.11 compares the results of some correction

methods with coefficients quantized in the cases where M1 = 36 and M1 = 48. With the same

complexity, latter has better ER. Among all situations, the best trade-off is ER = 14.2 bits costing

222 bits when M1 = 48, of which conversion error is shown in Fig. 4.25.

4.9 Conclusion

In this chapter, we first applied the existing correction methods to our ADC. The post-layout simu-

lation results show that the existing correction methods are not sufficient to make our ADC achieve
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Figure 4.25: Conversion error when M1 = 48 using simplified hybrid correction in plan A with
n = 3,m = 3

the desired resolution. Therefore, we propose a new correction method: the pattern-correcting

filter correction. It can be an alternative method to reconstruct the input of an IΣ∆ ADC. Although

it is more complex, it brings about higher resolution.

However, for column-parallel ADCs, the constraint of complexity is critical. In order to make the

correction method implementable in a real circuit, we propose the simplified versions of the exist-

ing correction method and the new-proposed pattern-correcting filter correction. To guarantee the

target resolution, we combine these simplified correction methods together and find a best trade-

off correction plan. In this way, we obtain the 14-bit target ADC resolution taking 12 coefficients.

This complexity is acceptable for column-parallel ADCs.

Among the correction methods which are able to make ER achieve 14 bits, the complexity of

the best trade-off correction is the lowest. However, it is still possible to obtain a higher resolution

keeping the same complexity of correction method by optimizing the number of clock cycles of

the conversion in the first step. Post-layout simulation shows that with M1 = 48, after the best

trade-off correction, ER has its maximum value.

To be noticed that all the post-layout simulations have been done at 25◦C, more research

about the impacts of temperature over the correction performance are to be carried out.
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Chapter 5

Circuit defects modeling

In the last chapter, we investigated the correction methods for our IΣ∆ ADC and proposed a

method which provides the best trade-off between resolution and complexity, treating the ADC as

a black-box. However, we still want to figure out the sources causing the degradation of ADC. So

the goal of this research is to find a model of our ADC which can explicate the degradation and

the ADC’s behavior observed in post-layout simulation.

The integrator is an important component of the low-pass IΣ∆ ADCs as its errors created in

each clock cycle participate into the conversion in the following loops. In our case, the integrators

may bring about much more errors because of the inverter-based amplifier. One of its well-known

issue is its non-linear limited amplifier gain. There are also other classical non-idealities, such

as capacitor mismatch and signal-depending capacitance. These circuits defects change the

behavior of the integrator by shifting poles and zeros in the integrator transfer function and then

change the transfer function of the IΣ∆ modulator. In terms of the static characteristics, shift of

poles and zeros in the transfer function may lead to the variation of DNL and INL, because of

the mismatch between the transfer functions of the IΣ∆ modulator and the digital reconstruction

filter. While in terms of the dynamic characteristics, it may cause the change of the frequency

characteristics which makes difference to SNDR or SNR. In our case, since the ADC inputs are

DC signals, we only take into account its static characteristic INL (ER) as the criteria to judge the

ADC’s performance. As illustrated in Chapter 3, ER is affected by the change of the modulator’s

transfer function.

In post-layout simulation, we observed that some intern signals in integrators vary abnormally.

However, the model with the classical circuit non-idealities such as non-linear amplifier gain or

capacitor mismatch cannot explicate the variation of these signals. For this reason, we have an

assumption: the schematic of integrators is changed due to the parasitic capacitors. Therefore,
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according to the clues in post-layout simulation, we propose a new integrator model with some

important parasitic capacitors. With this new model, the variation of some intern signals can be

explicated.

Once the new model is proposed, how to validate it becomes a question. Simply comparing the

ER seems to be too general. As we cannot validate the proposed model directly, we compare not

only the value of ER but also the form of conversion errors in several scenes based on the results

of post-layout simulation. We compared the forms of conversion errors after different corrections

of the proposed error model to those in post-layout simulations.

After validating the proposed model, more studies about the correction methods as well as

modulator characteristics has been done based on the new integrator model. This knowledge is

useful to enhance future designs.

5.1 Classical circuit non-idealities

5.1.1 Non-linear amplifier gain

The non-linear amplifier gain is one of the most common issue of Σ∆ modulator as it is the main

non-linear error source of an SC integrator as well as a Σ∆ ADC. The impact of the finite amplifier

gain in SC integrators has been analyzed in detail by many papers: [93][94][44], researches show

that the finite amplifier gain causes degradation of the frequency characteristics. [43] and [95]

point out that the effect of integrators finite gain on a Σ∆ modulator is the leakage in integration

and output SNDR remains almost unchanged for low-frequency input if the amplifier gain is great

enough (> 60dB).

We first modeled this defect into our circuit. Let’s look at back to Fig. 5.1a and define Aa(n)

and Ab(n) respectively as the time-varying gain in phase a and phase b at clock n. Therefore the
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amplifier inputs become respectively Vo,a(n)
Aa(n)

and Vo,b(n)
Ab(n)

. Then according the fact that from phase

a to phase b, we always have: ∆Qs = −(∆Qx +∆Qi), the relationship between Vo,b(n) and Vi(n),

Vo,a(n) can be expressed as:

Vo,b(n) = kab1(n)Vo,a(n) + kib1(n)Vi(n)− kob1(n)Vof (5.1)

with:

kab1(n) =
Ci + (2Ci + Cs)

1
Aa(n)

Ci + (Ci + Cs)
1

Ab(n)

(5.2)

kib1(n) =
Cs

Ci + (Ci + Cs)
1

Ab(n)

(5.3)

kob1(n) =
(1 + 1

Aa(n)
)Ci + (Cs + Ci)(

1
Ab(n)

− 1
Aa(n)

)

Ci + (Ci + Cs)
1

Aa(n)

(5.4)

And from phase b at clock cycle (n − 1) to phase a at clock n, we have ∆Qx = −∆Qi, thus

Vo,a(n) can be expressed as:

Vo,a(n) = kaa1(n)Vo,a(n− 1) + kia1(n)Vo,b(n− 1)− koa1(n)Vof (5.5)

with:

kaa1(n) = −
(Ci + Cs)

1
Aa(n)

Ci + (Ci + Cx) 1
Aa(n)

(5.6)

kba1(n) =
Ci + (Ci + 2Cx) 1

Ab(n−1)

Ci + (Ci + Cx) 1
Aa(n)

(5.7)

koa1(n) =
Ci(1 + 1

Aa(n)
) + Cx( 1

Aa(n)
− 1

Ab(n−1) )− (Ci + Cx)( 1
Aa(n−1) −

1
Ab(n−1) )

Ci + (Ci + Cx) 1
Aa(n)

(5.8)

Replacing Vo,a(n) in equation (5.1) by equation (5.5), we obtain:

Vo,b(n) = kib1(n)Vi(n)+kab1(n)kba1(n)Vo,b(n−1)+(kab1(n)kba1(n)−kob1(n))Vof+kab1(n)kaa1(n)Vo,a(n−1)

(5.9)

If gain is infinite, equation (5.9) returns to equation (3.22). However, due to this non-linear gain,

the term Vo,a(i) (i = 1, 2, ..., n − 1) as well as offset can not be eliminated completely. Besides,
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coefficients of Vo,b(n − 1) and Vi(n) in equation (5.9) are changed compared to equation (3.22)

which can be considered as shift of poles and zeroes in the z-domain transfer function.

Non-linear gain brings about some error terms in both the numerator and denominator in

equations (5.2), (5.3),(5.4) and (5.6),(5.7)(5.8), in the form of reciprocal of gain or difference of

reciprocal of gain. For the non-linear amplifier model, the gain of the amplifier is modeled in a

non-linear way [75]:

A(Vo) =
Amax

(p0 + p1Vo + p2V 2
o + ..+ p8V 8

o )
(5.10)

where px(x = 0, 1, · · · , 8) are carefully chosen to make the A(Vo) vary between 0 and Amax.

Fig. 5.1b shows the amplifier gain A(Vo) as a function of integrator output Vo.

5.1.2 Capacitor mismatch

For an ideal situation, we chose Cx = Ci and Cs = aCi (a is the coefficient of Vi in equation

(3.22)). However, due to fabrication technology, capacitor mismatch cannot be avoid. Thus, in

reality, we have Cx = (1 + αx)Ci and Cs = a(1 + αs)Ci where αx and αs are mismatch ratio. On

one hand, the main impact of the mismatch is the change of the coefficient of Vi; while in another

hand, there is coupling of capacitor mismatch to the errors brought by non-linear amplifier gain.

5.1.3 Simulation of the modulator model with classic defects

Based on equation (5.9), a high-level model of inverter-based SC integrators with classic defects

as well as a model of a 2nd IΣ∆ modulator composed of those integrators have been built on

Matlab. Several simulations of the IΣ∆ modulator model with classic defects in one-step with

M = 400 have been done by sweeping parameters. Also by observing directly the signals in

post-layout simulation, we found that there was an offset (Vof = −0.027V) in both integrators; and

there was also an offset of threshold voltage in the comparator (Vth = 0.021V). For this reason,

we added these imperfections into the Matlab model.

Fig. 5.2 shows the ERs in the function of Amax in the simulations. The ER of an ideal modula-

tor after correcting gain and offset (in fact there is no intrinsic gain and offset of an ideal modulator)

and after the optimal filter correction are respectively 15.5 bits and 17.5 bits. From Fig. 5.2, we

find that the modulator resolution is not sensitive to the amplifier gain as when Amax > 80dB,

the degradation in ER can be ignored. The same discovery is also valid for capacitor mismatch.

Fig. 5.3(a) shows the ERs in the function of αs while Fig. 5.3(b) shows ERs in the function of αx

in the simulations. For mismatch of both Cs and Cx, the ERs with correction of gain and offset
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are around 15.4 bits and the ERs after the optimal filter correction are around 17.3 bits. In fact,

the mismatch of Cs and Cx lead to an offset and a gain in conversion errors compared to the ideal

modulator.

According to the previous results, we can conclude that the main reasons of the degradation

in our IΣ∆ modulator are the not finite non-linear amplifier gain and capacitor mismatch.
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5.2 New inverter-based SC integrator model with parasitic ca-

pacitors

5.2.1 Abnormal Variation of Certain Intern Signals in Integrators

As illustrated in Chapter 3.2.1, for an ideal SC integrator, Vx,b is supposed to be a constant value

( Vx,b = Vcm). Also even with the previous classic circuit non-idealities, Vx,b will still remain

constant. Fig. 5.4 shows values of Vx,b of two integrators in the first eight clock cycles. However,

from Fig. 5.4, we find that in both integrators, Vx,b varies with an amplitude upon to 5 mV in post-

layout simulation. This value is too large to the normal value caused by the limit of simulation

accuracy. So we think the classic circuit non-idealities are not enough to model our integrator,

there must be other defects.

5.2.2 Discovery of parasitic capacitors

When we plot Vx,b in the function of Vo,b−Vo,a, we obtain some interesting discovery. From Fig. 5.5,

we found that in both integrators, when the value of S is fixed, Vx,b is proportional to the difference

of the integrator outputs between two phases. Since there is tight correlation between Vx,b and

the integrator output, we consider that there is a parasitic capacitor (Cp in Fig. 5.6) between the

amplifier input and output. This capacitor exists systematically in an inverter-based amplifier,

whose schematic is shown in Fig. 3.8, due to the parasitic capacitors in some transistors, such

Cgs and Cds. Besides, layout design may probably aggravate this problem. Because of auto-

zeroing technique, a plate of Ci switches between node X and the amplifier input, which leads

to the fact that Cp cannot be simply considered as a part of Ci as in a conventional differential

96



-0.2 -0.1 0 0.1 0.2

(a)

-5

-4.5

-4

-3.5

-3

-2.5

-2
V

x
1

b

10
-3 Vx1b vs (Vo1b - Vo1a)

-0.04 -0.02 0 0.02 0.04 0.06

(b)

-2

-1

0

1

2

3

4

V
x

2
b

10
-3 Vx2b vs (Vo2b - Vo2a)

S(n) = 1

S(n) = -1

 y1 = k1x + b1

y2 = k2x + b2

 y2' = k2'x + b2'

S(n-1) = 1

y1' = k1'x + b1'

S(n-1) = -1

Figure 5.5: Vx,b in the function of difference between the integrator outputs in two phases Vo,b−Vo,a

p1d

Ci

Cx

Cs Cp

p2d p2

Vi Vo

p1

Vx

VCM

VCM

p1d

RST

Phase b

p1d

Ci

Cx

Cs Cp

p2d p2

Vi Vo

p1

VCM

VCM

p1d

RST

Phase a
Co

VCM

Co

S

Vx

Figure 5.6: An inverter-based SC integrator with parasitic capacitors

integrator. The existence of Cp creates a path for the charge, so the charge in Cx varies between

different phases. As a consequence, the potential at node X is no longer constant. The impact of

variation of this potential will be elaborated later.

In addition to the fact that Vx,b seems to be a linear function of Vo,b − Vo,a, in Fig. 5.5, we

can also discover that Vx,b is grouped according the modulator output S. So we chose to model

that effect as another parasitic capacitor Co. As shown in Fig. 5.6, one plate of it is connected to

amplifier input while the other plate is connected to comparator output. Due to the synchronous

character of the comparator, its output shifts from Vcm to the comparison results (−1 or 1) when the

phase of the first integrator changes from a to b; while for the second integrator this happens when

it changes from phase b to phase a. As there is no direct connection between the amplifier input
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and the comparator output in modulator schematic, Co is completely brought by layout design.

Because of Co, the values of integrators are modulated by their outputs, namely inter-modulation,

to some extent. Also it has contribution to the variation of the potential Vx.

5.2.3 Circuit-level models of integrators

As mentioned previously, because of the existence of parasitic capacitors, the potential at node

X does not remain constant. And this value is an important intermediate variable to deduce the

relationship between the integrator input and output. Besides, due to the order of activities of the

integrators and the comparator, the expressions of these two integrators may be slightly different.

Here we define Cs1, Cx1, Ci1, Cp1, Co1 and Cs2, Cx2, Ci2, Cp2, Co2 as the names of capacitors

respectively in the first integrator and the second one.

First integrator

During the cycle n, for the first integrator, both phases a and b occur in the current cycle. Since

phase b of the first integrator is after the comparison, the value of the modulator output S acting

on one plate of Co1 is the value of the current cycle S(n). According to the fact that from phase a

to phase b , we have ∆Qp1 +∆Qo1 = −∆Qx1, the potential of node X of the first integrator during

phase b Vx1,b(n) can be deduced as:

Vx1,b(n) = −Cp1

Cx1
(Vo1,b(n)− Vo1,a(n))− Co1

Cx1
S(n)Vref

−(1 +
Cp1

Cx1
+
Co1

Cx1
)(
Vo1,b(n)

A1,b(n)
− Vo1,a(n)

A1,a(n)
)

+(1 +
Cp1

Cx1
+
Co1

Cx1
)(

1

A1,b(n)
− 1

A1,a(n)
)Vof1 (5.11)

where A1,a(n), A1,b(n) are respectively algebraic values of gain of amplifier and Vof1 is offset at

the input of amplifier in the first integrator.

Then according to the fact that ∆Qs1 = −(∆Qx1 + ∆Qi1), the relationship between Vo1,b(n)

and Vi1(n), Vo1,a(n) can be expressed as:

Vo1,b(n) = fa1,b(n)Vo1,a(n) + fi1,b(n)Vi1(n) + fs1,b(n)S(n)Vref + fo1,b(n)Vof (5.12)

where Vo1,a(n), Vo1,b(n) are respectively the values of the first integrator in phase a and b, and

Vi1(n) is its input, at cycle n. Besides, the expressions of fa1,b(n), fi1,b(n), fs1,b(n), fo1,b(n) are

respectively:
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fi1,b(n) =
Cs1

Ci1

fb1,b(n)
(5.13)

fa1,b(n)=
Ci1 + Cp1(1 + Ci1

Cx1
+ Cs1

Cx1
)( 1

A1,a(n)
+ 1)

fb1,b(n)

+
(2Ci1 + Cs1) 1

A1,a(n)
+ Co1(1 + Ci1

Cx1
+ Cs1

Cx1
) 1
A1,a(n)

fb1,b(n)
(5.14)

fo1,b(n)= −
Ci1(1 + 1

A1,a(n)
) + Cp1(1 + Ci1

Cx1
+ Cs1

Cx1
)( 1

A1,b(n)
− 1

A1,a(n)
)

fb1,b(n)

+
(Cs1 + Ci1)( 1

A1,b(n)
− 1

A1,a(n)
)

fb1,b(n)

+
Co1(1 + Ci1

Cx1
+ Cs1

Cx1
)( 1

A1,b(n)
− 1

A1,a(n)
)

fb1,b(n)
(5.15)

fs1,b(n) =
Co1

Cx1

fb1,b(n)
(5.16)

where:

fb1,b(n)= Ci1 + Cp1(1 +
Ci1

Cx1
+
Cs1

Cx1
)(

1

1−A1,b(n)
)

+(Ci1 + Cs1)
1

A1,b(n)
+ Co1(1 +

Ci1

Cx1
+
Cs1

Cx1
)

1

A1,b(n)
(5.17)

These coefficients are modulated by the non-linear amplifier gain, which depends on the integra-

tor output. As a consequence, they are time-varying.

We already know that Vo1,b(n) directly depends on Vo1,a(n), now we want to understand the

relationship between Vo1,a(n) and Vo1,b(n − 1), in order to understand the complete function of

integrator. From phase b of the previous cycle (n − 1) to phase a of cycle n, similarly, we have

∆Qx1 = −(∆Qp1 + ∆Qo1 + ∆Qi1), thus the expression of Vo1,a(n) is:

Vo1,a(n)= fa1,a(n)Vo1,a(n− 1) + fb1,a(n)Vo1,b(n− 1)

+fs1,a(n)S(n− 1)Vref + fo1,a(n)Vof1 (5.18)
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with:

fa1,a(n) = −
Cp1

Cx1
(Ci1 + Cx1)(1 + 1

A1,a(n)
)− (1 + Co1

Cx1
)(Ci1 + Cx1) 1

A1,a(n)

fa01,a(n)
(5.19)

fb1,a(n) =
Ci1(

Cp1

Cx1
+ 1) + Ci1(

Cp1

Cx1
+ Co1

Cx1
) 1
A1,b(n)

+ (Ci1 + 2Cx1) 1
A1,b(n)

fa01,a(n)
(5.20)

fo1,a(n)=
Ci1(1 + 1

A1,a(n)
) + (Co1 + Cp1 + Cx1)( 1

A1,a(n)
− 1

A1,b(n)
)

fa01,a(n)

−
(Cx1 + Ci1)(1 +

Cp1

Cx1
+ Co1

Cx1
)( 1

A1,b(n−1) −
1

A1,a(n−1) )

fa01,a(n)
(5.21)

fs1,a(n) =
Co1

Cx1
(Ci1 + Cx1)

fa01,a(n)
(5.22)

where:

fa01,a(n) = Ci1 + Cp1(1 +
1

A1,a(n)
) + (Ci1 + Co1 + Cx1)

1

A1,a(n)
(5.23)

Combining equation (5.12) and equation (5.18) and we have:

Vo1,b(n)= fi1,b(n)Vi1(n) + fa1,b(n)fb1,a(n)Vo1,b(n− 1)

+fs1,b(n)S(n)Vref + fa1,b(n)fs1,a(n)S(n− 1)Vref

+fo1,b(n)Vof1 + fa1,b(n)fo1,a(n)Vof1

+fa1,b(n)fa1,a(n)Vo1,a(n− 1) (5.24)

Thus we can see that due to fa1,a(i) 6= 0, (i = 1, ..., n), the value of integrator Vo1,b(n) does

not only depend on the input and its last state but also all its previous states. In addition to this,

Vo1,b(n) is modulated by the modulator outputs. Also there is still a term of offset which indicates

an effectiveness loss of the auto-zeroing technique.

Second integrator

The thought to deduce the expression of the value of the second integrator is the same. The

value of the second integrator at its phase b can also be written in the form of equation (5.24)

with time-varying coefficients fa2,b(n), fi2,b(n), fs2,b(n), fo2,b(n) and fa2,a(n), fb2,a(n), fs2,a(n),

fo2,a(n).
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However, because of the delay of one phase (as shown in Fig. 3.6), a period including phase

a and phase b of the second integrator crosses cycle (n− 1) and cycle n of modulator. (The time

of Vo2,a(n) is the same moment of Vo1,b(n − 1) and the time of Vo2,b(n) is the same of Vo1,a(n).)

As the second integrator integrates before the comparison, the value of the modulator output S

acting on one side of Co2 is the value of last cycle, namely S(n − 1). The potential at node X in

phase b of the second integrator in cycle n, Vx2,b, can be expressed as:

Vx2,b(n) = −Cp2

Cx2
(Vo2,b(n)− Vo2,a(n)) +

Co2

Cx2
S(n− 1)Vref

−(1 +
Cp2

Cx2
+
Co2

Cx2
)(
Vo2,b(n)

A2,b(n)
− Vo2,a(n)

A2,a(n)
)

+(1 +
Cp2

Cx2
+
Co2

Cx2
)(

1

A2,b(n)
− 1

A2,a(n)
)Vof2 (5.25)

The form of Vx2,b(n) is almost the same as that of Vx1,b(n), except the sign of the term S(n −

1)Co2

Cx2
. As a consequence, the signs of fs2,a(n) and fs2,b(n) are changed:

fs2,a(n) = −
Co2

Cx2
(Ci2 + Cx2)

fa02,a(n)
(5.26)

fs2,b(n) = −
Co2

Cx2

fb2,b(n)
(5.27)

Except this, expressions of other coefficients refer to those of the first integrator. Similarly, to

the first integrator, we have:

Vo2,b(n)= fi2,b(n)Vi2(n) + fa2,b(n)fb2,a(n)Vo2,b(n− 1)

+fs2,b(n)S(n− 1)Vref + fa2,b(n)fs2,a(n)S(n− 1)Vref

+fo2,b(n)Vof2 + fa2,b(n)fo2,a(n)Vof2

+fa2,b(n)fa2,a(n)Vo2,a(n− 1) (5.28)

If we apply Cpi = Coi = 0, (i = 1, 2) and infinite amplifier gain, the expressions of Vo1,b(n) and

Vo2,b(n) return to the equation (3.22) which is for an ideal inverter-based SC integrator. Besides,

equation (5.11) and equation (5.25) well explicate the phenomenon of Vo,b observed in Fig. 5.4.
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5.3 Validation of the new proposed inverter-based SC integra-

tor models

In last section, we proposed new models of the integrators in the second order Σ∆ Modulator, so

now we want to verify our new models with the help of post-layout simulation of the Σ∆ Modulator.

We record the values of the signals in equation (5.24) and (5.28). According to these values, we

could estimate the parameters of integrators. Then we re-calculated the values of two integrator

outputs at each clock cycles using equations (5.24) and (5.28). On the other hand, with the

record signal values, the theoretical outputs of an ideal integrator at each clock cycle could also be

calculated using equation (3.22). We also looked at the errors between the re-calculated integrator

values and those in post-layout simulation as well as the errors of the theoretical models. If the

errors of the new integrator models decrease, we can say that the new proposed integrator models

match better than the theoretical ones.

5.3.1 Parameters identification for the new proposed inverter-based SC in-

tegrator models

We launched a post-layout simulation in one step with M1 = 8 and record the values of signals in

equations (5.24) and (5.28). According to the values of Vx1,b and Vx2,b in post-layout simulation

, the values of Cpm/Cxm and Com/Cxm, (m = 1, 2) can be estimated based on equations (5.11)

and (5.25) by substituting an infinite amplifier gain. By researching least-mean-square of the

difference between the values of Vx,b saved in post-layout simulation and the values estimated

using equations (5.11) and (5.25), we obtain Cp1/Cx1 = 0.0099, Cp2/Cx2 = 0.0086, Co1/Cx1 =

0.0023, Co2/Cx2 = 0.0022. The values of Co are relatively small compared to those of Cp. As

illustrated, Co is completely caused by layout design while Cp exists systematically in an inverter-

based SC integrator and it may be aggravated by layout design.

5.3.2 Comparison of the new proposed inverter-based SC integrator mod-

els to the ideal integrator model

From equations (5.13) to (5.17), we find that in the new proposed integrator models, non-linear

amplifier gain appears in these equations in the form of reciprocal of gain or difference of re-

ciprocal of gain, since the values of the amplifier gain are relatively great, their impacts can be

ignored. For this reason, we supposed that the amplifier gain was infinite once again. In addition,
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we supposed that there is no mismatch between Cs, Ci and Cx. Thus the values of the coeffi-

cients in equations (5.24) and (5.28) could be calculated through equations (5.13) to (5.17). Then

the values of integrator outputs at each clock cycle could be estimated through equations (5.24)

and (5.28). We defined the estimation errors as the difference between the estimated integrator

outputs using certain integrator model and the integrator output values record in post-layout sim-

ulation. Thus the estimation errors of the new integrator models based on equations (5.24) and

(5.28) and the estimation errors of the theoretical integrator model based on equation (3.22) could

be respectively calculated.

Fig. 5.7a shows the errors between the ideal integrator model and the model in post-layout

simulation in the first integrator while Fig. 5.7b shows those between the new proposed integrator

model and that in post-layout simulation. We find that comparing to the ideal model, the proposed

model matches better, since its errors are more concentrated. If we optimal the parameters by

researching least-mean-square of the errors, the magnitude of the estimated errors in the new

model decreases to 10−4, as shown Fig. 5.7c. In post-layout simulation, in addition to the parasitic

capacitors, there is a mismatch between Cs1, Ci1 and Cx1, and we cannot estimate it based on

Fig. 5.5. That leads to the fact that the parameters cannot be estimated precisely. That why

absolute values of the errors in Fig. 5.7b are still significant. However, capacitor mismatch has

been well considered for the optimal parameters. In fact, the values of parameters estimated and

optimal parameters are very close. Surprisingly, even the little change in parameter values causes

large variation in errors.

The same observation can be obtained according Fig. 5.8a and Fig. 5.8b for the second inte-

grator. To be pay attention that in Fig. 5.8a, the estimation errors are separated into two groups. It

is coherent to equation (5.28) that Vo2,b(n) is only correlated to S(n− 1). It indicates that the new

proposed model of inverter-based SC integrators is correct in our circuit. Of course, we are not

able to further decrease the estimation errors as we don’t know exactly the values of the amplifier

gain at each clock cycle.

5.4 Validation of the Σ∆ modulator model composed of the

new proposed inverter-based SC integrator models

The objective of proposing a new integrator model is to build a modulator model finally in order to

explicate, as much as possible, its behaviors and degradation in post-layout simulation.

After validating the new models at integrator level, we then completed the modulator model
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Figure 5.7: Comparison of the estimation errors in the first integrator respectively of the ideal
integrator model and of the new proposed model.
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Figure 5.8: Comparison of the estimation errors in the second integrator respectively of the ideal
integrator model and of the new proposed model.

by adding other circuit imperfections. Then we identified the parameters of other imperfections

through post-layout simulation too. Apart from the signals in equations (5.24) and (5.28), we also

record the values of certain signals in the Σ∆ modulator (including S/H) and estimated the values

of other defect parameters.

For the validation of the new Σ∆ modulator model, we compared not only ER as well as the

forms of conversion errors in several scenes. If both ER and the forms of conversion errors are

similar, we can consider that the new modulator model is reasonable.
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5.4.1 Parameters identification of other imperfections in Σ∆ modulator

For other imperfection parameters, it can be directly estimated by observing the signal waveform in

post-layout simulation: Vof1 ≈ Vof2 = −0.021V and offset of the threshold voltage of comparator

Vth = 0.027V . Apart of this, we model a linear error in the S/H block: X = kshVpixel + bsh,

where Vpixel is the input of S/H block and X is its output as well as the input of modulator. By

recording the inputs and outputs of the S/H block, k1 and b are estimated with the method of linear

regression.

5.4.2 Comparison of proposed modulator model and modulator in post-

layout simulation

In one-step mode

The conversion mode is firstly chosen for comparison is the one-step conversion, as there is no

inter-stage errors. Fig. 5.9A respectively shows the forms of conversion error in different scenes

in post-layout simulation: without correction (with theoretical filter), corrected gain and offset,

corrected with optimal filter and corrected with pattern-correcting filter with n = 3, simplified filter

in plan A and hybrid filter with n = 3,m = 3 in plan A. To be noticed that it is a fourth-order IIR

applied in simplified filter and the hybrid filter. Even in last Chapter, we found that a second-order

IIR was enough for two-step mode conversions, it didn’t work well for a long conversion in one-step

mode. In stead, a higher-order IIRs seems to work. However, ER won’t be further improved if we

continue increasing IIR filter order. The correction results in Fig. 5.9A will be considered as the

reference to judge whether the models are reasonable. Then some simulations of the model with

estimated parameters of this 2nd IΣ∆ modulator have also been done with the same condition:

M = 400.

Simulation with infinite amplifier gain

In the first simulation, we chose the amplifier gain A = 120dB for both integrators in order to

simulate the ideal amplifiers. Therefore, there is only linear error in conversion errors. Fig. 5.9B

shows the form of conversion errors in the scenes mentioned previously in the simulation of the

modulator model. For the first three cases, almost the same ERs are obtained compared to that

of post-layout simulation. In addition to it, the forms of errors are similar to those of post-layout

simulations in Fig. 5.9A. It proves that the proposed high-level modulator model is close to the

circuit in post-layout. From the comparison, we can consider that in the circuit in post-layout
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(A) In post-layout simulation: (a) with theoretical filter; (b) with correction of gain and offset; (c)
with optimal filter correction; (d) with pattern-correcting filter correction of 3-bit package (n = 3);
(e) with simplified filter; (f) with hybrid filter of 3-bit package,m = 3
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(B) In simulations of proposed modulator model with infinite amplifier gain: (a) with theoretical
filter; (b) with correction of gain and offset; (c) with optimal filter correction; (d) with pattern-
correcting filter correction of 3-bit package (n = 3); (e) with simplified filter; (f) with hybrid filter of
3-bit package,m = 3

Figure 5.9: Conversion errors in one-step mode.
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simulation, most part of error corrected with these coarse corrections is the error caused by Cpx

and Cox, (x = 1, 2). In other words, the real non-linear error caused by amplifier gain is still hiding

behind the linear error. That can explicate why the improvement brought by the pattern-correcting

filter is less in the proposed model compared to post-layout. Besides, we should pay attention to

the fact that the simplified filter correction and hybrid filter correction work a little bit better in the

proposed model, probably because we didn’t model the non-linear amplifier gain. As a result, it

is able to approximate the impulse response of the optimal filter more precisely. Apart from non-

linear amplifier gain, we didn’t model the error caused by the different signal path as illustrated in

Chapter3. That why the hybrid filter improves scarcely ER on the basis of the simplified filter in the

proposed model. We should also pay attention that the simplified filter correction and the hybrid

filter correction cannot improve ERs to 14 bits neither for the model in post-layout simulation nor

for the proposed model as 400 coefficients are too many to approximated with a IIR.

Simulation with non-linear finite amplifier gain

In this simulation, we add the non-linear finite amplifier gain as introduced in Section 3 to the

proposed model. Here we choose Amax = 75 dB. Fig. 5.10 shows respectively conversion errors

with four different ways to reconstruct the modulator input. We hardly see the change in the forms

of errors for the first four cases. And exceptionally, there is about 0.1-bit increase of ER in these

cases. Since the change isn’t significant we can consider that with this non-linear amplifier gain

model (the approximation of polynomial), the non-linear amplifier gain doesn’t make significant

difference to the ADC. However, with a finite and non-linear gain, the results of the simplified

filter correction and hybrid filter correction are degraded because the non-linear gain increases

difficulty to approximate the impulse response.

In two-step mode

We also have comparison in two-step mode with M1 = 48,M2 = 24 keeping the same parameters

of model and choosing Amax = 120 dB. Table 4.1 shows the correction results of this model

comparing to those in post-layout simulation. Even though there are decreases in ER for all

cases in two-step mode, the variation is about 0.1 bits and it can be ignored. Except it, the trend is

similar to that in one-step conversion: with the existing correction methods, results are similar for

both models. While with the pattern-correcting filter, the improvement in ER on the basis of the

optimal filter is less in the proposed model compared to post-layout. Furthermore, the simplified

filter correction and hybrid filter correction work better for the proposed model as there are less
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Figure 5.10: Conversion error in one-step mode in functional model simulations with non-linear
finite amplifier gain: (a) with theoretical filter; (b) with correction of gain and offset; (c) with opti-
mal filter correction; (d) with pattern-correcting filter correction of 3-bit package (n = 3); (e) with
simplified filter; (f) with hybrid filter of 3-bit package,m = 3

Table 5.1: Comparison of correction results of the proposed model in two-step mode to post-layout
simulation

Correction methods ER (bits)
Post-layout proposed model, proposed model,

Amax = 120dB Amax = 75dB
Theoretical filter 4.9 4.8 4.8

Correction gain and offset 12.2 12.2 12.3
Optimal filter, plan A 14.2 14.1 14.0
Optimal filter,plan B 14.3 14.5 14.3

Pattern-correcting filter, m = 3,plan A 15.0 14.2 14.1
Pattern-correcting filter, m = 3,plan B 15.2 14.7 14.6

Simplified filter, plan A 13.7 14.1 14.0
Hybrid filter, mbit = 3,m = 3 plan A, 13.9 14.1 14.0

errors sources in the proposed model than the model in post-layout simulation.

Fig. 5.11 shows form of conversion errors in two-step mode in post-layout simulation while

those in the simulation of functional model respectively with infinite amplifier gain and non-linear

finite amplifier gain are shown in Fig. 5.12 and Fig. 5.13. To be mentioned that in terms of the

shapes of conversion errors in two-step model, they are not enough similar compared to one-step

mode. Maybe it is because that we didn’t model the inter-step error which may occur during the

sampling of residue at the end of the first step.

According to the comparison between the correction results of circuit in post-layout and the

proposed model, we can obtain some acknowledges about our circuit as well as correction meth-

108



Figure 5.11: Conversion errors in two-step mode in post-layout simulation: (a) with theoretical
filter; (b) with correction of gain and offset; (c) with optimal filter correction in plan A; (d)with optimal
filter correction in plan A; (e) with pattern-correcting filter correction of 3-bit package (n = 3) in plan
A; (f) with pattern-correcting filter correction of 3-bit package (n = 3) in plan B; (g) with simplified
filter in plan A; (h) with hybrid filter with n = 3,m = 3 in plan A.

Figure 5.12: Conversion errors in two-step mode in functional model simulations with infinite
amplifier gain: (a) with theoretical filter; (b) with correction of gain and offset; (c) with optimal
filter correction in plan A; (d)with optimal filter correction in plan A; (e) with pattern-correcting filter
correction of 3-bit package (n = 3) in plan A; (f) with pattern-correcting filter correction of 3-bit
package (n = 3) in plan B; (g) with simplified filter in plan A; (h) with hybrid filter with n = 3,m = 3
in plan A.
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Figure 5.13: Conversion errors in two-step mode in functional model simulations with non-linear
finite amplifier gain: (a) with theoretical filter; (b) with correction of gain and offset; (c) with optimal
filter correction in plan A; (d)with optimal filter correction in plan A; (e) with pattern-correcting filter
correction of 3-bit package (n = 3) in plan A; (f) with pattern-correcting filter correction of 3-bit
package (n = 3) in plan B; (g) with simplified filter in plan A; (h) with hybrid filter with n = 3,m = 3
in plan A.

ods:

1. The most of degradation can be explicated by parasitic capacitors and these errors can be

well corrected with the optimal filter.

2. Compared with the optimal, the advantage of the pattern-correcting filter is that it is able to

correct the fine errors (whose amplitude is equivalent to LSB less than 13 bits) in the circuit. It is

shown in post-layout simulation that it improves ER further than the optimal filter.

3. For the fact that the improvements brought about by the pattern-correcting filter are less in

the proposed model, we consider that there are other error sources we didn’t discovered in the

post-layout level. For example, the errors correlated to the current and its two adjacent modulator

output bits in S/H shown in Fig. 4.11.

4. For few clock cycles, the correction effects of the simplified filter or the hybrid filter is

comparable to that of the optimal filter while they require much less coefficients. However, for

a long conversion, the simplified filter and the hybrid filter don’t work as well as they do in a

short conversion because the FIR impulse response cannot be approximated by an IIR precisely,

especially the MSBs in the impulse response of FIR. It is necessary to increase the order of IIRs,

in one-step mode with 400 clock cycles.

5. Although we cannot find out all the defects in the circuit in post-layout, the proposed high-
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level integrator model can explicate most part of the ADC degradation in post-layout simulations.

With this model, we can research deep into the correction methods.

5.4.3 Study of the parasitic capacitor impacts on correction methods

In the last sub-section, we just validated the proposed model and obtained a conclusion: the ADC

degradation in post-layout simulations is mainly caused by Cp and Co. Now we want to find the

maximum values of parasitic capacitor of the proposed model, with which ER can stay over 14

bits with the certain correction methods. To be noticed that for the modulator model, we suppose

that there isn’t any other defects except parasitic capacitors.

In one-step mode

Fig. 5.14(a) shows ERs respectively after correction of the optimal filter and the pattern-correcting

filter with 3-bit package in the function of Cp1 and Cp2 (with infinite amplifier gain). For both

corrections, ER drops from nearly 18 bits to about 11 bits with increase of Cp1 and Cp2. That

means that ADC resolution is very sensitive to Cp. To guarantee 14 bits, Cp1/Cx1 + Cp2/Cx2

should less than 0.3. However, the pattern-correcting filter doesn’t show significant advantage in

ER compared to the optimal filter for the proposed model. It is because we didn’t model all error

sources in the circuit and the optimal filter is capable of correcting most of errors caused by Cp.

Fig. 5.14(b) shows ER in the function of Co1 and Co2 with Cp1/Cx1 = Cp2/Cx2 = 0.01 (this

value is close to that in our circuit in the post-layout simulation), with the same corrections. We

observe that ERs varies around 17.6 bits with the pattern-correcting filter in spite of the variation

of Co1 and Co2 while with the optimal filter, ERs are about 17.3 bits. It indicates that although the

impact of Co is irregular, it can be ignored after correction.

Fig. 5.15 (a) and (b) show ERs using theoretical filter and with the optimal filter corrections

and the simplified filter correction. The reason why we add the theoretical filter in this simulation

is the theoretical filter can also be expressed with a IIR filter in z domain. As shown in Fig. 5.15

(a) we find that these correction filters are sensitive to Cp too. Despite of the value of Cp, the

simplified filter always provides better ER than the theoretical filter. And compared to the optimal

filter, the simplified filter provides almost the same ER with much more less coefficients. However,

according to Fig. 5.15 (b), Co has little impact on the correction results. But we should realize that,

with theoretical filter, ER is extremely sensitive to Co2.
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Figure 5.14: Equivalent resolution in one-step mode respectively with the optimal filter correction
and the patter-correcting filter correction (package of 3 bits): (a) sweep of Cp1 and Cp2 and Co1 =
Co2 = 0; (b)sweep of Co1 and Co2 and Cp1/Cx1 = Cp2/Cx2 = 0.01;

Figure 5.15: Equivalent resolution in one-step mode respectively with theoretical filter and with
the optimal filter correction and the simplified filter correction (package of 3 bits): (a) sweep of Cp1

and Cp2 and Co1 = Co2 = 0; (b)sweep of Co1 and Co2 and Cp1/Cx1 = Cp2/Cx2 = 0.01;
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Figure 5.16: Equivalent resolution in two-step mode respectively with the optimal filter correction
and the patter-correcting filter correction (package of 3 bits): (a) sweep of Cp1 and Cp2 and Co1 =
Co2 = 0; (b)sweep of Co1 and Co2 and Cp1/Cx1 = Cp2/Cx2 = 0.01;

Figure 5.17: Equivalent resolution in two-step mode respectively with theoretical filter and with
the optimal filter correction and the simplified filter correction (package of 3 bits): (a) sweep of Cp1

and Cp2 and Co1 = Co2 = 0; (b)sweep of Co1 and Co2 and Cp1/Cx1 = Cp2/Cx2 = 0.01;

In two-step mode

As shown in Fig. 5.16(a) and (b) show ERs in two-step mode respectively after the correction of

optimal filter and the pattern-correcting filter (m = 3, plan A) in the function of Cp1 and Cp2. The

trends are similar to those in one-step mode and ER is more stable in two-step mode as it drops

only from 15.8 bits to 13.2 bits with increase of Cp after corrections. Besides, the pattern correcting

filter can scarcely improve ER compared to the optimal filter. Fig. 5.17 (a) and (b) show ERs in

two-step mode with theoretical filter and with the optimal filter corrections and the simplified filter

correction in plan A. Different to one-step mode, in two-step mode, the simplified filter is able

to provide almost the same ER as the optimal filter regardless of Cp and Co. However, without

correction, ER seems to be more sensitive in two-step mode. Therefore, the simplified filter has

great advantage in two-step mode.
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Figure 5.18: Diagram of the IΣ∆ modulator with noise sources.

5.4.4 Study of the noise resistance of correction methods

The proposed model can help us to study the robustness of correction methods regarding noise.

Here we chose the modulator model with the defects including those defined in 5.4.1 to simu-

late our circuit. Fig. 5.18 shows the equivalent model of the IΣ∆ modulator with diverse noise

sources. We define respectively noise sources N1, N2 and Ny as the noise added at the input

of the first integrator, the noise added at the input of the second integrator and that added at the

input of the comparator. We consider that noise is uniformly distributed within a certain range

±Anoise. Fig. 5.19 (a) to (d) show the ER in one-step mode after corrections of the optimal filter,

the pattern-correcting filter (m = 3) and the simplified filter, in the simulations of the proposed

model with different noise source. The parameters of the proposed model are those in Section

5.4.2. N1 is critical because it is mixed with the modulator input and it won’t be filtered by the

modulator. In reality, noise may appear anywhere, so we take the results in Fig. 5.19 (d) as the

reference. If Anoise is guaranteed below a level which is equivalent to a LSB of 12 bits (calculated

by
log10(

V 2
in,max

3A2
noise

)

0.602 ), degradation due to noise of all correction methods is slight.

Fig. 5.20 (a) to (d) show the results in two-step mode. Compared to one-step mode, conversion

over two-step is more sensitive to noise. To guarantee the performance of correction methods,

Anoise should be below to 13 bits.
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Figure 5.19: Equivalent resolution in the function of noise amplitude in one-step mode: (a) only
with noise source N1; (b) only with noise source N2; (c) only with noise source Ny; (d) with noise
sources N1 + N2 + Ny
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Figure 5.20: Equivalent resolution in the function of noise amplitude in two-step mode: (a) only
with noise source N1; (b) only with noise source N2; (c) only with noise source Ny; (d) with noise
sources N1 + N2 + Ny
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5.5 Further study on impact of parasitic capacitor to an inverter-

based IΣ∆ modulator

We have already studied the effect of parasitic capacitors on the inverter-based SC integrators

and on the correction of our IΣ∆ ADC. Since it changes the transfer function of the inverter-based

SC integrators, the transfer function of the modulator must be different from the theoretical one.

In this section, we will try to deduce the transfer function of the modulator after all cycles by

respectively iterating equation (5.24) and equation (5.28). It helps us more intuitively understand

the reason for the degradation of performance in our IΣ∆ ADC.

5.5.1 Deduction of transfer function of the 2nd IΣ∆ modulator

According to equation (5.18), fa1,a 6= 0 is the reason why Vo1,a cannot be completely canceled in

the incremental expression of Vo1,b as shown in equation (5.24). fa1,a brings a memory effect to

the first integrator. In other words, the current integrator output Vo1,b not only depends on its last

value. This conclusion is also true for the second integrator.

To understand this supplementary memory effect to both integrators, we first iterate equation

(5.24) and (5.18) to remove all the intermediate term Vo1,a. In this way, we obtain the relation

between the current output Vo1,b(n), Vi1 and all its previous states Vo1,b(i), (i = 0, 1, ..., n− 1):

Vo1,b(n)= fb1,i(n)Vi1(n) + fb1,a(n)fa1,b(n)Vo1,b(n− 1)

+fb1,a(n)

n−2∑
i=0

fa1,b(i+ 1)Vo1,b(i)

n−1∏
j=i+1

fa1,a(j + 1)

+fb1,a(n)

n−1∑
i=0

fa1,s(i+ 1)S(i)

n−1∏
j=i+1

fa1,a(j + 1) + fb1,sS(n)Vref

+fb1,a(n)Vof1

n−2∑
i=0

fa1,o(i+ 1)

n−1∏
j=i+1

fa1,a(j + 1) + fb1,a(n)fa1,o(n)Vof1 + fb1,o(n)Vof1

+fb1,a(n)

n−1∏
i=0

fa1,a(i+ 1)Vo1,a(0)

(5.29)

where Vo1,a(0),Vo1,b(0) are initial states of the first integrator. Comparing equation (5.29) to equa-

tion (3.22), we find that due to fa1,a 6= 0, Vo1,b(n) includes the information of all its intermediate

states.

Now, we continue iterating equation (5.29) to remove all the intermediate terms Vo1,b(i), (i =
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0, 1, ..., n− 1) and we obtain:

Vo1,b(n)=

n∑
m=1

p1(n−m)fb1,i(m)Vi1(m)

+Vof1

n∑
m=1

p1(n−m)fb1,o(m) + Vof1

n∑
m=1

p1(n−m)fb1,a(m)

m−1∑
i=0

fa1,o(i+ 1)

m−1∏
j=i+1

fa1,a(j + 1)

+Vref

n∑
m=1

p1(n−m)fb1,s(m)S(m) + Vref

n−1∑
m=1

fa1,s(m+ 1)S(m)

n∑
i=m

p1(n− i)fb1,a(i)

m−1∏
j=i+1

fa1,a(j + 1)

+p1(n)Vo1,b(0) + Vo1,a(0)

n∑
m=1

p1(n−m)fb1,a(m)

m−1∏
i=0

fa1,a(i+ 1)

(5.30)

where

p1(k) =


1 k = 0

fa1,b(k)fb1,a(k) k = 1

fa1,b(k − 1)fb1,a(1)p1(k − 1) + fa1,b(k − 1)
∑k

i=2 fb1,a(i)p1(k − i)
∏i−2

j=0 fa1,a(k − j)k > 1

(5.31)

Until now, we get the complete expression of Vo1,b. Equation (5.30) shows the contributions of the

inputs, offset, modulator outputs and its initial states (Vo1,a(0) and Vo1,b(0)) to the output of the

first integrator at cycle n. If a conversion includes M clock cycles, the outputs of the first integrator

can be expressed in a matrix form by considering Vo1,a(0) = Vo1,b(0) = 0:

v1
T = STF1i · vi1

T + Vof1 · stf1o
T + STF1s · sT (5.32)

with:

v1 = [V1(1), V1(2), ..., V1(M)] (5.33)

vi1 = x− Vref · s (5.34)

where x = [X,X, · · · , X] with M elements and:

s = [S(1), S(2), · · · , S(M)] (5.35)
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The matrix of impulse responses of vi1, s and Vof1 are respectively:

STF1i =



a1,1 · · · 0 · · · 0 · · · 0

... · · ·
... · · · 0 · · · 0

an,1 · · · an,m · · · an,n· · · 0

... · · ·
... · · ·

... · · ·
...

aM,1 · · · aM,m · · · · · · · · ·aM,M


(5.36)

STF1s =



b1,1 · · · 0 · · · 0 · · · 0

... · · ·
... · · · 0 · · · 0

bn,1 · · · bn,m · · · bn,n· · · 0

... · · ·
... · · ·

... · · ·
...

bM,1 · · · bM,m · · · · · · · · ·bM,M


(5.37)

stf1o = [c1, · · · , cn, · · · , cM ] (5.38)

where the coefficients an,m, bn,m, cn can be calculated according to equation (5.29 by taking

corresponding n and m. Regardless of the second integrator integrating in different phase, the

impulse response is the same. Making an analogy with the first integrator, for the second one,

supposing Vo2,b(0) = Vo2,a(0) = 0, we have:

v2
T = STF2i · vi2

T + STF2s · sT + Vof2 · stf2o
T (5.39)

where v2 = [V2(1), V2(2), ..., V2(M)] and vi2 = [V1(1), V1(2), ..., V1(M)]. Combining equation

(5.32) and equation (5.40), after M cycles, the value of the second integrator can be expressed

as:

V2(M)= STF2i(M) · STF1i · vi1
T + STF2i(M) · STF1s · sT + STF2s(M) · sT

+Vof1 · STF2i(M) · stf1o
T + Vof2 · stf2o(M) (5.40)

Combining equation (5.36), equation (5.38), equation (5.40) and equation (5.34) we obtain:
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X− (STF2i(M) · STF1i + STF2i(M) · STF1s + STF2s(M)) · sT

K2

+
Vof1 · STF2i(M) · stf1o

T + Vof2 · stf2o(M)

K2

=
V2(M)

K2
(5.41)

where

K2 =

M∑
m=1

STF2i(M) · (STF1i(m)T )T (5.42)

In this case, the quantization error becomes Eq3 = V2(M)
K2

. A FIR filter with following transfer

function can be use to reconstruct the modulator input, supposing we know exactly all parameters

of the modulator:

Fac(z)=
(STF2i(M) · STF1i + STF2i(M) · STF1s + STF2s(M)) · zT

K2

+
Vof1 · STF2i(M) · stf1o

T + Vof2 · stf2o(M)

K2

(5.43)

where z = [1, z−1, · · · , z1−M ]. We call this filter as actual filter.

5.5.2 Use of actual filter as the reconstruction filter for the non-ideal mod-

ulator

In the simulation, we use the IΣ∆ modulator model composed of two non-ideal integrators as

illustrated in Chapter 4. Since the correction performances are very sensitive to Cp, this time, we

make Vof1 = Vof2 = 0, Co1 = Co2 = 0 and A = 106 so that we can focus on the impacts of Cp1

and Cp2 on the IΣ∆ modulator. We sweep either the value of Cp1 or Cp2, keeping the other value

to 0. Fig. 5.21 shows ER evolution of modulators with different value of Cp, (i = 1, 2). For each

configuration, the modulator input is reconstructed respectively using theoretical filter and actual

filter. As A is great, knowing Cp1 and Cp2, we can consider that we know exactly the parameters of

defects. According to Fig. 5.21, we found that the performance of the modulator is very sensitive

to the Cp,i. Apart from this, we find that even though using the actual filter, we cannot get a

much better resolution than using the theoretical filter. However, ER can be always improved by

applying correction, here it is the optimal filter correction.
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Figure 5.21: ER in the function of Cp applying different reconstruction filters in the simulation of
the proposed IΣ∆ modulator model

5.5.3 Error analysis

With Cp, the transfer function of the modulator is changed. As illustrated in Chapter 4, we already

knew that there is a degradation if the theoretical filter is employed to reconstruct modulator input

for a non-ideal modulator. However, the principle of sigma-delta modulation is to approximate

modulator input by minimizing the residue. According to equation (3.6), for an ideal modulator,

residue is divided by K1 where K1 = 2
a1a2M(M−1) after the conversion. While with Cp,i, it is only

devised by K2, according to equation (5.41). If Cp,i is large, we have K2 << K1, which means

that the residue is not minimized sufficiently to achieve the desired resolution. It is probable that
V2(M)
K1

+ ε ≈ V2(M)
K2

, where ε is defined in equation (4.3). So even though we know exactly the

transfer function of the modulator (actual filter), we cannot improve significantly ER. For this

reason, correction is mandatory.

5.6 Conclusion

In this chapter, we propose a new circuit-level model of inverter-based SC integrators with parasitic

capacitors which can well explicate the behaviors of the IΣ∆ modulator in post-layout simulation.

Hence the IΣ∆ modulator is no longer a fully black-box to us.

Based on the new integrator model, we can further study the limit of the correction methods

proposed in Chapter 3 as well as the existing method, with different level of defects. According

to the simulation results, we discover that performance of correction methods are sensitive to Cp.

Thus employing inverter-based integrator, it is necessary to pay more attention in design to avoid

Cp. We can also study noise resistance with the help of the proposed model. To maintain ER over

14 bits, in two-step mode, noise level is supposed to be lower than 12 bits. In addition to it, we are
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able to model and simulate the principle defects of the IΣ∆ modulator with a model on MATLAB.

The simulation of the model on MATLAB takes less time than the post-layout simulations.
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Chapter 6

Measurement

The design of the analog part of the Σ∆ modulator had been finished by Pierre Bisiaux at the

beginning of my PhD career. And during the first six months of my PhD, I completed the digital

part. Then with the help of a technician in our group, the layout of the Σ∆ modulator had been

finished and we named the final prototype chip as Pieretta. It was sent to fabrication at the end of

the first year of my PhD and we received it during the second year. In this situation, I was able to

complete measurement and confront the theory and the real chip during the third year.

The first measurements show that our circuit is interfered by noise at extremely high level, for

both analog and digital signals. On one hand, the noise in digital signals disturbed sampling as

the sampling at each clock cycle was enabled by a pulses while the undesired peaks in this signal

were mistaken for the enable signals. On the other hand, the noise degraded the resolution of the

Σ∆ modulator. For this reason, the Σ∆ modulators only achieved 8-bit resolution. In this case, it

was impossible to study the correction method performance since the correction methods serve

to eliminate finer errors.

In order to eliminate the impact of the noise on sampling, we developed an asynchronous

sampling method whose details will be presented later. And to eliminate the impact of the noise

on modulator resolution, we performed several conversions for the same input value and took the

average. In this way, we rescued the circuit as much as possible.

6.1 Package of Pieretta

Pieretta chip has been fabricated with the technology of XFAB 180 nm. As shown in Fig. 6.2,

five IΣ∆ modulators, whose layout is shown in Fig. 6.1, are integrated in the core of Pieretta. In

Fig. 6.1, the wires for the digital feedback are placed far away from analog circuit so that there is
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Figure 6.1: Layout of the IΣ∆ modulator
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Figure 6.2: Layout of the core of Pieretta

less coupling interference. To be noticed that modulator 1 to modulator 4 locate closely side by

side in order to simulate column parallel ADCs. While modulator 0 which is placed separately to

others is special one. The pins of the input and the residue of modulator 0 are reserved so that

we can observe them. It may come in handy in test. All these modulators share a state machine
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Table 6.1: Descriptions of conversion modes with different configurations

Pin Number Name Descriptions

25 BS0 Output of modulator 0

2− 5 BS1 Outputs of modulator 1-4

32 residue Residue of modulator 0

33 vin modulator Output of S/H of modulator 0

34− 38 vin pixel0− 4 Inputs of modulator 0-4

23 step1 Indication of the first step

33 Clock out Indication of the moment to sample modulator output

8 start Enable conversion

9 rst sys Global Reset signal

10 mode infi Infinite mode

11 mode prog Programmable mode

12, 13 NB step0− 1 Numbers of steps

14, 15 NB samp0− 1 Length of sampling period

16− 22 OSR0− 6 Numbers of clock cycles in each step

27 IBP TOP Bias current of PMOS

28 IBN TOP Bias current of NMOS

29 IBP TH Bias current of PMOS

30 IBN TH Bias current of NMOS

39 GNDA Analog ground

41 V DDA Digital VDD

44 V REFP Reference Voltage of positive feedback

45 V REFN Reference Voltage of negative feedback

46 V CM Common mode Voltage

47 V DDR VDD

48 V DD! VDD

1 GND! Ground

and the non-overlap block. The packaged chip has a die area of 1.5mm x 1.5mm. The differential

output driver is placed near the pads, and the power is supported from the dedicated supply

and ground lines. The spare chip area excluding the core of Pieretta is filled with decoupling

capacitors for density equilibrium. There are total 48 I/O pins using DIP (dual in-line package).

The pin description is summarized in Table 6.1.

6.2 Equipment of Test-bench

Global schematic of the test-bench is shown in Fig. 6.3. The test-bench includes a PC, a signal

generator, a source meter, an Arduino, a logical analyzer with an oscilloscope and a PCB for
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Figure 6.3: Schematic of test-bench

Pieretta. The signal generator generates an external clock signal to Pieretta while the source

meter generates the modulator inputs. The PC sends trigger signals to Arduino and controls the

values of the source meter. It also handles data post-processing. Once Arduino receives the

trigger signal from PC, it sends a signal to the logical analyzer to enable sampling. During the

conversions, the logical analyzer samples the modulator outputs and send them back to the PC for

post-processing. The waveform of the signals can be observed on the oscilloscope if necessary.

In order to reduce interference of noise, the PCB for Pieretta is designed to be as simple

as possible. The modulator parameters are configured by changing the states of switches. To

be noticed that, we use batteries as power supply instead of an industrial voltage source me-

ter because we find that the voltage source also brings about distribution as it is powered with

alternating current.

6.3 Asynchronous Sampling

We intended to sample the modulator output bits in a synchronous way with the help of the signal

clk out generated by the modulator. In this way, there is no need of Arduino which sends trigger

signal to the logical analyzer. For each bit, the logical analyzer samples at the rising edge of

clk out as the modulator output is well established. With the help of step1, each conversion can

be recognized easily. The timing diagram is shown in Fig. 6.4. However, these signals are polluted

by cross-talking between the digital signals so there are so many undesired glitches in clk out that

the logical analyzer treats the glitches as the rising edge of clk out mistakenly. As a results, the
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Figure 6.4: Timing diagram of clk out and the modulator output

logical analyzer samples at wrong moment and the modulator output bits obtained are incorrect.

To solve this problem, we decide to sample in an asynchronous way. That means the modu-

lator output bits as well as clk out are sampled by the logical analyzer which is commanded by

a intern signal clk. The frequency of clk is at least ten times greater then that of clk out. Thus

clk out and S are converted to a series of ′1′ or ′0′, we define these signal respectively as clk out′

and S′. The waveform the signals for sampling are shown in Fig. 6.5. Then we need to clean

clk out′ by inverting the bits that are different to both its previous and later bits. Now we smooth

out the glitches in clk out′ and we can re-synchronize the modulator output bits by detecting the

indexes of rising edges in clk out’.

In fact, the glitches not only exist in clk out but also in the modulator outputs. Therefore, we

create a voting mechanism to decide the value of S. The modulator output bits at rising edges of

clk out′ and its neighboring bits are voting members possessing the same weights. If the average

is greater than 0.5, we make S equal to 1, else S equal to 0. Fig. 6.6 shows the re-synchronization

and the voting mechanism.

6.4 Measurement Results

6.4.1 Interference of Noise and Primary Measurement Results

We observe strong interference of noise in the circuit which is mainly reflected in three aspects.

First, there are many glitches in the output digital signals. This noise in digital signals not only
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Figure 6.5: Timing diagram of signals in asynchronous sampling mode
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Figure 6.6: Generation of clk out′ and the voting mechanism for deciding the values of BS
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Figure 6.8: Comparison between the modulator outputs and the modulator inputs

has an impact on sampling as illustrated in Section 6.3, but also interferes with internal analog

signals.

Second, the output bit sequences of each modulator are different when their inputs are the

same. As shown in Fig. 6.7, even from the second bit, the outputs start to be different. This

phenomenon usually happens to all modulators.

Third, even if constant inputs are applied, in each time, the outputs of a modulator vary. Fig. 6.8

shows comparison between certain output values of modulator m0 which are reconstructed with

the correction of gain and offset and the inputs. Conversions are executed in two-step mode with

M1 = 48,M2 = 24 and the frequency of clock is 20 MHz.

Due to the noise, ER is largely degraded according to a test with the same conditions. A

complete test is done where the input varies from 0.60 to 1.20 with a step of 0.002 V. Conversions

are performed over two steps with M = 72,M1 = 48. We obtain ER = 8.5 after the optimal filter

in plan B. The form of conversion errors is shown in Fig. 6.9. The degradation is caused by noise.
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Figure 6.9: Original conversion errors of the real circuits

6.4.2 Filtered Measurement Results

As noise level is much higher than the target LSB error level, to study the correction performances

in the real circuit, we have to filter out noise. 2048 samples are taken for the same input value.

We first perform a pre-possessing to eliminate the extreme samples. We reconstruct the modu-

lator input with the optimal filter in plan B then we remove the samples whose absolute value of

conversion error is larger than 0.02 V.

Then we calculate the average error of the rest of valid samples for each input value. As shown

in Fig. 6.10 the filter is positioned right after the modulator. Therefore, the modulator outputs to

be corrected is filtered. In this way, we can verify performance of correction methods eliminating

the effect of noise.

Fig. 6.11 (a) shows the form of conversion errors with the optimal filter in plan A. With the

optimal filter, resolution is still far away from the target. After canceling most part of noise in the

modulator output, ER increase significantly. Fig. 6.11 (b) shows the form of conversion errors

corrected with the pattern-correcting filter of 3-bit package for the first 3 MSBs. With the pattern-

correcting filter, ER can be further improved. While Fig. 6.11 (c) shows that with the simplified

filter for the first step. The ER in (c) has a little degradation comparing to (a). Fig. 6.11 (d) is for

the hybrid filter correction of 3-bit package for the first 3 MSBs. It is close to the ER in (a), however

it requires less coefficients.

Even though there is a degradation in all ERs in the real circuit comparing to those in post-

layout simulation, the proposed correction methods are proven to be efficacious. The degradation

is maybe still caused by residual noise. Or there is another possibility that the parasitic capacitors

Cp circuit are much larger than those in the post-layout simulation.

Fig. 6.12 shows the results of different correction methods and simulation of ideal model, post-

layout simulation and in the measurement after filtering in two-step mode. Even though compared

130



Pieretta Filter Correction
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Figure 6.10: Filter before correction
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Figure 6.11: Conversion errors after correction, choice 1: (a) optimal filter in plan A; (b) pattern-
correcting filter in plan A, m = 3; (c) simplified filter; (d) hybrid filter, m = 3, mbit = 3;

to post-layout simulation, there is shift in ER in measurement for all scenes, the tendency is

almost similar:

a. The pattern-correcting filter can further improve ER than the optimal filter.

b. The simplified filter can offer ER close to that applying the optimal filter, however the

simplified filter requires less coefficients. It is its advantage compared to the optimal filter.

c. Compared to the simplified filter, the hybrid filter can still improve resolution by simply

correcting the first three MSB. However, the improvement is larger in measurement.

6.5 Conclusion

The real circuit suffered from the noise of abnormal high power exceptionally. The noise caused

problem in both sampling and post-processing in the test. On the one hand, In order to obtain

correct samples, we developed an asynchronous sampling method and applied it to the logic

analyzer. In this way, we were able to eliminate the interference of noise in the signal controlling

sampling. On the other hand, in the post-processing, due to the powerful noise, the effect of

corrections is covered by noise. For verifying the performance of correction methods, we thought

of filtering out these noises in post-processing on Matlab. Measurement results shows that with

the filtered modulator outputs, regardless of a global degradation in ERs, the optimal filter and

all proposed correction methods can indeed improve resolution in real circuit. Despite of a global
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Figure 6.12: Tendency of ER in two-step simulations.

degradation in ER for all correction methods, the tendency of correction results in the real circuit

is coherent to the tendency in the schematic simulation and the post-layout simulation as well.
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Chapter 7

Conclusion

This research presents the attempt to develop a calibration technique for our IΣ∆ ADC using

inverter-based SC integrators, so that it achieves the target resolution. Since the only information

accessible form the IΣ∆ ADC is the modulator output bit steam, we first aim at finding an algorithm

to correct the modulator output based on output bit steam. In this step, we don’t think about

parameter identification.

The classical correction IΣ∆ ADC is the optimal filter correction which corrects each bit indi-

vidually. It is a linear function of the modulator output bits. However, the conversion error isn’t

completely a linear function of the modulator output bits. Considering the ADC as a black-box, we

propose the pattern-correcting filter correction which detects the combination of every three con-

secutive modulator output bits. Since it takes into account the sequence of bits, we can consider

that it is a non-linear correction method. Even though the pattern-correcting filter can improve

equivalent resolution largely, it requires much more coefficients that increases complexity. To

make it implementable, we simplify the optimal filter by approximating its impulse response by a

IIF in order to reduce the number of coefficients. Then we combine the pattern-correcting filter to

the simplified filter to enhance equivalent resolution. We call this correction method as hybrid filter

correction. The pattern-correcting filter only corrects the first three MSBs. Thus, it doesn’t need

thousands of coefficients. With the hybrid filter correction, the ADC finally achieve 14 bits with an

acceptable number of coefficients.

Observing certain abnormal intern signals of the IΣ∆ modulator in post-layout simulation, we

speculate that there are some exceptional parasitic capacitors. One is a capacitor crossing the

input and the output of inverter-based amplifier. This capacitor Cp brings memory error to the

output of inverter-based integrator. Another is a capacitor between the amplifier input and the

modulator output. It leads to inter-modulation to integrators. Based on these parasitic capacitors,
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a new model of inverter-based SC integrator is proposed. This model can well explicate the

abnormal behaviors of those intern signals in our IΣ∆ modulator. With these parasitic capacitors,

the degradation of our modulator becomes reasonable. Although we cannot correct the errors

brought about by the parasitic capacitors even though we know its values, this error model helps

us to study the limit of corrections methods and their noise resistance. It saves time to simulate

with the error model instead of doing Monte Carlo simulations in post-layout level.

The measurement results show an exceptional strong noise interference in the circuit. The

level of noise is so great that it covers the improvement of corrections. In order to verify the effect

of correction methods, the modulator outputs are filtered by taking averages before corrections.

In this way, the effect of corrections is revealed. In spite of a global degradation in equivalent

resolution for all correction methods, we obtain the same tendency. It indicates that the proposed

correction methods are efficacious.
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Appendix A

Study of Convergence in Parameter

Estimation

As presented, calibration includes two aspects: correction algorithm and parameter identification.

We have defined several digital reconstruction filters and their coefficients have been estimated

by researching least-mean-square of conversion errors based on the recorded data set of post-

layout simulation. Since it is a off-line calibration, parameter identification should be performed

before normal conversions. And once the parameters (coefficients of the digital reconstruction

filters) are estimated, they cannot change during the normal conversions. Therefore, The stability

of the parameter identification is very important. However, As we all know, the values of estimated

coefficients may vary if we use different data set for the estimation. The objective of this research

is to study the convergence of estimated coefficients and to its impact to the correction results.

We applied a set of inputs which distribute uniformly between 0.8Vref with the step of certain

value as the data set in coefficient estimation. By decreasing the value of the step of inputs, we

can increase the size of the data set applied for coefficient estimation. Then we applied another

set of 212 inputs distributing randomly between 0.8Vref for testing. For collecting a huge data set,

we choose the two-step Σ∆ ADC model proposed in Chapter 5 with M1 = 48,M2 = 24 instead of

post-layout simulation in order to save time. At the first time, simulations without noise have been

done on Matlab. We increased the number of samples used for coefficients estimation step by

step and recorded the estimated values of coefficients in each time. We observed the differences

of the values estimated of the same coefficient in adjacent simulation, if the error is stable within

an acceptable range, we can think this coefficient value converges. For seeing the convergence

in the environment of noise, the simulations of the same model with noise whose amplitude is
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10−4V were done as illustrated in Chapter 5, it is the acceptable maximum noise level for 14 bits

in two-step mode.

Fig. A.1 shows the differences of estimated values of the coefficients with the increasing num-

bers of samples used for coefficient estimation, in the correction method correcting gain and

offset. The red lines indicate the LSB error to code this coefficient. As illustrated in Chapter 4,

15 bits are enough to code the coefficients of the filter correcting gain and offset. We find that

whether there is noise or not, the estimated values of coefficients converge to certain values with

the increasing size data. Besides, ER is around 9.8 bits.
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Figure A.1: Differences of the values estimated of the coefficients correcting gain and offset in the
function of the numbers of samples used for coefficient estimation.

Fig. A.2 show the differences of the value estimated of the coefficients for offset and D2 in

the optimal filter of plan A. For all the coefficients of the optimal filter, 18 bits are required to code

the coefficients. Similar to the situation in the previous correction method, the estimated values

of coefficients converge too to certain values at the end. Fig. A.2 show the differences of the

coefficients values estimated of the first three MSBs of the modulator outputs BS. They also

converge. Regardless of the numbers of samples, ER finally stabilized at 14 bits.

For the simplified filter, there are two types of coefficients: the coefficients in FIR,Dgo,2 and

Osi, and those for the poles and zeros in the second-order IIR Fsi. To code the former, 18 bits

are needed and as shown in Fig. A.4, Dgo,2 and Osi converge if the number of samples used for

estimating coefficients is large enough. To code the coefficients (p0 to p2) for the zeros in Fsi,

at least 16 bits are needed while for those of poles (q0 to q2), 18 bits are necessary. As shown

in Fig. A.5, most of coefficients in Fsi converge at the end, except p1 which almost converges.

For this correction methods, ER tends to 13.1 bits. On the basis of the simplified filter, the hybrid

filter needs additional 8 coefficients to correct the pattern of the first three MSBs of the modulator

136



6 8 10 12 14 16 18 20
-20

-10

0

10-6

log
2
(NBs)

Coefficient of offset in Fop

Without noise With noise

6 8 10 12 14 16 18 20
-5

0

5
10-5

log
2
(NBs)

Coefficient of D2 in Fop

Without noise With noise

Figure A.2: Differences of the values estimated ofthe coefficients correcting offset and D2 in the
optimal in the function of the numbers of samples used for coefficient estimation.
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Figure A.3: Differences of the values estimated of the coefficients of the first three MSBs in the
optimal in the function of the numbers of samples used for coefficient estimation.

outputs. According to the simulations, only the coefficients for 110 and 111 are stable, in fact, their

values are 0. While the differences of coefficients for rest of patterns vary between three values:

0 and the values near 1. Fig. A.6 shows the differences of the coefficients of pattern 000 and 001.

Although the curves of two patterns coincide, if we look at directly the values of differences, we

will find that they are not equal. We didn’t plot the coefficients of other patterns because the all

curves coincident. It means that the values of these coefficients in fact oscillate between certain

value. Even though the coefficients don’t converge, ER can be always keep around 14 bits. In

summary, for all correction filters, the coefficients correcting offset and D2 are easy to converge. If

a coefficient converges when we increase the number of samples applied for estimation, it will still

converge regardless of noise. However, coefficients do not necessarily need to converge. There
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Figure A.4: Differences of the values estimated of the coefficients correcting offset and D2 in the
simplified filter in the function of the numbers of samples used for coefficient estimation.
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Figure A.5: Differences of the values estimated of the coefficients in IIR filter in the simplified filter
in the function of the numbers of samples used for coefficient estimation.

are several coefficient combinations working well. However, for each combination, the estimation

accuracy of the coefficients values is important. Combining with the illustration in Chapter 4, the

key to keep correction performance is to use enough bits to code each coefficients.
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and evaluation in cmos image sensor technology. In XXIV Conference on Design of Circuits

and Integrated Systems (2009), p 1-6, 2009.
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Résumé: Dans le cadre des imageurs Haute
Définition, une tendance est d’intégrer un banc
de convertisseurs analogiques-numériques joux-
tant la matrice de pixel. La contrepartie est une
contrainte sur le facteur de forme du convertis-
seur. Un convertisseur de type Sigma-Delta in-
crémental à base d’inverseur a été conçu lors
de travaux précédents en respectant ces con-
traintes. Mais le placement-routage du circuit
a abouti à une dégradation des performances
à savoir une résolution de 9 bits au lieu des
14 bits escomptés. Une méthode de calibration
s’imposait donc. Cette thèse propose plusieurs
méthodes de correction implémentées par des fil-
tres numériques appliqués sur les bits de sortie

et sur des combinaisons des bits de sorties pour
tenir compte de phénomènes non-linéaires ob-
servés en simulation « post-placement-routage
». Les méthodes ont été validées à partir des ré-
sultats de simulation « post-placement-routage
» et permettent d’atteindre 14 bits de résolution.
Pour aller plus loin, la thèse propose également
un modèle des défauts du circuit au niveau des
intégrateurs qui sont la partie la plus critique
du circuit. Ce modèle, qui met en œuvre des
capacités parasites, rejoint les résultats de simu-
lation « post-placement-routage » avec une très
bonne précision ce qui permet d’envisager des
voies d’amélioration pour une prochaine concep-
tion.
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Abstract: In the context of High Definition
imagers, a trend is to integrate a bank of analog-
to-digital converters adjacent to the pixel ma-
trix. The disadvantage is a constraint on the
form factor of the converter. An incremental
inverter-based Sigma-Delta converter was de-
signed during previous work while respecting
these constraints. But the post-layout of the
circuit resulted in a performance degradation
namely a resolution of 9 bits instead of the ex-
pected 14 bits. A calibration method was there-
fore necessary.

This thesis proposes several correction meth-

ods implemented by digital filters applied on the
output bits and on combinations of the output
bits to take account of non-linear phenomena
observed in post-layout simulation. The meth-
ods have been validated from the post-layout
simulation results and achieve 14-bit resolution.
To go further, the thesis also proposes a model of
the circuit defects at the level of the integrators
which are the most critical part of the circuit.
This model, which implements parasitic capac-
itances, joins the post-layout simulation results
with a very high precision, which makes it possi-
ble to consider ways of improvement for a future
design.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France


	Introduction
	From CMOS Image Sensor to Column-parallel ADC 
	Challenge of ADC in the Earth Observation Application
	Pieretta: Chip of New Proposed Two-step I ADCs
	 Motivation and Problematic
	Thesis Organization

	State of the art
	Incremental  ADC
	Linearization Techniques for  ADCs
	Researches on I ADC Reconstruction Filter
	Conclusion

	Two-Step I ADC and Circuit Pieretta
	IADC Modeling
	Second-Order I Modulator
	Two-step conversion
	Digital Reconstruction Filter

	Design of I Modulator
	Analog Circuit Part
	Digital Circuit

	Post-layout simulation results
	Equivalent resolution
	Parallel Simulations and Choice of the Modulator Input Values
	Post-layout Simulation of One-Step Conversion
	Post-layout Simulation of Two-Step Conversion

	Conclusion

	I ADC correction technique
	Global error model
	Correction methodology
	State-of-the-art correction methods
	Correction of gain and offset
	Optimal filter
	Correction results of existing methods

	New proposed correction methods
	Pattern-correcting filter
	Correction results of pattern-correcting filter techniques applied to post-layout simulation

	Corrections results for multi-step conversions
	Correction method simplification
	Simplified Filter
	Hybrid filter
	Simplified hybrid correction

	Coefficient quantization
	Resolution optimization for two-step conversion
	Conclusion

	Circuit defects modeling 
	Classical circuit non-idealities
	Non-linear amplifier gain
	Capacitor mismatch
	Simulation of the modulator model with classic defects

	New inverter-based SC integrator model with parasitic capacitors 
	Abnormal Variation of Certain Intern Signals in Integrators
	Discovery of parasitic capacitors 
	Circuit-level models of integrators

	Validation of the new proposed inverter-based SC integrator models
	Parameters identification for the new proposed inverter-based SC integrator models
	Comparison of the new proposed inverter-based SC integrator models to the ideal integrator model

	Validation of the  modulator model composed of the new proposed inverter-based SC integrator models
	Parameters identification of other imperfections in  modulator
	Comparison of proposed modulator model and modulator in post-layout simulation
	Study of the parasitic capacitor impacts on correction methods 
	Study of the noise resistance of correction methods 

	Further study on impact of parasitic capacitor to an inverter-based I modulator
	Deduction of transfer function of the 2nd I modulator 
	Use of actual filter as the reconstruction filter for the non-ideal modulator
	Error analysis

	Conclusion

	Measurement
	Package of Pieretta
	Equipment of Test-bench 
	Asynchronous Sampling
	Measurement Results
	Interference of Noise and Primary Measurement Results
	Filtered Measurement Results

	Conclusion

	Conclusion
	Study of Convergence in Parameter Estimation

