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Titre : Etude des mécanismes de régulation synaptique de la balance 
sumoylation/désumoylation 

 
Résumé  
 
La SUMOylation est une modification post-traductionnelle essentielle pour toutes les cellules 
eucaryotes. C’est un processus enzymatique qui permet la liaison covalente du polypeptide 
SUMO sur des résidus de lysine de protéines cibles. Les SUMO protéases (SENP) 
déconjuguent SUMO des protéines SUMOylées et sont donc critiques pour maintenir 
l’équilibre physiologique entre la forme modifiée et non modifiée d’un substrat. Les synapses 
se composent de deux compartiments : l’élément présynaptique ou terminaison axonale et 
le compartiment postsynaptique également appelé épine dendritique. Les synapses sont des 
structures très riches en protéines qui sont centrales pour la transmission et la plasticité 
synaptique. Il existe de nombreux éléments impliquant la SUMOylation au niveau des 
synapses où elle régule la fonction de multiples protéines. La dérégulation de la balance 
SUMOylation / déSUMOylation a notamment été mise en évidence dans plusieurs 
pathologies cérébrales présentant un dysfonctionnement de la fonction synaptique. Pour 
envisager le développement de nouvelles stratégies thérapeutiques de ces maladies, il est 
indispensable de mieux comprendre les mécanismes moléculaires régissant cet équilibre. 
 
Mon laboratoire de thèse a préalablement montré que l'activation des récepteurs 
métabotropiques du glutamate (mGluR) augmente de façon transitoire le temps de 
résidence post-synaptique de l'enzyme de conjugaison de la SUMOylation Ubc9. Cette 
rétention transitoire est dépendante de la cascade d’activation PLC/PKC et qui conduit à 
l’augmentation des niveaux de sumoylation synaptique et à la régulation de la 
communication neuronale. Cependant, aucune donnée n’est aujourd’hui disponible dans la 
littérature concernant la régulation de la désumoylation synaptique. Au cours de ma thèse, 
j'ai combiné l’utilisation de l'imagerie en temps réel sur cellules vivantes avec des approches 
de biochimie et d’agents pharmacologiques spécifiques pour identifier les mécanismes de 
régulation du transport de la déSUMOylase SENP1. J'ai ainsi démontré que l'activation 
neuronale augmente les niveaux synaptiques de SENP1. Cette augmentation synaptique de 
SENP1 résulte de la modification de la vitesse de diffusion de l’enzyme entre les dendrites 
et les synapses d’une part, et d’autre part, de l’augmentation drastique du temps de 
rétention synaptique de l’enzyme. Je rapporte également que ce mécanisme de régulation 
dynamique de SENP1 implique l'activation directe des récepteurs mGlu du groupe I. 
   
Pour résumé, mon travail révèle que l'équilibre SUMOylation / déSUMOylation repose sur 
une régulation spatio-temporelle distincte des deux enzymes Ubc9 et SENP1. De plus, je 
suggère la participation d'autres acteurs de la signalisation (comprenant la PKC) dans la 
régulation du transport synapto-dendritique de SENP1. Mon travail met ainsi en lumière de 
nouveaux mécanismes de régulation du processus de SUMOylation synaptique qui sont 
importants pour la communication cérébrale. 
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Title: Investigating the molecular pathways driving the sumoylation/desumoylation 
balance in rat hippocampal synapses 

 
 
Abstract 
 
Sumoylation is a vital posttranslational protein modification that takes place in all eukaryotic 
cells. Sumoylation occurs as an enzymatic process that conjugates SUMO peptides to target 
proteins. SUMO proteases (SENP) deconjugate SUMO from modified proteins and thus are 
critical for maintaining the balanced levels of SUMOylated and un-SUMOylated substrates 
required for normal physiology. Neuronal synapses consist of two compartments: 
presynaptic - the axon terminals and postsynaptic - dendritic spines. Synapses are protein-
rich structures that are essential to synaptic transmission and plasticity. There is a strong 
evidence that sumoylation occurs in synapses and regulates the function of synaptic 
proteins. Indeed, distortion of the SUMO balance has been linked to several pathologies with 
dysfunctional synaptic function. Gaining a deeper understanding into the molecular 
mechanisms regulating the SUMO balance is a prerequisite to envisaging the development 
of novel therapeutic strategies. 
 
My PhD host laboratory has previously shown that the activation of mGlu5 receptors 
transiently increases the postsynaptic residency time of the SUMO-conjugating enzyme 
Ubc9 in a PLC/PKC-dependent manner increasing synaptic sumoylation levels and 
regulating neuronal communication. However, to date there have been no reports on the 
regulation of desumoylation at synapses. During my PhD thesis, I used a combination of 
real-time live-cell confocal imaging, biochemistry and pharmacological approaches to identify 
SENP1 (SENtrin specific Protease 1) regulatory mechanisms at synapses. I provided 
evidence that synaptic activation increases SENP1 protein levels at synapses at a time-
scale that is distinct from the Ubc9 enzyme. I showed that the increase in synaptic SENP1 
upon synaptic activation is a result of two processes: Although (a) fewer SENP1 proteins 
enter into spines at low diffusion speed (b) a significant proportion of SENP1 becomes 
immobile and is retained in spines. I demonstrate that the regulatory mechanism of this 
SENP1 dynamics involves direct activation of Group I mGlu receptors.  
  
Altogether, I propose that the SUMO balance is achieved via a distinct spatio-temporal 
regulation of Ubc9 and SENP1 enzymes at synapses. Moreover, I suggest a participation of 
additional signalling players (incl. PKC) in SENP1 regulation at synapses. These findings 
reveal novel mechanisms and add to the understanding of the SUMO balance in neuronal 
communication. 
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SUMMARY 
 

Sumoylation is a vital posttranslational protein modification that takes place in all eukaryotic 

cells. Sumoylation occurs as an enzymatic process that conjugates SUMO peptides to target 

proteins. SUMO proteases (SENP) deconjugate SUMO from modified proteins and thus are critical 

for maintaining the balanced levels of SUMOylated and un-SUMOylated substrates required for 

normal physiology. Neuronal synapses consist of two compartments: presynaptic - the axon 

terminals and postsynaptic - dendritic spines. Synapses are protein-rich structures that are 

essential to synaptic transmission and plasticity. There is a strong evidence that sumoylation 

occurs in synapses and regulates the function of synaptic proteins. Indeed, distortion of the 

SUMO balance has been linked to several pathologies with dysfunctional synaptic function. 

Gaining a deeper understanding into the molecular mechanisms regulating the SUMO balance is 

a prerequisite to envisaging the development of novel therapeutic strategies. 

My PhD host laboratory has previously shown that the activation of mGlu5 receptors 

transiently increases the postsynaptic residency time of the SUMO-conjugating enzyme Ubc9 in 

a PLC/PKC-dependent manner increasing synaptic sumoylation levels and regulating neuronal 

communication. However, to date there have been no reports on the regulation of 

desumoylation at synapses. During my PhD thesis, I used a combination of real-time live-cell 

confocal imaging, biochemistry and pharmacological approaches to identify SENP1 (SENtrin 

specific Protease 1) regulatory mechanisms at synapses. I provided evidence that synaptic 

activation increases SENP1 protein levels at synapses at a time-scale that is distinct from the 

Ubc9 enzyme. I showed that the increase in synaptic SENP1 upon synaptic activation is a result 

of two processes: Although (a) fewer SENP1 proteins enter into spines at low diffusion speed 

(b) a significant proportion of SENP1 becomes immobile and is retained in spines. I demonstrate 

that the regulatory mechanism of this SENP1 dynamics involves direct activation of Group I mGlu 

receptors.   

Altogether, I propose that the SUMO balance is achieved via a distinct spatio-temporal 

regulation of Ubc9 and SENP1 enzymes at synapses. Moreover, I suggest a participation of 

additional signalling players (incl. PKC and CaMKII) in SENP1 regulation at synapses. These 



findings reveal novel mechanisms and add to the understanding of the SUMO balance in neuronal 

communication. 
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1. Introduction 

This introduction is aimed to provide an overview of the anatomical and cellular features 

of the hippocampal formation. I further discuss the structure of a typical excitatory synapse, 

which is followed by a description of the mechanisms of glutamatergic transmission. In the last 

part, I focus on posttranslational modifications that play important roles at the synapse. 

Sumoylation is discussed in detail as it is the topic of my thesis. I believe that providing this 

information facilitates understanding into the thesis subject which concerns the investigation 

into regulatory mechanisms of postsynaptic desumoylation. I have to admit that the process of 

acquiring this background knowledge including a vast literature review and the write-up process 

was a very useful exercise.  

 

1.1 The hippocampus 

It is not a coincidence that the hippocampus is the most studied part of the brain serving as 

a model system for neurobiological studies. Its intrinsic structure has draught the attention of 

anatomists since ancient Egypt (~300 B.C.). Alexandrian scholars observed on the horizontal 

midsection of the hippocampus a curved structure resembling horns of the ram deity Ammon 

(Fig. 1A), and therefore named it cornu ammonis in Latin. This terminology survived until now as 

the acronym (CA) for hippocampal subregions. The name ͚hippocampus’ was first used by the 

Figure 1. Historical reminder of hippocampal terminology. A. A terracotta cast of ram-horned Jupiter Ammon, 1st 

century A.D. (Museo di Scultura Antica Giovanni Barracco, Rome, http://en.museobarracco.it/). B. Comparison of 

the dissected human hippocampus (left) with sea horse Hippocampus leria (right). Adapted from The Hippocampus 

Book (Andersen et al., 2007). 
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Bolognese anatomist Guilio Cesare Aranzi (circa 1564) undeniably because of its similarity with 

the sea horse (Fig. 1B), genus Hippocampus, where hippo means in ancient Greek ͚horse’ and 

kampos ͚sea monster’. However, it was not until the late 19th century that the Spanish physician 

Dr Santiago Ramón y Cajal (Fig. 2A) mostly with the use of the Golgi method (Fig. 3) depicted the 

cellular organisation of many tissues structures including the structure of nerve cells and 

neuromuscular junction. These findings were published in 1893 as Manual de Histología Normal 

y Técnica Micrográfica. Later, Ramón y Cajal set himself for a thorough study of the nervous 

system and published his observations along with a more detailed cellular organisation of the 

hippocampus (Fig. 2B) in Histologie du système nerveux de l'homme & des vertébrés in 1909. 

Simultaneously, Karoly Schaffer, a Hungarian neurologist, was interested in hippocampal axonal 

fibres and their length, and found that they have short as well as long branches connecting with 

other areas of the cortex. He discovered the so-called ͚collateral fiďer sǇsteŵ’ that connects the 

CA3 to the CA1 region of the hippocampus, known today as Schaffer collaterals. Another 

pioneering neuroanatomist Rafael Lorente de Nó (1934) bolstered the work of Ramón y Cajal by 

adding to the study of the many hippocampal cell types and their arborisations, and distinguished 

the hippocampal subregions CA1, CA2 and CA3.  

Until 1930s the hippocampus was thought to be part of the olfactory system, perhaps due to 

its size in macrosmatic animals (e.g. rodents and insectivores) as it is considerably large in the 

Figure 2. Discovery of hippocampal structure. A. Santiago Ramón Ǉ Cajal, the ͚Father of ŵodern Neuroscience’. B. 

Cellular organisation of the rat hippocampus by S. Ramón y Cajal. Both images were taken and modified from 

(Swanson et al., 2017). 
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context of the whole brain. This view was challenged throughout the years since the 

hippocampus was not found to be directly connected with the olfactory bulb (a review by (Brodal, 

1947)). Another important influencer in the field of neuroanatomy was James Papez who 

proposed the existence of a circuit (known as Papez circuit, 1937) that interconnected cortical 

and subcortical structures including the hippocampus and supposedly mediated emotions. The 

most prominent functional importance of the hippocampus was uncovered about 60 years ago 

when patient H. M. suffered from amnesia due to surgical excision of the medial temporal lobe 

for epilepsy relief performed by Dr Scoville (1957). Since then, the hippocampus has been 

extensively studied for its involvement in memory. Early experiments on hippocampectomized 

primates and rodents, however, failed to bring a convincing proof of memory deficits. 

Nonetheless, some of the observations included defects in exploration, habituation to novelty 

and navigation, which prompted the idea of existence of more than one type of memory. An 

important milestone pro-hippocampus-mediated memory was made with the introduction of a 

more appropriate behavioural test – the object recognition task – by David Gaffan (1974) and its 

optimization for use in the monkey by Mortimer Mishkin and Jean Delacour (1975). Nowadays, 

the hippocampus is accepted to be part of the ͚liŵďic sǇsteŵ’, a terŵ that ǁas first used ďǇ the 

French neurologist Pierre Paul Broca (1878), which mediates not only memory formation but also 

emotions, motivation, learning, spatial navigation and olfaction. 

Figure 3: Section of the rabbit hippocampus stained with the original Golgi method (1886). Source: The 

Hippocampus Book (Andersen et al., 2007). 
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 Neuroanatomy of the hippocampal formation  

The hippocampal formation (Fig. 4 and 6) is widely accepted to refer to several closely related 

regions: the dentate gyrus, hippocampus proper (CA1, CA2 and CA3), subicular complex and 

entorhinal cortex. Although the volume of the human hippocampus is about 100 times that of 

the rat and 10 times that of the monkey, the basic hippocampal architecture, particular cellular 

organisation and ͚sea horse’ shape is present throughout all mammals. The hippocampus is 

buried in the medial temporal lobe of the human brain, whereas in rat it is localised rather rosto-

caudally. An intriguing feature of the hippocampal formation is that it is largely nonreciprocal, 

with unidirectional projections. This is different from what we see in neocortical areas where it 

is normal practice that region A projects into region B and region B projects back to region A, 

showing a large degree of reciprocity. Much of the neocortical input to the hippocampal 

formation is received through the entorhinal cortex. As depicted in Figure 4, the entorhinal cortex 

Figure 4. The hippocampal formation. A. Neurons in layer II of the entorhinal cortex (EC) project to the dentate gyrus 

and the CA3 region via the perforant pathway. Neurons in layer III of EC project to CA1 and the subiculum (Sub) via 

the perforant and alvear pathways. The granule cells of the dentate gyrus (DG) project to CA3 via mossy fibre 

projections. CA3 pyramidal neurons project to CA1 via Schaffer collaterals. CA1 pyramidal neurons project to Sub. 

Both CA1 and Sub neurons project back to the deep layers of EC. B. Projections along the transverse axis of the 

hippocampal formation. 
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sends axons to the dentate gyrus, however, the dentate gyrus does not project to the entorhinal 

cortex. Granule cell axons of the dentate gyrus called mossy fibres project towards the pyramidal 

cells of the CA3 region and again this pathway is unidirectional; so are the projections from CA3 

to CA1 called Schaffer collaterals, and CA1 to the subiculum.  

It should be emphasized that no brain region functions in isolation. The regions of the 

hippocampal formation are innervated by and send projections to other brain nuclei, which is 

vital for their function. There are three major fibre bundles providing input innervation to the 

hippocampal formation. The first is the angular bundle containing fibres that originate in the 

entorhinal cortex and innervate the dentate gyrus, hippocampus and subiculum. The second 

pathway is the fimbria-fornix pathway that interconnects the hippocampal formation with the 

basal forebrain, hypothalamus and brain stem. The third major fibre system is called dorsal and 

ventral hippocampal commissures and contain some 350,000 fibres. They connect one 

hippocampal formation of one hemisphere with the hippocampal formation of the contralateral 

hemisphere.   

To follow on the architectonic organisation of the hippocampal formation, the specific 

regions will be separately and briefly described below. For the sake of simplicity, this will be done 

taking the rodent hippocampal formation as a model system.  

 

A. Dentate gyrus 

The dentate gyrus (DG) has three distinct layers, from the superficial side: molecular layer, 

granule cell layer and polymorphic cell layer (see scheme in Fig. 5). The principal cells, that is to 

say those that project out of DG, are the granule cells whose cell bodies (10 µm x 18 µm) lay 

within the granule cell layer. There are about 1.2 x 106 granule cells in one dentate gyrus. The 

granule neuron has a very specific cone-shaped dendritic tree extending its branches in the 

molecular cell layer. Granule cells have spiny dendrites with estimates between 3600-5600 spines 

per cell depending on their particular localisation along the granule cell layer. Interestingly, the 

number of granule cells does not vary in adult animals, however, young animals that were 

exposed to enriched environments show bigger dentate gyri with more granule cells in 

adulthood. Except granule cells, the dentate gyrus contains local interneurons that unlike the 

granule cells do not project to other areas of the hippocampal formation. The pyramidal basket 
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cell is the most studied interneuron. Their cell bodies are localised at the edge of the granule cell 

layer. The name ͚basket’ comes from the appearance of the cone-like axonal plexus that 

surrounds and connects with cell bodies of granule cells. The basket neuron has usually one 

principal apical aspiny dendrite extending to the molecular layer and several basal dendrites in 

the polymorphic cell layer. Basket cells are positive for the µ-aminobutyric acid (GABA) and thus 

provide an inhibitory input. The molecular cell layer is mostly occupied by dendrites and axons, 

however, it also contains cell bodies of interneurons named MOPP (molecular layer performant 

path-associated) and chandelier cells that are axo-axonic cells innervating the axon initial 

segment of granule cells. In regard to the polymorphic cell layer, that is also referred to as the 

hilus, the most common cell type is the mossy cell with large triangular or multipolar cell bodies 

(25-35 µm). Mossy cells are further characterized by large, complex and dense spines that are 

called thorny excrescences located on proximal dendrites. These spines form glutamatergic 

synapses with large boutons of mossy fibre axons of granule cells (as depicted in Fig. 5). Of note, 

the ǁord ͚ŵossǇ’ is used in tǁo distinct cell tǇpes: ŵossǇ fiďres of granule cells and ŵossǇ cells, 

which can be confusing but it is apt considering the mossy appearance of both. 

Noteworthy, the dentate gyrus receives major excitatory innervations from the entorhinal 

cortex (Fig. 4) through so called perforant pathway for the fact that the fibres leaving the angular 

bundle perforate the subiculum. A population of hypothalamic cells sends mostly glutamatergic 

projections to granule cells; and noradrenergic and dopaminergic projections are received from 

the brain stem. The subcortical regions send only few inputs towards the dentate gyrus and the 

most prominent is the one from septal nuclei using acetylcholine or GABA as a neurotransmitter. 

Importantly, the dentate gyrus is a source of adult neural stem cells that reside in the 

subgranular zone and give rise to new granule cells throughout the life. The dentate gyrus plays 

a substantial role in cognition and emotions. The cognitive functions relate to spatial memory. In 

particular, DG has been involved in so called pattern separation, the ability to distinguish 

between similar experiences which is crucial for episodic memory, its storage and retrieval. The 

emotional function of DG involves the regulation of mood and anxiety, and it has also been 

associated with behaviours with a strong component of stress and fear (reviewed in (Scharfman, 

2016)). 
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B. Hippocampus proper 

Alike the dentate gyrus, the hippocampus proper, also referred to as Aŵŵon’s horn, has a 

curved structure (Fig. 6). It is divided into three subregions: CA1, CA2 and CA3 (Fig. 4 and 6). 

These subregions have laminar architecture with five layers, superficially: stratum alveole (ALV), 

stratum oriens (OR), stratum pyramidale (PYR), stratum radiatum (RAD) and stratum lacunosum 

moleculare (LAC-MOL; Fig. 5). The CA3 field contains an additional thin acellular layer the stratum 

lucidum occupied by mossy fibres. Stratum alveole presents a fibre-rich thin layer. Stratum oriens 

contains basal dendrites of pyramidal cells and several types of interneurons. Moreover, some of 

the fibres connecting CA3 to CA3 and CA3 to CA1 (Schaffer collaterals) are also located in stratum 

oriens. The somata of hippocampal principal cells, called pyramidal cells, lay in the stratum 

pyramidale. They are tightly packed in CA1 and more loosely in CA2 and CA3. Owing to the U 

shape of the hippocampus, the CA1 pyramidal cells are upside down compared to CA3. Stratum 

radiatum consists of connecting fibres of CA3 to CA3 neurons, and Schaffer collaterals. The 

lacunosum moleculare layer is formed mostly by fibres from the entorhinal cortex and thalamus. 

Numerous interneurons are also scattered in both strata radiatum and lacunosum moleculare.  

 

Figure 5. The tri-neural circuit between principal cells of the hippocampal formation. A scheme of axonal 

terminations of principal cells on target principal cells. Axons of the dentate gyrus (DG) granule cells, termed mossy 

fibres, innervate the giant excrescences of CA3 pyramidal cells. CA3 axons called Schaffer collaterals terminate on 

the CA1 dendrites. The names of individual layers are also indicated and further described within the text. The image 

was taken and adapted from (Hammond, 2001). 
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Pyramidal cells are the most numerous cell type found not only in the hippocampus but also 

in the cerebral cortex and amygdala. Although the pyramidal neurons present a certain degree 

of variability, their cellular architecture is stereotypical. Cell bodies of pyramidal cells tend to 

have a teardrop/rounded pyramid shape. They have a longer apical dendritic tree that extends 

from the pointy end of the soma and is terminated by a dendritic turf. The basal portion of the 

pyramidal cell forms a basal cluster of shorter dendrites. Apical dendrites of hippocampal 

pyramidal neurons pass through the stratum radiatum and ramify in stratum lacunosum 

moleculare, whereas basal dendrites arborize in stratum oriens. The pyramidal cells of the CA3 

region that are closest to the DG do not extend their dendrites to stratum lacunosum moleculare 

and therefore are not influenced by projections from the entorhinal cortex, but synapse with 

mossy fibres of DG. Dendrites of pyramidal cells have numerous spines. The most prominent are 

the thorny excrescences of CA3 cells forming synapses with mossy fibres. Axons of pyramidal 

cells run through stratuŵ alveus eŵitting nuŵerous collaterals ďefore leaving the Aŵŵon’s horn 

through the pre- and postcommissural fornixes (axon bundles; Fig 5). 

  

There is a vast literature concerning studies performed on the CA1 pyramidal neurons, 

especially focused on synaptic transmission and plasticity. This is mostly attributed to their 

morphology, cell viability in culture and well trackable connections with CA3. The dendrites of 

Figure 6. Nissl-stained section (left) and line drawing (right) illustrating the general organization of the 

hippocampal formation in the rat. Scale bar = 1 mm. Taken and modified from The Hippocampus Book (Andersen 

et al., 2007). 
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CA1 neurons are covered with about 30,000 spines that receive excitatory synaptic inputs 

(Megias et al., 2001). Thus, density and morphology of dendritic spines has been used as a 

functional measure for excitatory efficacy that is closely correlated with cognitive function 

including memory formation. Indeed, changes in spine density and morphology have been 

reported in many neurological disorders. For instance, a massive loss of synapses in CA1 region 

is associated with cognitive decline in murine models of Alzheiŵer’s disease (Perez-Cruz et al., 

2011) (Merino-Serrais et al., 2011) (Lazcano et al., 2014). On the other hand, a 

neurodevelopmental disorder - the Fragile X syndrome is characterized by an increased number 

of immature dendritic spines in the CA1 region (reviewed in (He and Portera-Cailliau, 2013)). 

Under physiological conditions, the highest density of spines is found in strata radiatum and 

oriens, much lower in stratum lacunosum moleculare. Asymmetrical synapses, which are 

presumably excitatory, can be also formed on dendritic shafts usually in the apical dendritic tuft. 

It was estimated that about 1,700 inhibitory symmetrical synapses converge on a single CA1 

pyramidal neuron targeting usually the soma, axon and spine-free proximal apical and proximal 

basal dendrites (Megias et al., 2001).  

 

CA2 pyramidal neurons have been long overlooked probably due to the small size of the CA2 

region when compared to CA1 or CA3. More recent studies have determined their particular 

synaptic properties and involvement in social and spatial memory and pathological conditions 

such as schizophrenia (reviewed in (Dudek et al., 2016) (Srinivas et al., 2017)). CA2 pyramidal 

neurons can be distinguished from the CA1 and CA3 pyramidal cells based on morphology, 

connectivity and molecular markers. According to Lorent de Nó (1934), CA2 pyramidal cell 

dendrites lack thorny excrescences that form synapses with mossy fibres from DG and are 

characteristic of the CA3 pyramidal neuron dendrites; although we now know that this is variable 

between species. More recent discoveries identified specific axonal projections from the 

thalamus that are indicative of the boundary between CA2 and CA3 fields. In addition, CA2 

pyramidal neurons project mainly to stratum oriens of CA1, whereas CA3 pyramidal neurons 

project to stratum radiatum of CA1. Furthermore, there are more parvalbumin- and reelin-

expressing interneurons in CA2 than in CA1 or CA3. Interestingly, the CA2 field is relatively 
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resistant to injury as well as to induction of plasticity processes such as long-term plasticity (LTP). 

Intriguing, however, is the finding that the CA2 pyramidal cells possess all proposed plasticity 

mediators characteristic of CA1 neurons. The research laboratory of Dr Serena M. Dudek has 

carried out extensive studies on the CA2 area concerning plasticity processes. In the past years, 

they showed that one possible cue for plasticity resistance could be through changes in calcium 

dynamics. Her team also proposed the RGS14 (Regulator of G-protein Signalling 14) scaffold 

protein to play a key role in suppression of LTP in CA2 pyramidal cells (Simons et al., 2009) (Lee 

et al., 2010) (Vellano et al., 2011). In addition, given the high resistance of the CA2 region to 

apoptosis, CA2 may prove a suitable model to study diseases with impairments in social and 

spatial memory processing.   

 

The CA3 region receives three major excitatory inputs: from mossy fibres of DG, from EC and 

local from the CA3 neurons. This unique interconnectivity makes the CA3 network highly 

excitable. For this reason, the CA3 region has attracted increasing attention for its role in memory 

and susceptibility to seizures and degeneration. CA3 pyramidal neurons are morphologically very 

similar to CA1 neurons, however, the CA3 neurons are on average larger. The largest CA3 neurons 

are in the distal and smallest in the proximal portion of CA3 to DG. The dendritic ramification is 

characterised by a shorter basal dendritic tree within stratum oriens, a short apical dendritic 

trunk in stratum lucidum that arborizes into two or more long apical trunks. These long apical 

trunks further ramify into shorter dendritic branches in stratum radiatum and long dendritic 

trunks continue to stratum lacunosum moleculare. As mentioned above, CA3 neurons are 

studded with thousands of dendritic spines. The most apparent are the thorny excrescences that 

form about 40 clusters on each CA3 neuron. Generally, these branched dendritic spines synapse 

with a single mossy fibre bouton. A single CA3 neuron projects its axon to all CA3, CA2 and CA1 

regions. These axons are myelinated with abundant boutons. The estimates show between 

15,000 and 60,000 synapses that can be formed by a single CA3 axon. Some CA3 axon boutons 

also innervate interneurons which interestingly happens at a single release site. As in CA1 this 

single synapse is very powerful able to generate an action potential in the postsynaptic 

interneuron. In regard to the high excitability, the CA3 neurons show a typical bursting pattern 
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comprising of several action potentials that last 30 to 50 ms. Because the CA3 pyramidal neurons 

do not possess a large primary apical dendrite like the CA1 neurons, only a restricted number of 

studies have focused on the dendritic excitability and ion channels in CA3 (Andersen et al., 2007). 

 

C. Subicular complex 

The subicular complex (Fig. 4) including prosubiculum, subiculum, presubiculum, 

postsubiculum and parasubiculum forms a continuum of the CA1 as it begins where the Schaffer 

collaterals end (reviewed in (Andersen et al., 2007) (Ding, 2013) (O'Mara, 2005)). The pyramidal 

cells of the subicular complex are more disperse compared to the tightly packed layer of CA1 

pyramidal cells. Despite the fact that the subicular complex constitutes the major output of the 

hippocampal formation it is a poorly investigated brain structure. Some of its roles were 

identified in the encoding and retrieval of memory, and in neurodegenerative disease and 

epilepsy. The subicular pyramidal neuron has a typical morphology with dendrites comprising 

spines. The subiculum receives input from CA1 as well as EC layer II and III. Importantly, the 

subicular output innervates local areas: EC layer V, presubiculum and parasubiculum and also 

more distant cortical structures such as the prefrontal cortex, olfactory nucleus, thalamus, 

amygdaloid complex and others. The particular subicular cortices can be identified based on the 

expression of specific genes and neurochemicals. 

 

D. Entorhinal cortex 

The naŵe ͚’entorhinal’’ is based on its position as it is partially enclosed by the olfactory – 

rhinal sulcus. Early studies of the entorhinal cortex by Ramón y Cajal and Lorente de Nó defined 

the cytoarchitectonic organisation which is today accepted with some minor changes: EC is 

divided into two main subregions, the medial and lateral EC, both of which have a 6-layer laminar 

structure with four cellular and two acellular layers. Much interest devoted to EC has begun in 

early 1990s with the discovery that this brain area was prone to early neurodegeneration in 

Alzheiŵer’s disease (Van Hoesen et al., 1991). The entorhinal cortex plays an indispensable role 
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in the feedforward and feedback flow of information bridging the hippocampus and the 

neocortex. Recent studies provide evidence that the medial EC processes spatial information, 

whereas the lateral EC governs pathways encoding object information. A famous trio of scientists 

(John O’Keefe and Edǁard and MaǇ-Britt Moser) who were awarded the Nobel Prize in Physiology 

or Medicine in 2014 made a breakthrough discovery of a ͞GPS systeŵ͟ in the ďrain – the place 

and grid cells (Fig. 7). Place cells are CA1/CA3 hippocampal pyramidal neurons that fire 

specifically based on spatial localisation. Even more interesting is the finding that the firing of 

place cells does not depend on the local CA3/dentate gyrus innervation but rather the spatial 

information is received from the medial EC. The medial EC neurons are highly responsive to 

change in position. These neurons show a firing field pattern with regularly shaped triangular or 

hexagonal grids, thence called grid cells (reviewed in (Moser et al., 2015)). The realisation about 

where we are in space provides one of the most fundamental information for survival. The crucial 

function of place and grid cells function is evident in Alzheiŵer’s disease where disorientation is 

a common early symptom. 

 

 

 

Figure 7. Grid and place cells. A. An EC grid cell firing pattern. The black trace shows the trajectory of a foraging rat 

in part of a 1.5-m-diameter-wide square field. Spike locations of the grid cell are in red. Each red dot corresponds to 

one spike. Blue equilateral triangles illustrate the regular hexagonal structure of the grid pattern. B. Grid cell (left) 

and place cell (right) firing and activity. The top part shows trajectories with spike locations. The bottom color-coded 

rate maps show high activity (red) and low activity (blue) firing. Grid cells are thought to provide much, but not all, 

of the entorhinal spatial input to place cells. Adapted from (Moser et al., 2015). 
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1.2 Neuronal synapse 
 

Most studies investigating synapses have been carried out using the hippocampal circuitry as 

a model system. Therefore, the previous chapter aimed at introducing the hippocampal 

formation so it would set the niche for further characterization of synapses, to which the current 

chapter is devoted. 

 

The notion that a contact between two neurons is the place where information transmission 

occurs was first suggested by Ramon y Cajal in 1888. Later, an English neurophysiologist Charles 

Scott Sherrington (1897) introduced the term ͚synapse’ ;froŵ the Greek ͞to clasp͟Ϳ to give a 

name to these specialized zones of interneuronal communication. Currently, the synapse is no 

longer seen only as a static junction between neurons but a very dynamic organelle whose 

function is tightly regulated in time and space owing to the constituting molecular interactions 

(Choquet and Triller, 2013). Deciphering the structure and molecular organisation of synapses is 

an essential step toward understanding the molecular mechanisms that underlie synaptic 

transmission and plasticity - processes that are the foundation of physiological brain function.  

Noteworthy, there is a tendency to see cellular reactions as linear, but particularly in neurites, 

differential concentrations, position as well as the reactive state of soluble and bound synaptic 

proteins determine the regulatory cues in these highly dynamic and precise processes that 

mediate both presynaptic and postsynaptic portions of neurotransmission.  

Primarily, neuronal synapses can be characterized based on the type of transmission – 

chemical and electrical. Electrical transmission is mediated via so called gap junctions, i.e. 

electrical synapses, through a direct cytoplasmic exchange of ions and small molecules between 

neighbouring neurons. Importantly, the two types of neurotransmission coexist and interact in 

both the developing and adult brain (Pereda, 2014) (Nagy et al., 2018). This introduction will 

describe and refer to the most abundant form of transmission at chemical synapses composed 

of axonal termini (boutons) and dendritic spines in the hippocampus.  
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 Chemical synapses 

A characteristic of chemical synapses is the presence of a synaptic cleft – a gap between the 

axonal terminus of a presynaptic neuron and the dendritic specialisation of a postsynaptic neuron 

(reviewed in (Harris and Weinberg, 2012) (Hammond, 2001) (Pickel and Segal, 2014) (Nicholls et 

al., 2012)). The process of transmission is mediated by a change in electrical potential in the 

presynaptic cell that consequently leads to the release of neurotransmitter molecules. Chemical 

synapses are either excitatory or inhibitory depending on the neuromodulatory effect the 

neurotransmitter has on the receiving postsynaptic neuron. A large body of literature describes 

the prototypical chemical neuron-to-neuron synapses that are indeed the most abundant and 

extensively studied synapses in the brain. The synaptic complex is a basic unit of each functional 

chemical synapse. It comprises of three components: the presynapse, cleft and postsynapse. The 

synaptic complex shows a particular asymmetric organisation. The most prominent asymmetric 

trait is the presence of synaptic vesicles (40-60 nm) exclusively in the presynapse and a 

submembraneous electron-dense zone in the postsynapse. Additionally, the synaptic complex is 

surrounded by modulatory astroglial processes. Thus the synaptic complex together with 

astroglia can be seen as a mesh-like structure on an electron microscopy section (Fig. 8). 

Excitatory synapses are formed mainly on dendritic spines, unlike the inhibitory synapses that 

preferably connect to the cell soma and axonal initial segments with only small percentage found 

Figure 8. Synaptic complex in the CA1 region of the hippocampus. A. An electron microscopy section that was colour 

coded to show excitatory axon (green), spiny dendrites (yellow), an aspiny dendrite (dark red), sparse inhibitory 

axons (orange) and astroglial processes (light blue). B. Asymmetric synapses (green arrows), a non-spiny dendrite 

(ns) with a mitochondrion (mito), two dendritic spines (sp) of which one has a perforated PSD (red arrow).  Adapted 

from (Harris and Weinberg, 2012). 
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along spiny and aspiny dendrites, hence the sparse distribution of inhibitory synapses that can 

be seen in the synaptic complex (Fig. 8).    

This part of introduction will summarize the existing knowledge of the structure, types and 

composition of the synaptic complex. 

 

A. The presynapse 

The first piece of evidence pointing to the synapse as a dynamic organelle came with the 

finding that neurotransmission relies upon calcium-driven fusion of neurotransmitter-filled 

vesicles with presynaptic membrane. This notion was further reinforced by the discovery of 

endocytic pathway that dynamically recycles these vesicles (Heuser and Reese, 1973).  

 

a) Presynaptic trafficking 

During neuronal development, upon neuronal cell determination and morphogenesis, 

synapses are to be formed. The majority of synaptic material required for synaptic formation is 

synthesized in the cell body and transported over long distances to and from synaptic loci by 

microtubules-associated molecular motors. The molecular organization of axonal versus 

dendritic microtubules differs. According to in vivo studies, axonal microtubules (MTs) have their 

minus ends oriented exclusively toward the cell body, whereas dendritic microtubules show 

mixed orientation with more abundant distal plus-ends in vertebrates when compared to 

invertebrates (reviewed in (Chia et al., 2013); (Stone et al., 2008)). However, it is not only the 

polarity of MTs itself that is critical in determining whether molecular cargoes will be targeted 

toward the presynapse or postsynapse, the microtubule-associated proteins (MAPs) also play an 

important role. Upon genetic manipulations, presynaptic cargoes can be misplaced into 

dendrites, as shown in mutants for kinesin and other MT-binding proteins such as UNC-33 and 

UNC-44 in Ceanorhabditis elegans (Seeger and Rice, 2010) (Maniar et al., 2011).  

Axonal trafficking of biomolecules can be classified based on the direction toward the cell 

body as retrograde, or toward the axonal terminus as anterograde. Anterograde trafficking is 

carried out by kinesins. These motor proteins are important for both the export of cargo 

molecules from the Golgi apparatus and their subsequent transport to destination sites. The 

exact mechanisms of cargo sorting and loading remain to be determined. 
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An average pyramidal neuron possesses thousands of synapses. What are the exact signalling 

cues that regulate how cargoes get distributed between synapses is yet to be elucidated. Most 

of the investigations into the molecular mechanisms of axonal trafficking have been performed 

in C. elegans and Drosophila melanogaster. The axonal anterograde transport includes kinesin-3 

motor proteins KIF1A and KIF1Bβ that were shown to transport synaptic vesicle-associated 

proteins in the form of SV precursors to presynaptic sites (Sabo et al., 2006). Binding of motor 

molecules onto the MTs is followed by ATP hydrolysis that initiates the transport along MT tracks. 

The lack of KIF1A and KIF1Bβ reduced the number of SVs as well as SV proteins in the presynapse 

(Chia et al., 2013). The kinesin-1 motor complex transports presynaptic membrane proteins such 

as SNAP-25, Bassoon, Piccolo, RIM and syntaxin-1. Upon reaching the end of microtubules, 

molecular cargoes are unloaded for delivery to presynaptic sites presumably by additional local 

regulatory cues (Yagensky et al., 2016). For instance, one local regulatory mechanism involves 

the small GTPase Rab3. DENN/MADD, a Rab3 guanine nucleotide exchange factor, binds to the 

kinesin-3 complex and promotes anterograde transport of synaptic vesicles associated with Rab3 

in the GTP-bound state (Niwa et al., 2008). Depleting DENN/MADD of its enzymatic activity or 

locking Rac3 in GTP-bound state impairs transport of these vesicles to distal presynaptic sites 

(Niwa et al., 2008). Phosphorylation presents another mechanism capable of controlling distal 

axonal cargo targeting. Phosphorylation of kinesins by the GSK3β kinase leads to cargo release 

(Morfini et al., 2004). GSK3β is selectively active in growth cones and thereby most likely 

participates in formation of synapses de novo (Morfini et al., 2004). A mechanism controlling 

cargo pausing and loading has also been documented along MTs en route. Loss-of-function 

mutations in arl-8 that encodes the small G-protein ARL-8 lead to proximal accumulation of 

presynaptic specializations and loss of synapses in distal axons, which results in defects in 

neurotransmission in C. elegans (Wu et al., 2013). Thereafter, ARL-8 and JNK were reported to 

act in an antagonistic way to balance cargo self-assembly and facilitate cargo trafficking en route 

(Klassen et al., 2010) (Wu et al., 2013). An interesting phenomenon has been described in the 

process of synaptic vesicle recycling. The recycled material shuttles between local as well as 

remote boutons involving both kinesin and dynein motors. Remarkably, the retrogradely 



17 

 

transported vesicles are likely to be captured by distal as opposed to proximal presynaptic sites 

(Maeder et al., 2014).  

 

Sustained and optimal presynaptic function requires the molecular motor dynein, which 

mediates retrograde transport of biomolecules from the presynapse to the nucleus. In response 

to synaptic activity, retrograde movement of messenger molecules functions as a feedback signal 

that triggers changes in gene expression. In turn, specific products of gene expression can 

regulate the strength of synaptic transmission (Panayotis et al., 2015). For instance, calcium ion 

waves implement fast response synapse to soma communication and are most efficient for 

synapses localised closer to the soma. Slower and long distance synapse to soma communication 

involves extracellular signalling molecules, neurotrophins, such as BDNF (brain derived 

neurotrophic factor). Principally, neurotrophins bind to their receptors (Trk [tyrosine kinase] or 

p75NTR) at the presynaptic membrane which triggers receptor autophosphorylation and 

activation of downstream signalling cascades via MAPK, PLCγ and PI3K (Pazyra-Murphy et al., 

2009). 

 

In addition to changes in gene expression, retrograde transport is crucial for degradation and 

turnover of unwanted or damaged proteins and organelles. During axonal development, protein 

degradation at the axonal tip decreases with an enhanced retrograde transport of the ubiquitin-

proteasome system (UPS) (Hsu et al., 2015). In regard to mature presynapses, previous studies 

demonstrated that the UPS functions rather locally within synaptic boutons to acutely control 

levels of presynaptic proteins and thereafter the efficacy of neurotransmission (Speese et al., 

2003). Autophagy, however, is a degradation mechanism that depends on the retrograde 

transport of presynaptic components. These components including synaptic vesicles and α-

synuclein are cleared via autophagosomes. This degradation pathway is quite challenging since 

autophagosomes must be transported across long distances to lysosomes that usually reside in 

the cell soma. A recent study implicated JIP1, a kinesin-1 activator that binds dynein, and the 

autophagosomal protein LC3 in the clearance of presynaptic proteins. Preventing JIP1 binding to 
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LC3 results in defects in retrograde trafficking of autophagosomes as well as impairment of 

autophagosomes fusion with lysosomes (Fu et al., 2014b).   

 

Noteworthy, although kinesin and dynein motors mediate unidirectional traffic, they are 

known to bind synaptic cargoes simultaneously. Axonal microtubule tracks are not continuous. 

They can break, or encounter various obstacles and therefore the option of switching between 

the two directions is very convenient for bypassing such difficulties. Importantly, these opposite-

polarity motors were found to activate one another and this way efficiently carry synaptic 

cargoes in either direction.  

MT motors also respond to presynaptic plasticity processes. Repetitive stimulation of neurons 

in culture enhances the formation of new presynaptic boutons, a process that is dependent upon 

trafficking of presynaptic components by kinesin-1. Similarly, mice that were placed in an 

enriched environment expressed increased levels of kinesin-3 motor KIF1A which is directly 

correlated with increased trafficking of presynaptic cargoes (Kondo et al., 2012).  

 

b) Structure and composition of presynaptic termini  

 The excitatory axospinous synapses in the stratum radiatum of the hippocampal CA1 are 

prototypic and highly abundant synapses formed predominantly by unmyelinated axons. Most 

of these axons are the Schaffer collaterals originating in the CA3 region. The axonal termini often 

form swellings referred to as boutons that are filled with many neurotransmitter-containing 

Figure 9. Axonal boutons and dendritic spines. (Left and right), 3D reconstructions of axons and axonal boutons 

(light green) of Schaffer collaterals. Synaptic vesicles are visible within each bouton. Dendritic spines (grey) with PSD 

(red) converge onto synaptic boutons. In the right panel, a red disc represents a reconstructed PSD from the depicted 

dendritic spine. Abbreviations: dcv, dense core vesicles; MSB, multi-synaptic bouton; SSB, single synaptic bouton; 

NSB, non-synaptic bouton; mito, mitochondrion; mvb, multivesicular body. Taken from (Harris and Weinberg, 2012). 

 



19 

 

vesicles and can be clearly seen by electron microscopy (Fig. 9). The majority (~75%) of axonal 

boutons establish a single contact synapse, about 21% form multi-synapse contacts and ~4% lack 

their postsynaptic counterpart (Sorra et al., 2006). These pre-existing but unconnected boutons 

are an advantage when it comes to rapid synaptogenesis as there is no need for generation of 

presynaptic termini de novo (Petrak et al., 2005) (Harris and Weinberg, 2012). Another type of 

axonal bouton that is worth mentioning is the robust bouton of granule neurons of the dentate 

gyrus that converge onto multiple thorny excrescences of CA3 pyramidal neurons (Fig. 10). In the 

cerebellum, large specialized axonal termini termed synaptic glomeruli can be found. These 

originate from cerebellar granule cells and synapse with dendritic spines of Purkinje neurons.   

 

The active zone 

 At chemical synapses, action potentials trigger calcium influx into the presynaptic terminal, 

which typically leads to the fusion of SVs with the presynaptic active zone membrane and 

neurotransmitter release. The active zone (AZ) is a biomolecule-rich electron-dense region that 

can be found in the proximity to the presynaptic membrane opposed to the postsynaptic density. 

Figure 10. 3D reconstruction of a mossy fibre bouton and CA3 thorny excrescences. Left, a mossy fibre bouton 

(yellow-green) converging onto thorny excrescences (blue spines). Right, CA3 thorny excrescences with 

reconstructed synaptic (red) and non-synaptic connections (magenta). Scale bar 1 µm. Taken from (Harris and 

Weinberg, 2012). 

 



20 

 

Typically, many synaptic vesicles occupy this region ready to dock and release neurotransmitter 

molecules. Intriguingly, AZ can be visualised as cytoplasmic dense projections that are organized 

into a presynaptic grid-like structure (Fig 11A). Why AZ adopts this particular shape is uncertain 

but it most likely has to do with SV mobilization and release as suggested by (Fernandez-

Busnadiego et al., 2010). The excitatory SVs measure ~35 nm in diameter and are filled with 

glutamate molecules. Emerging evidence suggests that SVs are not a homogenous population of 

organelles and can be discriminated both structurally and molecularly. There exist at least three 

types of SV pools depending on SV availability for membrane mobilization and release: resting, 

recycling and readily releasable pools (Fig. 11B). The existence of different pools of SVs is obvious 

during a phenomenon called synaptic depression. Upon repetitive bursts of action potentials 

(APs) a reduction in postsynaptic response can be measured reflecting the fact that the RRP 

empties and another AP comes before this pools gets replenished. Oftentimes, a homeostatic 

lower steady level of transmission is established, in which the release is balanced by the slow 

refilling (Alabi and Tsien, 2012). In hippocampal synaptic boutons, only a few vesicles have the 

readily releasable pool status. After the readily releasable pool gets discharged (short 10-40 Hz 

stimulation), neurotransmitter release occurs from the secondary glutamate depot – the 

recycling pool. This total releasable pool of SVs (including both recycling and readily releasable 

pools) represents as little as ~100 vesicles. On the other hand, the resting pool is defined as a set 

of vesicles that are extremely reluctant to trafficking toward the AZ membrane and remain 

unreleased even after prolonged stimulation. Although the resting pool represent about 75% of 

total SV content in a presynaptic terminal, the physiological function of these vesicles remains 

unclear. 

 The release of SVs can be evoked in three distinct ways (Fig. 11B): a. synchronous vesicle 

release – electrical stimulation precedes synchronous currents that are triggered in the 

postsynaptic cell; b. asynchronous – a delayed vesicle fusion upon a stimulus; c. spontaneous – 

occurs in the absence of action potential, releases a very small portion of SVs and generates 

miniature postsynaptic currents (Crawford and Kavalali, 2015). The release of SV content is 

mediated by exocytosis, a well-orchestrated process that relies on spatial organisation and 

dynamics of fusion machinery components. Three-step SV release has been well documented: 
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SVs attachment to the plasma membrane (docking), fusion-preparatory phase (priming) and Ca2+ 

influx-dependent fusion (Milovanovic and Jahn, 2015). The SNARE (soluble N-ethylmaleimide-

sensitive factor attachment protein receptor) family of proteins lies at the centre of the SV 

release process. v-SNARE (vesicular SNARE) proteins bind to target membrane SNARE (t-SNARE) 

proteins to form a complex that is essential for the fusion of vesicular and plasma membranes. 

Canonically, the component of v-SNARE VAMP2 (vesicle-associated membrane protein 2, also 

known as synaptobrevin-2) binds to the members of t-SNARE syntaxin 1 and SNAP-25 

(synaptosomal-associated protein of 25 kDa) to bring the juxtaposed membranes together for 

fusion and neurotransmitter release. This process is catalysed by Ca2+ binding to the calcium 

sensor synaptotagmin 1 (Crawford and Kavalali, 2015) (Sudhof, 2013). The SV membrane 

contains a range of proteins important for exocytosis. Evidence suggests that some v-SNAREs, 

calcium sensors and other vesicular proteins are involved in SV trafficking to segregate vesicle 

pools prior to the release. Thus, expression of these membrane proteins on SVs could function 

as a molecular code predictive of their function within the presynapse (Wilhelm et al., 2014).  

Figure 11. Dense projections of the active zone and heterogeneity of the synaptic vesicle pool. A. Electron 

micrograph of a phosphotungstic acid stained synapse with pre- and postsynaptic specializations, scale bar = 200 nm 

(taken from (Sudhof, 2012). B. A scheme of synaptic vesicles that are shuttled to the active zone for fusion and 

neurotransmitter release: synchronously, in response to an action potential; asynchronously after an action 

potential; or spontaneously, in the absence of action potentials. Vesicular proteins (a) confer heterogeneity to 

synaptic vesicle populations while cytosolic and plasma membrane molecules (b) coordinate with vesicular proteins 

to determine the fusion process. Taken from (Crawford and Kavalali, 2015). 
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o v-SNARE proteins 

 The majority of neurotransmission is driven by the most abundant v-SNARE protein VAMP2. 

Depleting VAMP2 in cultured mouse hippocampal neurons leads to complete abolishment of 

evoked neurotransmission while spontaneous neurotransmission persists although at a 

decreased level (Deak et al., 2004).  VAMP1 is also involved in synchronous SV release and was 

suggested to serve as a synchronizer of fusion events. Its expression in the CNS is more variable 

and higher in the periphery when compared to VAMP2. Importantly, VAMP1 knock-out mice 

show defects in both synchronously evoked and spontaneous SV release (Zimmermann et al., 

2014). Albeit better known for its roles in endosomal trafficking and trans-Golgi network, VAMP4, 

another v-SNARE member, facilitates evoked release of SVs (Raingo et al., 2012). The v-SNARE 

vps10p tail interactor 1 (vti1) protein was discovered not long ago to reside in a specific subset 

of SVs as they are trafficked to the presynaptic membrane independently of VAMP2-containing 

vesicles. Depletion of vti1a causes minor deficits in spontaneous neurotransmission event 

(Ramirez et al., 2012). VAMP7 promotes neurite outgrowth and is enriched in SVs of hippocampal 

mossy fibre terminals. VAMP7-positive SVs fuse with presynaptic membrane in response to 

action potential-independent events (Bal et al., 2013). 

 

o Calcium sensors associated with synaptic vesicles 

 Synaptotagmins are well described SV membrane proteins that following calcium binding 

catalyse membrane fusion. Synaptotagmin-1 (syt1) promotes synchronous evoked SV fusion. 

Syt1 is the most abundant synaptotagmin at the mammalian presynapse. Cultured mouse 

neurons depleted from syt1 do not express synchronous SV release, whereas asynchronous 

release is potentiated. Syt-2 has the same properties like syt-1, however it is expressed less 

abundantly. Syt-2 possesses the ability of Ca2+-dependent phospholipid binding and both Ca2+-

dependent and independent binding to t-SNAREs (see thereafter). 

 

 In addition to v-SNAREs and calcium sensors, other SV-associated proteins have been 

involved in vesicle guidance to different SV pools and consequent release. The Rab3 small 

GTPase-deficient hippocampal neurons exhibit slightly increased evoked but normal 
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spontaneous release, while Rab3 depletion from neuromuscular junctions leads to decreased yet 

otherwise unaffected evoked release (Geppert et al., 1997) (Crawford and Kavalali, 2015). 

Synapsin 1 and synapsin 2 also play a role in evoked neurotransmission release, possibly 

regulating the likelihood of synchronous release (Crawford and Kavalali, 2015). 

 

o t-SNARE proteins 

 Important for SV identity and membrane fusion are many proteins and protein complexes 

that reside within the target plasma membrane. These are the t-SNARE proteins and plasma 

membrane calcium sensors and calcium channels. The t-SNARE protein syntaxin 1 is abundantly 

expressed in the CNS, especially at the presynapse. Prior to binding to v-SNAREs, syntaxin 1 

dimerizes with another t-SNARE protein, SNAP-25. This dimer binds to VAMP4, VAMP7 and syt-

2. A knock-out of syntaxin 1 in D. melanogaster completely abolishes all forms of 

neurotransmission except for some rare asynchronous SV release. Preventing syntaxin 1 from 

binding to the SNARE complex destabilizes the SNARE complex formation and results in severely 

impaired evoked neurotransmission in both the Drosophila (Fergestad et al., 2001) and 

mammalian hippocampal neurons (Mishima et al., 2002). Undoubtedly, according to many 

studies on syntaxin 1 and its isoforms, these proteins are essentially involved in the guidance of 

SV for fusion, thus modulation and expression of different forms of neurotransmission (Crawford 

and Kavalali, 2015) (Mishima et al., 2014) (Zhou et al., 2013). SNAP-25 does not bear a 

transmembrane domain and anchors in the presynaptic membrane by palmitoylated cysteine 

residues and its interaction with syntaxin 1. Similarly, as for syntaxin 1, SNAP-25 is crucial for 

evoked neurotransmission but dispensable for spontaneous neurotransmission.  SNAP-23 is 

structurally related to SNAP-25 but expresses lower affinity to syt1. In vitro, SNAP-23-dependent 

SV docking occurs at lower Ca2+ concentration when compared to SNAP25-dependent docking. 

Evidence suggests that SNAP-25 and SNAP-23 could function to a certain degree in a redundant 

fashion (Sorensen et al., 2003). In addition, SV release is promoted by calcium sensors and 

calcium channels that are embedded in the presynaptic membrane. According to electron 

microscopy imaging of hippocampal neurons, synaptotagmin 7 localises into the presynaptic 

membrane rather than synaptic vesicles. It exhibits high calcium affinity and slow kinetics, which 
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points to its involvement in coordinated delayed SV release events. Multimeric transmembrane 

voltage-gated calcium channels like N-type, P/Q-type, R-type and L-type are also known to 

directly interact with the fusion machinery. They participate in both excitatory and inhibitory 

spontaneous fusion events.   

 Despite this intense research, it is currently not clear how the readily releasable pool is 

assembled and maintained. In addition, to the above-described molecular players that 

participate in RRP assembly and SV exocytosis, the cytosolic proteins Munc-18 and Munc-13 also 

play a substantial role in SV priming/fusion. Latest research shows that primed vesicles are 

instable in the absence of Munc13-1 or Munc18-1 as they get de-primed and fall back into a non-

releasable state. Thus, Munc13-1 and Munc18-1 stabilize primed synaptic vesicles by preventing 

de-priming (He et al., 2017).  

 

o Actin cytoskeleton 

 In addition to the microtubule cytoskeleton that carries out long-range axonal trafficking, 

actin-dependent mechanisms often organize local protein complexes in subcellular domains such 

as the presynapse (Chia et al., 2013). Depolymerization of F-actin reduces the size and number 

of synapses in cultured immature, but not mature, hippocampal neurons (Zhang and Benson, 

2001). Indeed, presynaptic F-actin levels rise in newly-made synapses (Zhang and Benson, 2002). 

The exact function of presynaptic actin is still unclear, however, it was suggested to act as a 

scaffold that provides mechanical stability, and recruits and stabilizes presynaptic assembly 

proteins (Sankaranarayanan et al., 2003). Similarly, AZ proteins have been shown to affect F-actin 

assembly. For instance, loss of Piccolo results in loss of Profilin 2, a mediator of F-actin 

polymerization (Waites et al., 2011). Importantly, actin-associated motors myosins of class II and 

VI are present at the presynapse (Kneussel and Wagner, 2013). Myosins II have been implicated 

in neurotransmitter release and synaptic vesicle motility during evoked activity (Peng et al., 

2012); and myosins VI act in both pre- and postsynaptic BNDF signalling as they bind BDNF 

receptor TRKB. The lack of myosin VI leads to deficits in synaptic transmission in mice (Yano et 

al., 2006).  
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o Mitochondria 

 Synaptic transmission is an ATP- and Ca2+-dependent process. Hence, mitochondria, the 

energy power plants and calcium buffering system, are another integral component of axons and 

presynaptic boutons. In hippocampal CA1 neurons only 41% of presynaptic termini contain 

mitochondria. On the contrary, many mitochondria can reside in large boutons (Harris and 

Weinberg, 2012). The assembly of the MT motor adaptor KIF5, Milton (Trak) and Ca2+-binding 

mitochondria outer membrane receptor Miro drives mitochondrial anterograde transport 

toward axon terminals (Sheng, 2014). Of note, a recent study provided evidence that synapses 

are highly enriched in ATP in spite of containing little portion of mitochondrial membranes 

(Chavan et al., 2015). This finding suggests that other still undefined local mechanisms involved 

in ATP concentrating or production could be present at the presynapse. 

 

o Synaptic vesicle recycling machinery 

 Sustained neuronal activity requires repeated exo- and endocytosis of SVs. To forestall the 

expansion of the presynaptic plasma membrane and a corresponding loss of lateral membrane 

tension, a recycling endocytosis occurs following SV fusion (reviewed in (Soykan et al., 2016) and 

(Rizzoli, 2014)). Two models of synaptic recycling were suggested based on early electron 

microscopy analysis (1970s) of frog neuroŵuscular junctions: ͞kiss and run͟ (or bulk) and 

clathrin-mediated endocytosis. As aptly stated by Shigeki Watanabe ͚͛The kiss-and-run 

mechanism is like refilling the same bottle: The same vesicle that has just undergone fusion is 

retrieved and refilled. The clathrin-mediated mechanism is like moulding a new bottle from a used 

one: the old vesicle is resorbed into the plasma membrane and must be subsequently remoulded͛͛ 

(Watanabe, 2015). Nevertheless, the mechanisms of SV recycling have been challenged in many 

aspects and need more investigation.  

 

 

B. The postsynapse  

 Coming to the presynapse-juxtaposed synaptic part, the postsynapse, a special attention will 

be devoted to the composition and function of the glutamatergic postsynaptic compartment – 
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the dendritic spine – in which the study of my PhD thesis is set in. Here, I specifically discuss the 

morphology and molecular composition of spines with a brief mention of the dendrito- and 

spinogenesis processes. The postsynaptic membrane receptors that carry out glutamatergic 

neurotransmission will be discussed in Chapter 1.3.    

  

 Axonal presynaptic terminals converge onto dendritic specialisations of a postsynaptic 

neuron with built-in membrane receptors for neurotransmitter binding. Such molecular 

interactions evoke electrical and biochemical changes in the postsynaptic cell and further 

propagation of the transmitted signal. The nature of such a signal can be dual: excitatory or 

inhibitory depending on the identity of the neurotransmitter. In the mammalian brain, the most 

abundant form of excitatory neurotransmission is mediated by glutamate. 

 

a) Morphology of dendritic spines 

Dendritic spines present a great variability in size and shape (Fig. 12). Importantly, the 

morphology, distribution and density often reflect on functional properties of spines. At first, 

dendritic spines were considered an artefact caused by silver staining precipitation. However, 

their reoccurrence made Ramόn y Cajal (1888) believe that these protuberances occur as natural 

structures (Garcia-Lopez et al., 2007). Spines are present at an average density of 1-10 spines per 

10  µm of dendritic length, reaching up to thousands of spines on a single pyramidal neuron. They 

come in different lengths varying from 0.2 to 2 µm and volumes from 0.001 to 1 µm3. Typical 

spines consist of three basic compartments: (1) a delta-shaped junction connecting the spine to 

the dendritic shaft, (2) a constricted neck, and (3) a bulbous head contacting the axonal bouton 

(Hotulainen and Hoogenraad, 2010). Generally, these typically-shaped large spines called 

mushroom spines represent ~10% of all spines in DG of an adult rat. On the other hand, thin 

spines without a bulbous head make up the majority of ~75%. Stubby spines lack an obvious spine 

neck and account for ~10%. Finally, spines located on dendritic shafts without a visible dendritic 

protrusion represent ~5% (Fig. 12). Notably, filopodia are considered the immature precedent 

stage of mature dendritic spines. The most complex set of spine shapes (thorny excrescences), 

present all the above-mentioned spine types and are found in the CA3 region where giant 
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boutons of mossy fibres from the dentate gyrus synapse with CA3 pyramidal neurons. The spine 

shape is not a fixed feature as it is subjected to an activity-dependent remodelling. For instance, 

Figure 12. Dendritic spine morphology. A. A schematic of spine shape categories. Approximate scale bar = 1 µm. 

Adapted from (Pickel and Segal, 2014). B. Three views of a 3D reconstruction of a section of a CA1 dendrite from the 

stratum radiatum, illustrating the density of dendritic spines and their diverse shapes. Source: The Hippocampus 

Book (Andersen et al., 2007). C. 3D reconstruction of a dendrite segment from the rat dentate gyrus showing thin 

spines (Tsp), a shaft spine (ShSp) and mushroom spines (MSp). In red are postsynaptic densities. On the right, smooth 

ER (ser) is depicted with in an MSp. D. Left, a branched mushroom spine reconstruction with PSDs. Right, axonal 

segment (light blue) converging onto spines including the branched spine depicted on the left. Adapted from (Pickel 

and Segal, 2014). Scale bars = 1 µm. 
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LTP enlarges the spine head (Park et al., 2006), which is correlated with an increase in synaptic 

AMPAR (Watson et al., 2017); whereas LTD reduces it (Zhou et al., 2004). Destabilisation of spines 

can eventually lead to their complete disappearance usually through the stubby stage (Alvarez 

and Sabatini, 2007). Importantly, dendritic spine dynamics lead to weakening or strengthening 

of synaptic connections and are thus widely believed to underpin learning and memory in the 

brain (Jedlicka et al., 2008) (Matsuzaki et al., 2004).  

 

b) Dendritic and spinal cytoskeleton 

 Three major cytoskeletal components are present in neuronal arborisations (axons and 

dendrites): microfilaments (actin filaments, 7 nm), intermediate filaments (keratin family of 

proteins, 8-15 nm) and microtubules (α- and β-tubulin, 25 nm with 15 nm lumen). Microtubules 

constitute the major cytoskeletal component of dendrites, whereas dendritic spines contain 

mainly actin microfilaments (Fig. 13). However, over the past years, actin was shown to 

participate in dendritic growth and microtubules were reported to invade spines (Hoogenraad 

and Bradke, 2009). The particular dendritic arborisation is a function of development in response 

to specific cues that eventually results in formation of functional synapses. In vivo imaging 

showed that dendritic development is a multistage process that begins shortly after axon 

specification. First, dendrites undergo initial elongation without branching. Then, dendrites begin 

to form branches to fill in their dendritic fields and connect with axons. Finally, before 

establishing a mature interconnected neuronal network, a large proportion of synaptic 

connections undergo pruning (Kreutz and Sala, 2012). This elimination process is a normal stage 

of brain development in both vertebrates and invertebrates. In mammals, soon after birth, as 

much as 50% of neurons undergo apoptosis and extensive pruning. Another peak of synapse 

elimination can be seen slightly later in the maturing brain (adolescent stage) (Semple et al., 

2013). All these dynamic processes precede the establishment of a fully mature brain where 

dendritic and axonal trees become stable and plasticity occurs rather rarely in basal conditions.  
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The actin cytoskeleton in dendritic arborisation and spines 

 Spines are actin-rich structures (see Fig. 13). The actin cytoskeleton is indispensable for spine 

morphogenesis, hence synaptic signalling. β- and γ-actin are major isoforms highly prevalent in 

neurons. Actin is found as soluble monomeric G-actin and polar filaments of polymerized F-actin. 

The ratio G/F-actin is thought to be responsible for spine plasticity (Kreutz and Sala, 2012). 

Previous research has shown that synaptic stimulation rapidly changes the equilibrium between 

G-actin and F-actin. The expression of LTP shifts the G/F-actin ratio toward F-actin (increase in F-

actin filaments) and enlarges spines, whereas LTD induction shifts the ratio toward G-actin 

(decrease in F-actin filaments) and causes spines to shrink (Okamoto et al., 2004). There are a 

few striking differences between actin filaments in dendritic spines versus in conventional 

filopodia of other cell types or even neuronal growth cones. First, in all other known filopodia, 

the actin cytoskeleton is composed of unidirectional actin, whereas spines are composed of actin 

filaments with two ends, one growing more rapidly (barbed end) than the other (pointed end), 

which results in the treadmilling of actin subunits from the barbed end to the pointed end. 

Second, actin forms a mix of both branched and unbranched filaments found throughout all 

compartments of the spine, while conventional filopodia are built of linear parallel actin bundles. 

Third, the associated molecular nucleators differ. In ordinary filopodia, actin filaments are 

assembled by linear actin nucleators such as formins. On the contrary, the principal nucleator of 

actin branching and remodelling within dendritic spines is the actin-related proteins 2 and 3 

(Arp2/3) complex (Racz and Weinberg, 2008) (Wegner et al., 2008). Actin polymerization and 

remodelling is controlled by a large set of regulatory molecules that respond to synaptic activity 

and are downstream of synaptic receptors including the Arp2/3 complex and its activators. For 

instance, cortactin is an actin nucleation-promoting factor that recruits and localizes Arp2/3 into 

spines. Shank proteins were recently shown to bind cortactin and this interaction stabilized actin 

cytoskeleton in spines (MacGillavry et al., 2016). WAVE-1 (WASP-family verprolin homology 

protein-1), another crucial Arp2/3 activator, serves as a signal transducer through Rho GTPase 

Rac-1. Genetic disruption of Arp2/3 or its activators revealed important roles in the regulation of 

morphology and number of spines (Hotulainen and Hoogenraad, 2010). Actin polymerization is 

further helped by profilin proteins. Upon stimulation, profilins translocate to dendritic spines. 
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Profilins change actin-associated ADP nucleotide to ATP and promote barbed-end polymerization 

(Pollard et al., 2000). Preventing profilin targeting destabilizes dendritic spines (Ackermann and 

Matus, 2003). Myosins are large (~520 kDa; two ~220 kDa heavy chains and two paris of light 

chains of variable size) actin-anchored mechanoenzymes that hydrolyze ATP to produce 

movement and force. Three classes of myosins are found within dendrites and dendritic spines 

(Kneussel and Wagner, 2013). Class II non-muscle myosins localise to the spine neck and proximal 

spine head and co-fractionate with PSD. Their function has been established in the regulation of 

spine morphology and dynamics in cultured hippocampal neurons (Kneussel and Wagner, 2013). 

Myosin IIb is required for spine maturation resulting in mushroom-shaped spines upon NMDAR 

activation (Hodges et al., 2011). Local blebbistatin (myosin II ATPase blocker) application causes 

depression of AMPAR-mediated excitatory currents in CA1 neurons. Indeed, the insights into the 

Figure 13: Cytoskeletal organization of dendritic spines. A. Actin and microtubule cytoskeleton organization in a 

mature dendritic spine from cultured hippocampal neurons visualized by electron microscopy (EM). Axonal 

cytoskeleton (purple), dendritic shaft (yellow), dendritic spine (cyan). The spine head typically contains a dense 

network of short crosslinked branched actin filaments, whereas the spine neck contains loosely arranged actin 

filaments, both branched and linear. Some branched filaments are at the base of spines and frequently reside directly 

on microtubules in the dendritic shaft. Image courtesy of Drs. Farida Korobova and Tatyana Svitkina (University of 

Pennsylvania, Philadelphia, PA). B. A schematic of a mushroom spine showing the postsynaptic density (in blue) with 

adhesion molecules and glutamate receptors. Actin filaments are represented in black lines (barbed ends in red), 

microtubules cytoskeleton in yellow. The endocytic zone (EZ) is located lateral to the PSD in extrasynaptic regions of 

the spine. Recycling endosomes (pink) localise in the shaft and spines. A small fraction of microtubules in mature 

dendrites are dynamic and transiently enter dendritic spines. The microtubule plus-ends are symbolized as yellow 

ovals. Images were taken from (Hotulainen and Hoogenraad, 2010). 
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myosin IIb-mediated LTP have been provided and published in the study of Rex and colleagues 

(Rex et al., 2010). Similarly, the myosin V class is found within the PSD and has been involved in 

LTP induction (Wang et al., 2008). Upon LTP, myosin Vb associates with GluA1-containing 

recycling endosomes and drives their delivery into spines which is followed by membrane fusion 

and AMPAR membrane incorporation resulting in spine surface growth (Wang et al., 2008). On 

the other hand, myosin Va is a transporter of endoplasmic reticulum (ER) into spines, a step 

required for LTD induction. Rodents with myo5a mutations lack the smooth endoplasmic 

reticulum (ER) that is normally present in spines of Purkinje neurons (Wagner et al., 2011). 

Moreover, these neurons fail to respond to LTD, which depends upon the mGluR1-induced 

calcium release from ER in spines, and disrupts the parallel fibre-Purkinje cell communication 

(Wagner et al., 2011) (Miyata et al., 2000). The third class of synaptic myosins are myosins VI. 

Myosin VI was reported to directly regulate AMPAR trafficking to the postsynapse (Nash et al., 

2010). The loss of myosin VI in mice decreases spin number and length in the CA1 region 

(Osterweil et al., 2005). There are many actin-associated proteins that have been identified to 

play important role in structural spine plasticity and extensive research still continues (Hayashi 

et al., 2002a) (Kreutz and Sala, 2012). 

 

The role of microtubules in dendritic arborisation and spines 

Alike in axons, dendritic microtubules (MTs) are composed of α- and β-tubulin heterodimers 

that connect in a head-to-tail fashion forming tubule-like structures with a hollow lumen (Gu and 

Zheng, 2009) (Pickel and Segal, 2014). In dendrites of mammalian neurons, however, the MT 

orientation is of a mixed polarity with both distally and proximally oriented plus and minus ends 

(Yau et al., 2016). This is very important, because the molecular motors dynein and kinesin are 

capable of bidirectional transport of cargoes. Several MT-associated proteins have been 

identified to regulate MT dynamics and dendritic transport and hence dendritic development. 

These include MAPs (microtubule-associated proteins), MT plus-end tracking proteins (+TIP), MT 

polymerizing and severing proteins and tubulin regulating proteins (Poulain and Sobel, 2010). 

The well-studied MAP2 protein is a substrate for different kinases and its phosphorylation state 

has been shown to impact on dendritic arborisation (Diez-Guerra and Avila, 1993). As an example, 
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the c-jun N-terminal kinase 1 (JNK1) phosphorylation of MAP2 promotes dendritic elongation 

(Bjorkblom et al., 2005). On the other hand, loss of JNK1 leads to MAP2 dephosphorylation 

causing dendritic shortening with a high level of branching as shown in cerebellar granule 

neurons (Podkowa et al., 2010). 

Whether MTs are present in dendritic spines has been a controversial topic, however, 

evidence suggests that transient occurrence of MTs in spines indeed takes place (Fig. 13). For 

instance, neuronal depolarization was shown to trigger MT polymerization and invasion into 

spines (Hu et al., 2008). This activity-dependent MT spine entry is most likely regulated by 

synaptic NMDA receptors (Merriam et al., 2011), whereas stimulation of both synaptic and 

extrasynaptic NMDARs suppresses dendritic MT dynamics and MT entry into spines (Kapitein et 

al., 2011). Furthermore, the MT invasion into spines was reported to be associated with both 

spine enlargement (Merriam et al., 2011) and increased PSD-95 content (Hu et al., 2011). 

Interestingly, it was suggested that MT spine entry could directly regulate the transport of 

molecular cargoes to and from spines (Schapitz et al., 2010). The most recent piece of data 

indicates that the MT entry occurs at the specific sites of the spine base in response to synapse-

specific calcium transients and is further dependent on F-actin and MT-associated protein drebrin 

(Merriam et al., 2013). It should be, however, taken into consideration that in the 

abovementioned studies the presence of MT in spines was detected using solely the MT-

associated protein, the +TIP protein EB3. Thus, it would be of interest to the broad neuroscientific 

community to confirm these findings using additional MT markers and trackers.  

 

 As mentioned previously, excitatory synapses are principally formed on dendritic spines, 

whereas inhibitory neurotransmission occurs generally on dendritic shafts, cell bodies and axon 

initial segments. Not only the localisation of axonal innervation can help predict the type of 

neurotransmission but more importantly the molecular composition of the postsynapse. 

Excitatory synapses are characterised by the presence of the postsynaptic density (PSD), an 

electron-dense region, formed by protein complexes that adhere to the postsynaptic membrane. 

On the other hand, inhibitory synapses do not possess a clear PSD because the molecular 
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composition of an inhibitory postsynapse is much more simplified and less enriched in proteins 

(Pickel and Segal, 2014) (Sheng and Kim, 2011). 

 

c) Components of the PSD 

 The PSD is essentially a disc-like proteinaceous organelle localised to the tip of a dendritic 

spine and held together by a myriad of adhesion molecules, membrane receptors, scaffolds, 

cytoskeleton elements and a host of other signalling molecules. An average PSD has 360 nm in 

diameter and contains a total molecular mass of 1.1 +/- 0.4 gigadaltons which can be imagined 

as 10,000 proteins of 100 kDa (Chen et al., 2005). Notably, the PSD protein composition is 

modifiable by neuronal activity to allow for weakening or strengthening of synaptic connections. 

Owing to the PSD importance in synaptic transmission, the composition of the PSD has been 

extensively analysed since 1970s when the first experiments of synaptosomes gradient 

purification and detergent-based PSD isolation were performed (Davis and Bloom, 1973) (Sheng 

and Kim, 2011). Later, electron microscopy imaging revealed the prominent membrane 

thickening of the PSD (Siekevitz, 1985). Mass spectrometry and immunoprecipitation analyses 

have yielded a common set of ~300 PSD proteins (Collins et al., 2006) (Dosemeci et al., 2007). In 

an average size glutamatergic PSD, calcium-calmodulin dependent kinases CaMKIIα and CaMKIIβ 

are the most abundant proteins with ~4800 and ~800 copies, respectively. Additionally, about 

400 copies of the PSD-95 family (~300 copies of PSD-95 only) and ~360 copies of SynGAP (synapse 

specific Ras/Rap GTPase activating protein) are present. Interestingly, only ~15-20 copies of 

NMDA and AMPA receptors, that mediate the majority of excitatory neurotransmission in the 

brain, are contained within the PSD (Sheng and Kim, 2011). 

 

 PSD-95 is the best studied PSD scaffold protein since its identification in early 1990s. Some 

of this attention can be attributed to the genetic polymorphisms that were found to cosegregate 

with mental disease (Feyder et al., 2010). The PSD-95 subfamily belongs to the membrane-

associated guanylate kinase (MAGUK) family characterized by the presence of at least one PDZ 

domain that plays important roles in anchoring and stabilising membrane proteins. The PSD-95 

group of proteins is formed by four distinct genes encoding PSD-95 (SAP90, synapse-associated 
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protein 90), PSD-93, SAP102 and SAP97. All members have three PDZ domains, one SH3 (SRC 

homology) domain and one GK (guanylate kinase) domain. PSD-95 localises close to the 

postsynaptic membrane ~12 nm, a distance that correlates with the finding that PSD-95 directly 

interacts with the C-terminal of GluN2 subunit of NMDAR, which stabilizes NMDAR at the 

membrane (Prybylowski et al., 2005). In addition, PSD-95 also binds to AMPARs. The PSD-95-

mediated receptor recruitment to the membrane is crucial for functional coupling of these 

receptors with downstream signalling players in the PSD.  

 

 As recently shown, decreased levels of the PSD-95 group of proteins result in smaller PSDs 

and significant reduction of synaptic transmission by AMPARs and NMDARs in cultured rat 

hippocampal neurons (Chen et al., 2015). In regard to synaptic plasticity events, some 

discrepancies still need to be addressed to clarify whether PSD-95 actively participates in the 

expression of long term potentiation (LTP). Interesting, however, is the finding that synaptic 

potentiation induced by overexpression of PSD-95 is able to convert silent synapses into 

functional synapses (Ehrlich and Malinow, 2004). In contrast, consistent data suggest that PSD-

95 is functionally involved in long term depression (LTD). This form of plasticity is impaired by 

RNAi knockdown or genetic disruption of PSD-95 in mice, while enhanced upon PSD-95 

overexpression (Ehrlich et al., 2007) (Sheng and Kim, 2011). In general, the activity-dependent 

redistribution of synaptic PSD-95 is associated with increase or loss of AMPARs and changes in 

glutamate-receptor-induced signal transduction including CREB (cAMP-response element 

binding protein), and MAPK (mitogen-activated protein kinase), both of which are the mediators 

of synaptic plasticity. 

 

 Shank1-3, other members of the PSD protein assembly, are large proteins of ~200 kDa that 

are involved in dendritic spine growth and synaptic transmission. Mutations within genes coding 

for Shank proteins have been described in several forms of intellectual disability, which reflects 

the functional importance of these proteins (Bonaglia et al., 2001). Shanks do not only localize 

directly underneath the postsynaptic membrane but they extend up to 120 nm deep in the PSD. 

Shank proteins molecularly bridge two types of glutamatergic receptors: NMDAR and group I 
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metabotropic GluRs. They further interact with GKAP (guanylate kinase associated protein), 

another highly abundant scaffold (Sheng and Kim, 2011). The Homer family (Homer 1-3) of 

scaffold/adaptor proteins are thought to act synergistically with Shank and regulate the 

localization and activity of target proteins such as the Group I mGluRs (Shiraishi-Yamaguchi and 

Furuichi, 2007). Beside scaffold proteins, additional signalling molecules are integral components 

of the PSD. These are: CaMKII (calcium/calmodulin-dependent protein kinase II), small GTPases 

(Ras, Rap, Rac, Rho, Ran and Arf), and their regulators GEFs (guanine exchange factors) and GAPs 

(GTPase-activating proteins). 

 CaMKII is a serine/threonine protein kinase and the most abundant synaptic protein that 

accounts for ~1-2% of total brain protein (reviewed in (Hell, 2014)). CaMKII is a holoenzyme 

formed by 12 catalytic kinase subunits (dodecamer) that prior to activation are in an 

autoinhibited conformation (Fig. 14). CaMKII is activated by binding of calcium ions, that influx 

through NMDARs, and calmodulin (CaM). This causes CaMKII relocation from the spine cytosol 

Figure 14. Structure of CaMKII. A. Schematic of a structural model of CaMKII dodecamer. According to the model, 

the CaMKII dodecamer exists in three conformations: (1) a closed inhibited/inactive conformation with the linker 

folded into the association domain, rendering it inaccessible for Ca2+/CaM binding; (2) an extended inactive 

conformation with the linker extended outward; and (3) a fully extended active conformation with Ca2+/CaM bound 

to the regulatory segment. Light blue segments represent the catalytic domains. B and C. Crystal structure model of 

the CaMKII dodecamer in its closed conformation. Side (B) and top (C) views. Taken from (Hell, 2014). 
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to the PSD within less than 2 min (Otmakhov et al., 2004). Upon Ca2+/CaM biding, CaMKII can be 

autophosphoryled at T286, which leads to a persistent kinase activity beyond the Ca2+/CaM 

detachment (Coultrap et al., 2010). CaMKIIα and CaMKIIβ, encoded by CAMK2A and CAMK2B 

genes, respectively, are the two most prevalent isoforms in the brain. In basal state, there is twice 

as much CaMKII in dendritic spines than in the shaft. The diffusion exchange of CaMKII between 

spine and shaft lasts approximately 1-5 min (<1s for free GFP; (Loriol et al., 2014)) with respect 

to 15% of CaMKII that remains immobile in spines after 30 min in unstimulated conditions. 

Protein-protein interactions play a critical role in retention of CaMKII in spines. α-actinin supports 

CaMKII binding to F-actin filaments. Upon Ca2+/CaM ďinding CaMKII interaction ǁith α-actinin is 

disrupted which allows for CaMKII redistribution toward PSD (Robison et al., 2005) (Hell, 2014). 

CaMKII and F-actin interactions in spines are mutually important: F-actin anchors CaMKII and 

CaMKII stabilizes and bundles F-actin, which regulates spine size (Lin and Redmond, 2008). This 

kinase can be also anchored to the PSD by association with L-type Ca2+ channels that are required 

for CaMKII-dependent phosphorylation and activation of CREB (Wheeler et al., 2012). Moreover, 

a direct association of activated CaMKII with GluN2B subunit of NMDAR is essential for CaMKII 

recruitment to PSD (Halt et al., 2012). CaMKII binding to GluN2B is also a prerequisite for CaMKII-

dependent phosphorylation of the GluA1 subunit of AMPAR that results in an increase of AMPAR 

conductivity during LTP (Kristensen et al., 2011). Although the exact mechanisms are yet to be 

discovered, one of the most intriguing outcome of CaMKII activation is an increased 

incorporation of AMPAR into the postsynaptic membrane followed by the expression of LTP 

(Bosch et al., 2014). It is for this reason that CaMKII is considered the central regulator of synaptic 

plasticity underlying learning and memory.  

 Importantly, upon synaptic activation CaMKII was also found to shape the synaptic content 

by controlling protein turnover through the recruitment proteasomes in dendritic spines (Bingol 

et al., 2010). Ca2+ influx via NMDARs augments CaMKII accumulation in stimulated spines just 

before proteasome accumulation. The ability of CaMKII to recruit proteasomes depends on its 

activation by Ca2+/CaM, autophosphorylation on T286, and binding to GluN2B (Hamilton et al., 

2012). The particular way of CaMKII activation and binding to its docking site on GluN2B and to 

proteasome, assures that proteasome accumulation mainly occurs in activated spines. These 
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findings indicate that CaMKII can play a structural role by functioning as an activity-dependent, 

autoregulated postsynaptic proteasome scaffold. Regulation of synaptic protein repertoire is an 

important mechanism not only for LTP but also for activity-induced formation (Hamilton et al., 

2012) and stabilization (Hill and Zito, 2013) of new spines. 

 Small GTPases are a type of G-proteins that function as molecular switches driving the Mg2+-

dependent hydrolysis of active state GTP (guanosine triphosphate) into inactive GDP (guanosine 

diphosphate). It is for this reason that small GTPases are involved in many synaptic signal 

transduction pathways. At the postsynapse, these enzymes were reported to regulate synaptic 

structure and function, and consequently they have been associated with various brain diseases. 

Ras family of small GTPases regulates the CaMKII and NMDAR-dependent synaptic delivery of 

AMPAR during LTP. On the contrary, Rap mediates synaptic removal of AMPAR upon LTD (Zhu et 

al., 2002). Rho GTPases direct the actin dynamics in the formation and remodelling of spines (Ba 

et al., 2013). GAPs (GTPase-activating proteins) and GEFs (guanine nucleotide exchange factors) 

catalyse the activation of small GTPases and are as well crucially implicated in the regulation of 

synaptic structure and function (Duman et al., 2015). SynGAP is highly enriched at excitatory 

synapses. De novo mutations resulting in dysfunctional SynGAP are associated with autism 

spectrum disorders that are characterised by impaired excitatory synaptic function. This is most 

likely due to the imbalance excitation-inhibition as genetic deletion of SynGAP increases 

excitatory synaptic strength. Importantly, NMDAR and CaMKII act as upstream regulators of 

SynGAP (Wang et al., 2013). 

 

 

1.3 The mechanisms of glutamatergic neurotransmission 

 

Glutamate, one the non-essential amino acids, is the major excitatory neurotransmitter 

in vertebrates. I would like to pinpoint, however, that glutamate is also an important metabolic 

molecule in the brain. The blood-brain barrier (BBB) prevents dietary and stored lipids from 

reaching the brain. Unlike other organs, the ďrain’s ŵass is liŵited ďǇ the cranial ďones, and only 

a limited amount of glucose is stored in the form of glycogen and no adipose tissue is present in 
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the brain as a backup source of energy. This leaves the brain dependent on blood-circulating 

glucose directly from food or the energy supplier - the liver (providing glucose through 

glycogenolysis and gluconeogenesis). Over the past two decades, the role of glutamate as an 

energy-providing biomolecule in the brain has been scientifically supported. Karaca et al. 

provided evidence that glutamate is an essential energy-providing substrate of astrocytic 

glutamate dehydrogenase (GDH). Preventing glutamate oxidation by GDH increases the ADT/ATP 

ratio and promotes hepatic glucose production (Karaca et al., 2015). In general, the metabolic 

production of glutamate happens as follows: Glucose crosses the BBB and reaches neuronal cells 

either directly or via endothelial and astrocytic cells (through plasma membrane glucose 

transporters [GLUT]). Glucose then undergoes cytosolic glycolytic break down resulting in the 

production of pyruvate, which enters the tricarboxylic acid cycle (TCA). One of the TCA products 

is α-ketoglutarate, a GDH substrate generating glutamate (de novo production of glutamate). 

Glutamate can be further converted into glutamine by glutamine synthetase (astrocyte- and 

oligodendrocyte-specific enzyme) or γ-amino butyric acid (GABA) by glutamate decarboxylase 

(restricted to GABAergic neurons). Both astrocytes and neurons contain glutamine transporters 

and so glutamine can be taken up by neurons and converted by the mitochondrial glutaminase 

to glutamate.  

Apart from being a bioenergetic substrate, glutamate functions as a major excitatory 

neurotransmitter that is highly present throughout the brain and spinal cord. The extremely high 

concentrations of glutamate in the brain tissue are tightly regulated to prevent excitotoxicity. 

The extracellular glutamate that is released by synaptic vesicles must be rapidly cleared up in the 

scale of a millisecond. Some of the synaptic cleft glutamate is endocytosed and recycled by 

neurons and the rest is taken up by astrocytes through the excitatory amino acid transporters 

(EAATs) primarily localised on synaptic astrocytic processes (Niciu et al., 2012).  

 

 Glutamate receptors 

The typical glutamatergic neurotransmission occurs between axonal terminals and dendritic 

spines (axo-dendritic/spinous transmission). Released glutamate activates a family of 

glutamatergic receptors consisting of ionotropic glutamate receptors (iGluRs) and metabotropic 
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glutamate receptors (mGluRs). iGluRs are membrane-embedded tetrameric complexes that upon 

glutamate binding function as cation channels for Na+, K+ and some also pass Ca2+. On the 

contrary, mGluRs have seven transmembrane domains and signal through coupled G-proteins 

and second messenger systems.  

 

A. Ionotropic glutamate receptors  

iGluR are assembled in the endoplasmic reticulum as tetramers, often dimers of dimers 

(reviewed in (Karakas et al., 2015) (Pickel and Segal, 2014)). As shown in Figure 15, each subunit 

has two ligand-binding domains (S1 and S2) that are necessary for glutamate binding, three 

transmembrane domains (M1, M3 and M4), and an ion pore-lining region (M2). Interestingly, 

RNA editing of glutamine to arginine makes the channel impermeable to Ca2+. Three major 

classes of iGluR have been identified based on a specific molecule selectivity (reviewed in (Niciu 

et al., 2012) (Pickel and Segal, 2014)): N-methyl-D-aspartate receptors (NMDARs), α-animo-3-

hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs) and kainate receptors (KARs). 

Three families of NMDARs have been identified: GluN1, GluN2 and GluN3. Four different genes 

encode the subunits of AMPAR: GluA1 – GluA4; and five subtypes of KARs are known to date: 

GluK1 – GluK5.  

 

Figure 15. Subunit composition of ionotropic glutamate receptor. Each subunit of ionotropic glutamate receptors 

(NMDA, AMPA and kainate receptors) is composed of three transmembrane domains (M1, 3 and 4) and one re-

entrant loop (M2). Moreover, glutamate binding is localised in a pocket that is formed by two extracellular domains 

(S1 and S2). S1 is present in the N-terminal loop and S2 is found between M3 and M4. The C-terminus varies in length 

depending on the subunit specificity. Adapted from (Sanz-Clemente et al., 2013). 
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a) NMDA receptors 

NMDARs possess the highest affinity for glutamate (EC50: 1 µM). NMDARs display a broad 

functional diversity. They differ in subunit composition, biophysical and pharmacological 

properties, their interacting partners as well as subcellular localisations (reviewed in (Vyklicky et 

al., 2014)). Moreover, the NDMAR subunit expression differs throughout the development and 

also in mature brain (Fig. 16B). Seven distinct subunits belonging to three NMDAR families have 

been identified: one GluN1 subunit, four GluN2 subunits (GluN2A-D) encoded by four distinct 

genes, and two separate genes coding for GluN3A and GluN3B subunits. All NMDARs contain an 

obligatory GluN1 homodimer coupled with a homodimer or heterodimer constituting of other 

GluN2/3 subunits (Fig. 16A). The ubiquitously-expressed GluN1 subunits are present throughout 

the brain from the embryonic day 14 (E14). GluN1 knock-out mice die shortly after birth of 

respiratory failure suggesting that the GluA1 subunits are indispensable for neurodevelopment 

(Tsien et al., 1996). In addition, the CA1-restricted GluN1 knock-out mice show defects in synaptic 

plasticity and spatial learning (Tonegawa et al., 1996). Although there is only one gene encoding 

the GluN1 subunit, the NMDAR composition gets more complex as the product of the GluN1 gene 

can be alternatively spliced into eight distinct isoforms (GluN1-1a-4a and GluN1-1b-4b). 

 

NMDARs have some unique properties that distinguish them from other iGluRs. Firstly, they 

require a co-agonist activation. Several binding co-agonist sites have been identified to regulate 

the channel opening (two obligatory co-ligands: glutamate and glycine or D-serine; polyamines 

and cations such as Mg2+, Zn2+ and H+). Secondly, NMDAR channels are permeable for Ca2+ ions. 

And thirdly, they show slow deactivation kinetics owing to slow glutamate unbinding. Apart from 

glutamate, NMDARs bind other known ligands. These are the short-chain dicarboxylic amino 

acids (NMDA, aspartate, …Ϳ. Interestingly, the open-NMDAR binds Mg2+ to prevent cation flux, 

while Zn2+, although also divalent, does not have such an effect. GluN2 binds glutamate and 

several competitive antagonists such as D-AP5, while the GluN1 subunit binds glycine (Niciu et 

al., 2012) (Paoletti et al., 2013). 
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The intracellular cytosolic domains of NMDARs are the least conserved regions, thus they 

provide subunit-specific functions involved in receptor trafficking, localisation and downstream 

signalling. They directly interact with PDZ domain-containing proteins of the PSD e.g. the MAGUK 

family. Such an interaction can stabilize NMDARs in the postsynapse, like in the case of GluN2B 

subunit (Prybylowski et al., 2005). Phosphorylation (for instance by cyclin-dependent kinase 5, 

protein kinase A and C and SRC tyrosine kinase) of the PDZ-binding motif in NMDAR subunits also 

accounts for the mobility and membrane stability of the receptor subunits (Paoletti et al., 2013). 

Importantly, CaMKII interacts more strongly with GluN2B and this interaction has major 

implications in the regulation of AMPAR synaptic content, expression of synaptic plasticity and 

synapse maturation (Wang et al., 2011) (Gambrill and Barria, 2011). 

In cultured neurons, GluN2A synaptic delivery requires synaptic activity, whereas GluN2B 

does not (Barria and Malinow, 2002). GluN2B was additionally reported to undergo synaptic 

Figure 16. NMDAR subunit diversity and expression pattern. A. Various populations of NMDARs that are thought to 

exist in the CNS. B. The expression profile of different NMDAR subunits throughout the mouse brain development. 

Taken from (Paoletti et al., 2013). 
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clearance upon phosphorylation of the PDZ-binding domain by casein kinase 2 (CK2) (Sanz-

Clemente et al., 2010). This finding indicates that alterations in synaptic activity control the 

synaptic NMDAR subunit content. 

 

Although AMPARs are considered the prototypic receptor mediators of synaptic plasticity, 

NMDARs are also dynamically regulated in response to LTP and LTD events. Some important 

discoveries have been made in regard to NMDAR involvement in LTP and LTD (reviewed in 

(Luscher and Malenka, 2012)). NMDA-mediated LTP (LTPNMDA) requires stronger induction and 

develops slower, which is in line with slower mobility of NMDARs. A rise of postsynaptic Ca2+ 

precedes LTPNMDA and can happen without changes in AMPAR-mediated transmission. An 

increase in synaptic content of certain subunits of NMDAR (shown for GluN2D and GluN2A) has 

been detected. Under particular stimulation protocols LTDNMDA occurs without the accompanying 

LTDAMPA. LTD-mediated dynamin-dependent internalisation of NMDARs has been shown in CA1-

CA3 and CA3-CA3 synapses. The precise mechanisms of NMDAR-mediated synaptic plasticity 

events remain to be addressed. In the context of AMPAR-mediated LTP/LTD, NMDAR provide an 

indispensable source of Ca2+. Some hypothesize that the composition of NMDARs could dictate 

whether LTPAMPA or LTDAMPA is expressed. The GluN2A plays a crucial role in LTPAMPA as mice 

lacking GluN2A show reduced LTP at CA3-CA1 synapses, and a complete loss of LTP in the superior 

colliculus (optic tectum) and cerebellar granule cells (Zhao and Constantine-Paton, 2007) 

(Andreescu et al., 2011).  On the other hand, loss of GluN2B abolishes LTD in the CA1 region. This 

suggests that GluN2A could be specifically implicated in LTPAMPA while GluN2B in LTDAMPA 

induction.  

 

Owing to the importance of NMDAR in synaptic function, defects due to hypo- and 

hyperfunction of NMDARs have been described in numerous neurological and psychiatric 

illnesses. After brain injury, glutamate levels rise, which has a cytotoxic effect leading to neuronal 

death (Lai et al., 2011). NMDARs act as major excitotoxicity mediators and thus much effort has 

been put into developing NMDAR antagonists that would exhibit neuroprotective function. 

Unfortunately, many of these broad-spectrum molecules showed intolerable side effects, and 
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therefore could not be used in clinics. For this reason, the focus of the pharmacological research 

shifted toward developing subunit selective therapeutics. Pharmacological disruption of the 

interaction between GluN2B subunits has been successful in ischemic brain injury in rodents 

(Aarts et al., 2002), non-human primates (Cook et al., 2012) and also humans (Hill et al., 2012). 

In contrast, potentiating NMDAR function could be beneficial in some neuropsychiatric 

conditions that display attenuated NMDAR function. Schizophrenic patients show reduced 

NMDAR-mediated neurotransmission in GABAergic interneurons that results in imbalanced 

excitation and inhibition and could explain psychosis and perturbed cognitive function in these 

patients (Moghaddam and Javitt, 2012) (Paoletti et al., 2013). Intriguingly, the use of NMDAR 

antagonists in healthy humans causes schizophrenia-like symptoms and worsen the symptoms 

in schizophrenics. Until now, however, enhancing NMDAR activity by elevating glycine or D-serine 

levels has gained mixed results (Moghaddam and Javitt, 2012). 

 

b) AMPA receptors 

AMPARs are tetrameric receptors composed of combinations of four subunits GluA1 - GluA4 

(Fig. 17) with the turnover from 10h to 2 days (Henley and Wilkinson, 2016). Estimates show that 

rodent hippocampus and cortex contain synaptic AMPARs composed mainly of GluA1-GluA2 or 

GluA1-GluA3 heteromers (Lu et al., 2009). GluA4 is a less abundant subunit that is tightly 

developmentally regulated and sparsely expressed at excitatory synapses in the adult brain (Zhu 

Figure 17. Subunit composition and ion permeability of AMPAR. RNA editing of the GluA2 subunit determines 

calcium permeability of AMPARs. AMPARs that lack the GluA2 subunit, or an unedited GluA2 subunit are calcium-

permeable. AMPAR that contain an edited GluA2 subunit do not gate calcium. Not shown: GluA3 homomers, 

(calcium permeable), GluA2 homomers (calcium permeability depends on the RNA editing) and GluA4 (similar to 

GluA1). Adapted from (Henley and Wilkinson, 2013). 
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et al., 2000). AMPAR trafficking (including exo- and endocytosis) and surface diffusion have been 

well studied mechanisms owing to their implications in synaptic plasticity. It is widely believed 

that LTP is induced following these steps: 1. activity-dependent CaMKII phosphorylation of the C-

terminal part of GluA1 (this subunit is indispensable for the initial stages of LTP), 2.  GluA1 

interaction with PDZ-containing PSD proteins, and 3. GluA1-GluA2 recruitment at the synapses. 

On the contrary, the GluA2 subunits-mediated endocytosis is responsible for the opposite 

plasticity phenomenon (LTD). However, as discussed in a review by Henley and Wilkinson (Henley 

and Wilkinson, 2016), this AMPAR dogma has been, in recent years, challenged by newly 

emerging scientific evidence.  Intriguingly, some complete contradictory data emerged in a study 

using single-cell molecular replacement strategy in CA1 mouse neurons. According to (Granger 

et al., 2013) upon strong LTP induction no specific AMPAR subunits were required for the 

expression of LTP. Moreover, LTP could be still induced in the concomitant absence of AMPAR 

subunits that were replaced by KAR subunits (Granger et al., 2013). However, a reserve pool of 

AMPAR that is present at the synapse and presumably does not undergo the LTP-induced 

trafficking is mandatory, as neurons with markedly reduced AMPAR pools showed LTP 

impairment (Granger et al., 2013). One should, however, take into account that these 

experiments were performed under very intense saturating LTP protocols, which could 

potentially drive a non-physiological AMPAR subunit substitutions. Undeniably, even if 

considering the conditions of the experimental procedure, a hippocampal LTP mechanism 

independent of AMPA receptor subunit specificity is a significant discovery, and future research 

will need to disclose more details. One possible clue could derive from the PSD itself. AMPARs do 

not bind to PSD proteins directly but through the interaction of their auxiliary domains with the 

transmembrane AMPAR regulatory proteins (TARPs) (Coombs and Cull-Candy, 2009). CaMKII 

phosphorylation of stargazin, a TARP, increases its binding to PSD-95. Such a mechanism could 

possibly explain the subunit-nonspecific increase in AMPARs at the synapse driving LTP. However, 

there is a hitch as stargazin does not bind to KARs, and thus this model does not explain the 

AMPAR-KAR subunit substitution. 
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A new piece of evidence from the Humeau and Choquet labs shows that AMPAR membrane 

diffusion is mandatory for expression of LTP and hippocampal memory in vivo (Penn et al., 2017). 

They used biotin crosslinking strategy to immobilize surface AMPARs and prevent them from 

lateral diffusion. In normal conditions upon LTP induction, AMPARs diffuse almost freely from a 

surface pool toward into the postsynaptic membrane increasing their synaptic localisation hence 

synaptic potentiation. Preventing AMPAR surface diffusion resulted in attenuated LTP and led to 

defects in early phases of hippocampal-dependent fear learning in the mouse (Penn et al., 2017). 

This study clearly shows that manipulating AMPAR surface diffusion in vivo specifically affects 

learning but does not modify basal transmission which offers a new approach for further 

investigations into synaptic memory (Penn et al., 2017).  

 

An extra level of complexity in the mechanisms of AMPAR-mediated neurotransmission is 

given by transcriptional editing. In the adult brain, the majority (~99%) of GluA2 are present in 

an alternatively edited form. This RNA editing results in a charge change (glutamine to arginine 

at position 607) and renders the GluA2-containing AMPARs impermeable to calcium ions. Both 

Ca2+-permeable and -impermeable AMPA receptors harbour important functions in synaptic 

plasticity. LTP stimulation evokes an initial synaptic insertion of homotetrameric GluA1 AMPARs. 

In contrast, selective blocking of AMPARs that lack GluA2 (eliminating Ca2+-impermeable AMPAR) 

prevents LTP expression but no effect was observed when this selective blocker was used after 

the establishment of LTP. This means that Ca2+-impermeable AMPAR are needed for the initial 

LTP induction but are dispensable as they get possibly replaced by Ca2+-permeable AMPAR during 

the maintenance of LTP (Plant et al., 2006) (Jaafari et al., 2012). 

 

c) Kainate receptors 

NMDARs and AMPARs mediate the majority of fast excitatory neurotransmission in the brain. 

KARs on the other hand, despite being closely homologous with AMPAR, play distinct and quite 

diverse roles that are correlated with their subcellular localisation and signalling pathways. 

Importantly, KARs are expressed at both presynaptic and postsynaptic elements (reviewed in 

(Lerma and Marques, 2013) (Carta et al., 2014). They occur as homo- or heterotetramers 
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assembled by combination of five distinct subunits (GluK1-5) resulting in receptors with different 

kinetics and affinities for kainate. Moreover, GluK1-3 have different C-terminal splice isoforms, 

and GluK1 and GluK2 are subjected to RNA editing, adding to the diversity of KARs. The GluK4 

and GluK5 subunits seem not to undergo such processings. Unlike NMDARs and AMPARs, kainate 

receptors can in addition signal via G-proteins acting rather as metabotropic receptors. Due to 

these unique signalling properties they have been identified to play roles in a variety of neuronal 

functions. To begin, KARs are involved in synaptic transmission and modulation of neuronal 

network excitability. In addition, KARs have been also reported to participate in developmental 

maturation of the brain (Lerma and Marques, 2013). Transient kainate stimulation has been 

shown to change KARs surface expression. Recently, it was reported that kainate induces an 

increase in AMPARs at the synaptic membrane in an NMDAR-independent manner leading to 

changes in dendritic spine structure including enhanced growth and maturation (Petrovic et al., 

2017). The pathway responsible for this spine plasticity was identified to involve postsynaptic 

GluK2-containg KARs and endosomal vesicle recycling (Petrovic et al., 2017).  

 

B. Metabotropic glutamate receptors 

The function of metabotropic glutamate receptors is not carried out through the cation flux 

as in the case of ionotropic glutamate receptors (although they do modulate the function of 

iGluRs). mGluRs, members of the G-protein coupled receptor family (GPCR), modify synaptic 

transmission and neuronal excitability via trimeric G-proteins and associated signal transduction 

pathways (reviewed in (Bhattacharyya, 2016) and (Kalinowska and Francesconi, 2016)). mGluRs 

belong to class C GPCR (including GABAB receptors, Ca2+ sensing receptors, pheromone receptors 

and taste receptors) that differs from class A by the presence of a large extracellular N-terminal 

domain with a ligand-binding site for glutamate. mGluRs are further subdivided into 3 functional 

groups according to their sequence homology, G-protein coupling and ligand selectivity: Group I 

(mGluR 1 and 5), Group II (mGluR 2 and 3) and Group III (mGluR 4, 6, 7 and 8) (Niswender and 

Conn, 2010). Group I mGluRs exert their effects in two ways: Glutamate binding leads to the 

activation of phospholipase C that cleaves phosphatidylinositol 4,5-bisphosphate (PIP2). The 

products of this cleavage are (1) the inositol-3-phosphate (IP3) that is involved in the release of 
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intracellular calcium stores and (2) diacylglycerol (DAG) that activates PKC ((Kalinowska and 

Francesconi, 2016), Fig. 18). On the other hand, the Group II and III elicit their roles via inhibitory 

G-proteins (Gi) that decrease the levels of intracellular cAMP through the inhibition of the 

adenylyl cyclase/protein kinase A pathway.  

 

a) Group I mGluRs 

Group II and III mGluRs are involved in presynaptic inhibition via affecting both excitatory 

glutamatergic and inhibitory GABAergic neurotransmission. To this end, the focus of this part will 

be on the postsynaptic Group I mGluRs as these receptors play substantial roles in neuronal 

development and multiple forms of synaptic plasticity including learning and memory. In 

addition, Group I mGluRs have been extensively studied in the correlation with various 

neurological and neuropsychiatric disorders and are subject of drug discovery (see (Niswender 

and Conn, 2010) for a comprehensive review). Finally, Group I mGluRs have been implicated in a 

Figure 18.  Signal transduction of Group I mGluRs. mGluR1/5 activate Gq proteins upon glutamate binding. This leads 

to PLC activation and hydrolysis of PIP2, which rises the intracellular levels of IP3 and DAG. IP3 stimulates calcium 

release from ER, and DAG activates PKC. A mechanism that is depicted in the scheme is the feedback loop of Group 

I mGluRs activation: The rise in intracellular calcium leads to CaM-dependent CaMKII activation that phosphorylates 

the receptor at its C-terminus resulting in receptor desensitisation and blockade of the PLC cascade (Jin et al., 2013a). 

This mechanism is potentially involved in LTD induction (Kalinowska and Francesconi, 2016). Calveolin-1 is an adaptor 

protein involved in the control of the mGluR1/5 internalisation rate. 
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previous study from our laboratory (Loriol et al., 2014) as well as in my PhD project as being 

modulators of synaptic sumoylation (Annexed Article 3). 

 

mGluR1 is highly expressed in the hippocampus, cerebellum, olfactory bulb and the thalamus. 

mGluR5 is expressed in the hippocampus, cortex, striatum and olfactory bulb and at low levels in 

the cerebellum. Activation of mGluR1 or mGluR5 does not induce the same strength of 

responses, which is largely the result of a different amino acid coupling to the G-protein. 

Interestingly, the synaptic membrane composition also plays a role in the function of Group I 

mGluRs. These receptors contain a cholesterol binding motif. It has been reported that an 

increase in membrane cholesterol leads to an enhanced agonist-mediated activation of mGluR1, 

whereas a drop in membrane cholesterol content inhibits the mGluR1-dependent ERK activation 

(Kumari et al., 2013).   

In the CNS, LTD can be triggered either via the activation of NMDA receptors or mGluRs. 

Group I mGluR stimulation with the selective agonist DHPG was shown to transiently induce 

activation of CaMKIIα in the hippocaŵpus (Fig. 18). CaMKIIα ďinds to the ŵeŵďrane proǆiŵal 

segment of the C-terminal tail of mGluR1 (Jin et al., 2013a) and mGluR5 (Jin et al., 2013b). 

AutophosphorǇlated CaMKIIα ďinds ŵGluR1 with high affinity and phosphorylates the receptor 

at Thr871. As a result, CaMKII-dependent phosphorylation leads to a desensitization of mGlu1-

dependent activation of the PLC pathways, thus providing a feedback mechanism relevant to 

regulation of mGluR1 activity (Jin et al., 2013a). In contrast, autophosphorǇlated CaMKIIα has a 

reduced affinity for mGluR5, ǁhereďǇ CaMKIIα interaction ǁith the receptor is occluded ďǇ 

calmodulin competition for the same binding site (Jin et al., 2013b). At hippocampal Schaffer 

collateral-CA1 synapses, activation of Group I mGluRs with DHPG or by paired-pulse low 

frequency stimulation induces LTD (mGluR-LTD) by a mechanism that requires de novo protein 

synthesis (Huber et al., 2000). Application of CaMKII inhibitors impairs expression of mGluR-LTD, 

while concurrently inhibiting de novo protein synthesis elicited by Group I mGluRs (Mockett et 

al., 2011). This indicates that synaptic signalling by Group I mGluRs to CaMKII – possibly via their 

physical interaction – is critical for efficient expression of synaptic plasticity. 
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Another piece of evidence suggests that mGluR-mediated MAP kinase activation triggers the 

mGluR-LTD in pyramidal hippocampal neurons (Mao et al., 2005). Moreover, the scaffolding 

protein Homer 1, which interacts with group I mGluRs, has been shown to participate in this type 

of LTD (Mao et al., 2005). According to several reports, it seems that NMDAR-dependent LTD and 

mGluR-dependent LTD are mechanistically different but share a common mechanism involving 

the endocytosis of AMPARs (Luscher and Huber, 2010). Noteworthy, research suggests that the 

mGluR-LTD and NMDAR-LTD can coexist in the hippocampus (Huber et al., 2001). Understanding 

the molecular mechanisms underlying mGluR driven LTD and protein synthesis has gained much 

research interest since aberrant mGluR-LTD has been reported in the mouse model of Fragile X 

syndrome, the leading cause of intellectual disability and autism. Importantly, our laboratory 

(including my participation) found that mGluR5 activation promotes sumoylation of FMRP, a 

protein whose mutations co-segregate with Fragile X syndrome, and that this process is crucial 

for proper spine density and maturation (Annexed Article 2, Khayachi et al., 2018). This finding 

could have further implications when developing new therapeutics that target Group I mGluRs 

and are used for a treatment in variety of neurological disorders. 

 

Upon G-protein unbinding, mGluRs like many GPCRs undergo desensitisation, a negative 

feedback to prevent chronic activation. Several strategies of desensitisation have been observed. 

For instance, phosphorylation and endocytosis have been identified as mechanisms involved in 

the desensitization of mGluRs. Phosphorylation (by CaMKII, PKC or G-protein coupled protein 

kinases [GRKs]) triggers binding of adaptor proteins like e.g. β-arrestin which interferes with 

receptor coupling to G-proteins and thus the receptor fails to generate the second messenger 

response despite the presence of a ligand (Krupnick and Benovic, 1998). In contrast, PKA 

phosphorylation seems to inhibit mGluR1 desensitisation. In regard to receptor endocytosis, 

group I mGluRs undergo rapid internalization following ligand exposure (Mundell et al., 2001) 

(Mundell et al., 2004) (Choi et al., 2011). The internalization of Group I mGluRs starts as early as 

1 min after ligand exposure and maximum internalization was observed 30 min post-ligand 

application. Receptors recycle back to the plasma membrane in about 2.5 h – 3 h (Pandey et al., 

2014) (Mahato et al., 2015). The endocytosis is often a part of the desensitisation process 
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involving β-arrestin binding, which facilitates the targeting of receptors for clathrin-mediated 

endocytosis (Ferguson et al., 1996). 

 

Ubiquitination, another posttranslational modification, also targets group I mGluRs and 

regulates their internalisation. Recently, Gulia and colleagues reported that both mGluR1 and 

mGluR5 are subjected to ubiquitination by the E3 ubiquitin ligase Siah-1A (Gulia et al., 2017). The 

K1112 mutation to arginine inhibits mGluR internalisation. In addition, knocking down 

endogenous Siah-1A results in an increased mGluR-mediated endocytosis of AMPAR (Gulia et al., 

2017). These result suggest a synergistic role between ubiquitination, mGluRs and AMPARs. More 

investigation into this subject could shed light on the involvement of posttranslational 

modifications of mGluRs in the expression of synaptic plasticity. 

 

 

1.4 Posttranslational modifications implicated in synaptic 

function 
 

Multiple posttranslational modifications (PTMs) occur at both presynaptic and postsynaptic 

elements to regulate the function of synaptic proteins, thereafter the synaptic function. PTMs 

are carried out by an enzyme or enzymatic machinery in a spatial-temporal manner in response 

to a range of stimuli, typically to synaptic and neuronal activity. In general, PTMs can alter target 

proteins activity, trafficking (localisation), stability and interactions (protein-protein 

interactions). Some important synaptic PTMs were already briefly discussed throughout the 

introduction. Therefore, in this chapter I aim to summarize the findings on the most relevant 

PTMs in synaptic function, dedicating most of the attention to sumoylation - the subject of my 

PhD work. 

 

A. Phosphorylation 

It has been over 50 years (1959) since protein phosphorylation was first discovered as a 

critical biological regulatory mechanism by Krebs and Fischer (Fischer et al., 1959), for which they 

jointly received the Nobel Prize in 1992. More than 20 years ago the first crystal structure of a 
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kinase, the receptor tyrosine kinase, was solved (McDonald et al., 1995). Protein kinases 

constitute one of the largest gene families and have been recurrently associated with many 

diseases (review by (Chico et al., 2009)). It is for this reason, that they have become a major drug 

target second only to G-protein coupled receptors. Thus, intensive research investigations into 

the process and consequences of phosphorylation are under way in all biological fields.  

 

Protein phosphorylation is an essential and the most studied PTM. It is a reversible 

modification carried out by kinases that catalyse the addition of phosphate (PO4, from ATP) to a 

polar group of various amino acids; and reversed by different enzymes called phosphatases. This 

PTM changes target proteins from hydrophobic apolar to hydrophilic polar leading to alterations 

in conformation thus functional and interacting properties, including changes in protein stability, 

localisation, activity and protein-protein interations. Protein phosphorylation events occur 

mainly on serine (86.4%), threonine (11.8%), and tyrosine residues (1.8%; (Ardito et al., 2017). 

 

a) Presynaptic phosphorylation 

In the past, synaptic phosphoproteins were identified by in vitro assays using extracted or 

purified proteins. Based on this classical approach, several synaptic phosphoproteins and their 

kinases were identified. In the presynapse, syntaxin1A, synaptobrevin (VAMP) and SNAP25 were 

shown to be phosphorylated by CaMKII; synaptobrevin and SNAP25 also by PKC, and 

synaptotagmin1 and syntaxin1A by casein kinase II (CK2; (Bennett et al., 1993) (Kataoka et al., 

2000). Nowadays, phosphoproteomics, an advanced mass spectrometry approach, is widely used 

as it permits the identification of phosphorylation sites in a robust, global and quantitative 

manner. Oftentimes however, the functional relevance of these modifications is uncovered later 

with many to be yet elucidated. In regards to presynaptic proteins, phosphorylation has been 

perhaps not surprisingly implicated in the regulation of synaptic vesicle assembly/release. As an 

example, CaMKII phosphorylation of syntaxin 3B that is found specifically at retinal ribbon 

synapses has been shown to modulate the assembly of the SNARE complex and regulate the 

exocytosis of synaptic vesicles at these synapses (Liu et al., 2014). Another example comes from 

a recent study reporting that phosphorylation by different kinases on the same effector protein 

can have differential functional consequences. PKA phosphorylation of SNAP25 (at Thr138) 
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inhibits SNARE complex assembly, whereas PKC phosphorylation on a different phosphosite 

(Ser187) promotes SNARE complex formation. Interestingly however, activation of both kinases 

resulted in increased exocytosis (Gao et al., 2016). It should be emphasized, that this study was 

performed in PC12 cells, that present a mixture of neuroblastic and eosinophilic cells, and 

therefore the outcome of PKA and PKC SNAP25 phosphorylation in postmitotic neurons could 

differ. More recently, Katayama and colleagues provided evidence using a knock-in mouse model 

(where the phosphorylation site in SNAP-25 Ser187 is replaced by alanine) that the PKC 

phosphosite Ser187 in SNAP25 plays indeed a crucial role in synaptic vesicle dynamics. Moreover, 

the results suggested that Ser187 phosphorylation has a great influence on synaptic functions in 

the CNS, and may regulate higher brain functions and prevent excessive synaptic activity such as 

an epileptic seizure through inhibition of presynaptic plasticity (Katayama et al., 2017). 

As pointed above, certain presynaptic proteins have multiple phosphorylation sites that can 

simultaneously undergo opposing changes in their phosphorylation states with different 

functional consequences. A prototypic example are synapsins. While phosphorylation by CaMKII 

on Ser9, Ser566 and Ser603 upon stimulation decreases actin binding and increases exocytosis of 

synaptic vesicles, the tyrosine-kinase Src phosphorylation of synapsin at Tyr301 has the opposite 

effect (Cesca et al., 2010). Moreover, MAPK and Cdk5 phosphorylation at serine residues (62, 67, 

549 and 551) is downregulated upon synaptic stimulation resulting in a decreased binding of 

synapsin to actin filaments, possibly presenting a mechanism that regulates the ratio between 

resting and recycling synaptic vesicle pools (Verstegen et al., 2014).  

 

Noteworthy, a recent phosphoproteomic study has investigated the alterations in 

phosphorylation of important presynaptic proteins in rat brain synaptosomes upon exocytosis 

stimulation. The active zone proteins such as dynamin 1, synapsin 1, Piccolo, Bassoon, Munc13, 

RIM and others, exhibited concurrent changes in phosphorylation and dephosphorylation at 

multiple positions, some of them previously unknown. This report further reinforced the 

complexity of the molecular switch that this PTM offers to target proteins. Functional studies will 

have to be carried out to further examine the involvement of these new presynaptic 

phosphorylation sites in synaptic function (Kohansal-Nodehi et al., 2016). 
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b) Postsynaptic phosphorylation 

The involvement of postsynaptic phosphorylation and phosphoproteins in synaptic function, 

especially synaptic plasticity is nicely reviewed in (Lee, 2006). A more recent publication by Li et 

al. identifies LTP-regulated phosphoproteins at the PSD, many of which have been associated 

with brain disease (Li et al., 2016). In this part I will focus only on the most important historic 

findings and add some of the newest insights into the regulation of postsynaptic proteins by 

phosphorylation. By no means I will provide an exhaustive list of all phosphorylation-related 

regulatory mechanisms but rather a hint of the importance of this PTM at the postsynapse. 

It is generally believed, that a rise in intracellular calcium through NMDARs is the key 

determinant of LTP and LTD induction. Furthermore, many kinases and phosphatases present 

different sensitivity to calcium increase as they target NMDARs either directly or indirectly via 

associated phosphoproteins within a common macromolecular complex. Postsynaptic CaMKII, 

PKC, PKA, cGMP-dependent protein kinase (PKG), casein kinase II (CKII) and MAPK, and 

phosphatases (protein phosphatase 1, 2A and 2B [PP1, 2A and 2B]) have been all implicated in 

synaptic plasticity (reviewed by (Blackwell and Jedrzejewska-Szmek, 2013)). CaMKII hypothesis 

(Lisman, 1994) states that moderate increase in calcium preferentially activates PP2B leading to 

dephosphorylation and deactivation of CaMKII and induction of LTD, whereas more robust 

calcium influx triggers CaMKII autophosphorylation. This hypothesis was later replenished by the 

AMPAR trafficking phenomenon. Many phosphorylation sites have been identified on the 

intracellular carboxy-tail of NMDAR to regulate the receptor function. Importantly, this 

regulation is dependent on the developmental stage of neurons. Protein tyrosine kinases (PTK) 

and protein tyrosine phosphatases (PTP) are necessary for maintaining NMDAR function. 

Figure 19. CaMKII phosphorylation of GluA1 subunit of AMPAR can mediate 

differential plasticity responses. Weak but prolonged NMDAR stimulation 

inducing LTD or strong but brief inducing LTP, both lead to CaMKII 

autophosphorylation at T286, which generates autonomous kinase activity. 

However, a stronger further stimulation of CaMKII by Ca2+/CaM during LTP 

leads to phosphorylation of traditional CaMKII substrates (such as S831 on 

GluA1), whereas the autonomous CaMKII activity without such further 

stimulation after LTD stimuli favours phosphorylation of S567 on GluA1. The 

phosphorylation of CaMKII S831 or S567 promotes synaptic potentiation or 

depression, respectively. Taken from (Coultrap et al., 2014). 
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Application of PTK inhibitors or exogenous PTP (Wang et al., 1996) depresses NMDA receptor 

currents. Most of the Src family of PTK (i.e. Src, Fyn, Yes, and Lyn) localise in the PSD and associate 

with NMDARs (Salter and Kalia, 2004). Src serves as the major PTK regulating basal NMDAR 

function, and its activity is thought to be counteracted the striatal enriched tyrosine phosphatase 

(STEP) (Salter and Kalia, 2004). In addition, the GluN1, GluN2A, and GluN2B subunits of NMDAR 

can be regulated by phosphorylation on serine residues by PKA and PKC. For instance, the 

dispersal of NMDAR to extrasynaptic sites has been proposed to rely on PKC Ser890 

phosphorylation of GluN1 (Tingley et al., 1997) (Fong et al., 2002). Another regulatory mechanism 

of phosphorylation involves NMDAR trafficking from endoplasmic reticulum (ER) that depends 

on PKC and PKA phosphorylation around the ER retention motif that is present in certain isoforms 

of GluN1 (Scott et al., 2003). As already mentioned, CaMKII is the most abundant protein at the 

postsynapse, and therefore it is not surprising that it plays major roles in synaptic function 

including plasticity events. It phosphorylates an array of receptors and other PSD proteins 

regulating their functions (Lee, 2006) (Gambrill and Barria, 2011) (Hell, 2014). This topic has been 

already partially covered in previous chapters regarding the PSD composition and individual 

glutamate receptors, therefore I will only briefly mention some of the key regulatory mechanisms 

of phosphorylation by CaMKII. Traditionally, hippocampal LTP of synaptic strength requires Ca2+ 

influx via postsynaptic NMDA receptors and calmodulin binding to CaMKII leading to CaMKII 

activation by autophosphorylation at T286; since preventing this site from phosphorylation 

(T286A) fails to express LTP (Giese et al., 1998) (Lucchesi et al., 2011). The constitutively active 

autophoshorylated state of CaMKII allows it to tightly associate with PSD members. Translocation 

of CaMKII to dendritic spines and its prolonged residency (synaptic trapping) has been widely 

observed upon LTP induction (Lee et al., 2009). It has been proposed that CaMKII provides 

anchoring sites for AMPAR following LTP (Jackson and Nicoll, 2011). This kinase also contains two 

autoinhibitory sites T305 and T306, which are the binding sites of Ca2+/calmodulin, and prevent 

further activation upon an immediate calcium rise, which would otherwise result in 

excitotoxicity. Moreover, the autoinhibition decreases CaMKII affinity toward PSD (Coultrap and 

Bayer, 2012). Intriguingly, a 2014 study showed that CaMKII and its phospho-T286-induced 

͞autonoŵous͟ activitǇ is also required for the expression of LTD ((Coultrap et al., 2014), Fig. 19). 
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LTP induces CaMKII phosphorylation of the AMPAR subunit GluA1 at S831, whereas LTD induces 

CaMKII-mediated phosphorylation at S567, a site whose phosphorylation is known to mediate a 

decrease in synaptic GluA1 localization. Thus, this work uncovered a mechanism of differential 

regulation of AMPAR/CaMKII-mediated synaptic plasticity: CaMKII phosphorylation of GluA1 

S831 is favoured by LTP-type stimuli (strong but brief), whereas CaMKII phosphorylation of GluA1 

S567 is favoured by LTD-type stimuli (weak but prolonged; (Coultrap et al., 2014)).  

 

Recently, a novel regulatory postsynaptic mechanism involving CaMKII was demonstrated in 

Purkinje cells (Sugawara et al., 2017). The activity-dependent PKC-mediated phosphorylation of 

CaMKIIβ was found to be triggered by Group I mGluRs but not calcium influx. The Ser315 

phosphorylation interferes with CaMKIIβ F-actin binding, therefore preventing F-acting bundling 

and increasing the immaturity of dendritic spines.  In conclusion, the phosphorylation state of 

Ser315 is a driving force for equilibrated spinogenesis on distal dendrites of Purkinje cells 

(Sugawara et al., 2017). 

 

PSD-95, the second most abundant PSD protein is also a target of phosphorylation. Kim et al. 

(2007) reported that PSD-95 phosphorylation by Jun N-terminal kinase 1 (JNK1) at Ser295 is 

regulated by synaptic activity leading to the accumulation of PSD-95 in spines, thereafter synaptic 

potentiation. Additionally, JNK1 phosphorylation of PSD-95 is Rac-1 dependent and Ser295 

dephosphorylation is important for AMPAR internalisation-mediated LTD (Kim et al., 2007). Not 

long after this report, PSD-95 was reported to be involved in an activity-dependent spine growth. 

In response to local synaptic stimulation (glutamate uncaging), PSD-95 gets rapidly trafficked out 

of spines to allow for spine growth that is followed by a reestablishment of higher PSD-95 levels 

at the synapse (Steiner et al., 2008). This finding was further supported by the data from Wu et 

al. (2017), who proposed a model whereby increased dynamics of synaptic PSD-95 upon chemical 

LTP (cLTP) is a prerequisite for structural rearrangement of dendritic spines (Wu et al., 2017).  In 

the first case, Ser73 on PSD-95 was identified to be targeted by CaMKII whose phosphorylation 

destabilised PSD-95 in the PSD and led to PSD-95 and SHANK1 trafficking out of spines to 

terminate spine growth (Steiner et al., 2008). In the second instance, Ser561 phosphorylation 
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carried out by the microtubule affinity-regulating kinase (MARK also known as Par1) was reported 

to regulate a conformational switch in PSD-95 between the SH3 and GK domains. Moreover, 

preventing phosphorylation stabilized PSD-95 interaction with its binding partners and decreased 

its synaptic dynamics resulting in unresponsiveness to LTP stimulation. On the other hand, a 

phosphomimetic mutant showed enhanced dynamic properties (Wu et al., 2017). Another level 

of PSD-95 regulation by phosphorylation was revealed by Nelson et al. (2013) providing evidence 

that Thr19 phosphorylation by GSK-3β (a widely expressed kinase with a broad range of biological 

implications [reviewed in (Peineau et al., 2008)] including cell polarity, axon guidance, neuronal 

plasticity, phosphorylation of tau [involved in formation of neurofibrillarǇ tangles in Alzheiŵer’s 

Disease], as well as it is a target of Li+ treatment in bipolar disorder) destabilises PSD-95 in spines 

and is essential for AMPAR internalisation during the expression of LTD in CA1 hippocampal 

neurons (Nelson et al., 2013). Altogether, these findings bolster the fact that 

phosphorylation/dephosphorylation take place on diverse sites of target proteins having various 

and often opposing functional consequences to balance physiological processes. 

 

B. Palmitoylation 

Lipid modifications regulate diverse aspects of neuronal protein trafficking and function by 

increasing their hydrophobicity and facilitating their insertion into cellular membranes (reviewed 

in (Fukata and Fukata, 2010)). Palmitoylation, is the most common lipid modification that 

frequently occurs in neurons. Palmitoylation is defined as the addition of 16-carbon palmitic acid 

to specific cysteine residues via the formation of a thioester bond. Most palmitoylation is 

reversible due to the unstable thioester bond (S-palmitoylation), however a stable irreversible 

amide bond has been also reported (N-palmitoylation) e.g. in Sonic hedgehog (Pepinsky et al., 

1998)). Recent advances in the detection of palmitoylated proteins enabled to identify 68 already 

known and more than 200 new palmitoylation substrates in rat brain synaptosomes and cultured 

cortical neurons. Moreover, palmitoylation (palmitoyl acyl transferases, PATs) and 

depalmitoylation (palmitoyl protein thioesterases, PPTs) enzymes have been identified. PATs 

share a common domain known as the DHHC cysteine-rich domain that consists of ~50 amino 

acids with a conserved Asp-His-His-Cys region. In mammals, 23 kinds of DHHC proteins are 
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predicted. Importantly, many neuronal and synaptic proteins have been found to be 

palmitoylated. For instance, PSD-95 postsynaptic targeting relies on palmitoylation (Topinka and 

Bredt, 1998). Incubation of neurons with a palmitoylation inhibitor 2-bromopalmitate 

significantly decreases PSD-95 palmitoylation; and many DHHC proteins are able to enhance PSD-

95 palmitoylation. It was shown that palmitoylation has a rapid turnover effect on PSD-95, which 

was surprising considering that PSD-95 was thought to be quite stable at the PSD where it anchors 

transmembrane proteins (Kang et al., 2008). Functionally, PSD-95 palmitoylation-

depalmitoylation cycles could play a role in synaptic plasticity. PSD-95 palmitoylation decreases 

when synaptic activity increases, whereas tetrodotoxin-induced activity blockade potentiates 

PSD-95 palmitoylation and its accumulation in spines in cultured neurons (Noritake et al., 2009). 

Moreover, an increase in synaptic AMPARs is dependent on DHHC-mediated palmitoylation of 

PSD-95. Correspondingly, the activity-evoked depalmitoylation of PSD-95 promotes AMPAR 

endocytosis (Noritake et al., 2009). The PSD-95 protein is just one example to illustrate the 

significance of this PTM in the trafficking and function of target proteins. Other proteins such as 

small GTPases, G-proteins, glutamate receptors, scaffolds and cell adhesion molecules were 

reported to be palmitoylated. In addition, the functional importance of single PATs and PPTs 

starts to emerge. Not long ago, the microRNA miR138 has been shown to target the 

depalmitoylation enzyme APT1 and in this way negatively regulate dendritic spine size. In this 

line, APT1 knock-down leads to reduction in spine volume (Siegel et al., 2009). Finally, considering 

the abundant presence of this PTM in neurons, defects in palmitoylation have been linked to 

psychiatric disease (Chen et al., 2004), neurodegenerative (Huang et al., 2004) and 

neurodevelopmental disorders (Raymond et al., 2007).    

 

Recently, Woolfrey and colleagues reported that the kinase anchor protein AKAP79/150 is an 

LTD-related substrate of CaMKII (Woolfrey et al., 2017). CaMKII inhibition prevented LTD-induced 

AKAP79/150 removal from dendritic spines, while CaMKII-mediated phosphorylation impaired 

AKAP79/150 interaction with F-actin and facilitated spine removal. Moreover, AKAP79/150 spine 

removal additionally required AKAP79/150 de-palmitoylation regulated also by CaMKII. This 

depalmitoylation was required for AKAP79/150 trafficking as well as for structural LTD (Woolfrey 
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et al., 2017). Altogether, these data provide evidence of an active participation of palmitoylation 

and a possible interplay between phosphorylation and palmitoylation of AKAP79/150 in synaptic 

plasticity. 

 

C. Ubiquitination 

Eukaryotic cells have evolutionarily developed protein degradation strategies, the ubiquitin 

proteasome system (UPS) and lysosomes, to control protein levels, prevent non-specific protein 

degradation and thus maintain proper cell homeostasis. The UPS degrades most of the 

intracellular and soluble proteins and also some membrane proteins if extracted from the 

membranes into the cytosol. Lysosomes, on the other hand, are mainly responsible for the 

degradation of membrane and endocytosed proteins but can also digest cytosolic proteins via 

autophagy. The enzymatic process resulting in protein modification by ubiquitination is essential 

prior to protein degradation through the UPS. This pathway was first described in 1975 by the 

pioneering work of Aaron Ciechanover, Avram Hershko and Irwin Rose (Ciechanover et al., 1980) 

(Hershko et al., 1980), for which they jointly received the Nobel Prize in Chemistry in 2004. 

Although the most prominent role of the UPS system is protein degradation, over the years, 

ubiquitination has been also implicated in signal transduction, endocytosis and DNA repair. Given 

the unique morphology of neurons, this PTM is particularly interesting as local proteomes 

undergo tight regulation within different subcellular domains (i.e. dendritic spines) in response 

to neuronal stimulation. The importance of this PTM is also highlighted by the fact that 

malfunctions of the UPS result in accumulation of misfolded and damaged ubiquitin-positive 

proteins and lead to different pathologies such as neurodegenerative diseases (Parkinson’s, 

Alzheiŵer’s and Huntington’s).  

Ubiquitin is a highly conserved protein of 76 amino acids (8.5 kDa). In the process of 

ubiquitination, ubiquitin is covalently conjugated to proteins, typically on their lysine residues, 

that are to be degraded in the proteasome. In the mouse brain, there is about 40% of free (non-

conjugated) and 60% conjugated ubiquitin. Out of the conjugated ubiquitin, ~90% exist as 

monoubiquitination and ~10% form poly-ubiquitin chains (Hallengren et al., 2013). 

Ubiquitination is carried out with the participation of four different enzymes: E1 (ubiquitin-
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activating enzyme), E2 (ubiquitin-conjugating enzyme), E3 (ubiquitin-protein ligase) and E4 (chain 

elongation factors). In the presence of ATP, ubiquitin is covalently linked to E1, and then 

transferred onto E2. Ubiquitin conjugation is catalysed by E3 from E2 to a target protein. Both E3 

and E4 can catalyse ubiquitin chain elongation. Ubiquitin has seven lysines all of which can be 

used for chain extension via the ubiquitin-ubiquitin isopeptide bond. The K48 polyubiquitin 

chains (most abundant) lead the substrate via diffusion, or the aid of chaperons and other 

shuttling factors to the proteasome (Hallengren et al., 2013). The most common cytoplasmic 

proteasome is the 26S proteasome composed of ~30 different proteins that are arranged in a 

barrel-like proteolytic core (20S, ~700 kDa) and a cap unit on one or either end of the core (19S, 

~900 kDa). The 26S proteasome is involved in many essential neuronal processes, including the 

synaptic strength regulation by modulating the presynaptic (Willeumier et al., 2006) as well as 

postsynaptic (Ehlers, 2003) proteomes.  

 

Over the past years, we have gained important insights into the molecular mechanisms that 

underlie the synaptic plasticity phenomena and will be briefly described below. A 2006 report by 

Bingol and Schuman demonstrates that under basal conditions proteasomes are equally 

distributed between dendritic shaft and spines, however this changes upon neuronal 

depolarisation (KCl application), which evokes a redistribution of proteasomes from dendritic 

shaft to spines within minutes. Moreover, application of the NMDAR blocker AP5 prevents this 

redistribution suggesting that activation of NMDAR specifically recruits proteasomes to spines. 

The proteasomes in spines were shown to be catalytically active and this effect was further 

accompanied by more than a 60% increase in ubiquitinated synaptic proteins (Bingol and 

Schuman, 2006). These data clearly showed an activity-dependent proteasome redistribution 

toward the synapse suggesting an active shaping of the local proteome in spines. In line with the 

idea that proteasomes sculpt the synaptic proteome, thus the spine structure and function, 

Hamilton et al. applied acute inhibition of the proteasome in combination with local glutamate 

uncaging, which led to a rapid reduction of spine outgrowth. Moreover, the upstream players 

necessary for the activity-dependent spine outgrowth were identified to be NMDAR and CaMKII 

(Hamilton et al., 2012).  Ubiquitination is also critically important for the internalisation of Group 
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I mGluRs. Blocking the E1 enzyme inhibits the ligand-mediated endocytosis of Group I mGluRs. 

Moreover, the K63 polyubiquitin chains of the mGluR1 and the E3 ubiquitin ligase Siah1A were 

shown to be indispensable for the process of mGluR1 internalisation (Gulia et al., 2017). The 

above data prompt a possible involvement of synaptic proteolysis in the expression of synaptic 

plasticity. Indeed, over the past years, experimental evidence supported the involvement of the 

UPS in both short- and long-term plasticity events. At excitatory glutamatergic synapses, Arc, the 

activity-regulated cytoskeleton-associated protein, is thought to serve as a major regulator of 

synaptic plasticity mainly due to its facilitation of AMPAR endocytosis. Arc is ubiquitinated by and 

associates with E3 ubiquitin ligase Triad3A at endocytic sites in dendrites and spines (Mabb et al., 

2014). Deficient Triad3A results in loss of surface AMPAR, whereas overexpression of Triad3A 

increases surface AMPAR. Altogether, controlling Arc levels by Triad3A was shown to regulate 

the expression of LTD in hippocampal neurons (Mabb et al., 2014). A couple of years ago, Sun et 

al. demonstrated that UBE3A, an ubiquitin E3 ligase involved in Angelman syndrome, regulates 

synaptic plasticity in learning and memory (Sun et al., 2015). UBE3A was shown to ubiquitinate 

the small-conductance potassium (SK2) channels resulting in their endocytosis and removal from 

synapses. UBE3A-deficient mice displayed impaired hippocampal long-term synaptic plasticity 

that was manifested by deficits in cognitive function (Sun et al., 2015). Proteasome-independent 

action of ubiquitination has also been implicated in synaptic plasticity. The cytoplasmic 

polyadenylation element-binding protein 3 (CPEB3) mediates long-lasting changes of synaptic 

efficacy and long-term memory and has been shown to be monoubiquitinated by Neuralized1, 

an E3 ubiquitin ligase, in mouse hippocampal cultures. CPEB3 activation by monoubiquitination 

leads to the growth of new dendritic spines and increased expression of the AMPA receptor 

subunits resulting in enhanced hippocampal-dependent memory and synaptic plasticity 

(Pavlopoulos et al., 2011).  

 

In conclusion, local ubiquitination that often precedes UPS proteolysis is essential for the 

regulation of synaptic protein repertoire, and thus synaptic function and plasticity. 
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D. Sumoylation 

In summary, until this point, the introduction paved the way throughout important biological 

knowledge that will largely facilitate the understanding of the investigation into the regulation 

of synaptic sumoylation balance – the main aim of my PhD thesis project. Naturally, in this last 

part of introduction, I will define the enzymatic SUMO pathway and give an overview of our 

current knowledge on the function and dysfunction of protein sumoylation at the mammalian 

synapse (also partially reviewed in (Schorova and Martin, 2016), Annexed Article 1). 

 

Sumoylation is a ubiquitous and vital post-translational modification regulating many 

biological processes. More than 20 years ago, sumoylation was simultaneously discovered by 

several groups as a modification of nuclear proteins such as the Ran GTPase activating protein 

(RanGAP1; (Matunis et al., 1996) (Mahajan et al., 1997)). Although the majority of sumoylation 

localises in the nucleus, many important extranuclear roles have been reported since. The 

essential role of sumoylation is given by the fact that either knocking-down or deleting genes or 

components of sumoylation causes cell-cycle arrest in yeast (Johnson and Blobel, 1997) and is 

lethal in rodent models (Hayashi et al., 2002b) (Nacerddine et al., 2005) (Cheng et al., 2007). 

Disruption of sumoylation in developing brain has also fatal consequences (Fu et al., 2014a), 

indicating that this process is vital to both embryonic and postnatal development of the brain. In 

spite of a large body of data implicating sumoylated substrates in synapse formation, synaptic 

communication and plasticity, it is yet to unveil the regulatory cues that control for an 

equilibrated sumoylation and desumoylation at a given time and space in the mammalian 

brain.  

 

Sumoylation is a highly evolutionarily conserved (from yeast to mammals) enzymatic pathway 

(Fig. 20), which covalently but reversibly conjugates the Small Ubiquitin-like Modifier (SUMO) 

protein (~100 amino acids, ~11 kDa) to lysine residues of target proteins (Matunis et al., 1996) 

(Mahajan et al., 1997). SUMO conjugation is catalysed by the sole SUMO-conjugating enzyme, 

Ubc9. Sumoylation pathways is analogous to ubiquitination, and SUMO polypeptides share ~18% 

homology with ubiquitin. Five SUMO paralogs have been identified in humans until now. SUMO1-
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3 are ubiquitously expressed (Hay, 2005) (Geiss-Friedlander and Melchior, 2007), whereas 

SUMO4 expression is restricted to the spleen, the kidney and the lymphatic nodes (Bohren et al., 

2004) (Guo et al., 2004) and SUMO5 is expressed in the lung and spleen (Liang et al., 2016). 

SUMO2 and SUMO3 are nearly identical except for three additional N-terminal residues within 

the SUMO3 sequence; therefore, they are generally referred to as SUMO2/3. On the contrary, 

SUMO1 shares only ~50% sequence identity with SUMO2/3. SUMO1 and SUMO2/3 modify an 

overlapping set of target proteins; but they differ in their properties and subcellular abundance 

with the amount of free available SUMO2/3 being much larger than that of SUMO1. The SUMO-

targeted lysine often resides within a specific consensus site defined as ψ-K-x-D/E, where ψ 

corresponds to a large hydrophobic residue, K stands for lysine, x is any amino acid, and D/E are 

glutamate and aspartate acid residues, respectively (Rodriguez et al., 2001) (Sampson et al., 

2001). Importantly however, many lysines that do not lay within the consensus sequence have 

been discovered to be targeted by sumoylation, and many of the lysine residues contained within 

the SUMO consensus sites have been reported as not sumoylated (reviewed in (Flotho and 

Melchior, 2013) and (Henley et al., 2014)). Noteworthy, in most cases the determination of the 

sumoylation status was achieved in basal unstimulated conditions. Therefore, caution should be 

taken to state with certainty that a given protein is not a SUMO substrate since only a small 

percentage of any protein is sumoylated at steady state (Hay, 2005) (Nayak and Muller, 2014). 

 

The SUMO enzymatic pathway (Fig. 20) is highly dynamic and must be tightly controlled as it 

drastically influences the function of many proteins targeted by this PTM. Despite a covalent 

SUMO binding, sumoylation is reversible through the isopeptidase activity of desumoylation 

enzymes (see (Hickey et al., 2012) for a comprehensive review on SUMO proteases). In addition, 

prior to entering the sumoylation pathway, SUMO precursors must be matured (a hydrolytic 

cleavage to expose the carboxyl-terminal diglycine motif) by desumoylation enzymes. Several 

SUMO proteases effectively mediate desumoylation and some also SUMO maturation. In 

humans, six SENP proteases have been described (SENP1, 2, 3, 5, 6 and 7). These SENP enzymes 

differ in their subcellular localization and SUMO selectivity (Hickey et al., 2012). Recently, several 

additional SUMO proteases have been identified, DeSumoylating Isopeptidase 1 and 2 (DeSI1 and 
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DeSI2; (Shin et al., 2012)) and USPL1 (Ubiquitin-Specific Protease-Like 1; (Schulz et al., 2012)). 

Both SUMO conjugation and deconjugation control the dynamic equilibrium between the 

sumoylated and desumoylated state of many proteins. Since this PTM regulates many proteins 

involved in essential developmental processes (Gwizdek et al., 2013) and synaptic functions 

(Schorova and Martin, 2016) (Henley et al., 2014), dysregulation of the 

sumoylation/desumoylation balance may directly link the SUMO process to a number of 

pathophysiological conditions (see Table 1 and review (Schorova and Martin, 2016) Annexed 

Article 1, for detailed description). 

 

  

Figure 20. The SUMO enzymatic pathway. SUMO paralogs are sǇnthesized as inactive precursors that are first 
ŵatured ďǇ the hǇdrolase activitǇ of specific desuŵoǇlases called SENPs. SUMO activation is an ATP-dependent step 

leading to formation of a thioester bond between the SUMO-activating subunit SAE2 of the E1 enzymatic 

heterodimer SAE1/SAE2 and the matured SUMO protein. SUMO is then transferred onto the active (C93) cysteine 

residue of Ubc9, E2-conjugating enzyme. Ubc9 is able to catalyse the sumoylation reaction of the target lysine 

residue on the substrate either directly or in combination with one of the existing SUMO E3 ligases. Importantly, 

sumoylation is readilǇ reversiďle and suŵoǇlated proteins can ďe efficientlǇ desuŵoǇlated via the isopeptidase 
activity of a variety of SUMO proteases including SENPs, DeSI1/2 and/or USPL1. 
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In the following sections, I discuss sumoylation in the context of presynaptic and 

postsynaptic functions (as reviewed in (Schorova and Martin, 2016), Annexed Article 1) and 

more importantly, I provide an update of the newest discoveries and controversies in the field 

of synaptic sumoylation. 

 

 

Synaptopathy Implicated 

SUMO targets 

and 

machinery 

Effects References 

Down 

syndrome 

 

SUMO3 SUMO3 gene is localised on Hsa21. SUMO3 

overdose leads to imbalanced/deregulated 

sumoylation. 

(Gardiner, 2006) 

Rett syndrome MeCP2 Some MeCP2 mutations found in patients reported 

to decrease MeCP2 sumoylation. Lack of MeCP2 

sumoylation leads to abnormal synaptic density. 

(Cheng et al., 2014) 

(Tai et al., 2016) 

Parkinson's 

disease 

α-Synuclein Sumoylated by SUMO1 and SUMO2/3. PD patients 

shoǁ increased α-SǇn suŵoǇlation. α-Syn 

suŵoǇlation proŵotes α-Syn aggregation. Another 

pathogenic mechanism could include inter-

neuronal spreading of α-Syn.  

(Krumova et al., 2011), 

(Kim et al., 2011), 

(Kunadt et al., 2015) 

(Rott et al., 2017) 

 DJ-1 A PD mutation disrupts DJ-1 sumoylation and 

decreases its solubility.  

(Shinbo et al., 2006) 

 Parkin Increase in its E3 ligase activity by non-covalent 

SUMO1 modification. Parkin also associates with 

and targets the SUMO E3 ligase RanBP2 for 

degradation. Direct implication in PD is still lacking.  

(Um and Chung, 2006) 

Huntington’s 
disease 

Huntingtin Sumoylation may act as a prevention mechanism of 

huntingtin accumulation. 

(Steffan et al., 2004), 

(O'Rourke et al., 2013) 

Alzheiŵer’s 
disease 

SAE2, Ubc9, 

SENP3 

Single Nucleotide Polymorphisms of these genes 

co-segregate with AD.  

(Corneveaux et al., 

2010), (Grupe et al., 

2007), (Ahn et al., 

2009), (Weeraratna et 

al., 2007) 

 Aβ Unclear results aďout ǁhether suŵoǇlation of Aβ 
enhances or decreases its aggregation.   

(Li et al., 2003), (Zhang 

and Sarge, 2008), 

(Dorval et al., 2007) 

 Tau Proportion between sumoylated and ubiquitinated 

Tau can regulate its degradation/accumulation. 

Hyper-phosphorylated toxic Tau is immunoreactive 

for SUMO1. 

(Dorval and Fraser, 

2006), (Luo et al., 

2014) 

Table 1. Implication of sumoylation in synaptopathies. 



65 

 

a) Presynaptic sumoylation 

The activity-dependent neurotransmitter release is a highly dynamic process that depends 

upon tight regulation provided mainly by PTMs, including sumoylation. 

 

Feligioni et al. used a synaptosomal preparation protocol to trap exogenous matured SUMO1 

polypeptides or the catalytically active domain of the desumoylation enzyme SENP1 in 

synaptosomes to respectively increase or decrease the presynaptic sumoylation levels and 

measure the impact of sumoylation on glutamate release. They reported that the increase in 

presynaptic sumoylation reduced Ca2+ influx and decreased glutamate release upon KCl 

depolarization. In contrast, decreasing presynaptic sumoylation by introducing SENP1 into 

synaptosomes led to an enhanced Ca2+ influx and glutamate release in KCl-stimulated conditions 

(Feligioni et al., 2009). This study was the first to provide evidence for a direct role of sumoylation 

at the presynapse via modulation of calcium influx and glutamate release, although the molecular 

pathway and presynaptic proteins targeted by this PTMs were not described at that time. Since 

then, several key axonal and presynaptic proteins have been reported to be sumoylated and a 

better view of the complexity of sumoylation as well as the regulatory role of sumoylation at the 

presynapse is now clearly emerging (Fig. 21). 

 

 La protein 

The human La protein was originally identified as an auto-antigen in an immune system 

disorder called Sjogren’s sǇndroŵe. Levels of circulating anti-La antibodies are used for the 

diagnosis of this autoimmune syndrome. La is the smallest member (46kDa) but the most 

abundant of the La-related protein (LARP) family (reviewed in (Stavraka and Blagden, 2015)). Its 

RNA-interacting motif RRM allows the binding, protection and axonal transport of many mRNAs. 

Importantly, La has been reported to be a sumoylation substrate (van Niekerk et al., 2007). 

Sumoylated La binds to dynein allowing its retrograde axonal transport. Conversely, the native 

non-sumoylated La interacts with kinesin and undergoes anterograde axonal transport. This 

pioneering work uncovered sumoylation as a key regulatory mechanism in mRNAs trafficking 
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toward their local translation sites, an essential process for the maintenance of axonal protein 

pools that are required for synaptic transmission. 

 

 Synapsin Ia 

Synapsins are presynaptic proteins that are essential for the establishment, clustering and 

release of SVs (Cesca et al., 2010).  Synapsin Ia (SynIa) is involved in maintaining the reverse pool 

of SV that is required upon long lasting neuronal stimulation. Tang and collaborators 

demonstrated that SynIa is sumoylated at the K687 residue and that this sumoylation potentiates 
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its association with SVs participating in the clustering and anchoring of these vesicles at the 

presynapse (Tang et al., 2015); Fig. 21). The lysine-687-to-arginine mutation resulted in a 

complete absence of SynIa sumoylation, a decrease in number of releasable SVs and impaired 

exocytosis (Tang et al., 2015). Interestingly, the A548T mutation in SynIa that co-segregates with 

autism also impairs SynIa sumoylation. Defects in SynIa sumoylation may therefore be involved 

in the pathophysiology of neurological disorders through a presynaptic SUMO-dependent 

deregulation of SynIa function at the presynapse. Altogether, sumoylation of SynIa appears to be 

critical for the activity-dependent neurotransmitter release and may therefore actively 

participate in synaptic transmission and synaptic plasticity.  

 

 

 

Figure 21 (Continued). Sumoylation at the synapse. The sumoylation enzymatic machinery localises at the synapse 

and several pre- and postsynaptic proteins have been identified to be sumoylated. (1) Presynaptic sumoylation 

eŵerges as a central protein ŵodification acting at several stages of the neurotransmitter release mechanism. 

Sumoylation of Synapsin Ia (SynIa) potentiates its association with synaptic vesicles and thus participates in the 

clustering of these vesicles at the presynapse. Synaptotagmin-1 is sumoylated in vivo but the precise function of this 

ŵodification is still not known. Syntaxin-1A sumoylation is evoked upon NMDAR activation leading to a decreased 

binding to SNAP-25 and VAMP-2 and thus acting as a key presynaptic regulator of vesicle endocytosis. RIM1α 

sumoylation is required for presynaptic exocytosis since depolarization-evoked vesicle exocytosis with a non-

suŵoǇlataďle RIMϭα ŵutant is draŵaticallǇ iŵpaired. This effect is ŵainlǇ due to a defect in presǇnaptic calciuŵ 
entrǇ folloǁing neuronal activation since RIMϭα sumoylation enables the binding to Cav2.1 calcium channels and 

coordinates the presynaptic Ca2+ entry. CRMP2 is a SUMO substrate and dynamically reduces Ca2+ entry through the 

presynaptic voltage-gated Ca2+ channel CaV2.2. CRMP2 sumoylation is also believed to regulate the membrane 

expression of the sodium channel NaV1.7. Kv potassium channels play critical roles in neuronal excitability and 

sumoylation of a number of these channels (Kv1.1, Kv2.1, Kv7.2, Kv7.3) has been reported to act as a molecular 

regulator of their intrinsic activity. Question marks in red indicate that the physiological consequences of the target 

protein suŵoǇlation are still not clearlǇ defined. mGluR7 is sumoylatable both in vitro but also in vivo in rat 

hippocampal and cortical neurons. mGluR7 agonist activation triggers the endocytosis of the WT mGluR7 but not 

the internalization of its non-sumoylatable mutant suggesting that sumoylation acts on the endocytic pathway. 

However, overexpressing the desumoylase SENP1 increases the pool of internalized mGluR7, which rather implies 

that mGluR7 sumoylation is important for recycling of these receptors back to the plasma membrane and not for 

the receptor endocytosis per se. (2) Postsynaptic sumoylation plays important roles in neuronal maturation and 

synaptic plasticity. First evidence of postsynaptic protein sumoylation was provided for kainate receptors. KAR 

sumoylation promotes receptor internalisation. Arc is also a sumoylation substrate. Arc levels decrease upon 

attenuated synaptic activity leading to an increase in AMPAR at the membrane. The exact mechanisms are yet to be 

discovered.  The Ubc9 enzyme is regulated by activation of mGluR5, which leads to Ubc9 transient trapping in spines 

due to an enhanced ability of Ubc9 to recognise synaptic PKC-phosphorylated substrates. Prolonged residency of 

Ubc9 at the postsynapse results in increased synaptic sumoylation levels and modulation of neuronal 

communication. FMRP protein is targeted by sumoylation. mGluR5-mediated FMRP sumoylation is essential for 

proper spine maturation and control of dendritic spine density. See text for more details and references. 
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 Syntaxin-1A 

The exocytosis of SVs is mediated through the action of the SNARE protein complex that 

includes the 35-kDa-membrane protein Syntaxin-1A (Stx1A), SNAP-25, VAMP-2 and additional 

proteins such as Muncϭ8, SǇnaptotagŵins and RIMϭα (Fig. 21). Stx1A has been reported to be 

important in neuronal survival (Kofuji et al., 2014), neurotransmitter release and recycling of SVs 

(Watanabe et al., 2013). The role of Stx1A in synaptic function is also supported by studies 

reporting a possible involvement of Stx1A in the pathophysiology of autism with Stx1A mRNA 

expression levels being significantly higher in autistic patients compared to controls (Nakamura 

et al., 2008). Interestingly, Stx1A has recently been reported a novel sumoylation target (Craig et 

al., 2015). Stx1A sumoylation is evoked upon NMDA receptor activation or KCl-depolarization in 

hippocampal neurons. This activity-dependent sumoylation occurs at three lysines (K252, 253 

and 256) leading to a reduced Stx1A binding to SNAP-25 and VAMP-2, but not to Munc18a. 

Importantly, neuronal expression of the non-sumoylatable form of Stx1A, leads to a significant 

increase in presynaptic vesicle endocytosis (Craig et al., 2015), which suggests that Stx1A 

sumoylation is critically involved in maintaining the balance between SV endocytosis/exocytosis. 

How exactly the sumoylated form of Stx1A enhances SV endocytosis as well as how Stx1A 

desumoylation occurs in this context is yet to be investigated. 

 

 Synaptotagmin-1 

Membrane fusion at presynaptic sites involves not only the SNARE proteins but also several 

other presynaptic factors to orchestrate neurotransmission in a timely dependent way (reviewed 

in (Sudhof, 2013)). Among these are calcium sensor proteins called Synaptotagmins. To date, 

sixteen isoforms of synaptotagmins have been identified in mammals that either co-localise with 

SVs or are distributed at the plasma membrane. Owing to the calcium sensing properties, Syt1 

importantly participates in neurotransmitter release (Fig. 21).  

 

The Fraser lab used a proteomic approach on transgenic mice that exclusively over-expressed 

the human form of SUMO1 in neurons (Matsuzaki et al., 2015). They identified many SUMO1 

targets that were neuron- and synapse-specific. Syt1 among them displayed up-regulated 
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sumoylation in these transgenic mice (Matsuzaki et al., 2015). Using field potential recording in 

acute hippocampal slices from SUMO1-transgenic brains, they reported a deficit in basal 

transmission suggesting a decrease in synaptic activity and/or a loss of functional synapses. They 

also showed that a form of short-term synaptic plasticity dependent on presynaptic mechanisms 

named paired pulse facilitation is impaired in SUMO1-transgenic brain slices, which suggests that 

SUMO1 over-expression leads to functional presynaptic mechanisms defects (Matsuzaki et al., 

2015). Moreover, SUMO1-over-expressing hippocampal cells exhibit a dramatic loss of dendritic 

spines that results in the impairment of contextual fear memory (Matsuzaki et al., 2015). Despite 

these deleterious alterations in SUMO1-transgenic mice, the functional significance of Syt1 

sumoylation remain unexplained. Clearly, the hyper-sumoylation of Syt1 in SUMO1-transgenic 

mice cannot be taken as the unique cause of all the physiological deficits reported in these 

animals. Nevertheless, this work clearly highlighted the importance of a controlled equilibrium 

between sumoylation and desumoylation, since a small and uncompensated increase in 

neuronal sumoylation directly impacts synaptic architecture, cell communication and memory 

formation. 

 

 RIM1α ;Raď3-iŶteraĐtiŶg ŵoleĐule 1αͿ 

Among the members of the presynaptic active zone that have been extensively studied are 

the RIM protein family. RIMs are proteins that interact either directly or indirectly with several 

presynaptic proteins including Rab3a, synapsin-1, Syt1A, Munc13-1, and the voltage-gated Ca2+ 

channels (Calakos et al., 2004) and are thus important for synaptic transmission (Fig. 21). 

Although, RIMϭα has ďeen iŵplicated in the docking/priŵing of sǇnaptic vesicles and also in short 

and long-term synaptic plasticity (Castillo et al., 2002; Dulubova et al., 2005), the regulatory 

mechanisms underlǇing RIMϭα presynaptic function have not been fully elucidated. The Henley 

laď reported that RIMϭα is a SUMO suďstrate (Girach et al., 2013). TheǇ shoǁed that RIMϭα 

sumoylation occurs only on lysine 502 independently of neuronal activity. Using molecular 

replaceŵent eǆperiŵents, theǇ suďstituted the endogenous RIMϭα ďǇ the non-sumoylatable 

RIMϭα-K502R mutant, in hippocampal neurons. While the presynaptic localisation of both the 

WT and non-suŵoǇlataďle RIMϭα reŵained unchanged, there was a marked decrease in the 
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depolarization-evoked SV exocytosis in the KϱϬϮR ŵutant indicating that RIMϭα suŵoǇlation is 

required for presynaptic exocytosis (Girach et al., 2013). RIMϭα suŵoǇlation ǁas found to enable 

the clustering of Cav2.1 calcium channels via its binding to RIMϭα-SUMO. Altogether, (Girach et 

al., 2013) uncovered an additional important presynaptic function for the SUMO process.  

 

 CRMP2 (Collapsin response mediator protein 2) 

CRMP2 is a microtubule-binding protein that was primarily identified for its roles in the 

regulation of axonal guidance, neuronal polarity and more recently presynaptic functions 

including axonal transport and neurotransmitter release (for a comprehensive review, see (Ip et 

al., 2014), Fig. 21). CRMP2 dynamically interacts with the presynaptic N-type voltage-gated Ca2+ 

channel (CaV2.2) and disruption of this complex reduces pain in a rodent model of neuropathic 

pain. Thus, investigation into CRMP2 mechanisms of action is a prerequisite for the 

understanding of its role in pain (Brittain et al., 2011). CRMP2 has been reported to be 

sumoylated in vitro on lysine 374. Using calcium imaging on primary rat cultures of dorsal root 

ganglion (DRG) neurons, the non-sumoylated form of CRMP2 was shown to affect calcium influx 

in depolarized DRGs when compared to WT CRMP2 expression, suggesting that CRMP2 

sumoylation acts as a negative modulator of presynaptic calcium influx (Ju et al., 2013). 

 

Later, the same group confirmed that both the WT and the SUMO-deficient CRMP2 are 

robustly expressed in catecholaminergic cells (CAD) and that both forms are able to promote 

neurite outgrowth in rat DRG neurons (Dustrude et al., 2013). They have also reported that the 

sodium channel NaV1.7 is regulated by CRMP2 sumoylation. Preventing sumoylation by over-

expressing SENP1 and SENP2 enzymes in WT CRMP2-expressing CAD cells decreased the NaV1.7 

currents and accordingly, they showed a significant decrease in the levels of surface expressed 

NaV1.7 in CAD cells expressing the SUMO-deficient form of CRMP2. NaV1.7 currents were also 

decreased in sensory neurons expressing the non-sumoylatable CRMP2-K374A (Dustrude et al., 

2013).  
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Overall these two reports highlight the putative function of CRMP2 sumoylation in the 

regulation of the two ion channels. However, the authors did not demonstrate that CRMP2 is 

sumoylated in vivo nor did they determined whether the SUMO modification directly modifies 

the activity or the surface expression of the two channels targeted by CRMP2. Further work will 

therefore be required to clarify the functional role of CRMP2 sumoylation at presynaptic sites. 

 

 Kv channels (Voltage-gated potassium ion channels) 

Kv channels form potassium-selective pores spanning the plasma membrane (Fig. 21) and are 

essential to generating action potentials and controlling neuronal excitability. In human, 

mutations in Kv channels subunits have been implicated in epilepsies and sudden unexplained 

death in epilepsy (SUDEP).  

Potassium Kv1.1 channels are abundantly expressed in the brain and localize in large axons 

where they form tetramers with Kv1.2 subunits. These channels regulate the action potential 

propagation, neuronal firing and neurotransmitter release (Dodson and Forsythe, 2004). 

Mutations within the human gene encoding Kv1.1 have been associated with partial epilepsy and 

episodic ataxia in humans (Zuberi et al., 1999). Knock-in mice with Kv1.1 mutations also exhibit 

hippocampal hyperexcitability, severe epilepsy and premature death (Glasscock et al., 2007). Qi 

and colleagues engineered a post-natal deficient SENP2 mouse model that develops spontaneous 

seizures and sudden death (Qi et al., 2014). They reported that the SENP2 deficiency results in 

increased levels of sumoylation for several potassium channels known to impact neuronal 

excitability including the Kv1.1 that is modified by both SUMO1/2 and colocalizes with SENP2 in 

hippocampal neurons. However, the sumoylation of Kv1.1 did not significantly affect its channel 

properties and activity. Interestingly, the authors have also reported in this work that the Kv7.2 

is hyper-sumoylated by SUMO2/3 in hippocampal neurons. Kv7 potassium channels play critical 

roles in neuronal excitability. Two Kv7 members, Kv7.2 and Kv7.3, are highly expressed in neurons 

and generate the M-current that is important for firing action potentials. Strikingly, the hyper-

sumoylation of Kv7.2 resulted in a significant decrease in the depolarizing M-current in SENP2-

deficient hippocampal CA3 neurons and consequently led to neuronal hyperexcitability, severe 

seizures and ultimately, to sudden death of mice by a maximum of 8 weeks of age (Qi et al., 
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2014). Interestingly, these symptoms were prevented by administration of an approved anti-

epileptic drug called retigabine. This drug acts as a specific Kv7.2 opener and counteracts 

neuronal hyperexcitability. However, how this drug impacts the sumoylation levels of Kv7.2/7.3 

in hippocampal neurons has not been so far investigated. 

 

Plant and colleagues reported a functional role of Kv2.1 sumoylation in hippocampal neurons 

(Plant et al., 2011). Kv2.1 potassium channels are important in neurons for activity-dependent 

excitability. They reported that sumoylation occurs at the lysine 470 residue and showed that 

two Kv2.1 subunits have to be modified within a functional Kv2.1 tetramer to produce the full 

SUMO response. Kv2.1 sumoylation led to a 35 mV shift in the half-maximal activation voltage of 

the functional channel, which resulted in its increased sensitivity to depolarization (Plant et al., 

2011). Therefore, sumoylation of Kv2.1 channels provides a way to directly control neuronal 

excitability. 

 

 Metabotropic glutamate receptors  

The Group III mGluRs typically exert presynaptic inhibitory functions. In the past years, several 

Group III mGluRs have been shown to be sumoylated mainly in vitro but some also in vivo. To 

date, no compelling evidence exist regarding the functional roles of SUMO modification in Group 

III mGluRs, except for mGluR7 (Dutting et al., 2011; Tang et al., 2005; Wilkinson and Henley, 2011; 

Wilkinson et al., 2008).  

 

mGluR7 is widely expressed at the presynapse modulating excitatory neurotransmission as 

well as synaptic plasticity by inhibiting neurotransmitter release (reviewed in (Niswender and 

Conn, 2010)). C-terminal truncated forms of mGluR7 were found to be sumoylated at the K889 

residue in vitro (Wilkinson and Henley, 2011; Wilkinson et al., 2008). In a recent study, Choi and 

collaborators confirmed that mGluR7 is a SUMO substrate in vitro (Choi et al., 2016). They have 

also shown that these receptors are sumoylated in vivo both in rat hippocampi and primary 

cortical neurons with the K889 residue identified as the sole sumoylation site. While, mGluR7 can 

be sumoylated by both SUMO1 and SUMO2/3 in HEK293T cells, only SUMO1 conjugation was 

reported in hippocampal homogenates (Choi et al., 2016). Since the sumoylation process has 
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been directly involved in the endocytosis of glutamate receptors in hippocampal neurons (Martin 

et al., 2007b), the authors investigated whether sumoylation has an effect on mGluR7 

internalization (Fig. 21). Constitutive agonist-independent endocytosis of the non-sumoylatable 

mGluR7-K889R mutant was increased compared to the WT control receptor. Addition of L-AP4, 

an mGluR7 agonist, to the cells expressing WT receptors triggered mGluR7 endocytosis. The 

increase in agonist-evoked mGluR7 endocytosis was not seen for the non-sumoylatable mutant. 

The authors attributed this lack of effect to the sumoylation process directly acting on the 

endocytic pathway. However, they cannot rule out that sumoylation rather impacts on the 

recycling properties of the pathway. It is indeed likely that sumoylation acts after the endocytosis 

of mGluR7 by preventing the recycling of the non-sumoylatable receptor. This is in line with their 

data showing that the overexpression of SENP1, which prevents sumoylation, leads to an increase 

in the internalized population of WT mGluR7 similar to the values measured for the endocytosed 

population of the non-sumoylatable mutant in absence of SENP1. This may be explained by a 

decrease in the SUMO-dependent recycling of internalized mGluR7 to the plasma membrane 

leading to an increased intracellular pool of receptors. Since this pathway was not assessed, it is 

difficult to conclude about the exact role of mGluR7 sumoylation in the internalization/recycling 

process. Since mGlu7Rs are primarily expressed at presynaptic sites (Niswender and Conn, 2010) 

and this work (Choi et al., 2016) examined the postsynaptic endocytic properties of an over-

expressed tagged version mGluR7, it implies that further work will now be necessary to assess 

the functional impact of mGluR7 sumoylation at presynaptic sites and whether its SUMO 

modification influences neuronal excitability and/or synaptic transmission and plasticity. 

 

b) Postsynaptic sumoylation 

The first demonstration that sumoylation acts directly within the postsynapse has been 

provided in 2007 with the immunodetection of many unidentified sumoylated substrates in rat 

hippocampal PSD-95-positive synaptic fractions as well as with the immunolocalisation of the 

sole SUMO conjugating enzyme Ubc9 (Martin et al., 2007a). In addition, the first synaptic 

sumoylated substrate was characterized i.e., the kainate receptor (KAR) subunit GluK2, which has 
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opened new avenues for investigation of the sumoylation process in the brain (Martin et al., 

2007a). 

 

Although the precise mechanisms are still lacking, synaptic sumoylation has been shown to 

play an active role in the control of postsynaptic AMPAR surface expression during chemically 

evoked synaptic plasticity. Upon chemical LTP, Jaafari and colleagues observed an increase in 

both dendritic and synaptic SUMO1 immunoreactivity as well as a large increase in Ubc9 and 

SUMO1 mRNAs in soma and dendrites (Jaafari et al., 2013). Interestingly, the over-expression of 

a catalytically active domain of the desumoylase SENP1, but not its catalytically inactive mutant, 

prevented the increase in SUMO1 mRNA and in surface expressed AMPAR upon Chem-LTP 

(Jaafari et al., 2013).  

 

A year later, the sumoylation process was reported as indispensable for the expression of LTP 

(Lee et al., 2014). By combining the use of WT or catalytically inactive forms of the cell permeable 

TAT-Ubc9 and LTP protocols in acute CA1 hippocampal slices, the authors showed that LTP is 

significantly reduced when sumoylation is prevented by the dominant negative Ubc9 mutant (Lee 

et al., 2014). This LTP inhibition was observed without any impact on basal transmission. The 

authors confirmed their initial results using the catalytic domain of the desumoylase SENP1 in 

the patch pipette as used previously in (Martin et al., 2007a). They showed that inclusion of the 

active SENP1, but not its catalytically inactive mutant, fully blocked the induction of LTP in CA1 

pyramidal neurons confirming that the SUMO pathway is involved in the expression of long-term 

plasticity events (Lee et al., 2014). They subsequently demonstrated that infusion of the 

dominant negative form of TAT-Ubc9 in vivo impairs the hippocampal-dependent learning and 

memory (Lee et al., 2014). 

 

 Regulatory mechanisms of sumoylation at the postsynapse 

Despite numerous publications demonstrating the postsynaptic involvement of sumoylation, 

some of the mechanisms regulating this PTM were reported much later (Loriol et al., 2014). Using 

a combination of pharmacological tools with synaptic biochemistry and restricted 
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photobleaching/photoconversion of individual hippocampal spines, our group demonstrated 

that the synaptic diffusion of Ubc9 is regulated by synaptic activity on a rapid timescale. The 

synapto-dendritic diffusion of Ubc9 remains unchanged upon the activation of NMDA receptors 

but is altered by the activation of mGluR5 (Fig. 21). Increasing synaptic activity by the application 

of a GABAA receptor antagonist or direct activation of mGlu5R prolongs the synaptic residency of 

Ubc9 in a PKA-independent but PKC-dependent manner. The Ubc9 transient trapping in spines is 

a result of the enhanced ability of Ubc9 to recognise synaptic PKC-phosphorylated substrates, 

that consequently leads to an increase in synaptic sumoylation levels and modulation of neuronal 

communication (Loriol et al., 2014). Despite this first demonstration of an activity-dependent 

regulation of postsynaptic sumoylation, future work will be required to identify the nature of 

synaptic SUMO substrates, which will further help to better understand the functions of synaptic 

sumoylation.  

As a matter of fact, our laboratory (with my participation) has been working on identifying 

the native endogenous synaptic SUMO2-ylome from young rat brains using a mass spectrometry 

approach. This ongoing work has yielded many already known as well as novel synaptic 

sumoylation substrates.  Additional experiments are being performed to confirm the specificity 

of identified proteins before these data will be submitted for publication. To follow up on the 

story of synaptic regulation of Ubc9, I have investigated the molecular mechanisms behind the 

synaptic diffusion of the desumoylation enzyme SENP1 (the subject of my PhD thesis). This 

work will greatly add to the general knowledge of synaptic sumoylation and provide insights into 

the mechanisms that control for the activity-dependent equilibrium between sumoylation and 

desumoylation at the mammalian synapse (Schorova et al., in preparation; Annexed Article 3). 

 

 FMRP (Fragile X Mental Retardation Protein) 

FMRP is an mRNA binding protein, a component of the RNA granules that transport 

translationally repressed mRNAs to synaptic sites, where synaptic activity promotes their 

translation in an mGluR5-dependent manner. Loss of FMRP leads to the most common 

monogenic cause of autism and intellectual disability, the Fragile X syndrome (FXS; for a review 

see (Maurin et al., 2014)). At the cellular level, the absence of FMRP leads to a pathological hyper-
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abundance of long thin (immature) dendritic filopodia in Fmr1 -/y rodents (Mientjes et al., 2006). 

Presumably, these structural synaptic defects translate into previously reported impairments in 

synaptic transmission and plasticity as well as deficits in social and cognitive behaviours in the 

FXS animal models (Mientjes et al., 2006).  

 

FMRP-containing RNA granules often localise at the base of dendritic spines (Bassell, 2011). 

Upon synaptic activation, mRNAs are released from the granules for local translation (Maurin et 

al., 2014). FMRP phosphorylation inhibits the translation of associated mRNAs, whereas 

dephosphorylation promotes it (Narayanan et al., 2007) (Niere et al., 2012). Moreover, mGluR5 

activation induces FMRP dephosphorylation and subsequent ubiquitination targeting FMRP for 

the UPS degradation (Nalavadi et al., 2012). Our team now provides evidence that FMRP is a 

sumoylation target in vivo (Khayachi et al., 2018; Annexed Article 2, Fig. 21). In response to 

mGluR5 activation, we identify three lysines (K88, 130 and 614) as the major sumoylated residues 

in FMRP. Preventing sumoylation on these lysines (K to R mutations) leads to a complete loss of 

FRMP sumoylation. We report that reintroducing WT FMRP into Fmr1 -/y neurons restores the 

mature phenotype of dendritic spines, whereas the non-sumoylatable FMRP mutant fails to do 

so. Interestingly, the expression of the non-sumoylatable FMRP in WT neurons reverses the WT 

phenotype toward the FXS-like phenotype. These results clearly demonstrate that FMRP 

sumoylation is essential for spine density and maturation. However, what are the molecular 

mechanisms behind sumoylation of FMRP in the regulation of spine maturation?  

 

To address this, we performed extensive biochemical and live imaging analyses to evidence 

the essential role of sumoylation in FMRP-mediated neuronal function. We expressed the non-

sumoylatable form of FMRP in Fmr1-/y neurons, which did not affect the mRNA binding within 

dendritic RNA granules nor their transport along dendrites. In addition, these granules still 

contained known RNA-binding proteins commonly present in RNA granules. Intriguingly 

however, the non-sumoylatable FMRP-containing RNA granules were significantly larger starting 

from 48h post-transfection. In normal conditions, FMRP forms homodimers within RNA granules, 

which was a characteristic that remained unaffected upon the expression of the non-
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sumoylatable FMRP in Fmr1 -/y neurons. We then used live imaging to test the dissociation ability 

of FMRP from RNA granules. We measured that the exit of WT FMRP from granules upon 

Dendra2-FMRP photoconversion was much faster when compared to the non-sumoylatable 

mutant. Upon mGluR5 activation, WT FMRP dissociation was further enhanced, whereas no 

effect was detected in the non-sumoylatable mutant. Taking into account the impaired dynamics 

of the non-sumoylatable FMRP within the RNA granules and that this mutant is still able to bind 

mRNA and form homodimers, we reasoned that sumoylation may play a role in disruption of 

these homodimers and therefore their release from RNA granules. To test this, we performed an 

in vitro sumoylation assay (Fig. 22A). After the immobilisation of WT GST-FMRP to the 

Glutathione-Sepharose beads, WT His-FMRP was added to form GST-FMRP – His-FMRP dimers. 

Then, the addition of a sumoylation reaction (E1, E2 and SUMO) will have supposedly disrupted 

these dimers (Fig. 22A). Indeed, His-FMRP was detected in the unbound fraction confirming our 

hypothesis that sumoylation promotes FMRP homodimers dissociation.  

 

In short, we found that mGluR5-mediated FMRP sumoylation is essential for proper spine 

maturation and control of dendritic spine density through a mechanism possibly involving FMRP 

dissociation from dendritic mRNA granules (Fig. 22B). This is a significant discovery that may 

Figure 22: In vitro FMRP sumoylation assay and FMRP mechanism of action in dendrites. A. Schematic of the 

SUMO-dependent dissociation assay showing the release of His-FMRP from the immobilized sumoylated GST-FMRP 

into the supernatant. B. Model of the mGlu5R-dependent regulation of FMRP function by sumoylation. The activity-

dependent sumoylation of FMRP is a key step to dissociate FMRP from dendritic mRNA granules and consequently 

to regulate spine elimination and maturation.   
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prove useful when developing new therapeutic strategies for FXS (Khayachi et al., 2018; Annexed 

Article 2). 

 

 Kainate receptors 

The GluK2 subunit directly interacts with the conjugating enzyme Ubc9 and is a sumoylation 

substrate in rat hippocampal neurons ((Martin et al., 2007a), Fig. 21). GluK2 sumoylation by 

SUMO1 occurs in an activity-dependent manner on its C-terminal domain at the single lysine 

K886. Importantly, several additional reports have confirmed GluK2 sumoylation in neurons (Choi 

et al., 2016; Konopacki et al., 2011; Zhu et al., 2012). At the postsynapse, binding of glutamate or 

kainate to GluK2 leads to its sumoylation at the plasma membrane and represents a trigger for 

the activated receptors to be internalized. Interestingly, postsynaptic KAR responses at 

hippocampal Mossy fiber-CA3 synapses decrease when postsynaptic sumoylation is promoted by 

infusing SUMO1 postsynaptically and conversely, postsynaptic responses largely increase upon 

desumoylation by the infusion of SENP1 catalytic domain (Martin et al., 2007a). Consistent with 

earlier publication (Martin and Henley, 2004), PKC activation has been shown to be essential to 

GluK2 internalization (Chamberlain et al., 2012; Konopacki et al., 2011). PKC phosphorylation at 

serine 868 in GluK2 is a prerequisite for its sumoylation and its subsequent endocytosis that 

occurs during LTD of KAR-mediated synaptic transmission (Chamberlain et al., 2012; Konopacki 

et al., 2011). Thus, these data revealed that the activity-dependent interplay between 

phosphorylation and sumoylation of GluK2 is important for KAR-mediated synaptic 

communication and plasticity. 

 

 Arc (Activity-regulated cytoskeleton-associated protein/activity-regulated gene 3.1) 

Transcription of Arc gene is strongly induced by synaptic activity. Arc mRNAs are rapidly 

transported into dendrites where they undergo local translation at synaptic sites. Arc exhibits key 

roles in protein synthesis-dependent forms of synaptic plasticity and in consolidating different 

forms of memory (reviewed in (Bramham et al., 2010)).  
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The Henley group reported that Arc is a sumoylation substrate with the lysine 110 and 268 

residues being the sites of sumoylation ((Craig and Henley, 2012), Fig. 21). A new piece of data 

by Nair and co-workers showed that upon LTP consolidation the newly synthesized Arc 

undergoes rapid SUMO1-ylation in vivo in the dentate gyrus of live adult rats (Nair et al., 2017). 

SUMO1-ylated Arc is concentrated in synaptic and cytoskeletal fractions. In addition, the SUMO1-

modified Arc was omitted from the PSD-95-, CaMKIIβ- and dynamin 2-containing protein 

complexes, where the unmodified Arc is usually detected upon basal conditions. On the other 

hand, in the cytoskeletal fraction, SUMO1-Arc was reported to form complexes with drebrin A, a 

regulator of F-actin stability in spines. These results evidence a model in which SUMO1-ylation 

targets Arc for regulation of actin cytoskeletal dynamics during in vivo LTP (Nair et al., 2017). 

 

Altogether, the data from the above sections clearly establish that the sumoylation 

machinery is partly targeted to, localized and regulated at pre- and postsynaptic sites to 

modulate, in an activity-dependent manner, the levels of synaptic sumoylation and in turn, the 

synaptic function. Furthermore, a growing number of SUMO substrates have been recently 

identified in axons, dendrites and synapses and were shown to fulfil essential physiological 

functions on synaptic communication and plasticity (Chamberlain et al., 2012; Chao et al., 2008; 

Craig et al., 2015; Craig and Henley, 2012; Girach et al., 2013; Jaafari et al., 2013; Konopacki et 

al., 2011; Loriol et al., 2014; Loriol et al., 2013; Martin et al., 2007a; Shalizi et al., 2007; Shalizi et 

al., 2006; Tai et al., 2016; Tang et al., 2015) providing additional evidence that the sumoylation 

process is an essential modulator of synaptic function.  

 

 

NOTE 

The existence of synaptic sumoylation was directly challenged by the laboratory of Nils Brose 

A certain discrepancy arose with a study using a double-tagged His-HA-SUMO1 knock-in (KI) 

mouse model in combination with mass spectrometry analysis. The authors failed to detect any 

synaptic SUMO substrates nor did they localise His-HA-SUMO1 at synapses (Tirard et al., 2012). 

The explanation for these rather physiologically improbable results could be the decreased levels 
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of SUMO1 conjugation by ~20-30% reported in the brains of KI animals compared to WT animals 

(Tirard et al., 2012).  Moreover, the ~20-30% decrease in SUMO1-ylation in the brains of KI 

animals was accompanied by a corresponding increase in SUMO2/3-ylation indicating a 

compensatory effect. This suggests that the dual SUMO1 tag impairs the sumoylation process, 

and therefore the His-HA-SUMO1 KI model seems unsuitable for sumoylation studies. Indeed, in 

our laboratory, we have the experience (unpublished data) of a very poor HA-SUMO conjugation 

capacity, compared to other tags (e.g. His, myc, GFP, …Ϳ, and for this reason we aim to eschew 

using the HA-SUMO constructs. It should be also emphasized, that synaptic sumoylation occurs 

at quite low levels, when compared to e.g. nuclear SUMO-conjugation, therefore in the His-HA-

SUMO1 KI mice that have ~20-30% less of overall brain SUMO1-ylation, the synaptic sumoylation 

levels may simply become too low and below the detection sensitivity of the methods employed. 

Despite the significant controversy of this study and especially the use of the His-HA-SUMO1 

KI model (Tirard et al., 2012), the same laboratory went on to argue against the SUMO1-

modification of many already identified and validated synaptic sumoylation substrates, once 

again using mainly the His-HA-SUMO1 KI model (Daniel et al., 2017), omitting the assessment of 

these substrates in WT rodents. The distressing conclusion of this report was the non-existing 

functional relevance of SUMO1-modification at the synapse. The scientific community of 

neuronal sumoylation (including our laboratory), was therefore instigated to react and published 

a commentary questioning this latter report in a step by step rationalising of this misleading piece 

of research data (Wilkinson et al., 2017). In brief, first, Tirard and co-workers do not provide a 

comparison of SUMO1-ylation between KI and WT mice or rat, nor they examine the very likely 

compensation by SUMO2/3-ylation of synaptic proteins. Second, no functional studies were 

performed to devaluate synaptic SUMO1-modification in synaptic and neuronal function. Third, 

they used an anti-GluK2 antibody for GluK2 detection that is unable to recognise the sumoylated 

form of GluK2 because its epitope is masked by the SUMO protein binding. Forth, they provide a 

very vague nuclear staining in both KI and WT neurons, suggesting that the synaptic staining is 

most likely below the threshold of detection (Wilkinson et al., 2017).  
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Nonetheless, a large body of studies from independent groups worldwide including ours 

demonstrate that SUMO1- and SUMO2/3-ylation take place in neurons and at synapses to 

regulate neuronal and synaptic function.  
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1.5 Subject of thesis study:  

 

Investigating the molecular pathways driving the 

sumoylation/desumoylation balance in rat hippocampal synapses. 

 

 SENtrin specific Proteases (SENPs) 

The sumoylation state of a protein is a key determinant that regulates target proteins’ 

function. The levels of protein sumoylation are delicately regulated by the SUMO-conjugation 

(E1/Ubc9/E3) and SUMO-deconjugation (SUMO proteases). These pathways work in synergy to 

respond to diverse molecular stimuli. SUMO-deconjugation is catalysed by three families of 

cysteine proteases: Ulp/SENP, DeSI and USPL. SENP proteases are the mammalian counterparts 

of the yeast Ulp1 and Ulp2 enzymes (Fig. 23B). There are six human SENPs (SENP1-3 and 5-7; Fig 

23A). SENP proteases differ in their subcellular localisation (Table 2), SUMO paralog specificity, 

the efficiency of endopeptidase and isopeptidase activity and the ability to cleave monomeric 

SUMO or poly-SUMO chains (Fig. 23C). All SENPs contain a conserved C-terminal catalytic domain 

Figure 23. Structural, evolutionary and functional 

differences of SENP desumoylases. A. Domain structure 

of SENP enzymes: in orange, localisation domains; in 

green, catalytic domains. The sequence identity towards 

SENP1 in percent, and amino acid length are indicated. B. 

Phylogenetic tree of the Ulp/SENP family members 

displaying the relationship between Saccharomyces 

cerevisiae (S.c.), Drosophila melanogaster (Dm) and 

human Ulp/SENP family members. Confidence numbers 

generated by the bootstrapping procedure are shown. C.  

SUMO maturation, deconjugation and editing of human 

SENP proteases towards different SUMO paralogs. 

Adapted from (Nayak and Muller, 2014). 
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and an N-terminal domain that is likely involved in their subcellular localisation and protein-

protein interactions (Fig. 23A).  

 

 

Sentrin-specific protease 1 (SENP1) 

 

Importantly, three of the SUMO proteases: SENP1, SENP5 and SENP6, have been reported to 

be present at synapses (Loriol et al., 2012) (Loriol et al., 2013) (Akiyama et al., 2017), therefore 

they presumably play a role in synaptic function. In my PhD thesis, I focused on the study of the 

sentrin-specific protease 1. SENP1 is a SUMO-maturing and SUMO-deconjugating enzyme 

expressed ubiquitously in all eukaryotic cells. Knocking-out SENP1 (SENP1 -/-) leads to severe 

anaemia due to erythropoiesis defects, and causes embryonic or early postnatal lethality (E15.5 

– P1) in mice (Yu et al., 2010) (Cheng et al., 2007). Specifically in the brain, the exact function of 

SENP1 is yet to be determined. However, a 2014 study showed that the ablation of functional 

SENP2 in the neural progenitor cells by Nestin-Cre (SENP2ΔSUMO-Nes) causes paralysis (at P16) and 

death in mice by 3 weeks of age (Fu et al., 2014a). Although the mutant embryos developed 

normally, in early postnatal life, these mice started to display severe neurodegeneration. The 

underlying mechanism was identified to involve SENP2 regulation of SUMO1-modification of 

dynamin-related protein 1 (Drp1) that controls mitochondrial dynamics. Targeted disruption of 

SENP2 induced neurodegeneration through promotion of Drp1 sumoylation and mitochondrial 

Table 2. Subcellular localisation of SENP proteases. Adapted from (Henley et 

al., 2014). See text for more references. 
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fragmentation leading to cell death (Fu et al., 2014a). Future research could address the brain-

specific role of SENP1 applying a similar strategy. In regard to SENP1 disruption in non-neuronal 

cells, RNAi knockdown of SENP1 was shown to induce p53-dependent senescence in human 

fibroblasts (Yates et al., 2008).  SENP1 was also reported to play a crucial role in chromosome 

segregation during mitosis, and nucleoporin homeostasis in HeLa cells (Cubenas-Potts et al., 

Figure 24. Developmental regulation of SENP1 distribution in the rat brain. A. Immunoblots of whole rat brain 

homogenates, nuclear and cytosolic fractions (obtained via subcellular fractionation of whole brains). B. 

Immunoblots of the synaptosomal preparation (obtained through subcellular fractionation of whole brains and 

sucrose gradient separation). All Immunoblots were prepared with samples at different ages as indicated: from the 

embryonic day 9 (E9) to adult stage (Ad). C. Confocal images of fixed rat hippocampal neurons (10 and 20 DiV) that 

were immunolabeled for a presynaptic (Bassoon) marker, postsynaptic (PSD-95) marker and SENP1. On the right are 

graphical quantifications of the colocalisation of SENP1 and a synaptic marker. Scale bars = 20 µm Taken and adapted 

from (Loriol et al., 2012). 
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2013) (Chow et al., 2014). According to these studies we can state that SENP1 is an essential and 

tightly spatiotemporally regulated protein with key cellular regulatory functions.  

Our team has previously shown that endogenous SENP1 protein levels are dynamically 

regulated and change during brain development in the rat ((Loriol et al., 2012), Fig. 24). The 

highest expression was found at the earliest time point examined (E9), followed by a marked 

decrease until birth (P0) when the levels slightly rise and are established low in the adult brain 

((Loriol et al., 2012), Fig. 24A). Upon neuronal cell fractionation, nuclear SENP1 levels were 

shown to be low during embryonic development with a slight increase early postnatally (P0-P7), 

and very low levels of SENP1 were detected in the nuclei of the adult brain ((Loriol et al., 2012), 

Figure 25. Neuronal activity-dependent regulation of SENP1 redistribution at the synapse. A. Confocal images of 

rat hippocampal neurons (20 DiV) that were stimulated with KCl (60 mM, 90s) and fixed at different time points 

post-KCl as indicated. Immunolabeling was performed for a presynaptic (Bassoon, left) marker, postsynaptic (right, 

PSD-95) marker and SENP1. On the right are graphical quantifications of the colocalisation of SENP1 and a synaptic 

marker. Scale bars = 20 µm B. Immunoblots of synaptosomal preparations (obtained through subcellular 

fractionation of neuronal homogenates and sucrose gradient separation). Prior to synaptosomal preparation, 

neurons were treated with KCl (60 mM, 90s) and homogenised at different time point post-KCl as indicated. Taken 

and adapted from (Loriol et al., 2013). 
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Fig. 24A). Cytosolic expression of SENP1 was high at E9, then decreased and stabilized at low 

levels early postnatally and in the adult brain (Fig. 24A). Interesting however, is the finding that 

SENP1 is found at very high levels in synaptosomes from adult rat brains compared to late 

embryonic and early postnatal brains ((Loriol et al., 2012), Fig. 24B). In cultured hippocampal 

neurons, SENP1 colocalisation with the presynaptic marker Bassoon increases during neuronal 

maturation (10 DiV vs 20 DiV). On the other hand, SENP1 colocalisation with the postsynaptic 

marker PSD-95 decreases upon neuronal maturation (10 DiV vs 20 DiV; (Loriol et al., 2012), Fig. 

24C). These data clearly demonstrate a fine developmental regulation of SENP1 expression in the 

maturing rat brain. Our laboratory has also examined the activity-dependent redistribution of 

endogenous SENP1 at synapses in cultured rat hippocampal neurons ((Loriol et al., 2013), Fig. 

25). Upon KCl-evoked depolarisation of neurons (90s exposure to 60 mM KCl), SENP1 levels were 

measured according to the colocalisation with presynaptic (Bassoon) and postsynaptic (PSD-95) 

markers at 4 time points (0, 5, 10 and 30 min). SENP1 staining was strongly decreased 5 min after 

depolarisation at presynaptic sites. This SENP1 decrease was transient as SENP1 levels were 

restored after 10 min post-depolarisation (Fig. 25A).  At the postsynapse, SENP1 colocalisation 

with PSD-95 decreased and remained decreased even 30 min post-depolarisation (Fig. 25A). 

Noteworthy, whole synaptosomal preparation (pre- and post-synaptic fraction) from 20 DiV 

hippocampal neurons showed that synaptic SENP1 levels do not change following KCl 

depolarisation ((Loriol et al., 2013), Fig. 25B) These results suggest that SENP1 is regulated at 

synaptic sites in response to changes in neuronal activity. The mechanisms of SENP1 regulation 

at synapses have been investigated in my PhD thesis and are presented in this manuscript as 

well as in the Annexed Article 3 (Schorova et al., in preparation).  
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Working hypothesis 

 

The posttranslational modification by sumoylation is a vital eukaryotic process. In the central 

nervous system, extra-nuclear sumoylation has emerged as a crucial mechanism regulating 

functions of many neuronal proteins, being involved in neuronal differentiation and survival, and 

the control of synaptic formation, plasticity and transmission. Moreover, disruption to the 

protein sumoylation/desumoylation balance in the brain has been implicated in severe 

neurological diseases (Table 1). Therefore, prior to being able to provide innovative therapeutic 

strategies, it is inevitable to understand the regulatory mechanisms leading to both protein 

sumoylation and desumoylation. Recent data from our laboratory have elucidated some of the 

regulatory cues of the sole SUMO-conjugating enzyme Ubc9 at postsynaptic sites (Fig. 26). Using 

live-imaging and biochemical approaches Loriol and co-workers showed that Ubc9 is transiently 

trapped in dendritic spines in response to mGluR5 activation. Moreover, Ubc9 trapping occurs 

via its recognition to PKC-phosphorylated proteins. Synaptic sumoylation levels increase upon 

mGluR5/PKC activation at synapses after 10 min of agonist treatment of isolated synaptosomes. 

Figure 26. Schematic model of Ubc9 regulation at postsynaptic sites. Ubc9 enzyme diffuses between dendritic shaft 

and spine. Upon the mGluR5/PLC/PKC cascade activation, PKC phosphorylates synaptic proteins, which 

consequently leads to Ubc9 transient trapping in spines and increase in synaptic sumoylation levels (Loriol et al., 

2014). Until now, the synaptic regulation of SUMO proteases has not been investigated. 
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Importantly, the half time of Ubc9 synapto-dendritic diffusion is ~0.5 s, and the mGluR5/PKC-

driven trapping prolongs this time to ~1 s (Loriol et al., 2014). I intentionally refer to the findings 

on Ubc9, as I have used similar approaches to investigate the regulatory pathways of SENP1 

synapto-dendritic diffusion, adding to the knowledge of how the balance between sumoylation 

and desumoylation at synapses is regulated.  

 

To advance our understanding of the sumoylation/desumoylation balance at synapses, I 

aimed, in my PhD thesis, to identify the regulatory cues of the desumoylation enzyme SENP1 at 

rat hippocampal synapses. My results show that SENP1 synaptic localisation increases upon 

sustained synaptic activity. This finding prompted me to investigate in detail the following 

objectives: 

 

1. What are the dynamic properties (synaptic entry vs exit) of SENP1 synapto-dendritic 

diffusion that could explain SENP1 synaptic targeting? 

2. Activation of which glutamatergic receptor/s leads to an increase in synaptic 

SENP1? 

3. Upon the identification of upstream receptor/s, what are the further signalling 

players in SENP1 diffusion? 

4. What are the effects on synaptic sumoylation levels when activating SENP1 

upstream regulators that have been identified in previous objectives?  

 

 

  

By accomplishing these objectives, I will propose the first ever conception for 

regulation of synaptic sumoylation balance. 
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Experimental approaches 

 

To unveil the regulatory mechanisms of SENP1 at synapses I used a range of experimental 

approaches such as microscopy imaging (including spinning disc confocal microscopy: 

fluorescence recovery after photobleaching [FRAP] and photoconversion; and classical confocal 

microscopy of immuno-labelled fixed cells), biochemistry (purification of PSD-enriched fractions 

from cultured neurons and Western blot), all of which were performed in combination with 

pharmacological intervention to target putative SENP1 upstream regulators. For all the 

abovementioned techniques I used mature primary rat cortical and hippocampal neurons in 

culture aged 18-21 DIV. Importantly, these cultures contain ~90% of glutamatergic pyramidal 

neurons, whereas GABAergic interneurons represent ~10%. Cultures were prepared from 17-

day-old foetal wild-type Wistar rats as previously described (Loriol et al., 2013).  

 

1. Live-cell imaging to dissect the dynamic properties of SENP1 spino-dendritic diffusion 

 

a) Long duration time-lapse imaging 

One of the first questions that I asked when investigating the upstream signalling of synaptic 

SENP1 was whether changes in synaptic activity by pharmacological means alter SENP1 spino-

dendritic distribution. To probe the dynamic behaviour of SENP1, Sindbis virus for mRNA delivery 

to express GFP-SENP1 in neurons was implemented. I used time-lapse live-cell spinning disc 

confocal imaging together with a perfusion system for a direct media exchange. I used 

bicuculline, a GABAA receptor inhibitor, to potentiate glutamate release and thus to trigger 

synaptic activation. The fluorescence intensities were analysed in dendritic spines and shafts to 

detect changes in SENP1 spino-dendritic redistribution throughout the duration of each 

experiment recording.  
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b) Synaptic entry vs exit of SENP1 

Time-lapse iŵaging itself, hoǁever, cannot reveal protein’s kinetic properties ;i.e. tǇpe of 

movement such as free diffusion, transient or more stable bindings to scaffolds or other cellular 

components; as well as measurement of mobility speed and mobile/immobile fractions). To 

understand the kinetic properties of SENP1 spino-dendritic diffusion I used two complementary 

advanced imaging techniques: Fluorescence Recovery After Photobleaching (FRAP; Fig. 27) and 

photoconversion (Fig. 28). FRAP enables to determine the diffusion properties of SENP1 entry 

into dendritic spines (described in more detail in Fig. 27). On the other hand, photoconversion 

provides information about synaptic exit of SENP1 (Fig. 28). A combination of these two imaging 

techniques, as used throughout my thesis project, is important to understand how different 

pharmacological interventions, and therefore neuronal/synaptic activation together with the 

Figure 27. The principle of Fluorescence Recovery After Photobleaching (FRAP). A. A high power laser beam 

targeted to a restricted area, here a dendritic spine, photobleaches exogenously expressed fluorescently labelled 

proteins (e.g. GFP-SENP1). As the non-bleached molecules from dendritic shaft diffuse toward a spine, a fluorescence 

recovery can be observed. B. A typical FRAP curve, from which several diffusion properties can be determined: half 

time of recovery (t1/2) that represents recovery time of 50% of fluorescence of the mobile fraction; mobile and 

immobile fractions stand for the percentage of fluorescence that did and did not recovered, respectively. Diffusion 

coefficient represents the speed of recovery and can be calculated based on the size of the bleach area and the half 

time recovery.  



91 

 

action of putative regulators of SENP1, affect SENP1 spino-dendritic dynamics. In doing so, I 

aimed to identify novel upstream regulatory mechanisms of SENP1 at synapses. 

 

 

2. Investigation into endogenous synaptic SENP1  

To examine whether the findings that concern exogenously expressed SENP1 apply to the 

endogenous SENP1, and therefore may be of a functional importance to the neuronal/synaptic 

function, I used corresponding pharmacological treatments as in live-cell imaging, but this time I 

performed immunocytochemistry to quantify SENP1 localisation in dendritic spines using the 

postsynaptic marker PSD-95. In addition, I performed subcellular fractionation from cultured rat 

Figure 28. The principle of photoconversion. A. Restricted photoconversion in cells expressing a protein of interest 

conjugated to a photoswitchable fluorescent tag (here Dendra2-SENP1) allows to track the movement of 

photoconverted molecules from a restricted area, here a dendritic spine. Dendra2 photoconversion is triggered by 

405nm laser beam leading to its conformational change and excitation at 561 nm (Chudakov et al., 2007).  B. A typical 

photoconversion curve showing the decay of fluorescence as photoconverted molecules exit from a restricted area. 

Speed of fluorescence decay is given by diffusion coefficient and is calculated based on the size of photoconverted 

area and half time fluorescence decay/synaptic exit. 
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cortical neurons and measured SENP1 levels in PSD fractions to investigate the level of SENP1 at 

synapses upon synaptic activation. Here, I describe the isolation of PSD fraction that is referred 

to as the Triton Insoluble Fraction (TIF):  

Triton X-insoluble Fraction (TIF) isolation 

TIF fractions were prepared according to established protocols (Gardoni et al., 2009; Gardoni 

et al., 2003) (Phair and Misteli, 2001) using 18-20 DIV rat cortical neurons (5 x 100 mm dishes per 

condition with 2.5 x 106 cells). Prior to the isolation neurons were treated for 40 min with control 

solution ;Earle’s ďuffer + vehicleͿ, or with Earle’s ďuffer containing bicuculline (10 µM) or DHPG 

(50 µM). Neurons were then immediately cooled down on ice and homogenized in ice-cold 

sucrose buffer (1 mM HEPES pH 7.4; 0.32 M sucrose; 1 mM EDTA; 1 mM MgCl2, 1 mM NaHCO3; 

Mammalian protease inhibitors [Roche] containing 20 mM NEM [Sigma-Aldrich]). Nuclear 

proteins were removed from the synaptosomal preparation by centrifugation at 200g for 5 min 

(this step was repeated two times). Post-nuclear fractions were further centrifuged at 13,000g 

for 15 min to isolate crude synaptosomal fractions. Crude fractions were then resuspended in 

lysis buffer (75 mM KCl, 1% Triton X100 in presence of 20 mM NEM) and TIF fractions purified by 

centrifugation at 100,000g for 1h. Finally, TIF fractions were collected and resuspended in Urea-

containing lysis buffer (50 mM Tris-HCl pH 6.8, 2% SDS, 10% glycerol and 8M Urea). Protein 

concentrations were determined (BioRad) and samples were heated at 95°C in Laemmli buffer 

for 10 min. 

 

3. Pharmacological intervention to target SENP1 upstream regulators 

The pharmacological targeting of key steps in intracellular signalling is a common approach 

for identifying regulatory mechanisms of studied pathways. I acquired this approach and used 

specific agonists and antagonist to target key neuronal receptors such as GABAA, NMDAR and 

GluR1/5 to dissect upstream regulatory mechanisms of SENP1 at synapses. Moreover, I used 

specific pharmacological agents to block or destabilise additional regulatory molecules, e.g. 

microtubules, which could play a role in SENP1 regulation at synapses. Importantly, all these 

pharmacological agents were previously validated for use in neuronal cultures: 
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 Bicuculline: GABAA receptor competitive antagonist (Curtis et al., 1970). Its application 

leads to increase in glutamate release and thus potentiation of synaptic activation. 

Used at 10 µM concentration. 

 AP5: NMDAR antagonist (Davis et al., 1992). Used at 50 µM. 

 DHPG: mGluR1 and 5 selective agonist (Ito et al., 1992). Used at 50 µM. 

 MPEP: selective non-competitive antagonist of mGluR5 (Gasparini et al., 1999).  Used 

at 30 µM. 

 JNJ 16259685: highly-potent non-competitive mGluR1 antagonist (Lavreysen et al., 

2004). Used at 500 nM. 

 Tetrodotoxin (TTX): inhibitor of sodium channel conductance (Gleitz et al., 1996). TTX 

was used to diminish high excitability in neuronal cultures. Used at 2 µM. 

 Nocodazole: disrupts ŵicrotuďule dǇnaŵics ďǇ ďinding to β−tuďulin (Vasquez et al., 

1997). Used at 33 µM. 

 

  



 

  

Results and Discussion 
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2. Results and Discussion 

 

The efficient delivery of cellular components to the location of their function is a fundamental 

mechanism of cellular biology. Macromolecular mobility can happen through diffusion due to the 

random walk of molecules (efficient for short [µm] distances) or long distance energy-requiring 

active transport (e.g. vesicle movement involving microtubules and molecular motors). Diffusion 

of molecules in well diluted environments follows simple and well-established physical principles. 

However, the inside of a cell presents a complex environment with many obstacles, such as 

macromolecular crowding, viscosity, physical barriers as well as specific and non-specific 

bindings, that the diffusing molecules must overcome to reach their destination (Perlson and 

Holzbaur, 2007). Protein mobility in neurons has attracted much attention owing to their 

particular shape (long distance trafficking and diffusion) and the phenomenon of synaptic 

transmission underlying brain function, that is on the molecular level governed by the trafficking 

of an immense number of molecules. According to the literature and own experience throughout 

my PhD, SENP1 is a cell-diffusing protein with both diffused (dispersed) and localised expression 

within a cell (Cubenas-Potts et al., 2013) (Chow et al., 2014). For instance, SENP1 localises to the 

nuclear pore complexes, and together with SENP2 to the kinetochores during mitosis in HeLa 

cells (Cubenas-Potts et al., 2013). What is also apparent is that SENP1 can shuttle between the 

nucleus and the cytoplasm through a nuclear export sequence (Kim et al., 2005). In neurons, 

SENP1 is also present at synapses (Loriol et al., 2012). The dynamic regulation of protein 

redistribution at synapses during neuronal maturation or KCl depolarisation has been observed 

not only for SENP1 and Ubc9 but also for other sumoylation machinery members (Loriol et al., 

2012) (Loriol et al., 2013). Such findings strongly suggest functional implications of the 

sumoylation process at synapses, which has been widely evidenced by previous research 

(reviewed in (Schorova and Martin, 2016), Annexed Article 1). Ubc9 synaptic redistribution is 

regulated through the mGluR5/PLC/PKC signalling cascade (Loriol et al., 2014). Since the 

sumoylation process must duly work in a balance, i.e. both sumoylation and desumoylation take 

place in a time-coordinated manner, it is highly desirable to uncover the molecular mechanisms 

driving redistribution of a desumoylation enzyme such as SENP1 at synapses. I anticipate that 
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research into the understanding of the sumoylation/desumoylation balance will add to the 

fundamental knowledge of cellular physiology with far reaching implications in the pathogenesis 

of many diseases where this balance is dysregulated. 

 

Indeed, disruption of the sumoylation-desumoylation balance has been recurrently 

associated with neurological diseases (reviewed in (Henley et al., 2014) and (Schorova and 

Martin, 2016), Annexed Article 1Ϳ. In order to understand the ŵechanisŵs driving the ͞SUMO 

ďalance͟ in neurons and at ŵaŵmalian synapses, we need to complement the findings on the 

Ubc9 synaptic regulation (Loriol et al., 2014) by investigation into the desumoylation pathway. 

Here, I present my PhD work that aimed to identify the regulatory mechanisms of the SENP1 

enzyme at the synapse. Some of these findings can be also found in the Annexed Article 3. 

  

I. Is SENP1 spino-dendritic diffusion regulated by synaptic activity? 

 

a) Validation of experimental tools 

 

 Is GFP-SENP1 an active desumoylation enzyme? 

For the purpose of the investigation into the regulatory mechanisms of SENP1 trafficking at 

synapses I largely worked with exogenously expressed fluorescently tagged SENP1. To verify that 

GFP-SENP1 is functionally active in cells, I transfected COS7 cells with plasmids encoding for GFP, 

GFP-SENP1 and the inactive GFP-SENP1 mutant (C603S), respectively. As can be seen from Figure 

29, over-expression of GFP-SENP1 but not its inactive mutant C603S decreases the overall 

SUMO1- and SUMO2/3-modified protein levels (Fig. 29A and B). 
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 Is GFP-SENP1 distributed as the endogenous SENP1 in cultured rat hippocampal neurons? 

Here, I checked that both GFP-SENP1 and endogenous SENP1 are expressed at a steady state 

at synapses in rat hippocampal neurons that were principally used throughout this study. As 

shown in Figure 30 and 31, both endogenous SENP1 and WT GFP-SENP1 localise to the nucleus 

as well as the cytoplasm including secondary dendrites and dendritic spines (colocalisation with 

Figure 29. Expression of WT GFP-SENP1 decreases SUMO1/2/3-modified protein levels in COS7 cells. A. 

Representative Western Blots of SUMO1- and SUMO2/3-modified protein levels upon expression of GFP, WT GFP-

SENP1 and the inactive GFP-SENP1 mutant (C603S). B. Quantitative representation of SUMO1- and SUMO2/3-

modified protein levels normalised to GFP-ctrl +/- SEM (SUMO1: WT GFP-SENP1 [52.2 +/- 7.5 %] and GFP-SENP1 

C603S [87.2 +/- 13.7 %]; SUMO2: WT GFP-SENP1 [50.7 +/- 6.7 %] and GFP-SENP1 C603S [103.6 +/- 22.7 %]) from 3 

independent experiments. Statistics: One-way ANOVA with Tukey post hoc test. NS, not significant. P-values are 

indicated. 
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the postsynaptic marker PSD-95, Fig. 30A and B). In regard to the endogenous SENP1, 

approximately 12.7 % of SENP1 that is found within secondary dendrites accounts for synaptic 

SENP1, i.e. in colocalisation with PSD-95 (Fig. 30A). Colocalisation of WT GFP-SENP1 with PSD-95 

represents about 17.2 % indicating that WT GFP-SENP1 behaves similarly to the endogenous 

SENP1 (Fig. 30B). As it is well established that the majority of SENP1 expression is localised to the 

Figure 30. Distribution of SENP1 in dendrites and spines. A. Representative image of a 19 DIV rat hippocampal 

neuron immunolabelled for the neuronal marker MAP2 (blue), synaptic marker PSD-95 (red) and SENP1 (green). 

Graph on the right indicates the percentage of SENP1 staining in spines (12.7 +/- 0.4 %) and dendritic shafts (83.8 

+/-  0.4 %) of secondary dendrites (n= 26 neurons). B. Representative image of a 19 DIV rat hippocampal neuron 

expressing WT GFP-SENP1 (green) and immunolabelled for PSD-95 (red). Graph on the right indicates the percentage 

of GFP-SENP1 localisation in spines (17.2 +/- 1.1 %) and dendritic shafts (82.8 +/- 1.1 %) of secondary dendrites (n= 

2 neurons).  
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nucleus, Figure 31 further displays enlarged views of high nuclear localisation of both 

endogenous SENP1 (Fig. 31A) and GFP-SENP1 (Fig. 31B).  

 

 

  

Since my thesis project is built around SENP1 live-imaging in cultured neurons, 

these initial experiments were important to demonstrate that exogenously 

expressed SENP1 localises at synapses and is functionally active. 

Figure 31. Nuclear localisation of SENP1 in neurons. A. Representative images of a 19 DIV rat hippocampal neuron 

immunolabelled for SENP1 (green) and the synaptic marker PSD-95 (red). B. Representative images of a 19 DIV rat 

hippocampal neuron expressing WT GFP-SENP1 (green) and immunolabelled for PSD-95 (red). Scale bar = 20 µm. 
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b) Does an increase in synaptic activity alter the subcellular distribution of GFP-SENP1? 

 

Synaptic activation leads to glutamate release which triggers a set of signalling cascades that 

eventually converge to changes in neuronal communication – the fundamental process of brain 

functioning (Fig. 32A). To test whether SENP1 spino-dendritic diffusion is altered upon an 

increase in synaptic activity I performed live-cell confocal imaging in the course of bicuculline (a 

GABAA receptor antagonist) administration to potentiate glutamate release and hence synaptic 

activity. Primary hippocampal neurons (18-21 DiV) virally transduced to express WT GFP-SENP1 

were imaged following this work flow (Fig. 32B): First, neurons were kept at 37 °C in Earle’s ďuffer 

(EB) solution (control solution) for 5 min prior to imaging for stabilisation; then, imaging was 

performed in control solution for 5-10 min before this medium was exchanged for control 

solution containing 10 µM bicuculline. Upon bicuculline addition, neurons were imaged for 30-

40 min prior to the washout. As seen in Figure 32B and C, a sustained increase in synaptic activity 

increases synaptic localisation of WT GFP-SENP1 in a time-dependent manner and plateaus at 

about 30 min of bicuculline treatment (increase by ~40 % of initial levels), with a corresponding 

decrease in dendritic shaft (by ~20 % of initial shaft levels). This WT GFP-SENP1 redistribution 

towards spines is reversible when a washout (control) solution is applied. Noteworthy, after 

recovering the basal level of activity, WT GFP-SENP1 remains in dendritic shaft at low levels even 

after 20 min post-washout. Since the experimental set up (lack of CO2 microscope chamber) does 

not permit to image living neurons for longer periods of time (the overall health of cultured 

neurons decreases, which may introduce a significant bias into the analysis), I could argue that it 

takes longer than 30 minutes to reach the initial levels of WT GFP-SENP1 in dendritic shaft. 

However, considering that WT GFP-SENP1 fluorescence intensity in spines reaches the initial 

levels upon a washout, it is plausible to think that a concurrent degradation of WT GFP-SENP1 

takes place in the shaft. To test this, it would be interesting to perform the very same experiment 

in the presence of inhibitors of proteasomal or lysosomal degradation. Additionally, a 

photobleaching artefact may account for some of the fluorescence intensity loss. We can see 

from the whole field fluorescence that about 5 % of fluorescence intensity is lost in the course of 

acquisition, including spines and shafts. This would mean that if the curves (Fig. 32C) were 
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corrected for bleaching, the WT GFP-SENP1 fluorescence may not be fully recovered in spines 

upon a washout and the shaft fluorescence would reach closer to the basal levels. I performed 

such a correction for photobleaching (Fig. 32D), upon which it is clear that a 30-minute washout 

is not sufficient to reach the initial levels of WT GFP-SENP1 in spines. This could be a result of an 

activation of signalling cascades that have a long-lasting effect on WT GFP-SENP1 spino-dendritic 

redistribution pointing to synaptic plasticity events. Indeed, changes in synaptic strenght require 
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precise regulation of protein composition at the synapse. These include not only receptor 

proteins (e.g. AMPAR, (Henley and Wilkinson, 2013)) but also regulatory molecules such as 

kinases and scaffoding proteins. Neuronal activation triggers calcium flux and spikes throughout 

activated neurons. CaMKII has been shown to be recruited to activated synapses where calcium 

locally raises inducing spine plasticity (Lee et al., 2009). Moreover activated CaMKII serves as a 

docking hub for proteins and protein complexes such as proteasomes in dendritic spines.    

 

Figure 32 (Continued). Activity-dependent redistribution of WT GFP-SENP1 into spines. A. Scheme showing synaptic 

stimulation that leads to glutamate receptor activation and triggers a number downstream signalling pathways 

resulting in changes in neuronal communication. B. Workflow protocol of bicuculline (10 µM) treatment and 

representative confocal images (5-stack z-projection) of time-lapse recording of a GFP-SENP1 expressing rat 

hippocampal neuron (shown is a segment of a secondary dendrite with spines). C. Corresponding quantification of 

a representative experiment showing +/- SEM of normalised fluorescence intensity in spines (n=34), shafts (n=11) 

and whole dendritic tree field (green) in the course of incubation with control solution, bicuculline (10 µM) and 

during washout. D. Photobleaching correction was applied to measurements from C. E. Graphical representation of 

normalised mean fluorescence intensity from 34 spines pre-bicuculline (0-5 min, 1.003 +/- 0.0005, dark grey), high 

peak fluorescence intensity upon bicuculline treatment (30-45 min, mean = 1.304 +/- 0.027, orange), and low peak 

fluorescence intensity upon washout (55-70 min, mean = 1.14 +/- 0.04, light grey). Statistical test: Paired, parametric 

one-way ANOVA with Tukey post hoc test. P-values are indicated. 

Figure 33. Synapto-dendritic redistribution of WT GFP-SENP1 under basal/control neuronal activity. A. Graphical 

representation and corresponding confocal images of time-lapse recording of a WT GFP-SENP1 expressing 

hippocampal neuron in control solution. Curves +/- SEM represent mean value of indicated numbed of spines (black), 

shafts (orange) and whole dendritic tree field (green). B. Bar graph shows spine mean fluorescence intensity +/- SEM 

during 0-5 min (dark grey) and 5-40 min (light grey). Number = 40 spines. Statistical test: Paired, non-parametric t-

test. NS, not significant. 
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To verify that WT GFP-SENP1 does not undergo redistribution towards spines in the absence 

of synaptic stimulation, neurons were recorded for 40 min in control solution only (Fig. 33). As 

depicted in Figure 33A and B, WT GFP-SENP1 levels remain unchanged in dendritic spines and 

shafts throughout the course of recording. The evident oscillations were caused by a minor 

movement in the z-axis during acquisition. Notably, as in the previous experiment (Fig. 32), about 

a 5 % fluorescence decrease was measured in the course of acquisition in all regions measured 

(spines, shafts and field). As mentioned above, this rundown was most likely caused by 

photobleaching due to the acquisition protocol that constitutes of a 5-stack image being taken 

every 10 s with 300 ms exposure for the duration of 40 min and fits well with the previous 

experiment shown in Figure 32. 

 

It is important to uncover the biological reasons of SENP1 accumulation in spines. I assume 

that a sustained/chronic synaptic activation does not reflect physiological conditions and 

therefore, a significant increase in synaptic SENP1 could be a consequence of a pathological state. 

Moreover, such a robust accumulation of SENP1 in spines (by ~40%) would credibly impair the 

sumoylation/desumoylation balance further worsening synaptic defects. Thus, it would be very 

interesting to examine SENP1 levels at synapses in diseased conditions that are known for 

exacerbated synaptic/neuronal activity such as epilepsy. Importantly, the host laboratory has 

previously reported that Ubc9 transient trapping in spines increases synaptic SUMO1-ylation 

levels within 10 min of synaptic activation in intact synaptosomes in vitro (Loriol et al., 2014). 

Accordingly, SENP1 accumulation in spines starts to be apparent after this 10-minute time point. 

It will therefore be of interest first, to carry out time-lapse imaging of neurons expressing GFP-

Ubc9 in the course of synaptic activation to examine the Ubc9 spino-dendritic redistribution; and 

second, to measure the sumoylation levels at synapses after prolonged synaptic activation at 

several time points (10 to 50 min of chronic stimulation). I have already performed one 

preliminary experiment with a 40-minute chronic synaptic activation suggesting that indeed 

sustained synaptic activation changes SUMO1/2/3-ylation levels in the synapse. This result is 

presented later in Figure 51. Should all the above mentioned points be addressed, it may provide 
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additional evidence for the sumoylation/desumoylation balance being a vital physiological 

requirement.   

 

 

c) What are the dynamic properties of WT GFP-SENP1 spino-dendritic exchange upon synaptic 

activation? 

 

 Investigating SENP1 dynamics of synaptic entry. 

To gain understanding into dynamic properties of WT GFP-SENP1 synaptic entry in stimulated 

conditions, I performed FRAP experiments in control and bicuculline conditions (Fig. 34). Neurons 

were pre-treated or not with bicuculline for 10 min prior to FRAP spine photobleaching. I 

observed that the entry of WT GFP-SENP1 into spines was much slower (ctrl: ~0.0135 vs bic: 

~0.0087 µm2/s) and the mobile fraction much lower (ctrl: ~74.5 % vs bic: ~59.73 %) than in control 

condition, suggesting that rather a retention than a potentiated influx of WT GFP-SENP1 into 

spines might be the mechanism behind the increase of SENP1 synaptic localisation in bicuculline 

treated i.e. activated neurons.  

Importantly however, considering that the effect of synaptic activation on WT GFP-SENP1 

synaptic diffusion peaks at about 30 min post-treatment, I reasoned that this time-dependent 

effect would be further evidenced by FRAP experiments at different time points post-bicuculline 

treatment. Indeed, as seen from Figure 35, the longer the bicuculline treatment the more robust 

was the effect on WT GFP-SENP1 synaptic entry diffusion (Fig. 35). This result suggests an 

important time-dependent effect of synaptic activity on WT GFP-SENP1 spino-dendritic diffusion 

(spine entry and/or retention).  

SENP1 accumulation in dendritic spines is specifically triggered by synaptic 

activation. This implies a functional importance of desumoylation at synapses. 
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Due to this time-dependent effect, I decided to separate the FRAP recordings of 10-25 min 

and 25-50 min of sustained bicuculline treatment. As shown in Figure 36, such a separation gives 

rise to two distinct populations. In the first population (10-25 min of sustained bicuculline 

treatment), the effect of enhanced synaptic activity on SENP1 diffusion is already apparent, 

mostly in terms of half time recovery and speed of diffusion (Fig. 36C). However, the fraction of 

mobile SENP1 that enters the spine head is comparable at this time frame with non-treated 

condition (Fig. 36C). Sustained synaptic activation that lasts for more than 25 min (25-50 min) 

Figure 34. SENP1 postsynaptic entry is regulated by synaptic activity. A. Scheme showing the purpose of FRAP which 

is to determine the entry movement of GFP-SENP1 diffusing molecules upon synaptic activation into spines B. 

Representative FRAP recordings of WT GFP-SENP1-expressing spines of rat hippocampal neurons (19 DIV) in control 

and bicuculline (25 min sustained treatment) conditions. C. FRAP curves showing mean values (+/- SEM) of 

fluorescence intensity of bleached spines in control (blue) and bicuculline (sustained treatment of 10-50 min, red) 

conditions. D. FRAP measurements +/- SEM: half-time recovery (t1/2, ctrl [20.79 +/- 1 s] and bic [33.94 +/- 1.3 s]); 

diffusion coefficient (ctrl [0.0135 +/- 0.0007 µm2/s] and bic [0.0087+/-0.0005 µm2/s]); and mobile fraction (ctrl [74.5 

+/- 1.1 %] and bic [59.73 +/- 1.4 %]). Spine number ctrl= 165 and bic= 217 from at least 5 different cultures. Statistics: 

t1/2 and diff. coef. were analysed by Mann-Whitney and Fm by parametric t-test. P-values are indicated. 



104 

 

dramatically decreases the fraction of SENP1 that diffuses into spines (Fig. 36C). These data 

reinforce the time-dependent regulation of SENP1 spino-dendritic diffusion and show that SENP1 

spino-dendritic targeting gradually decreases in response to sustained synaptic activation.  

 

SENP1 synaptic entry gradually decreases in response to sustained synaptic 

activation. 

 

Figure 35. SENP1 synaptic entry is regulated by synaptic activity in a time-dependent manner. Each curve 

represents a mean value of 3 spines from 3 independent FRAP experiments in control (blue) and bicuculline (10 µM) 

conditions after indicated times of incubation. 
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Figure 36. SENP1 postsynaptic entry is regulated by synaptic activity in a time-dependent manner. A. 

Representative FRAP recordings of WT GFP-SENP1-expressing spines of rat hippocampal neurons (19 DIV) in control 

and bicuculline (15 and 40 min of sustained treatment) conditions. B. FRAP curves corresponding to images in A. C. 

FRAP curves showing mean values (+/- SEM) of fluorescence intensity of bleached spines in control (blue) and 

bicuculline (sustained treatment of 10-25 min [orange] and 25-50 min [red]) conditions. D. FRAP measurements +/- 

SEM: half-time recovery (t1/2, ctrl [20.79 +/- 1 s], bic 10-25min [28.25 +/- 2 s], and bic 25-50 min [33.58 +/- 1.6 s]); 

diffusion coefficient (ctrl [0.0135 +/- 0.0007 µm2/s], bic 10-25 min [0.01 +/- 0.0008 µm2/s], and bic 25-50 min [0.0087 

+/- 0.0007 µm2/s]); and mobile fraction (ctrl [74.5 +/- 1.1 %], bic 10-25 min [71.2 +/- 1.7 %], and bic 25-50 min [56.2 

+/- 1.8 %]). Spine number ctrl= 165, bic 10-25 min= 75, and bic 25-50 min= 139 from at least 5 different cultures. 

Statistics: t1/2 and diff. coef. were analysed by Kruskal-Wallis ANOVA and Fm by parametric ANOVA with Tukey post 

hoc test. P-values are indicated. 
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 Investigating SENP1 synaptic exit 

To test whether the increase in SENP1 synaptic localisation is due to a decreased exit of SENP1 

from spines I used photoconversion of Dendra2-SENP1 expressed in neurons. As above, neurons 

were pre-treated or not for 10 min with bicuculline prior to photoconversion. I observed that 

upon bicuculline treatment, the exit of Dendra2-SENP1 from spines was significantly slower when 

compared to basal condition (Fig. 37). This result indicates that increasing synaptic activity leads 

to SENP1 transient retention/trapping in spines. Once again, the robustness of Dendra2-SENP1 

retention in spines was dependent upon the duration of bicuculline treatment demonstrating 

that SENP1 is regulated by sustained synaptic activity in a time-dependent manner (Fig. 37). 
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I reason that the combination of a decreased entry to with an increased retention of SENP1 

in spines is the mechanism responsible for SENP1 accumulation in spines upon sustained synaptic 

activation. This implies that molecular mechanisms that regulate the direction of SENP1 

movement in and out of spines must work in synergy to maintain the sumoylation/desumoylation 

balance. The identification of these molecular cues regulating SENP1 spino-dendritic diffusion is 

described later in the results section. 

 

 

 

  

Figure 37 (Continued). Synaptic exit of WT Dendra2-SENP1. A. Scheme showing the purpose of the photoconversion 

experiment which is to determine the dynamics of the exit diffusion of WT Dendra2-SENP1 from spines upon 

synaptic activation. B. Representative confocal images of WT Dendra2-SENP1-expressing rat hippocampal neurons 

(19 DIV) during a photoconversion experiment in control and bicuculline (duration of treatment: 40 min) conditions. 

C. Typical fluorescence decay curves showing the diminishment of fluorescence as photoconverted WT Dendra2-

SENP1 molecules exit from spines. The curves correspond to the images in B. D. Graph displaying fluorescence decay 

curves as mean values (+/- SEM) from 12 spines in control, 9 spines in bicuculline (duration of treatment 10-25 min) 

and 13 spines in bicuculline (duration of treatment 25-50 min) conditions. E. Graphical representation of half time 

fluorescence decay that corresponds to the ctrl (blue, 6.13 +/- ϭ.8 sͿ and ďic ;red, Ϯϱ’-ϱϬ’, ϭϭ.ϵ +/- 2.6 s) curves in D. 

F. Graphs of fluorescence decay speed in ctrl (0.279 +/- 0.065 µm2/s) and bic (0.105 +/- 0.020 µm2/s) conditions. 

Number of cultures = 3. Statistics: multiple t-test in D and Mann-Whitney test in E and F. P-values are indicated.  

The combination of a decreased entry to and a prolonged retention of SENP1 

in spines is in favour of SENP1 synaptic accumulation as a result of a sustained 

synaptic activation. 
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 Does synaptic localisation of endogenous SENP1 increase upon sustained synaptic activity? 

To answer this question, I performed immunolabelling of endogenous SENP1 in rat 

hippocampal neurons following a treatment with control or bicuculline-containing solutions. 

Taking into consideration that endogenous SENP1 is present at synapses at lower concentrations 

than in over-expression system, samples were analysed only for the peak time-point of 

bicuculline effect as seen in the live-cell imaging (30-40 min). I carried out a colocalisation analysis 

of SENP1 with the postsynaptic marker PSD-95 by assessing three measurements: PSD-95 size of 

area (PSD-95 Area), SENP1 mean fluorescence intensity within PSD-95 area (SENP1 in PSD-95) and 

SENP1 total mean fluorescence intensity (SENP1 Total). Using an ImageJ macro that was 

purposely tailored for this analysis in collaboration with Dr Brau (IPMC microscopy platform) I 

analysed secondary dendrites for the colocalisation of SENP1 with PSD-95. As shown in Figure 

38, firstly, the PSD-95 area, that was used as a mask for the colocalisation analysis with SENP1, 

remains unchanged between control and bicuculline conditions. Secondly, increasing synaptic 

activity does not affect the total SENP1 fluorescence intensity, which is expected given the time 

course of 40 minutes, in which very little protein synthesis (of ~70 kDa SENP1) takes place. 

Nevertheless, this was an important indicator of the non-toxicity of the bicuculline treatment or 

the vehicle over the 40-minute period of the experiment. Third, and a very exciting finding is that 

bicuculline-triggered synaptic activation results in an increased SENP1 intensity within the PSD-

95 area demonstrating that SENP1 accumulates at the postsynapse upon bicuculline treatment.  

This result is in agreement with the live-cell imaging experiments (Fig. 32) and indicates that 

the redistribution of endogenous SENP1 into dendritic spines is regulated upon synaptic 

activation.  
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An alternative way to quantify protein levels at the synapse is by biochemical means. In order 

to provide additional evidence for synaptic levels of endogenous SENP1 in response to synaptic 

activation I aimed to purify synaptosomes from cultured cortical neurons (18-20 DIV). I carried 

out synaptosomal preparation using an already published protocol (Loriol et al., 2013), however, 

I did not succeed in synaptosomes enrichment upon sucrose gradient ultracentrifugation (Fig. 

Figure 38. Endogenous SENP1 localisation at synapses. A. Immuno-labelling of fixed primary hippocampal neurons 

in control and bicuculline (40 min treatment) conditions. Scale bar = 2 µm. B. Quantitative representation of control-

normalised size of PSD-95 area, fluorescence intensity of SENP1 within PSD-95 area, and total SENP1 staining from 

4 different cultures and at least 6 neurons (DIV 18-21) analysed/culture. Number of segments of secondary dendrites 

is indicated. Statistics: two-tailed unpaired t-test. P-value is indicated. NS, not significant. 



110 

 

39A). Although I introduced several modifications into the protocol, I was unable to visualise 

synaptosomal fraction in the sucrose gradient, which prevented me from collecting the correct 

synaptosomal fraction (Fig. 39A). I also performed purification of crude synaptosomes (without 

sucrose gradient) but found that most of the synaptic material was pelleted at earlier steps (P1 

and P2) together with nuclei (Fig. 39B). I therefore acquired a different approach – isolation of 

so called Triton Insoluble Fraction (TIF) following previously published protocols ((Gardoni et al., 

2003) and (Gardoni et al., 2009), also described in Experimental approaches in the section 1.5; 

Fig. 40A and Annexed Article 3). Briefly, neurons were treated with control or bicuculline-

containing solution for 40 min. After this time, neurons were homogenised and a nuclei-

Figure 39. Synaptosomal preparation from cultured cortical neurons. Step-by-step scheme of synaptosomal 

isolation on sucrose gradient and a corresponding Western blot of different fractions from 5x 10 cm Petri dishes (2.5 

mil cells/dish). Immuno-detection was performed for PSD-95 (postsynaptic marker), CaMKII (enriched in 

postsynapse) and β-actin (enriched in postsynapse). Lanes labels: total homogenate (HO), nuclear fraction (N), 

supernatant (S, soluble cytoplasmic components) and synaptosomes (Sy). Loaded 15 µg/lane. In blue and green 

rectangles are shown protein enrichments in nuclear but not synaptic fraction, respectively. B Step-by-step scheme 

of crude synaptosomal isolation and a corresponding Western blot of fractions from 5x 10 cm in diameter Petri 

dishes (2.5 mil cells/dish). In blue and green rectangles are shown protein enrichments in nuclear but not synaptic 

fraction, respectively. 
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containing fraction removed from cellular homogenate by a low-speed centrifugation to prevent 

contamination by nuclear SENP1 proteins. The supernatant containing cytosolic fraction 

including synapses was spun down at high speed to form a firm pellet. Pelleted cellular 

Figure 40. TIF preparation from primary cortical neurons. A. Step-by-step scheme of TIF isolation. B. Western blot 

analysis of TIF purity isolation displaying fractions from different steps indicated in A. Immuno-detection was 

performed for NOPP140 (nuclear marker), PSD-95 (postsynaptic marker), Homer1 (postsynaptic marker) and 

synapsin 1a/b (presynaptic marker). Lanes labels: total homogenate (HO), supernatant 1, 2 and 3 (S1,2 and 3), pellets 

1 and 2 (P1 and 2), triton insoluble fraction (TIF) and supernatant 4 (S4). Loaded 10 µg of total protein/lane. C. 

Additional Western blot analysis of TIF purity isolation different from B displaying fractions from different steps 

indicated in A. Immuno-detection was performed for PSD-95 (postsynaptic marker), Homer1 (postsynaptic marker), 

SENP1, fibrillarin (nuclear marker), synaptotagmin (presynaptic marker), synapsin 1a/b (presynaptic marker), CaMKII 

(enriched in postsnapse) and β-actin. Lanes are labelled as in B. Loaded 15 µg of protein/lane. D. Western blot 

showing the presence of SUMO1/2/3-modified proteins in HO (loaded 15 µg) and TIF (loaded 40 µg) fractions. 
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components were lysed and solubilised with a buffer containing 1% TritonX100. The PSD 

macromolecular complex consists of many highly packed proteins (supposedly also SENP1) that 

are resistant to high percentage of TritonX100 solubilisation. Upon solubilisation, non-PSD 

complex proteins are solubilised into the solution whereas PSD complexes remain intact. Then, 

to pellet PSD complexes, a high speed ultracentrifugation was performed. In the last step of TIF 

isolation, PSD complexes were stringently denaturised in 8M urea buffer and Western Blot was 

performed to test the purity of each fraction for markers of cellular compartments (Fig. 40B and 

C), the presence of SUMO-modified proteins (Fig. 40D) as well as SENP1 protein levels that were 

quantified (Fig. 41). Of note, Homer1 and PSD95, the postsynaptic scaffolds, were used as loading 

controls (Fig. 41) since both are prominent components of PSD and therefore TIF fractions, and 

their distribution within spines is presumably correlated with the spine size. However, I am aware 

that more optimisation and seeking a better loading control for assessment of protein levels in 

TIF fraction is needed. Possibly, α- and β-tubulin may present more suitable loading controls for 

TIF fraction as they are found within PSD as previously described (Kelly and Cotman, 1978). I also 

considered using actin, but the levels were highly variable and I therefore decided to omit its use 

as a loading control. Ideally, a well optimised Bradford protein assay combined with appropriate 

loading control will yield results that accurately reflect the levels of SENP1 protein in PSD under 

studied conditions. In conclusion, although more experiments are being conducted at the 

Figure 41. SENP1 protein levels in TIF fraction. A. Representative Western blot of cellular homogenate (HO) and TIF 

fractions in control and bicuculline (40 min) conditions. Immuno-detection was performed for SENP1 and Homer1. 

B. Quantifications of normalised SENP1 levels in TIF fractions in control and bicuculline conditions. The bars 

represent mean values +/- SEM from 3 independent experiments. SENP1 normalisation was performed with levels 

of Homer1. Statistics: Paired t-test. 
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moment, the present results suggest that sustained synaptic activation leads to an enrichment 

of endogenous SENP1 in PSD/TIF traction (Fig. 41). 

 

 

 

 

II. Activation of which glutamatergic receptors is responsible for the regulation of SENP1 

spino-dendritic diffusion? 

 

Glutamate is the major excitatory neurotransmitter in the brain. Glutamate receptor binding 

triggers a plethora signal transduction cascades via the redistribution and binding of signalling 

molecules. Since the application of bicuculline, the GABAA receptor antagonist, to neurons is 

known to result in glutamate release, I expected a direct participation of glutamate receptor 

activation in the regulation of SENP1 synaptic redistribution.    

 

a) Are NMDA receptors involved in SENP1 spino-dendritic redistribution? 

NMDA receptors are voltage- and ligand-gated ion channels that largely contribute to 

synaptic plasticity and intracellular Ca2+ transients. Increased calcium ion concentration in 

postsynaptic neuron contributes to the rearrangement of scaffolding proteins, the increase of 

postsynaptic area and the decrease of resistance during synaptic transmission resulting in the 

formation of LTP (Pastalkova et al., 2006). In addition, Ca2+ is an important second messenger 

that activates several crucial protein kinases, such as PKA, CaMKII and MAPK that activate further 

downstream signalling pathways. Therefore, I aimed to examine whether NMDAR activation 

could specifically regulate SENP1 redistribution at synapses. In order to target NMDARs, I used 

the NMDAR antagonist, AP5 (Davis et al., 1992). I performed FRAP experiments on GFP-SENP1-

expressing primary hippocampal neurons in the absence or presence of AP5. Interestingly, 

application of AP5 alone affects SENP1 spine entry dynamics that is comparable with 

Synaptic activation leads to an accumulation of endogenous SENP1 at synaptic 

sites. 
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bicuculline-treated conditions (Fig. 42, t1/2 mean +/- SEM: AP5 [30.1 +/- 1.2 s] vs bic [33.6 +/- 1.6 

s] and speed of diffusion (AP5 [0.0085 +/- 0.0004 µm2/s] vs bic [0.0087 +/- 0.0007 µm2/s]), 

whereas mobile fraction in AP5 condition is similar to control (Fm mean +/- SEM: AP5 [72 +/- 1 

%] vs ctrl [75 +/- 1 %] vs bic [56 +/- 1.8 %]). It is difficult to explain the slight effect of AP5 itself 

on SENP1 dynamics, however, multiple compensatory effects of an activity potentiation of 

different glutamatergic receptors could play a role. Nevertheless, the pre-incubation with AP5 

does not reverse the bicuculline-induced effect on SENP1 diffusion (Fig. 42) and therefore, 

blocking NMDAR activity does not interfere with SENP1 synaptic redistribution upon increased 

synaptic activity. I can thus conclude that NMDARs are not involved in bicuculline-mediated 

SENP1 synaptic redistribution. 

 

 

Figure 42. The role of NMDAR in SENP1 regulation at synapses. A. FRAP curves showing mean values (+/- SEM) of 

fluorescence intensity of bleached spines in control (blue), bicuculline (sustained treatment of 25-50 min, red), AP5 

(green) and AP5+bicuculline (25-50 min, orange) conditions. B. FRAP measurements +/- SEM: Half-time recovery 

(t1/2, ctrl [20.79 +/- 1 s], bic 25-50 min [33.58 +/- 1.6 s], AP5 [30.05 +/- 1.2 s] and AP5+bic [35.01 +/- 2.2 s]). C. Diffusion 

coefficient (ctrl [0.0135 +/- 0.0007 µm2/s], bic 25-50 min [0.0087 +/- 0.0007 µm2/s], AP5 [0.0085 +/- 0.0004 µm2/s] 

and AP5+bic [0.0079 +/- 0.0006 µm2/s]). D. Mobile fraction (ctrl [74.5 +/- 1.1 %], bic 25-50 min [56.2 +/- 1.8 %], AP5 

[72 +/- 1 %] and AP5+bic [54 +/- 2%]). Spine number ctrl = 165, bic 25-50 min = 139, AP5 = 172, AP5+bic = 86 from 

at least 4 different cultures. Statistics: t1/2 and diff. coef. were analysed by Kruskal-Wallis ANOVA and Fm by 

parametric ANOVA with Tukey post hoc test. P-values are indicated. 

Synaptic activation regulates SENP1 redistribution at post-synaptic sites in an 

NMDAR-independent manner.   
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b) Are Group I mGlu receptors involved in SENP1 spino-dendritic redistribution? 

 

Stimulation of Group I metabotropic glutamate receptors (mGluR1 and mGluR5) also leads to 

activation of a wide range of signalling pathways. mGluRs couple to Gα;ƋͿ proteins, activating 

phospholipase C leading to formation of DAG and IP3 that is followed by the activation of a 

plethora of kinases such as PKC. In addition, Group I mGluR activation modulates a myriad of ion 

channels, such as calcium and potassium channels. Group I mGluRs can also activate other 

downstream protein kinases, such as ERK1/2 and AKT, which are implicated in cellular growth, 

differentiation, and survival. mGluR1/5 are localised perisynaptically, right outside the 

postsynaptic membrane specializations, and are crosslinked through the interaction with 

Homer1 to a number of PSD proteins that regulate synaptic signalling and plasticity. Group I 

mGluRs has been also implicated in many types of brain disease such as Alzheiŵer’s disease and 

Fragile X syndrome. Importantly, my host laboratory has previously reported that the sole 

sumoylation enzyme Ubc9 is regulated by the activation of mGluR5 followed by the activation of 

the PLC/PKC cascade that leads to Ubc9 transient trapping at synapses (Loriol et al., 2014). 

Moreover, we have also reported that the FMRP protein, of which gene mutations result in 

Fragile X syndrome, is sumoylated in a mGluR5 activation-dependent manner leading to changes 

in spine frequency and maturation (Khayachi et al. 2018, Annexed Article 2). Altogether, these 

results strongly evidence the involvement of Group I mGluR in synaptic function, control of the 

overall sumoylation balance as well as regulation of specific SUMO-target interactions.  

To follow up on the SENP1 upstream regulatory mechanisms, I tested for the involvement of 

Group I mGluRs. I used the mGluR1/5 agonist DHPG to specifically activate these receptors and 

performed FRAP assays on WT GFP-SENP1-expressing primary hippocampal neurons (Fig. 43). 

Restricted photobleaching of spines was performed in the range of 10-50 minutes of the duration 

of DHPG treatment. DHPG treatment of 10 to 25 minutes significantly altered the entry diffusion 

of WT GFP-SENP1 to spines (Fig. 43), increasing the t1/2 (Ctrl 23.4 +/- 1.35 s vs DHPG [ϭϬ’-Ϯϱ’] 29 

+/- 1.3 s), decreasing speed of diffusion (Ctrl 0.013 +/- 0.001 µm2/s vs DHPG [ϭϬ’-Ϯϱ’] 0.008 +/- 

0.0004 µm2/s) and reducing the mobile fraction (Ctrl 73.9 +/- 1.55 % vs DHPG [ϭϬ’-Ϯϱ’] 66 +/- 1.3 

%). DHPG effect on WT GFP-SENP1 spino-dendritic redistribution was further enhanced when a 
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longer exposure to DHPG 25 to 50 minutes was applied. The entry redistribution of WT GFP-

SENP1 to spines was further reduced (Fig. 43) with t1/2 (DHPG [Ϯϱ’-ϱϬ’] 34 +/- 1.12 s), speed of 
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diffusion (DHPG [Ϯϱ’-ϱϬ’] 0.0071 +/- 0.0003 µm2/s) and mobile fraction (DHPG [Ϯϱ’-ϱϬ’] 58.4 +/- 

1.35 %). This result shows that sustained DHPG treatment has a similar effect on WT GFP-SENP1 

synaptic diffusion as bicuculline. Moreover, a similar dependency on the sustained duration of 

mGluR1/5 receptors activation was also observed when compared between 10-25 and 25-50 

minutes of DHPG exposure (Fig. 43).  

 

Colocalisation analysis of endogenous SENP1 with PSD95 in the absence or presence of DHPG 

was performed to determine SENP1 protein levels at the postsynapse. As depicted in Figure 44, 

a sustained DHPG treatment (40 min) leads to a significant ~14 % increase in SENP1 

immunoreactivity within PSD95-positive sites (Fig. 44B). At the same time, there are no 

significant changes in the size of PSD95-positive area, nor in total SENP1 protein levels (Fig. 44B). 

Altogether, I showed that activation of Group I mGluRs increases protein levels of endogenous 

SENP1 in spines suggesting that these receptors regulate endogenous SENP1 accumulation of at 

the postsynapse.  

Additionally, I performed TIF isolation to determine the protein levels of endogenous SENP1 

in the PSD fraction upon DHPG treatment. Once again, protein levels were determined using 

PSD95 as a loading control (Fig. 45). Initially, I aiŵed to use β-tubulin as a loading control, 

hoǁever, β-tubulin levels in the TIF fraction were very high (Fig. 45A) and therefore the bands 

could not be used for quantification and protein level normalisation. This point will need to be 

addressed and concentration of loaded proteins optimised in future experiments. Data from TIF 

Figure 43 (Continued). Activation of mGluR1/5 regulates SENP1 postsynaptic entry. A. Representative FRAP 

recordings of WT GFP-SENP1-expressing spines of rat hippocampal neurons (19 DIV) in control and DHPG-treated 

(20 and 40 min of sustained treatment) conditions. B. FRAP curves showing mean values (+/- SEM) of fluorescence 

intensity of bleached spines in control (blue) and DHPG (red, sustained treatment of 10-25 min) conditions. FRAP 

measurements +/- SEM: half-time recovery (t1/2, ctrl [23.4 +/- 1.35 s] and DHPG ϭϬ’-Ϯϱ’ [29 +/- 1.3 s]); diffusion 

coefficient (ctrl [0.013 +/- 0.001 µm2/s] vs DHPG ϭϬ’-Ϯϱ’ [0.008 +/- 0.0004 µm2/s]); and mobile fraction (ctrl [74.0 +/- 

1.55 %] vs DHPG ϭϬ’-Ϯϱ’ [66 +/- 1.3 %]. C. FRAP curves showing mean values (+/- SEM) of fluorescence intensity of 

bleached spines in control (blue) and DHPG (red, sustained treatment of 25-50 min) conditions. FRAP measurements 

+/- SEM: half-time recovery (t1/2, ctrl [23.4 +/- 1.35 s] and DHPG Ϯϱ’-ϱϬ’ [34 +/- 1.12 s]); diffusion coefficient (ctrl 

[0.013 +/- 0.001 µm2/s] vs DHPG Ϯϱ’-ϱϬ’ [0.0071 +/- 0.0003 µm2/s]); and mobile fraction (ctrl [73.9 +/- 1.55 %] vs 

DHPG Ϯϱ’-ϱϬ’ [58.4 +/- 1.35 %]. Spine nuŵďer ctrl= ϵϭ, DHPG ϭϬ’-Ϯϱ’= ϭϮϰ, and DHPG Ϯϱ’-ϱϬ’= ϭϳϮ froŵ at least ϰ 
different cultures. Statistics: t1/2 and diff. coef. were analysed by non-parametric t-test and Fm by parametric t-test. 

P-values are indicated. 
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isolations from four different neuronal cultures are presented in Figure 45 showing control, 

DHPG and MPEP-DHPG stimulations. Activation of mGluR1/5 with DHPG led to a significant 

increase in SENP1 levels in PSD (ctrl: 1, DHPG: 1.8 +/- 0.23) which was partially reversed by the 

addition on MPEP (MPEP+DHPG: 1.6). This finding is in agreement with FRAP experiments that 

suggest a retention of GFP-SENP1 in spines upon DHPG treatment as well as the immuno-

detection showing an increase in endogenous SENP1 at synapses after sustained DHPG 

stimulation (Fig. 44). Here, I clearly demonstrated that the activation of mGluR1/5 regulates the 

Figure 44. Localisation of endogenous SENP1 at synapses. A. Immuno-labelling of cold-methanol fixed primary 

hippocampal neurons in control, bicuculline (40 min treatment) and DHPG (40 min treatment) conditions. B. 

Quantitative representation in arbitrary units +/- SEM of control-normalised size of PSD-95 area (ctrl: 1 +/- 0.057, 

bic: 1.087 +/- 0.08, DHPG: 1.043 +/- 0.062); fluorescence intensity of SENP1 within PSD-95 area (ctrl: 1+/- 0.012, 

bic: 1.09 +/- 0.016, DHPG: 1.139 +/- 0.025); and total SENP1 staining (ctrl: 1 +/- 0.02, bic: 0.96 +/- 0.027, DHPG: 0.95 

+/- 0.032) from 3 different cultures and at least 6 neurons analysed per condition in each culture. Number of 

secondary dendrites is indicated. Statistics: One-way ANOVA, post hoc: Tukey. Significant p-values are indicated. 

Scale bar = 2 µm. 
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level of endogenous SENP1 in PSD. Although only one experiment examining the SENP1 protein 

levels upon MPEP+DHPG treatment was performed, it is likely that mGluR5 plays at least a partial 

role in the regulation of SENP1 synaptic distribution. Noteworthy, these results suggest a 

functional importance as disrupted mGluR1/5 signalling, that has been repeatedly implicated in 

a number of neurological conditions, could consequently trigger a dysregulation of the 

sumoylation/desumoylation balance leading to synaptic defects.  

 

 

 

 

 

Figure 45. Activation of Group I mGluRs increases endogenous SENP1 levels at PSD. A. Representative Western 

Blot of TIF fractions from ctrl, DHPG- and DHPG+MPEP-treated cortical neurons (19 DIV). 15 µg of protein was loaded 

per lane. Immuno-detection was performed for PSD95 and SENP1. B. Quantitative representation of control-

normalised SENP1 levels in TIF +/- SEM in DHPG (1.8 +/- 0.23) condition from 4 different neuronal cultures and 

DHPG+MPEP (1.6) from 1 culture. Grey lines and coloured point mark the quantification of SENP1 levels from A. 

PSD95 levels were used as a loading control. Statistics: Paired t-test. P-value is indicated. 

The activation of mGluR1/5 regulates SENP1 synaptic redistribution leading to 

an accumulation of SENP1 at synapses. 
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In order to identify which one of the two Group I mGlu receptors activation is responsible for 

SENP1 regulation at synapses I applied an mGluR5 antagonist, the MPEP compound, and 

performed FRAP experiments in unstimulated and stimulated conditions. Neurons were pre-

incubated for 10 min with MPEP before bicuculline addition for another at least 25 min and then 

FRAP was performed. As seen from Figure 46, the effect of MPEP itself on SENP1 spino-dendritic 

diffusion was significant with an increase in half time recovery (t1/2: ctrl [20.84 +/- 1s] vs MPEP 

[26.5 +/- 1.1 s]) and concurrent decrease in diffusion speed (diff. coef.: ctrl [0.0135 +/- 0.0007 

µm2/s] vs MPEP [0.010 +/- 0.0004 µm2/s]). Although significantly lower, the mobile fraction of 

SENP1 upon MPEP action is not as low as it is in bic and MPEP+bic conditions (Fm: ctrl [74.9 +/- 1 

%] vs MPEP [70.1 +/- 1.1 %] vs bic [56.2 +/- 1.8 %] vs MPEP+bic [64.4 +/- 2.1 %]). This rather 

complex result confirms that mGluR5 may play at least a partial regulatory role on SENP1 at 

synapses as already proposed for the endogenous SENP1 (Fig. 45). To follow on these findings, I 

carried out similar FRAP assays but this time with the use of DHPG as a synaptic activity-

promoting compound that acts on both mGluR1 and mGluR5. It can be appreciated from Figure 

Figure 46. mGluR5 participates in the regulation of SENP1 synaptic diffusion. A. FRAP curves from FRAP 

experiments of WT GFP-SENP1-expressing spines of rat hippocampal neurons (18-20 DIV) showing mean values (+/- 

SEM) of fluorescence recovery in bleached spines in control (blue), bicuculline (red, sustained treatment of 25-50 

min), MPEP (yellow) and MPEP+bic (purple, sustained treatment of bic 25-50 min) conditions. B. FRAP 

measurements +/- SEM: half-time recovery (t1/2, ctrl [20.84 +/- 1 s], bic [33.6 +/- 1.6 s], MPEP [26.5 +/- 1.1 s] and 

MPEP+bic [33.75 +/- 1.8 s]); diffusion coefficient (ctrl [0.0135 +/- 0.0007 µm2/s], bic [0.0088 +/- 0.0007 µm2/s], MPEP 

[0.010 +/- 0.0004 µm2/s] and MPEP+bic [0.0081 +/-0.0007 µm2/s]); and mobile fraction (ctrl [74.0 +/- 1 %], bic [56.2 

+/- 1.8 %], MPEP [70.1 +/- 1.1 %] and MPEP+bic [64.4 +/- 2.1 %]). Spine numbers are indicated and come from at 

least 3 different cultures. Statistics: t1/2 and diff. coef. were analysed by Kruskal-Wallis and Fm by parametric ANOVA 

with the posthoc Tukey test. P-values are indicated. 
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47, despite of a low spine n-number in MPEP and MPEP+DHPG conditions, that specific activation 

of Group I mGluRs by DHPG and simultaneous blocking of mGluR5 reverses the effect of DHPG 

Figure 47. SENP1 synaptic diffusion is mGluR5-dependent. A. Representative FRAP recordings of WT GFP-SENP1-

expressing spines of rat hippocampal neurons (19 DIV) in control, DHPG (sustained treatment of 25-50 min), MPEP 

and MPEP+DPHG (sustained DHPG treatment of 25-50 min) conditions. Scale bar = 1 µm. B. FRAP curves showing 

mean values (+/- SEM) of fluorescence recovery in bleached spines in control (blue), DHPG (red), MPEP (green) and 

MPEP+DHPG (purple) conditions. C. FRAP measurements +/- SEM: half-time recovery (t1/2, ctrl [23.4 +/- 1.4 s], DHPG 

[34.0 +/- 1.1 s], MPEP [27.5 +/- 1.7 s] and MPEP+DHPG [23.3 +/- 2 s]); diffusion coefficient (ctrl [0.0126 +/- 0.0012 

µm2/s], DHPG [0.0071 +/- 0.0003 µm2/s], MPEP [0.0082 +/- 0.0006 µm2/s] and MPEP+DHPG [0.012 +/-0.001 µm2/s]); 

and mobile fraction (ctrl [74.0 +/- 1.6 %], DHPG [58.4 +/- 1.2 %], MPEP [68.1 +/- 2.1 %] and MPEP+DHPG [79.0 +/- 

1.5 %]). Spine numbers are indicated and come from at least 2 different cultures. Statistics: t1/2 and diff. coef. were 

analysed by Kruskal-Wallis and Fm by parametric ANOVA with the posthoc Tukey test. P-values are indicated. 
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with the time and speed of fluorescence recovery as well as mobile fraction being comparable to 

control condition (Fig. 47). Significant changes can be seen again between control and MPEP-

only conditions (Fig. 47). It should be also noted, that neuronal cultures present a high level of 

spontaneous activity and therefore blocking a receptor, of which activity mediates SENP1 

synaptic regulation, may potentiate the activity of an alternative receptor/pathway. I therefore 

used tetrodotoxin (TTX) to verify whether reducing spontaneous neuronal activity could explain 

this discrepancy. To this end, neurons were pre-treated with 2 µM TTX for 10 min prior to the 

addition of MPEP (Fig. 48). Indeed, TTX addition prevented the changes in SENP1 diffusion when 

blocking mGluR5 by MPEP.  Altogether, these findings confirm a direct participation of mGluR5 

in SENP1 spino-dendritic diffusion.  

 

 

 

SENP1 synaptic redistribution is regulated in an mGluR5 activity-dependent 

manner. 

Figure 48. Application of TTX reduces spontaneous neuronal activity. FRAP curves showing mean values (+/- SEM) 

of fluorescence recovery in bleached spines in control (blue), MPEP (green) and TTX+MPEP (black) conditions. B. 

FRAP measurements +/- SEM: half-time recovery (t1/2, ctrl [23.4 +/- 1.4 s], MPEP [27.5 +/- 1.7 s] and TTX+MPEP [21.9 

+/- 3.4 s]); diffusion coefficient (ctrl [0.0126 +/- 0.0012 µm2/s], MPEP [0.0082 +/- 0.0006 µm2/s] and TTX+MPEP 

[0.0123 +/-0.0018 µm2/s]); and mobile fraction (Fm, ctrl [74.0 +/- 1.6 %], MPEP [68.1 +/- 2.1 %] and TTX+MPEP [74.3 

+/- 4.8 %]).  Spine numbers are indicated. Experiments were performed with at least 2 different cultures. Statistics: 

t1/2 and diff. coef with Kruskal-Wallis and Fm with parametric ANOVA with Tukey post hoc test. NS, not significant.  
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III. Is SENP1 trafficking dependent upon microtubules? 

 

SENP1 presence at the postsynapse is likely a result of dendritic protein trafficking/diffusion, 

although local translation may also occur. The spino-dendritic exchange of SENP1 is regulated on 

an intermediate timescale (~tens of seconds, Fig. 34). In the previous sections, we could 

appreciate a particular SENP1 mobility which suggests that SENP1 most likely undergoes a 

transient binding diffusion before reaching its destination (due to its size and interactions). I 

highlighted the different types of protein mobility in Figure 49, indicating that SENP1 diffuses 

with short transient binding to yet unknown structures. This points to a question as to what are 

the interacting structures/molecules that slow down SENP1 spino-dendritic diffusion? 

Considering that microtubule processes enter into dendritic spines rather rarely and stop usually 

at the spine base or neck, I reasoned that microtubules could act for delivery of SENP1 to the 

spine neck where SENP1 molecules would be released and would either diffuse to the spine head 

or would be handed off to the actin-bound motor protein myosin. It is well established that 

synaptic plasticity depends upon synaptic activation that triggers biophysical changes of the 

cytoskeleton. Group I mGluRs have been linked to microtubule function. In particular, mGluR5 

has been shown to closely associate with microtubules (Paquet and Smith, 2003). Moreover, 

mGluR1/5 activation has been reported to reduce the formation of microtubules (Huang and 

Hampson, 2000). Since SENP1 synaptic redistribution is regulated by mGluR5, I wanted to 

examine whether preventing microtubule polymerisation/depolymerisation could affect the 

dynamics of SENP1 redistribution into spines.  
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To do this, I performed time-lapse imaging of WT GFP-SENP1-expressing rat hippocampal 

neurons in the course of a treatment with nocodazole (Fig. 50), a potent microtubule 

destabilising agent. Interestingly, nocodazole effect mimicked the bicuculline-induced increase 

in GFP-SENP1 localisation in spines, which was reversed upon a washout with control solution 

(Fig. 50). This finding importantly suggests that microtubule stability is requisite for SENP1 

removal from spines. More experiments will now have to be carried out with the combination of 

DHPG and MPEP (mGluR5 antagonist) together with nocodazole to be certain of mGluR5 

activation and microtubules being the driving mechanism of SENP1 spino-dendritic 

exchange/exit. Possibly, an investigation into the involvement of particular microtubule or actin-

bound motor proteins could yield more detailed insights into SENP1 regulation at synapses. 

Moreover, regulatory proteins/structures that have been already reported to accumulate in 

spines upon stimulation could be also considered as potential participants in SENP1 regulation. 

Some of these are CaMKII (Otmakhov et al., 2004), proteasomes (Bingol et al., 2010), lysosomes 

(Goo et al., 2017), and PSD proteins (Kim et al., 2007). 

Figure 49. FRAP measurements can determine the binding properties of studied proteins. Protein mobility can be 

divided into three basic kinds: free diffusion, short transient binding and long transient binding. Usually a monomeric 

protein undergoes rapid diffusion, therefore a fast recovery in FRAP can be recorded (such as free GFP). On the other 

hand, proteins that transiently interact with relatively more immobile structures, e.g. the cytoskeleton, show 

intermediate kinetics. This type of kinetics can be seen for GFP-SENP1 (green rectangle). Proteins that bind to cellular 

components for longer periods of time recover with slow kinetics. Taken and modified from (Phair and Misteli, 2001).   
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Figure 50. Microtubule stability is involved in spino-dendritic exchange of WT GFP-SENP1. A. Confocal images of a 

WT GFP-SENP1-expressing neuron during a time-lapse imaging in the course of the treatment with control (0-15 

min), nocodazole (33 µM, 15-35 min) and washout (35-45 min) solutions. B. Corresponding quantification of a 

representative experiment showing +/- SEM of normalised fluorescence intensity in spines (n=21), shafts (n=6) and 

whole dendritic tree field in the course of the treatment with control solution, nocodazole (33 µM, in purple) and 

during washout. 

SENP1 synaptic exit is likely mediated by microtubules. 
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IV. Does SENP1 accumulation in spines affect SUMO1/2/3-ylation levels in the PSD? 

  

To examine the levels of sumoylation at synapses, I performed TIF isolation from cortical 

cultured neurons that were treated or not with bicuculline, DHPG and DHPG+MPEP (Fig. 51). It 

should be noted that TIF fraction may not be a representative fraction of a whole synapse (as it 

only represents the PSD environment, i.e. a specific set of proteins), and therefore the 

preliminary results presented in Figure 51 need to be validated in synaptosomal preparation. 

Nevertheless, I wish to discuss these results since they represent an important functional read-

out of SENP1 accumulation at synapses; but at the same time keeping in mind that this point 

must be correctly addressed by future experiments. Here I show that synaptic activation by both 

bicuculline and DHPG (40-minute sustained treatment) leads to an increase in SUMO1-ylated 

protein levels in TIF (bic: ~144% and DHPG: 166% of control, Fig. 51). Interestingly, stimulation 

by DHPG with a simultaneous blocking of mGluR5 by MPEP reverses, although only partially, the 

increase in SUMO1-ylation seen upon DHPG treatment (~128% of control). In regard to 

SUMO2/3-ylation, only sustained bicuculline treatment increased the levels of overall SUMO2/3-

ylation by ~28%, whereas the activation of mGluR1/5 by DHPG did not change the levels of 

SUMO2/3-ylation in TIF after 40 min of sustained treatment (Fig. 51). However, the application 

of mGluR5 antagonist MPEP together with DHPG led to a drop in SUMO2/3-ylation by ~16% in 

comparison with control (Fig. 51). Altogether, the present results indicate that SUMO1-ylation 

increases likely in response to the activation of Group I mGluRs. Although the S2/3-ylation levels 

remain unchanged in response to Group I mGluR activation, a certain level of regulation by these 

receptors can be noticed when blocking specifically mGluR5 by MPEP. For the time being no 

conclusive remarks can be drawn other than that the SUMO1/2/3-ylated levels of synaptic 

proteins in TIF undergo changes in response to sustained synaptic activation. 

 

From previous experiments presented above, I demonstrated that SENP1 gradually 

accumulates in spines. This is, however, not reflected by decreased SUMO1/2/3-ylation levels at 

the 40-minute time point of sustained synaptic stimulation. Notably, this does not imply that 

desumoylation does not take place, but rather that sumoylation prevails. It could be also 
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hypothesized that the catalytic activity of accumulating SENP1 is inhibited by an unknown 

pathway (perhaps as a protective mechanism against excessive and unwanted desumoylation at 

the synapse). Only when synaptic activity returns to basal levels, SENP1 may be released from 

the inhibited state and desumoylate its substrates. To address these discrepancies, cultured 

neurons should be first, treated for several time points with control solution and upon sustained 

synaptic activation (e.g. 0, 10, 20, 30 and 40 min). And second, a protocol introducing a washout 

upon synaptic stimulation prior to the lysis and TIF isolation should be used. Then, SENP1 and 

SUMO1/2/3-ylation levels as well as Ubc9 levels can be determined and compared along the time 

course of different length of the treatment.   

 

I would like to mention that our laboratory has already published findings reporting 

increased SUMO1/2/3-ylation levels in stimulated conditions in synapses (endpoint of a 10-

minute sustained stimulation, (Loriol et al., 2014)). However, these experiments were performed 

in vitro on intact synaptosomes. Therefore, they cannot reflect on the counteractivity of both 

sumoylation and desumoylating enzymes that would diffuse from the shaft into the spine upon 

stimulation to balance sumoylation levels. These previous findings provide insights only into the 

immediate effects of the sumoylation machinery and the ͞SUMO pool͟ on synaptic proteins, all 

of which are already available in the synapse. What can be, however, appreciated is that indeed, 

under such experimental conditions, SUMO-conjugation predominates SUMO-deconjugation 

(Loriol et al., 2014).  Here I present a different approach, in which neurons were treated prior the 

PSD (TIF) isolation reflecting the outcome of the dynamic shaft-spine exchange of both 

sumoylation and desumoylation enzymes that takes place within the 40-minute incubation under 

control or treated conditions (but examined only at the end point of 40 minutes). It will be 

important to carry out corresponding biochemical and imaging assays and examine the levels and 

kinetics of Ubc9 together with SENP1 and alternatively other desumoylation enzymes (e.g. SENP5 

and SENP6) as well as the levels of SUMO1/2/3-conjugation at multiple time points. This will 

provide a more complete picture of the synaptic regulation of the sumoylation machinery as a 

whole.   
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Figure 51. Sustained synaptic activation alters SUMO1/2/3-ylation levels in TIF fraction. A. Western Blots of TIF 

fractions isolated from 19DIV primary cortical neurons treated or not with bicuculline, DHGP and MPEP+DHPG for a 

sustained stimulation of 40 min. Loaded was 40 µg of protein per lane. Immuno-detection was performed for 

SUMO1, SUMO 2/3 and PSD95. PSD95 levels were used as a loading control. B. Corresponding quantification of 

Western Blots in A normalised to control: Bic (S1: 1.44; S2: 1.28), DHPG (S1: 1.66; S2: 1.04), MPEP+DHPG (S1: 1.28; 

S2: 0.84). 

Synaptic activation changes SUMO1/2/3-ylation levels in the TIF fraction. 
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V. Is the catalytic activity of SENP1 important for its spino-dendritic redistribution? 

  

To address this question, I performed time-lapse imaging and FRAP experiments using 

hippocampal neurons expressing GFP-SENP1 with a point mutation in its nucleotide sequence 

leading to the substitution of Cysteine for Serine at position 603 (C603S) which abolishes SENP1 

catalytic activity (Bailey and O'Hare, 2004). Interestingly, as for the WT enzyme, GFP-SENP1 

C603S showed an accumulation in dendritic spines in the course of bicuculline treatment (Fig. 

52A and B). This accumulation was partially reversed upon a washout with control solution (Fig. 

52A and B). Moreover, GFP-SENP1 C603S displayed a similar diffusion behaviour like WT GFP-

SENP1 with a slower speed of fluorescence recovery and lower mobile fraction upon synaptic 

activation (Fig. 53). This result indicates that GFP-SENP1 is regulated upon synaptic activation at 

postsynaptic sites independently of its catalytic capabilities. This finding was unexpected as I 

Figure 52. Synaptic activation triggers accumulation of GFP-SENP1 C603S in spines. A. Confocal images of a GFP-

SENP1 C603S-expressing neuron during a time-lapse imaging in the course of treatment with control (0-10 min), 

bicuculline (10-40 min) and washout (40-50 min) solutions. B. Corresponding quantification of a representative 

experiment showing mean curve +/- SEM of normalised fluorescence intensity in spines (n=21), shafts (n=6) and 

whole dendritic tree field in the course of treatment with control solution, bicuculline (10 µM, in orange) and during 

washout. C. Graph as in B with additionally pasted curves +/- SEM (blue) from time-lapse recording of WT GFP-SENP1 

during the course of 30-minute bicuculline treatment from Fig. 32. 
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hypothesized that WT SENP1 would be regulated toward an increase of its synaptic localisation 

for the specific purpose of catalysing desumoylation of synaptic substrates, which would be 

prevented by perturbing its catalytic activity, but this turned out not to be the case. 

What can be, however, appreciated is different spino-dendritic kinetics between WT and 

C603S GFP-SENP1 from both time lapse (Fig. 52) and FRAP experiments (Fig. 53C and D). In Figure 

52C I combined the quantifications of spine and shaft fluorescence intensities in neurons 

expressing WT and C603S GFP-SENP1 in the course of bicuculline treatment (30 min of sustained 

activation). It is apparent that GFP-SENP1 C603S accumulates in spines with slower dynamics but 

resulting in similar abundance of GFP-SENP1 C603S in spines at the peak of bicuculline effect as 

for WT GFP-SENP1. This suggest that GFP-SENP1 C603S may be physically stalled in the shaft. The 

rundown of GFP-SENP1 in the shaft does also manifest distinct dynamics between WT and C603S 

GFP-SENP1 (Fig. 52C). The FRAP experiments demonstrate that the half time recovery and speed 

of diffusion between WT and C603S GFP-SENP1 in basal condition (blue bars in Fig. 53D) differ 

substantially. It is clear that WT GFP-SENP1 diffuse into spines faster than the mutant GFP-SENP1 

in unstimulated conditions. This difference is nearly completely diminished upon bicuculline-

induced and sustained activity (red and orange bars in Fig. 53D). Mobile fractions, however, 

remain similar in unstimulated conditions between WT and C603S GFP-SENP1, with a comparable 

reduction upon stimulation with bicuculline (Fig. 53D). Altogether, these observations imply that 

GFP-SENP1 C603S may be stalled in shaft for a longer period of time in comparison to the WT 

form of GFP-SENP1. A mechanism involved in C603S GFP-SENP1 stalling could include more 

persistent interactions with molecular partners/cellular structures (as pointed out in section III) 

or substrate proteins due to the amino acid mutation. Upon synaptic activation, different forms 

of interactions may be potentiated and persist with sustained synaptic stimulation for both WT 

and mutant forms of GFP-SENP1. To gain more insight into the dynamic properties of GFP-SENP1 

C603S, the exit from spines will have to be also examined using Dendra2-SENP1 C603S 

photoconversion as previously done for WT GFP-SENP1 in Figure 37.  

 

The mechanism of GFP-SENP1 synaptic targeting is independent of its catalytic 

site/activity. 
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Figure 53. Synaptic redistribution of GFP-SENP1 C603S is regulated by synaptic activity. A. Representative FRAP 

recordings of GFP-SENP1 C603S-expressing spines of rat hippocampal neurons (19 DIV) in control and bicuculline (40 

min of sustained treatment) conditions. Scale bar 1 µm. B. FRAP curves corresponding to images in A. C. FRAP curves 

showing mean values (+/- SEM) of fluorescence intensity of bleached spines for WT and C603S GFP-SENP1 in control 

(light and dark blue) and bicuculline (red and orange, 25-50 min of sustained bic treatment) conditions. D. FRAP 

measurements +/- SEM: half-time recovery (t1/2, WT: ctrl [20.79 +/- 1 s], bic 25-50 min [33.58 +/- 1.6 s]; C603S: ctrl 

[27.4 +/- 1.2 s], bic [36.8 +/- 3.6 s]); diffusion coefficient (WT: ctrl [0.0135 +/- 0.0007 µm2/s], bic 25-50 min [0.0087 

+/- 0.0007 µm2/s]; C603S: ctrl [0.0092 +/- 0.0004 µm2/s], bic [0.0084 +/- 0.001 µm2/s]); and mobile fraction (WT: ctrl 

[74.5 +/- 1.1 %], and bic 25-50 min [56.2 +/- 1.8 %]; C603S: ctrl [73.9 +/- 1 %], bic [54.2 +/- 2.6 %]). Spine number WT: 

ctrl= 165 and bic 25-50 min= 139; C603S: ctrl= 160 and bic 25-50 min= 59, from at least 5 different cultures for WT 

and 2 different cultures for C603S GFP-SENP1. Statistics: t1/2 and diff. coef. were analysed with Mann-Whitney t-test 

and Fm with parametric t-test. P-values are indicated. 



 

Perspectives 



132 

 

3. Perspectives 

 

The posttranslational modification by SUMO proteins has emerged as an important 

mechanism regulating synaptic proteins instantly associated with synaptic function. This is 

evidenced ďǇ defective ͚SUMO balance’ that has been closely associated with 

neurodevelopmental as well as neurodegenerative diseases. Moreover, sumoylation does not 

occur only in the brain as it is a ubiquitous PTM. A dysregulated sumoylation/desumoylation 

balance occurs in many other pathological conditions such as the aetiology of cancer. Current 

research in this field is intensively focused on gaining more insights into the consequences of 

sumoylation of proteins with proto-oncogenic and tumour-suppressor roles. Due to the 

magnitude of its effects on cell function and ubiquitous presence it is difficult at the moment to 

envisage what kind of pharmacological interventions could be developed in the future to target 

the sumoylation machinery to bring sumoylation and desumoylation back to balance. Prior to 

this challenging objective, many fundamental questions are yet to be addressed. One of them 

includes the regulatory mechanisms of the SUMO-conjugation and SUMO-deconjugation 

processes. 

In my PhD thesis I aimed at dissecting the molecular mechanisms of SENP1 regulation at 

synapses to complement the findings on Ubc9 (Loriol et al., 2014) and get a better picture of how 

the sumoylation/desumoylation balance is established at synapses. I identified mGluR5 receptors 

as upstream regulators of SENP1 synaptic diffusion (as previously identified also for Ubc9). 

Moreover, I showed that microtubules may additionally play a role in SENP1 dynamic spino-

dendritic processes. Strikingly, however, the complex results suggest that additional players may 

be involved. This prompted me to investigate SENP1 interacting proteins that may regulate 

SENP1 at synapses. 

In order to identify SENP1 protein partners and/or substrates I performed Mass Spectrometry 

analysis of GFP-pulled down (-trapped) GFP-SENP1 expressed in cultured neurons (Fig. 54). By 

doing this, I wanted to identify important regulatory players that could be further studied by 

molecular and cellular means for their involvement in SENP1 regulation in neurons and perhaps 

other cell types. However, due to a low level of GFP-SENP1 expression, I did not perform 
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subcellular fractionation to enrich the sample in synaptic proteins. Despite this discrepancy, the 

MS analysis on whole cell lysate yielded some interesting results including highly abundant 

synaptic proteins. What stroke me was the presence of both CaMKII and PKC as highly enriched 

SENP1 interactors/substrates. Indeed, it has been previously suggested that SENP1 may be a 

phosphorylation target (based on high scores from phospho-sites prediction softwares and 

immuno blot analyses that revealed higher molecular band species (Bailey and O'Hare, 2004)). 

Moreover, sumoylation and phosphorylation are two PTMs that have been on several occasions 

found to work in a crosstalk introducing an additional level of complexity for the regulation of 

target proteins. For instance, SENP1-dependent desumoylation of PKC has been shown to 

regulate kainate-activation dependent endocytosis of glycine receptors (Sun et al., 2014).  Since 
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PKC has been already involved in the regulatory signalling cascade of SUMO-conjugation (Loriol 

et al., 2014), I hypothesized that in addition to PKC being a target of SENP1, this desumoylation 

enzyme could be in turn regulated by PKC. To this end, I performed some preliminary FRAP 

experiments implementing chelerythrine, a well-known inhibitor of PKC, and PMA, a PKC 

activator, to see whether SENP1 spino-dendritic exchange was affected by PKC blockage and/or 

activation (Fig. 54). I found that PKC activation speeded up SENP1 recovery in spines but led to a 

dramatic drop in the mobile fraction, suggesting that SENP1 may be actively trapped at synapses 

upon PKC activation. Moreover, I recorded a strong time-dependent effect of PKC activation on 

SENP1 spino-dendritic diffusion (Fig. 54A). On the other hand, blocking PKC without subsequent 

synaptic activation slowed down SENP1 recovery but had a little effect on mobile fraction. 

Together, these results, although very preliminary, indicate that PKC is a part of the signalling 

pathway regulating SENP1 spino-dendritic redistribution. More experiments will have to be 

carried out implementing PKC activators and inhibitors with simultaneous targeting of the Group 

I mGluRs especially focusing on mGluR5 to experimentally evidence the involvement of PKC in 

mGluR-dependent SENP1 regulation at synapses. Moreover, to further prove that SENP1 is a 

phosphorylation target, a phosphorylation-specific antibody that recognises a phosphorylated 

form of SENP1 could be implemented. To this end, we will compare levels of phosphorylated 

SENP1 in basal unstimulated and stimulated conditions. Synaptic activation leads to 

phosphorylation of many synaptic substrates (Woolfrey and Dell'Acqua, 2015), therefore at this 

point I hypothesised that PKC-dependent phosphorylation of SENP1 could at least partly drive 

the SENP1 action toward establishing the sumoylation/desumoylation balance at synapses. This 

fits well with the previous finding showing that Ubc9 gets transiently retained in spines upon the 

mGluR5/PLC/PKC cascade activation. Considering the time frame of Ubc9 diffusion and transient 

Figure 54 (Continued). Mass spectrometry to identify SENP1 interactome. A. GFP (control) and GFP-SENP1 proteins 

were virally expressed in cultured cortical neurons (17DIV). GFP-trap (ChromoTek) was performed to pull-down GFP 

and GFP-SENP1, respectively, with interacting partners. Samples (input 2%, unbound fraction 2 % and GFP-trapped 

fraction 10%) were loaded in a 4-15% gradient gel and silver-stained, or Western blot was performed (bottom 

membrane) to verify the presence of GFP and GFP-SENP1 in trapped fractions. B. Output data from MS analysis 

showing a categorization of SENP1-specific interactome based on cellular component. C. Some of the 

neuronal/synapse-specific proteins that have been already shown sumoylated and/or desumoylated by SENP1, as 

well as interesting regulatory molecules.     
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trapping (~1-2 s) and SENP1 diffusion (~ 30 s), it is obvious that these processes must be 

sequentially regulated, perhaps by phosphorylation/dephosphorylation of the SUMO machinery 

members including SENP1. 

CaMKII, another crucial synaptic kinase, that has been to date only predicted to be 

sumoylated in a yeast-two-hybrid screen in the Drosophila (Long and Griffith, 2000), was 

Figure 55. PKC may play a role in the regulation of SENP1 spino-dendritic exchange. A. Frap curves in control (blue, 

7 spines) and PMA (upon sustained treatment of 10, 15, 20 and 25 min, each curve represents 1 spine). B. FRAP 

curves +/- SEM in control (7), chelerythrine (chel, 6) and PMA (spines 1-4 from A pulled together) conditions. C. FRAP 

measurements for control, PMA and chelerythrine corresponding to B. 
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detected in my MS analysis as a specific interactor of SENP1. I also performed FRAP experiments 

to examine whether blocking CaMKII by the inhibitor KN93, would affect the dynamic properties 

of SENP1 spino-dendritic diffusion. We can see from Figure 56A that pre-incubation with KN93 

coupled with synaptic activation by bicuculline has a slight effect on the fluorescence recovery of 

SENP1 (compare the magenta and red curves). However, the addition of KN93 did not reverse 

the bicuculline effect of SENP1 dynamics as can be seen from t1/2, diffusion coefficient as well 

as mobile fraction. Although there might be a certain degree of regulation implying once again a 

more complex regulation of SENP1 at synaptic sites in comparison to Ubc9 (Loriol et al., 2014). 

 

 

mGluR5 activation can trigger the activation of both PKC and CaMKII (Fig. 57). Although the 

effect of CaMKII on SENP1 regulation seems only partial, since IP3 binding to smooth ER leads to 

a release of calcium from the ER stores, it would be very interesting to investigate the effect of 

calcium availability in the cell on SENP1 diffusion. Specific pharmacological agents can be used 

e.g. to target ER calcium ATPase and prevent it from pumping calcium ions into ER therefore 

leading to an increase intracellular calcium levels (thapsigargin); or BAPTA, a calcium chelator. 

Caution will have to be taken to use appropriate and previously published concentration of these 

agents as their application may cause cellular stress and lead to apoptosis.  

Figure 56. CaMKII may play a role in the regulation SENP1 spino-dendritic diffusion. A. FRAP curves +/- SEM from 

control (n spines= 173), bicuculline (139), KN93 (202), KN93+bic 10-25min (59) and KN93+bic 25-50 min (103). B. 

FRAP measurements +/- SEM corresponding to A. 
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Figure 57. Scheme of the newly identified and putative regulatory mechanisms of SENP1 spino-dendritic diffusion. 

(1) In basal conditions SENP1 molecules diffuse at a relatively fast speed between the shaft and spines. The exit of 

SENP1 proteins may be partially dependent on microtubules. (2) Upon synaptic activation (primarily through mGluR5 

receptors), PKC and CaMKII get activated and trigger phosphorylation of synaptic substrates including SENP1. This 

leads to SENP1 synaptic trapping and accumulation. (3) I hypothesize that Ubc9-sumoylated substrates at the 

synapse will be sequentially desumoylated by SENP1 with a significant time shift that is necessary for the protein 

targets to perform their synaptic functions. Upon stabilisation, these proteins are rapidly desumoylated by the 

accumulated SENP1, which might be SENP1 dephosphorylation-dependent process. Then SENP1 gets rapidly 

trafficked out of spines. 



 

  

Conclusion 
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4. Conclusion 

 

The posttranslational modification by sumoylation has been proven a vital regulatory 

mechanism at synapses. Indeed, unbalanced sumoylation is an emerging feature of 

neuropathological conditions including synaptopathies. A very important objective that must be 

addressed prior to envisaging the development of novel therapeutic strategies aimed at targeting 

this posttranslational process, is the identification of signalling cues that drive sumoylation and 

desumoylation of synaptic proteins. Our laboratory has previously published that Ubc9 

undergoes a transient trapping in spines in response to the activation of the mGluR5/PLC/PKC 

cascade increasing synaptic sumoylation levels. This finding implies that desumoylation must 

dynamically take place to establish balanced sumoylation levels.  

To this end, I used in my thesis project live-imaging, biochemical and cell biology approaches 

to identify the regulatory mechanisms of SENP1 diffusion at synapses. In summary, the results 

show that a sustained synaptic activation leads to accumulation of SENP1 at synapses. This 

accumulation is immediately reversible upon the establishment of basal levels of activity. I also 

provide evidence that SENP1 spino-dendritic diffusion is regulated by synaptic activity specifically 

through mGluR5 receptors. I suggest that additional regulatory molecules may play a role in 

SENP1 regulation at synapses. These include microtubules, PKC and CaMKII.  

I hypothesize that the activation of mGluR5 triggers the activation of PKC and CaMKII leading 

to the phosphorylation of synaptic substrates including SENP1, which reduces SENP1 spino-

dendritic diffusion. Phosphorylated substrates function as a molecular ͚glue’ for Ubc9 that gets 

transiently trapped in spines and rapidly sumoylates synaptic proteins. Once these proteins 

perform their function, SENP1 is activated (perhaps by dephosphorylation) and desumoylates 

synaptic substrates establishing the basal state of sumoylation. To confirm this hypothesis, 

additional experiments will have to be carried out. 

  



 

  

Annex 
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ARTICLE 1 

Sumoylation in synaptic function and dysfunction 

(Published in Frontiers in Synaptic Neuroscience, April 2016) 

Lenka Schorova and Stéphane Martin 

Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique 

(UMR7275), University of Nice—Sophia-Antipolis, LaďoratorǇ of Eǆcellence ͞Netǁork for 
Innovation on Signal Transduction, PathǁaǇs in Life Sciences͟, Valďonne, France. 

 

This specialised review on synaptic sumoylation was jointly written by myself and my 

supervisor Dr Martin. We briefly discuss the SUMO pathway and give more detailed overview of 

our current knowledge of sumoylation at both the presynaptic and postsynaptic compartments. 

Moreover, we collected data that evidenced the involvement of the sumoylation process in 

synaptic plasticity. In the last part, we focus on describing research that have implicated aberrant 

sumoylation in diseases of the synapse (jointly called synaptopathies) such as Down syndrome, 

Parkinson’s disease, Huntingon’s disease and Alzheiŵer’s disease.  

 I worked on this review at the beginning of my second year of PhD. Therefore, collecting 

literature and gaining general understanding into the overall problematics of synaptic 

sumoylation helped me greatly in pursuing my PhD project. 
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Sumoylation has recently emerged as a key post-translational modification involved in

many, if not all, biological processes. Small Ubiquitin-like Modifier (SUMO) polypeptides

are covalently attached to specific lysine residues of target proteins through a

dedicated enzymatic pathway. Disruption of the SUMO enzymatic pathway in the

developing brain leads to lethality indicating that this process exerts a central role

during embryonic and post-natal development. However, little is still known regarding

how this highly dynamic protein modification is regulated in the mammalian brain

despite an increasing number of data implicating sumoylated substrates in synapse

formation, synaptic communication and plasticity. The aim of this review is therefore

to briefly describe the enzymatic SUMO pathway and to give an overview of our current

knowledge on the function and dysfunction of protein sumoylation at the mammalian

synapse.

Keywords: synapse, post-translational modification, sumoylation, desumoylation, SUMO

INTRODUCTION

As the mammalian brain develops, crucial sequential processes take place for a functional neuronal

circuitry to be established. These processes are as follows: embryonic neurogenesis that gives

rise to neuronal cells from the progenitors within the neural tube; migration of these newly born

neurons to their destination area that is followed by maturation and formation of interneuronal

connections. The spatiotemporal regulation of these processes, which results in the formation and

the stabilization of synaptic connections, participates in the shaping of a physiologically active

and functional brain circuitry. The formation of a mature functional synaptic contact starts with

an axonal outgrowth until the growth cone reaches a target neuron. The axonal growth cone

transforms into a presynaptic terminal that is characterized by the presence of neurotransmitter-

filled synaptic vesicles and faces the postsynaptic area i.e., the dendritic spine, which is enriched

in neurotransmitter receptors. The functional synapse is capable of integrating an electrical signal

into biochemical changes, a process referred to as synaptic transmission. Importantly, the term

‘‘synaptic plasticity’’ regroups a wide range of molecular mechanisms that allow the modification

of the strength and efficacy of synaptic transmission, and thereby underpin the ability of the brain

to respond to environmental changes and/or experiences, and consequently underlie cognitive

functions.

The molecular composition and organization of a mature synapse is incredibly complex. It has

been estimated that ‘‘an average’’ synapse contains 300,000 proteins (Wilhelm et al., 2014). As

these proteins mediate synaptic transmission and plasticity their interactions must be regulated

both in time and space and this is mostly achieved by posttranslational modifications (PTMs).
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Accordingly, it is widely accepted that most types of plasticity

are expressed through changes in the number of postsynaptic

glutamate receptors and these changes are regulated by PTMs

(for a comprehensive review, see Yokoi et al., 2012). For

instance, both CaMKII and PKC phosphorylation of the GluA1

subunit of AMPA receptors (AMPARs) increase single-channel

conductance of AMPARs leading to expression of long-term

potentiation (LTP) in the hippocampus. In addition, previous

studies have reported that PKC-phosphorylation of the AMPAR

subunit GluA2 regulates its protein-protein interactions in the

cerebellum leading to the expression of an activity-dependent

long-term decrease in synaptic strength known as long-term

depression (LTD; Matsuda et al., 2000). It has also been shown

that the synaptic function can be regulated via other PTMs.

Ubiquitination is a reversible PTM that can direct target proteins

for degradation through the ubiquitin proteasome system

(UPS). Bingol and Schuman (2006) reported that proteasome

constituents and ubiquitin moiety are present in dendrites and

upon neuronal activation the dendritic UPS moves into spines

to shape the synaptic protein composition and subsequently

the synaptic function. Interestingly, sumoylation has recently

emerged as an essential PTM in the central nervous system

(CNS) that profoundly alters protein activity, stability and

subcellular localization, controls protein-protein interactions,

and is important for the brain development and the regulation

of synaptic communication (for recent reviews see Gwizdek et al.,

2013; Henley et al., 2014). Moreover, perturbations in neuronal

sumoylation have been implicated in numerous pathological

conditions (reviewed in Dorval and Fraser, 2007; Martin et al.,

2007b; Martin, 2009; Krumova and Weishaupt, 2012; Lee et al.,

2013; Henley et al., 2014).

THE ENZYMATIC MACHINERY OF SMALL
UBIQUITIN LIKE MODIFIERS

Sumoylation is an evolutionarily conserved enzymatic pathway,

analogous to the ubiquitination process, which covalently and

reversibly conjugates a small protein of ∼100 amino acids,

called Small Ubiquitin-like Modifier(SUMO, ∼11 kDa), to lysine

residues of target proteins (Matunis et al., 1996; Mahajan et al.,

1997).

Four SUMO paralogs have been identified in humans until

now. SUMO1–3 are ubiquitously expressed (Hay, 2005; Geiss-

Friedlander and Melchior, 2007) whereas SUMO4 expression

seems restricted to the spleen, the kidney and the lymphatic

nodes (Bohren et al., 2004; Guo et al., 2004). SUMO2 and

SUMO3 are nearly identical except three additional N-terminal

residues within the SUMO3 sequence; therefore they are

generally referred to as SUMO2/3. On the contrary, SUMO1

shares only ∼50% sequence identity with SUMO2/3. SUMO1

and SUMO2/3 modify an overlapping set of target proteins; but

they differ in their properties and subcellular abundance with

the amount of free available SUMO2/3 being much larger that

of SUMO1.

In most cases, the SUMO-targeted lysine resides within

a specific consensus site defined as ψ-K-x-D/E, where

ψ corresponds to a large hydrophobic residue, K stands for

lysine, x is any amino acid, and D/E are glutamate and aspartate

acidic residues respectively (Rodriguez et al., 2001; Sampson

et al., 2001). Importantly, not all consensus sequences are

sumoylated and not all SUMO-target proteins are modified

within this particular motif. Several additional sumoylation

sites were identified, which revealed that the sequences flanking

the target lysine residue are critical to determine whether a

site can be SUMO-modified or not (reviewed in Flotho and

Melchior, 2013; Henley et al., 2014). It is also important to

note that many of the lysine residues contained within SUMO

consensus sites are reported as not sumoylated. However,

in most cases the determination of such sumoylation status

was achieved in basal unstimulated conditions. Therefore,

caution should be taken to definitively state that a given

protein is not a SUMO substrate since only a small proportion

of a specific protein is sumoylated at steady state (Hay,

2005).

The sumoylation/desumoylation cycle (Figure 1) starts with

the cleavage of inactive SUMO precursor proteins by the

hydrolase activity of the SENtrin-specific Protease (SENP,

Mukhopadhyay and Dasso, 2007; Hickey et al., 2012) enzymes

so the C-terminal di-glycine motif on SUMO is uncovered

for conjugation. Mature SUMOs are then activated by the

SAE1 and SAE2 (SUMO-activating enzyme subunit 1 and 2;

also named AoS1/Uba2 in rodents) heterodimer complex in

an ATP-dependent manner. Afterwards, SUMO conjugation to

target substrate proteins is carried out by the sole conjugating

enzyme of the SUMO system, Ubc9 (Figure 1). This conjugation

step can be achieved either directly or in combination with an E3

SUMO ligase (Bernier-Villamor et al., 2002). These E3 proteins

assist the sumoylation step either by bringing the substrate

and the SUMO-Ubc9 in close proximity or by enhancing the

transfer rate of SUMO onto the substrate (reviewed in Gareau

and Lima, 2010; Flotho and Melchior, 2013). In the brain, the

mechanisms, by which these E3 SUMO ligases operate and how

they participate in the SUMO process to enhance sumoylation

in neurons, are still largely unknown. However recent evidence

suggests that these E3 ligases may be extremely important to

tightly regulate the synaptic function.

The sumoylation/desumylation cycle (Figure 1) is highly

dynamic andmust be tightly controlled as it drastically influences

the function of many proteins targeted by this PTM. Despite a

covalent SUMO binding, sumoylation is a reversible process due

to the isopeptidase activity of specific enzymes (see Hickey et al.,

2012, for a comprehensive review on SUMO proteases). The

desumoylation enzymes allow the removal of the SUMOmoieties

from modified substrates leaving non-sumoylated proteins and

matured SUMOs available to re-enter the SUMO pathway.

Several SUMO proteases effectively mediate this desumoylation

process. In humans, six SENP proteases have been described

(SENP1, 2, 3, 5, 6 and 7). These desumoylation enzymes differ

in their subcellular localization and SUMO selectivity (Hickey

et al., 2012). Recently, several additional SUMO proteases

have been identified, DeSumoylating Isopeptidase 1 and 2

(DeSI1 and DeSI2; Shin et al., 2012) and USPL1 (Ubiquitin-

Specific Protease-Like 1; Schulz et al., 2012). These SUMO

proteases together with the SUMO-conjugating pathway convey
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FIGURE 1 | The SUMO enzymatic pathway. SUMO paralogs are synthesized as inactive precursors that are first matured by the hydrolase activity of specific

desumoylases called SENPs. SUMO activation is an ATP-dependent step leading to formation of a thioester bond between the SUMO-activating subunit SAE2 of

the E1 enzymatic heterodimer SAE1/SAE2 and the activated SUMO. SUMO is then transferred onto the active (C93) cysteine residue of Ubc9, the sole

E2-conjugating enzyme of the SUMO system. Ubc9 is able to catalyze the sumoylation reaction of the target lysine residue on the substrate either directly or in

combination with one of the existing SUMO E3 ligases. Importantly, sumoylation is readily reversible and sumoylated proteins can be efficiently desumoylated via the

isopeptidase activity of a variety of SUMO proteases including SENPs, DeSI1/2 and/or USPL1.

an essential role to allow the dynamic equilibrium between the

sumoylated and desumoylated state of many proteins. Since

sumoylation participates in the regulation of many proteins

involved in essential developmental processes and synaptic

functions, dysregulation of the sumoylation/desumoylation

balance may directly link the SUMO process to a number of

pathophysiological conditions (see thereafter, ‘‘Sumoylation in

Synaptopathies’’ Section).

SUMOYLATION IN BRAIN DEVELOPMENT,
NEURONAL MATURATION AND SYNAPSE
FORMATION

Sumoylation in Brain Development
Sumoylation acts throughout the neuronal cell to dynamically

modulate protein function and consequently SUMO enzymatic

machinery members present a widespread subcellular

distribution including the nucleus (Martin et al., 2007a;

Loriol et al., 2012; Wang et al., 2012; Hasegawa et al., 2014),

the mitochondrial surface (Guo et al., 2013), the dendritic shaft

and both pre- and postsynaptic elements (Martin et al., 2007a;

Feligioni et al., 2009; Loriol et al., 2012, 2013, 2014; Gwizdek

et al., 2013; Luo et al., 2013; Hasegawa et al., 2014).

To date, three separate studies have examined the

spatiotemporal distribution of the sumoylation machinery

members in the developing rodent brain with consistent results

(Watanabe et al., 2008; Loriol et al., 2012; Hasegawa et al.,

2014). The expression levels of both Ubc9 and SUMO1 mRNA

are developmentally regulated in the rat brain, with higher

expression levels before birth (Watanabe et al., 2008). Only

recently, we reported that the protein expression levels of

sumoylated proteins, the SUMO-activation enzyme SAE1, the

SUMO-conjugating Ubc9 and the two desumoylation enzymes

SENP1 and SENP6 are developmentally regulated in the rat

brain (Loriol et al., 2012). SUMO1/2/3-conjugated protein

levels are at their maximum at embryonic day 12, followed by

a slow decrease until birth. SUMO1-modified protein levels

progressively decrease until the adult stage. However, a second

increasing phase occurs for SUMO2/3-ylated substrates just

after birth. Interestingly, while the overall sumoylation slowly

decreases after birth reaching relatively low levels in the adult

brain, there are progressively more SUMO substrates within

synaptic compartments (Loriol et al., 2012). The relative

accumulation in synaptic SUMO substrates in aged rat brain
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is also consistent with an enrichment of the sumoylation

enzymes AoS1 and Ubc9 in dendritic spines of fully mature rat

neurons.

More recently, Hasegawa et al. (2014) combined

immunohistochemical and immunoblot analyses on mouse

brain at various developmental stages and also showed

a developmental distribution of all SUMO moieties and

the SUMO-conjugating enzyme Ubc9. During embryonic

development, sumoylation occurred in the nucleoplasm of

nestin-positive neural stem cells. Although the total amount

of SUMO-modified proteins decreased during postnatal

mouse brain development similar to the developing rat brain

(Loriol et al., 2012), a persistent accumulation of SUMO2/3

was detected in neural progenitor populations in neurogenic

regions throughout life (Hasegawa et al., 2014). In addition,

a strong SUMO1-immunoreactivity was observed in large

projection neurons in the brainstem suggesting that SUMO1-

and SUMO2/3-modified proteins exert specific functions in the

mouse brain.

The abundance and distribution of the sumoylation

machinery play a critical role during embryonic and postnatal

development. For instance, it was previously thought that

SUMO2 and SUMO3 paralogs act in a totally redundant

manner. Wang et al. (2014) recently revealed that SUMO2

is the predominantly expressed isoform in early embryonic

stages of mouse development. Indeed, SUMO3-KO mice

are viable while SUMO2 deficiency in mice leads to severe

developmental delay and embryonic lethality, which strongly

suggests that the spatiotemporal expression of these SUMO

moieties, and not their functional differences (the two paralogs

being almost identical), is a critical factor during the brain

development.

Fu et al. (2014) investigated the role of SENP2 in the brain

development by engineering a mouse model that expressed

SUMO-protease activity-deficient SENP2 in neural progenitors.

The authors showed that SENP2 is indispensable for the

brain development. Indeed, SENP2 loss of function evoked

an increase in neuronal sumoylation levels eventually leading

to a robust post-natal neurodegeneration resulting in paralysis

and death of the mice by three weeks of age (Fu et al.,

2014). They also demonstrated that this neurodegeneration is

the consequence of the hyper-sumoylation of Drp1 (Dynamin-

related protein 1), which promoted its enhanced association

with mitochondria and their subsequent fragmentation leading

to neuronal apoptosis. Altogether, these data confirmed the

importance of a controlled balance between the sumoylation

and desumoylation state of a protein in the developing

brain.

Sumoylation in Neuronal Maturation and
Synapse Formation
We have reported, that the sumoylation enzymes AoS1, Ubc9

as well as the SUMO proteases SENP1 and SENP6 were

differentially redistributed in pre- and postsynaptic areas during

neuronal maturation (Loriol et al., 2012). We further showed

that the redistribution of the sumoylation machinery in and out

of synapses is also observed upon neuronal depolarization and

that this enzymatic redistribution impacts the synaptic levels of

sumoylation (Loriol et al., 2013). Altogether, these data suggested

that the SUMO process and the involved SUMO targets are

not only important for the brain development but also for

the maturation of neuronal cells and consequently for synaptic

function.

MeCP2 (Methyl CpG Binding Protein 2)
Hundreds of mutations within the MeCP2 gene, which is located

on the X-chromosome, have been linked to neurodevelopmental

disorders, most frequently to Rett syndrome in females but also

to some forms of autism, and schizophrenia. The Rett syndrome

is behaviorally characterized by a developmental stagnation in

early childhood associated with severe cognitive impairment and

autistic features, the loss of spoken language and hand use. The

encoded MeCP2 protein is a DNA-binding protein expressed

ubiquitously and acts as a transcriptional repressor that fulfils

key roles during the synaptic development (Guerrini and Parrini,

2012). Sumoylation of MeCP2 regulates its interaction with the

transcriptional repression complex HDAC1/2 and preventing

sumoylation in MeCP2 at the K223 residue leads to abnormal

gene expression and impaired synaptic density (Cheng et al.,

2014).

More recently, Tai et al. (2016) reported that MeCP2 is

modified on different lysine residues e.g., K353 and K412,

but failed to detect the K223 sumoylation. They showed

that phosphorylation is required for MeCP2 sumoylation

and that the SUMO E3 ligase PIAS actively participates

in MeCP2 modification. They also elegantly demonstrated

that MeCP2 sumoylation in the hippocampus is induced

by several factors including the activation of NMDA

receptors (NMDARs), the Insulin-like growth factor (IGF-1)

and the Corticotropin-Releasing Factor (CRF) revealing a

previously unsuspected activity-dependent regulation of MeCP2

sumoylation. Importantly, preventing MeCP2 sumoylation

using the non-sumoylatable K412R MeCP2 mutant leads to

a decrease in its DNA binding ability whereas a MeCP2-

SUMO1 fusion significantly increases its DNA binding

capabilities (Tai et al., 2016). Altogether, these data reinforce

the idea that MeCP2 sumoylation is essential to its function

and acts as a central regulator of MeCP2 function in the

brain.

MEF2 Proteins (Myocyte-Enhancer Factor 2)
The establishment of functional synaptic circuits relies on the

concomitant activity-dependent formation and elimination of

synapses. MEF2 members form a family of four evolutionarily

conserved transcriptional factors (MEF2A, B, C and D) that

were first identified in muscle differentiation. They are also

expressed throughout the brain including areas involved in

cognitive functions (cortex, hippocampus, amygdala, striatum;

reviewed in Rashid et al., 2014). Mutations within MEF2 genes

have been directly linked to various pathological conditions

including epilepsies, autism, and some neurodegenerative

disorders (Flavell and Greenberg, 2008; Li et al., 2008; Yin

et al., 2012) suggesting that these brain diseases could be
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triggered by abnormal MEF2-dependent gene transcription

programs. Notably, MEF2 s are involved in several important

neurodevelopmental processes including cell differentiation,

dendritic morphogenesis, synapse formation, pruning and

synaptic plasticity.

MEF2 activities are regulated through several PTMs including

acetylation (Grégoire and Yang, 2005; Shalizi et al., 2007),

phosphorylation (Flavell et al., 2006; Kang et al., 2006)

and sumoylation (Grégoire and Yang, 2005; Zhao et al.,

2005; Shalizi et al., 2006, 2007; Lu et al., 2013). A decade

ago, Shalizi et al. (2006) investigated the SUMO-dependent

repression of MEF2A in the developing cerebellar cortex.

They demonstrated that there is an activity-dependent switch

from a sumoylated MEF2A at the lysine 403 to its acetylated

state leading to MEF2A activation and inhibition of dendritic

claw differentiation and consequently to synapse disassembly

(Shalizi et al., 2006). They used overexpression and knockdown

strategies to show that PIASx is a MEF2 SUMO-E3 ligase linking

this E3 protein to postsynaptic dendritic claw morphogenesis

in the cerebellar cortex and confirming the essential role

of protein sumoylation in the developing brain (Shalizi

et al., 2007). MEF2A was also reported to be sumoylated

both in vitro and in vivo at the lysine 395 residue and

the E3 SUMO ligase PIAS1 enhances its sumoylation and

subsequently decreases its transcriptional activity (Riquelme

et al., 2006).

More recently, the Bonni’s group reported that MEF2A

sumoylation participates in presynaptic differentiation in the

rat brain (Yamada et al., 2013). Indeed, while the in vivo

knockdown of MEF2A in the rat cerebellar cortex increases

the density of orphan presynaptic sites, the sumoylated

transcriptional repressor form of MEF2A drives the suppression

of these sites via the direct repression of the gene encoding

the presynaptic protein Synaptotagmin 1 (Yamada et al.,

2013).

Lu et al. (2013) have engineered SENP2 knockout

embryos and used in vivo SUMO assays to demonstrate

that SENP2, but not SENP1, is the MEF2A desumoylating

enzyme. They also showed via co-expression of SENP2

and MEF2A with a luciferase reporter gene a SENP2-

dependent increase in MEF2A transcriptional activity (Lu

et al., 2013) further highlighting the importance of the

SUMO process in the transcriptional regulation mediated

by MEF2A.

MEF2C, another member of the MEF2 family, is also a

sumoylation substrate (Kang et al., 2006). Sumoylation at

K391 repressed MEF2C transcriptional activity without altering

its DNA-binding properties. Interestingly, phosphorylation at

S396 in MEF2C, five residues downstream of the sumoylation

site, potentiated MEF2C sumoylation (Kang et al., 2006).

The phospho-deficient S396A mutant of MEF2C showed a

reduced sumoylation in vivo with the concurrent increase in its

transcriptional activity further confirming that the regulation

of MEF2 activities is controlled by the crosstalk between

phosphorylation and sumoylation.

The last member of the MEF2 family to be reported a

SUMO substrate is MEF2D. MEF2D sumoylation occurs at

the lysine 439 residue (Grégoire and Yang, 2005). The authors

showed that the K439 SUMO2/3-ylation of MEF2D strongly

decreases its transcriptional activity. In agreement with this,

they demonstrated that SENP3 activity is able to increase the

transcriptional activity of MEF2D by lowering its sumoylation

(Grégoire and Yang, 2005). The same group reported that the

kinase Cdk5 promotes MEF2D phosphorylation at the serine 444

residue leading to an increased sumoylation of the protein and

consequently to the inhibition of the transcriptional activity of

MEF2D (Grégoire et al., 2006). Altogether, these data indicate

that the transcriptional activity of MEF2 proteins is tightly

regulated through the interplay between several PTMs, e.g.,

phosphorylation, acetylation and sumoylation, to tightly control

the developmental expression of essential target genes involved

in brain development and plasticity.

FOXP2 (Forkhead Box Protein P2)
FOXP2 belongs to the forkhead box (FOX) family of

transcription factors. Disruption of the FOXP2 gene has

been implicated in a rare and severe form of autosomal-

dominant language and speech disorder (Lai et al., 2001).

This disorder was first described in a British family (known

as the KE family), in which half of their members struggle

to develop coordinated orofacial movements. These patients

also express incomprehensive written and spoken language,

but they do not show any cognitive impairment. All the

affected family members carry the missense arginine to

histidine mutation at position 553 (R553H) in FOXP2,

which abolishes its DNA binding and consequently fails to

repress transcription of many target genes (Lai et al., 2001).

FOXP2 is mainly expressed during neuronal differentiation

in many brain areas including the cortex, basal ganglia,

thalamus and hippocampus (Lai et al., 2003). Importantly,

FOXP2 regulates expression of genes that are important for

neuronal development and synaptogenesis. For instance,

FOXP2 regulates the expression of DISC1 that is involved

in neurogenesis, synapse regulation, neuronal outgrowth,

migration, differentiation and proliferation (reviewed in

Brandon and Sawa, 2011).

Only recently, three independent studies reported that

FOXP2 is sumoylated in vitro and in vivo by all SUMO

paralogs predominantly at the lysine 674 residue (Estruch et al.,

2016; Meredith et al., 2016; Usui et al., 2016). They further

showed that FOXP2 interacts with the E3 SUMO ligases PIAS1

and PIAS3 promoting FOXP2 sumoylation (Estruch et al.,

2016; Usui et al., 2016) whereas SENP2 activity significantly

decreases its sumoylation (Usui et al., 2016). The FOXP2-

PIAS1/3 interaction leads to redistribution of FOXP2 to the

nuclear speckles. Interestingly, abolition of the sumoylation

site via the K674R mutation did not cause any changes in

FOXP2 stability, transcriptional repression or dimerization

with the WT sumoylatable form of FOXP2. The subcellular

localization of FOXP2 K674R mutant was reported both in

vitro and in vivo to be increased in the cytoplasm and

decreased in the nucleus (Usui et al., 2016). Importantly, the

human etiological FOXP2 R553H mutation led to a dramatic

decrease in the ability of FOXP2 R553H to be sumoylated
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(Meredith et al., 2016). They further showed that the pathogenic

R553H mutation negatively influences the interaction between

FOXP2 and the PIAS ligases (Estruch et al., 2016; Meredith et al.,

2016).

The cerebellum harbors important motor coordination

and speech functions and the expression of FOXP2 in the

cerebellum is restricted to Purkinje cells (PC). Usui et al.

(2016) have reported that FOXP2 sumoylation is increased

during neuronal differentiation in the cerebellum suggesting

a key role for sumoylation in cerebellar development.

They further showed using mouse neural progenitor cells

that overexpression of the WT form of FOXP2 results in

long neurites expressing either the immature neuronal

marker Tuj1 or the mature neuronal marker MAP2.

Interestingly, the overexpression of the SUMO-deficient

K674R FOXP2 mutant failed to promote elongation of

Tuj1- and MAP2-positive neurites as effectively as the WT

FOXP2 indicating that FOXP2 sumoylation is essential to

neuronal maturation. In utero electroporation to knockdown

FOXP2 expression in the cerebellum led to a dramatic

reduction in dendritic outgrowth and arborization of

PC (Usui et al., 2016). This reduction was rescued by

re-expression of the WT sumoylatable form of FOXP2 but

not its sumoylation-deficient K674R mutant. Strikingly,

the impairments in cerebellum-based motor behaviors

such as righting reflex or negative geotaxis observed in

FOXP2 knockdown mice were rescued with the expression

of the WT form of FOXP2, but not with its sumoylation-

deficient K674R mutant confirming the essential role of

FOXP2 sumoylation in the developing cerebellum (Usui et al.,

2016).

A knock-in mouse model expressing the pathogenic R552H

FOXP2 mutation (corresponding to the human FOXP2 R553H

mutation) exhibited an immature development of the cerebellum

with impaired neuronal migration and autism-related deficits

such as decreased ultrasonic vocalizations (Fujita et al., 2008).

These vocalization defects were rescued by introducing the

WT form of FOXP2 but not its sumoylation-deficient mutant

(Usui et al., 2016) further demonstrating that impaired

FOXP2 sumoylation could participate in the etiology of

FOXP2-related developmental verbal/vocal communication in

mammals.

CASK (Calcium/Calmodulin-Dependent Serine

Protein Kinase)
CASK is a member of the membrane-associated guanylate

kinase (MAGUK) protein family. MAGUK proteins have

scaffolding properties and interact with many proteins involved

in spinogenesis. CASK expression is high in the mammalian

brain and extremely critical as its genetic deletion in mice

causes neonatal lethality. Mutations within the CASK gene on

the X-chromosome have been identified in human patients

presenting severe neurological defects, microcephaly and mental

impairments, highlighting an essential role of the CASK protein

during the brain development (Hsueh, 2009; Hackett et al.,

2010).

At the molecular level, CASK binds to a myriad of proteins

important for embryonic development, synapse formation and

plasticity (Hsueh, 2006). For instance, CASK interacts with

the adhesion molecules, e.g., neurexin and syndecans, with

cytoplasmic adaptor proteins such as Mint1, SAP97 and CIP98,

and with calcium channel proteins. CASK also participates in the

regulation of synaptic transmission via its indirect interaction

with vesicles that transport the NMDAR subunit NR2B to

the plasma membrane (Huang and Hsueh, 2009; Setou et al.,

2000).

CASK functions as a multidomain scaffolding protein and

has been shown to be sumoylated on the lysine 679 residue

(Chao et al., 2008). The sumoylation of CASK reduces the

interaction between CASK and the protein 4.1. Mammalian

4.1 proteins are known to act as hubs for cytoskeleton-

membrane protein organization and cellular signaling. Notably,

protein 4.1 connects spectrin to the actin cytoskeleton and

this interaction is crucial for spinogenesis (Huang and Hsueh,

2009). Therefore, in order to evaluate the role of CASK

sumoylation in spinogenesis, the authors fused SUMO1 to CASK

and overexpressed this chimearic construct in hippocampal

neurons. They showed a dramatic impairment in spine

number and size (Chao et al., 2008) indicating that CASK

sumoylation is essential for spinogenesis. Interestingly, CASK

is also expressed presynaptically and future research could

therefore shed light on the role of CASK sumoylation in

synaptic vesicles (SVs) trafficking and/or neurotransmitter

release.

PRESYNAPTIC SUMOYLATION

The main function of the presynaptic terminal is to

orchestrate the release of neurotransmitter from SVs upon

neuronal depolarization (reviewed in Südhof and Rizo, 2011;

Südhof, 2013). This essential activity-dependent process

requires a tightly controlled spatiotemporal regulation

of protein-protein interactions between a myriad of

molecules to achieve the calcium-dependent fusion of

SVs with the presynaptic membrane and the subsequent

release of the neurotransmitter in the synaptic cleft.

These dynamic events are mostly regulated via PTMs and

sumoylation is clearly emerging as a key process at the

presynapse.

Feligioni et al. (2009) used a modified synaptosomal

preparation protocol to trap exogenous conjugatable SUMO1

polypeptides or the catalytically active domain of the

desumoylation enzyme SENP1 in synaptosomes to respectively

increase or decrease the presynaptic sumoylation levels and

measure the impact of sumoylation on glutamate release.

They reported that the increase in presynaptic sumoylation

reduced Ca2+ influx and decreased glutamate release upon

KCl depolarization. In contrast, decreasing presynaptic

sumoylation by introducing SENP1 into synaptosomes

led to an enhanced Ca2+ influx and glutamate release in

KCl-stimulated conditions (Feligioni et al., 2009). This

study was the first to provide evidence for a direct role

of the SUMO process at the presynapse via modulation
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FIGURE 2 | Regulation of the presynaptic function by sumoylation. Consistent with the emerging presynaptic functions of sumoylation, its enzymatic

machinery is localized at the presynapse and several presynaptic proteins are SUMO subtrates. (A) Transport of mRNAs along axons is a key mechanism to

dynamically control the function of proteins in growth cones. The axonal mRNA-binding protein La is a SUMO substrate. La is transported toward the end of the

axon by its association to kinesins while sumoylated La proteins are bound to dyneins and therefore undergo retrograde transport toward the soma. (B) Presynaptic

sumoylation emerges as a central protein modification acting at several stages of the neurotransmitter release mechanism. (1) Sumoylation of Synapsin Ia (SynIa)

potentiates its association with synaptic vesicles and thus participates in the clustering of these vesicles at the presynapse. (2) Synaptotagmin-1 is sumoylated in

vivo but the precise function of this modification is still not known. (3) Syntaxin-1A sumoylation is evoked upon NMDA receptor (NMDAR) activation leading to a

decreased binding to SNAP-25 and VAMP-2 and thus acting as a key presynaptic regulator of vesicle endocytosis. (4) RIM1ααα sumoylation is required for presynaptic

exocytosis since depolarization-evoked vesicle exocytosis with a non-sumoylatable RIM1α mutant is dramatically impaired. This effect is mainly due to a defect in

presynaptic calcium entry following neuronal activation since RIM1α sumoylation enables the binding to Cav2.1 calcium channels and coordinates the presynaptic

Ca2+ entry. (5) CRMP2 is a SUMO substrate and dynamically reduces Ca2+ entry through the presynaptic voltage-gated Ca2+ channel CaV2.2. CRMP2

sumoylation is also believed to regulate the membrane expression of the sodium channel NaV1.7. (6) mGluR7 is sumoylatable both in vitro but also in vivo in rat

hippocampal and cortical neurons. mGluR7 agonist activation triggers the endocytosis of the WT mGluR7 but not the internalization of its non-sumoylatable mutant

suggesting that sumoylation acts on the endocytic pathway. However, overexpressing the desumoylase SENP1 increases the pool of internalized mGluR7, which

rather implies that mGluR7 sumoylation is important for recycling of these receptors back to the plasma membrane and not for the receptor endocytosis per se.

(7) Activation of CB1 receptors in rat cortical neurons increases the overall SUMO1 conjugation. CB1 receptors are potentially sumoylated in resting cells but not in

CB1 receptor-activated conditions. However, the confirmation that these receptors are sumoylated at presynaptic sites and whether the SUMO modification impacts

presynaptic endocannabinoid functions are still not determined. (8) Kv potassium channels play critical roles in neuronal excitability and sumoylation of a number

of these channels (Kv1.1, Kv2.1, Kv7.2, Kv7.3) have been reported to act as molecular regulators of their intrinsic activity. Question marks in red indicate that the

physiological consequences of the target protein sumoylation are still not clearly defined.

of calcium influx and glutamate release but the molecular

pathway and presynaptic proteins targeted by this PTMs

were not described at that time. Since then, several key

axonal and presynaptic proteins have been reported to be

the target of the SUMO system and a better view about

the complexity of this process as well as the functional

role of sumoylation at the presynapse is now emerging

(Figure 2).
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La Protein
The human La protein was originally identified as an auto-

antigen in an immune system disorder called Sjogren’s

syndrome. Levels of circulating anti-La autoantibodies are

used for the diagnosis of this autoimmune syndrome but

also in cases of systemic lupus erythematosus and neonatal

lupus syndrome. La is the smallest member (46kDa) but

the most abundant of the La-related protein (LARP) family

(reviewed in Stavraka and Blagden, 2015). Its particular LAM

motif adopts a special conformation commonly seen in DNA

transcription factors and its RNA-interacting motif RRM allows

the binding, protection and axonal transport of many mRNAs.

However, how the expression and function of La are regulated

remains largely unexplored. To date, it has been shown that

phosphorylation of La regulates its activity and possibly its

ability to recognize mRNAs. Two kinases, CK2 and Akt,

have been so far identified to phosporylate the La protein

(Broekhuis et al., 2000; Brenet et al., 2009; Bayfield et al.,

2010). Furthermore, (van Niekerk et al., 2007) reported that

La is a SUMO substrate and that sumoylated La binds to

dynein allowing its retrograde axonal transport. Conversely, the

native non-sumoylated La interacts with kinesin and undergoes

anterograde axonal transport (Figure 2A). This pioneer study

showed that sumoylation is a key regulatory mechanism for

transporting mRNAs towards their local translation sites, which

represents a crucial process for the maintenance of the axonal

and growth cone pool of proteins that are required for synaptic

transmission.

Kv Channels (Voltage-Gated Potassium Ion
Channels)
Kv channels form potassium-selective pores that span through

the plasma membrane and are essential for the generation

of action potentials and the control of neuronal excitability.

Mutations in subunits forming some of these channels have

been implicated in epilepsies and sudden unexplained death

in epilepsy (SUDEP). Investigations into the regulatory roles

of sumoylation on potassium channel activities have revealed

exciting features. However, most of these works were not

achieved in neurons since Kv channels also regulate the

excitability of many non-neuronal cells (recently reviewed in

Wu et al., 2016). Hereafter, we describe the functional effects

of sumoylation of voltage-gated potassium channels in the

CNS.

Potassium Kv1.1 channels are abundantly expressed in the

brain and localize in large axons where they form tetramers

with Kv1.2 subunits. These channels regulate action potential

propagation, neuronal firing and neurotransmitter release

(Dodson and Forsythe, 2004). Mutations within the human gene

encoding Kv1.1 have been associated with partial epilepsy and

episodic ataxia in humans (Zuberi et al., 1999). Knock-in mice

with Kv1.1 mutations also exhibit hippocampal hyperexcitability,

severe epilepsy and premature death (Glasscock et al., 2007).

Qi et al. (2014) engineered a post-natal deficient SENP2

mouse model that develops spontaneous seizures and sudden

death. They also reported that the SENP2 deficiency results in

increased levels of sumoylation for several potassium channels

known to impact neuronal excitability including the Kv1.1

that is modified by both SUMO1/2 and colocalizes with

SENP2 in hippocampal neurons. However, the sumoylation

of Kv1.1 did not significantly affect its channel properties

and activity. Interestingly, the authors have also reported in

this work that the Kv7.2 is hyper-sumoylated by SUMO2/3

in hippocampal neurons. Kv7 potassium channels play critical

roles in neuronal excitability. Two Kv7 members, Kv7.2

and Kv7.3, are highly expressed in neurons and generate

the M-current that is important for firing action potentials.

Strikingly, the hyper-sumoylation of Kv7.2 resulted in a

significant decrease in the depolarizing M-current in SENP2-

deficient hippocampal CA3 neurons and consequently led

to neuronal hyperexcitability, severe seizures and ultimately,

to sudden death of mice by a maximum of 8 weeks of

age (Qi et al., 2014). These symptoms were prevented by

administration of an approved anti-epileptic drug retigabine.

This effective drug acts as a specific Kv7.2 opener and counteracts

neuronal hyperexcitability. However, how this drug impacts the

sumoylation levels of Kv7.2/7.3 in hippocampal neurons has not

been investigated.

Voltage-gated Kv2.1 channels have also been shown to

be the target of the SUMO system. While sumoylation of

these channels was initially demonstrated in native pancreatic

cells where it regulates beta-cell excitability (Dai et al.,

2009), Plant et al. (2011) reported a functional role of

Kv2.1 sumoylation in hippocampal neurons. Kv2.1 potassium

channels are important in neurons for determining the activity-

dependent excitability. They reported that sumoylation occurs

at the lysine 470 residue and showed that two Kv2.1 subunits

have to be modified within a functional Kv2.1 tetramer to

produce full SUMO response. Kv2.1 sumoylation led to a

35 mV shift in the half-maximal activation voltage of the

functional channel, which resulted in its increased sensitivity

to depolarization (Plant et al., 2011). Therefore, sumoylation

of Kv2.1 channels provides a way to directly control neuronal

excitability.

Synapsin Ia
Synapsins are synaptic proteins essential for the establishment,

clustering and release of presynaptic vesicles (Cesca et al., 2010).

Synapsin Ia (SynIa) is involved in maintaining the reverse pool of

synaptic vesicles that is required when neuronal stimulation lasts

for longer period of time. Tang et al. (2015) demonstrated that

SynIa is sumoylated at the K687 residue and this sumoylation

potentiates its association with synaptic vesicles participating

in the clustering and anchoring of these vesicles into the

presynaptic element (Figure 2B). The lysine-687 to arginine

mutation resulted in complete absence of SynIa sumoylation,

decrease in the number of releasable synaptic vesicles and

impaired exocytosis (Tang et al., 2015). Notably, the A548T

mutation in SynIa that co-segregates with autism also impairs

SynIa sumoylation. Defects in SynIa sumoylation may therefore

be involved in the pathophysiology of neurological disorders

through a SUMO-dependent deregulation of SynIa function at

the presynapse. Altogether, sumoylation of SynIa appears to be
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critical for the activity-dependent release of neurotransmitter

and may therefore actively participate in synaptic transmission

and potentially in long-term synaptic plasticity events.

Syntaxin-1A
The activity-dependent exocytosis of neurotransmitters at

presynaptic sites and the subsequent recycling of synaptic vesicles

are essential processes underlying synaptic communication. The

exocytotic event is mediated through the action of the SNARE

(Soluble N-ethylmaleimide sensitive factor Attachment protein

REceptor) protein complex that includes the 35 kDa-membrane

protein Syntaxin-1A (Stx1A), SNAP-25 and VAMP-2, and

additional proteins such as Munc18, Synaptotagmins and

RIM1α (Figure 2B). Stx1A has been reported to be important

in neuronal survival (Kofuji et al., 2014), neurotransmitter

release and recycling of SV (Watanabe et al., 2013). The

role of Stx1A in neurotransmitter release is also supported

by studies reporting a possible involvement of Stx1A in the

pathophysiology of autism with Stx1A mRNA expression levels

being significantly higher in autistic patients compared to

controls (Nakamura et al., 2008). Furthermore, the STX1A

gene, which is located at the chromosome 7q11.23, has been

found duplicated in patients with speech delay and autism

spectrum behaviors (Berg et al., 2007; Depienne et al., 2007).

All these findings therefore converge to the idea that Stx1A

is critically important for synapse formation, presynaptic

function and neuronal transmission in the developing

brain.

Interestingly, Stx1A has been recently reported as a novel

presynaptic sumoylation target (Craig et al., 2015). Stx1A

sumoylation is evoked upon NMDAR activation or following

KCl-depolarization in hippocampal neurons. This activity-

dependent sumoylation occurs at three lysine sites (K252, 253,

256) and reduces Stx1A binding to SNAP-25 and VAMP-2,

but not to Munc18a. Importantly, neuronal expression of a

non-sumoylatable form of Stx1A via the mutation of the three

SUMO sites into arginine residues, leads to a significant increase

in presynaptic vesicle endocytosis (Craig et al., 2015). This

suggests that Stx1A sumoylation is critically involved in the

maintenance of the balance between SV endocytosis/exocytosis

and subsequently in neurotransmitter release. However, how

exactly the sumoylated form of Stx1A enhances SV endocytosis

as well as how Stx1A desumoylation occurs in this context has

not yet been investigated.

Synaptotagmin-1
Membrane fusion is a key mechanism occurring for many

processes including protein/lipid transport, hormone and

neurotransmitter release. Membrane fusion at presynaptic

site involves not only the SNARE proteins but also several

other presynaptic factors to orchestrate neurotransmission

in a timely dependent way (reviewed in Südhof and Rizo,

2011; Südhof, 2013). Among these are calcium sensor proteins

called synaptotagmins. To date, 16 isoforms of synaptotagmins

have been identified in mammals that either colocalize with

synaptic/secretory vesicles or are distributed at the plasma

membrane. Although not directly related to presynaptic

exocytotic function, Dai et al. (2011) reported that SENP1

overexpression enhances insulin exocytosis in pancreatic β-cells

via the association of SUMO1 to Synaptotagmin VII. More

interesting is the presynaptic function of Synaptotagmin-1

(Syt1) sumoylation. Syt1 is well known to exert important

roles at the presynapse to sense the calcium influx that

arises through the activated voltage-gated calcium channels

and thus Syt1 participates in neurotransmitter release

(Figure 2B).

To assess the role of sumoylation in neuronal function,

the Fraser lab used a proteomic approach on transgenic mice

that exclusively over-expressed the human form of SUMO1

in neurons (Matsuzaki et al., 2015). The effect of this over-

expression was a simultaneous increase in the level of non-

conjugated SUMO1 proteins and in the proportion of high

molecular weight SUMO1-modified targets in transgenic brains

compared to WT brains. The levels of protein expression of

the SUMO enzymes as well as the free fraction of SUMO2/3

proteins in transgenic brain remained similar to those measured

inWT animals. Using mass spectrometry, the authors confirmed

that many of these SUMO1 targets were neuron and synapse-

specific. Importantly, the authors described the sumoylation

of Syt1 and showed that Syt1 sumoylation was upregulated

in these transgenic mice (Matsuzaki et al., 2015). Using field

potential recording in acute hippocampal slices from SUMO1-

transgenic brains, they reported a deficit in basal transmission

suggesting a decrease in synaptic activity and/or a loss of

functional synapses. They also showed that a form of short-

term synaptic plasticity dependent on presynaptic mechanisms,

named paired pulse facilitation, is impaired in SUMO1-

transgenic brain slices, which suggests that SUMO1 over-

expression leads to defects in functional presynaptic mechanisms

(Matsuzaki et al., 2015). They further showed that SUMO1-

over-expressing hippocampal cells exhibit a dramatic loss of

dendritic spines that leads to impairment in contextual fear

memory (Matsuzaki et al., 2015). While the over-expression

of SUMO1 in neurons leads tomultiple alterations, the functional

and physiological functions of Syt1 sumoylation are yet to be

described. Clearly, the hyper-sumoylation observed for Syt1 in

SUMO1-transgenic mice cannot be taken as the unique cause to

explain all the physiological deficits reported in these animals.

However, this work confirmed the importance of a controlled

equilibrium between sumoylation and desumoylation since a

small and uncompensated increase in neuronal sumoylation

directly impacts synaptic architecture, cell communication and

memory formation.

RIM1α (Rab3-Interacting Molecule 1α)
Among the proteins of the presynaptic active zone that have been

extensively studied are the RIM protein family. RIMs interact

either directly or indirectly with several presynaptic proteins

including Rab3a, synapsin-1, Syt1A, Munc13–1, and the voltage-

gated Ca2+ channels (Calakos et al., 2004). These scaffolding

proteins are crucial to the active zone function and consequently

to synaptic transmission (Figure 2B). Specifically, RIM1α has

been implicated in the docking/priming of synaptic vesicles

but also in short and long-term synaptic plasticity (Castillo
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et al., 2002; Dulubova et al., 2005). It is now generally believed

that RIM1α plays key roles in diverse presynaptic functions,

however, the regulatory mechanisms at the presynaptic site

have not been fully elucidated. A recent study from the

Henley lab reported that RIM1α is a SUMO substrate (Girach

et al., 2013). They showed that RIM1α sumoylation occurs

only on the lysine 502 residue independently of the neuronal

activity. Using molecular replacement experiments, they have

substituted the endogenous RIM1α in hippocampal neurons

by the non-sumoylatable RIM1α-K502R mutant. While the

presynaptic localization of both the WT and non-sumoylatable

exogenous RIM1α remained unchanged, there was a marked

decrease in the depolarization-evoked SV exocytosis with the

K502R mutant indicating that RIM1α sumoylation is required

for presynaptic exocytosis (Girach et al., 2013). They further

demonstrated that the outcome measurements of the mutant

were due to a defect in calcium entry following depolarization

since RIM1α sumoylation enables the clustering of Cav2.1

calcium channels. Altogether, (Girach et al., 2013) uncovered

an additional important presynaptic function for the SUMO

process. As there are other isoforms of RIM proteins that are

involved in modulation of presynaptic functions, it would be of

interest to investigate whether and how sumoylation can impact

on these proteins.

CRMP2 (Collapsin Response Mediator
Protein 2)
CRMP2 is a microtubule-binding protein that was originally

identified for its roles in regulation of axonal guidance in

neuronal polarity and more recently, in presynaptic functions

including axonal transport and neurotransmitter release (for

a recent review on CRMP2 see Ip et al., 2014). CRMP2

dynamically interacts with the presynaptic N-type voltage-

gated Ca2+ channel (CaV2.2) and disruption of this complex

reduces pain in a rodent model of neuropathic pain. Thus,

investigation into CRMP2 mechanisms of action is of interest

to understand its role in pain and identify potential therapeutic

targets (Brittain et al., 2011). CRMP2 has been reported to be

sumoylated in vitro on the lysine 374 residue and preventing

CRMP2 sumoylation did not impair its ability to promote

neurite outgrowth (Ju et al., 2013). Using calcium imaging on

primary rat cultures of dorsal root ganglion (DRG) neurons,

the authors showed that the non-sumoylated form of CRMP2

differentially affects the calcium influx in depolarized DRGs

when compared to WT CRMP2 expression suggesting that

CRMP2 sumoylation acts as a negative modulator of presynaptic

calcium influx.

The same group later confirmed that both the WT

and the SUMO-deficient CRMP2 are robustly expressed in

catecholaminergic cells (CAD) and are able to promote neurite

outgrowth in rat DRG neurons (Dustrude et al., 2013).

They have also reported that the sodium channel NaV1.7

is regulated by CRMP2 sumoylation. Preventing sumoylation

by over-expressing SENP1 and SENP2 enzymes in WT

CRMP2-expressing CAD cells decreased the NaV1.7 currents.

Accordingly, there was a significant decrease in the levels of

surface-expressed NaV1.7 in CAD cells expressing the SUMO-

deficient form of CRMP2. NaV1.7 currents were also decreased

in sensory neurons expressing the non-sumoylatable CRMP2

K374A mutant (Dustrude et al., 2013).

Overall these two reports highlight the putative function of

CRMP2 sumoylation in the regulation of calcium and sodium

channels; however, the authors did not demonstrate CRMP2

sumoylation in vivo. It is also to be determined whether

CRMP2 sumoylation directly modifies the activity or the surface

expression of the two channels. Further work will therefore be

required to clarify the functional role of CRMP2 sumoylation at

presynaptic sites.

Metabotropic Glutamate Receptors
Metabotropic glutamate receptors (mGluRs) form a family

of G-protein coupled receptors that are centrally involved in

excitatory neurotransmission and synaptic plasticity. mGluRs

are divided into three groups based on their sequence

homology, G-protein coupling and ligand specificity (reviewed in

Niswender and Conn, 2010). The group III consists of mGluR4,

6, 7 and 8, and is of particular interest since these receptors

typically exert presynaptic inhibitory functions. In the past years,

several group III mGluRs have been shown to be sumoylated

mainly in vitro but also in vivo, however until recently, there was

no compelling evidence regarding the functional roles for such

modifications (Tang et al., 2005; Wilkinson et al., 2008; Dütting

et al., 2011; Wilkinson and Henley, 2011).

The functional role of sumoylation in mGluRs has been

so far addressed solely for the mGluR7. These receptors

are widely expressed presynaptically and modulate excitatory

neurotransmission as well as synaptic plasticity by inhibiting

neurotransmitter release (reviewed in Niswender and Conn,

2010). C-terminal truncated forms of mGluR7 were found

to be sumoylated at the K889 residue in vitro (Wilkinson

et al., 2008; Wilkinson and Henley, 2011). In a recent study,

Choi et al. (2016) confirmed that mGluR7 is a SUMO

substrate in vitro. They have also shown that these receptors

are sumoylated in vivo in both the rat hippocampus and

primary cortical neurons with the mGluR7-K889 residue

identified as the sole sumoylation site. While mGluR7 can

be sumoylated by both SUMO1 and SUMO2/3 in HEK293T

cells, only SUMO1 conjugation was reported in hippocampal

homogenates (Choi et al., 2016). Since the sumoylation process

has been directly involved in the endocytosis of glutamate

receptors in hippocampal neurons (Martin et al., 2007a),

the authors investigated whether sumoylation has an effect

on mGluR7 internalization (Figure 2B). Constitutive agonist-

independent endocytosis of the non-sumoylatable mGluR7

K889R mutant was increased compared to the WT control

receptor. Addition of L-AP4 mGluR7 agonist to the cells

expressing WT receptors triggers the endocytosis of mGluR7.

This increase in agonist-evoked mGluR7 endocytosis was not

seen for the non-sumoylatable mGluR7. The authors attributed

this lack of effect to the sumoylation process directly acting

on the endocytic pathway. However, they cannot rule out that

sumoylation rather impact on the recycling properties of the

pathway. It is indeed likely that sumoylation acts after the
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endocytosis of mGluR7 by preventing the recycling of the non-

sumoylatable receptor. This is in line with their data showing

that overexpression of SENP1, which prevents sumoylation,

leads to an increase in the internalized population of WT

mGluR7 similar to the values measured for the endocytosed

population of the non-sumoylatable mutant in the absence of

SENP1. This could be explained by a decrease in the SUMO-

dependent recycling of internalized mGluR7 to the plasma

membrane that leads to an increased intracellular pool of

receptors. Since this pathway was not assessed, it is difficult

to conclude about the exact role of mGluR7 sumoylation in

the internalization/recycling process. Furthermore, mGluR7s

are primarily expressed at presynaptic sites (Niswender and

Conn, 2010). Since the current work (Choi et al., 2016)

examined the postsynaptic endocytic properties of an over-

expressed tagged version mGluR7, it implies that further work

will now be necessary to assess the functional impact of mGluR7

sumoylation at presynaptic sites and whether this SUMO

modification influences neuronal excitability and/or synaptic

transmission and plasticity.

Cannabinoid Receptor 1
The endocannabinoid system fulfils complex neuromodulatory

functions in brain development and synaptic plasticity (reviewed

in Lu and Mackie, 2016). It is composed of endogenous

cannabinoid substrates (endocannabinoids), receptors and

enzymes that synthesize and degrade endocannabinoids.

Strikingly, impairments of the endocannabinoid system have

been implicated in several psychiatric disorders. The most

abundant endocannabinoid receptors, CB1 and CB2, belong

to the family of G-protein coupled receptors, which primarily

couple to G proteins of the Gi and Go classes. Their activation

leads to inhibition of adenylyl cyclases and modulation of

presynaptic voltage-dependent calcium channels as well as

certain potassium channels (Lu and Mackie, 2016). CB1 and

CB2 receptors are involved in a number of physiological

functions, such as gene transcription, cell motility and synaptic

communication. CB1 receptors are highly expressed in the

cortex, basal ganglia, hippocampus, and the cerebellum.

CB1 receptors are primarily present at presynaptic terminals

(Figure 2B) while CB2 receptors, which are expressed at

a much lower level in the CNS, are mainly expressed in

microglia and vascular elements. Activation of CB1 receptors

in rat cortical neurons leads to an increase in the overall

SUMO1 conjugation as well as an increase in the levels of free

SUMO1 (Gowran et al., 2009). The authors further showed

that CB1 receptors were potentially sumoylated in basal but

not in CB1 receptor-activated conditions (Gowran et al.,

2009). However, there have been no reports so far regarding

which CB1 receptor residues are sumoylated and whether the

SUMO modification regulates presynaptic endocannabinoid

functions.

In recent years, a lot of work has been achieved

regarding the identification of presynaptic SUMO target

proteins and the function of sumoylation at the presynapse,

placing the SUMO pathway as a key regulator of

protein-protein interactions within this highly crowded

environment. Despite these efforts it is still unknown

how is this timely dependent sumoylation/desumoylation

process orchestrated and future work will be required

to decipher how the targeting, the trafficking and the

activity of the sumoylation and desumoylation enzymes are

regulated in an activity-dependent manner at presynaptic

sites.

POSTSYNAPTIC SUMOYLATION

Spines are small protrusions on dendritic membranes receiving

inputs from axonal termini. Dendritic spines represent the

postsynaptic elements that consist in a head connected to the

dendritic shaft by a narrow neck and contain multiple synaptic

actors, which interact in a coordinated manner to allow synaptic

communication. The first demonstration that sumoylation

acts directly within the synapse has been provided in 2007

with the immunodetection of many unidentified sumoylated

substrates in rat hippocampal PSD95-positive synaptic fractions

as well as with the immunolocalization of the sole SUMO

conjugating enzyme Ubc9 at postsynaptic sites (Martin et al.,

2007a). This work has also identified and characterized the first

synaptic sumoylated substrate i.e., the kainate receptor (KAR)

subunit GluK2, and therefore has opened new avenues for

investigation of the sumoylation process in the brain (Martin

et al., 2007a).

Kainate Receptors
Kainate receptors are ionotropic glutamate receptors that are

functionally active as tetramers composed of the subunits

GluK1–5 (formerly named GluR5–7, KA1 and KA2). KARs

play important roles for synaptic transmission as well as

neuronal excitability (Contractor et al., 2011). They are

expressed at many synapses both pre- and postsynaptically

but also extrasynaptically, where they regulate neuronal

excitability. At the presynapse, they participate in the release

of neurotransmitters, whereas postsynaptically they contribute

to synaptic transmission. The GluK2 subunit directly interacts

with the conjugating enzyme Ubc9 and is a sumoylation

substrate in rat hippocampal neurons (Martin et al., 2007a).

GluK2 sumoylation by SUMO1 occurs in an activity-dependent

manner on its C-terminal domain at the single lysine 886

residue. Since this report, several additional studies have

confirmed the SUMO state of GluK2 in neurons (Konopacki

et al., 2011; Zhu et al., 2012; Choi et al., 2016). Agonist

activation causes the endocytosis of GluK2 receptors via a PKC-

dependent pathway (Martin and Henley, 2004). Interestingly,

the binding of glutamate or kainate to GluK2 leads to its

sumoylation at the plasma membrane and represents a trigger

for the activated receptors to be internalized. Interestingly,

postsynaptic KAR responses at hippocampal mossy fiber-

CA3 synapses decrease when postsynaptic sumoylation is

promoted by infusing SUMO1 postsynaptically and conversely,

postsynaptic responses largely increase in desumoylation

conditions using infusion of the catalytic domain of SENP1

(Martin et al., 2007a). Consistent with earlier publication

(Martin and Henley, 2004), PKC activation has been shown
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to be essential to GluK2 internalization (Konopacki et al.,

2011; Chamberlain et al., 2012). PKC phosphorylation at the

serine 868 in GluK2 is a prerequisite for its sumoylation and

subsequent endocytosis (Konopacki et al., 2011; Chamberlain

et al., 2012).

Arc (Activity-Regulated
Cytoskeleton-Associated
Protein/Activity-Regulated Gene 3.1)
The immediate early gene Arc is capable of coupling changes

in neuronal activity to synaptic plasticity events in a tightly

regulated way (reviewed in Bramham et al., 2010). Arc is a

unique gene required for consolidation of synaptic plasticity

and LTP. Transcription of Arc gene is strongly induced by

synaptic activity. Arc mRNAs are rapidly transported into

dendrites where they undergo local translation at synaptic

sites. Therefore it is not surprising that Arc exhibits key roles

in protein synthesis-dependent forms of synaptic plasticity

and in consolidating different forms of memory (Bramham

et al., 2010). Interestingly, Arc levels are also controlled by

ubiquitination and proteasomal degradation as it was shown that

defective Arc ubiquitination increases Arc levels leading to the

concurrent decrease in synaptic AMPAR receptors (Greer et al.,

2010).

AMPAR are heterotetrameric (GluA1-A4) glutamate-gated

ion channels that underpin the vast majority of fast excitatory

glutamate neurotransmission in the CNS. Interestingly, a chronic

abolishment of neuronal activity promotes AMPARs membrane

expression and in contrast an increase in neuronal activity leads

to decreased surface AMPARs. However, the mechanisms, by

which the number and composition of AMPARs change, are still

not fully understood. To date, it is believed that Arc participates

in the internalization of AMPAR from the plasma membrane

through its interaction with the endocytic endophilin-3 and

dynamin-2 proteins (Chowdhury et al., 2006).

The Henley group reported that Arc is a sumoylation

substrate with the lysine 110 and 268 residues being the sites

of sumoylation (Craig et al., 2012). They also showed that

the suppression of network activity with the sodium channel

blocker tetrodotoxin (TTX) induces SENP1 degradation leading

to the concurrent increase in SUMO1- and SUMO2/3-modified

protein levels in rat cortical neurons in primary culture (Craig

et al., 2012). The level of Arc proteins was dramatically reduced

in TTX conditions independently of its sumoylatable ability

indicating that sumoylation does not exert any stabilizing effect

on Arc. The prolonged exposure to TTX also directly increases

the membrane expression of GluA1 subunits of AMPARs, a

process named synaptic scaling (Turrigiano, 2008). This effect

in surface-expressed AMPAR in TTX condition was prevented

when the catalytic domain of SENP1 was expressed, revealing the

involvement of the SUMO process in this homeostatic scaling

effect (Craig et al., 2012). However, how the SUMO process

participates in the regulation of AMPAR levels at the plasma

membrane, how Arc sumoylation levels are modulated by the

TTX treatment and how Arc sumoylation impacts on AMPAR

trafficking still remain open questions.

Regulation of the Sumoylation Pathway at
the Postsynapse
Despite numerous publications demonstrating the postsynaptic

involvement of sumoylation, it is only recently that some of

the mechanisms regulating this post-translational system at the

post synapse were reported (Loriol et al., 2014; Figure 3). Indeed,

using a combination of pharmacological tools with synaptic

biochemistry and restricted photobleaching/photoconversion of

individual hippocampal spines, our group demonstrated that

the synaptic diffusion of Ubc9, the sole conjugating enzyme

of the sumoylation pathway, is regulated by synaptic activity

on a rapid timescale. The synapto-dendritic diffusion of Ubc9

remained unchanged upon the activation of NMDARs but was

altered through the activation of group I metabotropic mGluR5

receptors (see Niswender and Conn, 2010 for a comprehensive

review on mGluRs signaling pathways). Increasing synaptic

activity with a GABAA receptor antagonist or directly activating

mGlu5R increases the synaptic residency time of Ubc9 in a

PKA-independent but PKC-dependent manner. This transient

synaptic diffusional trapping of Ubc9 enhanced its recognition

to synaptic PKC-phosphorylated substrates and consequently

leads to the increase in synaptic sumoylation (Loriol et al.,

2014; Figure 3). However, despite this first demonstration that

the sumoylation pathway is activity-dependently regulated at

postsynaptic sites, future work will now be required to identify

the nature of these synaptic mGlu5R-activated SUMO substrates

to further decipher the synaptic functions of sumoylation.

Altogether, the data from the above sections clearly establish

that the sumoylation machinery is partly targeted to, localized

and regulated at pre- and postsynaptic sites to modulate in an

activity-dependent manner the levels of synaptic sumoylation

and in turn, the synaptic function. Furthermore, a growing

number of SUMO substrates were recently identified in axons,

dendrites and synapses and shown to fulfil essential physiological

functions on synaptic communication and plasticity (Shalizi

et al., 2006, 2007; Martin et al., 2007a; Chao et al., 2008;

Konopacki et al., 2011; Chamberlain et al., 2012; Craig et al.,

2012, 2015; Girach et al., 2013; Jaafari et al., 2013; Loriol et al.,

2013, 2014; Tang et al., 2015; Tai et al., 2016) revealing the

sumoylation process as an essential modulator of the synaptic

function. Strikingly however, a study combining the use of

a double-tagged His-HA-SUMO1 knock-in mouse model and

mass spectrometry analysis failed to detect any synaptic SUMO

substrates nor any colocalization between His-HA-SUMO1 at

synapses (Tirard et al., 2012). The explanation for these rather

stark differences is still unclear but the authors demonstrated

that the levels of SUMO conjugation decreased in the knock-

in model compared to WT animal suggesting that the dual

SUMO tag partly impairs the sumoylation process. The direct

outcome of this observation is that the synaptic sumoylation

levels may become too low and below the detection sensitivity

of their analysis method. Despite these data, an increasing

number of exciting studies from independent groups worldwide

including ours is now available demonstrating that sumoylation

takes place in neurons and at synapses to regulate synaptic

communication.
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FIGURE 3 | Postsynaptic regulation of the SUMO pathway. The diffusion of Ubc9, the sole conjugating enzyme of the SUMO system is regulated by synaptic

activity. Neuronal activation increases the residency time of the SUMO-conjugationg enzyme Ubc9 at the post-synapse. This synaptic regulation is independent of

NMDAR activation but involves an mGlu5R-dependent signaling pathway that leads to PKC activation. The effect of this activity-dependent PKC phosphorylation is

the increased anchoring of Ubc9 to synaptic phosphorylated protein substrates, which ultimately enhances sumoylation at synapses. Activation of mGlu5R therefore

promotes a transient diffusional trapping of Ubc9 in activated spines via a PKC-dependent pathway, which in turn contributes in the regulation of neuronal excitability.

SUMOYLATION IN SYNAPTIC PLASTICITY

Synaptic plasticity is characterized by the ability of a synapse to

change in strength over long periods of time and this process

is now widely accepted as the cellular model of learning and

memory. Sumoylation, as described above, is centrally involved

in the fine-tuning of neuronal excitability and the regulation of

several pre- and postsynaptic proteins important for synaptic

transmission. In recent years, several pieces of evidence have

accumulated implicating the sumoylation process in plasticity

events.

Phosphorylation of the cAMP-responsive element binding

protein (CREB) at the serine 133 residue via different signaling

cascades, e.g., Ras/ERK, Akt kinase, calcium/calmoduin-

dependent kinases II and IV, protein kinase A, regulates

memory formation and neuronal survival during development

and leads to transcription of genes required for activity-

dependent brain plasticity, which makes CREB a prototypic

transcriptional factor of cognitive function of the brain (Cohen

and Greenberg, 2008; Bell et al., 2013). In an in-depth study

published recently, Chen et al. (2014) investigated the role of

CREB sumoylation and its interplay with phosphorylation

in the rat hippocampal CA1 region. They showed that

CREB sumoylation is enhanced in the presence of PIAS1,

and NMDA injection in the CA1 region increases CREB

sumoylation. Moreover, the spatial training in rats increases

CREB phosphorylation after 1 day of training. After 2 and 5

days the phospho-CREB levels remained unchanged compared

to untrained control animals, whereas CREB sumoylation

increased significantly suggesting a molecular regulatory

switch between phosphorylation and sumoylation during this

learning process. In addition, CREB sumoylation enhanced

the transcription of growth factor Brain-Derived Neurotrophic

Factor (BDNF). Transduction of CREB-SUMO1 fusion vector

to the rat CA1 region increased spatial learning and memory,

whereas PIAS1 knock-down decreased CREB sumoylation

and impaired spatial learning and memory (Chen et al.,

2014). Importantly, the authors provided evidence that

preventing CREB phosphorylation completely abolishes

CREB sumoylation, however preventing CREB sumoylation

on two most prominent sumoylation sites increases CREB

phosphorylation in the CA1 region. Clearly, there is a regulatory

interplay between these two modifications and it will be

of interest to examine whether deregulation of the CREB

phosphorylation/sumoylation crosstalk is relevant in cognitive

disorders.
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LTP (Long-Term Potentiation)
LTP is characterized by a long-lasting increase in synaptic

strength that involves in most cases an activity-dependent

increase in the functionality and the number of postsynaptic

AMPAR (Kneussel and Hausrat, 2016).

Jaafari et al. (2013) applied a chemically-induced LTP assay

(Chem-LTP) on cultured rat hippocampal neurons to investigate

the role of sumoylation in AMPARs surface expression.

This pharmacological approach was previously reported to

significantly increase the surface level of AMPARs (Lu et al.,

2001). Chem-LTP led to an increase in dendritic and synaptic

SUMO1 immunoreactivity as well as a large increase in Ubc9 and

SUMO1 mRNAs in soma and dendrites. Interestingly, the over-

expression of a catalytically active domain of the desumoylase

SENP1, but not its catalytically inactive mutant, prevented the

increase in SUMO1 mRNA and in surface expressed AMPAR

upon Chem-LTP (Jaafari et al., 2013). These results are in favor

of an active role of the sumoylation process in the control of

AMPAR surface expression during LTP. However, the precise

mechanism by which the SUMO process acts on AMPAR surface

expression is still not clear.

The prion-like Cytoplasmic Polyadenylation Element-

Binding protein 3 (CPEB3) regulates the translation of several

mRNAs involved in synaptic plasticity (Pavlopoulos et al.,

2011; Fioriti et al., 2015). Previous studies reported that CPEB

exists as a soluble inactive or insoluble aggregate-prone active

protein (Si et al., 2010), both of which localize at the synapse

(Drisaldi et al., 2015). When aggregated, active CPEB3 can

initiate the translation of specific target mRNAs such as

those coding for the AMPAR subunits GluA1 and GluA2

(Pavlopoulos et al., 2011; Fioriti et al., 2015). Interestingly,

sumoylation of CPEB3 by SUMO2 was shown to regulate

its oligomerization capacity and neuronal activity-dependent

translation of target mRNAs (Drisaldi et al., 2015). In basal state

CPEB3 is sumoylated and acts as a translation repressor. In

vitro and in vivo stimulation of hippocampal neurons triggered

CPEB3 desumoylation leading to its aggregation and mRNA

translation. The authors found that the uncleavable SUMO2-

CPEB3 construct is soluble compared to the non-sumoylated

CPEB3 and showed a decreased ability to aggregate leading to

inhibition of mRNA translation. Stimulation of hippocampal

neurons with glycine led to an increase in the number of

filopodia (immature spines), which was not observed when

neurons expressed SUMO2-CPEB3 (Drisaldi et al., 2015).

Importantly, CPEB3 was reported to induce SUMO2 mRNA

translation upon glycine stimulation. These data suggest that

the SUMO process operates as a regulatory loop influencing the

translation activity of CPEB3, which in turn modulates the levels

of SUMO2 mRNA.

The sumoylation process is required for the expression of

LTP (Lee et al., 2014). Indeed, by combining the use of WT

or catalytically inactive forms of the cell permeable TAT-Ubc9

and LTP protocols in acute CA1 hippocampal slices, the authors

showed that LTP is significantly reduced when sumoylation is

prevented by the dominant negative Ubc9 mutant (Lee et al.,

2014). This LTP inhibition was observed without any impact

on basal transmission. Lee et al. (2014) confirmed their initial

results using the catalytic domain of the desumoylase SENP1

in the patch pipette as used previously (Martin et al., 2007a).

They showed that inclusion of the active SENP1, but not its

catalytically inactive mutant, fully blocked the induction of LTP

in CA1 pyramidal neurons confirming that the SUMO pathway

is involved in the expression of long-term plasticity events (Lee

et al., 2014). They subsequently demonstrated that infusion

of the dominant negative form of TAT-Ubc9 in vivo impairs

the hippocampal-dependent learning and memory (Lee et al.,

2014).

More recently, several MeCP2 gene mutations in patients

with Rett syndrome patients were shown to decrease

MeCP2 sumoylation (Tai et al., 2016). The authors also

demonstrated that the re-expression of the WT form of

MeCP2 in CA1 hippocampal neurons rescued the deficits of

social interaction and the CA1-LTP impairment observed

in MeCP2 conditional knockout mice. Interestingly,

re-expression of the non-sumoylatable K412R form of

MeCP2 in these conditional knockout mice was not able

to rescue the LTP in CA1 hippocampal neurons with

measured values similar to those obtained in MeCP2 KO

animals (Tai et al., 2016). Altogether, these data reveal a

crucial role of MeCP2 sumoylation in social interaction

and synaptic plasticity, and suggest that erratic MeCP2

sumoylation may directly participate in the etiology of Rett

syndrome.

LTD (Long-Term Depression)
LTD is a ubiquitous form of activity-dependent long-lasting

reduction of synaptic strength characterized by a decrease

in the surface expression of neurotransmitter receptors that

often results from the remodeling of their intracellular protein-

interacting partners via PTMs.

As depicted above, the agonist-dependent sumoylation of the

GluK2 subunit at the lysine 886 leads to the internalization of the

sumoylated KAR complexes (Martin et al., 2007a). This process

requires a PKC-phosphorylation of the GluK2 C-terminus at

the serine 868 residue prior to its sumoylation (Konopacki

et al., 2011). Interestingly, it was also reported that both the

PKC-phosphorylation of the serine 868 and the subsequent

sumoylation are required for the internalization of KARs that

occurs during LTD of KAR-mediated synaptic transmission

at rat hippocampal mossy fiber synapses (Chamberlain et al.,

2012). Thus, this work revealed that the interplay between

phosphorylation and sumoylation of GluK2 is important for

activity-dependent KAR synaptic plasticity.

SUMOYLATION IN SYNAPTOPATHIES

The human synaptic proteome is composed of hundreds of

different proteins in many copies and mutations in the encoding

genes lead to more than hundred brain disorders (reviewed

in van Spronsen and Hoogenraad, 2010; Grant, 2012). Spine

architecture, synaptic proteome and neuronal functions are

strongly correlated features, which is never more apparent

than in pathological conditions. Notably, synaptopathies

that are characterized by alterations in spine morphology,
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TABLE 1 | Sumoylation in synaptopathies.

Synaptopathy Implicated Effects Reference

SUMO targets

and machinery

Down syndrome, Trisomy 21 SUMO3 SUMO3 gene is localized on Hsa21. Gardiner (2006)

SUMO3 overdose leads to imbalanced/deregulated

sumoylation.

Parkinson’s disease α-Synuclein Sumoylated by SUMO1 and SUMO2/3.

Involved in protein aggregation.

Kim et al. (2011), Krumova et al. (2011),

and Kunadt et al. (2015)

Another pathogenic mechanism could include

inter-neuronal spreading of α-Syn.

DJ-1 PD mutation disrupts DJ-1 sumoylation and decreases

its solubility.

Shinbo et al. (2006)

Parkin Increase in its E3 Ubiquitin ligase activity by non-covalent

SUMO1 modification.

Um and Chung (2006)

Parkin also associates with and targets the SUMO E3

ligase RanBP2 for degradation. Direct implication with

PD is still lacking.

Huntington’s disease Huntingtin Sumoylation may act as a prevention mechanism for

huntingtin accumulation.

Steffan et al. (2004) and O’Rourke et al.

(2013)

Alzheimer’s disease SAE2, Ubc9, SENP3 Single Nucleotide Polymorphisms in these genes

co-segregate with AD.

Grupe et al. (2007), Weeraratna

et al. (2007), Ahn et al. (2009), and

Corneveaux et al. (2010)

Aβ Unclear results about whether sumoylation of Aβ

enhances or decreases its aggregation.

Li et al. (2003), Dorval et al. (2007), and

Zhang and Sarge (2008)

Tau Proportion between sumoylated and ubiquitinylated Tau

can regulate its degradation/accumulation.

Dorval and Fraser (2006) and Luo et al.

(2014)

Hyper-phosphorylated Tau is immunoreactive

for SUMO1.

synapse number and synaptic function are increasingly seen

as central feature in major psychiatric, brain developmental

and neurodegenerative diseases. These diseases constitute a

major social and economic burden in our societies and it is

therefore essential to gain a better insight into the underlying

molecular and cellular mechanisms prior to developing

effective diagnostic, preventative and eventually therapeutic

strategies.

Since the sumoylation pathway is emerging as a critical

regulator of neuronal and synaptic function under normal

conditions, it is not surprising to see more andmore publications

reporting defective sumoylation events in wide range of brain

disorders. In this section, we review the current knowledge

regarding the multiple sumoylation anomalies reported in

synaptopathies (Table 1).

Down Syndrome (DS)
The DS or trisomy 21, is caused by an extra copy of all

or parts of the long arm of the human chromosome 21

(Hsa21) and is the most common chromosomal abnormality

with about 1:1000 births worldwide (Loane et al., 2013).

Clinical features are multiple with mild to severe intellectual

disabilities, learning defects in short- and long-term memory

formation, typical craniofacial appearance, hypotonia and

premature aging (Perluigi and Butterfield, 2012). On the

neuroanatomical side, DS patients show reduction in brain

size and weight, as well as a decrease in neuronal density

associated with synaptic abnormalities (Kaufmann and Moser,

2000).

DS is believed to result from a gene dosage imbalance leading

to the increased expression of normal chromosome 21 genes.

Accordingly, the overexpression of specific genes located in the

long arm of Hsa21, such as DS Critical Region 1 (DSCR1), the

Amyloid-beta Precursor Protein (APP) and the dual-specificity

tyrosine (Y)-phosphorylation regulated kinase 1A (DYRK1A)

genes have been reported in DS patients (Antonarakis et al., 2004;

Shukkur et al., 2006). However, several studies have also shown

that individual loci were not responsible on their own for specific

anatomical and functional features of DS (Roper and Reeves,

2006; Shukkur et al., 2006).

Interestingly, the SUMO3 gene is located on the long arm

of the Hsa21 and it was reported that there is an increase in

SUMO3-modified proteins in the human hippocampus of post-

mortem DS patient (Gardiner, 2006). This increase in SUMO3-

sumoylation impacts a large number of target proteins that may

include important molecular pathways involved in the synaptic

function and disruption of their sumoylation/desumoylation

balance may explain at least in part, some of the synaptic defect

observed in the patients. Therefore it would be of great interest

to identify and functionally characterize the increased SUMO3

target proteins in DS to evaluate whether this imbalanced

sumoylation may account for some of the reported DS

features.

Parkinson’s Disease (PD)
PD is a neurodegenerative condition caused by impairments of

striatal dopaminergic neurotransmission, and ultimately leads

to gradual loss of dopaminergic neurons in the substantia
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nigra. Loss of these neuronal projections toward the striatum

is directly correlated with the symptoms of the disease as the

striatal structure is responsible for the control of voluntary

movements. Accordingly, PD patients show significant decline

in motor and non-motor functions, which are symptomatically

expressed as resting tremor, muscle rigidness, impaired balance

as well as speech and writing difficulties. Only 5% of the

PD patients are diagnosed with genetic form of PD and

the etiology of PD is yet to be fully elucidated. A cellular

hallmark of the disease is the formation of intraneuronal

inclusions known as Lewy bodies (LBs) that are often positive

for SUMO1, ubiquitin and α-synuclein (for a recent review,

see Vijayakumaran et al., 2015), therefore linking the SUMO

pathway to the disease.

Sumoylation of α-Synuclein (αSYN)
The major component of LBs is αSYN, a small protein of

14 kDa encoded by the SNCA gene on chromosome 4. About

18 mutations in this gene have been directly linked to familial

forms of PD and generally associate with the early-onset form of

the disease, which typically appears before the age of 50.

The physiological functions of αSYN are still not clearly

established but the protein is mainly localized at presynaptic sites

where it is believed to regulate neurotransmitter release via its

direct association to SNARE-proteins (reviewed in Calo et al.,

2016). Structurally, αSYN contains an N-terminal membrane-

binding domain, a hydrophobic core centrally involved in

protein-protein aggregation, and an acidic C-terminal tail. Under

physiological conditions, αSYN is able to fold into soluble tetra-

and octameric protein structures. In LBs, αSYN misfolding

leads to cytotoxic aggregates containing insoluble αSYN of

high molecular weight species. It should be noted that recent

experimental data showed that the intermediate oligomeric

species of αSYN are toxic and most likely precede the formation

of LBs in PD (Karpinar et al., 2009; Winner et al., 2011; Peelaerts

et al., 2015).

αSYN was shown to be modified by SUMO1 and SUMO2

in cultured cells and in mammalian brain, and SUMO1 was

also found in the brain of PD patients at the periphery of LBs

co-localizing with αSYN, which raises the possibility that the

SUMO pathway plays a role in protein aggregation (Dorval

and Fraser, 2006; Kim et al., 2011; Krumova et al., 2011).

Krumova et al. (2011) engineered a transgenic His-tagged

SUMO2 mouse model and reported that sumoylation of αSYN

occurs at the lysine 96 and 102 residues. They further showed

that αSYN sumoylation reduces its propensity to aggregate

in dopaminergic neurons of a rat model of PD. However,

another study published almost simultaneously that sumoylation

of αSYN promotes αSYN aggregates formation (Oh et al.,

2011). Intriguingly, aggregates and inclusions formed as a result

of impaired proteasome activity contain the sumoylated form

of αSYN (Kim et al., 2011). Since the sumoylation of αSYN

does not affect its ubiquitination, a proteasomal dysfunction

may result in the accumulation of sumoylated αSYN and

subsequently in αSYN toxic aggregation (Kim et al., 2011).

Of note, a study that was performed in yeast confirmed

the protective role of sumoylation against αSYN aggregation

(Shahpasandzadeh et al., 2014). Moreover, this study showed

that phosphorylation of αSYN can be additionally important for

αSYN clearance through proteosomal degradation and suggested

that sumoylation could modulate the interaction of αSYN with

different kinases influencing its degradation (Shahpasandzadeh

et al., 2014). Whether there is an active interplay between

these two modifications of αSYN and whether they play a cell

protective function against PD in the mammalian brain remains

to be tested.

Interestingly, the extracellular spreading of αSYN has been

reported in PD and Kunadt et al. (2015) have recently examined

the possibility that sumoylation could serve as a regulatory

mechanism for the sorting and the extracellular vesicular

release of αSYN in neurons. They showed that sumoylation

of proteins can mediate their extracellular sorting via the

Endosomal Sorting Complex Required for Transport (ESCRT)

into the extracellular vesicle pathway. Most importantly, they

demonstrated that SUMO is recruited to ESCRT formation

sites by the interaction with phosphoinositols and that

sumoylation acts as a sorting signal for the extracellular vesicular

release of αSYN (Kunadt et al., 2015). These data provide

strong evidence for a role of the SUMO modification as a

regulator of αSYN sorting to the extracellular space, possibly

contributing to the interneuronal toxic spreading of αSYN

reported in the disease and consequently to the etiology of

PD.

Sumoylation of DJ-1
DJ-1 mutations have been linked to 1–2% of early-onset PD

cases. DJ-1 is a molecular chaperone with cytoprotective

functions under oxidative stress; in addition DJ-1 also acts

as a transcriptional regulator. The DJ-1 protein is expressed

in all brain regions, localizing to neurons and glial cells.

DJ-1 is found within the cytoplasm, the nucleus, and in

association with the mitochondria and the endoplasmic

reticulum (reviewed in Eckermann, 2013). Interestingly,

DJ-1 is present in presynaptic terminals, colocalizing with

synaptophysin and associating with synaptic vesicles and also at

the postsynapse, in dendritic spines (Usami et al., 2011) where it

is involved in synaptic neurotransmission and induction of LTD

(Wang et al., 2008).

Sumoylation of DJ-1 occurs on the lysine 130 residue and

has been shown to increase upon UV irradiation. Moreover,

this modification is necessary for DJ-1 to be in a fully activated

form (Shinbo et al., 2006). The PD-associated DJ-1 mutation

L166P leads to impaired DJ-1 sumoylation and decreases its

solubility (Shinbo et al., 2006). Interestingly, the DJ-1 K130R

mutation does not impact on the protein structure but rather

leads to multi-/polysumoylation of the DJ-1 at alternative SUMO

sites (Tao and Tong, 2003). Thus the elucidation of the exact

synaptic function of DJ-1 sumoylation and how a defect in its

sumoylation balance could impact synaptic function remains to

be determined.

Overall, these findings highlight the key roles played by the

sumoylation pathway in PD and we believe that the aim at

clarifying the involvement of the SUMO process in the etiology

of PD will become an active area of future research.

Frontiers in Synaptic Neuroscience | www.frontiersin.org 16 April 2016 | Volume 8 | Article 9

http://www.frontiersin.org/Synaptic_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Synaptic_Neuroscience/archive


Schorova and Martin Synaptic Sumoylation

Sumoylation of Parkin
Although the loss-of-function mutations within the PARK2

gene, coding for the protein parkin, are the most common

autosomal recessive juvenile causes of PD, the responsible

molecular mechanisms remain unclear. Parkin is a RING-

domain-containing E3 Ubiquitin ligase that is widely expressed

throughout the CNS and can associate with PDZ scaffolding

proteins at the postsynaptic membrane. Notably, parkin localizes

to the majority of LBs in both familial and sporadic cases of

PD. Recent findings suggest that parkin interacts with the KAR

subunit GluK2 and regulates its neuronal function (Maraschi

et al., 2014). Loss of parkin function, in vitro and in vivo,

leads to GluK2 accumulation at the plasma membrane resulting

in potentiated KAR current and consequently in the increase

in KAR-dependent excitotoxicity presenting similar phenotype

observed in autosomal recessive juvenile PD cases (Maraschi

et al., 2014). Taking into account that GluK2 sumoylation

regulates KAR endocytosis, neuronal excitability (Martin et al.,

2007a) and synaptic plasticity (Chamberlain et al., 2012), it

would be of high interest to see whether sumoylation could

provide a rescue mechanism to down-regulate the increased

surface expression and excitotoxicity seen in mouse brains that

express the Parkin mutant causing autosomal recessive juvenile

parkinsonism.

Importantly, parkin has also been shown to interact non-

covalently with SUMO1 (Um and Chung, 2006). This interaction

increased the E3 Ubiquitin ligase activity of parkin. Furthermore,

it has been reported in this work that parkin specifically

targets the SUMO E3 ligase RanBP2 for degradation (Um and

Chung, 2006). Even though sumoylation of parkin or parkin

substrates has not been directly involved in the pathogenesis

of PD, it is reasonable to think, based on previous data, that

sumoylation may directly impact on parkin’s function and so on

the pathophysiology of PD.

Huntington’s Disease (HD)
Unlike PD, HD has a monogenic fully penetrant cause with

autosomal dominant inheritance. It belongs to the group of

polyQ disorders that arise as a consequence of an expansion

of the CAG trinucleotide repeat (encoding for glutamine) in

specific genes. In HD, the deleterious CAG expansion leads

to a polyQ expansion (≥ 40 instead of 23 glutamine residues

in the normal Htt) within the amino-terminal domain of the

Huntingtin (Htt) protein with the general agreement that longer

polyQ expansions predict earlier onsets of the disease. Clinical

hallmarks of HD are progressive motor decline leading to

severe motor dysfunction, psychiatric disturbances and cognitive

impairment. HD results from the toxic gain-of-function of

expanded polyQ in Htt and its accumulation in affected

neurons leads to neuronal cell death primarily in the striatum.

Recent prevalence studies show that one individual in 7300 is

affected in the western world (reviewed in Ross and Tabrizi,

2011).

Sumoylation of Huntingtin
Huntingtin is a large protein of 3144 amino acids (348 kDa) that

folds into a superhelical structure with a hydrophobic core and

serves as a scaffold protein. Htt is widely expressed in neurons

and localizes both to the nucleus and the cytoplasm, shuttling

between these two compartments. The cellular functions of Htt

are still not well defined. Some studies suggested its roles in

vesicular transport, regulation of gene transcription and RNA

trafficking. Htt knockdown is lethal before the embryonic day 7.5

highlighting its critical role in embryonic development (Zeitlin

et al., 1995). Htt indirectly interacts with NMDARs through

PSD95 whereas presynaptic Htt is localized to synaptic vesicles,

recycling endosomes and clathrin-coated vesicles (DiFiglia et al.,

1995; Velier et al., 1998). Htt has been shown to influence the

production and the transport of the growth factor BDNF in mice,

and in cultured neurons Htt stimulates BDNF vesicle trafficking

(Gauthier et al., 2004).

Importantly, several types of PTMs have been described for

Htt including sumoylation and ubiquitination. A pathogenic

fragment of Htt can be modified by both SUMO-1 and

ubiquitin at the same lysine residue (Steffan et al., 2004).

This group further showed that sumoylation stabilizes the

pathogenic Htt fragment and reduces its ability to form

aggregates in neuronal cell lines probably leading to a decrease

in intracellular concentration of the toxic peptide (Steffan

et al., 2004). Interestingly, genetic reduction of SUMO proteins

in a Drosophila model of HD results in neuroprotection

(Steffan et al., 2004). Moreover, potentiated sumoylation of

mutant Htt that was caused by the action of the mutant

Htt-specific SUMO E3 ligase Rhes, a striatal GTP-binding

protein, displayed increased cytotoxicity (Subramaniam et al.,

2009). Since sumoylation and ubiquitination of Htt occur on

the same lysine residue and act in an antagonistic manner,

it implies that the availability of the target lysine is critical

for the degradation of Htt by the proteasome (Steffan et al.,

2004). Because mutations that prevent these post-translational

modifications on Htt reduce the pathology in Drosophila, it is

likely that the balance between sumoylation and ubiquitination

controls both the stability and the accurate targeting of Htt

in neurons and that this tightly regulated balance is disrupted

in HD.

More recently, O’Rourke et al. (2013) reported that Htt is

sumoylated by both SUMO1 and SUMO2 primarily on the

proximal lysine 6 and 9 residues and that PIAS1 is a SUMO

E3 ligase for Htt. They further showed that genetic reduction

of dPIAS in a mutant Htt Drosophila model of HD, which

expresses mutant Htt, is protective confirming the previously

reported positive role of sumoylation in HD (Steffan et al., 2004).

The effect of Htt sumoylation by SUMO2 is the increase in the

insoluble form of Htt in HeLa cells similar to the accumulation

measured under proteasome inhibition. Importantly, this group

also reported that the accumulation could be modulated by

overexpression or acute knockdown of PIAS1 (O’Rourke et al.,

2013). This supports the central role of the SUMO process in

HD and also that a deregulated balance between sumoylation

and desumoylation of Htt could participate in the etiology

or in the aggravation of the disease. Accordingly, the authors

reported an accumulation of SUMO2-modified proteins in

insoluble fractions of HD post-mortem striata (O’Rourke et al.,

2013).
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Alzheimer’s Disease (AD)
AD is the most common neurodegenerative condition

causing severe memory deficits. AD accounts for more

than 80% of dementia cases worldwide with no cure yet

available (reviewed in Lee et al., 2013). Although the exact

causes of AD are still much discussed, the pathology is

characterized by the presence of intra- and extracellular protein

aggregates mainly composed of Tau and β-amyloid (Aβ)

proteins, which are toxic to the brain since they induce the

loss of synapses, synaptic impairments and consequently,

neuronal cell death (reviewed in Spires-Jones and Hyman,

2014).

Genetic studies have linked Single nucleotide polymorphisms

(SNPs) in genes encoding the SUMO-activating enzyme

SAE2 (Grupe et al., 2007; Corneveaux et al., 2010), the

SUMO-conjugating enzyme Ubc9 (Ahn et al., 2009) and the

desumoylase SENP3 (Weeraratna et al., 2007) to sporadic late

onset AD. Immunohistological studies also revealed stronger

SUMO immunoreactivities in hippocampal neurons of post-

mortem AD brains compared to control patients (Li et al.,

2003).

Sumoylation of Amyloid Precursor Protein (APP)
Interestingly, the APP from which Aβ is generated, and

Tau have been both proposed to be substrates of the

sumoylation machinery (reviewed in Spires-Jones and Hyman,

2014). Aβ is a small peptide of 4 kDa implicated in

synaptic physiology and plasticity. The enzymatic machinery

generating Aβ, which is composed of β- and γ-secretases, is

partly localized in synaptic compartments. Aβ can directly

bind to several synaptic receptors including NMDA and

EphB2 receptors (De Felice et al., 2007; Simón et al.,

2009). In cultured neurons the clustering of Aβ at excitatory

synapses blocks the diffusion of mGlu5 receptors leading to

increased calcium levels and hyperexcitability (Renner et al.,

2010).

To date, the investigation into the effects of the sumoylation

process in AD has generated mixed results. In 2003, the over-

expression of SUMO3 was reported to dramatically reduce the

Aβ production, whereas the expression of a SUMO3 form

bearing the K11R mutation and therefore unable to form poly-

SUMO chains displayed the opposite effect (Li et al., 2003).

An additional work in 2008 showed that sumoylation of APP

at the lysine 587 and 595 residues decreases the levels of Aβ

aggregates in HeLa cells probably by altering the availability of

the β-secretase cleavage (Zhang and Sarge, 2008). Conversely,

two separate studies showed that sumoylation increases Aβ

production independently of SUMO conjugation (Dorval et al.,

2007) or via a mechanism involving the interaction of SUMO1

with BACE1, which is known to initiate the generation of Aβ

(Yun et al., 2013). However, it should be noted that none

of these studies examined the effects of Aβ sumoylation in

neuronal cells. The authors rather used over-expression systems

that might not reflect the exact mechanisms involved in the

pathophysiology of AD. Considering the molecular complexity

of AD and the off-target effects of SUMO over-expression,

given the wide range of cellular pathway targeted by this

modification, it will be of great interest to further address these

discrepancies.

A more recent study examined the expression profile of the

members of the SUMOmachinery in the Tg2576mousemodel of

AD that over-expresses APP (Nistico et al., 2014). They reported

a significant increase in SUMO1-modified proteins and Ubc9

in the transgenic mice at 3 and 6 months of age compared to

the WT littermates. SENP1 protein levels were also increased

at the age of 3 months. On the contrary, the expression levels

of SUMO2/3-modified proteins were markedly decreased at the

age of 17 months and unchanged at the other examined stages

(Nistico et al., 2014). This study thus supported the general

belief of the field that the sumoylation/desumoylation balance

is crucial and when deregulated it may participate in disease

pathophysiology.

Sumoylation of Tau Protein
Tau is a microtubule-binding and stabilizing protein initially

discovered to localize in axons (reviewed in Spires-Jones and

Hyman, 2014). Recent data also suggest its roles in the regulation

of protein composition at the postsynaptic density (Ittner et al.,

2010). Moreover, tau was observed both in dendritic spines of

normal as well as AD post-mortem brains (Tai et al., 2012). In

AD, Tau is hyper-phosphorylated, detached from microtubules

and aggregates into tangles within the somatodendritic region.

It should be noted that not all neurons that have died display

neurofibrillary tangles, suggesting that other pathological events

must occur during the AD progression (Spires-Jones et al.,

2014). Tau can be sumoylated in different cell types, mainly

at the lysine 340 residue within a microtubule binding site

(Dorval and Fraser, 2006). Tau sumoylation was affected upon

proteasome inhibition suggesting that the lysine 340 residue is

also a target for ubiquitination and that the balance between

these two PTMs regulates Tau degradation (Dorval and Fraser,

2006). Intriguingly, the hyper-phosphorylated Tau aggregates

stain positively for SUMO1 in an APP transgenic mouse model

of AD, but not in post-mortem brain sections of AD patients

(Pountney et al., 2003; Takahashi et al., 2008). In contrast, a

recent study revealed that SUMO1 immunoreactivity colocalized

with hyper-phosphorylated Tau in the cortex and hippocampal

CA1 region of post-mortem AD brains, whereas no signal

was measured for aged-matched control brains (Luo et al.,

2014).

Sumoylation was also reported to promote Tau

phosphorylation, and conversely, the hyper-phosphorylation

of Tau induced Tau sumoylation (Luo et al., 2014). Luo et al.

(2014) further showed that Tau sumoylation at the lysine

340 residue inhibited its ubiquitination and consequently its

degradation. In addition, the exposure of cultured neurons

to Aβ increased Tau-phosphorylation and sumoylation in a

dose-dependent manner, which indicates that Aβ can act as an

upstream regulator for tau phosphorylation and sumoylation

(Luo et al., 2014). Altogether, these findings contribute to a

better understanding of the role of sumoylation in AD and

provide evidence for a putative mechanism explaining how the

pathological accumulation of hyper-phosphorylated Tau occurs

in AD brains.
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CONCLUDING REMARKS

It is nowadays very clear that the sumoylation process acts as a

major signaling pathway essential for the regulation of synaptic

function. The available set of identified sumoylated substrates

is rapidly expanding at the presynaptic site but is still quite

limited in the postsynaptic area. We are, however, confident that

the recent technical advances in the proteomic field will allow

the identification of novel SUMO target proteins and that such

neuronal and synaptic SUMOylomes will help to better assess the

central role fulfilled by sumoylation in synaptic transmission and

plasticity.

As highlighted in this review, the sumoylation process

contributes to a wide range of regulatory actions in the

developing brain, and also that disruption of the equilibrium

between the sumoylated and non-sumoylated state of

proteins is directly linked to several neurodevelopmental and

neurodegenerative diseases. Therefore, the better comprehension

of the mechanisms that regulate the spatiotemporal distribution,

targeting and activity of the sumoylation machinery in neurons

will certainly provide valuable information regarding how the

sumoylation/desumoylation balance is orchestrated in the brain

and at synapses.

We can now expect that the functional characterization

of novel SUMO regulatory pathways as well as the

discovery of additional sumoylated substrates at all

stages of the brain development will facilitate a deeper

understanding of the SUMO process in brain function

and help evaluate its potential implication in pathological

conditions.
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Fragile X syndrome (FXS) is the most frequent cause of inherited intellectual disability and the 

best-understood single monogenic cause of autism. The functional absence of the Fragile X 

Mental Retardation Protein (FMRP), a component of mRNA granules that is centrally involved in 

RNA transport along neurites and local synaptic translation, leads to FXS. The precise regulatory 

mechanisms driving FMRP functions are still poorly understood and a matter of extensive 

debates. We report that FMRP is a sumoylation substrate in vivo. Using a combination of 

molecular biology, biochemical and advanced imaging-based approaches, we show that neuronal 

sumoylation of FMRP is rapidly triggered by the activation of mGlu5 receptors. We also 

demonstrate that FMRP sumoylation is essential to post-synaptic maturation as well as the 

regulation of spine frequency. We suggest that the underlying mechanism likely involves the 

SUMO-dependent regulation of FMRP-FMRP interactions within mRNA granules along dendrites. 

Importantly, the findings presented in this report provide a better understanding of the 

molecular pathways regulating FMRP function and we anticipate that it may lead to formulation 

of novel hypotheses for the design of future therapeutic approaches of FXS. 

I directly participated in this study by performing some preliminary imaging experiments of 

FMRP mRNA granules in dendrites. I further helped with preparation of primary mouse 

hippocampal and mixed cultures. And finally I participated in the manuscript writing process. 
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Abstract 1 

Fragile X syndrome (FXS) is the most frequent inherited cause of intellectual disability and the 2 

best-studied monogenic cause of autism. FXS results from the functional absence of the Fragile 3 

X Mental Retardation Protein (FMRP) leading to abnormal pruning and consequently to 4 

synaptic communication defects. Here we show that FMRP is a substrate of the Small 5 

Ubiquitin-like MOdifier (SUMO) pathway in the brain and identify its active SUMO sites. We 6 

unravel the functional consequences of FMRP sumoylation in neurons by combining molecular 7 

replacement strategy, biochemical reconstitution assays with advanced live-cell imaging. We 8 

first demonstrate that FMRP sumoylation is promoted by activation of metabotropic glutamate 9 

receptors. We then show that this increase in sumoylation controls the homomerization of 10 

FMRP within dendritic mRNA-granules which, in turn, regulates spine elimination and 11 

maturation. Altogether, our findings reveal the sumoylation of FMRP as a critical activity-12 

dependent regulatory mechanism of FMRP-mediated neuronal function. 13 

14 



  3 

Introduction 1 

In neurons, mRNA targeting to synapses and local synthesis of synaptic proteins are tightly 2 

regulated. Indeed, dysregulation of such processes leads to structural synaptic abnormalities 3 

and consequently to neurological disorders1 classified as synaptopathies2. Among them, the 4 

Fragile X Syndrome (FXS) is the most frequent form of inherited intellectual disablility (ID) 5 

and a leading monogenic cause of autism with the prevalence of 1:4000 males and 1:7000 6 

females. FXS results from mutations within the FMR1 gene causing the loss of function of the 7 

RNA-binding protein FMRP. Localization studies revealed that FMRP is highly expressed in 8 

the Central Nervous System (CNS). FMRP binds a large subset of mRNAs in the mammalian 9 

brain and is a key component of RNA granules. These granules transport mRNA along axons 10 

and dendrites and are targeted to the base of active synapses to regulate local translation in an 11 

activity-dependent manner3, 4, 5. Therefore, the transport and the subsequent regulation of local 12 

translation are critical processes to brain development as they play essential roles in stabilizing 13 

and maturing synapses3, 4. According the role of FMRP in regulating translation at synapses, 14 

the loss of FMRP function in FXS leads to a patholological hyper-abundance of long thin 15 

immature dendritic protrusions called filopodia6, 7. These structural defects result from an 16 

abnormal post-synaptic maturation and/or a failure in the synapse elimination process8. An 17 

increased number of immature spines associated with severe changes in synaptic transmission 18 

and plasticity as well as in social and cognitive behaviours have also been reported in Fmr1 19 

knock-out (Fmr1
-/y) mouse models for FXS4, 9, 10. 20 

 21 

The majority of FMRP-containing mRNA granules localizes at the base of dendritic spines3, 4. 22 

Neuronal activation leads to the release of mRNAs from dendritic granules and their local 23 

translation at synapses (for a review, see5). Importantly, this activity-dependent process 24 

requires a tight spatiotemporal regulation involving many protein-protein interactions. Such a 25 



  4 

regulation is mainly governed by post-translational modifications (PTMs). Previous reports 1 

have shown that FMRP function is regulated by phosphorylation, which inhibits translation of 2 

its associated mRNAs, whereas dephosphorylation of FMRP promotes their translation11, 12. 3 

Activation of metabotropic Glutamate Receptor 5 (mGlu5R) induces dephosphorylation of 4 

FMRP and its subsequent ubiquitination which ultimately leads to FMRP degradation via the 5 

ubiquitin-proteasome pathway13, 14. Thus, a deeper comprehension of the activity-dependent 6 

molecular mechanisms controlling FMRP is absolutely criticial to understanding the functional 7 

regulation of FMRP-mediated mRNA transport and local protein synthesis in physiological and 8 

pathological conditions, including FXS. 9 

 10 

Sumoylation is a post-translational modification involved in many cellular signalling pathways. 11 

It consists in the covalent enzymatic conjugation of the Small Ubiquitin-like MOdifier (SUMO) 12 

protein to specific lysine residues of substrate proteins15, 16. The sumoylation process requires a 13 

dedicated enzymatic pathway17, 18, 19. SUMO paralogs (~100 amino acids; ~11 kDa) are 14 

conjugated to its substrates via the action of the E2-conjugating enzyme Ubc9. Sumoylation is 15 

a reversible process due to the activity of specific desumoylation enzymes called Sentrin-16 

proteases (SENPs20). At the molecular level, sumoylation can modulate the dynamics of multi-17 

protein complexes by preventing protein-protein interactions and/or by providing new binding 18 

sites for novel interactors21, 22. 19 

 20 

Sumoylation regulates a wide range of neurodevelopmental processes18, 19, 23. For instance, our 21 

group has demonstrated the spatiotemporal regulation of the SUMO system in the developing 22 

rat brain24 and that sumoylation is regulated by neuronal activity25 and the activation of 23 

mGlu5R25, 26. Sumoylation also influences various aspects of the neuronal function including 24 

neurotransmitter release27, 28, spinogenesis29, 30 and synaptic communication31, 32, 33. 25 



  5 

 1 

Here, we report that FMRP is a novel sumoylation substrate in neurons. We demonstrate that 2 

FMRP sumoylation is absolutely essential to maintaining the shape of mRNA granules in 3 

dendrites and to controlling both the spine density and maturation. We identify the active 4 

SUMO sites on FMRP and show that activation of mGlu5R rapidly induces FMRP sumoylation 5 

triggering the dissociation of FMRP from dendritic RNA granules to allow for local translation. 6 

Altogether, our findings shed light on sumoylation as an essential activity-dependent 7 

mechanism that tunes spine elimination and maturation in the mammalian brain. 8 

 9 

Results 10 

FMRP is sumoylated in vivo 11 

Given the critical importance of FMRP in brain development and maturation, it is of particular 12 

interest to understand the molecular mechanisms regulating FMRP function. Thus, we 13 

investigated whether FMRP is subjected to sumoylation. To this end, we performed 14 

immunoblot analyses and control assays using several commercial as well as in-house anti-15 

FMRP and anti-SUMO1 antibodies on rodent brain homogenates (Fig. 1; Supplementary Fig. 16 

1). We first analyzed rat brain homogenates in absence or presence of NEM (N-Ethyl 17 

Maleimide) which protects proteins from desumoylation during the lysis process31 (Fig. 1a; 18 

Supplementary Fig. 1f). FMRP is detected as isoforms ranging from 70 to 90 kDa. 19 

Interestingly, we found a higher molecular weight band at ~120 kDa that was detected only in 20 

the presence of NEM (Fig. 1a, Total lane). The densitometric analysis of the ratio between the 21 

sumoylated form of FMRP and the total level of FMRP in NEM-treated input lanes revealed 22 

that there is about 4% of sumoylated FMRP in all the conditions tested (Supplementary Fig. 23 

1c). We confirmed the upper band to be the sumoylated form of FMRP by immunoprecipitation 24 

experiments with specific anti-FMRP antibodies and anti-SUMO1 immunoblot (Fig. 1b) or 25 



  6 

with the converse experiment using anti-SUMO1 immunoprecipitation and anti-FMRP 1 

immunoblot (Fig. 1c). We also validated the sumoylation of FMRP in wild-type (WT) mouse 2 

brain homogenates (Fig. 1d). Accordingly, we were also able to co-immunoprecipitate the sole 3 

SUMO-conjugating enzyme Ubc9 from mouse brain homogenates using anti-FMRP antibodies 4 

(Fig. 1e). We further validated the sumoylation of FMRP in vivo using several combinations of 5 

FMRP/SUMO1 antibodies (Supplementary Fig. 1d,e; g-j) or in cultured neurons 6 

(Supplementary Fig. 1k-n). Immunolabeling experiments (Fig. 1f) showed that FMRP 7 

partially colocalizes with Ubc9 and SUMO1 in dendrites of mouse hippocampal neurons, 8 

providing further evidence of the interplay between FMRP and the SUMO pathway.  9 

 10 

Sumoylation consists in the covalent binding of the SUMO moiety to a lysine residue of the 11 

consensus sequence on the substrate protein (ΨKxD/E, where Ψ is a large hydrophobic 12 

residue, K is the target lysine, x can be any residue, and D/E are aspartate or glutamate34). To 13 

identify lysine residues in FMRP potentially targeted by the sumoylation system, we used 14 

SUMO-prediction softwares to analyze the primary sequence of FMRP and then alignment 15 

tools to assess whether these potential sites are evolutionary conserved across species (Fig. 1g). 16 

We identified three conserved residues, two proximal (K88, K130) and one distal (K614) 17 

lysines as putative targets of the SUMO system. To validate whether these lysine residues 18 

could be sumoylated, we performed site-directed mutagenesis combined with bacterial 19 

sumoylation assays31, 35 (Fig. 1h-i). We demonstrated that FMRP sumoylation occurs at these 20 

residues (K88, K130, K614) and showed that their mutation into arginine residues (K-to-R 21 

mutation) abolishes the sumoylation of FMRP (Fig. 1h,i). We confirmed these data using 22 

sumoylation assays in mammalian COS7 cells in which the expression of the FMRP-23 

K88,130,614R mutant prevents the sumoylation of FMRP (Fig. 1j). Consistent with the 24 

sumoylation of FMRP in the brain and according to our FMRP-SUMO1 models which were 25 



  7 

computed using crystal structures available for the N-terminal part of FMRP, both lysine 1 

residues (K88 and K130) are clearly exposed and accessible to sumoylation with a Solvent 2 

Accessible Surface Area (ASA) of ~70% and ~45% respectively (Fig. 1k,l). We therefore 3 

conclude that FMRP is a SUMO substrate in vivo and that its sumoylation can occur at its N-4 

terminal K88 and K130 and C-terminal K614 residues. 5 

 6 

FMRP sumoylation participates in dendritic spine regulation 7 

FMRP is essential to proper spine stabilization and maturation3, 4. In FXS patients, the lack of 8 

functional FMRP leads to an immature neuronal morphology with a characteristic excess of 9 

abnormally long and thin filopodia36. Similar morphological defects are also present in Fmr1-/y 10 

mouse brains37. Thus, we hypothesized that FMRP sumoylation could be critical in maintaining 11 

the density and the maturation of dendritic spines. To address this point, we used attenuated 12 

Sindbis particles38, 39, 40 to express either free GFP, the WT GFP-FMRP, the N-terminal 13 

K88,130R, C-terminal K614R or non-sumoylatable K88,130,614R GFP-FMRP mutants in 14 

cultured Fmr1-/y neurons at 17 days in vitro (17 DIV). We then analyzed and compared the 15 

morphology of dendritic spines 24h post-transduction (Fig. 2a,b). In GFP-expressing Fmr1-/y 16 

neurons, ~60% of protrusions showed an immature phenotype (See the Methods section for the 17 

spine characterization; Fig. 2a,b). Conversely, the expression of either FMRP WT or the 18 

K614R GFP-FMRP mutant, which behaves as the WT, promoted spine maturation (Fig. 2a,b). 19 

In stark contrast, expressing either the N-terminal K88,130R or the non-sumoylatable 20 

K88,130,614R GFP-FMRP mutant failed to promote spine maturation (Fig. 2a,b).  21 

 22 

The excess of dendritic protrusions in neurons is a hallmark of FXS6, 7. Interestingly, the 23 

density of the protrusions was considerably decreased upon the expression of the WT or K614R 24 

mutant form of GFP-FMRP (Fig. 2c; GFP control, 7.22 ± 0.16 protrusions/10µm; GFP-FMRP 25 



  8 

WT, 5.34 ± 0.13 protrusions/10µm; GFP-FMRP-K614R, 5.39 ± 0.13 protrusions/10µm) 1 

whereas expressing either the N-terminal K130R, the K88,130R GFP-FMRP mutants or the 2 

non-sumoylatable GFP-FMRP-K88,130,614R did not affect the spine density with measured 3 

values almost identical to control neurons expressing free GFP (Fig. 2c). Furthermore, re-4 

expressing WT GFP-FMRP in Fmr1
-/y neurons not only affected the spine number but also 5 

drastically reduced the mean length of immature spines from ~3.7 µm to less than 2.6 µm (Fig. 6 

2d).  7 

 8 

To individually assess the role of the N-terminal lysine residue, we quantified the 9 

morphological changes occuring in Fmr1-/y neurons expressing GFP-FMRP with a single 10 

mutated lysine residue (K88R or K130R; Supplementary Fig. 2). While the expression of both 11 

mutants promoted spine maturation similarly to GFP-FMRP WT (Supplementary Fig. 2b,d), 12 

the K130R mutant failed to reduce the density of the protrusions (Supplementary Fig. 2c; GFP 13 

control, 7.22 ± 0.16 protrusions/10µm; WT, 5.34 ± 0.13 protrusions/10µm; K130R, 6.48 ± 14 

0.15 protrusions/10µm) indicating that the integrity of the K130 residue is essential to maintain 15 

spine density. Altogether, the data above indicate that the integrity of both N-terminal lysine 16 

residues is critical for the regulation of spine density and maturation since the expression of the 17 

K-to-R mutant forms failed to restore the density and the maturity of dendritic spines in Fmr1
-/y 18 

neurons. Our initial findings therefore support the role of the N-terminal sumoylation of FMRP 19 

in the regulation of spine elimination and maturation events. 20 

 21 

To start assessing the functional effect of FMRP sumoylation, we compared synaptic 22 

transmission by measuring spontaneous miniature Excitatory PostSynaptic Currents (mEPSCs) 23 

in Fmr1
-/y neurons expressing either GFP-FMRP WT or its non-sumoylatable K88,130,614R 24 

mutant (Supplementary Fig. 3). The comparison of cumulative distributions indicated that the 25 
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amplitude of mEPSCs (from 20 to 40 pA) was significantly increased in neurons expressing the 1 

mutant form of GFP-FMRP (Supplementary Fig. 3a,b). Moreover, intervals between mEPSC 2 

events (between 300 ms and 1 s) were slightly but significantly increased upon expression of 3 

GFP-FMRP-K88,130,614R when compared to GFP-FMRP WT indicating that the mEPSC 4 

frequency is decreased in mutant-expressing cells (Supplementary Fig. 3a,c). Data comparing 5 

mEPSC properties in WT and Fmr1
-/y brain slices have been described in the literature with 6 

either a decrease, an increase or no changes in their amplitudes or frequencies, depending on 7 

the brain area recorded, the age of the animals and/or the associated genetic background 41, 42, 43. 8 

To our knowledge, there are no available data on mEPSCs recorded from FMRP WT-9 

expressing Fmr1
-/y cultured hippocampal neurons and the results from Supplementary fig. 3 10 

indicate that restoring the expression of FMRP in Fmr1
-/y neurons leads to changes in basal 11 

synaptic transmission, occurring most probably via both pre- and post-synaptic modifications. 12 

Additional experiments are now needed to precisely define the associated mechanisms and to 13 

address the electrophysiological consequences of FMRP sumoylation in synaptic plasticity in 14 

vivo. 15 

 16 

Preventing FMRP sumoylation alters the size of mRNA granules 17 

Since FMRP is an RNA-binding protein, we also examined whether the mutation of the 18 

sumoylation sites interferes with the RNA-binding capacity of FMRP by performing Cross-19 

Linking and ImmunoPrecipitation (CLIP) assays (Fig. 2e,f). FMRP-CLIPed mRNAs from 20 

Fmr1
-/y neurons expressing either the WT or K88,130,614R forms of GFP-FMRP were 21 

analyzed by qPCR to compare the abundance of some known FMRP target mRNAs (Fig. 2e). 22 

Our data showed that either forms of GFP-FMRP are able to bind target RNAs to similar extent 23 

(Fig. 2f).  24 

 25 



  10 

Since preventing FMRP sumoylation with the K-to-R mutations does not affect the ability of 1 

FMRP to interact with its target RNAs, we hypothesized that FMRP sumoylation is involved in 2 

the transport of mRNAs along dendrites. To this purpose, we first examined the FMRP-3 

containing granules along dendrites. We transfected Fmr1
-/y neurons to express either the WT 4 

or K88,130R form of GFP-FMRP and performed smFISH experiments using Stellaris probes 5 

complementary to three known FMRP mRNA targets: GFP (for GFP-FMRP), PSD-9544 and 6 

CaMKII mRNAs (Fig. 3a-c). Interestingly, the fluorescence of all three probe sets was 7 

detectable in GFP-positive granules from secondary dendrites containing either the WT or 8 

mutant K88,130R form of GFP-FMRP (Fig. 3a-c). Together with the CLIP experiments (Fig. 9 

2e,f), this reveals that both WT and K88,130R GFP-FMRP-containing granules can travel 10 

along dendrites, carrying their mRNA cargoes.  11 

 12 

We further characterized these mRNA granules using colocalisation assays to investigate 13 

whether known components of such granules45, 46 are also present in WT and K88,130R-GFP-14 

FMRP positive granules. As clearly depicted in Fig. 3d-g, both the WT and K88,130R GFP-15 

FMRP granules colocalise with the ribosomal protein S6 (Fig. 3d) and the RNA binding 16 

proteins FXR1 (Fig. 3e), Staufen 1 (Fig. 3f) and Staufen 2 (Fig. 3g), indicating that these 17 

granules contain not only some of the target mRNAs of FMRP (Fig. 3a-c) but also several 18 

described components of such dendritic mRNA granules45, 46. 19 

 20 

We then measured the surface of dendritic GFP-FMRP-positive mRNA granules at different 21 

time points post-transfection (Fig. 3h,i). Interestingly, the expression of the K88,130R GFP-22 

FMRP for 48 hours significantly increased the size of FMRP-containing granules compared to 23 

the WT GFP-FMRP-positive granules (Fig. 3i; WT 48h, 0.236 ± 0.017 µm2; K88,130R 48h, 24 

0.305 ± 0.020 µm2). The difference in granule size between the WT and the K88,130R form of 25 



  11 

GFP-FMRP was further enhanced after 72h of transfection (Fig. 3i; WT 72h, 0.265 ± 0.020 1 

µm2; K88,130R 72h, 0.440 ± 0.030 µm2). All these data reveal that the expression of GFP-2 

FMRP K88,130R results in larger FMRP-containing dendritic mRNA granules suggesting that 3 

FMRP sumoylation could participate in the regulation of FMRP interactions within these 4 

granules.  5 

 6 

FMRP has been reported to form homodimers via its N-terminal 1-134 domain47, where the 7 

sumoylatable K88 and K130 residues are localized. Thus, to assess whether the difference in 8 

granule size measured in figure 3i results from abnormal interaction properties of FMRP 9 

homodimers directly inside dendritic granules, we performed Fluorescence Lifetime Imaging 10 

Microscopy (FLIM) experiments on neurons co-expressing WT or K88,130R GFP-FMRP with 11 

their respective WT or K88,130R mCherry-tagged constructs (Fig. 4; Supplementary Fig. 4). 12 

We observed a clear colocalisation of the mCherry/GFP-FMRP constructs in dendritic granules 13 

confirming the incorporation of the proteins into granules (Fig. 4a,b). The energy transfer 14 

known as Fluorescence Resonance Energy Transfer (FRET) from donor GFP towards the 15 

acceptor mCherry is quantified by the reduction of the donor fluorescence lifetime (Fig. 4c). 16 

We measured a significant reduction of the donor GFP-FMRP fluorescence lifetime in presence 17 

of mCherry-FMRP indicating that FMRP/FMRP interaction occurs in dendritic granules. 18 

Interestingly, we also found that this homomeric interaction is not affected by the K88,130R 19 

mutations (Fig. 4c). 20 

 21 

Sumoylation triggers FMRP dissociation from mRNA granules 22 

Our results so far indicate that preventing FMRP sumoylation directly impacts on the 23 

morphology of mRNA granules in dendrites (Fig. 3h,i) without altering the intrinsic 24 

FMRP/FMRP interacting properties within the granules (Fig. 4). Therefore, we investigated 25 
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whether the absence of FMRP sumoylation affects the dissociation of FMRP from dendritic 1 

granules. To assess the diffusion properties of FMRP in dendritic granules, we performed live-2 

time restricted photoconversion experiments48 in Fmr1
-/y neurons expressing the 3 

photoswitchable WT or K88,130R Dendra2-FMRP constructs (Fig. 5a,b). Dendra2 is a green-4 

to-red photoactivatable fluorescent protein that allows the real-time tracking of a 5 

photoconverted protein49, 50. We measured and compared the half-times of the decrease in red 6 

photoconverted fluorescence, which corresponds to the real time diffusion of WT and 7 

K88,130R Dendra2-FMRP out of dendritic granules (Fig. 5b-d). In basal conditions, the mean 8 

half-time of Dendra2-FMRP WT fluorescence dissociation from dendritic granules was 9 

significantly shorter than the value measured for the Dendra2-FMRP K88,130R mutant (Fig. 10 

5d; Half time WT = 101.8 ± 4.5s vs Half time K88,130R = 165.3 ± 12.1s) indicating that the 11 

dissociation of WT FMRP from the granules is much faster than for the K88,130R mutant. 12 

These data strongly support the involvement of FMRP sumoylation in controlling the 13 

dissociation of the protein from dendritic mRNA granules. 14 

 15 

Activation of mGlu5R regulates FMRP-mediated mRNA transport51, 52 and also modulates its 16 

phosphorylation and ubiquitination13, 14. Interestingly, we previously showed that activation of 17 

these receptors also evokes sumoylation in cultured neurons26. This prompted us to assess 18 

whether the application of the mGluR agonist DHPG triggers FMRP sumoylation in neurons 19 

(Fig. 5e). We first confirmed that the activation of mGlu5R with DHPG is effective in our 20 

neuronal cultures and evokes an intracellular Calcium increase (Supplementary Fig. 5). Then, 21 

FMRP-immunoprecipitates were probed with specific anti-SUMO1 antibodies and revealed 22 

that sumoylation of FMRP is low in basal unstimulated conditions but rapidly increases after 1 23 

and 5 min of DHPG treatment (DHPG 1 min, 1.28 ±0.12 fold/control; DHPG 5 min, 1.73 ± 0.2 24 



  13 

fold/control; Fig. 5e) indicating that FMRP sumoylation is rapidly triggered by the mGlu5R 1 

activation. 2 

 3 

These results led us to hypothesize that the activity-dependent sumoylation of FMRP controls 4 

FMRP dissociation from dendritic mRNA granules. To address this point, we 5 

pharmacologically stimulated mGlu5R in Fmr1
-/y neurons expressing either Dendra2-FMRP 6 

WT or K88,130R and measured the dissociation properties of FMRP from dendritic granules 7 

using the photoconversion assay (Fig. 5f,g). Interestingly, mGlu5R stimulation enhanced the 8 

exit rate of the red photoconverted Dendra2-FMRP WT fluorescence from granules by ~40% 9 

(Fig. 5f). By contrast, mGlu5R activation had no effect on the dissociation of Dendra2-FMRP-10 

K88,130R positive granules (Fig. 5g). These findings strongly support that the mGlu5R-11 

dependent sumoylation of FMRP regulates the dissociation of FMRP from dendritic mRNA 12 

granules. 13 

 14 

Sumoylation regulates homomeric FMRP-FMRP interaction 15 

Our data demonstrate that FMRP sumoylation controls FMRP release from dendritic granules. 16 

To further assess the role of sumoylation in the regulation of FMRP-FMRP interaction, we 17 

combined pull-down assays with in vitro SUMO reactions and analyzed the impact of 18 

sumoylation on the dissociation of FMRP homomers (Fig. 6).  19 

 20 

We purified GST- and His-tagged FMRP (1-160aa) fusion proteins and found that GST-21 

FMRP(1-160) specifically interacts with His-FMRP(1-160aa) and forms N-terminal FMRP 22 

homodimers in vitro (Fig. 6a). We then performed an in vitro sumoylation assay31 on purified 23 

FMRP(1-160aa) dimers to assess whether sumoylation promotes their dissociation (Fig. 6b-d). 24 

First, we verified that the immobilization of GST-FMRP(1-160aa) on the glutathione matrix 25 



  14 

did not prevent the in vitro sumoylation of the protein (Fig. 6c). Incubation of immobilized 1 

GST-FMRP(1-160aa) with the sumoylation reaction mix gave rise to higher molecular weight 2 

bands corresponding to the sumoylated forms of GST-FMRP(1-160aa). These bands were 3 

absent in control conditions (Fig. 6c).  4 

 5 

Next, we performed in vitro sumoylation assays on immobilized GST-FMRP – His-FMRP 6 

dimers (Fig. 6d). The pool of His-FMRP(1-160aa) released by sumoylation was separated from 7 

the remaining immobilized dimers by centrifugation of the glutathion beads. Proteins either in 8 

the supernatant or bound to the beads were both analyzed by immunoblotting with anti-FMRP 9 

antibodies. As seen in Fig. 6d, the release of His-FMRP(1-160aa) from the immobilized dimers 10 

was only promoted upon sumoylation with the concurrent decrease of the remaining His-11 

FMRP(1-160aa) in the pelleted FMRP fraction. This particular set of data demonstrates that 12 

sumoylation promotes the dissociation of FMRP-FMRP dimers.  13 

 14 

SUMO-deficient FMRP-expressing WT neurons show FXS phenotype 15 

Collectively, our data clearly demonstrate that sumoylation of the N-terminal part of FMRP is 16 

essential to allow for the dissociation of the protein from dendritic mRNA granules and to 17 

promote spine elimination and maturation. To confirm the key involvement of FMRP 18 

sumoylation in neuronal maturation events, we hypothesized that the expression of the non-19 

sumoylatable FMRP mutant could reverse the spine density and maturation of WT neurons. 20 

Thus, we expressed either the WT or the K88,130R mutant form of GFP-FMRP into WT 21 

mouse neurons (Fig. 7). WT neurons expressing GFP-FMRP-K88,130R resembled the GFP-22 

expressing Fmr1
-/y neurons (Fig. 2) with more than 67% of protrusions characterized by an 23 

immature phenotype (Fig. 7a,b). Similarly, the length of dendritic spines in WT neurons 24 



  15 

expressing GFP-FMRP-K88,130R was also significantly increased (Fig. 7c; K88,130R, 3.77 ± 1 

0.08 µm) comparable to the values measured in Fmr1
-/y

 neurons (Fig. 2d). 2 

 3 

Importantly, the density of dendritic spines was dramatically increased upon the expression of 4 

the K88,130R mutant (Fig. 7a,d; GFP control, 5.03 ± 0.17 protrusions/10µm; K88,130R, 6.33 5 

± 0.24 protrusions/10µm), comparable to the values obtained in Fmr1
-/y neurons (Fig. 2c). 6 

Interestingly, the expression of the single K130R mutant in WT mouse neurons also leads to a 7 

significant increase in the density of the protrusions (Fig. 7a,d; GFP control, 5.03 ± 8 

0.17 protrusions/10µm; K130R, 6.29 ± 0.41 protrusions/10µm) without altering the maturity of 9 

dendritic spines (Fig. 7b,c). As expected, expressing the WT form of GFP-FMRP in WT 10 

neurons did not affect any of the spine characteristics confirming the essential role of FMRP 11 

sumoylation in spine elimination and maturation processes.  12 

 13 

Discussion 14 

Here, we report for the first time that FMRP is a sumoylation target in vivo. We identify three 15 

sumoylatable residues, two of which lay within the N-terminal domain of FMRP and are the 16 

active SUMO sites. We further find that the activation of metabotropic mGlu5R promotes the 17 

sumoylation of FMRP and rapidly leads to the dissociation of FMRP from dendritic mRNA 18 

granules allowing for the regulation of spine elimination and maturation (Fig. 7). Thus, our 19 

work uncovers a novel activity-dependent role of sumoylation in the regulation of FMRP 20 

neuronal function.  21 

 22 

We provide the first evidence that FMRP sumoylation is required for spine elimination and 23 

proper maturation. The initial step of spine formation is the emergence of immature long thin 24 

protrusions, which are later on eliminated or matured with enlargement of spine head8. A tight 25 



  16 

balance between these processes is thus required for the development of a functional neuronal 1 

network. This is in line with our data showing a decrease in the density of protrusions when 2 

expressing FMRP in Fmr1
-/y neurons, and an increased density in WT neurons expressing the 3 

SUMO-deficient form of FMRP. Such compensatory and deleterious effects support the idea 4 

that immature spines are overproduced and/or less efficiently eliminated when FMRP 5 

sumoylation is perturbed. 6 

 7 

In correlation with our findings, the role of sumoylation at the post-synaptic compartment has 8 

already been described for several proteins19. For instance, sumoylation of the scaffolding 9 

calcium/calmodulin-dependent serine protein kinase (CASK) reduces CASK interaction with 10 

protein 4.1, a protein that connects spectrin to the actin cytoskeleton in dendritic spines. 11 

Mimicking CASK sumoylation dramatically impairs spine formation53. According to the 12 

importance of sumoylation in the post-synaptic formation and maturation, our findings 13 

demonstrate a role of sumoylation in spine elimination and maturation by tuning FMRP 14 

dimerization within dendritic mRNA granules. Altogether, these data shed light on the role of 15 

sumoylation as a critical molecular regulator in neuronal development and maturation.   16 

 17 

Interestingly, we demonstrate that the sumoylation of FMRP is triggered upon mGlu5R 18 

activation. mGlu5R has been previously reported to differentially regulate FMRP function 19 

depending on its subcellular localization. For instance, a direct involvement of FMRP was 20 

shown in targeting and transport of several mRNAs from the soma along dendrites upon 21 

mGlu5R activation52. Furthermore, the repression of mRNA translation exerted by FMRP in 22 

dendrites is counteracted by the activation of mGlu5R51. Here, we unravel a novel activity-23 

dependent regulation of the FMRP function. We show that mGlu5R-induced sumoylation of 24 



  17 

FMRP drives its own dissociation from dendritic mRNA granules to regulate both spine 1 

elimination and maturation. 2 

 3 

It has been previously described that FMRP is a target of mGluR-dependent post-translational 4 

modifications11, 13, 14, 54, 55. Activation of mGluRs in neurons induces a rapid dephosphorylation 5 

of FMRP C-terminal region as a result of an enhanced protein phosphatase 2A (PP2A) 6 

activity11. Conversely, mGluR activation that lasts longer than 5 minutes results in an mTOR-7 

mediated PP2A suppression followed by rapid rephosphorylation of FMRP C-terminus by the 8 

ribosomal protein S6 kinase (S6K1)11, 55. Accordingly to the role of phosphorylation in 9 

controlling FMRP function, the lack of S6K1-dependent FMRP phosphorylation mimics FMRP 10 

loss-of-function and leads to an increased expression of the FMRP target mRNA SAPAP355. In 11 

addition, Nalavadi and colleagues described a rapid ubiquitination of the C-terminal part of 12 

FMRP upon stimulation with the mGlu5R agonist DHPG in rat cultured neurons14. FMRP 13 

ubiquitination promotes a proteasome-mediated FMRP degradation, which in turn controls 14 

FMRP levels at the synapse. Interestingly, these authors showed that FMRP ubiquitination 15 

requires a prior FMRP-dephosphorylation carried by PP2A. Taken together, these pieces of 16 

evidence suggest a crosstalk between various post-translational modifications in the regulation 17 

of FMRP function. Here, we demonstrate that mGlu5R activation triggers a rapid sumoylation 18 

of FMRP. This event promotes the release of FMRP from transport mRNA granules. Thus, the 19 

present study adds another level of complexity to the post-translational regulation of FMRP and 20 

advances our understanding of the activity-dependent control of FMRP function in neurons. It 21 

will therefore be of future interest to examine whether the interplay between these post-22 

translational modifications could take place to orchestrate the mGlu5R-dependent regulation of 23 

FMRP. 24 

 25 



  18 

The present study shows that the activation of mGlu5R directly promotes FMRP sumoylation, 1 

regulating its neuronal function in spine elimination and maturation. Our work therefore raises 2 

the intriguing possibility that the impairment of FMRP sumoylation could contribute to FXS 3 

physiopathology. Recent publications have reported missense point mutations within the FMR1 4 

gene in patients affected by FXS. Importantly, these mutations lead to amino-acid changes 5 

close to the SUMO active sites of FMRP (F126S56, R138Q57). Similarly to our data on the 6 

K88,130R FMRP mutant, the FXS R138Q mutation does not modify the expression of FMRP 7 

nor its RNA-binding properties, indicating that the pathogenicity is caused independently of the 8 

FMRP expression level and the ability of FMRP to bind mRNAs58. To date, no data have been 9 

reported regarding the functional impairment due to the F126S mutation. Our data report that 10 

the reintroduction of the FMRP WT but not the K88,130R mutant in Fmr1
-/y neurons promotes 11 

spine maturation and elimination demonstrating that FMRP sumoylation is critical for these 12 

processes. Therefore, an interesting possible explanation could be that the F126S and R138Q 13 

FXS mutations, which are very close to the active K130-SUMO site, would directly impact on 14 

the mGlu5R-dependent regulation of FMRP sumoylation and consequently, on post-synaptic 15 

FMRP-driven regulatory events. Future work will have to be performed aiming at 16 

understanding the effect of these FXS mutations on FMRP sumoylation. These next exciting 17 

steps will allow assessing whether FMRP sumoylation defects participate in the 18 

pathophysiology of FXS patients, raising the possibility to identify new targets and potentially 19 

develop novel therapeutic approaches. 20 

21 
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Methods 1 

Constructs 2 

 GFP-FMRP was obtained by subcloning the isoform 1 of the human FMR1 sequence into the 3 

EcoR1/Pst1 site of the mammalian expression vector pEGFP-C2 (Clontech). GFP-/Dendra2-4 

/GST-/His-FMRP mutant constructs were all made by site-directed mutagenesis using the 5 

Quick-change mutagenesis solution (Agilent). pSinRep5 constructs used to produce Sindbis 6 

particles were generated using the Gateway recombination technology (Invitrogen). All 7 

constructs were then entirely sequenced. 8 

 9 

Building model for FMRP-SUMO1 10 

 Three X-ray structures of human FMRP are available in Protein Data Bank (PDB, 11 

http://www.rcsb.org; PDB ID: 4OVA residues 1-209 at 3.0Å resolution59, 4QVZ residues 1-12 

213 at 3.2Å resolution and 4QW2 residues 1-213 with the mutation R138Q at 3.0Å 13 

resolution60. The Solvent Accessible Surface Area (ASA) values for each residue have been 14 

calculated using Naccess tool61 on all monomers of each PDB files (4 for 4OVA, 2 for 4QVZ 15 

and 2 for 4QW2). We calculated the average values for K88 and K130 for each structure. The 16 

classical parameters used are 1.4 for the radius of the "solvent" sphere and 25% for the 17 

threshold that determines if a residue is considered as buried or exposed. We utilized the X-ray 18 

structures of human FMRP PDB ID: 4OVA residues 1-209 at 3.0Å resolution59 and of human 19 

SUMO1 PDB ID: 4WJQ at 1.35Å resolution62. To build models of FMRP modified with the 20 

SUMO1 protein, we first verified the shape compatibility and then used the Pymol software to 21 

manipulate the structures, make and visualize the FMRP-SUMO1 models.  22 

 23 

Mouse lines and rat strain 24 
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All animals (3 to 10 month-old pregnant female Wistar rats from Janvier, St Berthevin, France; 1 

3 to 10 month-old female C57BL/6 WT and Fmr1 knockout (Fmr1
-/y

) mice10) were handled in 2 

our facility in accordance with the European Council Guidelines for the Care and Use of 3 

Laboratory animals and approved by the Animal Care and Ethics Committee (Comité 4 

Institutionnel d’Ethique Pour l’Animal de Laboratoire N°28, Nice, France; Project reference 5 

NCE/2012-63). All animals had free access to water and food. The light cycle was controlled as 6 

12h light and dark cycle and the temperature was maintained at 23 ± 1°C. Protocols to prepare 7 

primary neuronal cultures from mouse embryos at E15.5 or at E18 for rats were also approved 8 

by the Animal Care and Ethics Committee (Comité Institutionnel d’Ethique Pour l’Animal de 9 

Laboratoire N°28, Nice, France; Project reference NCE/2012-63). All mice were maintained 10 

on a C57BL/6 genetic background whereas Wistar rats were exclusively from a commercial 11 

source (Janvier, St Berthevin, France). The Fmr1 knockout (Fmr1
-/y) mouse line10 was 12 

maintained on a C57BL/6 background. 13 

 14 

Mouse and rat brain lysate preparation 15 

Brain lysates were prepared as previously described26 from post-natal P1-3 mouse or P5-7 rat 16 

brains. Briefly, freshly dissected brains were transfered in 5 volumes (w/v) of ice-cold sucrose 17 

buffer (10 mM Tris-HCl pH 7.4, 0.32 M sucrose) supplemented with a protease inhibitor 18 

cocktail (Sigma, 1/100), Pefabloc 0.5 mM (Roche), MG132 100 µM (Enzo), ALLN 100 µM 19 

(Sigma) and 20 mM freshly prepared NEM (Sigma) and homogenized at 4°C using a Teflon-20 

glass potter and a motor-driven pestle at 500 rpm. Nuclear fraction and cell debris were pelleted 21 

by centrifugation at 1,000g for 10 min. The post-nuclear S1 fraction (supernatant) was 22 

collected and protein concentration measured using the BCA protein assay (Biorad). 23 

 24 

Primary neuronal cultures 25 
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Hippocampal and cortical neurons were prepared from embryonic (E18) pregnant Wistar rats as 1 

previously described26 or from WT or Fmr1
-/y E15.5 pregnant C57BL/6 mice. Briefly, neurons 2 

were plated in Neurobasal medium (Invitrogen, France) supplemented with 2% B27 3 

(Invitrogen), 0.5 mM glutamine and penicillin/streptomycin (Ozyme) on 60-mm dishes or 24-4 

mm glass coverslips (VWR) pre-coated with poly-L-Lysine (0.5 mg mL-1; Sigma). Neurons 5 

(800,000 cells per 60-mm dish or 110,000 cells per coverslip) were then fed once a week with 6 

Neurobasal medium supplemented with 2% B27 and penicillin/streptomycin for a maximum of 7 

3 weeks.  8 

 9 

Cell transfection 10 

COS7 cells and primary neurons (14-16 DIV) were transfected using Lipofectamine 2000 11 

(Invitrogen) according to the manufacturer’s instructions and used 48-72h post-transfection.  12 

 13 

Sindbis virus production and neuronal transduction 14 

Attenuated Sindbis viral particles (SINrep(nsP2S726)) were prepared and used as previously 15 

described38, 39, 40. Briefly, cRNAs were generated from the pSinRep5 plasmid containing the 16 

sequence coding for WT or mutated GFP-FMRP constructs and from the defective helper 17 

(pDH-BB) plasmid using the Mmessage Mmachine SP6 solution (Ambion). cRNAs were then 18 

mixed and electroporated into BHK21 cells. Pseudovirions present in the culture medium were 19 

harvested 48h after electroporation and concentrated using ultracentrifugation on SW41Ti. 20 

Aliquots of resuspended Sindbis particles were then stored at -80°C until use. Neurons were 21 

transduced at a multiplicity of infection (MOI) of 0.1 to 2 and returned to the incubator at 37°C 22 

under 5% CO2 for 24 to 30h depending on their subsequent utilisation. 23 

 24 

Bacterial sumoylation assay in E. coli 25 
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Bacterial sumoylation assays were performed as previously described31, 35. Briefly, competent 1 

E. coli BL21(DE3) cells (Invitrogen, France) expressing pE1-E2SUMO1 were transformed 2 

with 1 µg of pET-expression plasmid (Novagen) to express the WT or non-sumoylatable forms 3 

of His-tagged FMRP were selected on LB-Agar plates containing chloramphenicol (50 µg mL-
4 

1) and ampicillin (50 µg mL-1). A 10 ml preculture was then used to inoculate 50 ml of LB 5 

containing chloramphenicol and ampicillin. After incubation under shaking at 37°C until 6 

OD600 reaches 0.7, cells were cooled down to 20°C and isopropyl-β-D-thiogalactopyranoside 7 

(IPTG) was added at a concentration of 1 mM. After 4 h at 20°C, bacteria were pelleted by 8 

centrifugation at 4°C at 7,000g and kept at -80°C until use. Pellets were resuspended in 1 ml 9 

lysis buffer (25 mM Tris pH 8, 300 mM KCl, 1 mM EDTA, 20% glycerol, 5% ethanol, 0.5% 10 

NP40, 0.5M Urea, 1 mM DTT) supplemented with proteases inhibitors (Leupeptine 1 µg mL-1, 11 

Pepstatine 1 µg mL-1, Aprotinine 1 µg mL-1, Pefabloc 0.5 mM and freshly prepared NEM 20 12 

mM) and incubated under rotation for 30 min at 4°C in the presence of 5 mg mL-1 Lysozyme. 13 

Bacterial cytoplasmic membranes were then solubilised by addition of 1 mg mL-1 sodium 14 

deoxycholate and released DNA digested by incubation with 50 µg mL-1 of DNAse I and 10 15 

mM MgCl2 for 30 min at 4°C. Cellular debris were pelleted by centrifugation at 20,000 g for 15 16 

min at 4°C and supernatants were incubated with 40 µl of nickel agarose beads (Qiagen) for 2h 17 

at 4°C under gentle rotation. After three washes (25 mM Tris pH8, 50 mM KCl, 1 mM EDTA, 18 

20% glycerol, 0.1% Triton X100, 0.5 M Urea, 1 mM DTT), purified proteins were eluted in 19 

200 µl of βME-reducing sample buffer for 5 min at 95°C. 20 

 21 

COS7 sumoylation assay 22 

 Mycoplasm-free COS7 cells (ATCC reference CRL-1651, Molsheim, France) at 60% of 23 

confluence in 6 wells plates were cotransfected using 1 µg of the eukaryotic expression vector 24 

pTL1-FMRP plasmid63 or its derived non-sumoylatable mutants with 0.5 µg of mCherry or 25 
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mCherry-SUMO1 plasmids26 and 0.5 µg of plasmid coding for Flag-Ubc9 using Lipofectamine 1 

2000 (Invitrogen) according to the manufacturer’s instructions. After 48h of expression, cells 2 

were washed once in PBS containing 20 mM NEM and reduced for 5 min at 95°C in βME-3 

containing sample buffer. 4 

 5 

CLIP analysis 6 

To isolate neuronal mRNAs associated with WT and SUMO-deficient GFP-FMRP mutant, 7 

UV-crosslinking and FMRP immunoprecipitations were performed on 20 DIV Fmr1
-/y neurons 8 

transduced (MOI of 3) at day 19 to express free GFP, the WT or the non-sumoylatable 9 

K88,130,614R form of GFP-FMRP. RNAs and proteins were cross-linked through 3 rounds of 10 

UV irradiation (400 mJ each; 254 nm). Cells were then scraped in ice cold PBS, collected by 11 

centrifugation and lysed in NP40 buffer as described in ref64. For each assay, 5 µg of affinity-12 

purified rabbit anti-FMRP antibody (Ab#056) was used to immunoprecipitate 1 mg of neuronal 13 

extracts and 2% of the lysate was used for assessment of relative RNA expression in the input 14 

material. IPs were then carried out at 4°C for 4h and 2% of the homogenate and 10% of the 15 

immunoprecipitates were saved to check for the IP quality using anti-FMRP immunoblots. 16 

After 3 washes in lysis buffer (50 mM HEPES pH7.4, 150 mM NaCl, 0.5% NP40, 10 mM 17 

EDTA, 1 mM NaF, 0.5 mM DTT, protease and phosphatase inhibitors (Pierce), proteins were 18 

digested with proteinase K (1 µg mL-1) for 30 min at 56°C. IP and input RNAs were purified 19 

through two successive rounds of phenol / chloroform extraction, then reverse transcribed using 20 

a mix of Oligo dT and random primers and Superscript II enzyme (Invitrogen) according to the 21 

manufacturer’s protocol. RT reactions were diluted two times and 1 µl of diluted material was 22 

used for qPCR analysis. Relative enrichment of the amplified RNA in the IP versus the input in 23 

each condition was calculated with the 2-deltaCt (Ct IP-Ct input).  24 

 25 
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Oligonucleotides (5’ to 3’) used in RNA work were as follows:  1 

Fmr1_F:GAACAAAAGACAGCATCGCT; Fmr1_R:CCAATTTGTCGCAACTGCTC; 2 

Camk2a_F:TATCCGCATCACTCAGTAC; Camk2a_R:GAAGTGGACGATCTGCCATTT; 3 

Sapap3_F:ACCATGTAACCCCGGCTG; Sapap3_R:CCTTGATGTCAGGATCCCC; 4 

Fxr1_F: GTGCAGGGTCCCGAGGT; Fxr1_R:GGTGGTGGTAATCGGACTTC; 5 

Kif3c_F: GGTCCCATCCCAGATACAGA; Kif3c_R: CCAGAAAGCTGTCAAACCTC; 6 

Tubb3_F: CGAGACCTACTGCATCGACA; Tubb3_R: CATTGAGCTGACCAGGGAAT; 7 

PP2a_F:GTCAAGAGCCTCTGCGAGAA; PP2a_R:GCCCATGTACATCTCCACAC;  8 

β-actin_F: ACGGCCAGGTCATCACTATTG; β-actin_R: CACAGGATTCCATACCCAAGA 9 

PSD95_F:GGCGGAGAGGAACTTGTCC; PSD95_R:AGAATTGGCCTTGAGGGAGGA; 10 

Map1b_F:TCCGATCGTGGGACACAAACCTG; Map1b_R:AGCACCAGCAGTTTATGGCGGG 11 

 12 

Immunoprecipitation 13 

Proteins from rodent brain lysates or cultured neurons were solubilized for 1h at 4°C under 14 

gentle rotation in lysis buffer (10 mM Tris-HCl pH7.5, 10 mM EDTA, 150 mM NaCl, 1% 15 

Triton X100, 0.1% SDS) supplemented with a protease inhibitor cocktail (Sigma, 1/100), 16 

Pefabloc 0.5 mM (Roche), MG132 100 µM (Enzo), ALLN 100 µM (Sigma) and 20 mM 17 

freshly prepared NEM (Sigma). Then, NaCl concentration was raised to 400 mM and lysates 18 

were sonicated for 10 sec, further incubated for 30 min at 4°C and clarified (for primary 19 

neuronal extracts) or not (for brain homogenates) at 20,000g at 4°C for 15 min. Supernatants 20 

were diluted 2.5 fold with lysis buffer devoid of NaCl and pre-cleared for 1h with a 50/50 mix 21 

of untreated and preblocked protein G-sepharose beads (Sigma) with a blocking buffer (PBS 22 

containing 5 mg mL-1 BSA, 5 mg mL-1 Dextran (40 kDa), 1 mg mL-1 Gelatin, Yeast t-RNA 0.1 23 

mg mL-1 and Glycogen 0.1 mg mL-1) for 1h at 4°C. Proteins (800 µg) from precleared lysates 24 

were incubated with either 8 µg of mouse monoclonal anti-SUMO1 antibody (Ab#D11, Santa 25 
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Cruz), 4 µg of custom rabbit anti-FMRP (Ab#056, Supplementary Fig. 1) or 12 µg 1 

commercially available rabbit anti-FMRP (#Ab17722, Abcam; Supplementary Fig. 1) 2 

antibodies (or their corresponding IgGs as IP control) for 1h at 4°C and then overnight at 4°C 3 

with 30 µl of pre-blocked protein G-sepharose beads (Sigma). Precipitates were washed 3 times 4 

with 1 ml lysis buffer and proteins were eluted by boiling the beads 5 min in βME-reducing 5 

sample buffer before SDS-PAGE.  6 

 7 

Immunoblotting 8 

Protein extracts were resolved by SDS-PAGE, transferred onto nitrocellulose membrane 9 

(Hybond-C Extra, Amersham or BioTraceNT, PALL), immunoblotted with the indicated 10 

concentration of primary antibodies and revealed using the appropriate HRP conjugated 11 

secondary antibodies (GE healthcare) or True Blot (Rockland, Tebu-Bio). Proteins were then 12 

identified using Immobilon Western (Millipore) or Western Lightning Ultra (Perkin Helmer) 13 

chemiluminescent solutions and images acquired on a Fusion FX7 system (Vilber Lourmat). 14 

Full-size blots for cropped gels can be found in Supplementary figures 6,7. 15 

 16 

Immunocytochemistry 17 

Neurons (18-21 DIV) were fixed in phosphate-buffered saline (PBS) containing 3.7% 18 

formaldehyde and 5% sucrose for 1h at room temperature (RT). Neurons were then 19 

permeabilized for 20 min in PBS containing 0.1% Triton X-100 and 10% Horse serum at RT 20 

and immunostained with either a rabbit monoclonal anti-S6 (1/200; Cell Signaling), a goat anti-21 

Staufen1 (1/100; Santa-Cruz), a goat anti-Staufen2 (1/100; Santa-Cruz), a rabbit anti-FXR1 22 

(1/10065), a mouse monoclonal anti-Ubc9 (1/50; BD Bioscience, France), a mouse anti-SUMO1 23 

(1/50; Ab#D11, Santa-Cruz; 1/50 Ab#2F5-1, DSHB) or rabbit anti-FMRP (1/200; Custom 24 

Ab#056 or 1/50; Ab#4317S, Cell Signaling) antibodies in PBS containing 0.05% Triton X-100 25 
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and 5%HS. Cells were washed 3 times in PBS and incubated with the appropriate secondary 1 

antibodies (1/400) conjugated to Alexa488 or Alexa594, and mounted with Mowiol (Sigma) 2 

until confocal examination.  3 

 4 

Ratiometric calcium imaging 5 

Mouse cortical/hippocampal neurons (19-23 DIV) were loaded in neurobasal containing 20 µM 6 

Fura-2AM (Invitrogen) for 30 min. After 2 washes in physiological 1.6 mM Calcium-7 

containing buffer (139 mM NaCl, 1.25 mM glucose, 15 mM Na2HPO4, 1.8 mM MgSO4, 1.6 8 

mM CaCl2, 3 mM KCl, 10 mM HEPES), Fura-2AM-loaded neurons were imaged at 37°C on 9 

an inverted AxioObserver microscope (Carl Zeiss) equipped with a 300W Xenon lamp (Suttler 10 

instruments) and a Fluar 40x (NA 1.4) oil immersion objective. Fura-2AM was sequentially 11 

excited at 340 and 380 nm and the emission monitored at 510 nm. Images were acquired with a 12 

cascade 512 EMCCD camera every 2s and digitized using Metafluor software (Roper 13 

scientific). The intracellular calcium concentration was estimated by measuring the 14 

F340/380nm ratio of fluorescence. Neurons were treated for 40s with 100 µM DHPG in 1.6 15 

mM Calcium-containing buffer. 16 

 17 

GFP-FMRP-associated granules analysis 18 

Fmr1
-/y neurons were cotransfected to express mCherry with the WT or the non-sumoylatable 19 

mutant form of GFP-FMRP either for 48h or 72h. Cells were then rinse twice in PBS and fixed 20 

in PBS containing 3.7% formaldehyde and 5% sucrose for 1h at RT and mounted with Mowiol 21 

until use.  22 

 23 

smFISH assays. smFISH assays were performed as described previously in ref44. Briefly, 24 

Fmr1
-/y neurons grown on glass-coverslips were transfected as above at 12 DIV to express the 25 
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WT or the K88,130R mutant form of GFP-FMRP for 48-60h. Cells were then fixed in PBS 1 

containing 4% formaldehyde for 10 min at RT. smFISH assays were performed as described 2 

previously in44
 with the following modified prehybridization buffer: Formamide 10%, NaCl 3 

68.5 mM, KCl 1.35 mM, KH2PO4 1 mM, Na2HPO4 5 mM, SSC 2X (Euromedex), Dextran 4 

sulfate 10% (Sigma), Ribonucleoside Vanadyl complexes 10 mM (Sigma), BSA 2 mg mL-1, 5 

Salmon sperm DNA 0.67 mg mL-1 (Sigma), yeast tRNA 0.67 mg mL-1 (Sigma). Neurons were 6 

incubated overnight at 37°C in the presence of GFP Quasar 570-labelled, PSD-95 or CamKII 7 

Quasar 670-labelled Stellaris probes (12.5 picomoles in 100 µl of prehybridization buffer), 8 

washed 2 times with pre-warmed 10% Formamide in 2X SSC for 20 min at 37°C, three times 1 9 

min with 2X SSC and twice for 5 min with 2X SSC under mild agitation prior to coverslip 10 

mounting in Vectashield (Clinisciences). 11 

 12 

GFP Stellaris probes (used to detect GFP-FMRP mRNA) labeled with Quasar 570 dye were (5’ 13 

to 3’) as follows: tcctcgcccttgctcaccat, atgggcaccaccccggtgaa, gtcgccgtccagctcgacca, 14 

cgctgaacttgtggccgttt, tcgccctcgccctcgccgga, ggtcagcttgccgtaggtgg, cggtggtgcagatgaacttc, 15 

ggccagggcacgggcagctt, taggtcagggtggtcacgag, tagcggctgaagcactgcac, gtgctgcttcatgtggtcgg, 16 

gcatggcggacttgaagaag, cgctcctggacgtagccttc, gtcgtccttgaagaagatgg, tcggcgcgggtcttgtagtt, 17 

ggtgtcgccctcgaacttca, ttcagctcgatgcggttcac, gtcctccttgaagtcgatgc, agcttgtgccccaggatgtt, 18 

gtggctgttgtagttgtact, ttgtcggccatgatatagac, caccttgatgccgttcttct, atgttgtggcggatcttgaa, 19 

gagctgcacgctgccgtcct, tgttctgctggtagtggtcg, agcacggggccgtcgccgat, caggtagtggttgtcgggca, 20 

ttgctcagggcggactgggt, atcgcgcttctcgttggggt, cgaactccagcaggaccatg, agagtgatcccggcggcggt, 21 

cttgtacagctcgtccatgc 22 

 23 

PSD-95 Stellaris probes, labeled with Quasar 670 dye were (5’ to 3’) as follows: 24 

ctctatgatcttctcagctg, taggccctttgataagcttg, tgcgatgctgaagccaagtc, ctattatctccagggatgtg, 25 

ccttcgatgatcttggttac, aggatcttgtctccgatctg, tcatgcatgacatcctctag, atatgtgttcttcagggctg, 26 

ccacctttaggtacacaacg, catagctgtcactcaggtag, tatgaggttgtgatgtctgg, tagctgctatgactgatctc, 27 

tcaacaccattgaccgacag, tgttcatgactggcattgcg, tactgagcgatgatcgtgac, cgaatcggctatactcttct, 28 

ataagctgttcccgaagatc, tgatatagaagccccgcttg, ttgtcgtagtcaaacagggc, tcaagaaaccgcagtccttg, 29 

gctggcgtcaattacatgaa, catcggtctcactgtcagag, tttgctgggaatgaagccaa, tctcatagctcagaaccgag, 30 

aaggatgatgatggggcgag, agaagatcatcgttggcacg, aaacttgtcggggaactcgg, tcgtatgagggacacaggat, 31 

tatctcatattcccgcttag, cgggaggagacaaagtggta, tgaatgtccttctccatttt, cagcctcaatgaacttgtgc, 32 

tagaggtggctgttgtactg, gcattggctgagacatcaag, ggatgaagatggcgataggg, cgcttattgatctctagcac, 33 

agatctcttcaaagctgtcg, cttcgatgacacgtttcact 34 

 35 

CaMKII Stellaris probes, labeled with Quasar 670 dye were (5’ to 3’) as follows: 36 
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tactcttctgtgaatcgggt, taatcttggcagcatactcc, cttcaacaagcggcagatgc, tcatggagtcggacgatatt, 1 

accagtaaccagatcgaaga, gccacaatgtcttcaaacag, ggcatcagcttcactgtaat, tccaagatctgctggataca, 2 

catctggtgacagtgtagca, ttcacagcagcgcccttgag, tatccaggtgtccctgcgaa, cttcctcagcacttctgggg, 3 

aggtccacgggcttcccgta, agatatacaggatgacgcca, ctggtcttcatcccagaacg, ctttgatctgctggtacagg, 4 

gatgggaaatcataggcacc, ggtgacggtgtcccattctg, tgatcagatccttggcttct, gggttgatggtcagcatctt, 5 

tcagcggccgtgatgcgttt, agatccatgggtgcttgaga, tctcctgtctgtgcatgcag, ctccggagaagttcctggtg, 6 

gtgctctcagaagattcctt, tcttcgtcctcaatggtggt, ttcctgtttgcgcactttgg, gctgctctgtcactttgata, 7 

ccattgcttatggcttcgat, cttcgtgtaggactcaaagt, ctgtcattccagggtcgcac, cccagggcctctggttcaaa, 8 

gaatcgatgaaagtccaggc, gggaccacaggttttcaaaa, tgactcgtcacccatcaggt, atgcggatataggcgatgca, 9 

gcctgcatccaggtactgag, cagacgcgggtctcctctga, atctgtggaagtggacgatc, cgagtacataggtggcaatg, 10 

aaatacacggaagtttggct, agatgtccgttaacgcaaaa, acagcattccatacaagagc, tatagctcacatgtaggcga, 11 

ctgagccttatgaagaagcc, ggattgtagatcctgcatgg, catggagcttgtcagatgag, tttgagcagtggtcattcaa 12 

 13 

Analysis of spine morphology 14 

Fmr1
-/y or WT neurons were transduced at 18 DIV with Sindbis virus (MOI of 1) expressing 15 

free GFP, the WT or mutated forms of GFP-FMRP for either 24h (Fmr1
-/y neurons) or 30h (WT 16 

neurons) before use. Cells were then fixed using PBS containing 3.7% formaldehyde and 5% 17 

sucrose for 1h at RT and mounted in Mowiol before confocal examination.  18 

 19 

Confocal imaging 20 

For fixed cells, confocal images (1024x1024) were acquired with a 63x oil immersion lens 21 

(numerical aperture NA 1.4) on an inverted TCS-SP5 confocal microscope (Leica 22 

Microsystems, Nanterre, France). Z-series of 6-8 images of randomly selected secondary 23 

dendrites were compressed into two dimensions using the maximum projection of the LASAF 24 

acquisition software (Leica). Manders’ colocalisation parameters were computed using the 25 

JaCoP plug-in from the ImageJ software66 when required.  26 

 27 

For GFP-FMRP-containing granule measurements, two Z-series were acquired. The first was 28 

acquired at low laser intensity to clearly identify large granules without any pixel saturation and 29 

the second series was recorded at a higher laser intensity to detect smaller granules. These two 30 

Z-series were then averaged and compressed into two dimensions by a maximal projection. 31 
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Measurements of the surface of GFP-FMRP-containing granules along dendrites were 1 

determined automatically using an home-made ImageJ macro program. Briefly, granules and 2 

dendrites were segmented in each image, and the length of the denditric tree was measured 3 

after a step of skeletonization. The data were then imported in GraphPad Prism software for 4 

statistical analysis. 5 

 6 

For dendritic spine imaging, Z-series of 6-8 images of secondary dendrites from GFP-7 

expressing neurons were compressed into two dimensions by a maximal projection using the 8 

LASAF software. About 3000 to 4500 spines were analyzed per condition (2-4 dendrites per 9 

neuron and from 20-30 neurons per condition from 4 independent experiments which were 10 

done blind for 2 of them). At the time of acquisition, laser power was adjusted so that all spines 11 

were below the saturation threshold. To analyze dendritic protrusions, projection images were 12 

imported into NeuronStudio software67, which allows for the automated detection of immature 13 

and mature dendritic spines. The length of individual spines was automatically measured and 14 

data were imported in GraphPad Prism software for statistical analysis. Mature spines were 15 

characterized by a head diameter ranging from 0.3 to 1 µm and a spine length between 0.4 and 16 

3 µm. Immature spines corresponded to protrusions with a head diameter below 0.3 µm and a 17 

spine length ranging from 0.5 to 6 µm. 18 

 19 

Fluorescence Lifetime Imaging (FLIM) experiments 20 

Fmr1
-/y neurons co-expressing mCherry with the WT or the non-sumoylatable mutant form of 21 

GFP-FMRP for 72h were fixed in PBS containing 3.7% formaldehyde and 5% sucrose for 1h at 22 

RT and mounted using Mowiol. FLIM was then performed on a Nikon A1R confocal laser-23 

scanning microscope equipped with Time Correlated Single-Photon Counting (TCSPC) 24 

electronics (PicoHarp 300; PicoQuant). Excitation was obtained using a pulsed laser LDH-D-25 
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C-485 (PicoQuant) at a repetition rate of 40 MHz allowing the acquisition of the full intensity 1 

decay. Fluorescence emission was collected by a hybrid photomultiplier detector (PicoQuant) 2 

through a 60X λS, NA 1.4, oil objective (Nikon Instruments) and band pass filter (520/35). The 3 

following parameters were kept constant for all acquisition: pixel size (70 nm, 512x512), pixel 4 

dwell time (4.8 µs) and acquisition time (5 min/image). So as to limit pile-up and to accumulate 5 

enough photons within the 5 min acquisition time, laser excitation power was adjusted to obtain 6 

a count rate between 0.4 and 2 MHz68. In these conditions, there was no measurable 7 

photobleaching. Each field of view was also acquired in conventional confocal mode. EGFP 8 

and mCherry channels were respectively acquired using the 488-nm excitation with the 525/50-9 

nm band-pass detection and the 561-nm excitation with the 595/50-nm band-pass detection. 10 

 11 

Fluorescence lifetime was measured by fitting the intensity decays with a monoexponential 12 

decay model reconvolved with experimental IRF (Instrument Response Function) using the 13 

software SymPhoTime (PicoQuant). Intensity decays were fitted pixel by pixel to provide 14 

FLIM images and calculated lifetimes represented using a pseudo-colour scale ranging from 15 

1.7 to 2.2 ns. To improve robustness of the fit, IRF parameters were fixed as the IRF is 16 

expected to be invariant over the acquisition field. The robustness of the fit was assessed by the 17 

calculated standard weighted least square (X2) and the residual69. Values of the reduced X2 18 

should be close to 1 and residue should be randomly distributed around zero. The average 19 

lifetime of the FLIM image (Tau, ns) was determined from the barycentre of the frequency 20 

histogram associated with the FLIM image. To calculate the fluorescence lifetime of individual 21 

granules, the intensity decay resulting from all the photons of the granule was fitted using a 22 

monoexponential model reconvolved with IRF.  23 

 24 
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To get enough photons at each pixel for an accurate intensity decay fit, only granules with more 1 

than 10,000 photons (integrated number of photons over the decay) were analysed, with a 2 

minimum pixel threshold of 500 counts for background rejection. To reach 10,000 photons per 3 

granules and to reject granules, which were largely out of focus, only granules larger than 0.35 4 

µm2 were analyzed (segmentation using ImageJ). To avoid pulse pile up and to collect photons 5 

fast enough to meet the above criteria, count rate was kept between 0.4 and 4 MHz. Clusters 6 

with higher count rate were excluded from the analysis. In those conditions, the fluorescent 7 

lifetime was invariant.  8 

 9 

Dendra2-FMRP-containing granule photoconversion experiments 10 

Experiments were performed as previously described26, 48. Briefly, live Fmr1
-/y neurons 11 

expressing the WT or mutated Dendra2-FMRP from were kept in Earle’s buffer (25 mM 12 

HEPES-Tris pH 7.4, 140 mM NaCl, 5 mM KCl, 1.8 mM CaCl2, 0.8 mM MgCl2, 0.9 g L-1 13 

glucose) on the heated stage (set at 37°C) of a Nikon Ti inverted microscope and imaged using 14 

an Ultraview spinning disk confocal system (Perkin Elmer, France). Cells were then stimulated 15 

or not with 50 µM DHPG in Earle’s buffer. After a 10-min incubation time in either control or 16 

DHPG solution, Dendra2-FMRP-granules were photoconverted through a 100X/1.4 oil 17 

immersion objective for 30 ms using 405-nm laser light (50 mW, 15%). The red 18 

photoconverted Dendra2-FMRP was excited using a 561-nm laser light (50 mW, 17%) and 2D-19 

time series (2 Hz) were collected for 10 min. The decrease in red fluorescence from the 20 

Dendra2-FMRP photoconverted granules was measured over time using Volocity 6.3 software 21 

and data expressed as the percentage of the initial red photoconverted fluorescence (F/F0). 22 

Curves were fitted using a mono-exponential decay equation and data analysed using GraphPad 23 

Prism. 24 

 25 
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GST- and His-FMRP production and purification 1 

GST- or His-FMRP (1-160) proteins were produced in E. coli BL21(DE3) cells (Invitrogen, 2 

France). A single colony was picked and used to inoculate 25 ml of LB broth supplemented 3 

with 50 µg mL-1 ampicillin. This was used to inoculate 500 mL of LB and was shaken at 37°C 4 

until OD600 reached 0.8. Cells were then transferred at 20°C and protein synthesis induced by 5 

addition of 1 mM IPTG (Sigma, France). After 4h at 20°C, cells were pelleted by 6 

centrifugation at 7000g for 5 minutes and then gently resuspended in ice-cold PBS and frozen 7 

at -80°C until use. Pellets were then resuspended in 5 mL lysis buffer (25 mM Tris-HCl pH8, 8 

300 mM KCl, 1 mM EDTA, 20% glycerol, 5% ETOH, 0.5% NP40, 0.5 M Urea) supplemented 9 

with 1% protease inhibitor cocktail (Sigma Aldrich, France). Cells were disrupted by 10 

incubation with 1% lysozyme (Sigma, France) for 30 min at 4°C followed by another 30 min in 11 

the presence of 0.1% Deoxycholic acid, 10 mM MgCl2 and 200 ng µL-1 DNase. Lysates were 12 

then clarified by centrifugation at 10,000g for 15 min. GST- or His-tagged proteins were 13 

purified using either Glutathione gel (GE Healthcare) for GST- and GST-FMRP or Nickel resin 14 

(Qiagen) for His-fusion proteins. Proteins were then concentrated on Amicon 3-kDa cutoff 15 

filters (Millipore) by centrifugation and resuspended in PBS. Concentrations of purified 16 

proteins were determined using the BCA protein assay (Biorad) and protein quality assessed by 17 

SDS-PAGE and Coomassie Blue protein staining (Clinisciences).  18 

 19 

GST-FMRP/His-FMRP dimerization  20 

GST- (control) or GST-FMRP (1-160) fusion proteins (1µg) were incubated with an excess of 21 

2 µg His-FMRP (1-160) for 2h at 4°C in dimerization buffer (50 mM Tris-HCl pH8, 150 mM 22 

NaCl, 2.5 mM MgCl2, 0.5% NP40, 0.5 mM DTT, 1% Protease inhibitor cocktail) to allow for 23 

GST-FMRP/His-FMRP dimerization. Then, 50 µl of glutathione beads (GE Healthcare) were 24 

added to the dimerization mix and incubated at 4°C for 2h. After five washes in dimerization 25 
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buffer at 4°C, immobilized GST-FMRP (1-160) – His-FMRP (1-160) dimers were processed 1 

for in vitro sumoylation assays. 2 

 3 

In vitro SUMO assays  4 

Immobilized GST-FMRP/His-FMRP dimers were incubated with 0.15 µg of E1-activating 5 

complex (Enzo Life science), 0.1 µg of E2 Ubc9 (Enzo Life science), 3 µg of SUMO1-GG in 6 

20 µl of in vitro SUMO reaction mix (20 mM HEPES pH 7.3, 110 mM KOAc, 2 mM 7 

Mg(OAc)2, 0.5 mM EGTA, 1 mM DTT 0.05% Tween 20, 0.2 mg mL-1 Ovalbumin) including 8 

the ATP regenerating system (20 mM ATP, 10 mM Creatine phosphate, 3.5 U mL-1 of Creatine 9 

kinase and 0.6 U mL-1 of inorganic pyrophosphatase (Sigma Aldrich) for 2h at 30°C. After 10 

centrifugation for 5 min at 3,000g at 4°C, the supernatant containing the released His-FMRP(1-11 

160) and the pellet containing the remaining immobilized GST-FMRP/His-FMRP dimers were 12 

denatured at 95°C for 10 min in 5x Laemmli buffer containing 7.5% β-mercaptoethanol and 13 

analyzed by immunoblotting with FMRP #2F5-1 antibodies. 14 

 15 

Electrophysiological recordings 16 

Patch clamp experiments were carried out at RT (22-25°C) on mixed cultured 17 

cortical/hippocampal neurons obtained from FMRP
-/y

 mice (four different cultures). FMRP
-/y

 18 

neurons (18 DIV) were transduced for 24-26h with attenuated Sindbis virus to express GFP-19 

FMRP WT or the non-sumoylatable GFP-FMRP-K88,130,614R. Patch pipettes displayed a 20 

resistance of 4 to 7 MΩ and filled with a solution containing (in mM): 2 Na2-ATP, 130 21 

CsMeSO4, 5 CsCl, 2.5 MgCl2, 1 Na-GTP, 5 EGTA and 10 HEPES (pH adjusted to 7.2 with 22 

CsOH). The extracellular bathing solution contained (in mM): 145 NaCl, 5 KCl, 2 CaCl2, 2 23 

MgCl2, 10 HEPES, 10 Glucose, 0.02 Bicuculline and 0.00025 TTX (pH adjusted to 7.4 with 24 

NaOH). We used the whole-cell configuration to record miniature Excitatory PostSynaptic 25 
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Currents (mEPSCs) from GFP-positive neurons that were voltage-clamped at -70 mV i.e., the 1 

estimated reversal potential for chloride. mEPSCs were recorded for 10 min, starting 1-2 min 2 

after the whole-cell mode was achieved and series resistances were monitored every 50 sec by 3 

injecting a 5 mV hyperpolarizing current for 10 ms. Data were sampled at 20 kHz, low-pass 4 

filtered at 5kHz (Axopatch 200B Molecular Devices), digitalized (Digidata 1440, Molecular 5 

Devices) and recorded using Clampex software (pClamp 10, Molecular Devices). Analysis of 6 

series resistances and mEPSCs were performed offline using Clampfit software (pClamp 10, 7 

Molecular Devices). mEPSCs were analyzed over periods of 200 sec for which series 8 

resistances were stable, i.e., did not vary for more than 25%.  9 

 10 

Data and statistical analysis 11 

Statistical analyses were calculated using GraphPad Prism (GraphPad software, Inc). All data 12 

are expressed as mean ± SEM. Unpaired t-test (Fig. 3i) or non-parametric Mann-Whitney test 13 

(Figs. 4c and 5d,f,g) were used to compare medians of two data sets. For spine morphogenesis 14 

experiments, values represent means ± SEM. Statistical significance for multiple comparison 15 

data sets was computed using a one-way analysis of variance (ANOVA) with a Bonferroni 16 

post-test (Figs. 2b-d, 5e, 7b-d and Supplementary Fig. 2b-d). Normality for all groups was 17 

verified using the Shapiro-Wilk test. According to the Levene variance test, variances were 18 

homogenous for the percentage of immature and mature spines (Figs. 2b-d, 7b-d and 19 

Supplementary Fig. 2b-d). For FLIM, data distributions were represented as box and whiskers 20 

plots displaying upper and lower quartiles, and maximum and minimum values in addition to 21 

median. For electrophysiological data, distributions were analyzed by a Kolmogorov-Smirnov 22 

test (Supplementary Fig. 3b,c). *p<0.05 was considered significant. 23 

 24 

Data availability 25 
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All relevant data are available from the corresponding author upon reasonable request. 1 
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Figure 1. FMRP is sumoylated in vivo in the rat and mouse brain and the SUMO system 1 

targets the conserved residues K88, 130 and 614 of FMRP. (a) Representative immunoblot 2 

anti-FMRP (Ab#056) of P7 post-nuclear rat brain extracts prepared or not in the presence of the 3 

cysteine protease inhibitor NEM to prevent desumoylation. (b) Immunoblot anti-SUMO1 of 4 

NEM-treated P7 post-nuclear rat brain extracts subjected to immunoprecipitation with FMRP 5 

(Ab#056) antibody or control IgG. (c) Converse immunoblot with anti-FMRP (Ab#056) 6 

antibody of NEM-treated P7 post-nuclear rat brain extracts subjected to immunoprecipitation 7 

with SUMO1 antibody or control IgG. (d) Immunoblot anti-SUMO1 of NEM-treated P1 post-8 

nuclear mouse brain extracts subjected to immunoprecipitation with FMRP (Ab#056) antibody 9 

or control IgG. *Non-specific band. (e) Immunoblot of post-nuclear mouse brain extracts 10 

(input) subjected to immunoprecipitation with FMRP antibody or control IgG and probed with 11 

anti-Ubc9 antibody. (f) Colocalisation assays performed on cultured mouse neurons (20 DIV) 12 

with antibodies directed against Ubc9, FMRP (Ab#4317), SUMO1. Bar, 2 µm. Degree of 13 

colocalisation (Manders’ coefficient) between FMRP and Ubc9 or SUMO1. N = 3 independent 14 

primary cultures with 60 dendrites analyzed for each condition. (g) Sequence alignments 15 

showing the evolutionary conservation of the potential SUMO-targeted lysine residues (stars) 16 

within the consensus sumoylation sites of FMRP. (h,i) Bacterial sumoylation assay. 17 

Representative immunoblots of purified fractions of N- and C-terminal WT or mutated parts of 18 

His-FMRP in a recombinant bacterial system and probed with anti-FMRP (h, Ab#1C3) or (i, 19 

#17722) and anti-SUMO1 antibodies as indicated. (j) COS7 sumoylation assay. Immunoblots 20 

with anti-FMRP (Ab#056) antibody of full-length WT or lysine-mutated FMRP expressed in 21 

COS7 cells with mcherry-SUMO1 WT or mutated (ΔGG) to prevent its conjugation. (k) X-ray 22 

structures fitted of three human N-terminal FMRP (PDB: 4OVA in green, 4QVZ in light green, 23 

4QW2 in dark green) shown in cartoon representation. K88 and K130 are shown in sphere 24 

representation in red and blue respectively. (l) Model of FMRP (PDB: 4OVA) and SUMO1 25 

(PDB: 4WJQ) structural links in cartoon and surface representation (with transparency) 26 

respectively in green and light blue. Lysine residues 88 and 130 of FMRP are shown in sphere 27 

representation in red and blue respectively. 28 

 29 
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 1 

 2 

Figure 2. The N-terminal sumoylation of FMRP is involved in the regulation of the spine 3 

density and maturation. (a) Representative confocal images of dendrites from transduced 4 

Fmr1
-/y

 neurons expressing free GFP, the WT or the non-sumoylatable K88,130,614R, 5 

K88,130R or K614R forms of GFP-FMRP for 24h. Bar, 10 µm. Enlargements of dendrites are 6 
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also shown. Bar, 5 µm. Histograms show the relative proportion of mature and immature 1 

dendritic spines (b) and the density  of the protrusions (c) in GFP, in WT and mutated GFP-2 

FMRP-expressing cells as shown in (a). (d) Histograms of immature spine length measured 3 

from Fmr1
-/y

 neurons expressing the indicated constructs. Data shown in b-d are the mean ± 4 

s.e.m and statistical significance determined by a one-way analysis of variance (ANOVA) with 5 

a Bonferonni post-test. N = ~4500 protrusions per condition from 4 independent experiments. 6 

***p<0.001. (e,f) CLIP analysis from transduced Fmr1
-/y

 cortical neurons expressing the WT 7 

or the K88,130,614R form of GFP-FMRP revealed that they bind the same RNA repertoire. (e) 8 

Representative immunoblots anti-FMRP of the indicated neuronal extracts subjected or not 9 

(Input) to immunoprecipitation (IP) with FMRP antibodies. GFP-expressing Fmr1
-/y

 neurons 10 

were used as a negative control. (f) Enrichment (CLIPed/Input) of a set of FMRP-target RNA 11 

fragments in the indicated conditions. Several known RNA targets of FMRP (fmr1, map1b, 12 

camk2a, sapap3, fxr1, kif3c and psd95) as well as a non-targeted RNA (tubb3) were detected 13 

by quantitative PCR. Fold enrichment were calculated as described in the method section and 14 

did not show any statistical differences. 15 

 16 

 17 
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Figure 3. Preventing FMRP sumoylation drastically impacts on the size of dendritic 1 

FMRP-containing mRNA granules. (a-c) Representative images of WT and K88,130R GFP-2 

FMRP expressing Fmr1
-/y

 dendrites were hybridized with GFP (a), PSD-95 (b) or CaMKII 3 

mRNA (b) using Stellaris probes. Arrowheads show the colocalisation between the indicated 4 

Stellaris signals and the GFP-FMRP granules.  (c) GFP-FMRP-transfected neurons with no 5 

Stellaris probes were used as FISH controls. (d-g) Colocalisation assays performed on WT and 6 

K88,130R GFP-FMRP expressing Fmr1
-/y

 neurons with antibodies directed against the S6 7 

ribosomal protein (d), FXR1 (e) and the RNA-binding proteins Staufen 1 (f) and Staufen 2 (g). 8 

Arrowheads indicate the colocalisation with the GFP-FMRP positive mRNA granules. (h) 9 

Representative confocal images of dendrites from co-transfected Fmr1
-/y

 neurons co-expressing 10 

free mCherry with either the WT or the K88,130R form of GFP-FMRP for 72h. Bar, 5 µm. (i) 11 

Histograms show the mean size of dendritic GFP-FMRP granules after 48h and 72h of 12 

expression. N = 190-460 granules per condition from 3-4 separate experiments. Data shown in i 13 

are the mean ± s.e.m. and statistical significance was determined using Unpaired t-test. 14 

*p<0.05; ***p<0.0001. 15 

 16 

 17 
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 1 

Figure 4. Preventing the N-terminal sumoylation of FMRP by the K88,130R mutation 2 

does not alter the homomeric FMRP-FMRP interaction within dendritic mRNA granules. 3 

(a,c) Analysis of GFP-FMRP/mCherry-FMRP interaction within dendritic mRNA granules by 4 

Fluorescence Life Time Imaging (FLIM). Representative confocal images showing the 5 

colocalisation of the WT (a) or the K88,130R (b) forms of GFP-FMRP and mCherry-FMRP 6 

(left images) in dendritic granules. FLIM images of the same field are shown on the right 7 

images (a,b) where fluorescence lifetime is represented using a pseudo-color scale ranging 8 

from 1.7 to 2.2 ns. Insets show representative clusters for each condition The third row 9 

represents the distribution histograms of GFP-FMRP fluorescence lifetime of the Donor (D) 10 
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alone in green and the Donor + Acceptor (D+A) in blue. FLIM images corresponding to the 1 

Donor alone condition are displayed in Supplementary Fig. 3b. (c) Box and whiskers plots 2 

show the variation of the lifetime determined from FLIM curves. This representation displays 3 

upper and lower quartiles, maximum and minimum values in addition to median. N = 114-189 4 

granules per condition from 3 separate experiments. Statistical significance in (c) was 5 

determined by a non-parametric Mann-Whitney test. **p<0.01; ***p<0.0001. 6 

 7 
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Figure 5. Activation of mGlu5 receptors promotes FMRP sumoylation and leads to the 1 

release of FMRP from dendritic mRNA granules. (a) Images of transfected Fmr1
-/y

 2 

dendrites expressing the WT or the non-sumoylatable K88,130R forms of GFP-FMRP before 3 

Dendra2-FMRP photoconversion are shown. (b) Time lapse series of confocal images of 4 

photoconverted Dendra2-FMRP red fluorescence in dendritic granules in basal unstimulated 5 

conditions. Enlargement of dendritic granules from the boxed area in (a) is also shown on the 6 

left. The decrease in red photoconverted Dendra2-FMRP fluorescence was then monitored over 7 

time. Scale bar, 1 µm. (c) Representative sample recording traces of normalized fluorescence 8 

from photoconverted WT or mutated Dendra2-FMRP in individual granules in basal 9 

unstimulated conditions. The thin traces (black) represent the corresponding fits. (d) 10 

Histograms with scatter plots of computed half time of photoconverted WT and K88,130R 11 

Dendra2-FMRP fluorescence diffusion in granules in basal conditions. The number of 12 

photoconverted granules is indicated on the bars. (e) Immunoprecipitation of FMRP (Ab#046) 13 

and immunoblotting for SUMO1. Control for the immunoprecipitated FMRP fractions is also 14 

depicted. Input lanes for FMRP and β3-tubulin are also shown. Quantification for DHPG-15 

induced endogenous FMRP sumoylation in neurons over time is also indicated. The data are 16 

from three separate experiments and show the mean ± s.e.m. *p=0.0213. (f) Histograms with 17 

scatter plots of half time of photoconverted Dendra2-FMRP WT fluorescence diffusion in 18 

granules from Fmr1
-/y

 neurons stimulated with DHPG. The number of photoconverted granules 19 

is indicated on the bars and the histogram/scatter plot in absence of stimulation is taken from 20 

(d). (g) Histograms with scatter plots of half time of photoconverted Dendra2-FMRP-21 

K88,130R fluorescence diffusion in granules in basal and DHPG-stimulated conditions. The 22 

histogram/scatter plot in absence of stimulation is taken from (d). The number of 23 

photoconverted granules is indicated on the bars. Data shown in d-f and g are the mean ± s.e.m. 24 

Statistical significance in d,f and g was determined using a non-parametric Mann-Whitney test. 25 

Statistical significance in (e) was determined by an ANOVA with a Bonferroni post-test. 26 

*p<0.05; ***p<0.0001. 27 
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Figure 6. The N-terminal sumoylation of FMRP dissociates FMRP homomers. (a) GST 1 

pull-down of purified His-FMRP(1-160aa) with the N-terminal (1-160 amino acids) domain of 2 

FMRP fused to the GST protein. Free GST is used as a negative control. (b) Schematic diagram 3 

of the SUMO-dependent dissociation assay showing the release into the supernatant of His-4 

FMRP from the immobilized sumoylated GST-FMRP fraction. (c) In vitro sumoylation assay 5 

on immobilized GST-FMRP(1-160aa). (d) In vitro sumoylation assay on GST-FMRP/His-6 

FMRP dimers. Representative immunoblots anti-FMRP (Ab#2F5-1) following the SUMO-7 

dependent dissociation of His-FMRP. 8 

 9 

 10 

 11 

 12 



  54 

 1 

Figure 7. Spine density and maturation processes are intrinsically linked to the ability of 2 

FMRP to be sumoylated. (a) Representative confocal images of dendrites from transduced 3 

WT neurons expressing free GFP, the WT, K88R, K130R or K88,130R mutant forms of GFP-4 

FMRP for 30h. Bar, 5 µm. Histograms show the relative proportion of mature and immature 5 

spines (b) and the density of the protrusions (d) in the indicated conditions shown in (a). (c) 6 

Histograms of immature spine length measured from WT neurons expressing the indicated 7 

constructs. (e) Relative protein expression levels of the WT and mutant forms of GFP-FMRP in 8 

WT transduced neurons as in (a) showing a ~3-fold increase in the levels of exogenous GFP-9 
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FMRP expression. Data shown in b-d are the mean ± s.e.m. Statistical significance in b-d was 1 

determined by a one-way analysis of variance (ANOVA) with a Bonferroni post-test. N = 2 

~3000 spines per condition from 4 independent experiments. ***p<0.001; n.s, not significant. 3 
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Figure 8. Schematic model for the mGlu5R-dependent regulation of FMRP function via 13 

the sumoylation process. The activity-dependent sumoylation of FMRP is a key step to 14 

dissociate FMRP from dendritic mRNA granules and consequently to regulate spine 15 

elimination and maturation.   16 
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Supplementary Figure 1. Characterization of the custom anti-FMRP (Ab#056) antibody and 3 

additional evidence for the in vivo and in vitro sumoylation of FMRP. (a) Immunostaining of 4 
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the endogenously expressed FMRP with the custom anti-FMRP antibody (Ab#056; 1 µg/mL) in 1 

WT mouse hippocampal neurons (18 DIV). Control immunostaining experiment with the custom 2 

anti-FMRP antibody (Ab#056; 1 µg/mL) on 18 DIV Fmr1
-/y

 hippocampal neurons. Bar, 20 µm. 3 

(b) Representative immunoblot with the anti-FMRP (Ab#056) antibody of P7 post-nuclear WT 4 

and Fmr1
-/y

 mouse brain extracts. (c) Scatter plots of the ratio between the intensity of FMRP-5 

SUMO1 and the total amount of FMRP from input lanes (n=5 for each conditions) measured on 6 

FMRP immunoblots obtained from rat brain, mouse brain and mouse neuronal homogenates. 7 

Statistical analysis using an ANOVA with a Bonferonni post-test revealed no significant 8 

differences between the 3 conditions. (d,e) Immunoblots with the anti-FMRP (Ab#056) of NEM-9 

treated P7 rat brain extracts subjected to immunoprecipitation with FMRP (Ab#056) (d) or anti-10 

SUMO1 (e) antibodies. Input and control IgG lanes are also shown on the blots. (f) Control 11 

experiments demonstrating the protective role of NEM on protein sumoylation. Control and NEM-12 

treated P7 rat brain homogenates were subjected to immunoprecipitation with anti-SUMO1 13 

antibodies. Input and control IgG lanes are also shown on the blots. (g,h) Immunoblots with the 14 

anti-FMRP (Ab#17722; g) or anti-SUMO1 (h) antibodies of NEM-treated P7 rat brain extracts 15 

subjected to immunoprecipitation with FMRP (Ab#17722) antibody or control IgG. (i,j) 16 

Immunoblots with the anti-FMRP (i, Ab#17722; j, Ab#2F5-1) antibodies of NEM-treated P7 rat 17 

brain extracts subjected to immunoprecipitation with SUMO1 antibody or control IgG. *Non-18 

specific band. (k) Input blot with the anti-FMRP (Ab#056) antibody on homogenates from 18 19 

DIV NEM-treated rat cortical neurons used in l and m. (l,m) Immunoblots with the anti-FMRP 20 

(Ab#056; l) or anti-SUMO1 (m) antibodies on neuronal extracts shown in (k) subjected to 21 

immunoprecipitation with FMRP (Ab#056) antibody or control IgG. (n) Immunoblot with anti-22 

FMRP (Ab#056) antibody on homogenates from 18 DIV NEM-treated cortical neurons and 23 

subjected to immunoprecipitation with SUMO1 specific antibody or control IgG. *Non-specific 24 

band. 25 

 26 
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 2 

Supplementary Figure 2. (a) Representative confocal images of dendrites from transduced Fmr1
-

3 

/y
 neurons expressing the K88R or K130R mutant forms of GFP-FMRP for 24h. Bar, 5 µm. 4 

Histograms show the relative proportion of mature and immature spines (b) and the density of the 5 

protrusions (c) in the indicated conditions. (d) Histograms of immature spine length measured 6 

from Fmr1
-/y

 neurons expressing the indicated constructs. Data shown in b-d are the mean ± s.e.m. 7 

Statistical significance in b-d was determined by a one-way analysis of variance (ANOVA) with a 8 

Bonferroni post-test. N = ~4500 spines per condition from 4 independent experiments. 9 

***p<0.001. (e) Relative protein expression levels of the WT and mutant forms of GFP-FMRP in 10 

Fmr1
-/y

 transduced neurons. Input lanes for β3-tubulin are also shown. 11 
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Supplementary Figure 3. Sumoylation is involved in the regulation of FMRP function. (a) 3 

Representative sample traces from WT and K88,130,614R GFP-FMRP-positive Fmr1
-/y

 neurons. 4 

Cumulative frequency for amplitudes (b) and interevent intervals (c) of mEPSCs recorded from 5 

GFP-FMRP WT and K88,130,614R expressing neurons (20 and 19 cells respectively from 4 6 

different cultures). Statistical significance was determined by analysis of the amplitude and 7 

interevent interval distributions using a Kolmogorov-Smirnov test. ***p<0.001; ****p<0.0001. 8 

 9 

10 
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 2 

 3 
Supplementary Figure 4. Control data for the FLIM experiments. (a) Original schematic 4 

representation of FLIM. When photophysical criteria are met (spectral overlap, distance…) Donor 5 

GFP in the excited state can transfer its energy to the acceptor mCherry. The possibility to relax 6 

by FRET provides an additional pathway to the radiative relaxation (emission of a photon). 7 



  7 

Therefore the time spent by GFP in the excited state (fluorescence lifetime) is shortened in 1 

presence of FRET i.e. when the two proteins interact. Fluorescence lifetime can be expressed as a 2 

function of the kinetic constants of the relaxation processes (kF and kFRET for fluorescence and 3 

FRET respectively). As a result, the intensity decay in the presence of Acceptor (blue curve) is 4 

faster than in the case of Donor alone (green curve). (b) FLIM images of GFP-FMRP (Donor, D) 5 

alone in the WT and K88,130R forms. Fluorescence lifetime is represented using a pseudo-color 6 

scale ranging from 1.7 to 2.2 ns. Insets show representative clusters for each condition. (c) 7 

Average lifetime of individual granules is invariant with regards to the granule GFP intensity. The 8 

histogram represents the average lifetime of GFP-FMRP WT individual granules (n=172) over 3 9 

independent experiments. Fluorescence lifetime was calculated for granules with sufficient photon 10 

counts (at least 500 Cnts/pixel and 10
4
 Cnts/granule) and which were acquired with a count rate 11 

inferior to 4 MHz as detailed in the Methods. (d) Average lifetime of individual granules is 12 

randomly distributed over A/D intensity ratio. Represented granules correspond to neurons 13 

expressing WT forms of GFP-FMRP and mCherry-FMRP (n=171 granules over 2 independent 14 

experiments). 15 
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Supplementary Figure 5. Control intracellular calcium responses evoked by an mGlu5R 3 

activation in mouse WT and Fmr1
-/y

 neurons. (a,c) Representative pseudocolored images of 4 

Fura-2 fluorescence ratio (340/380 nm) showing WT (a) and Fmr1
-/y

 neurons (c) before (pre-5 

DHPG), during (DHPG) and after (post-DHPG) an mGlu5R agonist stimulation. Bar, 20 µm. 6 

(b,d) Representative traces of Fura-2 fluorescence 340/380 nm ratio (F340/380) overtime showing 7 

an increase in intracellular Ca
2+

 concentration both in WT (b) and Fmr1
-/y

 (d) neurons exposed to 8 

DHPG. Arrowheads in (a) and (c) point to neurons in which the F340/380 ratio is shown in (b) 9 

and (d) respectively. 10 

 11 
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Supplementary Figure 6. Original uncropped blots. Orange boxed regions represent the portion 2 

used in figures 1 to 5. 3 

 4 

 5 
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Supplementary Figure 7. Original uncropped blots. Orange boxed regions represent the portion 3 

used in the Supplementary figure 1. 4 

 5 

 6 
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Abstract 

The sumoylation process is essential to the modulation of protein function, neurotransmission 

and plasticity and disruption of the sumoylation / desumoylation balance has been associated 

with several neurological conditions. However, the mechanisms regulating the equilibrium of 

the SUMO pathway are far from being understood. Here we show that the synapto-dendritic 

diffusion of the desumoylation enzyme SENP1 is regulated by synaptic activity. Synaptic 

activation triggers the targeting of SENP1 into dendritic spines independently of its enzymatic 

activity but via a pathway involving the activation of metabotropic mGlu5 glutamate receptors 

(mGlu5R). We used restricted photobleaching / photoconversion of individual hippocampal 

spines to measure the diffusion properties of SENP1 and show that the synaptic exit of SENP1 

is decreased upon the activation of mGlu5R. The consequence of this is the enrichment of 

SENP1 levels at post-synaptic sites upon sustained mGlu5R activation. Altogether, our findings 

reveal the first activity-dependent regulation of SENP1 diffusion in neurons, which may have 

important implications for the regulation of the balance between sumoylation and 

desumoylation at the mammalian synapse. 
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Introduction 

Synapses are highly specialized structures where neuronal transmission takes place. The 

efficacy of synaptic transmission depends on the correct arrangement of complex protein 

networks on both sides of the synapse. These dynamic processes are mainly regulated by post-

translational modifications (PTMs) such as phosphorylation and ubiquitination1. Sumoylation is 

a PTM that consists in the covalent but reversible enzymatic conjugation of the Small 

Ubiquitin-like MOdifier (SUMO; ~100 amino acids; ~11 kDa) protein to specific lysine 

residues of substrate proteins2,3. Three functional SUMO proteins, SUMO1 and SUMO2/3, are 

expressed in the mammalian brain, SUMO2/3 being essentially almost identical. The enzymatic 

machinery of sumoylation is composed of the E1 heteromeric enzyme SAE1/SAE2, the sole E2 

SUMO-conjugating enzyme Ubc9 and an E3 protein that may enhance the sumoylation of 

specific targets. At the molecular level, sumoylation can induce conformational changes and 

modulate the dynamics of multi-protein complexes by preventing protein-protein interactions 

and/or by providing a new platform for the interaction of a novel set of proteins4,5.  

 

Sumoylation is now clearly seen as a potent post-translational mechanism critical for the 

regulation of neuronal communication and plasticity6,7,8. It influences several aspects of the 

neuronal function including neurotransmitter release9,10, spinogenesis11,12 and synaptic 

communication13,14,15. Our group has also reported the spatiotemporal regulation of the SUMO 

system in the developing rat brain16 and that sumoylation per se is regulated by neuronal 

activity17 and the activation of mGlu5R17,18.  

 

Importantly, the basal levels of sumoylated proteins in a cell and in specific subcellular 

compartments must be tightly regulated. This occurs via the coordinated action of the 

conjugating enzyme Ubc9 and specific desumoylating enzymes called SENPs19,20. SENPs form 
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a family of six paralogs that are responsible for the maturation of SUMO precursors and for the 

removal of SUMO moieties from their substrate proteins. These enzymes differ in their 

subcellular localization and their specificity towards SUMO1 or SUMO2/3-modified 

proteins19,20.  

 

The sumoylation/desumoylation balance is a highly dynamic process, which allows the cells to 

specifically and quickly respond to either internal or external signalling cues. Generally, only a 

small amount of a specific substrate is sumoylated at any given time and space20,21. Therefore, 

the homeostasis of cell sumoylation first relies on the tight balance between the activities of the 

SUMO-conjugating and deconjugating enzymes but also on their subcellular and temporal 

localization. However, understanding the mechanisms regulating these enzymes for targeting 

and/or removal from specific cell compartments in a coordinated manner is absolutely essential 

to understand how the equilibrium between sumoylation and desumoylation is locally 

maintained. 

 

Alterations of the sumoylation/desumoylation balance have been clearly linked to several 

pathological conditions, including cancer22, neurodevelopmental6 or neurodegenerative 

disorders7,8. However, despite the increasing number of newly identified SUMO substrates in 

the mammalian brain8, the dynamic regulation of the sumoylation/desumoylation balance in 

neurons and at synapses is still poorly understood.  

 

Here, we characterize the activity-dependent synaptic diffusion of the desumoylating enzyme 

SENP1 using live-imaging approaches on rat hippocampal neurons. We show that SENP1 is 

highly mobile in neurons and that its synapto-dendritic mobility is regulated by the activation 

of metabotropic glutamate 5 receptors (mGlu5R). The sustained activation of mGlu5R leads to 
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an increased synaptic localization of SENP1 occurring in a desumoylase-independent activity 

manner. The pharmacological activation of the mGlu5R pathway dramatically decreases the 

exit rate of SENP1 from dendritic spines resulting in a time-dependent increase in SENP1 at 

the synapse. Altogether, our data clearly indicate that the reversible synaptic enrichment of 

SENP1 into spines in mGlu5R-activated neurons is essential to counteract the Ubc9-driven 

increase in synaptic sumoylation18 that preceded the synaptic entry of SENP1. We therefore 

uncovered an activity-dependent pathway for the neuron to control its level of desumoylation 

enzymes at the mammalian synapse. 

 

Results 

The neuronal diffusion of SENP1 is regulated by synaptic activity 

The synapto-dendritic diffusion of the sole SUMO conjugating enzyme Ubc9 is regulated by 

synaptic activity18. Since the sumoylation/desumoylation process at synapses has to be 

balanced, we examine whether neuronal activity also regulates the synaptic diffusion of the 

desumoylation enzyme SENP1. Thus, we first expressed a GFP-tagged version of the SENP1 

enzyme in rat hippocampal neurons (Fig. 1; Supplementary figure 1). As expected, we 

observed the majority of SENP1 within the nucleus19,20 indicating that the GFP tag does not 

impair the nucleocytoplasmic transport of the enzyme (Supplementary figure 1a,b). A diffuse 

GFP fluorescence was also clearly detected along the dendritic shaft and as a punctuate GFP-

SENP1 staining partly matching PSD95-synaptic sites (Fig. 1a). Quantification of the 

distribution of GFP-SENP1 in basal conditions showed that ~17% of GFP-SENP1 fluorescence 

is associated with PSD95-positive spines of secondary dendrites (Fig. 1b). A similar 

distribution was measured for the endogenous SENP1 enzyme with ~13% of the SENP1 

immunoreactivity measured in PSD95-positive clusters (Fig. 1c,d).  
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We then assessed GFP-SENP1 activity by expressing the WT GFP-tagged enzyme or its 

inactive C603S mutant in COS7 cells (Fig. 1e-h). As expected, expression of the WT form of 

GFP-SENP1 significantly decreased both SUMO1- and SUMO2-modified protein levels. By 

contrast, expression of the GFP-SENP1-C603S inactive mutant did not affect the overall level 

of sumoylated proteins (Fig. 1g,h). Altogether, these findings indicated that GFP-SENP1 is 

functional with a subcellular localization similar to the distribution reported for the endogenous 

desumoylation enzyme16,17. 

 

To investigate the dynamic redistribution of GFP-SENP1 in activated neurons, we combined 

time-lapse microscopy with the use of pharmacological drugs to potentiate synaptic activity. To 

this end, we stimulated GFP-SENP1-expressing hippocampal neurons with the GABAA 

receptor inhibitor bicuculline18 and recorded the redistribution of GFP-SENP1 in real time (Fig. 

2a-c). Synaptic activation with bicuculline led to a time-dependent increase in GFP-SENP1 

localization peaking 25 min after the beginning of the treatment (Fig. 2a-c; Supplementary 

video 1). A concurrent decrease in GFP-SENP1 fluorescence was also measured in the 

dendritic shaft over the time course of the experiment (Fig. 2a-c). Interestingly, GFP-SENP1 

fluorescence from the activated spines returned to initial levels when the bicuculline was 

exchanged for a control solution indicating that this activity-dependent increase in GFP-SENP1 

synaptic localization is a fully reversible process (Fig. 2a-c). As an additional control, we also 

verified that the overall distribution of GFP-SENP1 remained unchanged in basal unstimulated 

conditions over the time course of these experiments (Fig. 2d,e). 

 

To assess whether the enhanced bicuculline-induced synaptic SENP1 localization was due to an 

increased entry in and/or a decreased exit of GFP-SENP1 out of spines, we first assessed the 

diffusion properties of GFP-SENP1 using spine restricted Fluorescence Recovery After 
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Photobleaching (FRAP) experiments18 (Fig. 3). To quantitatively measure the synapto-

dendritic diffusion of GFP-SENP1, FRAP curves were individually fitted to get values for the 

mobile fraction and the rate of GFP-SENP1 fluorescence recovery (Half time of recovery; see 

the Method section for details). The mobile fraction refers to the percentage of GFP-SENP1 

that moved from the shaft to the bleached spine area over the time course of the experiment. In 

unstimulated control conditions, we measured a ~75% recovery of the initial fluorescence 

indicating that the majority of bleached GFP-SENP1 molecules were dynamically exchanged 

with fluorescent GFP-SENP1 from the shaft (Fig. 3d). In resting neurons, the synaptic rate of 

GFP-SENP1 fluorescence recovery was ~21 seconds with a resulting diffusion coefficient of 

0.0135 m2 s-1 (Fig. 3e,f). Interestingly, increasing synaptic activity by blocking inhibitory 

GABAA receptors with bicuculline for 10 to 25 minutes did not affect the ratio of mobile GFP-

SENP1 molecules (Fig. 3a-d) but significantly increased the half time of GFP-SENP1 

fluorescence recovery to 28 seconds (Fig. 3e) with the corresponding decrease in GFP-SENP1 

diffusion coefficient to 0.010 m2 s-1 in spines (Fig. 3f). Since the mobile fraction of GFP-

SENP1 remains unchanged in stimulated conditions concurrently to a delayed synapto-

dendritic exchange of the enzyme indicate that there is an increase in the synaptic residency 

time of GFP-SENP1 in the activated neurons.  

 

Taking into account that there is a time-dependent increase in the synaptic level of GFP-SENP1 

in bicuculline-activated neurons, we measured the properties of SENP1 diffusion in sustained, 

i.e. >25 minutes, bicuculline-treated cells (Fig. 3e). Interestingly, the mobile fraction of GFP-

SENP1 in spines was significantly decreased to less than 57% of the initial fluorescence 

indicating that the synapto-dendritic exchange of GFP-SENP1 molecules was dramatically 

reduced in these experimental conditions (Fig. 3d). The synaptic half time recovery of GFP-

SENP1 fluorescence and the resulting diffusion coefficient were not significantly different 
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from values measured upon shorter bicuculline treatment (Fig. 3e,f). Altogether, these data 

suggest that the reduced mobile fraction of GFP-SENP1 is mainly due to a decreased exit of 

SENP1 from the spine rather than a slower entry rate. 

 

To assess whether the desumoylation enzymatic activity could play a role in the regulation of 

SENP1 synapto-dendritic mobility, we measured the synaptic diffusion properties of the 

catalytically inactive SENP1-C603S mutant. We first verified that the C603S point mutation 

impairs its desumoylation activity (Fig. 1e,f). We then performed FRAP experiments and 

analyzed the diffusion properties of the inactive GFP-SENP1-C603S in control and bicuculline-

stimulated neurons (Supplementary figure 2). The mobile fraction in basal conditions was not 

significantly different from the active enzyme (Fig. 3e,f) with ~74% recovery of the initial 

fluorescence. In resting neurons, the half time of fluorescence recovery for GFP-SENP1-C603S 

was increased to 27s (t1/2 = 21s for the WT) with a concurrent diffusion coefficient of 0.0092 

m2 s-1 (Supplementary figure 2d) revealing a slower diffusion of the mutant enzyme into 

spines. Synaptic activation with bicuculline led to an increase in the half time of GFP-SENP1-

C603S fluorescence recovery similar to the effect on the WT enzyme. The mobile fraction was 

reduced to ~54% (Supplementary figure 2d) as in bicuculline-treated WT GFP-SENP1-

expressing neurons indicating that the mutation impairs the diffusion properties of SENP1 in 

basal but not stimulated conditions. 

 

Activity-dependent trapping of SENP1 into spines 

To confirm that the increase in synaptic SENP1 levels upon sustained (25-50 min) synaptic 

activation is due to the retention of the desumoylation enzyme in spines, we designed live-cell 

imaging experiments to visualize and measure the exit rate of SENP1 in control and activated 

conditions (Fig. 4). To achieve this, we first exchanged the GFP from GFP-SENP1 with the 
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green to red photoconvertible Dendra223,24 protein tag (Dendra2-SENP1). Then, using restricted 

Dendra2 photoconversion time-lapse microscopy18,25, we recorded the decrease in the red 

photoconverted Dendra2-SENP1 fluorescence from dendritic spines in control and bicuculline-

treated conditions (Fig. 4a,b). A 40-min bicuculline stimulation led to a significant decrease in 

both the exit rate of the red photoconverted fluorescence from the spines (Control half time 

decay, 6.10 ± 1.8s; Bicuculline, 11.90 ± 2.6s, Means ± s.e.m.; Fig. 4c) and the diffusion 

coefficient (Control, 0.289 ± 0.065 m2 s-1 ; Bicuculline, 0.115 ± 0.020 m2 s-1, Means ± 

s.e.m.; Fig. 4d). These data strengthened the FRAP measurements (Fig. 3) further 

demonstrating that synaptic activation regulates the synapto-dendritic diffusion of SENP1 by 

reducing the exit of SENP1 from spines.  

 

The synaptic retention of SENP1 is regulated by the activation of mGlu5 receptors  

Activation of mGlu5 receptors leads to the transient synaptic trapping of the SUMO-

conjugating enzyme Ubc918. To investigate whether the activation of mGlu5R also regulates 

the synaptic diffusion of SENP1 we performed FRAP assays in the presence of the group 1 

mGluR agonist DHPG (Fig. 5). GFP-SENP1-expressing neurons were stimulated with DHPG 

(50 M) and GFP-SENP1-labeled spines were photobleached at various time points during the 

treatment. The mobile fraction of GFP-SENP1 was dropping from 74% to about 58% in 

DHPG-stimulated spines (Fig. 5a-c) similar to the values measured for bicuculline-treated WT 

GFP-SENP1 neurons (Fig. 3). 

 

In DHPG-treated conditions, the half time of GFP-SENP1 fluorescence recovery was 

dramatically increased to values close to those measured in bicuculline-stimulated cells (Fig. 

5d; Control, 23.4s ± 1.4; DHPG, 34.0 ± 1.1s, Means ± s.e.m.) indicating that the activation of 

mGlu1/5 receptors is essential to regulate the diffusion and trapping of SENP1 into spine. 
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Interestingly, the decreased synaptic diffusion of GFP-SENP1 in DHPG condition was fully 

prevented when neurons were pre-incubated with the specific mGlu5R antagonist MPEP (Fig. 

5) revealing the specific involvement of mGlu5 receptors in the process. Altogether, these data 

indicate that mGlu5R activation is central to the time-dependent regulation of SENP1 at 

synapses. 

 

The synaptic level of endogenous SENP1 is regulated upon activation of mGlu5 receptors  

To further confirm the central role of mGlu5R activation in the regulation of SENP1 at 

synapses, we performed immunolabeling experiments in rat hippocampal neurons to measure 

the extent of colocalisation between the endogenous SENP1 and the postsynaptic marker 

PSD95 in basal and DHPG (50 M)-treated conditions (Fig. 6). Consistent with the live 

imaging data (Figs. 2-5), the extent of SENP1 immunoreactivity in PSD95-positive clusters is 

significantly increased in DHPG-activated neurons (Fig. 6a,b). We also verified that there were 

no significant alterations of PSD95 and total SENP1 immunoreactivities upon the 

pharmacological treatments used (Fig. 6c,d). These findings further support the involvement of 

mGlu5 receptors in the dynamic targeting of the desumoylation enzymes into dendritic spines. 

 

Finally, we evaluated the enrichment in endogenous SENP1 in post-synaptic fractions upon 

basal and activated conditions (Fig. 7). To this end we purified Triton X-insoluble post-

synaptic density fractions (TiF26,27; Fig. 7a) from control, bicuculline and DHPG-treated rat 

cortical cultured neurons. TiF fractions were specifically enriched in synaptic PSD95 and 

Homer1 proteins and importantly, devoid of the nuclear protein NOPP140 revealing the 

absence of possible nuclear contamination (Fig. 7b). Interestingly, both the bicuculline and the 

DHPG treatments (Fig. 7c,d) led to an increase in the endogenous level of SENP1 in the TiF 

fraction further confirming the activity-dependent targeting of the enzyme in dendritic spines. 
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Discussion 

Here, we uncovered for the first time, a regulatory pathway controlling the SENP1 targeting 

into dendritic spines providing additional insights into the regulation of the sumoylation 

balance at synapses. We demonstrated that SENP1 diffusion in neurons is regulated by the 

mGlu5 receptors in an activity-dependent manner. In particular, the activation of mGlu5Rs, 

which leads to a dramatic decrease in the exit rate of SENP1 from dendritic spines and 

consequently, to an accumulation of SENP1 at post-synaptic sites. 

 

We previously demonstrated that the activation of mGlu5Rs in hippocampal neurons regulates 

the synaptic diffusion of Ubc9, the sole conjugating enzyme of the sumoylation pathway, by 

increasing its residency time at the synapse18. This work described for the first time a synaptic 

regulation of the SUMO machinery and highlighted the fast regulation of this process since this 

transient enzymatic modulation occurs within a sub-second to second time range. Here the 

regulation of SENP1 diffusion in and out of spines is rather slow when compared to the Ubc9 

regulatory process. Indeed, values for the synapto-dendritic exchange of the desumoylation 

enzyme is within a 20-second range indicating that the mGlu5R activation sequentially leads to 

synaptic sumoylation and then, to the targeting of SENP1 into spines to balance the protein 

sumoylation levels. Interestingly, while we show here a clear synaptic enrichment of SENP1 

into mGlu5R-activated spines, the sustained mGlu5R activation does not increase the synaptic 

levels of Ubc918. This may uncover a differential regulation of both enzymes at the molecular 

level, despite the same initial, i.e. mGlu5R, activating pathway. 

 

The synaptic targeting of other cytosolic enzymes important for synaptic regulatory functions 

such as the Ca2+/calmodulin-dependent protein kinase II (CaMKII) is also regulated by 
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variations of synaptic activity28,29. However, the synaptic targeting of CaMKII is rather linked 

to the activation of an NMDA receptor-mediated calcium pathway28. In addition to its known 

synaptic accumulation, Lemieux and colleagues reported the dynamic recruitment of CaMKII 

to dendritic subdomains adjacent to the activated spines involving the interaction of the enzyme 

with microtubules, a prerequisite for CaMKII autophosphorylation29. The proteasome subunit 

Rpt1 is also targeted to spines in NMDAR-activated neurons and actively participate in the 

activity-dependent shaping of the synaptic protein content30. However, whether the activity-

dependent targeting of CaMKII and/or Rpt1 to dendritic spines is also regulated by the 

activation of the mGlu5R pathway remains unexplored. 

 

SENP5 was recently reported to be localized at least in part, at synaptic sites where it 

colocalizes with mitochondrial markers31. Despite this interesting descriptive aspect, the 

functional role of the desumoylase at synapses as well as its regulation in dendritic spines is 

still not available in the literature. On the same side, SENP2 has been closely associated to 

mitochondrial regulatory functions and for instance, it regulates Drp1 sumoylation and 

consequently mitochondrial fission32. Therefore, it would be interest to assess the activity-

dependent diffusion properties of both SENP2 and SENP5 in hippocampal neurons. Despite the 

apparent lack of research on these proteins, the synaptic activity of these desumoylation 

enzymes may have important implications in neurological disorders involving mitochondrial 

alterations. 

 

The current work also raises intriguing questions as to whether a deregulated mGlu5R-

signaling impairs the sumoylation/desumoylation equilibrium. Since mGlu5Rs are involved in 

synaptic functions as well as in the aetiology of several neurological disorders, including 

schizophrenia, Fragile X syndrome or chronic pain33, it is likely that anomalies of the mGlu5R-
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signaling pathway in such diseased conditions could alter the synaptic targeting of SENP1 and 

consequently the synaptic levels of protein sumoylation. 

 

Finally, future work will also have to assess whether the synaptic enrichment of SENP1 

enzymes upon sustained synaptic activation, as in epilepsy or stroke, exerts a protective or a 

deleterious action. 

 

Methods 

Constructs 

GFP-tagged full length WT human SENP1 in pEGFP-C2 is a generous gift from Dr Wang 

Min34. GFP-SENP1-C603S mutant construct was made by site-directed mutagenesis using 

Quick-change mutagenesis (Agilent). The constructs were entirely sequenced. 

 

Rat strain 

Wistar rats were exclusively from a commercial source (Janvier, St Berthevin, France). All 

animals were handled and treated in accordance with the European Council Guidelines for the 

Care and Use of Laboratory animals in our facility. Animals had free access to water and food. 

Lightning was controlled as a 12h light and dark cycle and the temperature maintained at 23 ± 

1°C. Protocol to prepare primary neuronal cultures from rat embryos at E17 was approved by 

our local Animal Care and Ethics Committee (Comité Institutionnel d’Ethique Pour l’Animal 

de Laboratoire N°28, Nice, France; Project reference NCE/2012-63). 

 

Cell culture 

Hippocampal neurons were prepared from E17 pregnant rats as previously described18,25. 

Briefly, neurons were plated in Neurobasal medium (Invitrogen, France) supplemented with 
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2% B27 (Invitrogen), 0.5 mM glutamine and penicillin/streptomycin (Ozyme) on 100-mm 

dishes or 24-mm glass coverslips (VWR) pre-coated with poly-L-Lysine (0.5 mg mL-1; Sigma). 

Neurons (3.106 cells per 100-mm dish or 110,000 cells per coverslip) were then fed once a 

week with Neurobasal medium supplemented with 2% B27 and penicillin/streptomycin for a 

maximum of 3 weeks. 

 

Cell transfection 

Mycoplasm-free COS7 cells (ATCC reference CRL-1651, Molsheim, France) were transfected 

with the indicated constructs using Lipofectamine 2000 (Invitrogen) according to the 

manufacturer’s instructions and used 48-72h post-transfection.  

 

Sindbis virus production and neuronal transduction 

Attenuated Sindbis viral particles (SINrep(nsP2S726)) were prepared and used as previously 

described35,36,37. Briefly, cRNAs were generated from the pSinRep5 plasmid containing the 

sequence coding for the indicated GFP-SENP1 constructs and from the defective helper (pDH-

BB) plasmid using the Mmessage Mmachine SP6 solution (Ambion). cRNAs were then 

electroporated into BHK21 cells. Pseudovirions present in the culture medium were harvested 

72h after electroporation and concentrated using ultracentrifugation on SW41Ti. Aliquots of 

resuspended Sindbis particles were then stored at -80°C. Neurons were transduced at a 

multiplicity of infection (MOI) of 0.1 to 1 and returned to the incubator at 37°C under 5% CO2 

for 18 to 24h until use. 

 

Immunocytochemistry 

Hippocampal neurons (19 DIV) treated or not for 40 min with 50 M DHPG or 10 M 

Bicuculline at 37°C were fixed with Methanol for 20 min at -20°C and washed three times 5 



 15 

minutes in PBS. Cells were then permeabilized for 1h in PBS containing 0.2% Triton X100, 

0.2% of BSA and 5% Horse Serum (HS) at RT. Neurons were immunostained with a rabbit 

anti-SENP1 (1/200; Sigma-Aldrich), a mouse anti-PSD95 (1/500; Neuromab) and a guinea pig 

anti-MAP2 (1/1000; Synaptic System) overnight at 4°C in PBS containing 0.2% Triton X100, 

0.2% of BSA. Cells were washed three times in PBS and incubated with the appropriate 

secondary antibodies conjugated to Alexa488, Alexa594 or Alexa 647 as indicated and 

mounted with Mowiol (Sigma). Confocal images (1024×1024 pixels) were acquired with a 63X 

oil-immersion lens (Numerical Aperture NA 1.4) on a confocal LSM780 microscope (Zeiss, 

Germany). Z-series of 5 images of randomly selected dendrites were compressed into two 

dimensions using the maximum projection algorithm of the Zeiss software. Quantification was 

performed using the ImageJ software and the synaptic enzymatic staining was measured with 

the use of an in-house ImageJ macro18. Briefly, confocal image of the synaptic marker was 

used to produce a mask after an automated intensity threshold. Masks were then applied to the 

corresponding images and the fluorescence intensity within the synaptic area was measured.  

 

Live cell imaging 

Protocols were performed as previously described18,25,37. Briefly, live GFP-SENP1 expressing 

neurons were kept on a heated stage (set at 37°C) on a Nikon Ti inverted microscope. GFP 

fluorescence was excited through a 60X oil-immersion lens (Numerical Aperture, 1.4) using a 

488nm laser light (50 mW, 3%) and time series (15 Hz) were collected for 210 sec as a single 

image slice using a Perkin Elmer Ultra-View spinning disk solution. 

 

Neurons were treated or not with 10 M bicuculline or 50 M DHPG in Earle’s buffer (25 mM 

HEPES-Tris pH 7.4, 140 mM NaCl, 5 mM KCl, 1.8 mM CaCl2, 0.8 mM MgCl2, 0.9 g L-1 

glucose) for 10-40 min in Earle’s buffer. A 10 min preincubation at 37°C was achieved when 
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specific inhibitors were used. Pharmacological drugs (30 M MPEP, 10 M bicuculline or 50 

M DHPG) were all diluted in Earle’s buffer.  

 

FRAP measurements 

Fluorescence intensity variations in spines were analyzed using the FRAP module of the 

Volocity 6.3 software. Fluorescence recovery curve in FRAP allows the direct determination of 

two parameters. First the difference between the basal level of fluorescence and the recovered 

plateau level after photobleaching reflects the immobile fraction of protein and conversely the 

mobile diffusible fraction. Immobile fractions reflect the direct or indirect binding of the 

protein of interest to cytoskeleton constituents. Second, the half time of recovery specifies the 

mobility of the diffusible fraction of the protein of interest. Fluorescence data were collected 

from regions of interest drawn around the fluorescence of GFP-SENP1. FRAP data were 

expressed as a percentage of initial fluorescence (average fluorescence value from the ten 

second imaging period immediately before photobleaching) over time and fitted with a single-

phase exponential function (f(t) = y + Ae-kt) using the Volocity 6.3 software from Perkin Elmer. 

Mobile fraction (in %), half time of recovery (in seconds) and diffusion coefficient (in m2 s-1; 

D = photobleached spine area / 4t1/2) values were extracted for each experiment using the 

FRAP module of the Volocity 6.3 software. Curves were fitted using a one phase exponential 

association or mono-exponential decay equation as indicated and data statistically analyzed 

with Prism 7 (GraphPad software, Inc). 

 

Dendra2-SENP1 photoconversion measurements25 

The GFP tag from the GFP-SENP1 construct was exchanged for the photoswitchable Dendra2 

protein23,24 (Evrogen JSC, Russia). Individual Dendra2-SENP1-expressing spines were 

photoconverted for 30 msec using a 405 nm laser light (50 mW, 18%). The red photoconverted 
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Dendra2-SENP1 was excited using a 561 nm laser light (50 mW, 20%) and time series (10 Hz) 

were collected for 210 sec as a single image slice using a Perkin Elmer Ultra-View spinning 

disk solution. The decrease in red fluorescence from Dendra2-SENP1 photoconverted spines 

was measured over time using the Volocity 6.3 software and data expressed as a percentage of 

the initial red photoconverted fluorescence (F/F0).  

 

Triton X-insoluble Fraction (TiF) isolation 

TiF fractions were prepared according to established protocols26,27 using 18-20 DIV control and 

treated-rat cortical neurons (5 x 100 mm dishes per condition with 2.5 x 106 cells) for 40 min in 

control, bicuculline (10 M) or DHPG (50 M) in Earle’s Buffer. Neurons were immediately 

cooled down on ice and homogenized in ice-cold sucrose buffer (1 mM HEPES pH 7.4, 0.32 M 

Sucrose, 1 mM EDTA, 1 mM MgCl2, 1 mM NaHCO3, Mammalian protease inhibitors (Roche) 

and 20 mM NEM (Sigma-Aldrich) to protect proteins from desumoylation). Nuclear proteins 

were removed from the synaptosomal preparation by centrifugation at 500g for 5 min. Post-

nuclear fractions were further centrifuged at 13,000g for 15 min to isolate crude synaptosomal 

fractions. The crude fractions were then resuspended in lysis Buffer (75 mM KCl, 1% Triton 

X100, 20 mM NEM). Tif fractions were finally purified by centrifugation at 100,000g for 1h. 

TiF fractions were collected and resuspended in Urea-containing lysis buffer (50 mM Tris-HCl 

pH 6.8, 2% SDS, 10% glycerol and 8M Urea). Protein concentrations were determined 

(BioRad) and samples were boiled in Laemmli buffer for 10 min. 

 

Immunoblotting 

Transfected COS7 cells as indicated were homogenized in lysis buffer (10 mM Tris-HCl 

pH7.5, 10 mM EDTA, 150 mM NaCl, 1% Triton X100, 0.1% SDS) in presence of a 

mammalian protease inhibitor tablet (Roche), proteasome inhibitor MG132 (20 M) and 20 
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mM NEM. Protein extracts were resolved by SDS-PAGE, transferred onto nitrocellulose 

membrane and immunoblotted with the following primary antibodies: mouse anti-SUMO1 

(clone 21C7, DSHB), 1.7 g.mL-1; Mouse anti-SUMO2/3 (clone 8A2, DSHB), 1.9 g.mL-1; 

Rabbit anti-SENP1 1/250 (Sigma Prestige); Mouse anti-GFP 1/1000 (Roche, Germany); Mouse 

anti-PSD95 1/10000 (NeuroMab); Mouse anti-Homer1 1/1000 (Synaptic System); Mouse anti-

Synapsin 1a/b 1/1000 (Santa-Cruz); Mouse anti-NOPP140 1/700 (Santa-Cruz); Standard 

loading controls were included using a mouse anti--actin antibody 1/1000 (Sigma) or a rabbit 

anti-Tubulin 1/10000 (Synaptic System) as indicated.  

 

Statistical analysis 

Statistical analyses were calculated using GraphPad Prism 7 (GraphPad software, Inc). Data 

were expressed as mean ± s.e.m. One-way ANOVA were performed with the indicated post-

test for multiple comparison data sets. All data were tested for normal distribution. *p<0.05 

was considered significant. 
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Figure legends 

Figure 1. GFP-SENP1 is catalytically active and distributed in dendrites and spines. (a) 

Representative image of a 19 DIV rat hippocampal neuron expressing WT GFP-SENP1 (green) 

and immunolabelled for PSD-95 (red). Scale bars: Left, 20 m; Right, 2 m. (b) Graphical 

representation indicates the percentage of GFP-SENP1 localisation in PSD-95 positive 

compartment (17.2 ± 1.1%) of secondary dendrites. (c) Representative images of a 19 DIV rat 

hippocampal neuron immunolabelled for the neuronal marker MAP2 (blue), synaptic marker 

PSD-95 (red) and SENP1 (green). Scale bars: Left, 20 m; Right, 2 m.  (d) Graphical 

representation indicates the percentage of endogenous SENP1 staining in PSD-95 positive 

spines (12.7 ± 0.4%) of secondary dendrites (n = 26 neurons). (e) Representative immunoblots 

of SUMO1- and SUMO2/3-modified protein levels upon expression of GFP, WT GFP-SENP1 

and the inactive GFP-SENP1 mutant (C603S) in COS7 cells. (f) Representative immunoblots 

for SENP1, GFP and β-actin in the indicated transfected conditions. (g) Quantitative 

representation of SUMO1-ylation levels normalized to control GFP ± SEM (SUMO1: WT 

GFP-SENP1 [52.2 ± 7.5%] and GFP-SENP1 C603S [87.2 ± 13.7%]). (h) Quantitative 

representation of SUMO2/3-ylation levels normalized to control GFP ± SEM (SUMO2: WT 

GFP-SENP1 [50.7 ± 6.7%] and GFP-SENP1 C603S [103.6 ± 22.7%]) from 3 independent 

experiments. Statistics: One-way ANOVA with Tukey post-hoc test. P-values are indicated. 

 

Figure 2. Activity-dependent redistribution of GFP-SENP1 into spines. (a) Representative 

confocal images of a time-lapse recording of a GFP-SENP1 expressing rat hippocampal 

secondary dendrite in control and bicuculline (10 µM)-treated conditions as indicated on the 

top bars. (b) Quantification of time lapse experiments showing the variation of normalized 

fluorescence intensity ± SEM in spines (n = 34), shafts (n = 11) and whole dendritic area 

(green). (c) Graphical representation of mean fluorescence intensity ± SEM in spines in control 
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(dark grey), bicuculline plateau (orange, 1.29 ± 0.03) and washout (light grey, 1.07 ± 0.04). 

Statistical test: Paired, non-parametric one-way ANOVA with Tukey post-hoc test. P-values 

are indicated. (d) Graphical representation and corresponding confocal images of time-lapse 

recording of a GFP-SENP1-expressing hippocampal neuron in control solution. Curves 

represent mean values ± SEM of indicated numbed of spines (black), shafts (orange) and whole 

dendritic tree field (green). (e) Bar graph shows spine mean fluorescence intensity ± SEM 

during 0-5 min (dark grey) and 5-40 min (light grey) incubation with control solution. N = 40 

spines. Statistical test: Paired, non-parametric t-test. ns, not significant.  

 

Figure 3. SENP1 postsynaptic entry is regulated by synaptic activity in a time-dependent 

manner. (a) Representative FRAP recordings of GFP-SENP1-expressing spines in control and 

bicuculline (15 and 40 min of sustained treatment) conditions. Scale bar: 1 m. (b) FRAP 

curves corresponding to images in (a). (c) FRAP curves showing mean values ± SEM of 

fluorescence intensity of bleached spines in control (blue) and bicuculline (sustained treatment 

of 10-25 min [orange] and 25-50 min [red]) conditions. (d) Bars represent mobile fraction (ctrl 

[74.5 ± 1.1%], bic 10-25 min [71.2 ± 1.7%], and bic 25-50 min [56.2 ± 1.8%]; (e) half-time 

recovery (ctrl [20.79 ± 1 s], bic 10-25min [28.25 ± 2 s], and bic 25-50 min [33.58 ± 1.6 s]); (f) 

diffusion coefficient (ctrl [0.0135 ± 0.0007 µm2/s], bic 10-25 min [0.01 ± 0.0008 µm2/s], and 

bic 25-50 min [0.0087 ± 0.0007 µm2/s]); and spine numbers (ctrl= 165, bic 10-25 min= 75, and 

bic 25-50 min = 139) from at least 5 different cultures. Statistics: T1/2 and diff. coef. were 

analyzed by Kruskal-Wallis ANOVA and Fm by parametric ANOVA with Tukey post hoc test. 

P-values are indicated. 

 

Figure 4. The synaptic exit of SENP1 is regulated by synaptic activity. (a) Representative 

confocal images of Dendra2-SENP1-expressing rat hippocampal neurons (19 DIV) during a 
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photoconversion experiment in control and bicuculline conditions. Scale bar: 1 m. (b) 

Fluorescence decay curves showing the decrease in red fluorescence as photoconverted 

Dendra2-SENP1 molecules exit from spines. The curves correspond to the images in (a). (c) 

Graph displaying fluorescence decay curves as mean values ± SEM from 12 spines in control 

and 13 spines in bicuculline (duration of treatment 25-50 min) conditions. Statistics: multiple t-

test. (d) Graphical representations that corresponds to fluorescence decay curves in (c) showing 

(d) half time decay (ctrl: [6.1 ± 1.8 s] and bic: [11.9 ± 2.6 s]). (e) Diffusion coefficient of 

fluorescence decay (ctrl: [0.289 ± 0.065 µm2/s] and bic: [0.115 ± 0.020 µm2/s]). Statistics: 

Mann-Whitney. P-values are indicated. Number of cultures = 3. 

 

Figure 5. SENP1 synaptic diffusion is mGluR5-dependent. (a) Representative FRAP 

recordings of WT GFP-SENP1-expressing spines in control, DHPG (sustained 25-50 min), 

MPEP and MPEP+DPHG (sustained 25-50 min) conditions. Scale bar = 1 µm. (b) FRAP 

curves showing mean values ± SEM of fluorescence recovery in bleached spines in control 

(blue), DHPG (red), MPEP (green) and MPEP+DHPG (magenta) conditions. (c) Mobile 

fraction (ctrl [74.0 ± 1.6%], DHPG [58.4 ± 1.2%], MPEP [68.1 ± 2.1%] and MPEP+DHPG 

[79.0 ± 1.5%]); (d) Half-time recovery ± SEM (ctrl [23.4 ± 1.4 s], DHPG [34.0 ± 1.1 s], MPEP 

[27.5 ± 1.7 s] and MPEP+DHPG [23.3 ± 2 s]); and (e) diffusion coefficient (ctrl [0.0126 ± 

0.0012 µm2/s], DHPG [0.0071 ± 0.0003 µm2/s], MPEP [0.0082 ± 0.0006 µm2/s] and 

MPEP+DHPG [0.012 ± 0.001 µm2/s]). Spine numbers are indicated on the bars. Statistics: T1/2 

and diff. coef. were analysed by Kruskal-Wallis and Fm by parametric ANOVA with Tukey 

post hoc test. P-values are indicated. 

 

Figure 6. Activity-dependent targeting of endogenous SENP1 to synapses. (a) Immuno-

labelling of fixed primary hippocampal neurons for PSD95 (red) and SENP1 (green) in control 
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and DHPG (40 min) conditions. (b) Quantitative representation ± SEM of control-normalized 

fluorescence intensity of SENP1 within PSD-95 area (ctrl: 1 ± 0.026, DHPG: 1.374 ± 0.032); 

(c) size of PSD-95 area (ctrl: 1 ± 0.045, DHPG: 0.933 ± 0.052); and (d) total SENP1 staining 

(ctrl: 1 ± 0.064, DHPG: 1.053 ± 0.058) from 3 independent cultures and at least 6 neurons / 

condition / culture. Number of secondary dendrites is indicated on the bars. Statistics: One-way 

ANOVA with Tukey post hoc test. Significant p-values are indicated. Scale bar = 2 µm. 

 

Figure 7. mGlu5R activation induces the increase of SENP1 in PSD fractions. (a) Step-by-

step scheme of TIF (TritonX100-Insoluble Fraction) isolation. (b) Immunoblot analysis of TIF 

purity isolation displaying fractions from different steps indicated in (a). Immunoblots were 

performed using NOPP140 (nuclear), PSD-95 (postsynaptic), Homer1 (postsynaptic) and 

synapsin 1a/b (presynaptic) markers. Lanes labels: total homogenate (HO), supernatant 1, 2 and 

3 (S1, 2 and 3), pellets 1 and 2 (P1 and 2), triton insoluble fraction (TIF) and supernatant 4 

(S4). Each lane was loaded with 10 µg of total protein. (c) Representative immunoblot of TIF 

fractions from ctrl and DHPG-treated cortical neurons (19 DIV). 15 µg of protein was loaded 

per lane. Immunodetection was performed for PSD95, SENP1 and β-tubulin. (d) Quantitative 

representation of control-normalized SENP1 levels in TIF ± SEM in control and DHPG (1.8 ± 

0.23) conditions from 4 independent cultures. Statistics: Unpaired t-test. P-value is indicated. 
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Supplementary information 

Supplementary figure 1. Nuclear localisation of SENP1 in neurons. (a) Representative 

confocal image of a 19 DIV rat hippocampal neuron immunolabelled for SENP1 (green) and 

the synaptic marker PSD-95 (red). (b) Representative confocal image of a 19 DIV rat 

hippocampal neuron expressing WT GFP-SENP1 (green) and immunolabelled for PSD-95 

(red). Dashed circle indicates the nuclear borders. Scale bar = 20 µm. 

 

Supplementary figure 2. The synaptic redistribution of SENP1 into spines does not rely 

on its catalytic activity. (a) FRAP curves showing mean values ± SEM of fluorescence 

intensity of bleached spines for WT and C603S GFP-SENP1 in control (light and dark blue) 

and bicuculline (red and orange, 25-50 min of sustained bic treatment) conditions. It should be 

noted that FRAP curves and histograms for WT GFP-SENP1 are taken from Fig. 3c-f, for 

comparison. (b) FRAP measurement ± SEM: mobile fraction (WT: ctrl [74.5 ± 1.1%], and bic 

25-50 min [56.2 ± 1.8%]; C603S: ctrl [73.9 ± 1%], bic [54.2 ± 2.6%]); (c) half-time recovery 

(t1/2, WT: ctrl [20.79 ± 1 s], bic 25-50 min [33.58 +/- 1.6 s]; C603S: ctrl [27.4 ± 1.2 s], bic 

[36.8 ± 3.6 s]); and (d) diffusion coefficient (WT: ctrl [0.0135 ± 0.0007 µm2/s], bic 25-50 min 

[0.0087 ± 0.0007 µm2/s]; C603S: ctrl [0.0092 ± 0.0004 µm2/s], bic [0.0084 ± 0.001 µm2/s]). 

Spine number WT: ctrl= 164 and bic 25-50 min = 139; C603S: ctrl = 160 and bic 25-50 min = 

59, from at least 5 different cultures for WT and 2 independent cultures for C603S GFP-

SENP1. Statistics: T1/2 and diff. coef. were analyzed with Mann-Whitney t-test and Fm with 

parametric t-test. P-values are indicated. 
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