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Sur l'existence et la non dégénérescence d'ondes progressives dans l'équation de Gross-Pitaevskii en dimension deux

Dans cette thèse, nous nous intéressons aux ondes progressives dans l'équation de Gross-Pitaevskii i@ t u + u = (juj 2 ¡ 1)u en dimension 2, avec la condition à l'inni juj(x) ! 1 quand jxj ! 1. Cette équation a fait l'objet d'une étude intensive, que ce soit en physique ou en mathématiques. Il s'agit d'un modèle pour les condensats de Bose-Einstein, et décrit entre autres le comportement de superuides.

Nous regardons des questions liées au programme de recherche de Jones-Roberts, notamment sur l'existence et l'unicité d'une onde progressive qui est un minimiseur globale de l'énergie à moment xé. Ces questions ont été abordées dans des travaux précédents en utilisant des méthodes variationnelles. On construit ici, par des méthodes perturbatives et pour des petites vitesses, une branche d'onde progressive régulière par rapport à la vitesse, qui est constituée de deux vortex éloignés l'un de l'autre. Grâce aux propriétés connues sur les vortex, on peut en déduire des propriétés qualitatives satisfaisantes sur cette branche, qui sont meilleurs que ce que l'on peut obtenir par des constructions variationnelles.

Ensuite, on s'intéresse à des propriétés de stabilité sur cette branche. On montre tout d'abord des résultats de coercivité, en améliorant pour cela les résultats de coercivité connus sur les vortex. On en déduit en particulier le noyau de l'opérateur linéarisé, un résultat de stabilité spectrale, ainsi que des résultats d'unicités locales dans l'espace d'énergie. On inverse aussi l'opérateur linéarisé près d'une onde progressive dans des espaces adaptés. Ces résultats sont une étape cruciale pour la compréhension de la stabilité de la branche, et pour démontrer l'unicité du minimiseur de l'énergie. Ces résultats peuvent aussi servir à comprendre l'interaction entre plusieurs ondes progressives dans un même milieu.
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Chapter 1 General introduction and presentation of the results

In this chapter, we summarize the known results on travelling waves in the Gross-Pitaevskii equation in dimension 2, including the results of this thesis. After an introduction on the Gross-Pitaevskii equation, we present, in section 1.2, previous results on this problem and on vortices. This gives an overview of the eld, but also gives theorems that will be used in the proofs of the new results. Then, we present the main new results in sections 1.3 to 1.5. We will also give a sketch of the proofs, and provide some context and applications. The full proofs of these results compose the remaining chapters. Some related open problems are given at the end of this chapter, in section 1.6.

Presentation of the Gross-Pitaevskii equation

We are interested in the Gross-Pitaevskii equation in dimension 2:

i@ t u + u = (juj 2 ¡ 1)u in R 2 juj(x) ! 1 as jxj ! 1:

It is a physical model for Bose-Einstein condensate (see [START_REF] Ginzburg | On the theory of superuidity[END_REF], [START_REF] Neu | Vortices in complex scalar elds[END_REF]). It also describes the behaviour of superuids, as for instance a thin liquid helium lm. This equation is closely related to the Ginzburg-Landau equation and superconductivity problems. It is associated with the Ginzburg-Landau energy

E(v) := 1 2 Z R 2 jrvj 2 + 1 4 Z R 2
(1 ¡ jv j 2 ) 2 :

We are interested in the qualitative description of solutions for the Gross-Pitaevskii equation (we refer to [START_REF] Bethuel | Travelling waves for the Gross-Pitaevskii equation[END_REF], [14], [START_REF] Gérard | The Cauchy problem for the Gross-Pitaevskii equation[END_REF] for the question of long time existence). It has some particular stationnary solutions, named vortices, that play the role of solitons. They solve the equation

(S) u + (1 ¡ juj 2 )u = 0 in R 2 juj(x) ! 1 as jxj ! 1:
The stationnary problem (S) is in itself an interesting one, as it is a particular case of (GP).

Stationnary vortices solutions with radial symmetry (of the form V n (x) = n (r)e i n ) have been constructed (see [7]), and the uniqueness of these solutions (up to a translation and a shift of phase) with degree one at innity have been shown [START_REF] Mironescu | Les minimiseurs locaux pour l'équation de Ginzburg-Landau sont à symétrie radiale[END_REF]. We are interested in several questions about (GP) and the vortices. Can we nd particular solutions of the Gross-Pitaevskii equation that behave like multi vortices ? Are these solutions stable ? Can we understand the long time behaviour of solutions that are close to a multi vortex solution ?

Here, we will focus on the study of travelling waves in (GP). They are, in a sense, the most simple type of solutions after the stationnary ones. In particular, many conjectures exist on them in the physical litterature. We refer mainly to the series of works from Jones, Putterman and Roberts ( [START_REF] Grant | Motion in a bose condensate iii, the structure and eective masses of charged and uncharged impurities[END_REF], [START_REF] Jones | Motions in a bose condensate. iv. axisymmetric solitary waves[END_REF], [START_REF] Jones | Motion in a bose condensate v, stability of solitary wave solutions of nonlinear schrodinger equations in two and three dimensions[END_REF] and references therein). In this both physical and numerical study, it is conjectured that travelling waves can only have speed between 0 and 2 p (this limit being the speed of sound in the model). Furthermore, they predicted the existence of a particular branch of travelling waves on the full range of possible speeds, which is a global (or at least local) minimizer of the energy (at xed either speed or momentum). This branch behaves, in the limit c ! 2 p , up to a rescale, to a solution of Kadomtsev-Petviashvili KP ¡ I (see [START_REF] Béthuel | On the KP I transonic limit of two-dimensional Gross-Pitaevskii travelling waves[END_REF]), and in the limit c ! 0, as two vortices, of degree +1 and ¡1, at a distance of order 2 / c from each other (see [START_REF] Bethuel | Travelling waves for the Gross-Pitaevskii equation[END_REF]). We also refer to [START_REF] Liu | Multi-vortex traveling waves for the gross-pitaevskii equation and the adlermoser polynomials[END_REF] for the construction of other travelling waves in (GP), and [START_REF] Lin | Traveling wave solutions of the Schrödinger map equation[END_REF] for similar equations.

Many mathematical results have been proven in this direction. Non existence for supersonic speeds (c > 2 p ) has been rigorously justied (see [START_REF] Gravejat | A non-existence result for supersonic travelling waves in the Gross-Pitaevskii equation[END_REF] and [START_REF] Gravejat | Limit at innity and nonexistence results for sonic travelling waves in the Gross-Pitaevskii equation[END_REF]), and this Jones-Roberts branch has been constructed using energy methods. We refer for instance to the partial construction of the branch by minimizing the energy at xed small speed in [START_REF] Bethuel | Travelling waves for the Gross-Pitaevskii equation[END_REF], or at xed momentum, in [6]. More recently, a method construction has been given for almost all subsonic speeds, in [START_REF] Bellazzini | Finite energy traveling waves for the gross-pitaevskii equation in the subsonic regime[END_REF]. A main open problem is to show that all these constructions give in fact the same branch.

These methods of construction have been extended to other but similar problems. There are existence results on the Gross-Pitaevskii equation, but in other dimensions (see [START_REF] Mari³ | Traveling waves for nonlinear Schrödinger equations with nonzero conditions at innity[END_REF]), or with dierent nonlinearities ( [8]).

These constructions by energetic methods give solutions that locally minimize the energy, but the conjectured structure in term of vortices in the limit c ! 0 remains unclear. This structure is visible in some sense in [START_REF] Bethuel | Travelling waves for the Gross-Pitaevskii equation[END_REF], but it is not clear for instance that the constructed travelling waves form a branch (namely, that c ! Q c , where Q c is the travelling wave of speed c, is continuous in some sense for these constructions).

We can therefore look for another way of constructing these travelling waves, which will make the branch structure clearer, rather than having properties on the energy of the solution. For that, perturbative methods are more adapated than energy ones. With this method of construction, and some known properties of vortices (in particular [10]), it allows a more precise study of this branch, and its stabilty.

We give a few notations, that hold in all the chapters. We denote, for functions f ; g 2 L loc 2 (R 2 ; C) such that Re(fg ) 2 L 1 (R 2 ; C), the quantity

hf ; gi := Z R 2
Re(fg ); even if f ; g 2 / L 2 (R 2 ; C). We also use the notation B(x; r) to dene the closed ball in R 2 of center x 2 R 2 and radius r > 0 for the Euclidean norm. We dene, between two vectors X = (X 1 ; X 2 ); Y = (Y 1 ; Y 2 ) 2 C 2 , the quantity X:Y := X 1 Y 1 + X 2 Y 2 :

Previous results

We recall the Gross-Pitaevskii equation in dimension 2 (for u: R t R x 2 ! C) (GP)(u) := i@ t u + u ¡ (juj 2 ¡ 1)u = 0:

The condition at innity for (GP) will be juj ! 1 as jxj ! +1;

and it is associated with the Ginzburg-Landau energy

E(v) = 1 2 Z R 2 jrv j 2 + 1 4 Z R 2
(1 ¡ jv j 2 ) 2 :

The Gross-Pitaevskii equation can be seen as a nonlinear Schrödinger equation, with a non trivial condition at innity and a nonlinearity adapted to this condition. However, the condition juj ! 1 as jxj ! +1 allows solutions to have a non trivial behaviour at innity (behaving like e i for instance), and thus the equation is not simply solved by the sum of a constant and a solution of a nonlinear Schrödinger equation going to 0 at innity. An exemple such solutions are vortices.

Vortices in Gross-Pitaevskii

Existence and decay properties

Vortices are some particular stationnary solutions of the Gross-Pitaevskii equation. They solve

(S) u + (1 ¡ juj 2 )u = 0 in R 2 juj(x) ! 1 as jxj ! 1;
and are of the form u(x) = n (r)e in , where n 2 Z , (r; ) are the polar coordinates of x 2 R 2 , and n is a real-valued function. For n = 1, existence of such functions, and some of their properties, are listed in the following result. Lemma 1.2.1. ( [7] and [START_REF] Hervé | Étude qualitative des solutions réelles d'une équation diérentielle liée à l'équation de Ginzburg-Landau[END_REF]) A vortex centered around 0, V 1 (x) = 1 (r)e i , veries V 1 (0) = 0, E(V 1 ) = +1 and there exist constants K ; > 0 such that 8r > 0; 0 < 1 (r) < 1; 1 (r) r!0 r; 1 0 (r) r!0

1 0 (r) > 0; 1 0 (r) = O r!1 1 r 3
; j 00 (r)j + j 000 (r)j 6 K ;

1 ¡ jV 1 (x)j = 1 2r 2 + O r!1 1 r 3
; 2 and

jrV 1 j 6 K 1 + r ; jr 2 V 1 j 6 K (1 + r)
rV 1 (x) = i V 1 (x)
x ? r 2 + O r!1 1 r 3

; where x ? := (¡x 2 ; x 1 ), x = re i 2 R 2 . Furthermore, similar properties holds for V ¡1 , since

V ¡1 (x) = V 1 (x):
Here is a graph of 1 (r) for r 2 [0; 8].

We refer to [START_REF] Hervé | Étude qualitative des solutions réelles d'une équation diérentielle liée à l'équation de Ginzburg-Landau[END_REF] for the existence and similar properties for vortices of other degrees. Still from [START_REF] Hervé | Étude qualitative des solutions réelles d'une équation diérentielle liée à l'équation de Ginzburg-Landau[END_REF], it is possible to compute asymptotics at all order of n (r) for r ! 0 and r ! 1. Furthermore, by the invariances of (GP), we have that V 1 (x ¡ X)e i ; X 2 R 2 ; 2 R are solutions of the problem (S). Since 1 (r) = 0 if and only if r = 0, we dene the center of a vortex by being the only point where the function is 0. Remark that, up to a shift of phase, a vortex in this manifold is completely dened by its degree (1) and its center.

It has been shown that these particular solutions of (S) are the only ones with degree 1:

Theorem 1.2.2. ([38]) If u is a solution of u + (1 ¡ juj 2 )u = 0 in R 2 with Z R 2 (1 ¡ juj 2 ) 2 < +1
and u ¡ e i ! 0 at innity, then there exists X 2 R 2 such that

u = V 1 (: ¡ X):
This result will be not used in itself in the study of travelling waves in (GP). However, it shows that the vortices have a special role in this problem.

From Lemma 1.2.1, the energy of vortices is innite. Despite that, they will play a role in the construction of nite energy travelling waves. Their energy is innite because of their behaviour at innity (the degree is not zero), but a multi vortex solution with a sum of degrees equal to 0 is, at least formally, of nite energy.

About vortices of degrees n > 2, few properties are known. We refer to [START_REF] Ovchinnikov | I. Static vortices[END_REF] for some numerical results.

Coercivity results on vortices of degree 1

For a vortex V 1 centered at 0, we dene the quadratic form, formally dened by the second variation of the energy E around V 1 :

B V1 (') := Z R 2 jr'j 2 ¡ (1 ¡ jV 1 j 2 )j'j 2 + 2Re 2 (V 1 ');
for functions ' 2 H V1 , the associated energy space:

H V1 := ' 2 H loc 1 (R 2 ; C); Z R 2 jr'j 2 + (1 ¡ jV 1 j 2 )j'j 2 + Re 2 (V 1 ') < +1 :
Remark by Lemma 1.2.1 that 1 ¡ jV 1 j 2 > 0. and if B V1 (') = 0, then with c 2 R (the equation is invariant by rotation, we therefore choose, without loss of generality, that the travelling wave moves in the direction ¡e ~2), solve the equation 0 = (TW c )(v) := ¡ic@ x2 v ¡ v ¡ (1 ¡ jv j 2 )v:

Momentum and range of possible speeds

As in similar physical problems, we want to dene the momentum of such a solution, but it is not easy since a travelling wave does not go at 0 at innity. We refer to [START_REF] Mari³ | Traveling waves for nonlinear Schrödinger equations with nonzero conditions at innity[END_REF] for a denition in dimension n > 3.

Theorem 1.2.4. ( [8]) A travelling wave with nite energy converges to a constant at innity in position. Up to a shift of phase, we can therefore suppose that a travelling wave of nite energy solves the problem

(TW c 1 ) ¡ic@ x2 v ¡ v ¡ (1 ¡ jvj 2 )v = 0 in R 2 v(x)
! 1 as jxj ! 1: Then, the quantity P ~(v) := hirv; v ¡ 1i is well dened, and is the momentum of the solution. Furthermore, for 2 H 1 (R 2 ; C), hi@ x 2 ; v ¡ 1i = ¡hi ; @ x 2 v i:

Remark that P ~(v) 2 R 2 , and we denote P 1 (v) and P 2 (v) its two components. We now focus on the possible speeds of a travelling wave. It has been rst conjectured in physics, then shown rigorously, that there are no travelling waves at sonic or supersonic speed: Theorem 1.2.5. ( [START_REF] Gravejat | A non-existence result for supersonic travelling waves in the Gross-Pitaevskii equation[END_REF] and [START_REF] Gravejat | Limit at innity and nonexistence results for sonic travelling waves in the Gross-Pitaevskii equation[END_REF]) If jcj > 2 p , the only solution with nite energy of (TW c 1 ) is the constant 1.

In (GP), up to the physical rescaling, 2 p is the speed of sound. It is fully expected that all the speeds in 0; 2 p are reached by a travelling wave. We now give some precise existence results.

Existence results for travelling waves

Travelling waves have been constructed using energy methods. The idea is to look for a minimizer of the energy at xed momentum and using a mountain pass argument. Such constructions have been done in dierent regimes. First, for small speeds, with the apparition of a two vortices structure.

Theorem 1.2.6. ([4]

) There exists some constant c 0 > 0 such that, for 0 < c < c 0 , there exists a non constant solution v of (TW c

) with nite energy. Moreover, there exists 0 ; 1 > 0 such that

2 jlog cj + 0 6 E(v) 6 2jlog cj + 1 :
This function v is smooth, and there exists 0 < " 1 < " 2 < 1, 2 [c ¡"1 ; c "2 ], exactly two points a 1 ; a 2 2 R 2 such that

jv(x)j > 1/2 on R 2 n [ i=1 2 B(a i ; ); deg(a i ) = (¡1) i
and cjja 1 ¡ a 2 j ¡ 2j + ja 1;1 ¡ a 2;1 j = o c!0 (1):

We see that the solution cancels only in two regions, separated by a distance of order 2 /c, and the degrees are 1. This is the only construction by energy method where this structure has been shown.

Another way to construct solutions of (TW c 1 ) is to x the momentum, and minimize locally the energy. This can be done for any momentum P 2 (v) > 0. Remark that large momentum yields small speeds in dimension 2, and small momentum speeds close to 2 p (still in dimension 2).

Theorem 1.2.7. ( [6]) Let p > 0. There exists a non constant nite energy solution v p to (TW c 1 ) for a speed c = c(p), such that P 1 (v p ) = 0; P 2 (v p ) = p. This function is solution to the minimization problem

E(v p ) = inf E(v); v 2 W (R 2 ); P 1 (v p ) = 0; P 2 (v) = p ;
where W (R 2 ) = 1 + V (R 2 ) and

V (R 2 ) = v: R 2 7 ! C; rv; Re(v) 2 L 2 (R 2 ); Im(v) 2 L 4 (R 2 ); rRe(v) 2 L 4/3 (R 2 ) :
Here, the speed appears as a Lagrange multiplier. The method of construction used here has also been improved and extended for other nonlinearities in [8]. There, they show in addition some precompactness and orbital stability results. We state here the results in the case of the Gross-Pitaevskii equation in dimension 2.

Theorem 1.2.8. ( [8]) For q > 0, let E min (q) = inf E( ); j j ¡ 1 2 L 2 (R 2 ); r 2 L 2 (R 2 ); P 2 ( ) = q :

Then:

(i) The function E min is concave, increasing on [0; 1[, E min (q) 6 2 p q for any q > 0, the right derivative of E min at 0 is 2 p , E min (q) ! 1 and Emin(q) q ! 0 as q ! 1.

(ii) Let q 0 = inf q > 0; E min (q) < 2 p q . For any q > q 0 , all sequences ( n ) n>1 { ;

j j ¡ 1 2 L 2 (R 2 ); r 2 L 2 (R 2 )} satisfying P 2 ( n ) ! q and E( n ) ! E min (q) are precompact for the semi distance d 0 ( 1 ; 2 ) = kr 1 ¡ r 2 k L 2 (R 2 ) + kj 1 j ¡ j 2 jk L 2 (R 2 ) (modulo translations).
The set S q = { ; j j ¡ 1 2 L 2 (R 2 ); r 2 L 2 (R 2 ); P 2 ( ) = q; E( ) = E min (q)} is not empty and is orbitally stable (for the semi distance d 0 by the ow associated to i@ t + ¡ (jj 2 ¡ 1) = 0) (iii) Any q 2 S q is a travelling wave for the Gross-Pitaevskii equation, of speed c( q ) 2 [d + E min (q); d ¡ E min (q)], where we denote by d ¡ and d + the left and right deriatives. We have c( q ) ! 0 as q ! 1.

More recently, another construction has been done for almost all speeds in 0; 2 p .

Theorem 1.2.9. ([2]

) There exists a subset S 0; 2 p of full measure such that, for any c 2 S, there exists a non constant nite energy solution v c of (TW c 1 ).

Furthermore, for any c 0 2 0; 2 p , there exists K(c 0 ) > 0 such that

0 < (E ¡ cP 2 )(v c ) 6 K(c 0 )
for all c 2 S, c > c 0 .

It is still an open problem to show that all of these constructions yield the same solution.

Qualitative properties of travelling waves

We present here some qualitative properties of travelling waves, assuming the existence. In particular, their asymptotics development at innity in position have been computed. ) with nite energy, writing Q c (x) = jQ c j(x)e i(x) , for x 2 R 2 , x = R, R > 0, = ( 1 ; 2 ) 2 S 1 , where S 1 is the unit circle,

R(Q c (R) ¡ 1) = ¡i c 2 1 ¡

Construction of the branch

The main result of this subsection is the construction of a branch of solution by perturbation of the product of two vortices for any small speed c > 0, and the fact that this branch of solution is C 1 with respect to the speed.

Theorem 1.3.1.

There exists c 0 > 0 a small constant such that, for any 0 < c 6 c 0 , there exists a solution of (TW c ) of the form

Q c = V 1 ¡ : ¡ d c e 1 ~V ¡1 (: + d c e 1 ~) + ¡ c;d c ;
where

d c = 1 + oc!0(1) c
is a continuous function of c. This solution has nite energy (E(Q c ) < +1) and Q c ! 1 when jxj ! +1.

Furthermore, for all +1 > p > 2, there exists c 0 (p) > 0 such that if c < c 0 (p), for the norm

khk Xp := khk L p (R 2 ) + krhk L p¡1 (R 2 )
and the space X p := f 2 L p (R 2 ); rf 2 L p¡1 (R 2 ) , one has k¡ c;dc k Xp = o c!0 (1):

In addition,

c 7 ! Q c ¡ 1 2 C 1 (]0; c 0 (p)[; X p );
with the estimate (for (c) =

In this representation of Q c , the lines around d c e ~1 represent equivalues for jQ c j.

Here, we use an implicit function argument to construct the solution, using technics developped in [START_REF] Manuel Del Pino | Variational reduction for Ginzburg-Landau vortices[END_REF] or [START_REF] Lin | Traveling wave solutions of the Schrödinger map equation[END_REF] for instance, displaying a clear understanding of the shape of the solution (see Lemma 2.2.8 for instance). We show in addition that the constructed branch is C 1 , which is, to the best of our knowledge, the rst result of this kind in dimension larger than one.

The formal method for this kind of construction is well known. Namely, it is a Lyapunov-Schmidt reduction in weighed L 1 spaces. It has been done for instance rigorously in a bounded domain for the Ginzburg Landau equation ( [START_REF] Manuel Del Pino | Variational reduction for Ginzburg-Landau vortices[END_REF]). One of the diculties here is to nd the right functional setting to construct the C 1 branch, in particular with regards to the transport term ic@ x 2 v. On the contrary of what is claimed in [START_REF] Lin | Traveling wave solutions of the Schrödinger map equation[END_REF], the transport term can not be treated perturbatively. This is why we use another functional setting than [START_REF] Lin | Traveling wave solutions of the Schrödinger map equation[END_REF] or [START_REF] Liu | Multi-vortex traveling waves for the gross-pitaevskii equation and the adlermoser polynomials[END_REF] (see Remark 2.1.11 for more details)

Sketch of the proof of Theorem 1.3.1

As mentioned above, we look for an ansatz which is a perturbation of two vortices. Take d = O c!0 ¡ 1 c a large free parameter, a smooth cuto function such that = 1 in B(de ~1; 1) and 0 outside of B(de ~1; 2), and an ansatz of the form

Q c (x) = (x)V (x)(1 + (x)) + (1 ¡ (x))V (x)e (x) ; with V (x) = V 1 (x ¡ de ~1)V ¡1 (x + de ~1).
Writing the perturbation as an exponential is well adapted to the problem. This can not be done near de ~1, since there, the product of the vortices V has zeros. This explains the shape of the ansatz, it is additive close to the center of the vortices, and exponential far from them. A similar decomposition was used in [START_REF] Manuel Del Pino | Variational reduction for Ginzburg-Landau vortices[END_REF] and [START_REF] Lin | Traveling wave solutions of the Schrödinger map equation[END_REF]. We look for a perturbation = 1 + i 2 2 E ;;d , small in the norm of this space, that is, for 0 < < 1,

k k ;;d = kV k C 2 ( r ~63 ) + kr ~1+ 1 k L 1 ( r ~>2 ) + kr ~2+ r 1 k L 1 ( r ~>2 ) + kr ~ 2 k L 1 ( r ~>2 ) + kr ~1+ r 2 k L 1 ( r ~>2 ) + kr ~2+ r 2 k L 1 ( r 
~>2 ) ; where r ~= min (jx ¡ de ~1j; jx + de ~1j) is the minimum to the distance to the two vortices. At the end of the proof, we will have that k k ;;d 6 K(; 0 )c 1¡ 0 for any 0 < < 0 < 1. We also suppose that the ansatz has two symmetries: 8x = (x 1 ; x 2 ) 2 R 2 ; (x 1 ; x 2 ) = (x 1 ; ¡x 2 ) = (¡x 1 ; x 2 ):

For now, the parameter d is free, it will help to cancel a Lagrange multiplier later on.

The equation on the perturbation is then written as (see Lemma 2.1.7) L() + (1 ¡ )VL 0 ( ) + E ¡ ic@ x2 V + V (1 ¡ )(¡r :r + jV j 2 S( )) + R( ); where = V , L 0 ( ) = ¡ ¡ 2 rV V :r + 2jV j 2 Re( ) ¡ ic@ x 2 ;

L() = ¡ ¡ (1 ¡ jV j 2 ) + 2Re(V )V ¡ ic@ x2 are the linearized operator around V (with the exponential or additive perturbation respectively), E ¡ ic@ x 2 V = ¡V ¡ (1 ¡ jV j 2 ) V ¡ ic@ x 2 V = TW c (V ) is the small source term, and S( ); R( ) are nonlinear terms. The goal is to do a Lyapunov-Schmidt reduction to construct the function , and reduce the problem to a one dimensional one, on d 2 R.

For that, the rst step, as for general method of construction by a perturbative method, is to invert the linearized operator L (or equivalently L 0 ) around V in the space E ;;d (from another weighed L 1 space E ; 0 ;d , see subsection 2.1.3). In the limit c ! 0 (thus d ! 1), the function V = V 1 (: ¡ de ~1)V ¡1 (: + de ~1) will behave like two decoupled vortices. The linearized operator around a single vortex is well understood (see Theorem 1.2.3), and has two zeros. We therefore expect four directions that might pose diculties for the inversion (coming from the two translations for each vortices). With the two symmetries, there is only one direction left, and thus we will invert the operator with one orthogonality condition. This direction is @ d V (x) = ¡@ x 1 V 1 (x ¡ de ~1)V ¡1 (x + de ~1) + @ x 1 V ¡1 (x ¡ de ~1)V 1 (x + de ~1), and will be dealt with by choosing the right value for the parameter d later on.

For the inversion, we start with an a priori estimate on the problem L() = Vh:

We want to show that if = V and h satisfy this equation, with an orthogonality condition on , then for small speeds, k k ;;d 6 K(; 0 )khk ; 0 ;d (the norm k:k ; 0 ;d is a weighed L 1 norm, as k:k ;;d , see subsection 2.1.3, and 0 < < 0 < 1). This is done by contradiction. Suppose that it does not hold. Then, there exist c n ! 0 (thus d n ! 1), k n k ;;d = 1, n = V n and kh n k ; 0 ;d n ! 0 such that L( n ) = V h n . Then, following the vortices (by a translation and up to a subsequence, using standards compactness arguments), n (: d n e ~1) ! with L V 1 () = 0, thus = 0 by the orthogonality condition and the symmetries. This implies that locally near the vortices, n (: de ~1) ! 0 when n ! 1. Then, to show that k n k ;;d n ! 0 when n ! 1 (and thus contradicting k n k ;;d n = 1), this becomes an elliptic estimate problem. We want to use the equation L( n ) = Vh n , the fact that h n is small (kh n k ; 0 ;d n ! 0 when n ! 1), and that n is small locally near the vortices to show that n is small in the whole space. We use for that the Gross-Pitaevskii kernels, that have been studied in [START_REF] Gravejat | Decay for travelling waves in the Gross-Pitaevskii equation[END_REF]. Writing = V , the equation L() = Vh becomes, at innity in position and at rst order, ¡ic@ x2 ¡ + 2Re( ) = h:

The Gross-Pitaevskii kernels are used to invert this problem, writing as a convolution using h, and estimates on these convolution kernels (done in [START_REF] Gravejat | Decay for travelling waves in the Gross-Pitaevskii equation[END_REF]) are enough to show the smallness of (through ) given the smallnes of h in the right norms. Now, to show the existence of a solution to the problem L() = V h, we use the Fredholm alternative. To add the required compactness to apply it, we look at the same equation in a bounded domain (large compared to the distance between the vortices) with a Dirichlet boundary condition. Here, the existence is thus a consequence of another a priori estimate, that will be a consequence of the previous one (see Lemma 2.1.19). Then, we let the size of the domain goes to innity, and that provide the full inversion theorem for L (see Proposition 2.1.20), with one local orthogonality condition on @ d V .

The next diculty for the existence of the solution are the nonlinear and source terms. We will use a xed point theorem, by looking at the operator (L(:) + (1 ¡ ) VL 0 (:/V )) ¡1 where F contains the source term and nonlinear terms, and d ? is a projector encoding the orthogonality condition, as we have yet to deal with this other problem. This operator is a contraction (for small perturbations, in order to kill the nonlinearity), and thus we can, at this point, construct a solution c;d = V c;d to the problem

(TW c )(Q c ) = (c; d)Z d ;
where Z d is a localized version of @ d V , and (c; d) 2 R is a Lagrange multiplier (coming from the orthogonality condition). We thus look for a good choice of d 2 R to cancel it (with

d = O c!0 ¡ 1 c
). This is now only a one dimensional problem. For that, an estimate shows that

(c; d) = 1 d ¡ c + O c!0 (c 2¡ ):
At this point, we do not know if the O c!0 (c 2¡ ) is continuous with respect to c and d. We want to apply the intermediate value theorem to cancel (c; d). For that, we need to show that the functions c; d 7 ! c;d , with c;d the perturbation constructed by the Lyapunov-Schmidt reduction described above, are continuous functions.

Since our goal is to show the dierentiability of the branch, we will show a stronger result, that is that c;d is a C 1 function of c and d in the weighed L 1 spaces. Leaving some technical details aside, the main ingredient is the implicit function theorem. We look at the functional H(; c; d) := (L(:) + (1 ¡ ) VL 0 (:/V )) ¡1 (¡ d ? (F (/V ))) + ;

for which H( c;d ; c; d) = 0. We compute its dierential with respect to its rst variable d H(; c; d)(') = (L(:) + (1 ¡ )VL 0 (:/V )) ¡1 ( d ? (¡d F ('/V ))) + '; and thus, if c;d is small (which would make small the term d F (' / V ), since it is the dierential of terms at least quadratic, and thus still containing c;d ), we can apply the implicit function theorem (d H(; c; d) is then a perturbation of the identity). This will follow from smallness and decays estimates on c;d and its derivatives in position (for general values of c and d, without requiring that (c; d) = 0).

We can now nally nish the construction of the travelling wave. We x d c a value such that (c; d c ) = 0 (several can exist at this point), and now (TW c )(Q c ) = 0. We check that Q c has nite energy, and from the smallness of c;d in E ;;d , we give some estimates on Q c and its derivatives in position (see Lemma 2.2.8).

The remaining diculty to show that the branch c 7 ! Q c is C 1 with respect to the speed, is to show that c ! d c is a C 1 function. Unfortunately, this is quite convoluted. We will use the implicit function theorem on the equation (c; d) = 0 that dened d c , and for that, we have to show that @ d (c; d c ) = / 0. We recall that (c; d) = )). In particular, we check that @ d (c; d) = ¡c 2 + O c!0 (c 2¡ ) for any > 0, and thus we cannot conclude that @ d = / 0 for c > 0 small enough a priori.

There is a moral reason for this. When c moves, the vortices move, and thus the error term c;dc is, at least at rst order and near the vortices, translated. Therefore, @ d c;dc will be of the same size as c;d c (that is O c!0 0 (c 1¡ 0 )), but, if we remove the translation, by looking at @ d c;d c ¡ @ x 1 c;d c near the vortex +1 for instance, we could expect a better estimate. For that term, we would only see the change of inuence of the second vortex, which is already far away. We can check that the diculty when computing @ d is indeed local, near the vortices, is coming from @ d c;d c , and that the translation part cancels out exactly. This is a simple idea, but it yields a fair amount of technical diculties. We have to recast the way to choose d c , change the norms and the spaces. In Proposition 2.3.5, we compute this gain, and we show that k@ d c;d ¡ @ x 1 c;d k = O c!0 (c 1+" ) in L 1 near the vortex +1, for some " > 0. We in fact have a better but more technical estimate. Using this estimate in the equation on @ d , we nd that @ d (c; d) = ¡c 2 + O c!0 (c 2+" ) for some " > 0. This ends the sketch of the proof of Theorem 1.3.1.

Coercivity results on the branch and applications

The results presented in this section have been submitted for publication as a paper in collaboration with David Chiron.

Some particular values for the branch

With the solution Q c constructed in Theorem 1.3.1, we can construct travelling waves of any small speed, i.e. solutions of

(TW c ~)(v) := i c ~:rv ¡ v ¡ (1 ¡ jv j 2 )v
for any c ~2 R 2 of small modulus. For c ~= jc ~je i( c ~¡/2) 2 R 2 , jc ~j 6 c 0 , we have that

Q c ~:= Q jc ~j R ¡ c ~(1.4.1)
is a solution of (TW c ~), with R being the rotation of angle and Q jc ~j dened in Theorem 1.3.1. Furthermore, the equation is invariant by translation and by changing the phase. Thus, we have a family of solutions of (GP) depending on ve real parameters, c ~2 R 2 , jc ~j 6 c 0 , X 2 R 2 and 2 R:

Q c ~(: ¡ X ¡ c ~t)e i :
We remark that, for a vortex of degree 1, the family of solutions has three parameters (the two translations and the phase): V 1 (: ¡ X)e i is solution of (GP) for X 2 R 2 ; 2 R. In particular, between a travelling wave and the two vortices that compose it, we lose a parameter (since the phase is global). This is one of the diculty that will appear when we study the stability of this branch.

First, we give additional results on this branch of travelling waves: we will study the position of its zeros, its energy and momentum, as well as some particular values appearing in the linearization. The (additive) linearized operator around Q c is

L Qc (') := ¡ ' ¡ ic@ x2 ' ¡ (1 ¡ jQ c j 2 )' + 2Re(Q c ')Q c :
We want to dene and use four particular directions for the linearized operator around Q c , which are @ x1 Q c ; @ x2 Q c ; related to the translations (i.e. related to the parameter X 2 R 2 in the family of travelling waves), and @ c Q c ; @ c ?Q c ; related to the variation of speed (i.e. related to the parameter c ~2 R 2 ), if we change respectively its modulus or its direction. The functions @ x1 Q c ; @ x2 Q c and @ c Q c are dened in Theorem 1.3.1, and we will show that @ c ?Q c (x) := @ (Q c R ¡ ) |=0 = ¡x ? :rQ c (x); with x ? = (¡x 2 ; x 1 ) (see Lemma 3.1.6). We infer the following properties.

Proposition 1.4.1.

There exists c 0 > 0 such that, for 0 < c 6 c 0 , the momentum P ~(Q c ) = (P 1 (Q c );

P 2 (Q c )) of Q c from Theorem 1.3.

1, dened by

P 1 (Q c ) := 1 2 hi@ x1 Q c ; Q c ¡ 1i; P 2 (Q c ) := 1 2 hi@ x2 Q c ; Q c ¡ 1i; veries c 7 ! P ~(Q c ) 2 C 1 (]0; c 0 [; R 2 ), P 1 (Q c ) = @ c P 1 (Q c ) = 0; P 2 (Q c ) = 2 + o c!0 (1) c
and

@ c P 2 (Q c ) = ¡2 + o c!0 (1) c 2 :
Furthermore, the energy satises c 7 ! E(Q c ) 2 C 1 (]0; c 0 [; R), and

E(Q c ) = (2 + o c!0 (1))ln 1 c
:

Additionally, Re(L Q c (A)A ) 2 L 1 (R 2 ; R) for A 2 @ x 1 Q c ; @ x 2 Q c ; @ c Q c ; @ c ?Q c , and
hL Q c (@ x 1 Q c ); @ x 1 Q c i = hL Q c (@ x 2 Q c ); @ x 2 Q c i = 0; hL Q c (@ c Q c ); @ c Q c i = @ c P 2 (Q c ) = ¡2 + o c!0 (1) c 2 ; hL Q c (@ c ?Q c ); @ c ?Q c i = cP 2 (Q c ) = 2 + o c!0 (1)
and The momentum has a generalized denition for nite energy functions (see [START_REF] Mari³ | Traveling waves for nonlinear Schrödinger equations with nonzero conditions at innity[END_REF] in 3d and [8]). For travelling waves going to 1 at innity, it is equal to the quantity dened in Proposition 1.4.1.

@ c E(Q c ) = c@ c P 2 (Q c ) = ¡2 + o c!0 (1) c :
The equality hL Qc (@ c Q c ); @ c Q c i = @ c P 2 (Q c ) is a general property for Hamiltonian system, see [START_REF] Grillakis | Stability theory of solitary waves in the presence of symmetry[END_REF]. The equality @ c E(Q c ) = c@ c P 2 (Q c ) has been conjectured and formally shown in [START_REF] Jones | Motions in a bose condensate. iv. axisymmetric solitary waves[END_REF], provided we have a smooth branch c 7 ! Q c , which is precisely shown in Theorem 1.3.1. We remark that the energy E(Q c ) is of same order as the energy of the travelling waves constructed in [START_REF] Bethuel | Travelling waves for the Gross-Pitaevskii equation[END_REF], which also exhibit two vortices at distance of order 1 c . We believe that both construction give the same branch, and that this branch minimises globally the energy at xed momentum. However, we were not able to show even a local minimisation result of the energy for Q c dened in Theorem 1.3.1.

In the limit c ! 0, the four directions (@ x1 Q c ; @ x2 Q c ; c 2 @ c Q c ; c@ c ? Q c ) are going to zeros of the quadratic form (while being of size of order one), and we see here the splitting of this kernel for small values of c. In particular, two directions give zero (@ x1 Q c and @ x2 Q c ), one becomes positive (@ c ?Q c ) and one negative (@ c Q c ).

Coercivity results

One of the main ideas is to reduce the problem of the coercivity of a travelling wave to the coercivity of vortices. We will rst state such a result for vortices (Proposition 1.4.2) before the results on the travelling waves (see in particular Theorem 1.4.4).

Coercivity in the case of one vortex

A coercivity result for one vortex of degree 1 is already known, see [10], and in particular equation (2.42) there. We consider both vortices of degrees +1 and ¡1 here at the same time, since V 1 = V ¡1 . Here, we present a slight variation of the results in [10] that will be useful for the coercivity of the travelling waves. We recall from [10] the quadratic form around V 1 :

B V1 (') = Z R 2 jr'j 2 ¡ (1 ¡ jV 1 j 2 )j'j 2 + 2Re 2 (V 1 ');
for functions in the energy space

H V 1 = ' 2 H loc 1 (R 2 ; C); k'k HV 1 2 := Z R 2 jr'j 2 + (1 ¡ jV 1 j 2 )j'j 2 + Re 2 (V 1 ') < +1 :
As the family of vortices has three parameters, we expect a coercivity result under three orthogonality conditions. The three associated directions are @ x1 V 1 ; @ x2 V 1 (for the translations) and iV 1 (for the phase).

Proposition 1.4.2.

There exist K > 0, R > 5, such that, if the following three orthogonality conditions are satised for 10) jr'j 2 + j'j 2 + Z R 2 nB(0;5) jr j 2 jV 1 j 2 + Re 2 ( )jV 1 j 4 + j j 2 r 2 ln 2 (r)

' = V 1 2 C c 1 (R 2 n 0 ; C), Z B(0;R) Re(@ x1 V 1 V 1 ) = Z B(0;R) Re(@ x2 V 1 V 1 ) = Z B(0;R)nB(0;R/2) Im( ) = 0; then, B V1 (') > K Z B(0;

:

The same result holds if we replace V 1 by V ¡1 . We remark that the coercivity norm is not k:k H V 1 , but is weaker (the decay in position is stronger), and this is due to the fact that iV

1 2 / H V 1 .
That is why this result is stated for compactly supported function. The fact that the support of ' avoids 0 is technical and can be removed by density (see Lemma 3.2.4). Proposition 1.4.2 is shown in subsection 3.3.2. The proofs there are mostly slight variations or improvements of proofs given in [10].

Coercivity and kernel in the energy space

The main part of this section consists of coercivity results for the family of travelling waves constructed in Theorem 1.3.1. We will show it on Q c dened in Theorem 1.3.1, and with (1.4.1), it extends to all speed values c ~of small norm. We recall the linearized operator around Q c :

L Qc (') = ¡ ' ¡ ic@ x2 ' ¡ (1 ¡ jQ c j 2 )' + 2 Re(Q c ')Q c :
The natural associated energy space is

H Qc := ' 2 H loc 1 (R 2 ); k'k HQ c < +1 ;
where

k'k HQ c 2 := Z R 2 jr'j 2 + j1 ¡ jQ c j 2 jj'j 2 + Re 2 (Q c '):
First, there are diculties in the denition of the quadratic form for ' 2 H Q c , because of the transport term. A natural denition for the associated quadratic form for ' 2

H Q c could be Z R 2 jr'j 2 ¡ (1 ¡ jQ c j 2 )j'j 2 + 2Re 2 (Q c ') ¡ Re(ic@ x 2 '' ); (1.4.2)
unfortunately the last term is not well dened for ' 2 H Qc , because we lack a control on [START_REF] Mari³ | Traveling waves for nonlinear Schrödinger equations with nonzero conditions at innity[END_REF]. We can resolve this issue by decomposing this term and doing an integration by parts, but the proof of the integration by parts can not be done if we only suppose ' 2 H Qc (see section 3.2 for more details). We therefore dene the quadratic form with the integration by parts already done. Take a smooth cuto function such that

Im(Q c ') in L 2 (R 2 ) in k:k H Qc , see
(x) = 0 on B(d c ~e1 ~; 1), (x) = 1 on R 2 nB(d c ~e1 ~; 2), where d c ~e1 ~are the zeros of Q c . We dene, for ' = Q c 2 H Q c , B Qc (') := Z R 2 jr'j 2 ¡ (1 ¡ jQ c j 2 )j'j 2 + 2 Re 2 (Q c ') ¡ c Z R 2 (1 ¡ )Re(i@ x 2 '' ) ¡ c Z R 2 Re(i@ x 2 Q c Q c )j j 2 + 2c Z R 2 Re Im(@ x 2 )jQ c j 2 + c Z R 2 @ x 2 Re Im jQ c j 2 + c Z R 2
Re Im @ x2 (jQ c j 2 ):

(1. 

@ x1 Q c ; @ x2 Q c ; @ c Q c ; @ c ?Q c , B Qc (A) = hL Qc (A); Ai.
From Proposition 1.4.1, we know that Q c has only two zeros. We will write the quadratic form B Qc around the zeros of Q c (for a function ' = Q c 2 H Qc ) as the quadratic form for one vortex (computed in Proposition 1.4.2), up to some small error. As we want to avoid to add an orthogonality on the phase, we change the coercivity norm to a weaker semi-norm, that avoids iQ c , the direction connected to the shift of phase.

We will therefore infer a coercivity result under four orthogonality conditions near the zeros of Q c (two for each zero). Then, we shall show that far from the zeros of Q c , the coercivity holds, without any additional orthogonality conditions. 

' = Q c 2 H Qc , 0 < c < c 0 , if the four orthogonality conditions Z B ¡ d ~ce1;R Re @ x1 V ~1V 1 ~ = Z B ¡ d ~ce1;R Re @ x2 V 1 ~V1 ~ = 0; Z B ¡ ¡d ~ce1;R Re @ x 1 V ~¡1 V ~¡1 = Z B ¡ ¡d ~ce1;R Re @ x 2 V ~¡1 V ~¡1 = 0 are satised, then, for k'k C 2 := Z R 2 jr j 2 jQ c j 4 + Re 2 ( )jQ c j 4 ;
the following coercivity result holds:

B Qc (') > K k'k C 2 : We will check that k'k C is well dened for ' 2 H Q c (see section 3.2). Proposition 1.4.3 is proven in subsection 3.3.4.
We point out that ' = Q c 7 ! k'k C is not a norm but a seminorm since R R 2 jr j 2 jQ c j 4 + Re 2 ( )jQ c j 4 = 0 implies only that ' = iQ c for some 2 R, and iQ c is the direction connected to the shift of phase. Now, we want to change the orthogonality conditions in Proposition 1.4.3 to quantities linked to the parameters c ~and X of the travelling waves, that is

@ x 1 Q c ; @ x 2 Q c ; @ c Q c and @ c ? Q c . We can show that for ' = Q c 2 H Q c , for instance Z B ¡ d ~ce 1 ;R Re @ x 1 V ~1V 1 ~ 6 K k'k C ;
but such an estimate might not hold for Re R

B ¡ d ~ce1;R [B ¡ ¡d ~ce1;R @ x 1 Q c Q c (because of the lack of control on Im( ) in L 2 (R 2 ) in the coercivity norm k:k C ). It is therefore dicult to have a local orthogonality condition directly on @ x 1 Q c for instance.
To solve this issue, we shall use the harmonic decomposition around d ~ce 1 ~. For the constructed travelling wave Q c , two distances play a particular role, they are d c (dened in Theorem 1.3.1) and d c ~(dened in Proposition 1.4.1 and is connected to the position of the zeros of Q c ). In particular, we dene the following polar coordinates for x 2 R 2 :

re i := x 2 R 2 ; r 1 e i1 := x ¡ (d c )e 1 ~2 R 2 ; r ~1 e i ~1 := x ¡ (d c ~)e 1 ~2 R 2 :
We will also use r ~:= min (r 1 ; r ¡1 ) and r := min (r 1 ~; r ~¡1 ). For a function such that

Q c 2 H loc 1 (R 2 )
and j 2 Z, we dene its j ¡ harmonic around d c ~e1 ~by the radial function around d c ~e1 ~:

j ;1 (r ~1 ) := 1 2 Z 0 2 ¡ r ~1 e i ~1 e ¡ij ~1 d ~1 :
Summing over the Fourier modes leads to

(x) = X j 2Z j;1 (r ~1 )e ij ~1 :
and we dene, to simplify the notations later on, the function = / 0 , by = / 0 (x) := (x) ¡ 0;1 (r ~1) in the right half-plane, and = / 0 (x) := (x) ¡ 0;¡1 (r ~¡1 )

in the left half-plane. This notation will only be used far from the line x 1 = 0 . We now state the main coercivity result. Theorem 1.4.4. There exist c 0 ; K ; 0 > 0 such that, for R > 0 dened in Proposition 1.4.3, for any 0 < < 0 , there exists c 0 (); K() > 0 such that, for c < c 0 (), if ' = Q c 2 H Qc satises the following three orthogonality conditions:

Re Z B ¡ d ~ce1;R [B ¡ ¡d ~ce1;R @ x1 Q c Q c = / 0 = Re Z B ¡ d ~ce1;R [B ¡ ¡d ~ce1;R @ x2 Q c Q c = / 0 = 0 and Re Z B ¡ d ~ce 1 ;R [B ¡ ¡d ~ce 1 ;R @ c Q c Q c = / 0 = 0; then, B Qc (') > K()c 2+ k'k C 2 ; with k'k C 2 = Z R 2 jr j 2 jQ c j 4 + Re 2 ( )jQ c j 4 : If ' = Q c also satises the fourth orthogonality condition (with 0 < c < c 0 ) Re Z B ¡ d ~ce1;R [B ¡ ¡d ~ce1;R @ c ?Q c Q c = / 0 = 0; then B Qc (') > K k'k C 2 :
Theorem 1.4.4 shows that under four orthogonality conditions, we have a coercivity result in a weaker norm k:k C , instead of k:k HQ c with a constant independent of c, and with only three orthogonality conditions, we have the coercivity but the constant is a O c!0 (c 2+ ). This is because, of the four particular directions of the linearized operator, @ x 1 Q c ; @ x 2 Q c are in its kernel, @ c Q c is a small negative direction, and @ c ? Q c is a small positive direction (see Proposition 1.4.1). About the orthogonality conditions, we remark that, for

' = Q c 2 H Q c , Re Z B ¡ d ~ce 1 ;R [B ¡ ¡d ~ce 1 ;R @ x 1 Q c Q c = / 0 is close to Re Z B ¡ d ~ce1;R [B ¡ ¡d ~ce1;R @ x 1 Q c Q c (we have Re R B ¡ d ~ce1;R @ x1 Q c Q c 0;1 = o c!0 (1)k'k HQ c for instance
), but the rst quantity can be controlled by k'k C , and the second can not be. Theorem 1.4.4 is a consequence of Proposition 1.4.3, and is shown in section 3.4. From this result, we can also deduce the kernel of the linearized operator in H Qc .

Corollary 1.4.5. There exists c

0 > 0 such that, for 0 < c < c 0 , Q c dened in Theorem 1.3.1, for ' 2 H Q c , the following properties are equivalent: i. L Qc (') = 0 in H ¡1 (R 2 ), that is, 8' 2 H 1 (R 2 ); Z R 2 Re(r':r' ) ¡ (1 ¡ jQ c j 2 )Re('' ) + 2 Re(Q c ')Re(Q c ' ) ¡ Re(ic@ x2 '' ) = 0:
1.4 Coercivity results on the branch and applications

ii.

' 2 Span R (@ x1 Q c ; @ x2 Q c ).
This corollary is proven in subsection 3.4.5. This nondegeneracy result is, to our knowledge, the rst one on this type of model. It is a building block in the analysis of the dynamical stability of the travelling wave and the construction of multi-travelling wave. Here, the travelling wave is not radial, nor has a simple prole, which means that we can not use classical technics for radial ground states for instance (see [START_REF] Michael | Lyapunov stability of ground states of nonlinear dispersive evolution equations[END_REF]).

Spectral stability in

H 1 (R 2 )
In this subsection, we give some result on the spectrum of

L Qc : H 2 (R 2 ) ! L 2 (R 2 ).
In particular, we are interested in negative eigenvalues of the linearized operator. We can show that H 1 (R 2 ) H Qc and prove the following corollary of Theorem 1.4.4.

Corollary 1.4.6. There exists

c 0 > 0 such that, for 0 < c 6 c 0 , Q c dened in Theorem 1.3.1, if ' 2 H 1 (R 2 ) satises h'; i@ x2 Q c i = 0; then B Q c (') > 0: We can show that L Q c (@ c Q c ) = i@ x 2 Q c 2 L 2 (R 2 ), and thus 'i@ x 2 Q c 2 L 1 (R 2 ) for ' 2 H 1 (R 2 ).
This result shows that we expect only one negative direction for the linearized operator, and it should also hold in

H Q c . For ' 2 H 1 (R 2 ), we have that B Q c (') is equal to the expression (1.4.2).
Now, we dene G to be the collection of subspaces S H 1 (R 2 ) such that B Qc (') < 0 for all ' = / 0; ' 2 S, and we dene

n ¡ (L Q c ) := max dim S ; S 2 G :
Proposition 1.4.7. There exists c 0 > 0 such that, for 0 < c < c 0 , for Q c dened in Theorem 1.3.1,

n ¡ (L Qc ) = 1: Furthermore, L Qc : H 2 (R 2 ) ! L 2 (R 2
) has exactly one negative eigenvalue with eigenvector in

L 2 (R 2 ).
With this result, Theorem 1.3.1 and Proposition 1.4.1, we have met all the conditions to show the spectral stability of the travelling wave:

Theorem 1.4.8. (Theorem 11.8 (i) of [30]) For 0 < c 1 < c 2 and c 7 ! U c a C 1 branch of solutions of (TW c )(U c ) = 0 on ]c 1 ; c 2 [ with nite energy, for c 2 ]c 1 ; c 2 [, under the following conditions: i. for all c 2 ]c 1 ; c 2 [, Re(U c ¡ 1) 2 H 1 (R 2 ), Im(rU c ) 2 L 2 (R 2 ), jU c j ! 1 at innity and kU c k C 1 (R 2 ) < +1 ii. n ¡ (L Q c ) 6 1 iii. @ c P 2 (U c ) |c=c < 0,
then U c is spectrally stable. That is, it is not an exponentially unstable solution of the linearized equation in H _ 1 (R 2 ; C).

Corollary 1.4.9.

There exists c 0 > 0 such that, for any 0 < c < c 0 , the function Q c dened in Theorem 1.3.1 is spectrally stable in the sense of Theorem 1.4.8.

The notion of spectral stability of [START_REF] Lin | Instability, index theorem, and exponential trichotomy for linear hamiltonian pdes[END_REF] is the following: for any u 0 2 H 1 (R 2 ; C), the solution to the problem

i@ t u = L Qc (u) u(t = 0) = u 0 satises that, for all > 0, Z R 2 jruj 2 (t)dx e ¡t ! 0
when t ! 1. The result of [START_REF] Lin | Instability, index theorem, and exponential trichotomy for linear hamiltonian pdes[END_REF] is a little stronger: the norm that does not grow exponentially in time is better than the one on H _ 1 (R 2 ; C), but weaker than the one on H 1 (R 2 ; C), and is not explicit.

Generalisation to a larger energy space and use of the phase

There are two main diculties with the phase. The rst one, as previously stated, is that we lose a parameter when passing from two vortices to a travelling wave. The second one is that for the direction linked to the phase shift, namely iQ c , we have iQ c 2 / H Qc (and even for one vortex,

iV 1 2 / H V 1
). This will be an obstacle when we modulate on the phase for the local uniqueness result. Therefore, we dene here a space larger than H Q c .

Denition and properties of the space H Qc exp

We dene the space H Qc exp , the expanded energy space, by

H Qc exp := ' 2 H loc 1 (R 2 ); k'k H Qc exp < +1 ; with the norm, for ' = Q c 2 H loc 1 (R 2 ), k'k H Qc exp 2 := k'k H 1 ( r ~610 ) 2 + Z r ~>5 jr j 2 + Re 2 ( ) + j j 2 r ~2ln 2 (r ~) ;
where r ~= min (r 1 ~; r ~¡1 ), the minimum of the distance to the zeros of Q c . It is easy to check that that there exists K > 0 independent of c such that, for

' = Q c 2 H Q c exp , 1 K k'k H 1 ( 56r ~610 ) 2 6 Z 56r ~610 jr j 2 + Re 2 ( ) + j j 2 r ~2ln(r ~)2 6 K k'k H 1 ( 56r ~610 ) 2 :
We will show that H Qc H Q c exp and iQ c 2 H Q c exp , whereas iQ c 2 / H Qc . This space will appear in the proof of the local uniqueness (Theorem 1.4.13 below). The main diculty is that B Qc (') is not well dened for ' 2 H Q c exp because for instance of the term (1 ¡ jQ c j 2 )j'j 2 integrated at innity. If we write the linearized operator multiplicatively, for ' = Q c (using

(TW c )(Q c ) = 0), Q c L Qc 0 ( ) := L Qc (') = Q c ¡ic@ x2 ¡ ¡ 2 rQ c Q c :r + 2Re( )jQ c j 2
; then there will be no problem at innity for ' 2 H Qc exp for the associated quadratic form (in ), but there are instead some integrability issues near the zeros of Q c . We take as before a smooth cuto function such that

(x) = 0 on B(d c ~e1 ~; 1), (x) = 1 on R 2 nB(d c ~e1 ~; 2)
, where d c ~e1 ~are the zeros of Q c . The natural linear operator for which we want to consider the quadratic form is then

L Q c exp (') := (1 ¡ )L Q c (') + Q c L Qc 0 ( );
and we therefore dene, for

' = Q c 2 H Q c exp , B Qc exp (') := Z R 2 (1 ¡ )(jr'j 2 ¡ Re(ic@ x2 '' ) ¡ (1 ¡ jQ c j 2 )j'j 2 + 2 Re 2 (Q c ')) ¡ Z R 2 r:(Re(rQ c Q c )j j 2 ¡ 2Im(rQ c Q c )Re( )Im( )) + Z R 2 c@ x2 Re( )Im( )jQ c j 2 + Z R 2 (jr j 2 jQ c j 2 + 2Re 2 ( )jQ c j 4 ) + Z R 2 (4Im(rQ c Q c )Im(r )Re( ) + 2cjQ c j 2 Im(@ x2 )Re( )): (1.4.4)
This quantity is independent of the choice of . We will show that B Qc exp (') is well dened for ' 2 H Qc exp and that, if ' 2 H Qc H Qc exp , then

B Q c exp (') = B Q c (').
Writing the quadratic form B Q c exp is a way to enlarge the space of possible perturbations to add in particular the remaining zero of the linearized operator. We infer the following result.

Proposition 1.4.10. There exist c 0 ; K ; R; 0 > 0 such that, for any 0 < < 0 , there exists c 0 (); K() > 0 such that, for 0 < c < c 0 (), if ' = Q c 2 H Qc exp satises the following three orthogonality conditions:

Re Z B ¡ d ~ce 1 ;R [B ¡ ¡d ~ce 1 ;R @ x 1 Q c Q c = / 0 = Re Z B ¡ d ~ce 1 ;R [B ¡ ¡d ~ce 1 ;R @ x 2 Q c Q c = / 0 = 0 and Re Z B ¡ d ~ce1;R [B ¡ ¡d ~ce1;R @ c Q c Q c = / 0 = 0; then, B Q c exp (') > K()c 2+ k'k C 2 ; with k'k C 2 = Z R 2
jr j 2 jQ c j 4 + Re 2 ( )jQ c j 4 :

If ' = Q c also satises the fourth orthogonality condition (with 0 < c < c 0 ) Re Z B ¡ d ~ce1;R [B ¡ ¡d ~ce1;R @ c ?Q c Q c = / 0 = 0; then B Qc exp (') > K k'k C 2 :
Furthermore, for ' 2 H Qc exp , the following properties are equivalent:

i. L Qc (') = 0 in H ¡1 (R 2 ), that is, 8' 2 H 1 (R 2 ); Z R 2 Re(r':r' ) ¡ (1 ¡ jQ c j 2 )Re('' ) + 2 Re(Q c ')Re(Q c ' ) ¡ Re(ic@ x 2 '' ) = 0: ii. ' 2 Span R (iQ c ; @ x 1 Q c ; @ x 2 Q c )
Proposition 1.4.10 is proven in subsection 3.5.1. The additional direction in the kernel comes from the invariance of phase (L Q c (iQ c ) = 0). The main diculties, compared to Theorem 1.4.4, is to show that the considered quantities are well dened with only ' 2 H Q c exp , and that we can conclude by density in this bigger space.

Coercivity results with an orthogonality on the phase

The main problem with adding a local orthogonality condition on iQ c is to choose where to put it. Indeed, we want this condition near both zeros of Q c , or else the coercivity constant will depend on the distance between the vortices, which itself depends on c.

The rst option is to let the coercivity constant depend on c. In that case, we can also remove the orthogonality condition on @ c ?Q c , the small positive direction. We infer the following result.

Proposition 1.4.11. There exist universal constants K

1 ; c 0 > 0 such that, with R > 0 dened in Proposition 1.4.3, for 0 < c < c 0 , for the function Q c dened in Theorem 1.3.1, there exists K 2 (c) > 0 depending on c such that, if ' = Q c 2 H Q c
exp satises the following four orthogonality conditions:

Re Z B ¡ d ~ce1;R [B ¡ ¡d ~ce1;R @ x1 Q c Q c = / 0 = Re Z B ¡ d ~ce1;R [B ¡ ¡d ~ce1;R @ x2 Q c Q c = / 0 = 0; Re Z B ¡ d ~ce 1 ;R [B ¡ ¡d ~ce 1 ;R @ c Q c Q c = / 0 = Re Z B(0;R) i = 0; then K 1 k'k H Qc exp 2 > B Q c exp (') > K 2 (c)k'k H Qc exp 2 :
Here, the orthogonality condition on iQ c is around 0, between the two vortices, but it can be chosen near one of the vortices for instance, and the result still holds.

The second possibility is to work with symmetric perturbations, since the orthogonality condition can then be at both the zeros of Q c . We then study the space

H Qc exp;s := ' 2 H Qc exp ; 8x = (x 1 ; x 2 ) 2 R 2 ; '(x 1 ; x 2 ) = '(¡x 1 ; x 2 ) :
We show that, under three orthogonality conditions, the quadratic form is equivalent to the norm on H Qc exp .

Theorem 1.4.12. There exist R; K ; c 0 > 0 such that, for

0 < c 6 c 0 , Q c dened in Theorem 1.3.1, if a function ' 2 H Q c exp;
s satises the three orthogonality conditions:

Re Z B ¡ d ~ce1;R [B ¡ ¡d ~ce1;R @ c Q c ' = Re Z B ¡ d ~ce1;R [B ¡ ¡d ~ce1;R @ x2 Q c ' = 0; Re Z B ¡ d ~ce1;R [B ¡ ¡d ~ce1;R iQ c ' = 0; then 1 K k'k H Qc exp 2 > B Qc exp (') > K k'k H Qc exp 2 :
We remark that here, the orthogonality condition to @ x 1 Q c and @ c ? Q c are freely given by the symmetry. We also do not need to remove the 0-harmonic near the zeros of Q c .

Propositions 1.4.11 and Theorem 1.4.12 hold if we replace B Qc exp by B Qc for ' = Q c 2 H Qc with the symmetry, but the coercivity norm will still be k:k H Qc exp .

Local uniqueness result

With Propositions 1.4.10 and 1.4.11, we can modulate on the ve parameters (c ~; X ; ) of the travelling wave, and these coercivity results will be enough to show the following theorem.

Theorem 1.4.13. There exist constants K ; c 0 ; " 0 ; 0 > 0 such that, for 0 < c < c 0 , Q c dened in Theorem 1.3.1, there exists R c > 0 depending on c such that, for any > R c , if a function Z 2 C 2 (R 2 ; C) satises, for some small constant "(c; ) > 0, depending on c and ,

¡ (TW c )(Z) = 0 ¡ E(Z) < +1 ¡ kZ ¡ Q c k C 1 (R 2 nB(0;)) 6 0 ¡ kZ ¡ Q c k H Qc exp 6 "(c; ), then, there exists X 2 R 2 such that jX j 6 K kZ ¡ Q c k H Qc exp ,
and

Z = Q c (: ¡ X):
The conditions E(Z) < +1 and kZ ¡ Q c k H Qc exp 6 "(c; ) imply that the travelling wave Z ! 1 at innity, and therefore Z = Q c e i with 2 R; = / 0 is excluded. The fact that "(c; ) depends on c comes in part from the constant of coercivity in Proposition 1.4.11, which depends itself on c. The condition that kZ ¡ Q c k C 1 (R 2 nB(0;)) 6 0 outside of B(0; ) is mainly technical. We believe that this condition is automatically satised with the other ones (with depending only on c), but we were not able to show it.

To the best of our knowledge, this is the rst result of local uniqueness for travelling waves in (GP). It does not suppose any symmetries on Z, and therefore shows that we can not bifurcate from this branch, even to nonsymmetric travelling waves.

We believe that, at least in the symmetric case, Theorem 1.4.13 should hold for kZ ¡ Q c k H Qc exp 6 " with " > 0 independent of c and . We also remark that the condition kZ ¡ Q c k H Qc exp 6 "(c; ) is weaker than kZ ¡ Q c k HQ c 6 "(c; ), and thus we can state a result in H Qc . 

Sketch of the proofs

Q c = V 1 (x ¡ d c e ~1)V ¡1 (x + d c e ~1) + ¡ c and @ c Q c = 1 c 2 ¡ @ d (V 1 (x ¡ de ~1)V ¡1 (x + de ~1)) |d=d c + ¡ ~c ;
where ¡ c and ¡ ~c are small perturbations when c ! 0 (in some weighed L 1 spaces). For all the rst order computations of this proposition when c ! 0, it boils down to showing that the error terms, ¡ c and ¡ ~c, contribute less than the main terms. For the main terms, the computations are (almost) explicit, and, for some of them, were done in formal computations in physical works.

For the dierent equalities on the linearized operator, this is simply coming from straight forward computations, with estimates from Theorem 1.2.11 to show that all the quantities are well dened, and to justify some integrations by parts.

For the position of the zeros, this is a consequence of the fact that, for a vortex V 1 centered at 0, V 1 (0) = 0, and the Jacobian of rV 1 (0) is not 0. Thus, the zero of vortices are simple, and adding a small perturbation might change slightly its position, but not its order, nor its existence.

Sketch of the proofs of the coercivity results

We give here a sketch of the proofs of Propositions 1.4.2, 1.4.3, Theorem 1.4.4, Propositions 1.4.10, 1.4.11 and Theorem 1.4.12. We will not discuss here the proofs of the well posedness of the dierent terms. We take here functions smooth and compactly supported away from the zeros of Q c , that will allow all the computations needed. We refer to Lemmas 3.2.4 for a density argument and Lemmas 3.2.1 to 3.2.3 for the well posedness of the quantities.

We consider V 1 a vortex centered at 0. We recall that

B V1 (') = Z R 2 jr'j 2 ¡ (1 ¡ jV 1 j 2 )j'j 2 + 2Re 2 (V 1 '):
The result of Proposition 1.4.2 is a simple variation of results in [10]. The linearized operator around V 1 has two elements in its kernel in the energy space, @ x 1 V 1 and @ x 2 V 1 . The third orthogonality is on the phase, iV 1 , which is not in the energy space, but can be approximated by functions in it, and thus still require an orthogonality to avoid it. Once these three directions are removed, the coercivity follows.

Now, we infer that, with ' = V 1 (compactly supported away from 0),

B V1 (') = B ~V1 ( ) := Z R 2 jr j 2 jV 1 j 2 + 2Re 2 ( )jV 1 j 4 + 4Im(rV 1 V 1 )Im(r )Re( ):
Remark that, with Lemma 1.2.1, jV 1 j ' 1 and jrV 1 j ' 0 far from zero, thus, by Cauchy-Scwharz,

B ~V1 ( ) > K Z R 2 jr j 2 jV 1 j 2 + Re 2 ( )jV 1 j 4
for functions supported outside of B(0; ) for some large (but independent of ') > 0. Thus, the coercivity hold without orthogonality conditions at innity. We can therefore localized the coercivity result (see equation (3.3.6)). Writing

B V1 D (') = Z B(0;D) jr'j 2 ¡ (1 ¡ jV 1 j 2 )j'j 2 + 2Re 2 (V 1 ');
we infer that, under the three orthogonality conditions of Proposition 1.4.2, for D > 0 a large but universal constant,

B V 1 D (') > K(D)k'k H 1 (B(0;D)) 2 :
Here, the coercivity norm has been replaced by k:k H 1 (B(0;D)) since they are equivalent (using R B(0;R)nB(0;R/2) Im( ) = 0). We use a cuto function to write the quadratic form in the form B V1 (') near zero, and in the form B ~V1 ( ) far from it.

We then compare it to the quadratic form around Q c , written in the form (1.4.4). Locally, that is near the zeros of the two vortices that composes it, it is close to

B V ~1 D ('), where V ~1 is centered around d ~ce ~1. Indeed, B Qc (') = Z R 2 jr'j 2 ¡ (1 ¡ jQ c j 2 )j'j 2 + 2Re 2 (Q c ') ¡ cRe(i@ x2 '' ) and B V ~1 D (') = Z B ¡ d ~ce ~1;D jr'j 2 ¡ ¡ 1 ¡ jV ~1j 2 j'j 2 + 2Re 2 (V 1 '); with Q c = V ~1 + o c!0 (1)
and c > 0 is small. Thus, taking c > 0 small enough, the coercivity on B Qc localized in B ¡ d ~ce ~1; D holds. Now, we infer that the same result holds with the coercivity norm (for

' = Q c ) Z B ¡ d ~ce ~1;D jr j 2 jQ c j 4 + Re 2 ( )jQ c j 4 6 K(D)k'k H 1 ¡ B ¡ d ~ce ~1;D 2 :
This norm does not see the phase (for = i, hence ' = iQ c , the direction connected to the shift of phase, it is zero), and we check that the quadratic form and the two orthogonality conditions on the translations does not see the phase either (their values for ' and ' ¡ iQ c are identical for all 2 R). Thus, we can modulate on to remove the orthogonality condition on the phase around both vortices. We have a local coercivity result for B Qc near the vortices. Now, at innity in position, as for B ~V1 ( ), the coercivity for B Qc (') (that can also be written in term of ) is obtained without orthogonality conditions, with the same coercivity norm. Regrouping these two estimates, we conclude the proof of Proposition 1.4.3.

For the proof of Theorem 1.4.4, the idea is simply to change the orthogonality conditions to ones that are close to a linear combinaison of the previous ones. The main dierence is that they are more adapted to the four particular directions computed in Proposition 1.4.1. This uses classical arguments when changing the orthogonality conditions in a coercivity result. The main point is, although the coercivity norm k:k C is not H loc 1 and was reduce to a semi norm to remove the orthogonality condition on the phase, it still control the four previous orthogonality conditions, and the four new ones. In fact, the error between them is small in this coercivity semi norm. Now, one of the direction is a positive one, on @ c ? Q c , by Proposition 1.4.1. We can therefore remove it, but the coercivity constant will then depend on c (as this is a small positive direction when c is small). It uses the fact that the four orthgonality are orthogonal between themselves. This completes the proof of Theorem 1.4.4. Now, we focus on the proof of the coercivity results with an additional orthogonality on the phase. For the symmetric case, we simply keep the coercivity norm k'k H 1 (B(0;D)) locally, with the three orthogonality condition around each vortices. Then, by symmetry, the two orthogonality conditions on the phase (one for each vortex) are in fact the same. To complete the coercivity norm to have k:k H Qc exp , this is simply a Hardy type inequality. In the non symmetric case, in the proof of the coercivity for one vortex, we move the orthogonality on the phase far from the vortex, so that it is the same orthogonality condition for both vortices. Since the distance we use depends on c, so will the coercivity norm. This gives Proposition 1.4.11.

On the Proofs of the corollaries of the coercivity and of the local uniqueness

With Theorem 1.4.4, and the fact that only one of the direction is negative, we can use classical methods to show results on the linearized operator, for instance the computation of its kernel. The only diculty is that the coercivity norm is only a semi norm, but if k'k C = 0, it implies that ' = iQ c for some 2 R, but if we know that ' 2 H Qc , since iQ c 2 / H Qc , then = 0. The semi norm k:k C is in fact a norm on the energy space H Qc . Since H 1 (R 2 ; C) H Qc , with this same argument, we check that the operator has only one negative eigenvalue, thanks to Theorem 1.4.4. Then, the spectral stability follows from [START_REF] Lin | Instability, index theorem, and exponential trichotomy for linear hamiltonian pdes[END_REF], a general work on Hamiltonian problems. Now, we focus on the local uniqueness result, Theorem 1.4.13. By Proposition 1.4.11, using the fact that iQ c 2 H Qc exp , we now have all the tools to do a classical proof of local uniqueness, using a coercivity result in H Q c exp by modulating on the parameters. There are two diculties. First, the coercivity norm in that case depends on c, and thus, the error term has to be small with respect to c. Secondly, we need to show that, with the notations of Theorem 1.4.13, kZ ¡

Q c k C 1 (R 2 )
is small (see Lemma 3.6.1). This require a technical condition, and is used to write the perturbation exponentially far from the zeros of Q c , and to estimate some nonlinear terms.

With this technical result, we can modulate on the ve parameters of the travelling wave (two parameters for the translation, two for the speed, and one for the phase) so that the error term between Z and the travelling wave has the orthogonality conditions of Propositions 1.4.10 and 1.4.11 (both coercivity are required). A few computations are required to show that, when taking the scalar product of the equation with the perturbation, all the terms are well dened, and the quadratic form appears (see Lemma 3.6.3). Furthermore, since we modulate on the speed, a source term appears, but by taking the scalar product of the equation with the two small directions of the linearized operator (@ c Q c and @ c ?Q c ), we can estimate them with respect to the perturbation. We then conclude as in classical proofs of local uniqueness using a coercivity result.

Inversion of the linearized operator around Q c

Our goal in this section is to improve some results on the branch c 7 ! Q c constructed in Theorem 1.3.1, by giving two new properties. The rst one is about the inversion of the linearized operator around Q c , and the second one is about the smoothness of the branch with respect to the speed. In the rest of this section, Q c refers to the solution of (TW c ) from Theorem 1.3.1.

Inversion result for the linearized operator around Q c

We want to invert the (additive) linearized operator around Q c in some weighed L 1 spaces:

L Qc (') = ¡' ¡ (1 ¡ jQ c j 2 )' + 2Re(Q c ')Q c ¡ ic@ x2 ': We have computed its kernel in Corollary 1.4.5. It is Span R (@ x1 Q c ; @ x2 Q c ) in the energy space H Qc = ' 2 H loc 1 (R 2 ; C); Z jr'j 2 + j1 ¡ jQ c j 2 jj'j 2 + Re 2 (Q c ') < +1 :
It has also a resonance, L Q c (iQ c ) = 0, due to the invariance by shifting the phase, with iQ c 2 / H Q c . That poses an issue when trying to invert L Q c . In the proof of Theorem 1.3.1 (see Proposition 2.1.20), the operator

L V (') := ¡' ¡ (1 ¡ jV j 2 )' + 2Re(V ')V ¡ ic@ x 2 ' with V = V 1 (: ¡ d c e 1 ~)V ¡1 (: + d c e 1 ~) (which is close to Q c )
was inverted in a space with two symmetries, where the problem of the resonance disappears. Here, we invert L Qc in a space with only one symmetry (even in x 1 ), that do not avoid the resonance. By adding the second symmetry, the space is also orthogonal to the kernel of L Qc , and in that case we can invert the operator without any orthogonality condition. as well as the two norms, for 2 R,

' = Q c 2 C 2 (R 2 ; C), = 1 + i 2 , and Q c h 2 C 1 (R 2 ; C), h = h 1 + ih 2 , k k ; := kQ c k C 2 ({r ~63}) + kr ~1+ 1 k L 1 ({r ~>2}) + kr ~2+ r 1 k L 1 ({r ~>2}) + kr ~2+ r 2 1 k L 1 ({r ~>2}) + kr ~ 2 k L 1 ({r ~>2}) + kr ~1+ r 2 k L 1 ({r ~>2}) + kr ~2+ r 2 2 k L 1 ({r ~>2}) (1.5.1)
and

khk ; := kQ c hk C 1 ({r ~63}) + kr ~1+ h 1 k L 1 ({r ~>2}) + kr ~2+ rh 1 k L 1 ({r ~>2}) + kr ~2+ h 2 k L 1 ({r ~>2}) + kr ~2+ rh 2 k L 1 ({r ~>2}) : (1.5.2)
We dene the spaces, for 2 R,

E ; := ' = Q c 2 C 2 (R 2 ; C); k k ; < +1; 8(x 1 ; x 2 ) 2 R 2 ; '(x 1 ; x 2 ) = '(¡x 1 ; x 2 ) ; E ; 2sym := ' = Q c 2 E ; ; 8(x 1 ; x 2 ) 2 R 2 ; '(x 1 ; x 2 ) = '(x 1 ; ¡x 2 )
and

E ; := Q c h 2 C 1 (R 2 ; C); khk ; < +1; 8(x 1 ; x 2 ) 2 R 2 ; (Q c h)(x 1 ; x 2 ) = (Q c h)(¡x 1 ; x 2 ) ; E ; 2sym := Q c h 2 E ; ; 8(x 1 ; x 2 ) 2 R 2 ; Q c h(x 1 ; x 2 ) = Q c h(x 1 ; ¡x 2 ) :
These spaces are close to the spaces E ; ; E ; introduced the proof of Theorem 1.3.1 (see subsection 2.1.3). The decays in position are related, but we change the symmetries, added estimates on the second derivatives, and locally we look at

Q c instead of V 1 (: ¡ d c e 1 ~)V ¡1 (: + d c e 1 ~)
(and similarly for h). Remark in particular that E ; H Qc for > 0. Also, for " > 0, ' 2 E ;¡" is not necessarly bounded, and not a priori in the energy space (nor in the extended energy space, H Q c exp ).

Furthermore,

1
Qc 2 C 1 ( r ~> 2 ; C), and is uniformly bounded in this space. It explains why the norm is dierent on r ~6 2 and outside of this domain (Q c has zeros there, see Proposition 1.4.1). Finally, with the rst symmetry (being even in x 1 ), functions in E ; are orthogonal to @ x 1 Q c , one of the elements of the kernel of L Q c .

To infer the inversion result, we need to deal with a diculty coming from a resonance in L Qc by removing some harmonics around d ~ce ~1, the two zeros of Q c (see Proposition 1.4.1). This is reminiscent of the requirement on the orthogonality condition in Theorem 1.4.4. For R > 0 and h 2 L loc 1 (R 2 ), r < R and the polar coordinates around d ~ce ~1, we dene

h 0 (r ) := 1 2 Z 0 2 h(r e i )d ;
and

h = / 0 (x) := h ¡ h 0 (r ): (1.5.3)
Theorem 1.5.1. There exists R; c 0 > 0 such that, for any > 0, " > 0, there exists K(; ") > 0 such that, for

Q c h 2 E ; , 0 < c < c 0 with Re Z B(dce1;R)[B(¡dce1;R) @ x2 Q c Q c h = / 0 = 0; there exists ' = Q c 2 E ;¡" such that L Qc (') = Q c h; with k k ;¡" 6 K("; ) c 2 khk ; .
Furthermore, for any 0 < < 0 < 1 and Q c h 2 E ; 0 2sym , without any orthogonality condition, there exists a unique function ' 2 E ; 2sym such that

L Qc (') = Q c h;
and it satises k k ; 6 K(; 0 ) c 2 khk ; 0. There,

(c; Q c h) ! ' 2 C 0 ((]0; c 0 [; E ; 0 2sym ) ! E ; 2sym ):
A few remarks on this result. First, if < 0 , E ; E ; 0 and E ; E ; 0. In particular, the solutions ' constructed does not depend on the choice of " > 0 in the non 2-symmetry case, and 0 < in the 2-symmetry case. In the estimates of the norm, the constant being in 1 c 2 comes from the fact that the smallest nonzero eigenvalue of L Qc is of order ¡c 2 when c ! 0 (see Proposition 1.4.1). This constant can be made independant of c, provided that we add a local orthogonality condition (on @ c Q c , see the proof of Proposition 4.2.10).

In the case with one symmetry, we can be more precise on the part of the function ' that grows at innity. There, the function ' will be the sum of two functions, one in E ; 0 for some 0 < 0 < , that decays well at innity, and (h; c)' , where (h; c) 2 R and ' 2 E ;¡" (8" > 0) is a particular function, connected to the resonance. See Proposition 4.2.10 for more details. In the case with two symmetries, the orthogonality condition on @ x2 Q c is automatically satised.

Let us consider a model to understand the diculties from the resonance

L Q c (iQ c ) = 0, iQ c 2 / E ; , with > 0. Consider the equation u = f in R 2 , with f 2 C c 1 (R 2 ; R). The Green function for the Laplacian in R 2 is ln(r)
2 , and thus the fundamental solution is u 0 = ln(r) 2 f . We can check that this function is well dened, C 1 and at innity, u 0 s ln(r) 2 R R 2 f . If we want this solution to be bounded, we must impose that R R 2 f = 0. In that case, we can check that ju 0 j 6

K(f ) (1 + r) . But if we instead looked at the equation u ¡ V (x)u = f , where V > 0; V 2 C c 1 (R 2 ; R) and f 2 C c 1 (R 2 ; R), the condition R R 2 f = 0
has no reason to be enough to show that a typical solution u 0 is bounded. In fact, we then must show that R R 2 f + Vu = 0, which is more complicated to understand what it means on the source f . We remark that if we impose f to be odd, and the potential V to be even, this problem disappears.

The situation is very similar here, on the equation of the imaginary part of , with ' = Q c . The element ' = iQ c is an element of the kernel, that can not be dealt with a local orthogonality condition, similarly as 1 for the operator , if we want to stay in function spaces where functions are bounded.

In the case with one symmetry, we believe that the growth of ' at innity is of order ln(r) instead of smaller than r ¡" for all " > 0, as it is shown here. This result could be interesting for the construction of a multi travelling wave solution of (GP). One of the step there is to construct an approximate solution, and to compute the error terms, it is necessary to invert the linearized operator around Q c . We can also use it to improve the dierentiability of the branch with respect to the speed.

Innite dierentiability of the branch of travelling waves

We will show that, for all 0 < < 1, there exists c 0 () > 0 such that

c ! @ c Q c 2 C 0 (]0; c 0 ()[; E ; 2sym )
(see Lemma 4.1.1). Furthermore, from Lemma 3.1.6, we have

L Qc (@ c Q c ) = i@ x2 Q c :
We want to dierentiate this equation with respect to c. Formally, this would yield

L Qc (@ c 2 Q c ) = 2j@ c Q c j 2 Q c + 4Re(Q c @ c Q c )@ c Q c ¡ 2i@ x2 @ c Q c 2 E ; 2sym
for all 0 < < 1. This gives us a way to dene @ c 2 Q c with Theorem 1.5.1. We use similar computations to show that the branch is innitely dierentiable. Theorem 1.5.2. For all 0 < < 1, there exists c 0 ; c 0 () > 0 such that

c ! @ c Q c 2 C 1 (]0; c 0 ()[; E ; 2sym ): Furthermore, c ! E(Q c ) 2 C 1 (]0; c 0 [; R); and the momentum P 2 (Q c ) = 1 2 hi@ x 2 Q c ; Q c ¡ 1i satises c ! P 2 (Q c ) 2 C 1 (]0; c 0 [; R): This result implies in particular that c ! Q c ¡ 1 2 C 1 (]0; c 0 (p)[; X p
) for all 2 < p 6 +1, with X p dened in Theorem 1.3.1. The fact that the branch, as well as the energy and momentum, are C 2 with respect to the speed could be useful for the proof of the orbital stability of this branch of travelling wave. Remark that we do not give an equivalent of @ c 2 Q c when c ! 0. This seems to be a rather complicated computation, but we fully expect that @ c 2 Q c s

1 c 4 @ d 2
V when c ! 0.

Sketch of the proofs of Theorems 1.5.1 and 1.5.2

We want to invert the problem L Q c (') = Q c h in the weighed L 1 spaces E ; and E ; . Writing ' = Q c , at rst order at innity in position, the problem become ¡ic@ x 2 ¡ + 2Re( ) = h, as it was the case for the proof of Theorem 1.3.1. But here, we suppose only one symmetry, and we can invert this problem in the required space under the condition that R

R 2 Im(h) = 0.
That is why we show the inversion in a large settingn in Lemma 2.1.15. This condition was freely given when we inverted this problem with two symmetries, for the proof of Theorem 1.3.1.

Therefore, we look at the problem

L Q c (') = Q c h ¡ (h; )i
, where is a particular smooth and compactly supported function, and (h; ) is linear in h; , with values in C, and they are choosen such that, when writing the problem at innity in position on the form ¡ic@ x2 ¡ + 2Re( ) = h ~, where h ~depends on both h, and (h; ), then R R 2 Im(h ~) = 0. This allows us to invert the problem at innity. Since the kernel of L Q c is known (see Corollary 1.4.5), to invert locally the operator (with the additional term ¡(h; )i), we also require a local orthogonality condition (one of the two elements of the kernel is avoided by symmetry). Here, the constant of inversion depends on c, since L Q c has some small directions (see Proposition 1.4.1). The construction still requires a Fredholm alternative argument, that has to be modied because of the diculties on the phase. This changes only slightly the proofs compared to Chapter 2, since the change is only on a one dimensional direction, thus the compactness arguments are identical.

To complete the inversion of L Qc , we need to invert the particular direction i. This is done explicitely for one vortex (see [10]), since there, the problem is an ODE. With an ansatz using this solution for each vortices, by constructing an inverse as a perturbation of it, we can invert this direction for L Qc (see Lemma 4.2.9). This particular solution does not decay as well at innity compare to the function

' in L Q c (') = Q c h ¡ (h; )i,
but this is expected, since it is also the case for a single vortex (where it grows like ln(r)). Now, in the case with two symmetries, (h; ) = 0 and thus the solution has a better decay, and both elements of the kernel of L Q c are avoided. We can thus invert it, without any orthogonality condition.

For the proof of Theorem 1.5.2, we use the inversion in the case with two symmetries, and the equality

L Q c (@ c Q c ) = i@ x 2 Q c (both @ c Q c and i@ x 2 Q c have the two required symmetries). We thus write @ c Q c = L Q c ¡1 (i@ x2 Q c )
, and we check that the operator L Q c ¡1 is dierentiable with respect to the speed. This shows that @ c Q c is C 1 with respect to the speed, thus c 7 ! Q c is C 2 . By induction, we show that c 7 ! Q c is C 1 with respect to the speed.

Some open problems and conjectures

We present here some questions that are only partially answered by the results of this thesis, or that are natural follow up problems.

Construction of a travelling wave behaving like two vortices of degree n for n > 2.

From [START_REF] Hervé | Étude qualitative des solutions réelles d'une équation diérentielle liée à l'équation de Ginzburg-Landau[END_REF], there exists vortices of any degree n 2 Z . We constructed a travelling wave (of speed c > 0) behaving like two vortices of degree 1 at distance of order 2 / c in Theorem 1.3.1. It used the fact that the kernel of the linearized operator around V 1 is known, and contains, in the associated energy space, only the translations (see [10]). Such a property (Ker

H V n = Span R (@ x 1 V n ; @ x 2 V n ))
is not known on vortices of degree n > 2. However, if it is shown that it holds for such vortices, then the construction done in Chapter 2 should work similarly (the distance between the vortices will be of order 2n/c in that case). Such branches have been seen numerically in [START_REF] Chiron | Multiple branches of travelling waves for the Gross-Pitaevskii equation[END_REF]: This graph represents dierent branches of travelling waves constructed numerically. We recall that large momentum yield speeds close to 0, and small momentum speeds close to 2 p . The JR (for Jones-Roberts) branch is the one constructed in Theorem 1.3.1. The 2 and 3 vortex branch are the ones descibed above. The W 2 and W 3 branches are constructed from the limit c ! 2 p . Furthermore, if it is also possible to show a coercivity result on B Vn , the quadratic form associated to the vortex V n , then the coercivity results (such as Theorems 1.4.4 and 1.4.12) should also hold. It has been shown numerically that B V n can take negative values ( [START_REF] Ovchinnikov | I. Static vortices[END_REF]). But, if a coercivity result is shown, with several local orthogonality conditions, for B Vn (to kill the nitely many negative directions), we should have a coercivity result for the branch V n V ¡n , with twice as many orthogonality conditions. This would show that this branch is likely unstable, but has no additional unstability directions than those of the vortices that compose it.

The constructions of Theorems 1.2.6, 1.2.7 and 1.3.1 yield the same branch

The constructions of Theorems 1.2.7 and 1.2.6 respectively minimize locally the energy at xed momentum, or is a critical point of a well chosen Lagrangian. This is not shown for the one from Theorem 1.3.1. However, in this last construction, the branch is C 1 with respect to the speed, and the structure in term of vortices is well understood, and these properties are not shown in Theorems 1.2.6 and 1.2.7.

Showing that these branches are identical would combine these properties. Furthermore, the proof of such a result would most likely give the fact that the branch is isolated in the Energy/Momentum graph above (for large momentum), which would be a major step in the completion of the Jones-Roberts program.

To show such a result, it might be possible to improve the local uniqueness result of Theorem 1.3.1, to show for instance that any travelling wave behaving like two vortices (with a small error in L 1 for instance) is an element of the branch of Theorem 1.3.1. With such a result, it would only require an improvement on the structure of the branches in Theorems 1.2.6 and 1.2.7 (namely, showing that they behave like two vortices in L 1 ).

Extension of the branch of Theorem 1.3.1 for large speeds

The construction of Theorem 1.3.1 is done for small speeds, less than some small c 0 > 0. It is conjectured that this branch extend in all speeds in 0; 2 p . Adapting some proof in Chapter 4, using that L Qc (@ c Q c ) = i@ x2 Q c , it is possible to show that, as long as i@ x2 Q c remains orthogonal to the kernel (which is true only shown for small speeds), then, for any for 0 < c < 2 p , if the branch is still dened, @ c Q c is bounded in some weighed L 1 space. This could give a way to continue the branch, even when the speed is no longer small, by integrating @ c Q c with respect to the speed.

Construction of smooth branches of solutions in other problems

The method of the construction of travelling waves of Theorem 1.3.1 has been used in other cases, for instance [START_REF] Manuel Del Pino | Variational reduction for Ginzburg-Landau vortices[END_REF] or [START_REF] Lin | Traveling wave solutions of the Schrödinger map equation[END_REF]. In these other cases, only the construction was done, not the dierentiability with respect to the parameter. By adapting elements of section 2.3, it might be possible to show the dierentiability with respect to the parameter in these other cases.

Orbital stability and multi travelling wave solutions

With a coercivity result such as Theorem 1.4.12, we could expect (at least in the symmetric case) to have an orbital stability result. However, there are some technical diculties, connected to the weakness of the coercivity norm compared to the norm of the energy space. Furthermore, another diculty is that we need to modulate on the speed, which makes the functional E(u) ¡ cP 2 (u) not independent of time.

Theorem 1.5.1 is a rst step in the construction of a multi travelling wave solutions, at least with a symmetry (for instance, one travelling wave moving in the direction e ~2 and the other in the direction ¡e ~2), using methods developed in [START_REF] Krieger | Two-soliton solutions to the three-dimensional gravitational Hartree equation[END_REF], [START_REF] Martel | Asymptotic N -soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations[END_REF] or [START_REF] Martel | Multi solitary waves for nonlinear Schrödinger equations[END_REF]. With the equivalents of Theorem 1.2.11, it is possible to compute the rst order of the interaction between them. There are some technical diculties left to complete such a construction, in particular with respect to the phase.

If such multi travelling wave solutions exists, their stability would be an interesting question, as for other multi soliton solutions, see for instance [START_REF] Martel | Stability and asymptotic stability in the energy space of the sum of N solitons for subcritical gKdV equations[END_REF] or [START_REF] Martel | Stability in H 1 of the sum of K solitary waves for some nonlinear Schrödinger equations[END_REF].

Chapter 2

Smooth branch of travelling waves

This chapter is devoted to the proof of Theorem 1.3.1. We start by reducing the problem to a one dimensional one in section 2.1. The construction of the travelling wave Q c is completed in section 2.2. Furthermore, in subsection 2.2.2, we show that Q c has nite energy and we compute some estimates particular to the branch of solutions. Finally section 2.3 is devoted to the proof of the dierentiability of the branch.

Lyapunov-Schmidt reduction

The proof of Theorem 1.3.1 follows closely the construction done in [START_REF] Manuel Del Pino | Variational reduction for Ginzburg-Landau vortices[END_REF] or [START_REF] Lin | Traveling wave solutions of the Schrödinger map equation[END_REF]. The main idea is to use perturbation methods on an approximate solution.

In subsection 2.1.1 we dene this approximate solution V which consists in two vortices at distance 2d from each other. We then look for a solution of (TW c ) as a perturbation of V , with an additive perturbation close to the vortices and a multiplicative one far from them. This is computed in subsection 2.1.2. We dene suitable spaces in subsection 2.1.3 that we will use to invert the linear part and use a contraction argument. We ask for an orthogonality on the perturbation, and the norms are a little better but more technical than the ones in Theorem 1.3.1. In particular ¡ c;d c in Theorem 1.3.1 veries better estimates which are discussed for instance in Corollary 2.1.25 and in Lemma 2.2.8. We invert the linearized operator in Proposition 2.1.17 and show that the perturbation is a xed point of a contracting functional in Proposition 2.1.21. The orthogonality condition create a Lagragian multiplier (see subsection 2.1.6), which left us with a problem in one dimension. This multiplier will be cancelled for a good choice of the parameter d in section 2.2.

Estimates on vortices

From [START_REF] Hervé | Étude qualitative des solutions réelles d'une équation diérentielle liée à l'équation de Ginzburg-Landau[END_REF], we can nd stationary solution of (GP):

V n (x) = n (r)e in where x = re i ; n 2 Z , solving V n ¡ (jV n j 2 ¡ 1)V n = 0 jV n j ! 1 as jxj ! 1:
These solutions are well understood and, in particular, we have some estimates (see [START_REF] Hervé | Étude qualitative des solutions réelles d'une équation diérentielle liée à l'équation de Ginzburg-Landau[END_REF] for instance) that we will use. We also know the kernel of the linearized operator around V 1 ([10]), which we will need for inverting the linearized operator around the approximate solution V dened using these vortices

V (x) := V 1 (x ¡ de ~1)V ¡1 (x + de 1 ~)
where d > 0, x = (x 1 ; x 2 ). The function V is the product of two vortices with opposite degrees at a distance 2d from each other. One vortex alone in R 2 is a stationary solution, and it is expected that two vortices interact and translate at a constant speed of order c ' 1 d , see [START_REF] Bethuel | On the NLS dynamics for innite energy vortex congurations on the plane[END_REF]. Hence for the two parameters of this problem c; d > 0, we let them be free from each other, but with the condition c is of order 1/d by imposing that

1 2c < d < 2 c .
We will study in particular areas near the center of each vortices. We will use coordinates adapted to this problem:

x = (x 1 ; x 2 ) = re i ; y = (y 1 ; y 2 ) := x ¡ de 1
~= r 1 e i1 ; z = (z 1 ; z 2 ) := y + 2 de 1 ~= x + de 1 ~= r ¡1 e i¡1 ; r ~:= min (r 1 ; r ¡1 ):

(2.1.1)

Using y coordinate mean that we are centered around V 1 , and z coordinate for around V ¡1 . Note that we have

V (x) = V 1 (y)V ¡1 (z)
using these notations. If it is not precised, V will be taken in x, V 1 in y and V ¡1 in z. If we compute (TW c ) for V , i.e. ¡ic@ x 2 V ¡ V ¡ (1 ¡ jV j 2 )V , we get

(TW c )(V ) = E ¡ ic@ x 2 V ;
where we dened

E := ¡V ¡ (1 ¡ jV j 2 )V :
We have V = V 1 V ¡1 and, by using ¡V " = (1 ¡ jV " j 2 )V " for " = 1, we compute

E = ¡2rV 1 :rV ¡1 + V 1 V ¡1 (1 ¡ jV 1 j 2 + 1 ¡ jV ¡1 j 2 ¡ 1 + jV 1 V ¡1 j 2 )
:

Hence E = ¡2rV 1 :rV ¡1 + (1 ¡ jV 1 j 2 )(1 ¡ jV ¡1 j 2 )V 1 V ¡1 : (2.1.2)
The rest of this subsection is devoted to the computation of estimates on V ; E ; @ d V and ic@ x2 V using estimates on V 1 and V ¡1 . Let us start with the properties on V 1 we need.

Lemma 2.1.1. ([25]

) V 1 (x) = 1 (r)e i veries V 1 (0) = 0, and there exists a constant > 0 such that, for all r > 0, 0 < 1 (r) < 1, 1 0 (r) > 0, and

1 (r) r!0 r; 1 0 (r) = O r!1 1 r 3 ; 1 00 (r) = o r!1 1 r 3 ; 1 ¡ jV 1 (x)j = 1 2r 2 + O r!1 1 r 3 ; rV 1 (x) = iV 1 (x) x ? r 2 + O r!1 1 r 3
where x ? = (¡x 2 ; x 1 ), x = re i . Furthermore we have similar properties for V ¡1 since

V ¡1 (x) = V 1 (x):
We will use the O notation for convergence independent of any other quantity. Now let us write all the derivatives of a vortex in polar coordinate, which will be useful all along the proof of the results.

Lemma 2.1.2. We dene u :=

1 0 (r1) 1(r1) . Then, @ x1 V 1 (y) = cos( 1 )u ¡ i r 1 sin( 1 ) V 1 ; @ x2 V 1 (y) = sin( 1 )u + i r 1 cos( 1 ) V 1 ; @ x1x1 V 1 (y) = cos 2 ( 1 )(u 2 + u 0 ) + sin 2 ( 1 ) u r 1 ¡ 1 r 1 2 + 2i sin( 1 )cos( 1 ) 1 r 1 2 ¡ u r 1 V 1 ; @ x1x2 V 1 (y) = sin( 1 )cos( 1 ) u 2 + u 0 + 1 r 1 2 ¡ u r 1 ¡ i cos(2 1 ) 1 r 1 2 ¡ u r 1 V 1 :
We obtain the derivatives of

V ¡1 by changing i ! ¡i,y ! z, 1 ! ¡1 , r 1 ! r ¡1 and V 1 ! V ¡1 .
We remark in particular that the rst derivatives are of rst order 1 r1 and the second derivatives are of rst order 1 r 1 2 for large values of r 1 . From [START_REF] Hervé | Étude qualitative des solutions réelles d'une équation diérentielle liée à l'équation de Ginzburg-Landau[END_REF], we can check that, more generally, we have

jD (n) V 1 (y)j 6 K(n) (1 + r 1 ) n : (2.1.3)
Proof. With the notation of (2.1.1) in radial coordinate around de 1 ~, the center of V 1 :

@ x1 = cos( 1 )@ r1 ¡ sin( 1 ) r 1 @ 1 @ x 2 = sin( 1 )@ r 1 + cos( 1 ) r 1 @ 1 ;
we compute directly the rst two equalities of the lemma. Now, we compute

@ x 1 x 1 V 1 = cos( 1 )@ r 1 (@ x 1 V 1 ) ¡ sin( 1 ) r 1 @ 1 (@ x 1 V 1 ) with @ r 1 (@ x 1 V 1 ) = u cos( 1 )u ¡ i r 1 sin( 1 ) + cos( 1 )u 0 + i r 1 2 sin() V 1
and

@ 1 (@ x1 V 1 ) = i cos( 1 )u + 1 r 1 sin( 1 ) ¡ sin( 1 )u ¡ i r 1 cos( 1 ) V 1
for the third inequality. We use them also in

@ x1x2 V 1 = sin( 1 )@ r1 (@ x1 V 1 ) + cos( 1 ) r 1 @ 1 (@ x1 V 1 )
for the fourth relation, with cos 2 ( 1 ) ¡ sin 2 ( 1 ) = cos(2 1 ). Now, we compute some basic estimates on V .

Lemma 2.1.3. There exists a universal constant K > 0 and a constant K(d) > 0 depending only on d > 1 such that

j1 ¡ V j 2 6 K(d) (1 + r) 2 ; 0 6 1 ¡ jV j 2 6 K (1 + r ~)2 ;
jr(jV j)j 6 K (1 + r ~)3 ; and we have

jrV j 6 K (1 + r ~);
as well as jrV j 6 Kd (1 + r ~)2 ; where r ~= min (r 1 ; r ¡1 ). Furthermore,

jr 2 V j 6 K (1 + r ~)2 and jr 2 V j 6 Kd (1 + r ~)3 :
Proof. For the rst inequality, we are at xed d. Since V = jV 1 V ¡1 je i(1¡¡1) and 1 ; ¡1 are angles from points separated by 2d, we infer

e i(1¡¡1) = 1 + O r!1 d 1 r ;
and

jV 1 V ¡1 j = 1 + O r!1 d 1 r 2 from Lemma 2.1.1 where O r!1 d ¡ 1 r is a quantity that decay in 1 r is at xed d. Therefore, j1 ¡ V j 2 = j1 ¡ jV 1 V ¡1 je i(1¡¡1) j 2 = K(d)O r!1 1 r 2 6 K(d) (1 + r) 2 :
From Lemma 2.1.1, we compute

1 ¡ jV j 2 = 1 ¡ jV 1 j 2 + jV 1 j 2 (1 ¡ jV ¡1 j 2 ) 6 K 1 (1 + r 1 ) 2 + 1 (1 + r ¡1 ) 2 6 K (1 + r ~)2 ; and jr(jV j)j 6 jr(jV 1 j)jV ¡1 jj + jr(jV ¡1 j)jV 1 jj 6 K 1 (1 + r 1 ) 3 + 1 (1 + r ¡1 ) 3 6 K (1 + r ~)3 :
We check that rV = rV 1 V ¡1 + rV ¡1 V 1 , and therefore, with Lemma 2.1.2, we have

jrV j 6 K (1 + r 1 ) + K (1 + r ¡1 ) 6 K (1 + r ~):
Furthermore, by Lemma 2.1.1,

rV 1 = i r 1 e ~1 + O r1!1 1 r 1 3 ! :
For r ~> 1 (the last estimate on jrV j for r ~6 1 is a consequence of jrV j 6 

K (1 + r ~) ), since r 1 e i1 = x de ~1, cos( 1 ) r 1 ¡ cos( ¡1 ) r ¡1 = x 1 ¡ d (x 1 ¡ d) 2 + x 2 2 ¡ x 1 + d (x 1 + d) 2 + x 2 2 = x 1 r 1 2 r ¡1 2 ((x 1 + d) 2 + x 2 2 ¡ ((x 1 ¡ d) 2 + x 2 2 )) ¡ d 1 r 1 2 + 1 r ¡1 2 ! = d r 1 2 r ¡1 2 (2x 1 2 ¡ r 1 2 ¡ r ¡1 2 ); (2.1.4) therefore cos( 1 ) r 1 ¡ cos( ¡1 ) r ¡1 6 Kd (1 + r ~)2
jrV j 6 e ~1 r 1 ¡ e ~¡1 r ¡1 + K (1 + r ~)3 6 Kd (1 + r ~)2 + K (1 + r ~)3 6 Kd (1 + r ~)2 :
Finally, for the second derivatives, we have for j ; k 2 1; 2

@ x j x k V = @ x j x k V 1 V ¡1 + @ x j V 1 @ x k V ¡1 + @ x k V 1 @ x j V ¡1 + @ x j x k V ¡1 V 1 ;
therefore, with (2.1.3),

jr 2 V j 6 K (1 + r 1 ) 2 + K (1 + r ¡1 )(1 + r 1 ) + K (1 + r ¡1 ) 2 6 K (1 + r ~)2 :
We check with (2.1.4) 

jr 2 V j 6 r e ~1 r 1 ¡ e ~¡1 r ¡1 + K (1 + r ~)3 6 Kd (1 + r ~)3 :
Now we look at the convergence of some quantities when we are near the center of V 1 and d ! 1. When we are close to the center of V 1 and d goes to innity, we expect that the second vortex as no inuence. Lemma 2.1.4. As d ! 1, we have, locally uniformly in R 2 ,

V (: + de ~1) = V 1 (:)V ¡1 (: + 2de ~1) ! V 1 (:); E(: + de ~1) ! 0 and @ d V (: + de 1 ~) ! ¡@ x1 V 1 (:): Proof. In the limit d ! 1, for y 2 R 2 , V (y + de ~1) = V 1 (y)e ¡i ¡1 1 + O 1 r ¡1 2 !! by Lemma 2.1.1, hence V (:) ! V 1 (:)
locally uniformly since ¡1 ! 0; r ¡1 ! +1 when d! 1 locally uniformly. On the other hand, since

V (x) = V 1 (y)V ¡1 (y + 2 de ~1), we have (@ d V )(y + de ~1) = ¡@ x 1 V 1 (y)V ¡1 (y + 2 de ~1) + V 1 (y)@ x 1 V ¡1 (y + 2 de ~1):
Since @ x1 V ¡1 (y + 2 de ~1) = rV ¡1 (y + 2 de ~1):e ~1 ! 0 locally uniformly as d ! 1, we have

@ d V (:) ! ¡@ x1 V 1 (:)
locally uniformly. Finally, from (2.1.2), we have that

E(x) = ¡2rV 1 (y):rV ¡1 (z) + (1 ¡ jV 1 (y)j 2 )(1 ¡ jV ¡1 (z)j 2 )V 1 (y)V ¡1 (z)
with the notations from (2.1.1), therefore, locally uniformly,

E(: + de ~1) ! 0
as rV ¡1 ! 0 and jV ¡1 j ! 1 locally uniformly when d ! 1.

We now do a precise computation on the term ic@ x 2 V , which appears in (TW c )(V ).

Lemma 2.1.5. There exists a universal constant C > 0

(independent of d) such that if r 1 ; r ¡1 > 1, i @ x 2 V V ¡ 2d x 1 2 ¡ d 2 ¡ x 2 2 r 1 2 r ¡1 2 6 C 1 r 1 3 + 1 r ¡1 3 ! :
Remark that this shows that the rst order term of i @x 2 V V is real-valued and the dependence on d of this term is explicit.

Proof. Recall from Lemma 2.1.2 that for " = 1,

@ x2 V " = i" r " cos( " )V " + O r1!1 1 r 1 3 : We have @ x 2 V V = @ x 2 V 1 V 1 + @ x 2 V ¡1 V ¡1 and cos( " ) = x 1 ¡ "d r " ; yielding @ x2 V V = i x 1 ¡ d r 1 2 ¡ x 1 + d r ¡1 2 ! = i x 1 1 r 1 2 ¡ 1 r ¡1 2 ! ¡ d 1 r 1 2 + 1 r ¡1 2 !! + O r1!1 1 r 1 3 + O r¡1!1 1 r ¡1 3 ! : We compute with (2.1.1) that 1 r 1 2 ¡ 1 r ¡1 2 = (x 1 + d) 2 + x 2 2 ¡ (x 1 ¡ d) 2 ¡ x 2 2 r 1 2 r ¡1 2 = 4dx 1 r 1 2 r ¡1 2 and 1 r 1 2 + 1 r ¡1 2 = (x 1 + d) 2 + x 2 2 + (x 1 ¡ d) 2 + x 2 2 r 1 2 r ¡1 2 = 2 x 1 2 + d 2 + x 2 2 r 1 2 r ¡1 2 ;
yielding the estimate.

Finally, we show an estimate on

@ d V = @ d (V 1 (x ¡ de 1 ~)V ¡1 (x + de 1 ~)) = ¡@ x 1 V 1 V ¡1 + @ x 1 V ¡1 V 1 .
Lemma 2.1.6. There exists a constant K > 0 such that

j@ d V j 6 K (1 + r ~) ; jr@ d V j 6 K (1 + r ~)2 and jRe(V @ d V )j 6 K (1 + r ~)3 : Furthermore, j@ d 2 V j 6 K (1 + r ~)2 and j@ d 2 rV j 6 K (1 + r ~)3 : Proof. We have that @ d V = ¡@ x1 V 1 V ¡1 + @ x1 V ¡1 V 1 and from Lemma 2.1.2, j@ x1 V 1 j 6 K (1 + r 1 ) 6 K (1 + r ~) :
Similarly, j@ x1 V ¡1 j 6 K (1 + r ~) and this proves the rst inequality. Furthemore, for r@ d V , every terms has two derivatives, each one bringing a (2.1.3), this shows the second inequality. Finally, we compute

1 (1 + r ~) by
Re(V @ d V ) = ¡jV ¡1 j 2 Re(V 1 @ x1 V 1 ) + jV 1 j 2 Re(V ¡1 @ x1 V ¡1 ): From Lemma 2.1.1, jRe(V 1 @ x1 V 1 )j 6 K (1 + r 1 ) 3 6 K (1 + r ~)3
and jV ¡1 j 2 6 1. Similarly we have

jjV 1 j 2 Re(V ¡1 @ x 1 V ¡1 )j 6 K (1 + r ~)3 : Furthermore, since @ d 2 V = @ x 1 2 V 1 V ¡1 ¡ 2@ x 1 V 1 @ x 1 V ¡1 + @ x 1 2 V ¡1 V 1 , with equation (2.1.
3), we check easily the estimations on @ d 2 V and @ d 2 rV .

Setup of the proof

In the same way as in [START_REF] Manuel Del Pino | Variational reduction for Ginzburg-Landau vortices[END_REF] (see also [START_REF] Lin | Traveling wave solutions of the Schrödinger map equation[END_REF]), we will look at a solution of (TW c ) as a perturbation of V of the form

v := V (1 + ) + (1 ¡ )Ve
where (x) = ~(r 1 ) + ~(r ¡1 ) and ~is a C 1 positive cuto with ~(r) = 1 if r 6 1 and 0 if r > 2. The perturbation is and we will also use

:= V :
We use such a perturbation because we want it to be additive (in ) near the center of the vortices (where v = V + ), and multiplicative (in ) far from them (where v = Ve ). We shall require to be bounded (and small) near the vortices. The problem becomes an equation on , with the following Lemma 2.1.7, we shall write

L() + (1 ¡ )VL 0 ( ) + F ( ) = 0
where L and L 0 are linear. The main part of the proof of the construction consists of inverting the linearized operator L() + (1 ¡ )VL 0 ( ) in suitable spaces, and then use a contraction argument by showing that F is small and conclude on the existence of a solution by a xed point theorem.

Lemma 2.1.7. The function v = V (1 + ) + (1 ¡ )Ve is solution of (TW c ) if and only if L() + (1 ¡ )VL 0 ( ) + F ( ) = 0; where = V , L 0 ( ) := ¡ ¡ 2 rV V :r + 2jV j 2 Re( ) ¡ ic@ x2 ; L() := ¡ ¡ (1 ¡ jV j 2 ) + 2Re(V )V ¡ ic@ x2 ; F ( ) := E ¡ ic@ x2 V + V (1 ¡ )(¡r :r + jV j 2 S( )) + R( ); with E = ¡V ¡ (1 ¡ jV j 2 ) V ; S( ) := e 2Re( ) ¡ 1 ¡ 2Re( )
and R( ) is a sum of terms at least quadratic in or localized in the area where = / 0. Furthermore, there exists C ; C 0 > 0 such that the estimate

jR( )j + jrR( )j 6 C kk C 2 ({r ~62}) 2 holds if kk C 2 (R 2 ) 6 C 0 (a constant independent of c)
, where r ~= min (jx ¡ de ~1j; jx + de 1 ~j) for x 2 R 2 . Additionally, L() and L 0 ( ) are related by

L() = (E ¡ ic@ x2 V ) + VL 0 ( ):
The main reason for such a perturbation ansatz is because V (de 1 ~) = V (¡de 1 ~) = 0, so we can not divide by V as done in L 0 for instance when we look near the vortices, therefore an additive perturbation is more suitable. But far from the vortices, the perturbation is easier to compute when written multiplicatively with a factorisation by V . Remark also that this allows us to take to explode at de ~1 and ¡de ~1 as long as = V does not. This is needed for the norm we use in subsection 2.1.3.

As we look for small (it is a perturbation), the conditions kk C 2 (R 2 ) 6 C 0 will always be true. We need them because some of the error terms have an exponential contribution in , and not only quadratic. We recall that, with our notations, r :r is complex-valued.

Remark that the quantity F contains only nonlinear terms and the source term, which is E ¡ ic@ x 2 V . Furthermore, contrary to the work [START_REF] Lin | Traveling wave solutions of the Schrödinger map equation[END_REF], the transport term is in the linearized operator, and not considered as an error term in F .

The rest of this subsection is devoted to the proof of Lemma 2.1.7.

Proof. First we show that

L() = (E ¡ ic@ x 2 V ) + L 0 ( )V . We use = V in L() to compute L() = ¡V ¡ V ¡ 2r :rV ¡ (1 ¡ jV j 2 ) V + 2jV j 2 V Re( ) ¡ icV@ x2 ¡ ic@ x2 V : We have that E = ¡V ¡ (1 ¡ jV j 2 )V hence (E ¡ic@ x2 V ) = ¡V ¡ (1 ¡ jV j 2 )V ¡ ic@ x2 V
and the remaining terms are exactly equal to VL 0 ( ).

We denote := 1 + ¡ e . Remark that is at least quadratic in . We compute the dierent terms in (TW c ):

¡ic@ x2 v ¡ v ¡ (1 ¡ jvj 2 )v = 0 with v = V (1 + ) + (1 ¡ )Ve : We have v = V + ¡ (1 ¡ ).
In general, our goal in this computation is to factorize any term when possible by V ( + (1 ¡ )e ) and compute the other terms, which will be supported in the area (1 ¡ ) = / 0. First compute

@ x2 v = (@ x2 V (1 + ) + @ x2 V ) + @ x2 V (1 + ) + (1 ¡ ) e (@ x2 V + @ x2 V ) ¡ @ x2 Ve ; therefore ¡ic@ x2 v = V ( + (1 ¡ )e ) ¡ic @ x 2 V V ¡ ic@ x2 ¡ ic@ x2 V ¡ ic@ x2 V: (2.1.5)
For the second term, we compute

v = V (1 + ¡ e ) + 2r:r(V (1 + ¡ e )) + (V (1 + ) + 2rV :r + V ) + (1 ¡ )(Ve + 2rV :r e + V ( + r :r )e ); hence ¡v = V ( + (1 ¡ )e ) ¡ V V ¡ 2 rV V :r ¡ ¡ V ¡ (1 ¡ ) V r :r e ¡ V ¡ 2r:r(V): (2.1.6)
Finally, let us write A := V (1 + ) and B := V e , so that v = A + (1 ¡ )B, and remark that V = A ¡ B. We then have

(1 ¡ jv j 2 )v = (1 ¡ 2 jAj 2 ¡ (1 ¡ ) 2 jB j 2 ¡ 2(1 ¡ )Re(AB ))(A + (1 ¡ )B):
We want to bring out the terms not related to the interaction between A and B, namely

(1 ¡ jAj 2 )A + (1 ¡ )(1 ¡ jB j 2 )B. We have (1 ¡ jv j 2 )v = (1 ¡ jAj 2 )A + A[(1 ¡ 2 )jAj 2 ¡ (1 ¡ ) 2 jB j 2 ¡ 2(1 ¡ )Re(AB )] + (1 ¡ )(1 ¡ jB j 2 )B + (1 ¡ )B[(1 ¡ (1 ¡ ) 2 )jB j 2 ¡ 2 jAj 2 ¡ 2(1 ¡ )Re(AB )]:
Now, factorizing (1 ¡ ) we get

(1 ¡ jvj 2 )v = (1 ¡ jAj 2 )A + (1 ¡ )(1 ¡ jB j 2 )B + (1 ¡ )[(1 + )AjAj 2 ¡ (1 ¡ )AjB j 2 ¡ 2ARe(AB )] + (1 ¡ )[(2 ¡ )B jB j 2 ¡ B jAj 2 ¡ 2(1 ¡ )B Re(AB )]:
Remark that the last two lines yield 0 if we take A = B, since V = A ¡ B, we can write

(1 ¡ jvj 2 )v = (1 ¡ jAj 2 )A + (1 ¡ )(1 ¡ jB j 2 )B + (1 ¡ )(VG( ) + VH( ))
where G; H are functions satisfying jH( )j; jG( )j; jrH( )j; jrG( )j 6 C(1 + j j + jr j + je j + jr e j) for some universal constant C > 0. We recall that A = V (1 + ) hence

(1 ¡ jAj 2 )A = (1 ¡ jV j 2 j1 + j 2 )V (1 + );
therefore we get a constant (in ), a linear and a nonlinear part in :

(1 ¡ jAj 2 )A = (1 ¡ jV j 2 )V + (1 ¡ jV j 2 )V ¡ 2jV j 2 V Re( ) ¡2jV j 2 V Re( ) ¡ jV j 2 V (1 + ):
We have B = Ve , hence

(1 ¡ jB j 2 )B = e ((1 ¡ jV j 2 )V ¡ 2 Re( )jV j 2 V ¡ jV j 2 VS( ));
where S( ) = e 2Re( ) ¡ 1 ¡ 2 Re( ) is nonlinear in . We add these relations and obtain 

(1 ¡ jAj 2 )A + (1 ¡ )(1 ¡ jB j 2 )B = V ( + (1 ¡ )e )((1 ¡ jV j 2 ) ¡ 2 Re( )jV j 2 ) + (1 ¡ )(VG( ) + VH( )) + ((1 ¡ jV j 2 )V ¡ 2jV j 2 V Re( ) ¡ jV j 2 V (1 + )) ¡ (1 ¡ )e
v ¡ v ¡ (1 ¡ jv j 2 )v = 0 yields V ( + (1 ¡ ) e ) E ¡ ic@ x2 V V + L 0 ( ) +((E ¡ ic@ x2 V ) + 2jV j 2 V Re( ) + jV j 2 V (1 + )) +V (1 ¡ ) e (jV j 2 S( ) ¡ r :r ) ¡ic@ x 2 V ¡ V ¡ 2r:r(V) ¡ (1 ¡ )(VG(Z) + VH( )) = 0:
(2.1.8)

We divide by + (1 ¡ )e , which is allowed since + (1 ¡ )e = 1 + (1 ¡ )(e ¡ 1) and in = / 1 , j j 6 jj jV j 6 K kk L 1 (R 2 ) 6 KC 0 by our assumption kk L 1 (R 2 ) 6 C 0 , therefore, choosing C 0 small enough, in = / 1 , we have je ¡ 1j 6 1/2. We also remark that

(1 ¡ )e ( + (1 ¡ )e ) = (1 ¡ ) + (1 ¡ ) e ¡ 1 + (1 ¡ ) e ; therefore (2.1.8) become E ¡ ic@ x2 V + VL 0 ( ) +V (1 ¡ )(¡r :r + jV j 2 S( )) + ( + (1 ¡ ) e ) ((E ¡ ic@ x2 V ) + 2jV j 2 V Re( ) + jV j 2 V (1 + )) +R 1 ( ) = 0;
where

R 1 ( ) := 1 ( + (1 ¡ ) e ) (¡ic@ x2 V ¡ V ¡ 2r:r(V) ¡ (1 ¡ )(VG( ) + VH( ))) + V(1 ¡ ) e ¡ 1 + (1 ¡ ) e
(¡r :r + jV j 2 S( )):

Remark that R 1 ( ) is nonzero only in the rings where (1 ¡ ) = / 0, i.e. 1 6 r ~6 2, since every term has either @ x 2 ; or (1 ¡ ) as a factor. Furthermore they all have as an additional factor ; r ; S or r :r . Hence, if we suppose that j j; jr j; jr 2 j 6 KC 0 in the rings (which is a consequence of = V and kk C 2 (R 2 ) 6 C 0 ), then those terms can be bounded by

C k k C 1 ({16r ~62}) 2
. Therefore if j j; jr j; jr 2 j 6 KC 0 in the rings, then

jR 1 ( )j + jrR 1 ( )j 6 K k k C 2 ({16r ~62}) 2 6 K kk C 2 ({r ~62}) 2
for some universal constant K > 0, since in the rings, V is bounded from below by a nonzero constant. Now, we use

( + (1 ¡ ) e ) = + (1 ¡ ) 1 ¡ e + (1 ¡ ) e to compute ( + (1 ¡ ) e ) (E ¡ ic@ x 2 V ) = (E ¡ ic@ x 2 V ) + R 2 ( );
where

R 2 ( ) := (1 ¡ ) (1 ¡ e )(E ¡ ic@ x 2 V ) + (1 ¡ ) e :
We show easily that R 2 ( ) satises the same estimates as R 1 ( ). Remark that, using = V ,

( + (1 ¡ ) e ) (2jV j 2 V Re( ) + jV j 2 V (1 + )) = ( + (1 ¡ ) e ) (2Re(V ) + jj 2 (V + )) 6 K kk C 1 ({r ~62}) 2 and r ( + (1 ¡ ) e ) (2Re(V ) + jj 2 (V + )) 6 K kk C 1 ({r ~62}) 2 if kk L 1 (R 2 )
6 C 0 (so that the term in e is bounded) since = / 0 only if r ~6 2. We dene

R( ) := R 1 ( ) + R 2 ( ) + ( + (1 ¡ ) e ) (2jV j 2 V Re( ) + jV j 2 V (1 + )); which satises jR( )j; jr(R( ))j 6 K kk C 2 ({r ~62}) 2
for some universal constant K > 0, provided that kk C 2 (R 2 ) 6 C 0 . The equation (2.1.8) then becomes

E ¡ ic@ x2 V + VL 0 ( ) + V (1 ¡ )(¡r :r + jV j 2 S( )) +(E ¡ ic@ x2 V ) + R( ) = 0:
Now we nish by using ¡icV@ x 2 = ¡icV@ x 2 ¡ (1 ¡ )icV@ x 2 and

@ x 2 V + @ x 2 V = @ x 2 to obtain VL 0 ( ) + (E ¡ ic@ x 2 V ) ¡ ic@ x 2 + V (1 ¡ )(¡r :r + jV j 2 S( )) + R( ) = 0:
Finally, since we have shown that L() = (E ¡ ic@ x2 V ) + L 0 ( )V , we infer

VL 0 ( ) + (E ¡ ic@ x 2 V ) = L() + (1 ¡ )VL 0 ( ):
The proof is complete.

Setup of the norms

For a given 2 R, we dene, similarly as in [START_REF] Manuel Del Pino | Variational reduction for Ginzburg-Landau vortices[END_REF] and [START_REF] Lin | Traveling wave solutions of the Schrödinger map equation[END_REF], for = 1 + i 2 and h = h 1 + ih 2 , the norms

k k ;;d := kV k C 2 ({r ~63}) + kr ~1+ 1 k L 1 ({r ~>2}) + kr ~2+ r 1 k L 1 ({r ~>2}) + kr ~2+ r 2 1 k L 1 ({r ~>2}) + kr ~ 2 k L 1 ({r ~>2}) + kr ~1+ r 2 k L 1 ({r ~>2}) + kr ~2+ r 2 2 k L 1 ({r ~>2}) ; khk ;;d := kVhk C 1 ({r ~63}) + kr ~1+ h 1 k L 1 ({r ~>2}) + kr ~2+ rh 1 k L 1 ({r ~>2}) + kr ~2+ h 2 k L 1 ({r ~>2}) + kr ~2+ rh 2 k L 1 ({r ~>2}) ;
where r ~= min (r 1 ; r ¡1 ) (which depends on d). These are the spaces we shall use for the inversion of the linear operator for suitable values of . This norm is not the natural energy norm that we could expect, for instance:

kk HV 2 := Z R 2 jrj 2 + (1 ¡ jV j 2 )jj 2 + Re(V ) 2 :
In particular, we require dierent conditions on the decay at innity (with, in a way, less decay). As a consequence, the decay we have in Theorem 1.3.1 is not optimal (see [START_REF] Gravejat | First order asymptotics for the travelling waves in the Gross-Pitaevskii equation[END_REF]). This decay will be recovered later on by showing that the solution has nite energy. The main advantage of the norms k:k ;;d and k:k ;;d is that they will allow us to have uniform estimates on the error, without constants depending on c or d.

We are looking for a solution on a space of symmetric functions: we suppose that

8x = (x 1 ; x 2 ) 2 R 2 ; (x 1 ; x 2 ) = (x 1 ; ¡x 2 ) = (¡x 1 ; x 2 )
because V and the equation has the same symmetries. With only those symmetries we will not be able to invert the linearized operator because it has a kernel, we also need an orthogonal condition. We dene

Z d (x) := @ d V (x)( ~(4r 1 ) + ~(4r ¡1 ));
where ~is the same function as the one used for v: it is a C 1 non negative smooth cuto with ~(r) = 1 if r 6 1 and 0 if r > 2. In particular Z d (x) = 0 if r ~> 1 / 2, which will make some computations easier. The other interest of the cuto function is that without it

@ d V (x) = ¡@ x1 V 1 V ¡1 + @ x1 V ¡1 V 1
is not integrable in all R 2 . We dene the Banach spaces we shall use for inverting the linear part:

E ;;d := = V 2 C 2 (R 2 ; C); k k ;;d < +1; h; Z d i = 0; 8x 2 R 2 ; (x 1 ; x 2 ) = (x 1 ; ¡x 2 ) = (¡x 1 ; x 2 ) ; E ; 0 ;d := Vh 2 C 1 (R 2 ; C); khk ; 0 ;d < +1
for ; 0 2 R. We shall omit the subscript d in the construction and use only E ; , E ; 0. Remark that E ; contains an orthogonality condition as well as the symmetries.

Our rst goal is to invert the linearized operator. This is a dicult part, which requires a lot of computations and critical elliptic estimates. The next subsection is devoted to the proof of the elliptic tools use in the proof of the inversion. In particular, our paper diverges here from [START_REF] Lin | Traveling wave solutions of the Schrödinger map equation[END_REF] (see Remark 2.1.11 thereafter).

Some elliptic estimates

In this subsection, we provide some tools for elliptic estimate adapted to L 1 norms.

Weighted L 1 estimates on a Laplacian problem

Lemma 2.1.8. For d > 5, 0 < < 1, there exists a constant K() > 0 such that, for f 2 C 0 (R 2 ; C) such that

8(x 1 ; x 2 ) 2 R 2 ; f(x 1 ; x 2 ) = ¡f (x 1 ; ¡x 2 )
and with

" f ; := kf (x)(1 + r ~)2+ k L 1 (R 2 ) < +1; there exists a unique C 1 (R 2 ) function such that = f in the distribution sense, 8(x 1 ; x 2 ) 2 R 2 ; (x 1 ; x 2 ) = ¡(x 1 ; ¡x 2 )
and satises the following two estimates: 8x 2 R 2 ; j(x)j 6 K()" f ;

(1 + r ~) and 8x 2 R 2 ; jr(x)j 6 K()" f ;

(1 + r ~)1+ :

Remark here that for a given function f , if it satises two inequalities with dierent values of (" f ; ; ), then the associated function satises the estimates with both sets of values by uniqueness. Furthermore, with only the hypothesis f 2 C 0 (R 2 ), we do not have 2 C loc 2 (R 2 ) a priori.

Proof. The uniqueness of such a function is a consequence of the fact that is bounded (by 8x 2 R 2 ; j(x)j 6

K"f ;

(1 + r ~) ), the linearity of the Laplacian, and that the only weak solution to = 0 that tends to 0 at innity is 0. We dene

:= G f ;
where G is the fundamental solution of the Laplacian in dimension 2, namely G(x) :=

1 2 ln(jxj). Since kf (x)(1 + r ~)2+ k L 1 (R 2 ) < +1, we check that is well dened. Let us show that 2 C 1 (R 2 ; C). If f 2 C c 1 (R 2 ), then, for j 2 1; 2 , (x + he ~j) ¡ (x) jhj = 1 2 Z R 2 ln(jx ¡ Y j)) f(Y + he ~j) ¡ f (Y ) jhj dY ! 1 2 Z R 2 ln(jx ¡ Y j))@ Yj f (Y ) dY
when jhj ! 0. Then, for " > 0, 1 2

Z B(x;") ln(jx ¡ Y j))@ Y j f (Y ) dY 6 K" 2 jln(")jkrf k L 1 (R 2 )
and by integration by parts,

1 2 Z R 2 nB(x;") ln(jx ¡ Y j))@ Y j f (Y ) dY = 1 2 Z R 2 nB(x;") x j ¡ Y j jx ¡ Y j 2 f (Y )dY ¡ 1 2 Z @B(x;") ln(jx ¡ Y j))f(Y )e ~j: ~d
and since

1 2 R @B(x;") ln(jx ¡ Y j))f (Y )e ~j: ~d 6 K kf k L 1 (R 2
) "jln(")j, taking " ! 0 we deduce that

(x + he ~j) ¡ (x) jhj ! 1 2 Z R 2 ln(jx ¡ Y j))@ Yj f (Y ) dY = 1 2 Z R 2 x j ¡ Y j jx ¡ Y j 2 f(Y )dY
when jhj ! 0. This implies that, for

f 2 C c 1 (R 2 ), r(x) = 1 2 Z R 2 x ¡ Y jx ¡ Y j 2 f (Y )dY : Now, for f 2 C 0 (R 2 ; C) such that kf (x)(1 + r ~)2+ k L 1 (R 2 ) < +1, we take f n 2 C c 1 (R 2 ; C) such that f n ! f in L 3 (R 2 ) and (1 + r ~)/2 f n ! (1 + r ~)/2 f in L 1 (R 2 ) (we check easily that f 2 L 3 (R 2 ) and (1 + r ~)/2 f 2 L 1 (R 2 )). In particular, f n ! f in L 1 (R 2 ).
Then, for n such that n = f n , we check that, by Hölder inequality,

r n (x) ¡ 1 2 Z R 2 x ¡ Y jx ¡ Y j 2 f (Y )dY 6 1 2 Z R 2 jf n (Y ) ¡ f (Y )j jx ¡ Y j dY ; Z jx¡Y j61 jf n (Y ) ¡ f (Y )j jx ¡ Y j dY 6 kf n ¡ f k L 3 (R 2 ) Z jx¡Y j61 dY jx ¡ Y j 3/2 ! 2/3 6 K kf n ¡ f k L 3 (R 2 )
and

Z jx¡Y j>1 jf n (Y ) ¡ f (Y )j jx ¡ Y j dY 6 kf n ¡ f k L 1 (R 2 ) ; therefore r n ! 1 2 R R 2 x ¡ Y jx ¡ Y j 2 f (Y )dY uniformly in R 2 . Similarly, we estimate n (x) ¡ 1 2 Z R 2 ln(jx ¡ Y j)f (Y )dY 6 1 2 Z R 2 jf n (Y ) ¡ f (Y )j jln(jx ¡ Y j)jdY ; Z jx¡Y j61 jf n (Y ) ¡ f(Y )j jln(jx ¡ Y j)jdY 6 kf n ¡ f k L 3 (R 2 ) Z jx¡Y j61 jln(jx ¡ Y j)j 3/2 dY ! 2/3 6 K kf n ¡ f k L 3 (R 2 )
and

Z jx¡Y j>1 jf n (Y ) ¡ f (Y )jjln(jx ¡ Y j)jdY 6 K k(1 + r ~)/2 f n ¡ (1 + r ~)/2 f k L 1 (R 2 ) ;
thus n ! G f = uniformly in R 2 , which implies by dierentiation of a sequence of functions, that 2 C 1 (R 2 ; C) and

r(x) = 1 2 Z R 2 x ¡ Y jx ¡ Y j 2 f (Y )dY : We check that satises = f in the distribution sense. Indeed, for ' 2 C c 1 (R 2 ), (see [12], chapter 2, Theorem 1) Z R 2 (G f )' = Z R 2 f (G ') = Z R 2 f':
It is also easy to check that

8(x 1 ; x 2 ) 2 R 2 ; (x 1 ; x 2 ) = ¡(x 1 ; ¡x 2 ): Now, if jx ¡ de ~1j 6 1, we check that jr(x)j 6 K Z R 2 1 jY j jf (x ¡ Y )jdY 6 K" f ; Z R 2 dY jY j(1 + r ~(Y ¡ x)) 2+ 6 K" f ; ;
and, similarly, j(x)j 6 K" f ; ; which is enough to show the required estimate of this lemma for these values of x. We can make the same estimate if jx + de 1 ~j 6 1, we therefore suppose from now on that jx ¡ de

1 ~j; jx + de 1 ~j > 1. First, let us show that Z Y1>0 f (Y )dY = Z Y160 f(Y )dY = 0: (2.1.9)
The integrals are well dened because jf (x)j 6

"f ;

(1 + r ~)2+ and therefore f is integrable. Since f is odd with respect to x 2 , (2.1.9) holds. We deduce that jr(x)j 6 1 2

Z Y 1 >0 x ¡ Y jx ¡ Y j 2 ¡ x ¡ de 1 jx ¡ de 1 ~j2 f (Y )dY + 1 2 Z Y 1 60 x ¡ Y jx ¡ Y j 2 ¡ x + de 1 jx + de 1 ~j2 f (Y )dY :
Now, using jf (x)j 6

"f ;

(1 + r ~)2+ , we estimate

2 jr(x)j 6 " f ; Z Y 1 >0 x ¡ Y jx ¡ Y j 2 ¡ x ¡ de 1 jx ¡ de 1 ~j2 dY (1 + r 1 (Y )) 2+ + " f ; Z Y 1 60 x ¡ Y jx ¡ Y j 2 ¡ x + de 1 jx + de 1 ~j2 dY (1 + r ¡1 (Y )) 2+ : By the change of variable Y = Z + de 1 ~, we have Z Y 1 >0 x ¡ Y jx ¡ Y j 2 ¡ x ¡ de 1 jx ¡ de 1 ~j2 dY (1 + r 1 (Y )) 2+ = Z Z1>¡d (x ¡ de 1 ~) ¡ Z j(x ¡ de 1 ~) ¡ Z j 2 ¡ x ¡ de 1 jx ¡ de 1 ~j2 dZ (1 + jZ j) 2+ ; 6 Z R 2 (x ¡ de 1 ~) ¡ Z j(x ¡ de 1 ~) ¡ Z j 2 ¡ x ¡ de 1 jx ¡ de 1 ~j2 dZ (1 + jZ j) 2+ : Now, if jZ j > 2jx ¡ de 1
~j, by triangular inequality, we check that

(x ¡ de 1 ~) ¡ Z j(x ¡ de 1 ~) ¡ Z j 2 ¡ x ¡ de 1 jx ¡ de 1 ~j2 6 K jx ¡ de ~1j ; hence Z jZ j>2jx¡de 1 j (x ¡ de 1 ~) ¡ Z j(x ¡ de 1 ~) ¡ Z j 2 ¡ x ¡ de 1 jx ¡ de 1 ~j2 dZ (1 + jZ j) 2+ 6 K jx ¡ de 1 ~jZ jZ j>2jx¡de1j dZ (1 + jZ j) 2+ 6 K() jx ¡ de 1 ~j1+ : (2.1.10)
We now work for jZ j 6 2jx ¡ de 1 ~j. We remark that

(x ¡ de 1 ~) ¡ Z j(x ¡ de 1 ~) ¡ Z j 2 ¡ x ¡ de 1 jx ¡ de 1 ~j2 jx ¡ de 1 ~j2 j(x ¡ de 1 ~) ¡ Z j 2 = j(x ¡ de 1 ~)(jx ¡ de 1 ~j2 ¡ j(x ¡ de 1 ~) ¡ Z j 2 ) ¡ Z jx ¡ de 1 ~j2 j = j(x ¡ de 1 ~)(2(x ¡ de 1 ~):Z ¡ jZ j 2 ) ¡ Z jx ¡ de 1 ~j2 j = j((x ¡ de 1 ~) ¡ Z)(2(x ¡ de 1 ~):Z ¡ jZ j 2 ) ¡ Z j(x ¡ de 1 ~) ¡ Z j 2 j = j(x ¡ de 1 ~) ¡ Z jjZ j (x ¡ de 1 ~) ¡ Z j(x ¡ de 1 ~) ¡ Z j 2(x ¡ de 1 ~): Z jZ j ¡ jZ j ¡ Z jZ j j(x ¡ de 1 ~) ¡ Z j ;
and we estimate

(x ¡ de 1 ~) ¡ Z j(x ¡ de 1 ~) ¡ Z j 2(x ¡ de 1 ~): Z jZ j ¡ jZ j ¡ Z jZ j j(x ¡ de 1 ~) ¡ Z j 6 2jx ¡ de 1 ~j + (x ¡ de 1 ~) ¡ Z j(x ¡ de 1 ~) ¡ Z j (¡jZ j) ¡ Z jZ j j(x ¡ de 1 ~) ¡ Z j : Furthermore, (x ¡ de 1 ~) ¡ Z j(x ¡ de 1 ~) ¡ Z j (¡jZ j) ¡ Z jZ j j(x ¡ de 1 ~) ¡ Z j 2 jZ j 2 j(x ¡ de 1 ~) ¡ Z j 2 = |((x ¡ de 1 ~) ¡ Z)jZ j 2 + Z j(x ¡ de 1 ~) ¡ Z j 2 | 2 = j(x ¡ de 1 ~) ¡ Z j 2 jZ j 4 + jZ j 2 j(x ¡ de 1 ~) ¡ Z j 4 + 2(x ¡ de 1 ~¡ Z):Z jZ j 2 j(x ¡ de 1 ~) ¡ Z j 2 = j(x ¡ de 1 ~) ¡ Z j 2 jZ j 2 (¡jZ j 2 + j(x ¡ de 1 ~) ¡ Z j 2 + 2(x ¡ de 1 ~):Z ) = j(x ¡ de 1 ~) ¡ Z j 2 jZ j 2 jx ¡ de 1 ~j2 ; therefore (x ¡ de 1 ~) ¡ Z j(x ¡ de 1 ~) ¡ Z j 2 ¡ x ¡ de 1 jx ¡ de 1 ~j2 6 3jZ j jx ¡ de 1 ~j j(x ¡ de 1 ~) ¡ Z j : We deduce that Z jZ j62jx¡de1j (x ¡ de 1 ~) ¡ Z j(x ¡ de 1 ~) ¡ Z j 2 ¡ x ¡ de 1 jx ¡ de 1 ~j2 dZ (1 + jZ j) 2+ 6 3 jx ¡ de 1 ~j Z jZ j62jx¡de 1 j jZ jdZ j(x ¡ de 1 ~) ¡ Z j(1 + jZ j) 2+ :
We remark that, either j(x ¡ de

1 ~) ¡ Z j > jx ¡ de1j 2
, and then

Z jZ j62jx¡de1j \ n j(x¡de1)¡Z j> |x ¡de 1 | 2 o jZ jdZ j(x ¡ de 1 ~) ¡ Z j(1 + jZ j) 2+ 6 2 jx ¡ de 1 ~j Z jZ j62jx¡de1j \ n j(x¡de1)¡Z j> jx¡de 1 j 2 o jZ jdZ (1 + jZ j) 2+ 6 K() jx ¡ de 1 ~j since < 1, or j(x ¡ de 1 ~) ¡ Z j 6 jx ¡ de1j 2
, and then jZ j

> |x ¡ de1| 2 , therefore Z jZ j62jx¡de1j \ n j(x¡de1)¡Z j6 jx¡de 1 j 2 o jZ jdZ j(x ¡ de 1 ~) ¡ Z j(1 + jZ j) 2+ 6 Z n jx¡de 1 j 2 6jZ j62jx¡de 1 j o jZ jdZ j(x ¡ de 1 ~) ¡ Z j(1 + jZ j) 2+ 6 K jx ¡ de 1 ~j2+ Z jZ ¡(x¡de 1 )j63jx¡de 1 j jZ jdZ j(x ¡ de 1 ~) ¡ Z j 6 K jx ¡ de 1 ~j :
We conclude that

Z jZ j62jx¡de 1 j (x ¡ de 1 ~) ¡ Z j(x ¡ de 1 ~) ¡ Z j 2 ¡ x ¡ de 1 jx ¡ de 1 ~j2 dZ (1 + jZ j) 2+ 6 K() jx ¡ de 1 ~j1+ : (2.1.11)
Combining (2.1.9) and (2.1.11), and by symmetry, we deduce that

Z Y1>0 x ¡ Y jx ¡ Y j 2 ¡ x ¡ de 1 jx ¡ de 1 ~j2 dY (1 + r 1 (Y )) 2+ + Z Y160 x ¡ Y jx ¡ Y j 2 ¡ x + de 1 jx + de 1 ~j2 dY (1 + r ¡1 (Y )) 2+ 6 K() jx ¡ de 1 ~j1+ + K() jx + de 1 ~j1+ 6 K() r ~(x) 1+ ;
and therefore (recall that jx ¡ de 1 ~j; jx + de 1 ~j > 1),

jr(x)j 6 K" f ; (1 + r ~(x)) 1+ :
Now, let us show that (x) ! 0 when jxj ! 1. We recall that 

(x) = 1 2 Z R 2 ln(jx ¡ Y j)f(Y )dY ; and since R R 2 f (Y )dY = 0, for large values of x (in particular jxj d), (x) = 1 2 Z R 2 ln jx ¡ Y j jxj f (Y )dY : If jx ¡ Y j 6 1, then jf (Y )j 6 K "f ; (1 + jxj) 2+ , hence Z jx¡Y j61 ln jx ¡ Y j jxj f (Y ) 6 K" f ; (1 + jxj) 2+ Z {jx¡Y j61} jln(jx ¡ Y j) ¡ ln(jxj)j 6 K" f ; (1 + ln(jxj)) (1 + jxj) 2+ ! 0 when x ! 1. If jx ¡ Y j > 1,
1 jx¡Y j>1 ln jx ¡ Y j jxj f(Y ) 6 K ln(jY j + 2)f (Y ) 2 L 1 (R 2 ; C):
By dominated convergence theorem, we deduce that (x) ! 0 when jxj ! 1. Now, to estimate , we integrate from innity. For instance, in the case x 1 > 0; x 2 > 0, we estimate

j(x)j 6 Z x2 +1 @ x2 (x 1 ; t)dt 6 K" f ; Z x2 +1 dt (1 + jx 1 ¡ de 1 ~j + t) 1+ 6 K" f ; (1 + r ~(x)) :

Fundamental solution for ¡ + 2

We will use the fundamental solution of ¡ + 1 and its following properties.

Lemma 2.1.9. ([1]) The fundamental solution of

¡ + 1 in R 2 is 1 2 K 0 (j:j), where K 0 is the modied Bessel function of second kind. It saties K 0 2 C 1 (R + ) and K 0 (r) r!1
2r q e ¡r ; K 0 (r) r!0 ¡ln(r);

K 0 0 (r) r!1 ¡ 2r q e ¡r ; K 0 0 (r) r!0 ¡1 r ;
8r > 0; K 0 (r) > 0; K 0 0 (r) < 0 and K 0 00 (r) > 0:

Proof. The rst three equivalents are respectively equations 9.7.2, 9.6.8 and 9.7.4 of [1]. The fourth one can be deduced from equations 9.6.27 and 9.6.9 of [1]. For 2 N, K is C 1 (R; R) since it solves 9.6.1 of [1] and from the end of 9.6 of [1], we have that K has no zeros. In particular with the asymptotics of 9.6.8, this implies that K (r) > 0. Furthermore, from 9.6.27 of [1], we have

K 0 0 = ¡K 1 < 0 and K 0 00 = ¡K 1 0 = K0 + K2 2 > 0.
We end this subsection by the proof an elliptic estimate that will be used in the proof of Proposition 2.1.17. Lemma 2.1.10. For any > 0, there exists a constant C() > 0 such that, for any

d > 1, if two real-valued functions 2 H 1 (R 2 ); h 2 C 0 (R 2 ) satisfy in the distribution sense (¡ + 2) = h; and k(1 + r ~) hk L 1 (R 2 ) < +1; then 2 C 1 (R 2 ) with j j + jr j 6 C()k(1 + r ~) hk L 1 (R 2 ) (1 + r ~) : Proof. The fundamental solution of ¡ + 2 in R 2 is 1 2 K 0 ¡ 2 p j:j
where K 0 is the modied Bessel function of the second kind with the properties described in Lemma 2.1.9. Since 2 H 1 (R 2 ) and the equation ¡ + 2 is strictly elliptic, we have

= 1 2 K 0 ¡ 2 p j:j h; therefore (using K 0 > 0), for x 2 R 2 , j (x)j 6 K k(1 + r ~) hk L 1 (R 2 ) Z R 2 K 0 ¡ 2 p jx ¡ Y j dY (1 + r ~(Y )) : If jx ¡ de 1 ~j 6 1 or jx + de 1 ~j 6 1, we have Z R 2 K 0 ¡ 2 p jx ¡ Y j 1 (1 + r ~(Y )) dY 6 Z R 2 K 0 ¡ 2 p jx ¡ Y j dY 6 Z R 2 K 0 ¡ 2 p jY j dY 6 K ;
therefore the estimate holds. We now suppose that jx ¡ de 1 ~j; jx

+ de 1 ~j > 1. We decompose Z R 2 K 0 ¡ 2 p jx ¡ Y j 1 (1 + r ~(Y )) dY = Z Y1>0 K 0 ¡ 2 p jx ¡ Y j dY (1 + jY ¡ de 1 ~j) + Z Y160 K 0 ¡ 2 p jx ¡ Y j dY (1 + jY + d n e 1 ~j) ;
and we estimate, by a change of variable,

Z Y 1 >0 K 0 ¡ 2 p jx ¡ Y j dY (1 + jY ¡ de 1 ~j) 6 Z R 2 K 0 ¡ 2 p jY j dY (1 + jx ¡ de 1 ~¡ Y j) : Now, if jY j 6 jx ¡ de1j 2
, by Lemma 2.1.9 we have

Z n jY j6 |x ¡de 1 | 2 o K 0 ¡ 2 p jY j dY (1 + jx ¡ de 1 ~¡ Y j) 6 K (1 + jx ¡ de 1 ~j) Z n jY j6 jx¡de 1 j 2 o K 0 ¡ 2 p jY j dY 6 K (1 + jx ¡ de 1 ~j) : If jY j > jx ¡ dne1j 2
, by Lemma 2.1.9 we have Z n jY j>

|x ¡de 1 | 2 o K 0 ¡ 2 p jY j dY (1 + jx ¡ de 1 ~¡ Y j) 6 Ke ¡jx¡de1j/4 Z n jY j> jx¡de 1 j 2 o e ¡jY j/4 dY 6 K() (1 + jx ¡ de 1 ~j) :
By symmetry, we have

Z Y160 K 0 ¡ 2 p jx ¡ Y j dY (1 + jY + de 1 ~j) 6 K (1 + jx + de 1 ~j) ;
and this shows that

j (x)j 6 K()k(1 + r ~) hk L 1 (R 2 ) (1 + r ~(x)) : (2.1.12)
For r , we have the similar integral form

r = 1 2 r ¡ K 0 ¡ 2 p j:j h:
Once again, we can show the estimate if jx ¡ de 1 ~j 6 1 or jx + de 1 ~j 6 1, and otherwise, we estimate as previously

jr (x)j 6 K k(1 + r ~) hk L 1 (R 2 ) Z R 2 rK 0 ¡ 2 p jx ¡ Y j 1 (1 + r ~(Y )) dY 6 K k(1 + r ~) hk L 1 (R 2 ) Z R 2 ¡K 0 0 ¡ 2 p jx ¡ Y j 1 (1 + r ~(Y )) dY since K 0 0 < 0 (from Lemma 2.1.9
). Now, we can do the same computation as for the estimation of j j, using the properties of K 0 0 instead of K 0 in Lemma 2.1.9. The same proof works, since the two main ingredients were the integrability near 0 and an exponential decay at innity of K 0 , and ¡K 0 0 veries this too. We deduce

jr (x)j 6 C()k(1 + r ~) hk L 1 (R 2 ) (1 + r ~(x)) : (2.1.13)
Remark 2.1.11. Lemma 2.1.10 is dierent from the equivalent one of [START_REF] Lin | Traveling wave solutions of the Schrödinger map equation[END_REF] for the gradient, which is equation (5.21) there. They claim that: for any 0 < < 1, there exists C > 0 such that, if two real-valued functions

2 C 1 (R 2 ); h 2 C 0 (R 2 ) satisfy (¡ + 2) = h
in the distribution sense, and

k (1 + r ~)1+ k L 1 (R 2 ) + kr (1 + r ~)2+ k L 1 (R 2 ) + k(1 + r ~)1+ hk L 1 (R 2 ) < +1; then j j 6 C k(1 + r ~)1+ hk L 1 (R 2 ) (1 + r ~)1+ and jr j 6 C k(1 + r ~)1+ hk L 1 (R 2 ) (1 + r ~)2+ :
The main dierence they claim would be a stronger decay for the gradient. However, such a result can not hold, because of the following counterexample:

" (x) = 8 < 
:

0 if jxj 6 1/" sin 2 (r) (1 + r) 2+ if jxj > 1/":
For " > 0 small enough (in particular such that " is an integer multiple of , so that " is C 2 ), we have

k(1 + r ~)1+ h(x)k L 1 (R 2 ) = k(1 + r ~)1+ ((¡ + 2) )(x)k L 1 (R 2 ) 6 K" and k(1 + r ~)2+ jr (x)jk L 1 (R 2 ) > 1/2:
Therefore, taking " ! 0, we see that the estimate jr (x)j 6

C k(1 + r ~)1+ hk L 1 (R 2 ) (1 + r ~)2+
can not hold.

For our proof of the inversion of the linearized operator (Proposition 2.1.17 below), we did not choose the same norms k:k ;;d and k:k ; 0 ;d as in [START_REF] Lin | Traveling wave solutions of the Schrödinger map equation[END_REF] (at the beginning of subsection 2.1.3). In particular, we require decays on the second derivatives for k:k ; 0 ;d . Our proof of the inversion of the linearized operator (the equivalent of Lemma 5.1 of [START_REF] Lin | Traveling wave solutions of the Schrödinger map equation[END_REF]) will be dierent, and will follow more closely the proof of [START_REF] Manuel Del Pino | Variational reduction for Ginzburg-Landau vortices[END_REF].

Estimates for the Gross-Pitaevskii kernels

We are interested here in solving the following equation on , given a source term h and c 2 0; 2 p : ¡ic@ x 2 ¡ + 2Re( ) = h:

It will appear in the inversion of the linearized operator around V . See Lemma 2.1.15 for the exact result. We give here a way to construct a solution formally. We will highlight all the important quantities, as well as all the diculties that arise when trying to solve this equation rigorously.

In this subsection, we want to check that a solution of this equation, with = 1 + i 2 and h = h 1 + ih 2 (where 1 ; 2 ; h 1 ; h 2 are real valued) can be written with H a function that satises @ xj H := K j h 2 ; and

@ xj 2 = G j ¡ cK j h 1 ;
(2. 1.15) where similarly G j satises

@ x k G j := (c 2 L j ;k ¡ R j ;k ) h 2 ;
where, for j ; k 2

1; 2 , = ( 1 ; 2 ) 2 R 2 , K 0 () := j j 2 j j 4 + 2j j 2 ¡ c 2 2 2 ; K j () := 2 j j j 4 + 2j j 2 ¡ c 2 2 2 ; L j ;k () := 2 2 j k j j 2 (j j 4 + 2j j 2 ¡ c 2 2
2

) ; and

R j;k () := j k j j 2 :
We will check later on that, for continuous and suciently decaying functions h, these quantities are well dened, and that H ; G j ; 2 can be dened from there derivatives. The Gross-Pitaevskii kernels, K 0 ; K j ; L j ;k , and the Riesz kernels R j;k have been studied in [START_REF] Gravejat | Decay for travelling waves in the Gross-Pitaevskii equation[END_REF], and we will recall some of the results obtained there. We write the system in real and imaginary part:

c@ x2 2 ¡ 1 + 2 1 = h 1 ¡c@ x2 1 ¡ 2 = h 2 :
Now, taking the Fourier transform of the system, we have

( i 2 c 2 + (j j 2 + 2) 1 = h 1 ¡i 2 c 1 + j j 2 2 = h 2 ^;
and we write it

j j 2 + 2 ic 2 ¡ic 2 j j 2 ! 1 2 ! = h 1 ĥ2 ^!:
Here, we suppose that is a tempered distributions and h 2 L p (R2 ; C) for some p > 1. Now, we want to invert the matrix, and for that, we have to divide by its determinant, j j 4 + 2j j 2 ¡ c 2 2 2 . For 0 < c < 2 p , this quantity is zero only for = 0. Thus, for = / 0,

1 2 ! = 1 j j 4 + 2j j 2 ¡ c 2 2 2 j j 2 h 1 ^¡ ic 2 h 2 (j j 2 + 2)h 2 ^+ ic 2 h 1 ^!; which implies that 1 = j j 2 h 1 ĵ j 4 + 2j j 2 ¡ c 2 2 2 + ¡ic 2 h 2 ĵ j 4 + 2j j 2 ¡ c 2 2 2 :
With the denition of K 0 , we have

jj 2 jj 4 + 2jj 2 ¡ c 2 2 2 h 1 ^= K 0 h 1 ^and, dening the distribution H by H ^= ¡i 2 jj 4 + 2jj 2 ¡ c 2 2 2 h 2
^, we have, for = / 0,

@ x j H = j 2 h 2 ĵ j 4 + 2j j 2 ¡ c 2 2 2 = K j h 2 ^: Remark that ¡i2 jj 4 + 2jj 2 ¡ c 2 2
Now, we have

@ xj 2 = i j (j j 2 + 2)h 2 ĵ j 4 + 2j j 2 ¡ c 2 2 2 + ¡c j 2 h 1 ĵ j 4 + 2j j 2 ¡ c 2 2 2 :
We check that

¡ cj 2 jj 4 + 2jj 2 ¡ c 2 2 2 h 1 ^= ¡c K j h 1
^, and we compute

j j 2 + 2 j j 4 + 2j j 2 ¡ c 2 2 2 = 1 j j 2 1 ¡ c 2 2 2 j j 4 + 2j j 2 ¡ c 2 2 2 = 1 j j 2 ¡ c 2 2 2 j j 2 (j j 4 + 2j j 2 ¡ c 2 2 2 ) ; thus, denoting G j = ij(jj 2 + 2) jj 4 + 2jj 2 ¡ c 2 2 2 h 2 ^, we have @ xk G j := c 2 L j ;k ¡ R j ;k h 2 ^:
We therefore have that, at least formally, for = / 0, ¡ic@ x2 ¡ + 2Re( ) ¡ h() = 0. We deduce that there exists P 2 C[X 1 ; X 2 ] such that ¡ic@ x2 ¡ + 2Re( ) ¡ h = P Now, if the function and h are such that the left hand side is bounded and goes to 0 at innity, this implies that P = 0. This will hold under a condition on h (which will be R R 2 h 2 = 0 and some decay estimates, that will inherit). Another remark is that is here in part dened through its derivatives, and we need an argument to construct a primitive. See Lemma 2.1.15 for a rigorous proof of this construction. Remark that ¡ic@ x 2 ¡ + 2Re( ) = 0 has some nonzero or unbounded polynomial solutions, for instance

= i or = ix 2 ¡ c 2 .
The kernels K 0 ; K j and L j ;k have been studied in details in [START_REF] Gravejat | Decay for travelling waves in the Gross-Pitaevskii equation[END_REF], [START_REF] Gravejat | Asymptotics for the travelling waves in the Gross-Pitaevskii equation[END_REF] and [START_REF] Gravejat | First order asymptotics for the travelling waves in the Gross-Pitaevskii equation[END_REF]. In particular, we recall the following result.

Theorem 2.1.12. ([19], Theorems 5 and 6) For

K 2 K 0 ; K j ; L j ;k and any 0 < c 0 < 2 p , there exist a constant K(c 0 ) > 0 such that, for all 0 < c < c 0 , jK(x)j 6 K(c 0 ) jxj 1/2 (1 + jxj) 3/2 and jrK(x)j 6 K(c 0 ) jxj 3/2 (1 + jxj) 3/2 :
Proof. This is the main result of Theorems 5 and 6 of [START_REF] Gravejat | Decay for travelling waves in the Gross-Pitaevskii equation[END_REF]. We added the fact that the constant K is uniform in c, given that c is small. This can be easily shown by following the proof of Theorem 5 and 6 of [START_REF] Gravejat | Decay for travelling waves in the Gross-Pitaevskii equation[END_REF], and verifying that the constants depends only on weighed L 1 norms on K ^and its rst derivatives, which are uniforms in c if c > 0 is small. The condition c < c 0 is taken in ordrer to avoid c ! 2 p , where this does not hold (the singularity near = 0 of K ^changes of order at the limit). We will take often c 0 = 1. Furthermore, the factor 1/2 for the growth near x = 0 is not at all optimal, but we will not require more here.

Remark that the speed in [START_REF] Gravejat | Decay for travelling waves in the Gross-Pitaevskii equation[END_REF] is in the direction e ~1, whereas it is in the direction e ~2 in our case, which explains the swap between 2 and 1 in the two papers.

We recall that r ~= min (r 1 ; r ¡1 ) with r 1 = jx de 1 ~j,

1 2c < d < 2 c
. We give some estimates of convolution with these kernels. Lemma 2.1.13. Take K 2 K 0 ; K j ; L j ;k and h 2 C 0 (R 2 ; R), and suppose that, for some > 0,

kh(1 + r ~) k L 1 (R 2 ) < +1. Then, for any 0 < 0 < , there exists C(; 0 ) > 0 such that, for 0 < c < 1, if either ¡ < 2 ¡ 2 < < 3, 8(x 1 ; x 2 ) 2 R 2 ; h(¡x 1 ; x 2 ) = h(x 1 ; x 2 ) and R R 2 h = 0, then jK hj 6 C(; 0 )kh(1 + r ~) k L 1 (R 2 ) (1 + r ~) 0 : Furthermore, if < 3 (without any other conditions), then jrK hj 6 C(; 0 )kh(1 + r ~) k L 1 (R 2 ) (1 + r ~) 0 :
The symmetry and R R 2 h = 0 in the case 2 < < 3 could be removed, if we suppose instead that R

{x1>0} h = R {x160} h = 0. In particular, if we suppose that 8(x 1 ; x 2 ) 2 R 2 ; h(x 1 ; x 2 ) = ¡h(x 1 ; ¡x 2 ), then the condition R R 2 h = 0 is automatically satised. Proof. First, since > 0, h 2 L p (
R 2 ; C) for some large p > 1 (depdending on ), and rK ; K 2 L q (R 2 ; C) for any 4 3 > q > 1 by Theorem 2.1.12, thus K h and rK h are well dened. We only look at the estimates for x 2 R 2 with x 1 > 0. The case x 1 6 0 can be done similarly. In this case, we have r

~(x) = jx ¡ d c e 1 ~j.
We rst look at the case 0 < < 2. By Theorem 2.1.12 and the change of variables z = x ¡ y, we have

jK hj(x) 6 C kh(1 + r ~) k L 1 (R 2 ) Z R 2 dy jx ¡ yj 1/2 (1 + jx ¡ y j) 3/2 (1 + r ~(y)) 6 C()kh(1 + r ~) k L 1 (R 2 ) Z {y 1 >0} dy jx ¡ yj 1/2 (1 + jx ¡ yj) 3/2 (1 + jy ¡ de 1 ~j) + C()kh(1 + r ~) k L 1 (R 2 ) Z {y160} dy jx ¡ yj 1/2 (1 + jx ¡ yj) 3/2 (1 + jy + de 1 ~j) 6 C()kh(1 + r ~) k L 1 (R 2 ) Z R 2 dz jz j 1/2 (1 + jz j) 3/2 (1 + jz ¡ (x ¡ de 1 ~)j) + C()kh(1 + r ~) k L 1 (R 2 ) Z R 2 dz jz j 1/2 (1 + jz j) 3/2 (1 + jz ¡ (x + de 1 ~)j) : (2.1.16)
We focus on the estimation of R

R 2 dz jzj 1/2 (1 + jz j) 3/2 (1 + jz ¡ (x ¡ de 1 )j) . If jx ¡ de 1 ~j 6 1, since > 0, Z R 2 dz jzj 1/2 (1 + jzj) 3/2 (1 + jz ¡ (x ¡ de 1 ~)j) 6 C() Z R 2 dz jzj 1/2 (1 + jzj) 3/2 (1 + jz j) 6 C(): Now, for jx ¡ de 1 ~j > 1, we decompose Z R 2 dz jz j 1/2 (1 + jz j) 3/2 (1 + jz ¡ (x ¡ de 1 ~)j) = Z n jz j6 jx¡de 1 j 2 o dz jz j 1/2 (1 + jz j) 3/2 (1 + jz ¡ (x ¡ de 1 ~)j) + Z n jz j> jx¡de 1 j 2 o dz jz j 1/2 (1 + jz j) 3/2 (1 + jz ¡ (x ¡ de 1 ~)j) :
In

n jz j 6 jx ¡ de1j 2 o , we have jz ¡ (x ¡ de 1 ~)j > jx ¡ de1j 2 and jz ¡ (x ¡ de 1 ~)j > jzj, thus, since ¡ 0 > 0 and jx ¡ de 1 ~j > 1, Z n jz j6 jx ¡de 1 j 2 o dz jzj 1/2 (1 + jzj) 3/2 (1 + jz ¡ (x ¡ de 1 ~)j) 6 C jx ¡ de 1 ~j 0 Z R 2 dz jz j 1/2 (1 + jz j) 3/2 (1 + jzj) ¡ 0 6 C( ¡ 0 ) jx ¡ de 1 ~j 0 6 C( ¡ 0 ; 0 ) (1 + jx ¡ de 1 ~j) 0 :
In

n jz j > jx ¡ de1j 2 o , we have jzj > jz ¡ (x ¡ de1)j 3 since jz ¡ (x ¡ de 1 ~)j 6 jzj + jx ¡ de 1 ~j 6 jzj + 2jzj 6 3jzj; and jz j > K(1 + jz j) since jz j > jx ¡ de1j 2 > 1 2 . We then estimate, with 0 < 0 < < 2, Z n jz j> jx¡de 1 j 2 o dz jz j 1/2 (1 + jz j) 3/2 (1 + jz ¡ (x ¡ de 1 ~)j) 6 C (1 + jx ¡ de 1 ~j) 0 Z n jz j> jx¡de 1 j 2 o dz (1 + jz j) 2¡ 0 (1 + jz ¡ (x ¡ de 1 ~)j) 6 C(; 0 ) (1 + jx ¡ de 1 ~j) 0 Z R 2 dz (1 + jz ¡ (x ¡ de 1 ~)j) 2+¡ 0 6 C(; 0 ) (1 + jx ¡ de 1 ~j) 0 : With similar computations, we check that, since x 1 > 0, Z R 2 dz jz j 1/2 (1 + jz j) 3/2 (1 + jz ¡ (x + de 1 ~)j) 6 C( ¡ 0 ; 0 ) (1 + jx + de 1 ~j) 0 6 C( ¡ 0 ; 0 ) (1 + jx ¡ de 1 ~j) 0 :
Therefore, for 0 < < 2, we have

jK hj 6 C( ¡ 0 ; 0 )kh(1 + r ~) k L 1 (R 2 ) (1 + r ~) 0 :
Now, if we consider rK instead of K and < 3, a similar proof gives the result. The only change is that we now use 3 ¡ 0 > 0 since 0 < < 3 in the estimate of the integral in

n jzj > jx ¡ de1j 2
o , with the extra decay coming from rK instead of K.

We now look at the case 2 < < 3 and R R 2 h = 0. In particular, since > 2, we indeed have

h 2 L 1 (R 2 ). For r ~(x) = jx ¡ de 1 ~j 6 1, the proof is the same as in the case < 2. We now suppose that r ~(x) = jx ¡ de 1 ~j > 1. Since R R 2 h = 0 and 8x 2 R 2 ; h(¡x 1 ; x 2 ) = h(x 1 ; x 2 ), we have Z {y 1 60} h(y)dy = Z {y 1 >0} h(y)dy = 0; hence Z {y 1 60} K(x + de 1 ~)h(y)dy = Z {y 1 >0} K(x ¡ de 1 ~)h(y)dy = 0:
Therefore, we decompose

j(K h)(x)j = Z R 2 K(x ¡ y)h(y)dy = Z {y1>0} (K(x ¡ y) ¡ K(x ¡ de 1 ~))h(y)dy + Z {y160} (K(x ¡ y) ¡ K(x + de 1 ~))h(y)dy 6 Z {y1>0}\{jy ¡de1j6jx¡de1j/2} jK(x ¡ y) ¡ K(x ¡ de 1 ~)jjh(y)jdy + Z {y 1 >0}\{jx¡ yj6jx¡de 1 j/2} jK(x ¡ y) ¡ K(x ¡ de 1 ~)jjh(y)jdy + Z {y1>0}\{jx¡ yj>jx¡de1j/2}\{jy ¡de1j>jx¡de1j/2} jK(x ¡ y) ¡ K(x ¡ de 1 ~)jjh(y)jdy: + Z {y160} jK(x ¡ y) ¡ K(x + de 1 ~)

jjh(y)jdy:

In

y 1 > 0 \ jy ¡ de 1 ~j 6 jx ¡ de 1 ~j/2 , by Theorem 2.1.12, jK(x ¡ y) ¡ K(x ¡ de 1 ~)j 6 jK((x ¡ de 1 ~) ¡ (y ¡ de 1 ~)) ¡ K(x ¡ de 1 ~)j 6 jy ¡ de 1 ~j sup B(x¡de 1 ;jx¡de 1 j/2) jrK j 6 C jy ¡ de 1 ~j (1 + jx ¡ de 1 ~j) 3 :
With jx ¡ de 1 ~j > 1, < 3 and the fact that in

y 1 > 0 \ jy ¡ de 1 ~j 6 jx ¡ de 1 ~j/2 , r ~(y) = jy ¡ de 1 ~j, we estimate Z {y 1 >0}\{jy ¡de 1 j6jx¡de 1 j/2} jK(x ¡ y) ¡ K(x ¡ de 1 ~)jjh(y)jdy 6 Z {jy ¡de 1 j6jx¡de 1 j/2} C kh(1 + r ~) k L 1 (R 2 ) jy ¡ de 1 ~j (1 + jx ¡ de 1 ~j) 3 (1 + jy ¡ de 1 ~j) dy 6 C kh(1 + r ~) k L 1 (R 2 ) (1 + jx ¡ de 1 ~j) 3 Z {jy ¡de1j6jx¡de1j/2} jy ¡ de 1 ~j (1 + jy ¡ de 1 ~j) dy 6 C kh(1 + r ~) k L 1 (R 2 ) (1 + jx ¡ de 1 ~j) 3 Z {jz j6jx¡de1j/2} jzj (1 + jz j) dz 6 C()kh(1 + r ~) k L 1 (R 2 ) (1 + jx ¡ de 1 ~j) 3 1 (1 + jx ¡ de 1 ~j) ¡3 6 C()kh(1 + r ~) k L 1 (R 2 ) (1 + jx ¡ de 1 ~j) : Now, in y 1 > 0 \ jx ¡ yj 6 jx ¡ de 1 ~j/2 , we have jy ¡ de 1 ~j > jx ¡ de 1 ~j/2, and thus jh(y)j 6 C()kh(1 + r ~) k L 1 (R 2 ) (1 + jx ¡ de 1 ~j) :
We deduce that

Z {y1>0}\{jx ¡y j6jx¡de1j/2} jK(x ¡ y) ¡ K(x ¡ de 1 ~)jjh(y)jdy 6 C kh(1 + r ~) k L 1 (R 2 ) (1 + jx ¡ de 1 ~j) Z {y1>0}\{jx¡ yj6jx¡de1j/2} jK(x ¡ y) ¡ K(x ¡ de 1 ~)jdy 6 C kh(1 + r ~) k L 1 (R 2 ) (1 + jx ¡ de 1 ~j) Z {jx¡ y j6jx¡de 1 j/2} jK(x ¡ y)jdy + jK(x ¡ de 1 ~)j Z {jx¡ yj6jx¡de 1 j/2} dy 6 C kh(1 + r ~) k L 1 (R 2 ) (1 + jx ¡ de 1 ~j) Z {jz j6jx¡de 1 j/2} jK(z)jdz + jK(x ¡ de 1 ~)jjx ¡ de 1 ~j2 6 C kh(1 + r ~) k L 1 (R 2 ) (1 + jx ¡ de 1 ~j) (ln(1 + jx ¡ de 1 ~j) + 1) 6 C( ¡ 0 )kh(1 + r ~) k L 1 (R 2 ) (1 + jx ¡ de 1 ~j) 0 since jx ¡ de 1 ~j > 1. Now, in y 1 > 0 \ jx ¡ yj > jx ¡ de 1 ~j/2 \ jy ¡ de 1 ~j > jx ¡ de 1 ~j/2 , we have jK(x ¡ y) ¡ K(x ¡ de 1 ~)j 6 jK(x ¡ y)j + jK(x ¡ de 1 ~)j 6 C (1 + jx ¡ de 1 ~j) 2 and jh(y)j 6 kh(1 + r ~) k L 1 (R 2 ) (1 + jx ¡ de 1 ~j) ; as well as jh(y)j 6 kh(1 + r ~) k L 1 (R 2 ) (1 + jy ¡ de 1 ~j) : We deduce, since ¡ 0 > 0, that Z {y 1 >0}\{jx¡ yj>jx¡de 1 j/2}\{jy ¡de 1 j>jx¡de 1 j/2} jK(x ¡ y) ¡ K(x ¡ de 1 ~)jjh(y)jdy: 6 C kh(1 + r ~) k L 1 (R 2 ) (1 + jx ¡ de 1 ~j) 2+( 0 ¡2) Z R 2 dy (1 + jy ¡ de 1 ~j) ¡ 0 +2 6 C( ¡ 0 )kh(1 + r ~) k L 1 (R 2 ) (1 + jx ¡ de 1 ~j) 0 :
We are left with the estimation of

R {y160} jK(x ¡ y) ¡ K(x + de 1 ~)jjh(y)jdy. We decompose it, Z {y160} jK(x ¡ y) ¡ K(x + de 1 ~)jjh(y)jdy = Z {y160}\ n jy+de1j6 jx+de 1 j 2 o jK(x ¡ y) ¡ K(x + de 1 ~)jjh(y)jdy + Z {y160}\ n jy+de1j> jx+de 1 j 2 o jK(x ¡ y) ¡ K(x + de 1 ~)jjh(y)jdy:
In

y 1 6 0 \ n jy + de 1 ~j 6 jx + de1j 2 o , we have jh(y)j 6 kh(1 + r ~) k L 1 (R 2 ) (1 + jy + de 1 ~j) ; and jK(x ¡ y) ¡ K(x + de 1 ~)j = jK((x + de 1 ~) ¡ (y + de 1 ~)) ¡ K(x + de 1 ~)j 6 jy + de 1 ~j sup B(x+de1;jx+de1j/2) jrK j 6 C jy + de 1 ~j (1 + jx + de 1 ~j) 3 ; thus Z {y 1 60}\ n jy+de 1 j6 jx+de 1 j 2 o jK(x ¡ y) ¡ K(x + de 1 ~)jjh(y)jdy 6 C kh(1 + r ~) k L 1 (R 2 ) (1 + jx + de 1 ~j) 3 Z n jy+de 1 j6 jx+de 1 j 2 o jy + de 1 ~j (1 + jy + de 1 ~j) dy 6 C kh(1 + r ~) k L 1 (R 2 ) (1 + jx + de 1 ~j) 3 C() (1 + jx + de 1 ~j) ¡3 6 C()kh(1 + r ~) k L 1 (R 2 ) (1 + jx + de 1 ~j) 6 C()kh(1 + r ~) k L 1 (R 2 ) (1 + jx ¡ de 1 ~j) since x 1 > 0 (which implies that jx + de 1 ~j > jx ¡ de 1 ~j).
Finally, in

y 1 6 0 \ n jy + de 1 ~j > jx + de1j 2 o , we rst suppose that jx ¡ yj > jx + de1j 2 , thus jK(x ¡ y) ¡ K(x + de 1 ~)j 6 jK(x ¡ y)j + jK(x + de 1 ~)j 6 C (1 + jx + de 1 ~j) 2 ; and we have jh(y)j 6 K()kh(1 + r ~) k L 1 (R 2 ) (1 + jx + de 1 ~j) ;
as well as

jh(y)j 6 K()kh(1 + r ~) k L 1 (R 2 ) (1 + jy + de 1 ~j) :
We therefore estimate, since

¡ 0 > 0, jx + de 1 ~j > jx ¡ de 1 ~j, Z {y 1 60}\ n jy+de 1 j> jx+de 1 j 2 o \ n jx¡ y j> jx+de 1 j 2 o jK(x ¡ y) ¡ K(x + de 1 ~)jjh(y)jdy 6 C kh(1 + r ~) k L 1 (R 2 ) (1 + jx + de 1 ~j) 2+( 0 ¡2) Z R 2 1 (1 + jy + de 1 ~j) ¡ 0 +2 6 C( ¡ 0 )kh(1 + r ~) k L 1 (R 2 ) (1 + jx + de 1 ~j) 0 6 C( ¡ 0 )kh(1 + r ~) k L 1 (R 2 ) (1 + jx ¡ de 1 ~j) 0 :
The other case is when jx ¡ yj 6 jx + de1j 2

, where we still have jh(y)j 6

kh(1 + r ~) k L 1 (R 2 ) (1 + jx + de1j)
and we estimate Z

{y160}\{jx¡ yj6jx+de1j/2} jK(x ¡ y) ¡ K(x + de 1 ~)jjh(y)jdy 6 C kh(1 + r ~) k L 1 (R 2 ) (1 + jx + de 1 ~j) Z {y160}\{jx ¡y j6jx+de1j/2} jK(x ¡ y) ¡ K(x + de 1 ~)jdy 6 C kh(1 + r ~) k L 1 (R 2 ) (1 + jx + de 1 ~j) Z {jx ¡ yj6jx+de1j/2} jK(x ¡ y)jdy + jK(x + de 1 ~)j Z {jx¡ yj6jx+de1j/2} dy 6 C kh(1 + r ~) k L 1 (R 2 ) (1 + jx + de 1 ~j) Z {jz j6jx+de1j/2} jK(z)jdz + jK(x + de 1 ~)jjx + de 1 ~j2 6 C kh(1 + r ~) k L 1 (R 2 ) (1 + jx + de 1 ~j) (ln(1 + jx + de 1 ~j) + 1) 6 C( ¡ 0 )kh(1 + r ~) k L 1 (R 2 ) (1 + jx + de 1 ~j) 0 6 C( ¡ 0 )kh(1 + r ~) k L 1 (R 2 ) (1 + jx ¡ de 1 ~j) 0 ;
which concludes the estimates of this lemma.

We complete these estimates with some for R j ;k .

Lemma 2.1.14.

Take h 2 C 1 (R 2 ; R) with 8x = (x 1 ; x 2 ) 2 R 2 ; h(¡x 1 ; x 2 ) = h(x 1 ; x 2 )
, and suppose that for some > 0, kh(1

+ r ~) k L 1 (R 2 ) + krh(1 + r ~) k L 1 (R 2 ) < +1. Then, for any 0 < 0 < , for 0 < c < 1, if either ¡ < 2 ¡ 2 < < 3 and R R 2 h = 0, then, there exists C(; 0 ) > 0 such that jR j;k hj 6 C(; 0 )(kh(1 + r ~) k L 1 (R 2 ) + krh(1 + r ~) k L 1 (R 2 ) ) (1 + r ~) 0 :
Proof. We recall from [START_REF] Gravejat | Decay for travelling waves in the Gross-Pitaevskii equation[END_REF] (or see equation [START_REF] Lin | Instability, index theorem, and exponential trichotomy for linear hamiltonian pdes[END_REF] of [START_REF] Gravejat | Asymptotics for the travelling waves in the Gross-Pitaevskii equation[END_REF]) that

(R j;k h)(x) = 1 2 Z jx¡y j>1 j ;k jx ¡ yj 2 ¡ 2(x ¡ y) j (x ¡ y) k jx ¡ yj 4 h(y)dy + 1 2 Z jx¡y j61 j ;k jx ¡ yj 2 ¡ 2(x ¡ y) j (x ¡ y) k jx ¡ yj 4 (h(y) ¡ h(x))dy: (2.1.17)
As in the proof of Lemma 2.1.13, we suppose x 1 > 0. It implies that r ~(x) = jx ¡ de 1 ~j. The proof can be done similarly if x 1 6 0.

First, we look at the case 0 < < 2. We check that

Z jx¡ y j>1 j ;k jx ¡ yj 2 ¡ 2(x ¡ y) j (x ¡ y) k jx ¡ yj 4 h(y)dy 6 K Z jx¡ y j>1 jh(y)jdy (1 + jx ¡ yj) 2 6 K kh(1 + r ~) k L 1 (R 2 ) Z R 2 dy (1 + jx ¡ yj) 2 (1 + r ~(y)) : The estimate of R R 2 d y (1 + jx ¡ y j) 2 (1 + r ~(y)) can be done exactly as the estimate of Z R 2 dy jx ¡ yj 1/2 (1 + jx ¡ yj) 3/2 (1 + r ~(y))
in the proof of Lemma 2.1.13 (see equation (2.1.16) and the proof below). We deduce that

Z jx¡y j>1 j ;k jx ¡ yj 2 ¡ 2(x ¡ y) j (x ¡ y) k jx ¡ yj 4 h(y)dy 6 K(; 0 )kh(1 + r ~) k L 1 (R 2 ) (1 + jx ¡ de 1 ~j) 0 : Now, if jx ¡ yj 6 1, for 0 < < 3, we have jh(y) ¡ h(x)j 6 jy ¡ xj sup B(x;1) jrhj 6 jy ¡ xj krh(1 + r ~) k L 1 (R 2 ) (1 + r ~(x)) ; thus Z jx¡y j61 j ;k jx ¡ yj 2 ¡ 2(x ¡ y) j (x ¡ y) k jx ¡ yj 4 (h(y) ¡ h(x))dy 6 K krh(1 + r ~) k L 1 (R 2 ) (1 + r ~(x)) Z jx¡ yj61 1 jx ¡ yj 2 jy ¡ xj dy 6 K krh(1 + r ~) k L 1 (R 2 ) (1 + r ~(x)) :
This concludes the proof of the estimate in the case < 2. We now suppose that 2 < < 3 and R R 2 h = 0. We already have estimate the second integral in (2.1.17) (since the computations were done for 0 < < 3), and for the rst integral, the case jx ¡ de 1 ~j 6 1 is done as previously. We now suppose that jx ¡ de 1 ~j > 1. We are left with the estimation of

Z jx¡ yj>1 j ;k jx ¡ yj 2 ¡ 2(x ¡ y) j (x ¡ y) k jx ¡ yj 4 h(y)dy: We dene F j;k (z) := j;kjz j 2 ¡ 2zjzk jz j 4
and we check easily that, for jz j > 1,

jF j ;k (z)j 6 K jzj 2 : Since 8x 2 R 2 ; h(¡x 1 ; x 2 ) = h(x 1 ; x 2 ) and R R 2 h = 0, we have Z {y1>0} F j ;k (x ¡ de 1 ~)h(y)dy + Z {y160} F j ;k (x + de 1 ~)h(y)dy = 0: Furthermore, we estimate (since jx ¡ de 1 ~j > 1) Z {y1>0}\{jx¡ yj61} jF j;k (x ¡ de 1 ~)h(y)jdy 6 jF j ;k (x ¡ de 1 ~)j Z {y 1 >0}\{jx¡ yj61} jh(y)jdy 6 K (1 + jx ¡ de 1 ~j) 2 Z {y1>0}\{jx ¡y j61}
jh(y)jdy:

Now, in y 1 > 0 \ jx ¡ yj 6 1 , we check that jh(y)j 6 K()kh(1 + r ~) k L 1 (R 2 ) (1 + jx ¡ de 1 j)
and thus

Z {y1>0}\{jx¡ yj61} jF j ;k (x ¡ de 1 ~)h(y)jdy 6 K()kh(1 + r ~) k L 1 (R 2 ) (1 + jx ¡ de 1 ~j) 2+ : Similarly, since jx + de 1 ~j 6 jx ¡ de 1 ~j since x 1 > 0, Z {y160}\{jx¡ yj61} jF j;k (x + de 1 ~)h(y)jdy 6 K()kh(1 + r ~) k C 0 (R 2 ) (1 + jx ¡ de 1 ~j) 2+ :
Therefore, we estimate

Z jx¡ yj>1 j ;k jx ¡ yj 2 ¡ 2(x ¡ y) j (x ¡ y) k jx ¡ yj 4 h(y)dy 6 Z {y1>0}\{jx¡ yj>1} jF j ;k (x ¡ y) ¡ F j ;k (x ¡ de 1 ~)jjh(y)jdy + Z {y 1 60}\{jx¡ yj>1} jF j ;k (x ¡ y) ¡ F j ;k (x + de 1 ~)jjh(y)jdy + K()kh(1 + r ~) k C 0 (R 2 ) (1 + jx ¡ de 1 ~j) 2+ :
Now, we conclude as in the proof of Lemma 2.1.13 for the estimation of the two remaining integrals, replacing the function K by F j ;k , and having the domain of all integrals restricted to jx ¡ yj > 1 . We check that, in jzj > 1 ,

jF j ;k (z)j 6 K jz j 2 6 K (1 + jz j) 2 ; and, in jx ¡ yj > 1 , jF j ;k (x ¡ y) ¡ F j ;k (x)j 6 K jyj (1 + jxj) 3 :
With these estimates replacing Theorem 2.1.12, we can do the proof of the estimates as in Lemma 2.1.13, in the case 2 < < 3 and R R 2 h = 0.

We can now solve the problem

¡ic@ x2 ¡ + 2Re( ) = h; Z R 2 Im(h) = 0
in some suitable spaces. We dene the norms, for ; 0 2 R,

k k ;;1 := k(1 + r ~)1+ 1 k L 1 (R 2 ) + k(1 + r ~)2+ r 1 k L 1 (R 2 ) + k(1 + r ~)2+ r 2 1 k L 1 (R 2 ) + k(1 + r ~) 2 k L 1 (R 2 ) + k(1 + r ~)1+ r 2 k L 1 (R 2 ) + k(1 + r ~)2+ r 2 2 k L 1 (R 2 ) and khk ; 0 ;1 := k(1 + r ~)1+ 0 h 1 k L 1 (R 2 ) + k(1 + r ~)2+ 0 rh 1 k L 1 (R 2 ) + k(1 + r ~)2+ 0 h 2 k L 1 (R 2 ) + k(1 + r ~)2+ 0 rh 2 k L 1 (R 2 ) ;
as well as the spaces

E ; 1 := 2 C 2 (R 2 ; C); k k ;;1 < +1; 8(x 1 ; x 2 ) 2 R 2 ; (x 1 ; x 2 ) = (¡x 1 ; x 2 ) ; and E ; 0 1 := h 2 C 1 (R 2 ; C); khk ; 0 ;1 < +1; 8(x 1 ; x 2 ) 2 R 2 ; h(x 1 ; x 2 ) = h(¡x 1 ; x 2 ) :
The norms k:k ;;1 and k:k ; dier only on r ~6 3 , and E ; 1 has one less symmetry than E ; . Same remarks hold for k:k ; 0 ;1 and k:k ; 0 and their associated spaces. Remark that if > 0 is a smooth cuto function with value 0 on r ~6 R/2 and 1 on r ~> R , then for any 2 R,

k k ; 6 K(R; )kV k C 2 ({r ~6R}) + K k k ;;1 : (2.1.18) Lemma 2.1.15. Given 1 > 0 > > 0, there exists K(; 0 ) > 0 such that, for any h 2 E ; 0 1 with R R 2 Im(h) = 0 and 0 < c < 1, there exists a unique solution to the problem ¡ic@ x 2 ¡ + 2Re( ) = h; in E ; 1 . This solution 2 E ; 1 satises k k ;;1 6 K(; 0 )khk ; 0 ;1 : Furthermore, if instead 2 ]¡1; 0[ and 1 > 0 > , there exists then K(; 0 ) > 0 such that, for any h 2 E ; 0 1 with 8(x 1 ; x 2 ) 2 R 2 ; h(x 1 ; x 2 ) = h(x 1 ; ¡x 2 )
, there exists a unique solution to the problem

¡ic@ x2 ¡ + 2Re( ) = h in 2 E ; 1 ; 8(x 1 ; x 2 ) 2 R 2 ; (x 1 ; x 2 ) = (x 1 ; ¡x 2 ) . This solution 2 E ; 1 satises k k ;;1 6 K(; 0 )khk ; 0 ;1 :
The case 2 ]¡1; 0[ is particular and such a norm will be used only in the proof of Lemma 2.1.18 (if k k ;;1 < +1 for < 0, the function is not necessarily bounded for instance). Remark that the condition

R R 2 Im(h) = 0 is automatically satised if 8(x 1 ; x 2 ) 2 R 2 ; h(x 1 ; x 2 ) = h(x 1 ; ¡x 2 ).
Proof. For 1 > 0 > > ¡1, we write in real and imaginary parts h = h 1 + ih 2 . We dene, for j 2 1; 2 ,

1;j := K 0 @ xj h 1 + cK j h 2 : If 1 > 0 > > 0, since @ xj h 1 ; h 2 2 L 1 (R 2 ) (because 0 > 0 and h 2 E ; 0 1 ), and R R 2 h 2 = R R 2 @ x2 h 1 =
0, by Lemma 2.1.13 (applied with 0 < = 2 + 0 < 3, 0 < 0 = 2 + < ), the function 1;2 is well dened and satises

jr 1;2 j + j 1;2 j 6 K(; 0 )khk ; 0 ;1 (1 + r ~)2+ :
This result still holds if 2 ]¡1; 0[ and 1 > 0 > , since 0 < = 2 + 0 < 3; 0 < 0 = 2 + < . We check, still with Lemma 2.1.13 (applied with 0

< = 2 + 0 < 3, 0 < 0 = 2 + < ), that jr 1;1 j 6 K(; 0 )khk ; 0 ;1 (1 + r ~)2+ : If 2 ]¡1; 0[, we have j 1;1 j 6 K(; 0 )khk ; 0 ;1 (1 + r ~)2+
by Lemma 2.1.13 (2 + < 2). But since @ x 1 h 1 is not even in x 1 , we can not apply Lemma 2.1.13 to estimate 1;1 with the same decay in the case > 0.

However, following the proof of Lemma 2.1.13, we check that the estimate holds if jx + de ~1j 6 1 or jx ¡ de ~1j 6 1, and that otherwise

j 1;1 j 6 K(; 0 )khk ; 0 ;1 (1 + r ~)2+ + K(x + de ~1) Z {y160} @ x1 h(y)dy + K(x ¡ de ~1) Z {y1>0} @ x1 h(y)dy : Since Z {y 1 60} @ x1 h(y)dy = ¡ Z {y 1 >0} @ x1 h(y)dy = Z R h(0; y 2 )dy 2 ; and Z R h(0; y 2 )dy 2 6 Z R khk ; 0 ;1 (1 + r ~)1+ 0 dy 2 6 c khk ; 0 ;1 Z R dy 2 (1 + jy 2 j) 1+ 0 ¡ 6 K(; 0 )c khk ; 0 ;1 ; we have K(x + de ~1) Z {y160} @ x1 h(y)dy + K(x ¡ de ~1) Z {y1>0} @ x1 h(y)dy 6 K(; 0 )jK(x + de ~1) ¡ K(x ¡ de ~1)jc khk ; 0 ;1 : By Theorem 2.1.12, if jx + de ~1j; jx ¡ de ~1j > 1, jK(x + de ~1) ¡ K(x ¡ de ~1)j 6 K (1 + jx + de ~1j) 2 + K (1 + jx ¡ de ~1j) 2 6 K (1 + r ~)2 ; and, if r ~6 3d, jK(x + de ~1) ¡ K(x ¡ de ~1)j 6 K (1 + r ~)2 6 Kd (1 + r ~)3 ; or if r ~> 3d, jK(x + de ~1) ¡ K(x ¡ de ~1)j 6 Kd sup 2[¡d;d] jrK(x + e ~1)j 6 Kd (1 + r ~)3 ; therefore, by interpolation, jK(x + de ~1) ¡ K(x ¡ de ~1)j 6 K (1 + r ~)2 1¡ Kd (1 + r ~)3 6 Kd (1 + r ~)2+ : We deduce K(x + de ~1) Z {y160} @ x1 h(y)dy + K(x ¡ de ~1) Z {y1>0} @ x1 h(y)dy 6 K(; 0 )jK(x + de ~1) ¡ K(x ¡ de ~1)jc khk ; 0 ;1 6 K(; 0 ) (dc) (1 + r ~)2+ khk ; 0 ;1 6 K(; 0 ) (1 + r ~)2+ khk ; 0 ;1 :
Combining the previous estimates, we conclude that, for j 2 1; 2 ,

jr 1; j j + j 1;j j 6 K(; 0 )khk ; 0 ;1 (1 + r ~)2+ : (2.1.19)
Let us show that 1; j 2 C 1 (R 2 ; C) by dominated convergence theorem. For x; " 2 R 2 ,

r 1;j (x + ") ¡ r 1; j (x) = Z R 2 rK 0 (y)(@ xj h 1 (x + " ¡ y) ¡ @ xj h 1 (x ¡ y))dy; + c Z R 2 rK j (y)(h 2 (x + " ¡ y) ¡ h 2 (x ¡ y))dy:
We check that for any

y 2 R 2 , @ xj h 1 (x + " ¡ y) ¡ @ xj h 1 (x ¡ y) ! 0; h 2 (x + " ¡ y) ¡ h 2 (x ¡ y) ! 0
pointwise when j"j ! 0 (by continuity of @ x j h 1 and h 2 ), and

jrK 0 (y)(@ x j h 1 (x + " ¡ y) ¡ @ x j h 1 (x ¡ y))j + cjrK j (y)(h 2 (x + " ¡ y) ¡ h 2 (x ¡ y))j 6 K() jrK 0 (y)j (1 + r ~(x ¡ y)) 2+ 0 k@ xj h 1 (1 + r ~)2+ 0 k L 1 (R 2 ) + K() cjrK j (y)j (1 + r ~(x ¡ y)) 2+ 0 kh 2 (1 + r ~)2+ 0 k L 1 (R 2 ) 6 K(; x) jrK 0 (y)j (1 + r ~(y)) 2+ 0 k@ xj h 1 (1 + r ~)2+ 0 k L 1 (R 2 ) + K(; x) cjrK j (y)j (1 + r ~(y)) 2+ 0 kh 2 (1 + r ~)2+ 0 k L 1 (R 2 ) 2 L 1 (R 2 )
for j"j 6 1 and a constant K(; x) > 0, giving the domination. Now, we check, by taking their Fourier transforms, that @ x1 1;2 = @ x2 1;1 2 L 2 (R 2 ; C) (see the computations at the beginning of subsection 2.1.4.3), and thus the integral of the vector eld

1;1 1;2 ! on any closed curve of R 2 is 0. For a large constant D > 0, taking, for x 1 2 R, the path (x 1 ; y); y 2 [¡D; D] [ Y = (y 1 ; y 2 ) 2 R 2 ; j(x 1 ; 0) ¡ Y j = D; y 1 > 0 ; since j 1;2 j 6 K(; 0 )khk ; 0 ;1 (1 + r ~)2+
and Z {Y =(y1;y2)2R 2 ;j(x1;0)¡Y j=D;y1>0}

j 1;2 j 6 K(c; ; 0 ; h) D 1+ ! 0 when D ! 1 (since 1 + > 0), we deduce that Z ¡1 +1 1;2 (x 1 ; y 2 )dy 2 = 0: (2.1.20)
We then dene for (

x 1 ; x 2 ) 2 R 2 , 1 (x 1 ; x 2 ) = Z +1 x2 
1;2 (x 1 ; y 2 )dy 2 ; and thus, if x 2 < 0,

1 (x 1 ; x 2 ) = Z ¡1 x2 1;2 (x 1 ; y 2 )dy 2 :
With (2.1.19), we check that 1 2 C 1 (R 2 ; C), and by simple integration from innity using the equations above (with r ~= min (jx ¡ d c e 1 ~j; jx + d c e 1 ~j), and since 1 + > 0), that

j 1 j 6 K(; 0 )khk ; 0 ;1 (1 + r ~)1+ : Furthermore, we check that @ x 2 1 = 1;2 2 C 1 (R 2 ; C);
and (by taking their Fourier transforms)

@ x 1 1 = 1;1 2 C 1 (R 2 ; C); therefore 1 2 C 2 (R 2 ; C)
, and by (2.1.19),

jr 1 j 6 j 1;1 j + j 1;2 j 6 K(; 0 )khk ; 0 ;1 (1 + r ~)2+ : For j ; k 2 1; 2 , we have @ xjxk 2 1 = @ xj 1;k , thus, by (2.1.19), jr 2 1 j 6 K(; 0 )khk ; 0 ;1 (1 + r ~)2+ :
Now, we dene

2;j ;k := (c 2 L j ;k ¡ R j ;k ) h 2 ¡ cK j @ x k h 1 :
In the case

1 > 0 > > 0, @ xk h 1 ; h 2 2 L 1 (R 2 ) and since R R 2 h 2 = R R 2 @ xk h 1 = 0, by Lemmas 2.
1.13 and 2.1.14 (for = 2 + 0 < 3, 0 = 2 + < , and the same variant for K j @ x 1 h 1 as in the proof of (2.1.19)), this function is well dened in L 1 (R 2 ; C), and satises,

j 2;j ;k j 6 K(; 0 )khk ; 0 ;1 (1 + r ~)2+ : (2.1.21)
We check, as for the proof of (2. 1.19), that this result holds if 2 ]¡1; 0[ and 1 > 0 > . Remark here that we do not have 2; j;k 2 C 1 (R 2 ; C), since in Lemma 2.1.14, the estimate on R j ;k h 2 uses rh 2 in the norm (showing that 2;j ;k 2 C 1 (R 2 ; C) would require estimates on r 2 h 2 ). However, we have that 2;j ;k 2 C 0 (R 2 ; C) by dominated convergence and continuity of h 2 and @ xk h 1 (as for r 1;j ). Furthermore, we check (by taking their Fourier transforms) that @ x1 2;j ;2 = @ x2 2;j ;1 in the distribution sense. We infer that the integral of 2; j ;1 2; j ;2 ! on any bounded closed curve of R 2 is 0. Indeed, taking n a mollier sequence, then n 2;j ;1 ; n 2;j ;2 2 C 1 (R 2 ; C), @ x1 ( n 2;j ;2 ) ¡ @ x2 ( n 2;j ;1 ) = n (@ x1 2;j ;2 ¡ @ x2 2;j ;1 ) = 0; therefore, for any closed curve C, the integral of the eld n 2;j ;1 n 2;j ;2 ! is 0. Using n 2;j ;k ! 2;j ;k pointwise (by continuity of 2;j ;k ) and the domination

k n 2;j ;1 k L 1 (R 2 ) 6 k 2;j ;1 k L 1 (R 2 ) < +1;
we infer that this result holds for 2; j ;1 2; j ;2 ! . We deduce, as for the proof of (2.1.20), that Z ¡1 +1 2;j ;2 (x 1 ; y 2 )dy 2 = 0:

(2.1.22)

We then dene for (x 1 ; x 2 ) 2 R 2 ; j 2 1; 2 ,

2;j (x 1 ; x 2 ) = Z +1 x2 
2; j ;2 (x 1 ; y 2 )dy 2 ; and if x 2 < 0, by (2.1.22),

2;j (x 1 ; x 2 ) = Z ¡1 x2 2;j ;2 (x 1 ; y 2 )dy 2 :
With arguments similar to the proof for 1 , we check that 2;j 2 C 1 (R 2 ; C) with @ xk 2; j = 2;j ;k , j 2;j j 6 K(; 0 )khk ; 0 ;1 (1 + r ~)1+ ; as well as jr 2; j j 6 K(; 0 )khk ; 0 ;1 (1 + r ~)2+ :

Finally, since @ x1 2;2 = 2;2;1 = 2;1;2 = @ x2 2;1 2 L 2 (R 2 ; C) (by taking their Fourier transforms, it follows from R j ;k = R k;j , L j;k = L k;j and K ^j k = K ^k j ), we have, as before, that

Z ¡1 +1 2;2 (x 1 ; y 2 )dy 2 = 0: We dene 2 (x 1 ; x 2 ) = Z +1 x2 2;2 (x 1 ; y 2 )dy 2 ; and thus, if x 2 < 0, 2 (x 1 ; x 2 ) = Z ¡1 x2 2;2 (x 1 ; y 2 )dy 2 :
We check, as previously, by integration from innity, that 2 2 C 2 (R 2 ; C), @ x j x k 2 2 = 2;j ;k , and

jr 2 2 j 6 K(; 0 )khk ; 0 ;1 (1 + r ~)2+ ; jr 2 j 6 K(; 0 )khk ; 0 ;1 (1 + r ~)1+ ; as well as (if > 0) j 2 j 6 K(; 0 )khk ; 0 ;1 (1 + r ~) : Remark that if h satises 8(x 1 ; x 2 ) 2 R 2 ; h(x 1 ; x 2 ) = h(x 1 ; ¡x 2 )
, then by the denition of 1 and 2 above, for

= 1 + i 2 , we have that 8(x 1 ; x 2 ) 2 R 2 ; (x 1 ; x 2 ) = (x 1 ; ¡x 2 ). Therefore, in the case 2 ]¡1; 0[, since 8(x 1 ; x 2 ) 2 R 2 ; 2 (x 1 ; x 2 ) = ¡ 2 (x 1 ; ¡x 2 )
, we have 2 (x 1 ; 0) = 0, and we integrate r 2 from the line x 2 = 0 instead of innity to show that j 2 j 6

K(; 0 )khk ; 0 ;1 (1 + r ~)
.

We deduce that, in either cases, = 1 + i 2 2 E ; 1 , and it satises

k k ;;1 6 K(; 0 )khk ; 0 ;1 :
Now, let us show that ¡ic@ x2 ¡ + 2Re( ) = h. From the computations at the beginning of subsection 2.1.4.3, we check that the Fourier transform (in the distribution sense) of both side of the equation are equals on 2 R 2 ; = / 0 (remark that they are both in L p (R 2 ; C) for some p > 2 large enough). This implies that Supp ¡ic@ x2 ¡ + 2Re( ) ¡ h 0 ;

and thus ¡ic@ x2 ¡ + 2Re( )

¡ h = P 2 C[X 1 ; X 2 ].
With the decay estimates on and h, we check that P is bounded and goes to 0 at innity (since ; 0 > ¡1), thus P = 0.

Finally, if ~2 E ; 1 satises ¡ic@ x 2 ~¡ ~+ 2Re( ~) = h, then ¡ ~2 C 2 (R 2 ; C) and (¡ic@ x 2 ¡ + 2Re)( ¡ ~) = 0:
With the computations at the beginning of subsection 2.1.4.3, since ¡ ~is a tempered distribution, we check that Supp ¡ ~ 0 , therefore

¡ ~= P 2 C[X 1 ; X 2 ]. If > 0, since ¡ goes to 0 at innity, P = 0. If 2 ]¡1; 0[, then P = i for some 2 R (Re( ¡ ~) ! 0 at innity and r ¡ Im( ¡ ~) is bounded)
, and by the symmetry on ; ~we have in that case, = 0. This shows the uniqueness of a solution in E ; 1 (with the symmetry if 2 ]¡1; 0[), and thus concludes the proof of this lemma.

Reduction of the problem

Inversion of the linearized operator

One of the key element in the inversion of the linearized operator is the computation of the kernel for only one vortex. The kernel of the linearized operator around one vortex has been studied in [10], with the following result.

Theorem 2.1.16. (Theorem 1.2 of [10]) Consider the linearized operator around one vortex of degree

" = 1, L V " () := ¡ ¡ (1 ¡ jV " j 2 ) + 2 Re(V " )V " : Suppose that kk H V" 2 := Z R 2 jrj 2 + (1 ¡ jV " j 2 )jj 2 + Re 2 (V " ) < +1 and L V " () = 0:
Then, there exist two constants c 1 ; c 2 2 R such that

= c 1 @ x 1 V " + c 2 @ x 2 V " :
This result describes the kernel of L V" that will appear in the proof of Proposition 2.1.17. It shows that the kernel in H V" := 2 H loc 1 (R 2 ); kk HV " < +1 contains only the two elements we expect: @ x1 V " ; @ x2 V " , which are due to the invariance by translation of (GP). One of the directions will be killed by the symmetry and the other one by the orthogonality. Now, we shall invert the linear part L() + (1 ¡ )VL 0 ( ). We recall that = V . We rst state an a priori estimate result. We recall the denitions, for ; 0 2 ]0; 1[,

E ;;d = = V 2 C 2 (R 2 ; C); k k ;;d < +1; h; Z d i = 0; 8x 2 R 2 ; (x 1 ; x 2 ) = (x 1 ; ¡x 2 ) = (¡x 1 ; x 2 ) and E ; 0 ;d = Vh 2 C 1 (R 2 ; C); khk ; 0 ;d < +1 ; with k k ;;d = kV k C 2 ({r ~63}) + kr ~1+ 1 k L 1 ({r ~>2}) + kr ~2+ r 1 k L 1 ({r ~>2}) + kr ~2+ r 2 1 k L 1 ({r ~>2}) + kr ~ 2 k L 1 ({r ~>2}) + kr ~1+ r 2 k L 1 ({r ~>2}) + kr ~2+ r 2 2 k L 1 ({r ~>2}) ; khk ; 0 ;d = kVhk C 1 ({r ~63}) + kr ~1+ 0 h 1 k L 1 ({r ~>2}) + kr ~2+ 0 rh 1 k L 1 ({r ~>2}) + kr ~2+ 0 h 2 k L 1 ({r ~>2}) + kr ~2+ 0 rh 2 k L 1 ({r ~>2}) :
Proposition 2.1.17. For 1 > 0 > > 0, consider the problem, in the distribution sense L()

+ (1 ¡ ) VL 0 ( ) = Vh = V 2 E ; ; Vh 2 E ; 0:
Then, there exist constants c 0 (; 0 ) > 0 small and C(; 0 ) > 0 depending only on and 0 , such that, for any solution of this problem with 0 < c 6 c 0 (; 0 ),

1 2 < cd < 2, it holds k k ;;d 6 C(; 0 )khk ; 0 ;d :
Proof. This proof is similar to the ones done in [START_REF] Manuel Del Pino | Variational reduction for Ginzburg-Landau vortices[END_REF] for the inversion of their linearized operator. The main dierence is that we have a transport term. Fix 1 > 0 > > 0. We argue by contradiction. Suppose that for given 1 > 0 > > 0, there is no threshold c 0 (; 0 ) > 0 such that, if 0 < c 6 c 0 (; 0 ) we have k k ;;d 6 C(; 0 )khk ; 0 ;d . We can then nd a sequence of c n ! 0 (and so d n ! 1), functions n = V n 2 E ; and Vh n 2 E ; 0 solutions of the problem and such that

k n k ;;dn = 1 and kh n k ; 0 ;dn ! 0:
We look in the region := x 1 > 0 thanks to the symetry (x 1; x 2 ) = (¡x 1 ; x 2 ). The orthogonality condition of E ; becomes 2Re R n Z dn = 0.

Step 1. Inner estimates.

The problem can be written (using

VL 0 ( n ) = ¡(E ¡ ic n @ x 2 V ) n + L( n ) from Lemma 2.1.7) as Vh n = L( n ) ¡ (1 ¡ )(E ¡ ic n @ x2 V ) n :
First, we recall that V and E are depending on n. The sequence ( n (:

+ d n e 1 ~)) n2N is equicontinuous and bounded (1 = k n k ;;d controls n and its derivatives in L 1 (R 2 ) uniformly in n).
Such a function n , as a solution of

n = ¡(1 ¡ jV j 2 ) n + 2Re(V n )V ¡ ic@ x 2 n ¡ (1 ¡ )(E ¡ ic n @ x 2 V ) n ¡ Vh n (2.1.23)
in the distribution sense, by Theorem 8.8 of [15] is

H loc 2 (R 2 ) (since the right hand side is C 0 (R 2 )
). Furthermore, still by Theorem 8.8 of [15], we have, for x 2 R 2 ,

k n k H 2 (B(x;1)) 6 K(k n k H 1 (B(x;2)) + k n k L 2 (B(x;2)) ): By k n k ;;d = 1, the quantities k n k L 1 (B(x;2)) , kr n k L 1 (B(x;2)) and k n k L 1 (B(x;2)) are bounded by a constant independent of n. Therefore, ( n ) n2N is bounded in H loc 2 (R 2
). We deduce, by compact embedding, that there exists a function such that n (:

+ d n e 1 ~) ! in H loc 1 (R 2 ) (up to a subsequence). Now, since L( n ) = ¡ n ¡ (1 ¡ jV j 2 ) n + 2 Re(V n )V ¡ ic@ x2 n , we have, in the weak sense, n + Vh n = ¡(1 ¡ jV j 2 ) n + 2Re(V n )V ¡ ic n @ x2 n ¡ (1 ¡ )(E ¡ ic n @ x2 V ) n ; therefore n (: + d n e 1 ~) + Vh n (: + d n e 1 ~
) is equicontinuous and bounded uniformly and then, by Ascoli's Theorem, up to a subsequence converges to a limit l in C loc 0 (R 2 ). Since Vh n (:

+ d n e 1 ~) ! 0 in C loc 0 (R 2 ) by kh n k ; 0 ;d ! 0 and n (: + d n e 1 ~) ! in the distribution sense, this limit must be (in the H loc ¡1 (R 2 ) sense).
We have locally uniformly that V h n (: + d n e 1 ~) ! 0 because kh n k ; 0 ;d ! 0 and jV j 6 1, and we have, from Lemma 2.1.4, that E(y

+ d n e 1 ~) ! 0 and V (y + d n e 1 ~) ! V 1 (y) when n ! 1 locally uniformly. Lastly, @ x2 n and (1 ¡ )@ x2 V n are uniformly bounded in R 2 independently of n.
Therefore when we take the locally uniform limit when

d n ! 1 in (Vh n )(y + d n e 1 ~) = (L( n ))(y + d n e 1 ~) ¡ ((1 ¡ )(E ¡ ic n @ x2 V ) n )(y + d n e 1 ~);
we have (in the distribution sense)

L V 1 () = 0: Using @ d V (: + de 1 ~) ! ¡@ x 1 V 1 (:) locally uniformly from Lemma 2.1.4, we show that 0 = 2Re Z n Z d ! 2h| ~(: /4)@ x1 V 1 i
since Z d is compactly supported around 0 when we take the equation in y + d n e 1 ~. The problem at the limit n ! 1 becomes (in the

H loc ¡1 (R 2 ) sense) ( L V 1 () = 0 h ~¡ : 4 @ x 1 V 1 i = 0; with = V 1 (since V (y + de 1 ~) ! V 1 (y) from Lemma 2.1.4). Let us show that kk HV 1 < +1. For that, we will show that Z B ¡ d n e 1 ;d n 1/2 jr n j 2 + j n j 2 (1 + r 1 ) 2 + Re 2 (V 1 (: ¡ d n e 1 ~) n ) 6 K();
where K() > 0 is independent of n, which shall imply (by Lemma 2.1.3)

kk HV 1 2 6 limsup n!1 Z B ¡ dne1;d n 1/2 jr n j 2 + j n j 2 (1 + r 1 ) 2 + Re(V 1 (: ¡ d n e 1 ~) n ) 2 6 K() < +1: First, n 2 C 2 (R 2 ) hence n 2 H loc 1 (R 2 ).
We have

jr n j 2 6 2jrV 1 j 2 j n j 2 + 2jr n j 2 jV 1 j 2 ;
with jrV

1 j 2 = O r 1 !1 1 r 1 2 by Lemma 2:1:2; and; in B ¡ d n e 1 ~; d n 1/2 ; j n j 2 6 C (1 + r1) 2 k n k ;;d 2 ; jr n j 2 6 C (1 + r1) 2+2 k n k ;;d 2 . Therefore since k n k ;;d 6 1, Z B ¡ dne1;d n 1/2 jr n j 2 6 Z B ¡ dne1;d n 1/2 K (1 + r 1 ) 2+2 6 K(): In addition, in B ¡ d n e 1 ~; d n 1/2 , j n j 2 = jV 1 j 2 j n j 2 6 K (1 + r 1 ) 2 k n k ;;d n 2 hence jnj 2 (1 + r 1 ) 2 6 K (1 + r1) 2+2 and Z B ¡ d n e 1 ;d n 1/2 j n j 2 (1 + r 1 ) 2 6 Z B ¡ d n e 1 ;d n 1/2 K (1 + r 1 ) 2+2 6 K(): Lastly, still in B ¡ d n e 1 ~; d n 1/2 , by Lemma 2.1.3, Re(V 1 n ) 2 = jV 1 j 4 Re(V ¡1 n ) 2 6 jV 1 j 4 (Re( n ) 2 + (1 ¡ jV ¡1 j 2 )j n j 2 ) 6 K (1 + r 1 ) 2+2 ;
giving the same result. We then have kk H V 1 < +1, therefore, we can apply Theorem 2.1.16. We deduce that

= c 1 @ x 1 V 1 + c 2 @ x 2 V 1 for some constants c 1 ; c 2 2 R. Since 8x 2 R 2 ; n (x 1; x 2 ) = n (x 1 ; ¡x 2 ), we have 8y 2 R 2 ; (y 1 ; y 2 ) = (y 1 ; ¡y 2 ). The function @ x1 V 1 enjoys also this symmetry, therefore so does c 2 @ x2 V 1 . It is possible only if c 2 = 0. The orthogonality condition then imposes c 1 Z j@ x 1 V 1 (y)j 2 ~ y 4 dy = 0; implying that c 1 = 0. Hence n (: + d n e 1 ~) ! 0 in C loc 1 (R 2 )
. By equation (2.1.23) and standard elliptic estimates, this convergence also hold in C loc 2 (R 2 ). The same proof works for the z coordinate (around the center of the ¡1 vortex). As a consequence, for any R > 0, we have

k n k L 1 ({r ~6R}) + kr n k L 1 ({r ~6R}) + kr 2 n k L 1 ({r ~6R}) ! 0 (2.1.24)
as n ! 1. With this result, to obtain a contradiction (which will be k n k ;;d ! 0) we still need to have estimates near the innity in space.

Step 2. Outer computations.

Thanks to the previous step, we can take a cuto to look only at the innity in space. For R > 4, we dene R a smooth cuto function with value

R (x) = 1 if r ~> R and R (x) = 0 if r ~6 R 2 , with jr R j 6 4 R . We then dene ~n := R n ; h ~n := R h n
and we choose R such that ~n and h ~n enjoy the same symmetries than n and h n respectively. We compute on

R 2 n(B(d n e 1 ~; R) [ B(¡d n e 1 ~; R)): r ~n = r R n + R r n = r n ; ~n = R n + 2r R r n + R n = n :
We deduce that ~n 2 E ; 1 and h ~n 2 E ;

0 1 by (2.1.18), since ~n 2 C 2 (B(d n e 1 ~; R) [ B(¡d n e 1 ~; R); C), h ~n 2 C 1 (B(d n e 1 ~; R) [ B(¡d n e 1 ~; R); C) and, outside of B(d n e 1 ~; R) [ B(¡d n e 1 ~; R), ~n = n with k n k ;;dn = 1, as well as h ~n = h n , with kh n k ; 0 ;dn ! 0 when n ! 1. In particular, h ~n ; 0 ;1 = o n!1 R (1) 
;

where o n!1 R
(1) is a sequence that, for xed R > 4, goes to 0 when n ! 1 (it also depends on and 0 ).

Since R = 1 on R 2 n(B(d n e 1 ~; R) [ B(¡d n e 1 ~; R)), we have there L 0 ¡ ~n = h ~n. Therefore, we can write that in R 2 that L 0 ¡ ~n = h ~n + Loc( n ), with Loc( n ) := ¡ R V L(V n ) + (1 ¡ )(L 0 ( R n ) ¡ R L 0 ( n )); a term that is supported in R 2 n(B(d n e 1 ~; R) [ B(¡d n e 1 ~; R)). By (2.1.24) and kh n k ; 0 ;d n ! 0 when n ! 1, it satises kLoc( n )k ; 0 ;1 6 K(R)kLoc( n )k C 1 (R 2 n(B(dne1;R)[B(¡dne1;R))) 6 K(R)k n k C 2 (R 2 n(B(dne1;R)[B(¡dne1;R))) = o n!1 R (1): We recall that L 0 ( ) = ¡ ¡ 2 rV V :r + 2jV j 2 Re( ) ¡ ic@ x2 , therefore ¡ ~n ¡ ic@ x2 ~n + 2Re ¡ ~n = h ~n + Loc( n ) + 2 rV V :r ~n + 2(1 ¡ jV j 2 )Re ¡ ~n : (2.1.25)
We dene

h ~n 0 := h ~n + Loc( n ) + 2 rV V :r ~n + 2(1 ¡ jV j 2 )Re ¡ ~n : Let us show that h ~n 0 2 E ; 0 1 with h ~n 0 ; 0 ;1 6 o n!1 R (1) + o R!1 (1)
;

where o R!1 (1) is a quantity that goes to 0 when R ! 1 (in particular, independently of n). By Lemma 2.1.15, (the condition R R 2 Im ¡ h ~n 0
= 0 is a consequence of the symmetries on h ~n and ~n), this would imply, with equation (2.1.25) (and since ~n 2 E ; 1 ), that

k ~k;;1 6 o n!1 R (1) + o R!1 (1): (2.1.26)
This estimate has already been done for the terms Loc( n ) and h ~n. Therefore, we only have to check that

2 rV V :r ~n + 2(1 ¡ jV j 2 )Re ¡ ~n ; 0 ;1 6 o n!1 R (1) + o R!1 (1): First, remark that the term (1 ¡ jV j 2 )Re ¡ ~n is real-valued. By Lemma 2.1.3, j1 ¡ jV j 2 j + r(jV j 2 ) 6 K (1 + r ~)2 ; and with (2.1.24), ~n = n in r ~> R , k n k ; = 1, 0 < < 0 < 1, (1 + r ~)1+ 0 (1 ¡ jV j 2 )Re ¡ ~n L 1 (R 2 ) 6 o n!1 R (1) + K (1 + r ~)1+ 0 (1 + r ~)3+ L 1 ({r ~>R}) 6 o n!1 R (1) + o R!1 (1)
and

k(1 + r ~)2+ 0 r((1 ¡ jV j 2 )Re( ~))k L 1 (R 2 ) 6 k(1 + r ~)2+ 0 r(jV j 2 )Re( ~)k L 1 (R 2 ) + k(1 + r ~)2+ 0 (1 ¡ jV j 2 )Re(r ~)k L 1 (R 2 ) 6 o n!1 R (1) + K (1 + r ~)2+ 0 (1 + r ~)3+ L 1 ({r ~>R}) ! 6 o n!1 R (1) + o R!1 (1): This concludes the proof of 2(1 ¡ jV j 2 )Re ¡ ~n ; 0 ;1 6 o n!1 R (1) + o R!1 (1): Now, we compute rV V (x) = rV 1 V 1 (y) + rV ¡1 V ¡1 (z);
and recall, by Lemma 2.1.1, that rV " (x) = i"V " (x)

x ?

jxj 2 + O ¡ 1 r 3
for " = 1. We deduce that, far from the vortices (for instance on R 2 n(B(de

1 ~; 4) [ B(¡de 1 ~; 4))), we have rV V (x) = i y ? r 1 2 ¡ z ? r ¡1 2 ! + O r1!1 1 r 1 3 + O r¡1!1 1 r ¡1 3 ! : (2.1.27)
In particular, the rst order of rV V is purely imaginary, and the next term is of order

1 r 1 3 + 1 r ¡1 3 .
We check in particular, using (2.1.27) and Lemma 2.1.3, that on R 2 n(B(de

1 ~; 4) [ B(¡de 1 ~; 4)), (1 + r ~)Im rV V + (1 + r ~)3 Re rV V + (1 + r ~)2 rIm rV V + (1 + r ~)3 rRe rV V 6 K: (2.1.28) Therefore, with R > 4, equation (2.1.24), ~n = n in r ~> R , k n k ; = 1 and 0 < < 0 < 1, (1 + r ~)1+ 0 Re rV V :r ~ L 1 (R 2 ) 6 o n!1 R (1) + K (1 + r ~)1+ 0 (1 + r ~)2+ L 1 ({r ~>R}) 6 o n!1 R (1) + o R!1 (1); (1 + r ~)2+ 0 rRe rV V :r ~ L 1 (R 2 ) 6 o n!1 R (1) + K (1 + r ~)2+ 0 (1 + r ~)3+ L 1 ({r ~>R}) 6 o n!1 R (1) + o R!1 (1); (1 + r ~)2+ 0 Im rV V :r ~ L 1 (R 2 ) 6 (1 + r ~)2+ 0 Im rV V :Re(r ~) L 1 (R 2 ) + (1 + r ~)2+ 0 Re rV V :Im(r ~) L 1 (R 2 ) 6 o n!1 R (1) + K (1 + r ~)2+ 0 (1 + r ~)3+ L 1 ({r ~>R}) + K (1 + r ~)2+ 0 (1 + r ~)3+ L 1 ({r ~>R}) 6 o n!1 R (1) + o R!1 (1);
and, with a similar decomposition,

(1 + r ~)2+ 0 rIm rV V :r ~ L 1 (R 2 ) 6 o n!1 R (1) + o R!1 (1):
This conclude the proof of (1); and thus of (2.1.26).

2 rV V :r ~ ; 0 ;1 6 o n!1 R (1) + o R!1
Step 3. Conclusion.

We have 

k n k ;;dn 6 K(R)k n k C 2 (
k n k ;;d n 6 o n!1 R (1) + o R!1 (1):
If we take R large enough (depending on ; 0 ) so that o R!1 (1) 6 1/10 and then n large enough (depending on R; and 0 ) so that o n!1 R (1) 6 1 /10, we have, for n large, k n k ;;dn 6 1 / 5, which is in contradiction with k n k ;;dn = 1:

Existence of a solution

At this point, we do not have existence of a solution to the linear problem L()

+ (1 ¡ ) VL 0 ( ) = Vh 2 E ; ; Vh 2 E ; 0;
only an a priori estimate. The existence of a solution is done in Proposition 2.1.20, its proof being the purpose of this subsection. In [START_REF] Manuel Del Pino | Variational reduction for Ginzburg-Landau vortices[END_REF], the existence proof is done using mainly the fact that the domain is bounded. We provide here a proof of existence by approximation on balls of large radii for a particular Hilbertian norm. Given c > 0 and a > 10/c 2 , we dene

H a := ( = Q c 2 H loc 1 (B(0; a)); kk Ha 2 := kk H 1 ({r ~63}) 2 + Z r ~>2 \ r6a jr j 2 + Re 2 ( ) + Im 2 ( ) (1 + r) 5/2
)

;
and we also allow a = +1. We rst state a result on functions in H 1 .

Lemma 2.1.18.

There exists c 0 > 0 such that, for

0 < c < c 0 , 0 < < 0 < 1, Vh 2 E ; 0, if a function 2 H 1 \ C 1 (R 2 ) satises, in the weak sense, L() + (1 ¡ ) VL 0 ( ) = Vh; and = V , hV ; Z d i = 0; 8x 2 R 2 ; (x 1 ; x 2 ) = (x 1 ; ¡x 2 ) = (¡x 1 ; x 2 ), then 2 E ; :
Proof. First, we check that, as a solution of L()

+ (1 ¡ ) VL 0 ( ) = Vh, 2 C 2 (R 2 ; C) and kk L 1 ({r <10/c 2 }) + krk L 1 ({r<10/c 2 }) + kr 2 k L 1 ({r <10/c 2 }) 6 K(c; kk H1 ; khk ; 0) < +1:
Since 2 C 2 (R 2 ; C) and it satises the symmetries and the orthogonality condition, to show that = V 2 E ; , we only have to show that k k ;;d < +1. Now, similarly as in the proof of Proposition 2.1.17, we add a cuto function R , writing

~= ~1 + i ~2 = R ; h ~= h ~1 + ih ~2 = R h but this time its value is 1 if r > 10 /c 2 and 0 if r 6 5/ c 2 .
In particular, its support is far from both vortices. We check similarly that, with the same notations, we obtain the equation (2.1.25) that we write in real and imaginary parts:

8 > < > : ~1 ¡ 2jV j 2 ~1 = ¡h ~1 ¡ 2Re rV V :r ~+ c@ x2 ~2 + Loc 1 ( ) ~2 + c@ x 2 ~1 = ¡h ~2 ¡ 2Im rV V :r ~+ Loc 2 ( ); (2.1.29)
where Loc( ) = Loc 1 ( ) + i Loc 2 ( ), and this time the local terms is in 5 / c 2 6 r 6 10 / c 2 . Recall that ~= 0 on r 6 5 / c 2 . In particular, we look only at values of x such that jxj > 5 / c 2 . Now,

we dene a function , solution of = ¡h ~2 ¡ 2Im rV V :r ~+ Loc 2 ( ) as in Lemma 2.1.8. With Lemma 2.1.3 and r ~2 L 2 (R 2 ) (since 2 H 1 ), we have Y 7 ! (lnjx ¡ Y j) (1 + r ~)1/10 Im rV V :r ~(Y ) 2 L 1 (R 2 )
and thus is well dened. By Hölder inequality, we can check that Im rV

V :r ~ 2 L 3 (R 2 ) .
We check, with the same computations as in the proof of Lemma 2.1.8 (with = 1 / 10 in the computations), that 2 C 1 (R 2 ) and that we have

jr(x)j 6 1 2 Z R 2 1 jx ¡ Y j ¡h ~2 ¡ 2Im rV V :r ~+ Loc 2 ( ) (Y )dY ; under the condition that r ~2 L 2 (R 2 ) \ L 3 (R 2 ).
With the upcoming estimates, we will check in particular that this condition is satised. From the proof of Lemma 2.1.8, we check that, since Vh 2 E ; 0 and

1 + 2 < 1, sup x2R 2 (1 + jxj) 1+ 2 Z R 2 1 jx ¡ Y j ¡h ~2 + Loc 2 ( ) (Y )dY < +1
(here, its size may depend on ; 0 ; c; R; kk H 1 and khk ; 0). Now, from Lemma 2.1.3, we have, outside of R = 0 that jrV j 6

K(c) (1 + r) 2 . We deduce Z R 2 1 jx ¡ Y j Im rV V :r ~ (Y )dY 6 K(c; R) Z R 2 jr ~j(Y ) jx ¡ Y j(1 + jY j) 2 dY :
We focus now on the estimation of R [15], Theorem 8.8, we check that kr ~kH 1 (R 2 ) 6 K(c; R; kk H 1 ; khk ; 0). In particular, by Sobolev embedding, kr ~kL 3 (R 2 ) 6 K(c; R; kk H1 ; khk ; 0). In the area jx ¡ Y j 6 1 , we have 2 and therefore, by Hölder inequality,

R 2 jr ~j(Y ) jx ¡ Y j(1 + jY j) 2 dY . From
(1 + jY j) 2 > K(1 + jxj)
Z jx¡Y j61 jr ~j(Y ) jx ¡ Y j(1 + jY j) 2 dY 6 K (1 + jxj) 2 Z jx¡ yj61 jr ~j(Y ) jx ¡ Y j dY 6 K kr ~kL 3 (R 2 ) (1 + jxj) 2 Z jx¡Y j61 dY jx ¡ Y j 3/2 ! 2/3 6 K(c; R; kk H1 ; khk ; ) (1 + jxj) 2 :
In the area

1 6 jx ¡ Y j 6 jxj / 2 , we have jY j > jx ¡ Y j 2
and jY j > jxj 2 , therefore, by Cauchy-Schwarz (since

1 + 2 < 1), Z 16jx¡Y j6jxj/2 jr ~j(Y ) dY jx ¡ Y j(1 + jY j) 2 6 K(; c; R) (1 + jxj) 1+ 2 Z 16jx¡Y j6jxj/2 jr ~j(Y ) dY jx ¡ Y j(1 + jx ¡ Y j) 2¡ 1+ 2 6 K(; c; R) (1 + jxj) 1+ 2 Z 16jx¡Y j6jxj/2 jr ~j2 (Y ) dY Z {16jx¡Y j6jxj/2} dY jx ¡ Y j 3¡ 1+ 2 v u u t 6 K(c; R; ; kk H1 ) (1 + jxj) 1+ 2 :
Finally, in the area jx ¡ Y j > jxj/2 , we estimate by Cauchy-Schwarz that

Z jx¡Y j>jxj/2 jr ~j(Y ) jx ¡ Y j(1 + jY j) 2 dY 6 K 1 + jxj Z jx¡Y j>jxj/2 jr ~j2 Z jx¡Y j>jxj/2 dY (1 + jY j) 4 s 6 K(kk H 1 ) 1 + jxj :
Combining these estimates, we conclude that jr j(x) 6 K(c; R; ; 0 ; kk H1 ; khk ; )

(1 + jxj) 1+ 2
:

Now, we write ~2 0 = ~2 ¡ , and the system becomes 8 < :

~1 ¡ 2 ~1 ¡ c@ x2 ~2 0 = ¡h ~1 ¡ 2Re rV V :r ~+ Loc 1 ( ) ¡ c@ x2 ¡ 2(1 ¡ jV j 2 ) ~1 ~2 0 + c@ x 2 ~1 = 0:
We deduce, as for equation (2.1.15), that for j 2 1; 2 ,

@ xj ~2 0 = cK j ¡h ~1 ¡ 2Re rV V :r ~+ Loc 1 ( ) ¡ c@ x2 ¡ 2(1 ¡ jV j 2 ) ~1 :
We check that, with Lemma 2.1.13 (for

1 > = 1 + 2 > 0, 0 = < ), jKj ¡ ¡h ~1 + Loc 1 ( ) ¡ c@ x2 j 6 K(c; R; ; kk H 1 ; khk ; 0) (1 + jxj) ; since ¡h ~1 + Loc 1 ( ) ¡ c@ x2 6 K(c; R; ; kk H 1 ; khk ; 0) (1 + jxj) 1+ 2 : Furthermore, from Lemma 2.1.3, outside of R = 0 , jrV j 6 K(c) (1 + r) 2 .
We check, with Theorem 2.1.12, that on

n jx ¡ Y j 6 jxj 2 o , we have jY j > jxj 2 and Z jx¡Y j6jxj/2 K j (x ¡ Y )Re rV V :r ~(Y ) dY 6 K(c; R) (1 + jxj) 2 Z jx¡Y j6jxj/2 jr ~j(Y ) dY jx ¡ Y j 1/2 (1 + jx ¡ Y j) 3/2 :
By Cauchy-Schwarz, we estimate

Z jx¡Y j6jxj/2 jr ~j(Y ) dY jx ¡ Y j 1/2 (1 + jx ¡ Y j) 3/2 6 kr ~kL 2 (R 2 ) Z jx¡Y j6jxj/2 dY jx ¡ Y j(1 + jx ¡ Y j) 3 s < +1; and in n jx ¡ Y j > jxj 2
o , we estimate

Z jx¡Y j>jxj/2 K j (x ¡ Y )Re rV V :r ~(Y ) 6 K(c; R) (1 + jxj) 2 Z jx¡Y j6jxj/2
jr ~j(Y ) dY (1 + jY j) 2 ;

and we conclude by Cauchy-Schwarz that

Z jx¡Y j>jxj/2 K j (x ¡ Y )Re rV V :r ~(Y ) dY 6 K(c; R; kk H 1 ) (1 + jxj) 2 : Since ~1 L 2 (R 2 ) 6 K(c; R; kk H1 ), we estimate similarly Z R 2 K j (x ¡ Y )(1 ¡ jV j 2 ) ~1(Y ) dY 6 K(c; R; kk H1 ) (1 + jxj) 2 ;
and we conclude that

@ xj ~2 0 6 K(c; R; kkH 1 ) (1 + jxj) 2 . Therefore, since ~2 = + ~2 0 , r ~2 6 K(c; R; ; 0 ; kk H1 ; khk ; 0) (1 + jxj) :
By integration from the origin (using

~2 L 1 ({r <10/c 2 }) 6 K(c; kk H1 ; khk )), we deduce also that ~2 6 K(c; R; ; 0 ; kk H1 ; khk ; 0) (1 + jxj) ¡1+ : (2.1.30)
With these estimates and the equation

~1 ¡ 2 ~1 = ¡h ~1 + c@ x2 ~2 + Loc 1 ( ) ¡ 2Re rV V :r ~¡ 2(1 ¡ jV j 2 ) ~1;
we check that ¡h ~1 + c@ x2 ~2 + Loc 1 ( ) From the computations at the beginning of subsection 2.1.4.3, we have that, for j 2 1; 2 ,

@ xj ~1 = @ xj K 0 ¡ ~1 ¡ 2 ~1 ¡ c@ x2 ~2 + cK j ¡ ~2 + c@ x2 ~1 ;
therefore, by Lemma 2.1.13, taking = 1 + < 2 and 0 = 1

+ 0 < , r ~1 6 K(c; R; ; 0 ; kk H1 ; khk ; 0) (1 + jxj) 1+ 0 :
Furthermore, by Lemma 2.1.13,

K j ¡ ~2 + c@ x2 ~1 6 K(c; R; ; 0 ; kkH 1 ) (1 + jxj) 2+/2
, hence, since for x j > 0,

~1 = K 0 ¡ ~1 ¡ 2 ~1 ¡ c@ x 2 ~2 + c Z x j +1 K j ¡ ~2 + c@ x 2 ~1 dy j
by integration from innity, we also have (with a similar computation if We recall that (1 ¡ jV j 2 )Re( ~) is a real-valued term, and with Lemma 2.1.3, 0 < < 0 < 1, we estimate

x j < 0) ~1 6 
k(1 + r ~)1+ (1 ¡ jV j 2 )Re( ~)k L 1 (R 2 ) 6 K (1 + r ~)1+ (1 + r ~)3+ L 1 (R 2 ) k ~k;;1 6 K(; )k ~k;;1 if 1 + > 3 + (which is a consequence of > ¡2 + ), and k(1 + r ~)2+ r((1 ¡ jV j 2 )Re( ~))k L 1 (R 2 ) 6 K (1 + r ~)2+ (1 + r ~)4+ L 1 (R 2 )
k ~k;;1 6 K(; )k ~k;;1 :

Now, we estimate similarly (still using Lemma 2.1.3)

(1 + r ~)1+ Re rV V :r ~ L 1 (R 2 ) 6 K(c) (1 + r ~)1+ (1 + r ~)3+ L 1 (R 2 ) k ~k;;1 6 K(c; ; )k ~k;;1 ; (1 + r ~)2+ rRe rV V :r ~ L 1 (R 2 ) 6 K(c) (1 + r ~)2+ (1 + r ~)4+ L 1 (R 2 )
k ~k;;1 6 K(c; ; )k ~k;;1 ; and since

Im rV V :r ~= Im rV V :Re(r ~) + Re rV V :Im(r ~);
with Lemma 2.1.3 and estimate (2.1.28), we infer that

(1 + r ~)2+ Im rV V :r ~ L 1 (R 2 ) 6 (1 + r ~)2+ Im rV V :Re(r ~) L 1 (R 2 ) + (1 + r ~)2+ Re rV V :Im(r ~) L 1 (R 2 ) 6 K(c) (1 + r ~)2+ (1 + r ~)4+ L 1 (R 2 ) k ~k;;1 + K (1 + r ~)2+ (1 + r ~)4+ L 1 (R 2 ) k ~k;;1 6 K(c; ; )k ~k;;1 ;
and with similar estimates, 

(1 + r ~)2+ rIm rV V :r ~ L 1 (R
¡ ~¡ ic@ x 2 ~+ 2Re( ~) = h ;
and with the symmetries on ~and h , we can bootstrap our estimates on ~and then on h , and we conclude that ~2 E ; (since < 0 ). The next step is to construct a solution on a large ball in the space H a .

Lemma 2.1.19. For 0 < 0 < 1, there exists c 0 ( 0 ) > 0 such that, for 0 < c < c 0 ( 0 ), there exists

a 0 (c; 0 ) > 10 c 2 such that, for Vh 2 E ; 0 , a > a 0 (c; 0 ), the problem 8 > > > < > > > : L() + (1 ¡ ) VL 0 ( ) = Vh in B(0; a) 2 H a ; = V ; hV ; Z d i = 0; 8x 2 B(0; a); (x 1 ; x 2 ) = (x 1 ; ¡x 2 ) = (¡x 1 ; x 2 ) = 0 on @B(0; a) hVh; Z d i = 0
admits a unique solution, and furthermore, there exists K( 0 ; c) > 0 independent of a such that kk Ha 6 K( 0 ; c)khk ; 0:

Here, a > 10 / c 2 is not necessary, the condition a > 10 / c should be enough. However, this simplies some estimates in the proof, and it will be enough for us here. Here, we require hV h; Z d i = 0 in order to apply the Fredholm alternative in ' 2 H 0 1 (B(0; a)); h'; Z d i = 0 to show the existence of a solution.

Proof. We argue by contradiction on the estimation. Assuming the existence, take any 0 < 0 < 1, and choose c 0 ( 0 ) > 0 smaller than the one from Proposition 2.1.17, and 0 < c < c 0 ( 0 ). Suppose that there exists a sequence

a n > 10 c 2 , a n ! 1, functions n 2 H a n , n = 0 on @B(0; a n ) and Vh n 2 E ; 0 such that k n k H an = 1, kh n k ; 0 ! 0 and L( n ) + (1 ¡ )VL 0 ( n ) = Vh n on B(0; a n ).
In particular, remark here that c is independent of n, only the size of the ball grows. Our goal is to show that

k n k Ha n = o n!1 c (1), where o n!1 c
(1) is a quantity going to 0 when n ! 1 at xed c, which leads to the contradiction.

Following the same arguments as in step 1 of the proof of Proposition 2.1.17, we check that n ! in C loc 2 (R 2 ) and L()

+ (1 ¡ ) VL 0 ( ) = 0 in R 2 .
Furthermore, it is easy to check that, since k n k Ha n = 1, we have kk H1 6 1. Then, by Lemma 2.1.18, since the orthogonality and the symmetries pass at the limit, this implies that 2 E ; for any 0 < < 0 , and therefore, by Proposition 2.1.17, = 0.

We deduce that

k n k C 2 (B(0;10/c 2 )) = o n!1 c
(1). Now, we use the same cuto as in the proof of Lemma 2.1.18, and we have the system on ~n = ~1 + i ~2 (see equation (2.1.29)):

8 > < > : ~1 ¡ 2 ~1 ¡ c@ x2 ~2 = ¡h ~1 ¡ 2Re rV V :r ~n + Loc 1 ( n ) ¡ 2(1 ¡ jV j 2 ) ~1 ~2 + c@ x2 ~1 = ¡h ~2 ¡ 2Im rV V :r ~n + Loc 2 ( n ):
Now, multiplying the rst equation by ~1 and integrating on = B(0; a)nB(0; 5/c 2 ), we have

Z ¡ ~1 ¡ 2 ~1 ~1 = Z c@ x2 ~2 ¡ h ~1 ¡ 2Re rV V :r ~n + Loc 1 ( n ) ¡ 2(1 ¡ jV j 2 ) ~1 ~1: (2.1.32)
We integrate by parts. Recall that 

k n k C 2 (B(0;10/c 2 )) = o n!1 c (1) and n = V n = 0 on @B(0; a n ), thus Z ~1 ~1 = ¡ Z jr ~1j 2 + o n!1 c ( 1 
k n k C 2 (B(0;10/c 2 )) = o n!1 c
(1) that, since for x 2 ; r > 5/c 2 , rV V

L 1 () + kLoc 1 ( n )k L 1 () + kLoc 2 ( n )k L 1 () + k(1 ¡ jV j 2 )k L 1 () 6 o c!0 (1) + o n!1 c (1):
This allows us to estimate the right hand side of (2.1.32): by Cauchy-Schwarz, r ~1

L 2 () 2 + 2 ~1 L 2 () 2 6 c r ~2 L 2 () ~1 L 2 () + (o c!0 (1) + o n!1 c (1)) ¡ r ~n L 2 () + ~1 L 2 () + o n!1 c
(1):

Now, we multiply the second equation by ~2, and we integrate on . By integration by parts, we check r ~2

L 2 () 2 6 c Z @ x2 ~1 ~2 + Z h ~2 ~2 + 2 Z Im rV V :r ~n ~2 + Z Loc 2 ( n ) ~2 + o n!1 c
(1):

By integration by parts, since

k n k C 2 (B(0;10/c 2 )) = o n!1 c
(1) and n = 0 on @B(0; a n ), we have

c Z @ x 2 ~1 ~2 6 o n!1 c (1) + c Z ~1@ x 2 ~2 6 o n!1 c (1) + c ~1 L 2 () r ~2 L 2 () :
We recall that

~2 = o n!1 c (1) on @B(0; 5/c 2 ), therefore Z r=5/c 2 a j ~2j 2 r 2+ 0 rdr = ¡1 0 Z r=5/c 2 a @ r 1 r 0 ~2 2 dr 6 K(c) 0 ~2 2 (5/c 2 ) + 2 0 Z r=5/c 2 a 1 r 0 r ~2 ~2 dr 6 o n!1 c; 0 (1) + 2 0 Z r=5/c 2 a r ~2 2 rdr Z r=5/c 2 a j ~2j 2 r 2+ 0 rdr s : We deduce that Z r=5/c 2 a j ~2j 2 r 2+ 0 rdr 6 o n!1 c; 0 (1) + K 0 Z r=5/c 2 a r ~2 2 rdr;
and therefore

Z j ~2j 2 (1 + jxj) 2+ 0 6 o n!1 c; 0 (1) + K 0 r ~2 L 2 () 2 :
Since Vh n 2 E ; 0, we estimate, by Cauchy-Schwarz, that

Z h ~2 ~2 6 o c!0 (1) Z j ~2j 2 (1 + jxj) 2+ 0 s 6 o c!0 0 (1) r ~2 L 2 () + o n!1 c; (1): Furthermore, since Loc 2 ( n ) is supported in B(0; 10 / c 2 ) and k n k C 1 (B(0;10/c 2 )) = o n!1 c (1), we check that Z Loc 2 ( n ) ~2 6 o n!1 c
(1):

Finally, from Lemma 2.1.2, we check that, in R 2 , rV V 6 K i y ? jyj 2 ¡ z ? jz j 2 + K c(1 + jxj) 2 6 K c(1 + jxj) 2 ;
and thus, by Cauchy-Schwarz,

Z Im rV V :r ~n ~2 6 r ~n L 2 () Z rV V 2 ~2 2 s 6 K kr ~nk L 2 () c Z j ~2j 2 (1 + jxj) 4 s : In , jxj > 5/c 2 , thus Z j ~2j 2 (1 + jxj) 4 6 c 2(2¡ 0 ) Z j ~2j 2 (1 + jxj) 2+ 0 6 c 2(2¡ 0 ) K( 0 ) r ~2 L 2 () 2 + o n!1 c (1); hence Z Im rV V :r ~n ~2 6 o c!0 0 (1) r ~2 L 2 () + o n!1 c (1): We conclude that r ~1 L 2 () 2 + 2 ~1 L 2 () 2 6 c r ~2 L 2 () ~1 L 2 () + (o c!0 (1) + o n!1 c (1)) ¡ r ~n L 2 () + ~1 L 2 () + o n!1 c (1); and r ~2 L 2 () 2 6 o n!1 c (1) + c ~1 L 2 () r ~2 L 2 () + o c!0 0 (1) r ~2 L 2 () ; therefore r ~1 L 2 () + ~1 L 2 () + r ~2 L 2 () 6 o n!1 c (1) + o c!0 0 (1):
We have shown that for any 0 > 0, Z j ~2j 2 (1 + jxj) 2+ 6

o n!1 c; 0 (1) + K 0 r ~2 L 2 () 2 ; thus Z j ~2j 2 (1 + jxj) 5/2 6 o n!1 c (1) + o c!0 (1): Together with k n k C 2 (B(0;10/c 2 )) = o n!1 c
(1), this is in contradiction with k n k Ha n = 1. This concludes the proof of the estimation. Now, for the existence, we argue by Fredholm's alternative in 

< < 0 < 1, L() + (1 ¡ ) VL 0 ( ) = Vh Vh 2 E ; 0; hVh; Z d i = 0:
Then, there exist constants c 0 (; 0 ) > 0 small and C(; 0 ) > 0 depending only on ; 0 , such that, for 0 < c 6 c 0 (; 0 ) and Vh 2 E ; 0 with hVh; 

Z d i = 0,
L( a ) + (1 ¡ ) VL 0 ( a ) = Vh on B(0; a) a 2 H a ; a = V a ; hV a ; Z d i = 0; 8x 2 B(0; a); a (x 1 ; x 2 ) = a (x 1 ; ¡x 2 ) = a (¡x 1 ; x 2 ) a = 0 on @B(0; a) hh; Z d i = 0
with k a k H a 6 K( 0 ; c)khk ; 0. Taking a sequence of values a n > a 0 going to innity, we can construct by a diagonal argument a function 2 H loc 1 (R 2 ) which satises in the distribution sense 

L() + (1 ¡ ) VL 0 () = Vh (hence 2 C 2 (R 2 ) by standard elliptic arguments), such that kk H 1 6 limsup n!1 k n k H an 6 K( 0 ; c)khk ; 0; thus 2 H 1 , and = V , hV ; Z d i = 0; 8x 2 R 2 ; (x 1 ; x 2 ) = (x 1 ; ¡x 2 ) = (

Estimates for the contraction in the orthogonal space

We showed in Proposition 2.1.20 that the operator L(: 

) + (1 ¡ )V L 0 (: / V ) is invertible from E ; 0 ;d \ h:; Z d i = 0 to E ;;d . The operator (L(:) + (1 ¡ )VL 0 (:/V )) ¡1 is the one that, for a given Vh 2 E ; 0 ;d such that hVh; Z d i = 0, returns the unique function = V 2 E ;;d such that L() + (1 ¡ ) V L 0 ( ) = V h
() := ¡ h; Z d i Z d kZ d k L 2 (R 2 ) 2 ;
the projection on the orthogonal of Z d . We want to apply a xed-point theorem on the functional

(L(:) + (1 ¡ ) VL 0 (:/V )) ¡1 ( d ? (¡F (:/V ))): E ; ! E ; ;
and for that we need some estimates on the function d ? oF (: / V ): E ; ! Vh 2 E ; 0; hVh; Z d i = 0 . The function F contains the source term E ¡ ic@ x 2 V and nonlinear terms. The source term requires a precise computation (see Lemma 2.1.22) to show its smallness in the spaces of invertibility. The nonlinear terms will be small if we do the contraction in an area with small (which is the case since we will do it in the space of function = V 2 E ; such that k k ;;d 6 K 0 (; 0 )c 1¡ 0 for a well chosen constant K 0 (; 0 ) > 0). This subsection is devoted to the proof of the following result. Proposition 2.1.21. For 0 < < 0 < 1, there exist constants K 0 (; 0 ); c 0 (; 0 )>0 depending only on ; 0 such that for 0 < c < c 0 (; 0 ), the function (from E ;;d to E ;;d ) 

7 ! (L(:) + (1 ¡ ) VL 0 (:/V )) ¡1 ( d ? (¡F (/V ))) is a contraction in the space of functions = V 2 E ;;d such that k k ;;d 6 K 0 (; 0 )c 1¡ 0 .
L() + (1 ¡ ) VL 0 ( ) + F ( ) = (c; d)Z d in the distribution sense.
We recall that, from the denition of E ;;d in subsection 2:1:3, 2 E ;;d implies that h; Z d i = 0, which is the origin of the fact that L()

+ (1 ¡ ) VL 0 ( ) + F ( ) is not zero, but only proportional to Z d .
We start with some estimates on the terms contained in F ( ). These are done in the following three lemmas. Lemma 2.1.22. For any 0 < 0 < 1, there exists a constant C 1 ( 0 ) > 0 depending only on 0 such that ic@ x2 V V

; 0 ;d + E V ; 0 ;d 6 C 1 ( 0 )c 1¡ 0 :
Proof. We have dened the norm

khk ; 0 ;d = kVhk C 1 ({r ~63}) + kr ~1+ 0 h 1 k L 1 ({r ~>2}) + kr ~2+ 0 h 2 k L 1 ({r ~>2}) + kr ~2+ 0 rhk L 1 ({r ~>2}) ;
thus we separate two areas for the computation: the rst one is where r ~6 3 which will be easy and then far from the vortices, i.e. in r ~> 2 , where the division by V is not a problem.

Step 1. Estimates for E.

In (2.1.2), we showed that

E = (1 ¡ jV 1 j 2 )(1 ¡ jV ¡1 j 2 )V 1 V ¡1 ¡ 2rV 1 :rV ¡1 : Near V 1 , i.e. in B(de 1 ~; 3), we have from Lemma 2.1.1, k(1 ¡ jV ¡1 j 2 )k C 1 ({r 1 63}) 6 Kc 2 and krV ¡1 k C 1 ({r 1 63}) 6 Kc; hence E V V C 1 ({r 1 63}) 6 Kc 6 o c!0 0 (1)c 1¡ 0 ; (2.1.33)
where o c!0 0 (1) is a quantity that for a xed 0 > 0, goes to 0 when c ! 0. By symmetry, the result holds in the area where r ~6 3.

We now turn to the estimates for r ~> 2. The rst term

(1 ¡ jV 1 j 2 )(1 ¡ jV ¡1 j 2 ) of E V is real valued.
Using the denition of r 1 and r ¡1 from (2.1.1), in the right half-plane, where r 1 6 r ¡1 and r ¡1 > d > K c , we have from Lemma 2.1.1

kr 1 1+ 0 (1 ¡ jV 1 j 2 )(1 ¡ jV ¡1 j 2 )k L 1 ({26r 1 6r ¡1 }) 6 K 1 r 1 1¡ 0 r ¡1 2 L 1 ({26r 1 6r ¡1 })
and

kr 1 2 (1 ¡ jV 1 j 2 )(1 ¡ jV ¡1 j 2 )k L 1 ({26r 1 6r ¡1 }) 6 K: In this area, 1 r ¡1 2 6 Kc 2 and 1 r 1 1¡ 0 6 1 2 1¡ 0 , thus kr 1 1+ 0 (1 ¡ jV 1 j 2 )(1 ¡ jV ¡1 j 2 )k L 1 ({26r 1 6r ¡1 }) 6 K( 0 )c 2 6 o c!0 0 (1) c 1¡ 0 :
By symmetry, the same result holds for the other half-plane, hence

kr ~1+ 0 (1 ¡ jV 1 j 2 )(1 ¡ jV ¡1 j 2 )k L 1 ({r ~>2}) 6 o c!0 0 (1) c 1¡ 0 : (2.1.34)
From Lemma 2.1.1, we have

rV " (x) = i"V " (x) x ? r 2 + O 1 r 3 ; hence rV 1 :rV ¡1 V 1 V ¡1 = y ? : z ? r 1 2 r ¡1 2 + O 1 r 1 3 r ¡1 + O 1 r ¡1 3 r 1 ! :
Remark that the rst term is real-valued. We compute rst in the right half-plane, where r 1 6 r ¡1 and r

¡1 > d > K c , r 1 1+ 0 y ? : z ? r 1 2 r ¡1 2 L 1 ({26r16r¡1}) 6 r 1 1+ 0 r 1 r ¡1 L 1 ({26r16r¡1}) : Since r 1 1+ 0 r 1 r ¡1 = r 1 r ¡1 0 1 r ¡1 1¡ 0 6 K( 0 ) c 1¡ 0 ; we deduce r 1 1+ 0 y ? : z ? r 1 2 r ¡1 2 L 1 ({26r 1 6r ¡1 }) 6 K( 0 )c 1¡ 0
and by symmetry, r ~1+ 0 y ? : z

? r 1 2 r ¡1 2 L 1 ({r ~>2}) 6 K( 0 )c 1¡ 0 : (2.1.35)
For the last two terms O

1 r 1 3 r¡1 + O 1 r ¡1 3 r1
,we will show that in the right half-plane

r 1 2+ 0 1 r 1 3 r ¡1 L 1 ({26r16r¡1}) + r 1 2+ 0 1 r ¡1 3 r 1 L 1 ({26r16r¡1}) 6 o c!0 0 (1)c 1¡ 0 : (2.1.36)
This immediately implies r 1

1+ 0 1 r 1 3 r ¡1 L 1 ({26r16r¡1}) + r 1 1+ 0 1 r ¡1 3 r 1 L 1 ({26r16r¡1}) 6 o c!0 0 (1) c 1¡ 0 : (2.1.37)
We compute in the right half-plane where r 1 6 r ¡1 and

r ¡1 > d > K c , 1 r¡1 6 Kc and 1 r 1 1¡ 0 6 K( 0 ), thus r 1 2+ 0 1 r 1 3 r ¡1 = 1 r 1 1¡ 0 r ¡1 6 Kc 6 o c!0 0 (1) c 1¡ 0 :
Furthermore, still in the right half-plane, 

r 1 2+ 0 1 r ¡1 3 r 1 = r 1 r ¡1 1+ 0 1 r ¡1 2¡ 0 6 K( 0 ) c 2¡ 0 6 o c!0 0 (1) c 1¡ 0 : Gathering (2.
V E V C 1 ({r ~63}) + r ~1+ 0 Re E V L 1 ({r ~>2}) + r ~2+ 0 Im E V L 1 ({r ~>2}) 6 K( 0 )c 1¡ 0 :
Now, for the estimate on r E V , we have from Lemma 2.1.1, for r ~> 2,

jr((1 ¡ jV 1 j 2 )(1 ¡ jV ¡1 j 2 ))j 6 jrjV 1 j 2 (1 ¡ jV ¡1 j 2 )j + j(1 ¡ jV 1 j 2 )rjV ¡1 j 2 j 6 K r 1 3 r ¡1 2 + K r 1 2 r ¡1 3 ; and r rV 1 :rV ¡1 V 1 V ¡1 6 r rV 1 V 1 : rV ¡1 V ¡1 + rV 1 V 1 :r rV ¡1 V ¡1 6 K r 1 2 r ¡1 + K r 1 r ¡1 2 ;
thus, with similar estimates as previously, we deduce

r ~2+ 0 r E V L 1 ({r ~>2}) 6 K( 0 )c 1¡ 0 : (2.1.38)
This concludes the proof of E V

; 0 ;d 6 C 1 0 ( 0 )c 1¡ 0
for some constant C 1 0 ( 0 ) > 0 depending only on 0 .

Step 2. Estimates for ic

@x 2 V V .
First, near the vortices, we have j@

x 2 V j + jr@ x 2 V j 6 K a universal constant, therefore ic @ x2 V V V C 1 ({r ~63}) 6 Kc 6 o c!0 0 (1)c 1¡ 0 :
We now turn to the estimate for r ~> 2. Recall Lemma 2.1.5, stating that for a universal constant

C > 0, since r 1 ; r ¡1 > 2, ic @ x 2 V V ¡ 2 cd x 1 2 ¡ d 2 ¡ x 2 2 r 1 2 r ¡1 2 6 C c r 1 3 + c r ¡1 3 :
Remark that 2 cd

x 1 2 ¡ d 2 ¡ x 2 2 r 1 2 r ¡1 2 is real-valued. Using that cd 6 2, that jx 1 2 ¡ d 2 j = j(x 1 ¡ d)(x 1 + d)j 6 r 1 r ¡1
and also that x 2 2 6 r 1 r ¡1 , we deduce that in the right half-plane, where r 1 6 r ¡1 and r

¡1 > d > K c , r 1 1+ 0 2 cd x 1 2 ¡ d 2 ¡ x 2 2 r 1 2 r ¡1 2 L 1 ({26r16r¡1}) 6 K r 1 1+ 0 r 1 r ¡1 L 1 ({26r16r¡1})
; and since we have

r 1 1+ 0 r 1 r ¡1 = r 1 r ¡1 0 1 r ¡1 1¡ 0 6 K( 0 )c 1¡ 0 ; we infer 2r 1 1+ 0 cd x 1 2 ¡ d 2 ¡ x 2 2 r 1 2 r ¡1 2 L 1 ({26r 1 6r ¡1 }) 6 K( 0 )c 1¡ 0 :
It is easy to check that in the right half-plane

r 1 2+ 0 c r 1 3 + c r ¡1 3 6 Kc 6 o c!0 0 (1)c 1¡ ;
and therefore by symmetry for the left half-plane,

V ic @ x2 V V C 1 ({r ~63}) + r ~1+ 0 Re ic @ x2 V V L 1 ({r ~>2}) + r ~2+ 0 Im ic @ x 2 V V L 1 ({r ~>2}) 6 K( 0 )c 1¡ 0 :
From the proof of Lemma 2.1.5, we check (using Lemma 2.

1.3) that, if r ~> 1 r ic @ x2 V V ¡ 2 cd x 1 2 ¡ d 2 ¡ x 2 2 r 1 2 r ¡1 2 ! 6 K c r 1 3 + c r ¡1 3 : With r 1 r 1 6 K r 1 2
if r ~> 1 and similar computations as previously, we check that

r 2 cd x 1 2 ¡ d 2 ¡ x 2 2 r 1 2 r ¡1 2 ! 6 K( 0 )c 1¡ 0 :
Therefore, there exists C 1 00

( 0 ) > 0 such that ic @ x 2 V V ; 0 ;d 6 C 1 0 ( 0 )c 1¡ 0 :
We conclude by taking

C 1 ( 0 ) = max (C 1 0 ( 0 ); C 1 00 ( 0 )). Lemma 2.1.23. For 0 < < 0 < 1, for = V ; 0 = V 0 2 E ;;d such that k k ;;d ; k 0 k ;;d 6 C 0 with C 0 dened in Lemma 2.1.7, if there exists K(; 0 ) > 0 such that k k ;;d ; k 0 k ;;d 6 K(; 0 )c 1¡ 0 , then R( ) V ; 0 ;d 6 o c!0 0 (1)c 1¡ 0 and R( 0 ) ¡ R( ) V ; 0 ;d 6 o c!0 0 (1)k 0 ¡ k ;;d ;
where the o c!0 ; 0

(1) is a quantity that, for xed and 0 , goes to 0 when c ! 0.

Proof. Since = / 0 only in the domain where k:k 

; 0 ;d = kV :k C 1 (
0 ;d = kR( )k C 1 ({r ~63}) 6 K( 0 )c 2¡2 0 6 o c!0 0 (1)c 1¡ 0 :
Furthermore, using the denition of R( ) in the proof of Lemma 2.1.7 we check that every term is at least quadratic in (or its real or imaginary part), therefore, with k k

;;d ; k 0 k ;;d 6 C 0 , R( 0 ) ¡ R( ) can be estimated by R( 0 ) ¡ R( ) V ; 0 ;d = kR( 0 ) ¡ R( )k C 1 ({r ~63}) 6 K(k k ;;d + k 0 k ;;d )k 0 ¡ k ;;d 6 o c!0 (1)k 0 ¡ k ;;d : Lemma 2.1.24. For 0 < < 0 < 1, for = V ; 0 = V 0 2 E ;;d such that k k ;;d ; k 0 k ;;d 6 C 0 with C 0 dened in Lemma 2.1.7, if there exists K(; 0 ) > 0 such that k k ;;d ; k 0 k ;;d 6 K(; 0 )c 1¡ 0 , then k(1 ¡ )(¡r :r + jV j 2 S( ))k ; 0 ;d 6 o c!0 ; 0 (1)c 1¡ 0 ; k(1 ¡ )(¡r 0 :r 0 + r :r + jV j 2 (S( 0 ) ¡ S( )))k ; 0 ;d 6 o c!0 ; 0 (1)k 0 ¡ k ;;d :
Proof. As done in Lemma 2.1.23, we check easily that

k(1 ¡ )(r :r + jV j 2 S( ))V k C 1 ({r ~63}) 6 K(; 0 )c 1¡ 0 kk C 2 ({r ~63}) ;
since in the area where (1 ¡ ) = / 0, C 1 6 jV j 6 1 for a universal constant C 1 > 0, = V and using kV k C 1 ({r ~63}) 6 K(; 0 )c 1¡ 0 .

We then estimate (with = 0 in r ~> 2 )

kr ~1+ 0 Re(r :r )k L 1 ({r ~>2}) 6 K k k ;;d 2 r ~1+ 0 r ~2+2 L 1 ({r ~>2}) 6 K(; 0 )c 2¡2 0 6 o c!0 ; 0 (1)c 1¡ 0 ;
and

kr ~2+ 0 Im(r :r )k L 1 ({r ~>2}) 6 2kr ~2+ 0 Im(r ):Re(r )k L 1 ({r ~>2}) 6 K k k ;;d 2 r ~2+ 0 r ~3+2 L 1 ({r ~>2}) 6 o c!0 ; 0 (1)c 1¡ 0 ;
and we check that with similar computations, that

kr ~2+ 0 r(r :r )k L 1 ({r ~>2}) 6 o c!0 ; 0 (1)c 1¡ 0 ; thus k(1 ¡ )(¡r :r )k ; 0 ;d 6 o c!0 ; 0 (1)c 1¡ 0 : Now, since (1 ¡ )(¡r 0 :r 0 + r :r ) = ¡(1 ¡ )(r( 0 ¡ ):r( 0 + )), with similar computations (and k 0 + k ;;d 6 2K(; 0 )c 1¡ 0 ), we have k(1 ¡ )(¡r 0 :r 0 + r :r )k ; 0 ;d 6 o c!0 ; 0 (1)k 0 ¡ k ;;d :
Finally, recall that

S( ) = e 2Re( ) ¡ 1 ¡ 2 Re( ):
Moreover, e 2Re( ) ¡ 1 ¡ 2 Re( ) is real-valued and for r ~> 2, if k k ;;d 6 C 0 ,

jr ~1+ 0 jV j 2 (e 2Re( ) ¡ 1 ¡ 2Re( ))j 6 K jr ~1+ 0 Re 2 ( )j 6 K(; 0 )k k ;;d 2 6 o c!0 ; 0 (1)c 1¡ 0 ;
and with Lemma 2.1.3,

jr ~2+ 0 r(jV j 2 (e 2Re( ) ¡ 1 ¡ 2Re( )))j 6 2jr ~2+ 0 rRe( )(e 2Re( ) ¡ 1)j + 2jr ~2+ 0 r(jV j 2 )(e 2Re( ) ¡ 1 ¡ 2Re( ))j 6 K jr ~2+ 0 rRe( )Re( )j + r ~2+ 0 r ~3 Re 2 ( ) 6 K(; 0 )k k ;;d 2 r ~2+ 0 r ~3+2 L 1 ({r ~>2}) 6 o c!0 ; 0 (1)c 1¡ 0 ; hence k(1 ¡ )jV j 2 S( )k ; 0 ;d 6 o c!0 ; 0 (1)c 1¡ 0 :
With similar comutations on

jV j 2 (S( 0 ) ¡ S( )) = 2jV j 2 (Re( 0 ) ¡ Re( )) X n=2 +1 2 n¡1 X k=0 n¡1 Re( ) n¡1¡k Re( 0 ) k n! ;
we conclude with

k(1 ¡ )(jV j 2 (S( 0 ) ¡ S( )))k ; 0 ;d 6 o c!0 ; 0 (1)k 0 ¡ k ;;d :
Now, we end the proof of Proposition 2.1.21

Proof. (of Proposition 2.1.21)

We take the constants C(; 0 ) dened in Proposition 2.1.17 and C 1 ( 0 ) from Lemma 2.1.22. We then dene K 0 (; 0 ) := C(; 0 )(C 1 ( 0 ) + 1).

To apply the contraction mapping theorem, we need to show that for = V ; 0 = V 0 2 E ;;d with

k k ;;d ; k 0 k ;;d 6 K 0 (; 0 )c 1¡ 0 ;
we have for small c > 0, F ( )

V ; 0 ;d 6 K 0 (; 0 ) C(; 0 ) c 1¡ 0 (2.1.39)
and

F ( 0 ) ¡ F ( ) V ; 0 ;d 6 o c!0 ; 0 (1)k 0 ¡ k ;;d : (2.1.40)
If these estimates hold, using Proposition 2.1.17, we have that the closed ball B k:k;;d (0; K 0 (;

0 )c 1¡ 0 ) is stable by 7 ! V (L(V :) + (1 ¡ ) VL 0 (:)) ¡1 ( d ? (¡F ( / V ))
) and this operator is a contraction in the ball (for c small enough, depending on ; 0 ), hence we can apply the contraction mapping theorem.

From Lemma 2.1.7, we have

F ( ) = E ¡ ic@ x2 V + V (1 ¡ )(¡r :r + jV j 2 S( )) + R( ):
By Lemmas 2.1.22 to 2.1.24, we have, given that c is small enough (depending only on ; 0 ), that both (2:1:39) and (2:1:40) hold. Therefore, dening c 0 (; 0 ) > 0 small enough such that all the required conditions on c are satised if c < c 0 (; 0 ), we end the proof of Proposition 2.1.21.

We have therefore constructed a function = V 2 E ;;d such that

= (L(:) + (1 ¡ ) VL 0 (:/V )) ¡1 ( d ? (¡F (/V ))):
Therefore, by denition of the operator (L(:) + (1 ¡ ) VL 0 (:/V )) ¡1 , we have, in the distribution sense,

L() + (1 ¡ ) VL 0 ( ) = d ? (¡F (/V ));
and thus, there exists (c; d) 2 R such that

L() + (1 ¡ )VL 0 ( ) + F ( ) = (c; d)Z d :
At this point, we have the existence of a function = V 2 E ;;d depending on c; d and a priori ; 0 , such that k k ;;d 6 K(; 0 )c 1¡ 0 and

L() + (1 ¡ )VL 0 ( ) + F ( ) = (c; d)Z d (2.1.41)
in the distribution sense for some (c; d) 2 R. By using elliptic regularity, we show easily that 2 C 1 (R 2 ; C) and that (2.1.41) is veried in the strong sense. The goal is now to show that we can take (c; d) = 0 for a good choice of d, but rst we need a better estimate on using the parameters and 0 . We denote by ; 0 = V ; 0 the solution obtained by Proposition 2.1.21 for the values < 0 .

Corollary 2.1.25. For 0 < 1 < 1 0 < 1, 0 < 2 < 2 0 < 1, there exists c 0 ( 1 ; 1 0 ; 2 ; 2 0 ) > 0 such that for 0 < c < c 0 ( 1 ; 1 0 ; 2 ; 2 0 ), 1 ; 1 0 = V 1 ; 1 0 = V 2 ; 2 0 = 2 ; 2 0.
We can thus take any values of ; 0 with < 0 and the estimate k k ;;d 6 K(; 0 )c 1¡ 0 holds for 0 < c < c 0 (; 0 ). In particular, for c small enough,

kk C 2 ({r ~63}) 6 Kc 3/4 :
Proof. This is because for 1 < 2 , E ;2 E ;1 hence the xed point for 2 (for any 2 0 > 2 ) yields the same value of as the xed point for 1 for c small enough (for any 1 0 > 1 ). In particular, this implies also that (c; d) is independent of ; 0 (for c small enough).

Estimation on the Lagrange multiplier (c; d)

To nish the construction of a solution of (TW c ), we need to nd a link between d and c such that (c; d) = 0 in (2.1.41). Here, we give an estimate of (c; d) for small values of c. 

L() + (1 ¡ ) VL 0 ( ) + F ( ) = (c; d)Z d ;
we have, for any 0 < < 1,

(c; d) Z R 2 j@ d V j 2 = 1 d ¡ c + O c!0 (c 2¡ ):
We will take the scalar product of L()

+ (1 ¡ ) V L 0 ( ) + F ( ) ¡ (c; d)Z d with @ d V . We will show in the proof that in the term h L() + (1 ¡ )V L 0 ( ) + F ( ); @ d V i, the largest contribution come from the source term E ¡ ic@ x 2 V in F ( ). We will show that hE ; @ d V i ' d and h¡ic@ x2 V ; @ d V i ' ¡c, so that, at the leading order, (c; d) s K ¡ 1 d ¡ c
. In the proof, steps 1, 2 and 7 show that the terms other than E ¡ ic@ x 2 V are of lower order, and steps 3-6 compute exactly the contribution of these leading order terms.

Proof. Recall from Lemma 2.1.7 that L() = (E ¡ ic@ x 2 V ) + VL 0 ( ), hence we write the equation under the form

L() ¡ (1 ¡ ) (E ¡ ic@ x2 V ) + F ( ) = (c; d)Z d :
We want to take the scalar product with @ d V . We will compute the terms (1 ¡ )E (step 1), F ( ) (steps 2 to 6) and in step 7 we will show that we can do an integration by parts for hL(); Z d i and compute its contribution.

We have by denition

Z d = @ d V , hence hZ d ; @ d V i = Z R 2 j@ d V j 2
which is nite and independent of d since = 0 outside r ~6 2 . Recall that k k ; 6 K(; 0 )c 1¡ 0 where

k k ; = kV k C 2 ({r ~63}) + kr ~1+ 1 k L 1 ({r ~>2}) + kr ~2+ r 1 k L 1 ({r ~>2}) + kr ~ 2 k L 1 ({r ~>2}) + kr ~1+ r 2 k L 1 ({r ~>2}) + kr ~2+ r 2 k L 1 ({r ~>2}) ;
which we will heavily use with several values of ; 0 in the following computations, in particular for 2 ]0; 1[, the estimate k k ;/2;d 6 K()c 1¡ :

Step 1. We have

h(1 ¡ )(E ¡ ic@ x2 V ) ; @ d V i = O c!0 (c 2¡ ).
From Lemma 2.1.6, we have

j@ d V j 6 K 1 + r ~: (2.1.42) In (2.1.2), we showed that E = ¡2rV 1 :rV ¡1 + (1 ¡ jV 1 j 2 )(1 ¡ jV ¡1 j 2 )V 1 V ¡1 ;
hence, with Lemmas 2.1.1 and 2.1.5 (estimating ic@ x 2 V as in step 2 of the proof of Lemma 2.1.22), we have

jE ¡ ic@ x2 V j 6 Kc 1 + r by using jrV 1 j 6 K 1 + r ~, jrV ¡1 j 6 K d 6
Kc and j1 ¡ jV ¡1 j 2 j 6 Kc 2 in the right half-plane and the symmetric estimate in the other one. We also have, in

1 ¡ = / 0 , j j 6 K k k ;/2;d (1 + r ~)/2 6 K()c 1¡ (1 + r ~)/2 ; hence h(1 ¡ )(E ¡ ic@ x 2 V ) ; @ d V i 6 K() Z R 2 c 2¡ (1 + r ~)2+/2 = O c!0 (c 2¡ ):
Step 2. We have hF ( );

@ d V i = hE ¡ ic@ x2 V ; @ d V i + O c!0 (c 2¡ ).
In this step, we want to show that the nonlinear terms in F ( ) are negligible. Recall that

F ( ) = E ¡ ic@ x 2 V + R( ) + V (1 ¡ )(¡r :r + jV j 2 S( )):
We rst show that hR( );

@ d V i = O c!0 (c 2¡ ): Indeed, R( ) is localized in r ~6 2 and jR( )j 6 C kk C 1 ({r ~63}) 2 (since k k ;;d 6 C 0 , see Lemma 2.1.7
), and using that in

r ~6 3 , jj + jrj 6 K()c 1¡/2 yields jR( )j 6 ck@ x2 k C 0 ({r ~63}) + C kk C 1 ({r ~63}) 2 = O c!0 (c 2¡ ): Now, we use k k ;/2;d 6 K()c 1¡ to estimate, in 1 ¡ = / 0 , jr :r j 6 K k k ;;d 2 (1 + r ~)2+ 6 K()c 2¡ (1 + r ~)2+ ; therefore h¡r :r V (1 ¡ ); @ d V i 6 Kc 2¡ Z R 2 1 (1 + r ~)3+ = O c!0 (c 2¡ ):
The same argument can be made for

h¡jV j 2 S( )V (1 ¡ ); @ d V i = O c!0 (c 2¡ )
by using S( ) = e 2Re( ) ¡ 1 ¡ 2Re( ) and the fact that it is real-valued.

Step 3. We have

hE ¡ ic@ x2 V ; @ d V i = ¡2 R x1>0 Re((E ¡ ic@ x2 V )@ x1 V 1 V ¡1 ) + O c!0 (c 2¡ ).
The goal of this step is to simplify the computation by using the symmetry. By symmetry, we can only look in the right half-plane:

hE ¡ ic@ x 2 V ; @ d V i = 2 Z x 1 >0 Re((E ¡ ic@ x 2 V )@ d V ): Recall that @ d V = ¡@ x 1 V 1 V ¡1 + @ x 1 V ¡1 V 1 , hence we need to show that Z {x1>0} Re((E ¡ ic@ x2 V )@ x1 V ¡1 V 1 ) = O c!0 (c 2¡ ): We compute Z x 1 >0 Re((E ¡ ic@ x 2 V )@ x 1 V ¡1 V 1 ) = Z x 1 >0 Re E ¡ ic@ x2 V V jV j 2 @ x1 V ¡1 V ¡1 = Z x1>0 Re E ¡ ic@ x2 V V jV j 2 Re @ x1 V ¡1 V ¡1 + Z x1>0 Im E ¡ ic@ x2 V V jV j 2 Im @ x1 V ¡1 V ¡1 :
In the right half-plane, we have d 6 r ¡1 and r ~6 r 1 , hence

Re @ x 1 V ¡1 V ¡1 6 K r ¡1 3 6 
Kc 1¡/2 (1 + r ~)2+/2 ; Im @ x1 V ¡1 V ¡1 6 K r ¡1 6 Kc 1¡/2 (1 + r ~)/2 ; from Lemma 2.1.1. Moreover, Re E ¡ ic@ x2 V V jV j 2 6 Kc 1¡/2 (1 + r ~)1+/2 ; Im E ¡ ic@ x2 V V jV j 2 6 Kc 1¡/2 (1 + r ~)2+/2 ;
from Lemma 2.1.22. We thus deduce that

Z x 1 >0 Re((E ¡ ic@ x 2 V )@ x 1 V ¡1 V 1 ) 6 Kc 1¡/2 Z R 2 c 1¡/2 (1 + r ~)2+ = O c!0 (c 2¡ ):
Step 4. We have

Z x1>0 Re(E@ x 1 V 1 V ¡1 ) = ¡2 Z x1>0 Re(@ x 2 V 1 @ x 1 V 1 @ x 2 V ¡1 V ¡1 ) + O c!0 (c 2¡ ):
The goal of this step is to compute the part of E that produces the higher order term. Recall from (2.1.2) that

E = ¡2rV 1 :rV ¡1 + (1 ¡ jV 1 j 2 )(1 ¡ jV ¡1 j 2 )V 1 V ¡1 and since j(1 ¡ jV 1 j 2 )(1 ¡ jV ¡1 j 2 )j 6 Kc 2 (1 + r ~)2 by Lemma 2.1.1, we deduce Z x1>0 Re((1 ¡ jV 1 j 2 )(1 ¡ jV ¡1 j 2 )V 1 V ¡1 @ x1 V 1 V ¡1 ) = O c!0 (c 2¡ ):
Now we compute the rst contribution from ¡2rV 1 :rV

¡1 = ¡2@ x 1 V 1 @ x 1 V ¡1 ¡ 2@ x 2 V 1 @ x 2 V ¡1 , Z x1>0 Re((¡2@ x 1 V 1 @ x 1 V ¡1 )@ x 1 V 1 V ¡1 ) = ¡2 Z x1>0 j@ x 1 V 1 j 2 Re(@ x 1 V ¡1 V ¡1 ):
From Lemma 2.1.1 we have

Re(@ x1 V ¡1 V ¡1 ) = O 1 r ¡1 3 ! since the main part in @ x 1 V ¡1 V ¡1 is purely imaginary. Using r 1 6 r ¡1 and r ¡1 > d > K c in the right half-plane, we have 1 r ¡1 3 6 Kc 2¡ (1 + r ~)1+ and, noting that j@ x1 V 1 j 2 6 K (1 + r ~)2 , we obtain Z x1>0 j@ x1 V 1 j 2 jRe(@ x1 V ¡1 V ¡1 )j 6 Kc 2¡ Z x1>0 1 (1 + r ~)3+ = O c!0 (c 5/4 ): Finally, the second contribution from ¡2rV 1 :rV ¡1 is Z x 1 >0 Re((¡2@ x 2 V 1 @ x 2 V ¡1 )@ x 1 V 1 V ¡1 ) = ¡2 Z x 1 >0 Re(@ x 2 V 1 @ x 1 V 1 @ x 2 V ¡1 V ¡1 )
which concludes the proof of this step.

Step 5. We have

R x1>0 Re(E@ x1 V 1 V ¡1 ) = d + O c!0 (c 2¡ ).
By Lemma 2.1.1, we have

@ x2 V ¡1 V ¡1 = ¡ijV ¡1 j 2 y 1 + 2d r ¡1 2 + O 1 r ¡1 3 ! : The O 1 r ¡1 3 yielding a term which is a O c!0 (c 2¡ ) as in step 4, therefore Z x1>0 Re((¡2@ x2 V 1 @ x2 V ¡1 )@ x1 V 1 V ¡1 ) = 2 Z x1>0 Re(i@ x2 V 1 @ x1 V 1 )jV ¡1 j 2 y 1 + 2d r ¡1 2 + O c!0 (c 2¡ ):
Now we compute in polar coordinate around de 1 ~, writing V 1 = 1 (r 1 )e i1 . From Lemma 2.1.2, we have

@ x1 V 1 = cos( 1 ) 1 0 (r 1 ) 1 (r 1 ) ¡ i r 1 sin( 1 ) V 1 ; @ x 2 V 1 = sin( 1 ) 1 0 (r 1 ) 1 (r 1 ) + i r 1 cos( 1 ) V 1 :
We then compute

Re(i@ x 2 V 1 @ x 1 V 1 ) = ¡jV 1 j 2 cos 2 ( 1 ) 1 0 r 1 1 + sin 2 ( 1 ) 1 0 r 1 1 = ¡jV 1 j 2 1 0 r 1 1 : From Lemma 2.1.1, we have 1 0 (r 1 ) = O r 1 !1 1 r 1 3 . As a consequence Z x1>0 jV 1 j 2 1 0 r 1 1 jV ¡1 j 2 y 1 + 2d r ¡1 2 ¡ Z r16d 1/2 jV 1 j 2 1 0 r 1 1 jV ¡1 j 2 y 1 + 2d r ¡1 2 6 Kc 2¡ Z r1>d 1/2 1 (1 + r ~)2+2 because when x 1 > 0 and r 1 > d 1/2 , we have jV1j 2 1 0 r11 jV ¡1 j 2 y1 + 2d r ¡1 2 6 Kc 2¡ (1 + r ~)2+2 . We deduce that Z x1>0 jV 1 j 2 1 0 r 1 1 jV ¡1 j 2 y 1 + 2d r ¡1 2 = Z r16d 1/2 jV 1 j 2 1 0 r 1 1 jV ¡1 j 2 y 1 + 2d r ¡1 2 + O c!0 (c 2¡ ):
In the ball r 1 6 d 1/2 , we have

r ¡1 2 = 4 d 2 1 + O d!1 1 d and jV ¡1 j 2 = 1 + O 1 d 2 therefore Z x 1 >0 jV 1 j 2 1 0 r 1 1 jV ¡1 j 2 y 1 + 2d r ¡1 2 = 1 4 d 2 Z r 1 6d 1/2 jV 1 j 2 1 0 r 1 1 (y 1 + 2d) + O c!0 (c 2¡ ):
Since y 1 = r 1 cos( 1 ), by integration in polar coordinates we have

Z fr 1 6d 1/2 g jV 1 j 2 1 0 r 1 1 y 1 = 0 hence Z x1>0 Re(E@ x 1 V 1 V ¡1 ) = 1 d Z r16d 1/2 jV 1 j 2 1 0 r 1 1 + O c!0 (c 2¡ ): Remark that jV 1 j 2 = 1 2 hence Z r16d 1/2 jV 1 j 2 1 0 r 1 1 = 2 Z 0 d 1/2 1 1 0 dr 1 = [ 1 2 ] 0 d 1/2 = + O d!1 1 d Since 1 = 1 + O 1 r 1 2
when r 1 ! 1 and 1 (0) = 0 by Lemma 2.1.1. Therefore, as claimed,

Z x1>0 Re(E@ x1 V 1 V ¡1 ) = d + O c!0 (c 2¡ ):
Notice that we have shown in particular that Z

R 2 Re(i@ x 2 V 1 @ x 1 V 1 )jV ¡1 j 2 = ¡ + O c!0 (c 1¡ ): (2.1.43)
Step 6. We have

R x1>0 Re(¡ic@ x2 V @ x1 V 1 V ¡1 ) = ¡c + O c!0 (c 2¡ ).
We are left with the computation of

Z x 1 >0 Re(¡ic@ x 2 V@ x 1 V 1 V ¡1 ) = Z x1>0 Re(¡ic@ x2 V 1 @ x1 V 1 )jV ¡1 j 2 + Z x1>0 Re(¡ic@ x2 V ¡1 V 1 @ x1 V 1 V ¡1 ) (2.1.44) since @ x 2 V = @ x 2 V 1 V ¡1 + @ x 2 V ¡1 V 1 .
For the second term in (2.1.44), we compute ¡c

Z x1>0 Re(i@ x2 V ¡1 V 1 @ x1 V 1 V ¡1 ) = c Z x1>0 Re(@ x1 V 1 V 1 )jV ¡1 j 2 y 1 + 2d r ¡1 2 + O c!0 (c 2¡s ) in view of the relation i@ x 2 V ¡1 V ¡1 = ¡jV ¡1 j 2 y 1 + 2d r ¡1 2 + O 1 r ¡1 3 ! from Lemma 2.1.1 and the fact that R x 1 >0 c O 1 r ¡1 3 = O c!0 (c 2¡ ) (as in step 4). Now recall from Lemma 2.1.2 that @ x 1 V 1 = cos( 1 ) 1 0 (r 1 ) 1 (r 1 ) ¡ i r 1 sin( 1 ) V 1 therefore Re(@ x 1 V 1 V 1 ) = cos( 1 ) 1 0 1 jV 1 j 2 : In particular, jRe(@ x1 V 1 V 1 )j 6 K 1 + r 1 3 is integrable. Furthermore, jV ¡1 j 2 y1 + 2d r ¡1 2 = O c!0 (c) in the right half-plane, therefore ¡c Z x 1 >0 Re(i@ x 2 V ¡1 V 1 @ x 1 V 1 V ¡1 ) = O c!0 (c 2 ) = O c!0 (c 2¡ ):
The rst contribution in (2.1.44) is c

Z x 1 >0 Re(i@ x2 V 1 @ x1 V 1 )jV ¡1 j 2 = c Z x 1 >0 Re(i@ x2 V 1 @ x1 V 1 ) + O c!0 (c 2¡ ) using that jV ¡1 j 2 = 1 + O 1 r ¡1 2
. From (2.1.43), we have

Z x1>0 Re(i@ x2 V 1 @ x1 V 1 ) = ¡ + O c!0 (c 1¡ ):
This conclude the proof of step 6, and combining step 4, 5 and 6 we deduce

Z x1>0 Re((E ¡ ic@ x2 V )@ x1 V 1 V ¡1 ) = 1 d ¡ c + O c!0 (c 2¡ ):
Step 7. We have hL();

@ d V i = O c!0 (c 2¡ ).
We want to compute, by integration by parts, that hL();

@ d V i = h; L(@ d V )i:
First, we recall that the left hand side is well dened, because we showed in the previous steps that all the other terms are bounded, therefore this one is also bounded. We have Z

B(0;R) Re(@ d V ) = Z @B(0;R) Re(r@ d V ):n ~¡ Re(r@ d V ):n ~+ Z B(0;R) Re(@ d V ); and jRe(r@ d V )j + jRe(r@ d V )j 6 K (1 + r ~)2+1/2 ; therefore Z @B(0;R) Re(r@ d V ):n ~¡ Re(r@ d V ):n ~= o R!1 (1)
and the integration by parts holds.

Recall that

L(h) = ¡h ¡ (1 ¡ jV j 2 )h + 2 Re(V h)V ¡ ic@ x2 h and L V1 (h) = ¡h ¡ (1 ¡ jV 1 j 2 )h + 2 Re(V 1 h)V 1 :
From Lemma 2.1.6 and k k ;/2 6 K()c 1¡ , we check easily that

jh; ¡ic@ x2 @ d V ij 6 Z R 2 K()c 2¡ (1 + r ~)2+/2 = O c!0 (c 2¡ ):
We therefore focus on the remaining part, with the operator

L ~(h) := ¡h ¡ (1 ¡ jV j 2 )h + 2 Re(V h)V ¡ ic@ x2 h:
We remark that we have

L V 1 (@ x 1 V 1 ) = 0, since @ x 1 (¡V 1 ¡ (1 ¡ jV 1 j 2 )V 1 ) = 0. Recall that @ d V = ¡@ x 1 V 1 V ¡1 + @ x 1 V ¡1 V 1 and let us compute L ~(V ¡1 h) = L V1 (h)V ¡1 ¡ (V ¡1 h) + hV ¡1 + (jV j 2 ¡ jV 1 j 2 )hV ¡1 + 2Re(V 1 h)(1 ¡ jV ¡1 j 2 )V ; therefore, using the equation or V ¡1 , L ~(V ¡1 h) = L V1 (h)V ¡1 ¡ 2rV ¡1 :rh + (1 ¡ jV ¡1 j 2 )(1 ¡ jV 1 j 2 ) V ¡1 h + 2Re(V 1 h)(1 ¡ jV ¡1 j 2 )V : Taking h = @ x 1 V 1 then yields L ~(V ¡1 @ x 1 V 1 ) = ¡2rV ¡1 :r@ x 1 V 1 + (1 ¡ jV ¡1 j 2 )(1 ¡ jV 1 j 2 )V ¡1 @ x 1 V 1 + 2Re(V 1 @ x 1 V 1 )(1 ¡ jV ¡1 j 2 )V : Remark that jrV ¡1 :r@ x1 V 1 j 6 K (1 + r 1 )(1 + r ¡1 ) 2 , j(1 ¡ jV ¡1 j 2 )(1 ¡ jV 1 j 2 )V ¡1 @ x1 V 1 j 6 K (1 + r 1 ) 3 (1 + r ¡1 ) 2 and j2Re(V 1 @ x1 V 1 )(1 ¡ jV ¡1 j 2 )V j 6 K (1 + r 1 ) 3 (1 + r ¡1 ) 2 for a universal constant K > 0 by Lemma 2.1.1, therefore h; L ~(@ x1 V 1 V ¡1 )i = O c!0 (c 2¡ ):
Exchanging the roles of V 1 and V ¡1 , we have similarly

L ~(V 1 @ x1 V ¡1 ) = ¡2rV 1 :r@ x1 V ¡1 + (1 ¡ jV ¡1 j 2 )(1 ¡ jV 1 j 2 )V 1 @ x1 V ¡1 : We then conclude that hL ~(); @ d V i = O c!0 (c 2¡ );
which end the proof of this step. Notice that we have shown

jL(@ d V )j 6 Kc (1 + r ~)2 (2.1.45) because 1 (1 + r1)(1 + r¡1) 6 K c (1 + r ~)
in the whole space.

Step 8. Conclusion.

Adding all the results obtained in steps 1 to 7, we deduce

(c; d) Z R 2 j@ d V j 2 = 1 d ¡ c + O c!0 (c 2¡ ):
At this point, we cannot conclude that there exists d such that (c; d) = 0. For that, we need to show that the O c!0 (c 2¡ ) is continuous with respect to c and d. This will be shown in section 2.2. 

Construction and properties of the travelling wave

Given 0 < < 0 < 1, d; c > 0 satisfying 1 2c < d <
< 1 < 1 0 < 1, this function satises, for c < c 0 ( 1 ; 1 0 ), that k c;d k ; 1 ;d 6 K( 1 ; 1 0 )c 1¡ 1 0 :
With equation (2.1.41) and Proposition 2.1.26, if we show that c;d is a continuous function of c and d, then there exists c 0 > 0 such that, for any 0 < c < c 0 , by the intermediate value theorem, there exists d c > 0 such that (c; d c ) = 0. This would conclude the construction of the travelling wave, and is done in subsection 2.2.1. In subsection 2.2.2, we compute some estimates on Q c which will be usefull for understanding the linearized operator around Q c . We also show there that Q c is a travelling wave solution with nite energy.

Proof that c;d is a C 1 function of c and d

To end the construction of the travelling wave, we only need the continuity of c;d with respect to c and d. But for the construction of the C 1 branch of travelling wave in section 2.3, we need its dierentiability.

Setup of the problem

From Proposition 2.1.21, the function c;d is dened by the implicit equation on E ;;d

(L(:) + (1 ¡ ) VL 0 (:/V )) ¡1 ( d ? (¡F ( c;d /V ))) + c;d = 0;
where (L(:

) + (1 ¡ ) VL 0 (: / V )) ¡1 is the linear operator from E ; 0 ;d \ h:; Z d i = 0 to E ;;d , that, for a function Vh 2 E ; 0 ;d with hVh; Z d i = 0, yields the unique function = V 2 E ;;d such that L() + (1 ¡ )VL 0 ( ) = Vh
in the distribution sense. We recall the quantity Z d (x) = @ d V (x)( ~(4r 1 ) + ~(4r ¡1 )) dened in subsection 2.1.3 and we have dened the projection 

d ? () = ¡ h; Z d i Z d kZ d k L 2 (R 2
k k ;;d = kV k C 2 ({r ~63}) + kr ~1+ 1 k L 1 ({r ~>2}) + kr ~2+ r 1 k L 1 ({r ~>2}) + kr ~ 2 k L 1 ({r ~>2}) + kr ~1+ r 2 k L 1 ({r ~>2}) + kr ~2+ r 2 k L 1 ({r ~>2}) :
For d ~2 R; d ~> 10 and d 2 R such that jd ¡ d ~j < for some small > 0 (that we will x later on), we dene

kk ~;;d~: = kk C 2 ({r ~~63}) + r ~1+ Re V ~! L 1 ({r ~~>2}) + r ~2+ rRe V ~! L 1 ({r ~~>2}) + r ~ Im V ~! L 1 ({r ~~>2}) + r ~1+ rIm V ~! L 1 ({r ~~>2}) + r ~2+ r 2 V ~! L 1 ({r ~~>2})
;

where 

V ~= V 1 (x ¡ d ~e1 ~)V ¡1 (x + d ~e1 ~) and
V V ~¡ 1 6 K (1 + r ~) and r V V ~ 6 K (1 + r ~)2 (2.2.2)
for a universal constant K > 0. Moreover, we have, for instance, if r ~~> 2

(hence r ~~6 2r ~), r ~1+ Re V ~! 6 r ~1+ Re V + r ~1+ Re V V V ~¡ 1 6 K k k ;;d + K r V 6 K k k ;;d : Using (2.2.
2), we can estimate similarly all the terms in (2.2.1). We dene similarly, for

g = V ~(g 1 + ig 2 ) 2 C 1 (R 2 ), 0 > 0 kgk ~~; 0 ;d~: = kgk C 1 ({r ~~63}) + kr ~1+ 0 g 1 k L 1 ({r ~~>2}) + kr ~2+ 0 g 2 k L 1 ({r ~~>2}) + kr ~2+ 0 rgk L 1 ({r ~~>2}) :
We have that there exist C 1 ; C We dene the spaces, for ; 0 > 0,

E ~;;d ~:= 2 C 2 (R 2 ; C); kk ~;;d ~< +1; h; Z d ~i = 0; 8x 2 R 2 ; (x 1 ; x 2 ) = (x 1 ; ¡x 2 ) = (¡x 1 ; x 2 )
and

E ~~; 0 ;d~: = g 2 C 1 (R 2 ; C); kgk ~~; 0 ;d~< +1 :
We infer that, from Proposition 2.1.17, that the operator ;dã re equivalent, as well as the norms k:k ; 0 ;d and k:k ~~; 0 ;d~f or any ; 0 > 0. About the orthogonality, we replaced h; Z d i = 0 by h; Z d ~i = 0. This does not change the proof of Proposition 2.1.17, since when we argue by contradiction, if for a universal constant jj 6 we took the orthogonality h; Z d+ i = 0 instead of h; Z d i = 0, the proof does not change, given that is small enough (independently of d). To be specic, we have to take small enough such that

h@ x1 V 1 ; @ x1 V 1 (: + )i > 0 for all 2 ]¡; [.
Therefore, we take a sequence D (n) > 0 going to innity such that jD (n+1) ¡ D (n) j < / 2, and for any given d large enough, there exists We want to emphasize the fact that we change a little the denition of the spaces compared to section 2.1. In particular, for = V , the norm k:k ~;;d ~is on the function , and before, for k:k ;;d , it was on . This is because V depends on d, and we want to remove any dependence on d. The same remark holds for k:k ~~; 0 ;d~a nd k:k ~~; 0 ;d (with g = Vh).

k(d) such that d 2 ]D (k(d)) ¡ / 2; D (k(d)) + / 2[,
We continue, and we dene ( This is a consequence of the following lemma (for functions = V such that k k

;;d = o c!0 (1), which is the case if is near c;d since k c;d k ;;d 6 K(; 0 )c 1¡ 0
), where we do the computations with the ¡norms since they are equivalent, with uniform constants, to the ~-norms. We dene

() := 1 + 2 > :
Lemma 2.2.1. There exists C > 0 such that, for 0 < < 1 and functions = V ; ' = V 2 E ;;d , if 

F ( ) = E ¡ ic@ x2 V + V (1 ¡ )(¡r :r + jV j 2 S( )) + R( )
with S( ) = e 2Re( ) ¡ 1 ¡ 2Re( ) and R( ) at least quadratic in and supported in r ~6 2 . We compute

d F ( ) = V (1 ¡ )(¡2 r :r + jV j 2 dS( )) + d R( ):
We recall the condition 

1 2d < c < 2 d . For the term d R( ), since
kr ~2+() r(Re( )(e 2Re( ) ¡ 1))k L 1 ({r ~>2}) 6 K kr ~2+() Re(r )Re( )k L 1 ({r ~>2}) + K kr ~2+() Re( )Re(r )k L 1 ({r ~>2}) 6 K k c;d k ;;d k k ;;d r ~2+() r ~3+2 L 1 ({r ~>2})
1 2c 0 () , c 7 ! c;d 2 C 1 1 2d ; 2 d \ ]0; c 0 ()[; E ;;d : Remark that, at xed d, @ c c;d = V@ c c;d .
Proof. In this proof, we consider a xed d > In particular, remark that we look for a convergence uniform in c 0 . By denition of the operator (L(: 3 ) with, fom Proposition 2.1.17, kH c+" ( c 0 ;d )k ~;();d~6 K(). We check similarly that L(:

) + (1 ¡ ) VL 0 (:/ V )) ¡1 , the function H c+" ( c 0 ;d ) (in E ~;;d~) is such that, in the distribution sense, L(:) + (1 ¡ ) VL 0 : V c+" (H c+" ( c 0 ;d )) = d ? (F c+" ( c 0 ;d /V )): Since c 0 ;d 2 C 1 (R 2 ), we have that H c+" ( c 0 ;d ) 2 C 1 (R 2 )
) + (1 ¡ ) VL 0 : V c (H c ( c 0 ;d )) = d ? (F c ( c 0 ;d /V )):
Now, from the denitions of L and L 0 from Lemma 2.1.7, we have

L(:) + (1 ¡ ) VL 0 : V c+" (H c+" ( c 0 ;d )) = L(:) + (1 ¡ ) VL 0 : V c (H c+" ( c 0 ;d )) ¡ i"@ x2 H c+" ( c 0 ;d ) ¡ i"(1 ¡ )V@ x2 H c+" ( c 0 ;d ) V ;
and therefore

L(:) + (1 ¡ ) VL 0 : V c (H c+" ( c 0 ;d ) ¡ H c ( c 0 ;d )) = ¡( d ? (F c+" ( c 0 ;d /V ) ¡ F c ( c 0 ;d /V ))) ¡ i" @ x2 H c+" ( c 0 ;d ) + (1 ¡ )V@ x2 H c+" ( c 0 ;d ) V :
We check, using

H c+" ( c 0 ;d ) 2 E ~; ();d ~, kH c+" ( c 0 ;d )k ~; ();d ~6 K() that i" @ x2 H c+" ( c 0 ;d ) + (1 ¡ )V@ x2 H c+" ( c 0 ;d ) V 2 E ~~;();d~; with i" @ x2 H c+" ( c 0 ;d ) + (1 ¡ )V@ x2 H c+" ( c 0 ;d ) V ~~; ();d~6 K()":
In particular, by Proposition 2.1.17 (from E ~~; ();d~t o E ~;;d~) , we have

kH c+" ( c 0 ;d ) ¡ H c ( c 0 ;d )k ~;;d6 K()k d ? (F c+" ( c 0 ;d /V ) ¡ F c ( c 0 ;d /V ))k ~~;();d+ K()":
We recall that

F c ( ) = E ¡ ic@ x2 V + V (1 ¡ )(¡r :r + jV j 2 S( )) + R c ( ); therefore F c+" ( c 0 ;d /V ) ¡ F c ( c 0 ;d /V ) = ¡i"@ x 2 V + R c+" ( c 0 ;d /V ) ¡ R c ( c 0 ;d /V ):
By Lemma 2.1.5 (for i@ x 2 V ) and the denition of R c (in the proof of Lemma 2.1.7), we check that, for any 0 < < 1, since k c 0 ;d k ;;d 6 K()c 0 () 1¡ () 6 K(),

k d ? (F c+" ( c 0 ;d /V ) ¡ F c ( c 0 ;d /V ))k ~~;;d~6 K() " c :
We conclude that

kH c+" ( c 0 ;d ) ¡ H c ( c 0 ;d )k ~;;d~= o "!0 ;c (1); thus H c+" ( c 0 ;d ) ! H c ( c 0 ;d )
when " ! 0 in E ~;;d~u niformly in c 0 . We remark that it is also uniform in d in any compact set of ]0; c 0 ()[. 

(:) + (1 ¡ ) VL 0 : V c ( c+";d ¡ c;d ) = ¡( d ? (F c+" ( c+";d /V ) ¡ F c ( c;d /V ))) ¡ i" @ x2 c+";d + (1 ¡ )V@ x2 c+";d V : Furthermore, from k d ? (F c+" ( c 0 ;d /V ) ¡ F c ( c 0 ;d /V ))k ~~;;d~6 K(; c)" and i" @ x2 c+";d + (1 ¡ )V@ x2 c+";d V ~~;;d ~6 K(; c)";
we deduce that k c+";d ¡ c;d k ~;;d~6 K(; c)".

From the denition of F , we infer that

F c+" ( c+";d /V ) ¡ F c ( c;d /V ) = ¡i"@ x2 V + V (1 ¡ )(¡r c+";d :r c+";d + r c;d :r c;d ) + V (1 ¡ )jV j 2 (S( c+";d ) ¡ S( c;d )) + R c+" ( c+";d ) ¡ R c ( c;d ):
Now, regrouping the terms of d ? K(;c)" for the remaining nonlinear terms (which will be at least quadratic in c+";d ¡ c;d , since F is C 1 with respect to ), as well as the fact that

(d F c (( c+";d ¡ c;d ) / V ))
c 7 ! R c 2 C 1 (]0; c 0 ()[; C 1 (R 2 )), for any 0 < < 1, d ? (F c+" ( c+";d /V ) ¡ F c ( c;d /V )) = d ? (d F c (( c+";d ¡ c;d )/V )) + " d ? (¡i@ x 2 V ) + O k:k;;d ;c (" 2 );
where O k:k;;d ;c (" 2 ) is a quantity going to 0 as " 2 when " ! 0 in the norm k:k ;;d at xed ; c. We deduce that Id + L(:

) + (1 ¡ ) VL 0 : V c ¡1 ( d ? (d F c (:/V ))) (( c+";d ¡ c;d )) = L(:) + (1 ¡ ) VL 0 : V c ¡1 ¡" d ? (¡i@ x2 V ) ¡ i" @ x2 c+";d + (1 ¡ )V@ x2 c+";d V + L(:) + (1 ¡ ) VL 0 : V c ¡1 (O k:k;;d ;c (" 2 ));
and we have shown that Lemma 2.2.3. For 0 < < 1, there exists c 0 () > 0 such that, for 0 < c < c 0 (),

¡ Id + ¡ L(:) + (1 ¡ ) VL 0 ¡ : V c ¡1 ¡ d ? ¡ 1 V d F c (:/V ) is
@ x2 c+";d + (1 ¡ )V@ x2 c+";d V ! @ x2 c;d + (1 ¡ )V@ x2 c;d V in E ~~; ( 
d 7 ! c;d 2 C 1 1 2c ; 2 c \ d ~¡ 2 ; d ~+ 2 ; E ~;;d~ :
We recall that > 0 is dened at the beginning of this subsection.

Proof. We x 0 < c < c 0 (). We dene, for d 2 1 2c ;

2 c \ i d ~¡ 2 ; d ~+ 2 h
, the function

H d : 7 ! (L(:) + (1 ¡ ) VL 0 (:/V )) d ¡1 ( d ? (F d (/V ))) from E ~;;d ~to E ~;;d ~, so that H(; c; d) = H d () + :
We took the same convention as in the proof of Lemma 2.2.2: we added a subscript in d in the operators to describe at which values of d this operator is taken.

Step 1. Dierentiability of H d with respect to d.

To apply the implicit function theorem, we have to check that H(; c; d) (or, equivalently H d ()) is dierentiable with respect to d, and that @ d H(; c; d) 2 E ~;;d~. By denition of the operator (L(:) + (1 ¡ ) VL 0 (:/V )) ¡1 , we have, in the distribution sense,

L(H d+" ()) + (1 ¡ ) VL 0 H d+" () V d+" + d+" ? (F d+" (/V d+" )) = 0 and L(H d ()) + (1 ¡ ) VL 0 H d () V d + d ? (F d (/V d )) = 0:
From Lemma 2.1.7, we have, for any

= V d 2 E ~;;d~t hat L(:) + (1 ¡ ) VL 0 : V d () = L d () ¡ (1 ¡ d )(E ¡ ic@ x2 V ) d ;
and with the denition of L d (in Lemma 2.1.7), we check that, for any 2 E ~;;d~, in the distribution sense,

L(:) + (1 ¡ ) VL 0 : V d+" ¡ L(:) + (1 ¡ ) VL 0 : V d () = (jV d+" j 2 ¡ jV d j 2 ) + 2Re(V d+" )V d+" ¡ 2Re(V d )V d ¡ (1 ¡ d+" )(E ¡ ic@ x 2 V ) d+" + (1 ¡ d )(E ¡ ic@ x 2 V ) d :
We therefore compute that, in the distribution sense,

L(:) + (1 ¡ ) VL 0 : V d (H d+" () ¡ H d ()) = ¡((jV d+" j 2 ¡ jV d j 2 )H d+" () + 2Re(V d+" H d+" ())V d+" ¡ 2Re(V d H d+" ())V d ) + ((1 ¡ d+" )(E ¡ ic@ x2 V ) d+" ¡ (1 ¡ d )(E ¡ ic@ x2 V ) d )H d+" () ¡ ( d+" ? (F d+" (/V d+" )) ¡ d ? (F d (/V d ))): Since @ d 2 V = @ x1 2 V 1 V ¡1 + @ x1 2 V ¡1 V 1 ¡ 2@ x1 V 1 @ x1 V ¡1 ;
with Lemmas 2.1.1, 2.1.6 and equation (2.1.3), we check easily that

jV d+" j 2 ¡ jV d j 2 = "@ d (jV j 2 ) + O "!0 c;d (" 2 ) (1 + r ~)3 and r(jV d+" j 2 ) ¡ r(jV d j 2 ) = "@ d (rjV j 2 ) + O "!0 c;d (" 2 ) (1 + r ~)3 : It implies in particular that (jV d+" j 2 ¡ jV d j 2 )H d+" () 2 E ~~;();d ~, with k(jV d+" j 2 ¡ jV d j 2 )H d+" ()k ~~;();d~! 0
when " ! 0. We check similarly

2Re(V d+" H d+" ())V d+" ¡ 2Re(V d H d+" ())V d = "(2Re(@ d V H d+" ())V d + 2Re(V d H d+" ())@ d V d ) + O k:k ~~;();d c;d (" 2 );
and that 2Re(

@ d V H d+" ())V d + 2Re(V d H d+" ())@V d 2 E ~~; ();d ~.
We continue, still with Lemmas 2.1.1, 2.1.6 and equation (2.1.3), we infer

((1 ¡ d+" )(E ¡ ic@ x2 V ) d+" ¡ (1 ¡ d )(E ¡ ic@ x2 V ) d )H d+" () = "@ d ((1 ¡ d )(E ¡ ic@ x2 V ) d )H d+" () + O k:k ~~;();d c;d (" 2 )
and

@ d ((1 ¡ d )(E ¡ ic@ x2 V ) d )H d+" () 2 E ~~;();d~.
Finally, we recall that

F d ( ) = (E ¡ ic@ x 2 V ) d + V d (1 ¡ )(¡r :r + jV j 2 S( )) + R d ( );
and we check similarly that

d+" ? (F d+" (/V d+" )) ¡ d ? (F d (/V d )) = "@ d ( d ? (F d (/V d ))) + O k:k ~~; ();d c;d (" 2 ):
We have

@ d ( d ? (F d (/V d ))) = (@ d d ? )(F d (/V d )) + d ? (@ d (F d (/V d )));
and since (@ d d ? 

)(F d ( / V )) is compactly supported, (@ d d ? )(F d ( / V ))
H d+" () ! H d () in E ~;;d~w hen " ! 0. Now, taking the equation L(:) + (1 ¡ ) VL 0 : V d (H d+" () ¡ H d ()) = ¡((jV d+" j 2 ¡ jV d j 2 )H d+" () + 2Re(V d+" H d+" ())V d+" ¡ 2Re(V d H d+" ())V d ) + ((1 ¡ d+" )(E ¡ ic@ x 2 V ) d+" ¡ (1 ¡ d )(E ¡ ic@ x 2 V ) d )H d+" () ¡ ( d+" ? (F d+" (/V d+" )) ¡ d ? (F d (/V d )))
and dividing it by ", and then taking " ! 0, we check that Step 2. Proof of

d 7 ! H d () is a C 1 function in E ~;;d ~, with @ d H(; c; d) = @ d H d () = L(:) + (1 ¡ ) VL 0 : V ¡1 (G(d; )); with G(d; ) := @ d (jV j 2 )H d () + 2Re(@ d V H d ())V d + 2Re(V d H d ())@ d V d + @ d ((1 ¡ d )(E ¡ ic@ x2 V ) d )H d () ¡ @ d ( d ? (F d (/V d ))):
@d(Fd( /Vd)) V ; ();d 6 K()c 1¡ () + K k k ;;d .
By the equivalence of the and ~norms, these estimates imply that @ d (F d ( / V d )) 2 E ~~; ();d~. We suppose from now on that k k ;;d 6 1. From Lemma 2.1.7, we have

F d V d = (E ¡ ic@ x2 V ) d + R d V d + V d (1 ¡ d ) ¡r V d :r V d + jV d j 2 S V d :
It is easy to check that at xed ; c,

@ d R d Vd V ;();d 6 K()c 1¡() + K k k ;;d ;
since it is localized near the vortices. For the nonlinear part, we have

@ d V (1 ¡ ) ¡r V :r V + jV j 2 S V V = @ d V V (1 ¡ )(¡r :r + jV j 2 S( ))
¡ @ d (¡r :r + jV j 2 S( ))

+ (1 ¡ ) ¡2r :@ d r V d + (1 ¡ )2Re(V @ d V )S( ) + (1 ¡ )jV j 2 @ d S V d :
For the rst line, from Lemma 2.1.6, k k ;;d 6 1 and the denition of k:k ;;d , we have

@ d V V (1 ¡ )(¡r :r + jV j 2 S( )) 6 K k k ;;d 2 (1 + r ~)3 6 K k k ;;d (1 + r ~)3 and r @ d V V (1 ¡ )(¡r :r + jV j 2 S( )) 6 K k k ;;d 2 (1 + r ~)3 6 K k k ;;d (1 + r ~)3 ;
which is enough the estimate. Similarly, since @ d is compactly supported, we have j@ d (¡r :r + jV j 2 S( ))j + jr(@ d (¡r :r + jV j 2 S( )))j 6

K k k ;;d 2 (1 + r ~)3 6 K k k ;;d (1 + r ~)3 :
Now, we develop

@ d r V = ¡ @ d V r V 2 ¡ r@ d V V 2 + @ d V rV V 3 ;
and we check, with Lemma 2.1.6, that

(1 ¡ ) ¡2r :@ d r V d 6 K k k ;;d 2 (1 + r ~)3 6 K k k ;;d (1 + r ~)3 ; as well as r (1 ¡ ) ¡2r :@ d r V d 6 K k k ;;d 2 (1 + r ~)3 6 K k k ;;d (1 + r ~)3 :
Since jRe(V @ d V )j 6

K

(1 + r ~)3 from Lemma 2.1.6 and jS( )j 6 K jRe( )j (since k k ;;d 6 1), we have similarly

j(1 ¡ )2Re(V @ d V )S( )j 6 K k k ;;d (1 + r ~)3 ;
and nally, since

@ d S V d = ¡2Re @ d V V 2 (e 2Re( ) ¡ 1)
is real-valued, we check that

@ d S V d 6 K k k ;;d 2 (1 + r ~)2+2 6 K k k ;;d (1 + r ~)1+() and r@ d S V d 6 K k k ;;d 2 (1 + r ~)3+2 6 K k k ;;d (1 + r ~)2+() :
and this is enough for the estimate. Finally, we will show that for any 0 < < 1,

@ d (E ¡ ic@ x2 V ) V ;;d 6 K()c 1¡ ;
which would conclude the proof of this step (taking () instead of ).

Let us show rst that

j@ d E j 6 Kc 1¡ (1 + r ~)2+ : (2.2.4)
We have from (2.1.2) that

E = ¡2rV 1 :rV ¡1 + (1 ¡ jV 1 j 2 )(1 ¡ jV ¡1 j 2 ) V 1 V ¡1 ; hence @ d E = 2r@ x 1 V 1 :rV ¡1 ¡ 2rV 1 :r@ x 1 V ¡1 + @ d ((1 ¡ jV 1 j 2 )(1 ¡ jV ¡1 j 2 )V 1 V ¡1 ):
With Lemmas 2.1.1 and 2.1.2, we easily check that

jr@ x1 V 1 :rV ¡1 j 6 K (1 + r 1 ) 2 (1 + r ¡1 )
;

jrV 1 :r@ x1 V ¡1 j 6 K (1 + r 1 )(1 + r ¡1 ) 2 and j@ d ((1 ¡ jV 1 j 2 )(1 ¡ jV ¡1 j 2 )V 1 V ¡1 )j 6 K (1 + r 1 ) 3 (1 + r ¡1 ) 2 + K (1 + r 1 ) 2 (1 + r ¡1 ) 3 :
In the right half-plane, where r 1 6 r ¡1 and r ¡1 > d, we use

1 (1 + r ¡1 ) 1¡ 6 Kc 1¡ and 1 (1 + r 1 ) + 1 (1 + r ¡1 ) 6 2 (1 + r ~)
for > 0 on the three previous estimates to show that

j@ d E j 6 Kc 1¡ (1 + r ~)2+
in the right half-plane. Similarly, the result holds in the left half-plane, and this proves (2.2.4). With similar computations, we can estimate r @dE V and show that

@ d E V ;;d 6 K()c 1¡ : Let us now prove that @ d (ic@ x 2 V ) V ;;d 6 K()c 1¡ : (2.2.5)
We show easily that

kic@ x 2 @ d V k C 1 ({r ~63}) 6 Kc 6 Kc 1¡ ; and since @ x2 @ d V = ¡@ x1x2 V 1 V ¡1 + @ x1x2 V ¡1 V 1 ¡ @ x1 V 1 @ x2 V ¡1 + @ x1 V ¡1 @ x2 V 1 , by Lemma 2.1.2 we have j@ x2 @ d V j 6 K (1 + r ~)2 ; jr@ x2 @ d V j 6 K (1 + r ~)3 therefore r ~1+ Re ic@ x2 @ d V V L 1 ({r ~>2}) + r ~2+ r ic@ x2 @ d V V L 1 ({r ~>2}) 6 Kc 6 Kc 1¡ :
This proves that (2.2.5) is true for the real part contribution. We are left with the proof of c r

~2+ Im i@ x2 @ d V V L 1 ({r ~>2}) 6 K()c 1¡ ;
which is more delicate and relies on some cancelations. We compute

Im i @ x2 @ d V V = ¡Re ¡ @ x1x2 V 1 V 1 + @ x1x2 V ¡1 V ¡1 ¡ Re ¡ @ x1 V 1 V 1 @ x2 V ¡1 V ¡1 + @ x1 V ¡1 V ¡1 @ x2 V 1 V ¡1 :
From Lemma 2.1.2, we have

@ x1 V 1 V 1 = ¡ i r 1 sin( 1 ) + O r 1 !1 1 r 1 3
and the part in O r1!1

1 r 1 3
can be estimated as in the proof of Lemma 2.1.22 for

ic@x 2 V V ;;d .
In particular, we will just compute the terms of order less than

1 r 1 3 or 1 r ¡1 3 . From Lemma 2.1.2, we have also @ x2 V 1 V 1 = ¡ i r 1 cos( 1 ) + O r 1 !1 1 r 1 3 and Re @ x 1 x 2 V 1 V 1 = cos( 1 )sin( 1 ) r 1 2 + O r1!1 1 r 1 3 :
These two estimates hold by changing i! ¡i, 1 ! ¡1 , r 1 ! r ¡1 and V 1 ! V ¡1 . We then deduce that

Im i @ x2 @ d V V = ¡ ¡ cos( 1 )sin( 1 ) r 1 2 + cos( ¡1 )sin( ¡1 ) r ¡1 2 ! ¡ ¡ sin( 1 ) r 1 cos( ¡1 ) r ¡1 + sin( ¡1 ) r ¡1 cos( 1 ) r 1 + O r 1 !1 1 r 1 3 + O r ¡1 !1 1 r ¡1 3 ! : (2.2.6)
We start with the second term of (2.2.6) which is the easiest one. We use for = 1 that cos

( ) = x 1 ¡ d r and sin( ) = x 2 r to compute sin( 1 )cos( ¡1 ) = (x 1 + d)x 2 r 1 r ¡1 and sin( ¡1 )cos( 1 ) = (x 1 ¡ d)x 2 r 1 r ¡1 ; therefore ¡ sin( 1 ) r 1 cos( ¡1 ) r ¡1 + sin( ¡1 ) r ¡1 cos( 1 ) r 1 = 2dx 2 (r 1 r ¡1 ) 2 :
We have, in the right half-plane, where r 1 6 r ¡1 and r

¡1 > d > K c , c r ~2+ 2dx 2 (r 1 r ¡1 ) 2 = 2 cd r ~2+ r 1 2 r ¡1 x 2 r ¡1 1 r ¡1 1¡ 6 Kc 1¡ since r ~2+ r 1 2 r ¡1
6 1, jx2j r¡1 6 1 and cd 6 K. Similarly, we have the same estimate in the left half-plane. Now for the rst term of (2.2.6), we have, for = 1,

sin( )cos( ) = (x 1 ¡ d)x 2 r 2 :
Therefore,

¡ cos( 1 )sin( 1 ) r 1 2 + cos( ¡1 )sin( ¡1 ) r ¡1 2 = x 2 (r 1 r ¡1 ) 4 (r 1 4 (x 1 + d) ¡ r ¡1 4 (x 1 ¡ d)):
We compute, for = 1,

r 4 = ((x 1 ¡ d) 2 + x 2 2 ) 2 = (x 1 ¡ d) 4 + 2(x 1 ¡ d) 2 x 2 2 + x 2 4 ; hence ¡ cos( 1 )sin( 1 ) r 1 2 + cos( ¡1 )sin( ¡1 ) r ¡1 2 = x 2 (r 1 r ¡1 ) 4 (x 1 ¡ d)(x 1 + d)((x 1 ¡ d) 3 ¡ (x 1 + d) 3 + 2x 2 2 ((x 1 ¡ d) ¡ (x 1 + d))) + x 2 (r 1 r ¡1 ) 4 x 2 4 (x 1 + d ¡ (x 1 ¡ d)):
We simplify this equation to

¡ cos( 1 )sin( 1 ) r 1 2 + cos( ¡1 )sin( ¡1 ) r ¡1 2 = ¡x 2 (x 1 ¡ d)(x 1 + d) (r 1 r ¡1 ) 4 (2d 3 + 6x 1 2 d ¡ 4x 2 2 d) + 2x 2 5 d (r 1 r ¡1 ) 4 : (2.2.7)
We now estimate separately each contribution of (2.2.7). We have, in the right half-plane, where

r 1 6 r ¡1 and r ¡1 > d > K c , c r ~2+ 2x 2 5 d (r 1 r ¡1 ) 4 = 2 cd x 2 5 r 1 2 r ¡1 3 r ~2+ r 1 2 r ¡1 1 r ¡1 1¡ 6 Kc 1¡
since jx 2 j 6 r 1 ; jx 2 j 6 r ¡1 and

r ~2+ r 1 2 r ¡1 6 1. Still in the right half-plane, c r ~2+ x 2 (x 1 ¡ d)(x 1 + d) (r 1 r ¡1 ) 4 2d 3 = 2 cd d 2 r ¡1 2 (x 1 ¡ d) r 1 (x 1 + d) r ¡1 x 2 r 1 r ~2+ r 1 2 r ¡1 1 r ¡1 1¡ 6 Kc 1¡
since d 6 Kr ¡1 , jx 1 ¡ dj 6 r 1 and jx 1 + dj 6 r ¡1 . For the next term, we write

x 1 2 = x 1 2 ¡ d 2 + d 2 in x 2 (x 1 ¡ d)(x 1 + d) (r 1 r ¡1 ) 4 6x 1 2 d = x 2 (x 1 ¡ d)(x 1 + d) (r 1 r ¡1 ) 4 6(x 1 2 ¡ d 2 )d + x 2 (x 1 ¡ d)(x 1 + d) (r 1 r ¡1 ) 4 6d 3 :
In the right half-plane, using

x 1 2 ¡ d 2 = (x 1 ¡ d)(x 1 + d), c r ~2+ x 2 (x 1 ¡ d)(x 1 + d) (r 1 r ¡1 ) 4 6(x 1 2 ¡ d 2 )d = 6 cd (x 1 ¡ d) 2 r 1 2 (x 1 + d) 2 r ¡1 2 x 2 r ¡1 r ~2+ r 1 2 r ¡1 1 r ¡1 1¡ 6 Kc 1¡
using previous estimates. We continue in the right half-plane with

c r ~2+ x 2 (x 1 ¡ d)(x 1 + d) (r 1 r ¡1 ) 4 6d 3 = 6 cd (x 1 ¡ d) r 1 (x 1 + d) r ¡1 d 2 r ¡1 2 x 2 r 1 r ~2+ r 1 2 r ¡1 1 r ¡1 1¡ 6 Kc 1¡ and c r ~2+ x 2 (x 1 ¡ d)(x 1 + d) (r 1 r ¡1 ) 4 4x 2 2 d = 4 cd (x 1 ¡ d) r 1 (x 1 + d) r ¡1 x 2 3 r 1 r ¡1 2 r ~2+ r 1 2 r ¡1 1 r ¡1 1¡ 6 Kc 1¡
using previous estimates. Similarly, all these estimates hold in the left half-plane, which ends the proof of

@ d (ic@ x2 V ) V ;;d c 6 Kc 1¡ :
We check easily by standard elliptic regularity arguments that @ c c;d 2 C 1 (R 2 ; C). Furthermore, c 7 ! c;d is C 1 with values in E ;;d , therefore @ c r c;d is well dened (in C 0 (R 2 ; C)). Let us show that it is equal to r@ c c;d . For ' 2 C c 1 (R 2 ; C), we have, by derivation under an integral, that Z 

R 2 @ c r c;d ' = @ c Z R 2 r c;d ' = ¡@ c Z R 2 c;d r' = ¡ Z R 2 @ c c;d r' = Z R 2
(:) + (1 ¡ ) VL 0 : V ¡1 ( d ? (d F (:/V ))) (@ c c ) = d ? (@ c F ( c;d /V )) ¡ i@ x2 c;d + (1 ¡ )V@ x2 c;d V :
Since (c; d) 7 ! c;d is continuous from to E ;;d , and that the dependence on (c; d) of the other terms of the right-hand side is explicit, we check that d ? 

(@ c F ( c;d / V )) ¡ i@ x 2 c;d + (1 ¡ )V@ x2 c;d V is
x = (x 1 ; x 2 ) 2 R 2 , @ d c;d (x 1 ; x 2 ) = @ d c;d c (¡x 1 ; x 2 ) = @ d c;d (x 1 ; ¡x 2 ): Proof. From subsection 2.1.3, 8x = (x 1 ; x 2 ) 2 R 2 ; c;d (x 1 ; x 2 ) = c;d (x 1 ; ¡x 2 ) = c;d (¡x 1 ; x 2 )
and V enjoys the same symmetries, therefore for all d 2 R such that

1 2c < d < 2 c , c;d (x 1 ; x 2 ) = c;d (¡x 1 ; x 2 ) = c;d (x 1 ; ¡x 2 ): Since @ d c;d = lim "!0 c;d+" ¡ c;d " ;
these symmetries also hold for @ d c;d .

End of the construction and properties of Q c

A consequence of equation (2.1.41) and Proposition 2.1.26 is that, for 0 < < 1, there exists c 0 () > 0 such that, for 0 < c < c 0 (),

L( c;d ) + (1 ¡ )VL 0 ( c;d ) + F ( c;d ) = (c; d)Z d with (c; d) Z R 2 j@ d V j 2 = 1 d ¡ c + O c!0 (c 2¡ ):
Following the proof of Proposition 

d c = 1 c + O c!0 (c ¡ );
for c > 0 small enough. Then, for the function c;dc = V c;dc with k c;dc k ;;dc 6 K(, 0 )c 1¡ 0 , we have

L( c;dc ) + (1 ¡ )VL 0 ( c;dc ) + F ( c;dc ) = 0;
meaning that if we dene

Q c := V (1 + c;dc ) + (1 ¡ )Ve c;dc ; then Q c solves (TW c ).

Behaviour at innity and energy estimation Lemma 2.2.5. The function

Q c satises Q c (x) ! 1 when jxj ! 1.
Proof. From k c;dc k ;;dc 6 K(; 0 )c 1¡ 0 we have c;dc (x) ! 0 when jxj ! 1. Furthermore

j1 ¡ V j 2 6 C(dc) 1 + r 2 by Lemma 2.1.3 and Q c = Ve c;dc for large values of jxj, hence Q c (x) ! 1 when jxj ! 1.
In the statement of Theorem 1.3.1, we have set Q c = V + ¡ c;dc , we therefore dene Now, for 0 < < 0 < 1, we have

¡ c;d c := V c;d c + (1 ¡ )V (e c;
1 + 0 2 > 1 + 2 , hence j c;d c j 6 K(; 0 ) c 1¡ 1+ 0 2 (1 + r ~)1+ 2 and jr c;d c j 6 K(; 0 ) c 1¡ 1+ 0 2 (1 + r ~)1+ 1+ 2 ; therefore j c;d c j 2 6 K(; 0 ) c 1¡ 0 (1 + r ~)1+ and jr c;d c j 2 6 K(; 0 ) c 1¡ 0 (1 + r ~)2+ :
Thus, with jr 2 c;dc j 6 K(; 0 )

c 1¡ 0
(1 + r ~)1+ , we check that, for any 0

< < 0 < 1, (1 ¡ ) c;dc 2 X n=2 +1 c;dc n¡2 n! ;;d c 6 K(; 0 )c 1¡ 0 :
Combining this result with k c;d c k ;;d c 6 K(; 0 )c 1¡ 0 , we deduce that

¡ c;dc V ;;d c 6 K(; 0 )c 1¡ 0 : (2.2.9)
In particular, we have, for any 0 < < 0 < 1, 0 < c < c 0 (; 0 ), that

j¡ c;d c j 6 K(; 0 )c 1¡ 0 (1 + r ~) ; (2.2.10) Re ¡ c;d c V 6 K(; 0 )c 1¡ 0 (1 + r ~)1+ ; (2.2.11)
and, if r ~> 2,

jr¡ c;dc j 6 r ¡ c;d c V + rV V ¡ c;d c V ;
therefore, using jrV j 6 

K (1 + r ~) from Lemma 2.
k¡ c;dc k L p (R 2 ) + kr¡ c;dc k L p¡1 (R 2 ) = o c!0 (1):
Proof. If p = +1, using (2.2.10) and (2.2.12), we infer

k¡ c;dc k L 1 (R 2 ) 6 K()c 1¡ ; kr¡ c;dc k L 1 (R 2 ) 6 K()c 1¡ ; hence the result holds. If 2 < p < +1 then, by (2.2.10), Z R 2 j¡ c;d c j p 6 Z R 2 k¡ c;dc k ;;dc p (1 + r ~)p dx 6 Z R 2 K(; 0 ) c (1¡ 0 )p (1 + r ~)p dx:
Taking 0 < < 0 < 1 such that p > 2 then gives the result. Furthermore, by (2.2.12), Z

R 2 jr¡ c;dc j p 6 Z R 2 K(; 0 )c (1¡ 0 )p (1 + r ~)p( +1) dx;
so for p > 1 we can take 0 < < 0 < 1 such that p( + 1) > 2 and we have the result.

Remark that we can have better estimates on ¡ c;dc , in particular if we look at real and imaginary parts of

¡c;d c V . For instance it is possible to show that Re ¡ c;dc V L p ({r ~>1}) = o c!0 (1)
for p > 1 instead of p > 2. This estimate does not hold for r ~small since it is not clear that c;dc is bounded there (but c;dc is). This is due to the fact that the zeros of Q c are not exactly those of V .

Lemma 2.2.7. The travelling wave Q c has nite energy, that is:

E(Q c ) = 1 2 Z R 2 jrQ c j 2 + 1 4 Z R 2
(1 ¡ jQ c j 2 ) 2 < +1: 

Proof. Far from the vortices, rQ c = r(V 1 V ¡1 ) e c;dc + r c;dc V 1 V ¡1 e c;
jr(V 1 V ¡1 )j 6 K(c) r ~2 ;
hence jrQ c j 2 6 K(c; ) r ~2+2 and is therefore integrable. On the other hand,

j1 ¡ jQ c j 2 j = |1 ¡ jV 1 V ¡1 j 2 e 2Re( c;dc) | 6 K(1 ¡ jV 1 V ¡1 j 2 + jV 1 V ¡1 j 2 jRe( c;d c )j);
and we have

1 ¡ jV 1 V ¡1 j 2 = O 1 r ~2 and Re( c;d c ) = O 1 r ~1+ ; therefore (1 ¡ jQ c j 2 ) 2 = O 1 r ~2+2
and is integrable.

At this point, we have nish the proof of the construction of Q c . In the next two subsection, we add some estimates on Q c that will be usefull for the dierentiability of the branch, and others that are interesting in themselves.

A set of estimations on Q c

The next Lemma gives additional estimates on Q c which are more precise but more technical than the ones in Theorem 1.3.1. Lemma 2.2.8. For any 0 < < 0 < 1, there exists c 0 (; 0 ); K(; 0 ) > 0 such that for 0 < c < c 0 (; 0 ) we have

k c;dc k ;;dc 6 K(; 0 )c 1¡ 0 : (2.2.13)
Furthermore, for any 0 < < 1, there exist c 0 (); K() > 0 such that for 0 < c < c 0 () we have

kV c;d c k C 1 (r ~63) + kr ~Im( c;d c )k L 1 (r ~>2) + kr ~1+ Re( c;d c )k L 1 (r ~>2) + kr ~1+ Im(r c;d c )k L 1 (r ~>2) + kr ~2+ Re(r c;d c )k L 1 (r ~>2) 6 K()c 1¡ ;
(2.2.14)

j1 ¡ jQ c jj 6 K() (1 + r ~)1+ ;
(2.2.15)

jQ c ¡ V j 6 K()c 1¡ (1 + r ~) ; (2.2.16
)

jjQ c j 2 ¡ jV j 2 j 6 K()c 1¡ (1 + r ~)1+ ; (2.2.17) jRe(rQ c Q c )j 6 K() (1 + r ~)1+ ; (2.2.18) jIm(rQ c Q c )j 6 K 1 + r ~(2.2.19)
Equation (2.2.14) is a slight improvements of (2.2.13). It is, except for the second derivatives, the estimate in the case 0 = .

Proof. The rst estimate comes from the construction of the solution.

We now take a cuto function with value 1 in r ~> 2 and 0 in r ~6 1 , we write ~= c;dc and h ~= h, where h contains the nonlinear and source terms. We recall from (2.1.29) that ~= ~1 + i ~2 and h ~= h ~1 + ih ~2 satisfy the system

8 > < > : ~1 ¡ 2 ~1 = ¡h ~1 ¡ 2Re rV V :r ~¡ 2(1 ¡ jV j 2 ) ~1 + c@ x 2 ~2 + Loc 1 ( ) ~2 = ¡h ~2 ¡ 2Im rV V :r ~+ Loc 2 ( ) ¡ c@ x2 ~1;
where Loc 1 ( ); Loc 2 ( ) are localized terms. From Lemmas 2.1.22 to 2.1.24, we check that for any 0 < < 1, kh ~k;;d 6 K()c 1¡ : Furthermore, as in the proof of Proposition 2.1.17, we check that (using k ~k;/2;d 6 K()c 1¡ ) rV V :r ~¡ 2(1 ¡ jV j 2 )Re( ~) + Loc( )

;;d 6 K()c 1¡ :
Finally, with (2.2.13), for 0 =

1 + 2 > , kc@ x2 ~k;;d 6 K() c k ~k;;d 6 K()c 1+1¡ 1+ 2 6 K()c 1¡ :
With Lemma 2.1.10 for = 1 + > 0, we deduce from the rst equation of the system that

(1 + r ~)1+ ~1 L 1 (R 2 ) 6 K() (1 + r ~)1+ ¡h ~1 ¡ 2Re rV V :r ~¡ 2(1 ¡ jV j 2 ) ~1 + c@ x 2 ~2 + Loc 1 ( ) L 1 (R 2 ) 6 K()c 1¡ ;
and, by dierentiating the equation, by Lemma 2.1.10 for = 2 + > 0

(1 + r ~)2+ r ~1 L 1 (R 2 ) 6 K() (1 + r ~)2+ r ¡h ~1 ¡ 2Re rV V :r ~¡ 2(1 ¡ jV j 2 ) ~1 + c@ x 2 ~2 + Loc 1 ( ) L 1 (R 2 ) 6 K()c 1¡ :
Now, using Lemma 2.1.8 and

(1 + r ~)2+ r ~1 L 1 (R 2 ) 6 K()c 1¡ , we infer that (1 + r ~) ~2 L 1 (R 2 ) + (1 + r ~)1+ r ~2 L 1 (R 2 ) 6 K() (1 + r ~)2+ ¡h ~2 ¡ 2Im rV V :r ~+ Loc 2 ( ) ¡ c@ x 2 ~1 L 1 (R 2 ) 6 K()c 1¡ ;
which concludes the proof of (2.2.14).

The estimate (2.2.15) is clear if r ~6 3. If r ~> 3, then Q c = V e c;dc and, for c small enough (depending on ), jRe( c;dc )j 6 1, thus j1 ¡ jQ c jj = j1 ¡ jV j ¡ jV j(e Re( c;dc) ¡ 1)j 6 j1 ¡ jV jj + K jRe( c;dc )j We cannot easily compute @ d c;d|d=dc because of issues locally around the vortices (due to the fact that c;d is unbounded near r ~= 0, and changing d change the position of the vortices). We shall prove here instead an estimate on @ d c;d|d=dc , as well as an estimate on @ c c;d|d=dc . Lemma 2.2.9. For any 0 < < 0 < 1; c 2 R such that

6 K (1 + r ~)2 + K()c 1¡ (1 + r ~)1+ 6 K() (1 + r ~)1+
jQ c ¡ V j = jV j je c;dc ¡ 1j 6 C j c;dc j 6 K()c 1¡ (1 + r ~) and if r ~6 3, jQ c ¡ V j 6 C k c;

Estimations on derivatives of

1 2d < c < 2 d and 0 < c < c 0 (; 0 ), we have k@ c c;d|d=d c k ;;d 6 K(; 0 )c ¡ 0 and @ d c;d V |d=dc ;;dc 6 K(; 0 )c 1¡ 0 ;
with K(; 0 ) > 0 depending only on ; 0 .

Proof. From the proof (and with the notations) of Lemma 2.2.2, Id + L(:

) + (1 ¡ ) VL 0 : V c ¡1 ( d ? (d F c (:/V ))) (( c+";d ¡ c;d )) = L(:) + (1 ¡ ) VL 0 : V c ¡1 ¡" d ? (¡i@ x2 V ) ¡ i" @ x2 c+";d + (1 ¡ )V@ x2 c+";d V + L(:) + (1 ¡ ) VL 0 : V c ¡1 (O k:k;;d ;c (" 2 ));
thus, taking " ! 0, we deduce that (with Lemma 2.2.2)

Id + L(:) + (1 ¡ ) VL 0 : V ¡1 ( d ? (d F c (:/V ))) (@ c c;d ) = L(:) + (1 ¡ ) VL 0 : V ¡1 d ? (@ c F ( c;d /V )) ¡ i@ x2 c;d + (1 ¡ )V@ x2 c;d V :
Since at d = d c , (c; d c ) = 0, we have

d ? (@ c F ( c;d /V )) ¡ i@ x 2 c;d + (1 ¡ )V@ x 2 c;d V |d=dc = ¡i@ x 2 Q c ;
hence, with Proposition 2.1.17,

k@ c c;d|d=d c k ;;d 6 K k@ c c;d|d=d c k ~;;d 6 K(; 0 ) i@ x2 Q c V ~~; 0 ;d~:
We will conclude by showing that for any 0

< < 0 < 1, i@ x2 Q c V ~~;;d ~6 K(; 0 )c ¡ 0 : By Lemma 2.1.22, we have i@ x 2 V V ~~;;d~6 K()c ¡ ;
and using k c;d c k ;;d c 6 K(; 0 )c 1¡ 0 with Lemma 2.1.3, we check easily that, for c small enough,

i@ x2 Q c V ~~;;d~6 K(; 0 )c ¡ 0 :
We now focus on the estimation of @ d c;d|d=dc . At the end of step 1 of the proof of Lemma 2.2.3, we have shown that

@ d c;d|d=d c = ¡d H ¡1 (@ d H( c;d c ; c; d c )):
From Lemma 2.2.1, we have that, at d = d c ; = c;dc , the operator d H ¡1 is invertible from E ~;;dt o E ~;;d ~, with an operator norm with size 1 + o c!0 (1). We therefore only have to check that k@ d H( c;dc ; c; d c )k ;;dc 6 K(; 0 )c 1¡ 0 :

Since @ d H( c;dc ; c; d c ) = ¡ L(:) + (1 ¡ ) V L 0 ¡ : V ¡1 (G(d c ; c;dc ))
, By Proposition 2.1.17 (from

E ~~; 0 ;d ~to E ~;;d ~), it will be a consequence of G(d c ; c;dc ) V ; 0 ;d 6 K(; 0 )c 1¡ 0 for any 0 < < 0 < 1.
We have, since

H d c ( c;d c ) = c;d c , that G(d c ; c;dc ) V = @ d (jV j 2 ) c;dc V + 2Re(@ d V c;d c ) + 2Re(V c;d c ) @ d V V + @ d ((1 ¡ )(E ¡ ic@ x 2 V )) |d=d c c;dc V ¡ 1 V @ d ( d ? (F d (/V ))) |d=d c :
Since @ d (jV j 2 ) = 2Re(@ d VV ), we check, with Lemma 2.1.6 that

@ d (jV j 2 ) c;d c V + 2Re(V c;dc ) @ d V V 6 K(; 0 )c 1¡ 0 (1 + r ~)2+ ; and jRe(@ d V c;dc )j 6 K(; 0 )c 1¡ 0 (1 + r ~)1+ ; as well as r @ d (jV j 2 ) c;dc V + 2Re(V c;dc ) @ d V V + Re(@ d V c;dc ) 6 K(; 0 )c 1¡ 0 (1 + r ~)2+ ;
and this estimate a real valued quantity. From step 2 of the proof of Lemma 2.2.3, we have

1 V @ d ((1 ¡ )(E ¡ ic@ x 2 V )) ;;d 6 K()c 1¡ ;
which is enough to show that

@ d ((1 ¡ )(E ¡ ic@ x2 V )) |d=dc c;dc V ;;d 6 K(; 0 )c 1¡ 0 :
Finally, in step 2 of the proof of Lemma 2.2.3, we have shown that (taking the estimate for

= c;d c ) 1 V @ d ( d ? (F d (/V ))) |d=d c ;;d 6 K(; 0 )c 1¡ 0 ;
which conclude the proof of this lemma.

Dierentiability of the branch c 7 ! Q c

The goal of this section is to prove that the constructed branch is C 1 , and to give the leading order term of @ c Q c as c ! 0. The result is the following one.

Proposition 2.3.1. For any +1 > p > 2, there exists c 0 (p) > 0 such that 

c 7 ! Q c ¡ 1 2 C 1 (]0; c 0 (p)[; X p ); with the estimate @ c Q c + 1 + o c!0 (1) c 2 @ d (V 1 (: ¡ de 1 ~)V ¡1 (: + de 1 ~)) |d=dc Xp = o c!0 1 c 2 : Proposition 2.3.
Q c = V 1 (: ¡ d c e 1 ~)V ¡1 (: + d c e 1 ~) + ¡ c;
dc is the solution of (TW c ) we constructed in section 2.2. In subsection 2.2.1 we showed that c;d is a C 1 function of both c and d. We also have computed estimates for the derivatives of c;d with respect to c and d in Lemma 2.2.9, that will be usefull here.

The goal is to show that d c is a C 1 function of c. We will do this by the implicit function theorem, but this requires a lot of computations. In particular, in Proposition 2.1.26, d c was choosen so that

hL( c;d ) ¡ (1 ¡ )(E ¡ ic@ x 2 V ) c;d + F ( c;d ); @ d V i = 0;
but we may equivalently dene it by the implicit equation

Z B(de 1 ;d " 0 )[B(¡de 1 ;d " 0 ) Re((L( c;d ) ¡ (1 ¡ )E c;d + F ( c;d ))@ d V ) = 0:
This is the same equation but the scalar product is not taken on the whole space but only on B(de

1 ~; d " 0 ) [ B(¡de 1 ~; d " 0
) for some 0 < " 0 < 1 (we will take " 0 = 13 / 24 but this value is purely technical, other values are possible). The only reason why we take it in the whole space in Lemma 2.1.26 was because of the boundary terms that will appear in the integration by parts when we write hL();

@ d V i = h; L(@ d V )i:
With the boundary terms on the boundary of B(de 1 ~; d " 0 ), " 0 > 0, we are far enough from the vortices to make them small enough for our estimations. Thanks to this we can separate what happens near the vortex V 1 from what happens near the vortex V ¡1 because now the integrals are in two well separated domain, one around each vortex. We use this in subsection 2.3.1. We need to dierentiate the equation with respect to d. If we write

Q c;d = V + ¡ c;d , then @ d Q c = @ d V + @ d (¡ c;d ).
The term @ d V is easy to compute and to understand: we just move both vortices in opposite direction. But @ d ¡ c;d is very dicult to understand, and our estimations on ¡ c;dc are not enough to compute easily what happens with sucient precision to control its contribution. We would rather write Q c;d under the form

Q c;d (x) = ¡ V 1 (x ¡ de 1 ~) + ¡ ~1(x ¡ de 1 ~) + ¡ V ¡1 (x + de 1 ~) + ¡ ~¡1 (x + de 1 ~) + Err where ¡ ~1(x ¡ de 1 ~) is centered near V 1
, is small and is here because of the existence of V ¡1 far away. Then the term we understand is

@ x 1 +d ¡ V 1 (x ¡ de 1 ~) + ¡ ~1(x ¡ de 1 ~)
which is what changes near the center of V 1 when we move only the other vortex. This can be computed more easily and that is what we do in subsection 2.3.3. This term is easy to compute only near the vortex V 1 , and that is one of the reasons we work only on B(de 1 ~; d " 0 ). The main contribution to the variation of the position of V ¡1 is as expected from the source term E ¡ ic@ x2 V . This is the computation of subsection 2.3.4.

Furthermore, most estimations boils down to what happen near each vortex, see for instance the contribution of E in step 5 of the proof of Proposition 2.1.26, where we separate the contribution far from both vortices and close to them. By integrating only on B(de 1 ~; d " 0 ) we reduce the number of estimations we need to do. Moreover, in such a ball the contribution of the vortex V ¡1 and its derivatives are easy to compute, see subsection 2.3.2. Subsection 2.3.5 gathers all the estimations needed to show that only the contribution from the source term is of leading order. Subsection 2.3.6 and 2.3.7 are easy computations using previous subsections to compute the rst order term of @ c Q c .

The main and most dicult part is subsection 2.3.3. We want to show that @ x1+d ¡ ¡ ~1(x ¡ de 1 ~) is much smaller than ¡ ~1(x ¡ de 1 ~), i.e. that the derivative with respect to x 1 + d gives us additional smallness in c. For this we do a proof by contradiction which follows closely what was done in the proof of Proposition 2.1.17.

We dene the following dierential operators:

@ y1 := @ x1 ¡ @ d ; @ z 1 := @ x 1 + @ d :
These notations follow the denitions of y 1 = x 1 ¡ d and z 1 = x 1 + d from (2.1.1). The derivative in d is taken at xed c. The function @ d c;d is the derivative of with respect to d at xed c and we shall use the notation @ d c;dc := @ d c;d|d=dc ; and similarly for @ d ¡ c;d c and @ d c;d c . The derivatives @ y 1 and @ z 1 behave naturally on function depending on x and d only through y or z, as shown in the following lemma. Lemma 2.3.2. For any F 2 C 1 (R 2 ; C); we have @ y1 (F(z)) = @ z1 (F(y)) = 0 and @ y1 (F(y)) = 2@ x1 F(y);

@ z 1 (F(z)) = 2@ x 1 F(z): Proof. We compute @ y1 (F(z)) = @ x1 (F(x 1 + d; x 2 )) ¡ @ d (F(x 1 + d; x 2 )) = @ x1 F(z) ¡ @ x1 F(z) = 0:
Similarly we have @ z1 (F(y)) = 0: Moreover,

@ y1 (F(y)) = @ x1 (F(x 1 ¡ d; x 2 )) ¡ @ d (F(x 1 ¡ d; x 2 )) = @ x1 F(y) + @ x1 F(y) = 2@ x1 F(y)
and similarly, @ z 1 (F(z)) = 2@ x 1 F(z).

We have an estimate on @ d c;d|d=d c , but it is not enough to show that d c is a C 1 function of c. The main idea of the proof is to compute an estimate on @ z 1 c;d c = @ x 1 c;d c + @ d c;d c near the vortex V 1 which is better than the ones on @ x 1 c;d c and @ d c;d c . In particular we will have @ z1 c;dc = o c!0 (c 1+ ) for some > 0 instead of o c!0 (c 1¡ ) for > 0. This estimate is done in Proposition 2.3.5. First, we compute a rst rough estimate on @ z1 c;d which is a corollary of Lemma 2.2.3.

Corollary 2.3.3. For a smooth cuto function with value 1 in

r ¡1 > 3 and 0 in r ¡1 6 2 , for 0 < < 0 < 1, there exist c 0 (; 0 ) > 0 such that, for 0 < c < c 0 (; 0 ), we have

V@ z 1 c;d |d=d c C 1 ({r ~63}) + r ~1+ Re ¡ @ z1 c;d |d=dc L 1 ({r ~>2}) + r ~2+ rRe ¡ @ z1 c;d |d=dc L 1 ({r ~>2}) + r ~ Im ¡ @ z 1 c;d |d=dc L 1 ({r ~>2}) + r ~1+ rIm ¡ @ z 1 c;d |d=dc L 1 ({r ~>2}) 6 K(; 0 )c 1¡ 0 : Proof. Remark that V 1 @ d c;d might not be bounded near de 1 ~, but V 1 @ z1 c;d is, since, by Lemma 2.3.2, @ z1 V 1 = 0 hence V 1 @ z1 c;d = @ z1 c;d = @ d c;d + @ x1 c;d ;
with @ d c;d bounded by Lemma 2.2.3. We take a cuto to avoid the fact that V ¡1 @ z1 c;d is not necessary bounded near ¡de 1 ~. In particular, with these remarks, we easily check, with Lemma 2.2.3, that V@ z1 c;d |d=dc C 1 ({r ~63}) 6 K(; 0 )c 1¡ 0 :

We now focus on the region r ~> 2 . From the denition of @ z1 , we have that @ z1 c;d|d=d c = @ d c;dc + @ x1 c;dc :

We compute 

@ d c;dc = @ d c;d c V + @ d V V c
j@ d V j 6 K (1 + r ~) and jr@ d V j 6 K (1 + r ~)2 ;
and together with

k c;d c k ;;d c 6 K(; 0 )c 1¡ 0 , we check that r ~1+ Re @ d V V c;d c L 1 ({r ~>2}) + r ~2+ rRe @ d V V c;d c L 1 ({r ~>2}) + r ~ Im @ d V V c;dc L 1 ({r ~>2}) + r ~1+ rIm @ d V V c;dc L 1 ({r ~>2}) 6 K(; 0 )c 1¡ 0 :
Finally, for the contribution of @ x1 c;dc , using k c;dc k ;;dc 6 K(; 0 )c 1¡ 0 , we show that, with some margin,

kr ~1+ Re(@ x1 c;dc )k L 1 ({r ~>2}) + kr ~2+ rRe(@ x1 c;dc )k L 1 ({r ~>2}) + kr ~ Im(@ x 1 c;d c )k L 1 ({r ~>2}) + kr ~1+ rIm(@ x 1 c;d c )k L 1 ({r ~>2}) 6 K(; 0 )c 1¡ 0 ;
which ends the proof of this corollary.

Recasting the implicit equation dening d c

At this point, we do not know if d c is uniquely dened for c > 0. We denote by d c a value dened by the implicit equation on d:

hTW c (Q c;d ); @ d V i = 0;
where

Q c;d := V + ¡ c;d ; with ¡ c;d = V c;d + (1 ¡ ) V (e c;d ¡ 1)
, which is a C 1 function of d and c in E ;;d thanks to subsection 2.2.1. Remark that d c is also dened by the implicit equation for 0 < " 0 < 1:

Z B(de 1 ;d " 0 )[B(¡de 1 ;d " 0 ) Re(@ d V TW c (Q c;d )) = 0;
that we will use instead because of the reasons explained at the begining of section 2.3. We can check easily that

@ d Q c;d ; @ c Q c;d 2 C 1 (R 2 )
(by looking at the equations they satisfy in the distribution sense and using standard elliptic regularity arguments), and furthermore, that d 7 ! @ d Q c;d and c 7 ! @ c Q c are continuous functions (on their domain of denition in C loc 1 (R 2 ) for instance). From now on, we take any 0 < " 0 < 1, but we will x its value later on. We want to dierentiate this quantity with respect to d and take the result at a value d c such that TW c (Q c;d c ) = 0 in R 2 . In particular, we have

@ d Z B(de1;d " 0 )[B(¡de1;d " 0 ) Re(@ d V TW c (Q c;d )) |d=dc = Z B(de 1 ;d " 0 )[B(¡de 1 ;d " 0 ) Re(@ d V@ d (TW c (Q c;d ))) |d=d c :
Now, by symmetry, we remark that Z

B(de1;d " 0 )[B(¡de1;d " 0 ) Re(@ d V@ d (TW c (Q c;d ))) = 2 Z B(de1;d " 0 ) Re(@ d V@ d (TW c (Q c;d ))):
We will use the two operators we have already dened:

@ y 1 = @ x 1 ¡ @ d and @ z 1 = @ x 1 + @ d :
Since TW c (Q c;dc ) = 0 everywhere in R 2 , we therefore have

@ x1 (TW c (Q c;dc )) = 0, hence, at d = d c , @ d (TW c (Q c;d )) = @ z 1 (TW c (Q c;d )):
We write

TW c (Q c;d ) = TW c (V ) + L(¡ c;d ) + NL V (¡ c;d ); with L(¡ c;d ) = ¡¡ c;d ¡ ic@ x2 ¡ c;d ¡ (1 ¡ jV j 2 ) ¡ c;d + 2 Re(V ¡ c;d )V and NL V (¡ c;d ) := 2 Re(V ¡ c;d ) ¡ c;d + j¡ c;d j 2 (V + ¡ c;d ):
We compute

@ z1 (TW c (Q c;d )) = @ z1 (TW c (V )) + L(@ z1 ¡ c;d ) + (@ z1 L)(¡ c;d ) + @ z1 (NL V (¡ c;d )); therefore, at d = d c , @ d Z B(de 1 ;d " 0 ) Re(@ d V TW c (Q c;d )) = Z B(de 1 ;d " 0 ) Re(@ d V@ z1 (TW c (V ))) + Z B(de1;d " 0 ) Re(@ d VL(@ z1 ¡ c;d )) + Z B(de1;d " 0 ) Re(@ d V (@ z1 L)(¡ c;d )) + Z B(de1;d " 0 ) Re(@ d V@ z1 (NL V (¡ c;d ))) (2.3.1)
since the boundary term is 0 (when the dierentiation is on the d in B(de 1 ~; d " 0 )) because TW c (Q c;dc ) = 0. We need to estimate those four terms at d = d c , and that is the goal of the next subsections. Subsections 2.3.2 and 2.3.3 yield estimates on the derivatives of V ¡1 and @ z1 c;d respectively in B d 0 := B(de 1 ~; d " 0 ). Subsection 2.3.4 is about the estimation of Z B(de1;d " 0 )

Re(@ d V@ z1 (TW c (V )))

which will be the leading order term, and subsection 2.3.5 shows that all the other terms are smaller for d c large enough.

Estimates on the derivatives of V ¡1 in B(de 1 ~; d " )

Lemma 2.3.4. For 0 < " < 1, in B(de 1 ~; d " ), with the O(:) being always real valued, we have

@ x1 V ¡1 = O d!1 1 d 3 + iO d!1 1 d 2¡" V ¡1 ; @ x2 V ¡1 = O d!1 1 d 4¡" + iO d!1 1 d V ¡1 ; @ x 1 x 1 V ¡1 = O d!1 1 d 4¡2" + iO d!1 1 d 3¡" V ¡1 ; @ x1x2 V ¡1 = O d!1 1 d 3¡" + i 4d 2 1 + O d!1 1 d 1¡" V ¡1 : Proof. Recall from Lemma 2.1.2 that, with u = ¡1 0 (r¡1) ¡1(r¡1) , @ x 1 V ¡1 = cos( ¡1 )u + i r ¡1 sin( ¡1 ) V ¡1 ; @ x2 V ¡1 = sin( ¡1 )u ¡ i r ¡1 cos( ¡1 ) V ¡1 ; @ x1x1 V ¡1 = cos 2 ( ¡1 )(u 2 + u 0 ) + sin 2 ( ¡1 ) u r ¡1 ¡ 1 r ¡1 2 ! ¡ 2 i sin( ¡1 )cos( ¡1 ) 1 r ¡1 2 ¡ u r ¡1 !! V ¡1 and @ x1x2 V ¡1 = sin( ¡1 )cos( ¡1 ) u 2 + u 0 + 1 r ¡1 2 ¡ u r ¡1 ! + i cos(2 ¡1 ) 1 r ¡1 2 ¡ u r ¡1 !! V ¡1 :
In the ball B(de 1 ~; d " ), we have, by Lemma 2.1.1, that

1 r ¡1 6 K d , u = O d!1 1 d 3 and sin( ¡1 ) = O d!1 1 d 1¡"
; the last one is because for (y 1 ; y 2 ) 2 B(de 1 ~; d " ), we have

|y 2 | 6 d " hence jsin( ¡1 )j = jy 2 j r ¡1 6 K d 1¡" :
We also compute in the same way that

cos( ¡1 ) = 1 ¡ sin 2 ( ¡1 ) p = 1 + O d!1 1 d 2¡2"
: With the equation on ¡1 coming fom ¡V ¡1 ¡ (1 ¡ jV ¡1 j 2 )V ¡1 = 0, we check easily that

u 0 = O d!1 1 d 4
as well (or see [START_REF] Hervé | Étude qualitative des solutions réelles d'une équation diérentielle liée à l'équation de Ginzburg-Landau[END_REF]). Finally, we estimate

cos(2 ¡1 ) = 1 ¡ 2sin 2 ( ¡1 ) = 1 + O d!1 1 d 2¡2" and 1 r ¡1 2 = (2d + O d!1 (d " )) ¡2 = 1 4d 2 + O d!1 1 d 3¡" :
With this estimations, we end the proof of the lemma.

Estimate on @ z 1 c;d in B(de 1 ~; d " 0 )

We dene the following norms for = 1 + i 2 and h = h 1 + ih 2 , 0 < < 1; 0 < " 0 < " < 1:

k k ;B d 0 := kV k C 1 ({r 1 62}) + kr 1 1¡ 1 k L 1 ({d " 0 >r1>2}) + kr 1 1¡ r 1 k L 1 ({d " 0 >r1>2}) + kr 1 ¡ 2 k L 1 ({d " 0 >r 1 >2}) + kr 1 1¡ r 2 k L 1 ({d " 0 >r 1 >2})
and ~; d " ) for k:k ;Bd . The other main dierence with the previous norms is that we require less decay (we take ¡ < 0 instead of > 0 in the decay) in space, which here, since the norms are only in r 1 6 d " , can be compensated by some smallness in c.

khk ;Bd := kVhk C 0 ({r163}) + kr 1 1¡ h 1 k L 1 ({d " >r 1 >2}) + kr 1 2¡ h 2 k L 1 (
From Corollary 2.3.3, we have that k@ z 1 c;d c k ;B dc 0 < +1. We want to show the following proposition.

Proposition 2.3.5. For 0 < < 1; 0 < " 0 < " < 1; 0 < < 1, if

< (1 + )" 0 ; + (1 ¡ )" 0 < 2" ¡ " 0 and < 2 ¡ "(2 ¡ ); we have @ z1 c;d |d=dc ;B dc 0 = o c!0 (c 1+ ):
Such a choice of parameters (; ; "; " 0 ) exists, we can take for instance = 1 / 2; = 3 / 4; " = 19/24 and " 0 = 13/24. Furthermore, with this particular choice of parameters, we also have

+ (1 ¡ )" 0 > 1; (2.3.2) 
which will be usefull later on. These conditions are bounds on how much additional smallness we can have on @ z 1 c;d near d c e 1 ~. The main goal of this proposition is to have a decay in c better than O c!0 (c), which is not obvious from the estimates we have done until now. The estimate on @ z 1 c;d |d=d c from Corollary 2.3.3 will not be enough in the computation of @ c d c for the nonlinear terms. The proof of Proposition 2.3.5 follows closely the proof of the inversibility of the linearized operator in Proposition 2.1.17. We want to invert the same linearized operator, but with a dierent norm, which is better locally around the vortex V 1 .

The reason why we take B d a little bigger than B d 0 is to make the elliptic estimates of step 2 in Proposition 2.1.17 work here too. The main idea of this proposition is to show that if we move V ¡1 a little, then locally around V 1 the change is very small. We now start the proof of Proposition 2.3.5.

Proof. First, we remark that in B d , since " < 1, r ~= r 1 .

Step 1. Computation of the equation on @ z1 c;d .

Recall that c;d solves the equation (with

c;d = V c;d ) L( c;d ) + (1 ¡ ) VL 0 ( c;d ) + F ( c;d ) = (c; d)Z d ;
and we recall that

(c; d) = hF ( c;d); Zdi kZdk L 2 (R 2 ) 2
, and we check easily, with Lemma 2.2.3, that it is a C 1 function of d. The equation on c;d holds for any x 2 R 2 and any d 2 R;

1 2d < c < 2 d , hence @ z 1 (L( c;d ) + (1 ¡ ) VL 0 ( c;d ) + d ? (F ( c;d )) ¡ (c; d)Z d ) = 0: We compute @ z1 ((c; d)Z d ) = (@ x1 + @ d )((c; d)Z d ) = @ d (c; d)Z d + (c; d)@ z1 Z d ;
and we recall, from the proof of Proposition 2.1.26 that 

(c; d) Z R 2 j@ d V j 2 2 = 1 d ¡ c + O c!0 (c
c ) = 0, @ d (c; d) |d=d c = ¡ d c 2 + O c!0 (c 2¡ ) = O c!0 (c 2¡ ):
Here, we see why the fact that d is dierentiable with respect to c is not obvious. The main contribution is at this point not enough to beat the error terms. Therefore, showing that @ d (c; d) = / 0 is not simple here. This is why we need improved estimations on @ z1 c;dc , that will give us the fact that the error terms are a O c!0 " (c 2+" ) for some " > 0.

Now, writing

TW c (Q c;d ) = L( c;d ) + (1 ¡ )VL 0 ( c;d ) + F ( c;d );
(with the notations of Lemma 2.1.7), we have (since

(c; d c ) = 0) (@ z1 (TW c (Q c;d )) ¡ @ d (c; d)Z d ) |d=dc = 0:
We recall that

F ( c;d ) = E ¡ ic@ x2 V + V (1 ¡ )(¡r c;d :r c;d + jV j 2 S( c;d )) + R( c;d );
where R( c;d ) is a sum of terms at least quadratic in c;d or c;d localized in the area where = / 0. We compute

@ z1 (TW c (Q c;d )) = L(V@ z1 c;d ) + (1 ¡ )VL 0 (@ z1 c;d ) + @ z1 L( c;d ) + (1 ¡ )V@ z1 L 0 ( c;d ) + @ z1 (E ¡ ic@ x2 V ) + L(@ z1 V c;d ) + (1 ¡ )@ z1 VL 0 ( c;d ) + @ z 1 (L( c;d ) ¡ VL 0 ( c;d ) ¡ ic@ x 2 c;d ) ¡ @ z 1 V (¡ic@ x 2 c;d ¡ r c;d :r c;d + jV j 2 S( c;d )) + @ z1 (R( c;d )) + @ z1 V (1 ¡ )(¡ic@ x2 c;d ¡ r c;d :r c;d + jV j 2 S( c;d )) + V (1 ¡ )@ z1 (¡ic@ x2 c;d ¡ r c;d :r c;d + jV j 2 S( c;d )):
We regroup the terms in the following way. We dene

L(@ z1 c;d ) := L(V@ z1 c;d ) + (1 ¡ )VL 0 (@ z1 c;d );
which is the same linearized operator we have inverted in Proposition 2.1.17 (taken in @ z1 c;d ), and we dene the operator

L @z 1 ( c;d ) := @ z1 L( c;d ) + (1 ¡ )V@ z1 L 0 ( c;d ) + L(@ z1 V c;d ) + (1 ¡ )@ z1 VL 0 ( c;d ):
We already have TW c (V ) = E ¡ ic@ x 2 V , therefore

@ z 1 (TW c (V )) = @ z 1 (E ¡ ic@ x 2 V ):
We dene the local error

Err loc := @ z1 (R( c;d )) ¡ @ d (c; d)Z d ;
the far away error

Err far := @ z 1 V (1 ¡ )(¡r c;d :r c;d + jV j 2 S( ))
and the nonlinear terms ). With these denitions, we have, at d = d c ,

NL @z 1 ( c;d ) := V (1 ¡ )@ z1 (
(@ z1 (L( c;d ) + (1 ¡ ) VL 0 ( c;d ) + F ( c;d )) ¡ @ d (c; d)Z d ) |d=dc = L(@ z1 c;d ) |d=dc + (@ z 1 (TW c (V )) + L @ z 1 ( c;d ) + NL @ z 1 ( c;d )) |d=d c + (Err loc + Err far + Err cut ) |d=d c :
The equation satised by @ z1 c;d at d = d c is therefore (L(@ z1 c;d ) + @ z1 (TW c (V )) + L @z1 ( c;d ) + NL @z 1 ( c;d ) + Err loc + Err far + Err cut ) |d=dc = 0:

Step 2. Beginning of the contradiction argument. Now, suppose that the result of Proposition 2.3.5 is false. The scheme of this proof is the same as in Proposition 2.1.17. Then, there exist an absolute constant > 0 and sequences @ z 1 n , c n ! 0,

d n ! 1 such that d n 1+ k@ z 1 n |d=dn k ;B dn 0 > ;
where we write d n = d cn (a value such that (c n ; d n ) = 0 in Proposition 2.1.26). We have just shown that n (where we omit the subscripts in d n ; c n ) satises

L(@ z 1 n ) + @ z 1 (TW c n (V )) + L @z 1 ( n ) + NL @ z 1 ( n ) + Err loc + Err far + Err cut = 0:
The function

(V@ z 1 n )(: ¡ d n e 1 ~) k@ z1 n k ;B dn 0
converges locally uniformly up to a subsequence to a limit G, since it is bounded in k:k ;B 0 for any > 0 (for the same reasons that n ! locally uniformly in the beginning of the proof of Proposition 2.1.17).

The equation on @ z 1 n is

L(@ z 1 n ) + Vh n = 0; (2.3.3)
with

Vh n := @ z1 (TW cn (V )) + L @z1 ( n ) + NL @z 1 ( n ) + Err loc + Err far + Err cut :
The goal of Proposition 2.1.17 was to estimate k k ;;d with khk ; 0 ;d for the equation L( ) = h if d is large enough (given an orthogonality condition on ). Here we do the same thing, but localized in space, and with a very particular h n that we will estimate. To continue as in the proof of Proposition 2.1.17, we want to show that

h n (: ¡ d n e 1 ~) k@ z1 n k ;B dn 0 ! 0
in C loc 0 so that we get at the limit (following the +1 vortex) in (2.3.3)

L V1 (G) = 0;
using the sames techniques as in the proof of Proposition 2.1.17. It will be enough for that to show that

h n k@ z 1 n k ;B dn 0 ;B dn ! 0 (2.3.4)
and we will also use this estimate later on. Remark that here, the problem is no longer symmetric in x 1 , in particular, we cannot use the same argument near the ¡1 vortex, but it is not needed.

Step 3. Proof of (2.3.4).

Recall the denition of k:k ;Bd n :

khk ;B dn = kVhk C 0 ({r 1 63}) + kr 1 1¡ h 1 k L 1 ({d n " >r 1 >2}) + kr 1 2¡ h 2 k L 1 ({d n " >r 1 >2}) : Since d n 1+ k@ z1 n |d=d n k ;B dn 0 > ; we have 1 k@ z 1 n k ;B dn 0 6 1 c n 1+ ; therefore it is enough to show that kh n k ;Bd n = o cn!0 (c n 1+ ) (2.3.5)
to have (2.3.4). We recall that

Vh n = @ z1 (TW cn (V )) + L @z1 ( n ) + NL @z 1 ( n ) + Err loc + Err far + Err cut :
The contribution of @ z 1 (TW c n (V )) will be established in step 3.1, L @ z 1 ( n ) in step 3.2, NL @ z 1 ( n ) in step 3.3, and nally, Err loc + Err far + Err cut in step 3.4.

Step 3.1. Proof of

@z 1 TWc n (V ) V ;Bd n = o c n !0 (c n 1+ ). Recall from (2.1.2) that TW c (V ) = E ¡ ic@ x 2 V = ¡2rV 1 :rV ¡1 + (1 ¡ jV 1 j 2 )(1 ¡ jV ¡1 j 2 )V 1 V ¡1 ¡ ic@ x 2 V ;
therefore, with Lemma 2.3.2, we have

@ z1 (TW c (V )) = ¡4rV 1 :r@ x1 V ¡1 + 2(1 ¡ jV 1 j 2 ) V 1 @ x1 ((1 ¡ jV ¡1 j 2 ) V ¡1 ) ¡ 2 ic@ x2 (V 1 @ x1 V ¡1 ):
We now estimate this quantity at d = d n . We have

j(1 ¡ jV 1 j 2 ) V 1 @ x1 ((1 ¡ jV ¡1 j 2 ) V ¡1 )j 6 K 1 + r 1 2 1 d n 3 ;
and using < 1, > 0, we deduce

(1 ¡ jV 1 j 2 ) V 1 @ x1 ((1 ¡ jV ¡1 j 2 ) V ¡1 ) V ;B dn = o c n !0 (c n 1+ ):
We compute with Lemmas 2.1.2 and 2.3.4 that

Re 4rV 1 :r@ x1 V ¡1 V = 4Re rV 1 V 1 :Re r@ x1 V ¡1 V ¡1 ¡ 4Im rV 1 V 1 :Im r@ x1 V ¡1 V ¡1 ; leading to Re 4rV 1 :r@ x1 V ¡1 V 6 K (1 + r 1 3 )d n 3¡" + K (1 + r 1 )d n 2
for a universal constant K. Since < 1 and > 0, we have Re

4rV 1 :r@ x1 V ¡1 V ;Bd n = o cn!0 (c n 1+ ):
Similarly, we have Im ):

4rV 1 :r@ x1 V ¡1 V 6 K (1 + r 1 3 )d n 2 + K (1 + r 1 )d n 3¡" : Therefore, using 1 d n 6 K (1 + r 1 )
Now, for 2i c n @ x 2 (V 1 @ x 1 V ¡1 ) = 2i c n @ x 2 V 1 @ x 1 V ¡1 + 2i c n @ x 1 x 2 V ¡1 V 1 ,
we estimate (still using Lemma 2.1.2 and 2.3.4)

Re

ic n @ x 2 V 1 @ x 1 V ¡1 V 6 K (1 + r 1 3 )d n 3¡" + K (1 + r 1 )d n 4 ; Im ic n @ x2 V 1 @ x1 V ¡1 V 6 K (1 + r 1 3 )d n 4 + K (1 + r 1 )d n 3¡" ;
therefore, using

1 dn 6 K (1 + r 1 ) 1/" , we have, under the condition < 2 ¡ "(2 ¡ )
for the imaginary part (as for the previous term) and with no condition for the real part (since

> 0; < 1), that 2 ic n @ x2 V 1 @ x1 V ¡1 V ;Bd n = o cn!0 (c n 1+ ):
We then compute (still using Lemma 2.1.2 and 2.3.4)

Re ic n @ x1x2 V ¡1 V 1 V 6 K d n 3 ; Im ic n @ x1x2 V ¡1 V 1 V 6 K d n 4¡" ;
therefore, using

1 d n 6 K
(1 + r1) 1/" ; we have, under the conditions

< 2 ¡ "(1 ¡ ) and < 3 ¡ "(3 ¡ );
which are met since

< 2 ¡ "(2 ¡ ) = 2 ¡ "(1 ¡ ) ¡ " < 2 ¡ "(1 ¡ ); and < 2 ¡ "(2 ¡ ) = 3 ¡ "(3 ¡ ) ¡ 1 + " < 3 ¡ "(3 ¡ ), that ic@ x2 (V 1 @ x1x2 V ¡1 ) V ;B dn = o c n !0 (c n 1+ ):
This concludes the proof of step 3.1.

Step 3.2. Proof of

L@ z 1 ( n) V ;Bd n = o cn!0 (c n 1+ ).
We have dened

L @z 1 ( n ) = (@ z1 L)( n ) + (1 ¡ )V (@ z1 L 0 )( n ) + L((@ z1 V ) n ) + (1 ¡ )@ z1 VL 0 ( n ):
We recall from Lemma 2.1.7 that

L 0 ( n ) = ¡ n ¡ 2 rV V :r n + 2jV j 2 Re( n ) ¡ ic n @ x2 n ; L( n ) = ¡ n ¡ (1 ¡ jV j 2 ) n + 2Re(V n )V ¡ ic n @ x2 n ; hence (@ z1 L)( n ) = 4 Re(V ¡1 @ x1 V ¡1 ) n + 4 Re(@ x1 V ¡1 V 1 n )V + 4 Re(V n )V 1 @ x1 V ¡1 :
We shall now estimate all these terms one by one. Since @ z 1 L( n ) is compactly supported in r ~6 2 and k:k ;B dn looks at the function only on r 1 6 d " , using Lemma 2.3.4 (rV

¡1 = O c!0 (c)) and k n k ; 1¡ 4 ;dn 6 K() c 1+ 2 , we check that @ z1 L( n ) V ;B dn = o cn!0 (c n 1+ ):
With the same arguments, we also check that

L(@ z 1 V n ) V ;Bd n = o c n !0 (c n 1+ ):
Now, with k n k ;;dn 6 K(; 0 )c n 1¡ 0

, we check that for any 0 < < 0 < 1,

jL 0 ( n )j 6 K(; 0 ) (1 + r 1 ) 1+ d n 1¡ 0 ;
therefore, with Lemma 2.3.4, we have

j(1 ¡ )@ z1 VL 0 ( n )j 6 K(; 0 ) (1 + r 1 ) 1+ d n 3¡"¡ 0 :
In particular, we check that if

< 2 ¡ "(2 ¡ );
we can take ; 0 such that 0

< < 0 < 2 ¡ "(2 ¡ ) ¡ 1 ¡ " , hence (1 ¡ )@ z1 VL 0 ( n ) V ;Bd n = o c n !0 (c n 1+ ):
Finally, we estimate

j@ z1 L 0 ( n )j 6 K @ x1 rV ¡1 V ¡1 :r n + K jRe(@ x1 V ¡1 V ¡1 )Re( n )j:
With Lemma 2.3.4 and k n k ;;dn 6 K(; 0 ) c n 1¡ 0 (from (2.2.13)), we check that

j(1 ¡ )V@ z1 L 0 ( n )j 6 K(; 0 )(1 ¡ ) r 1 1+ d n 4¡"¡ 0 ;
therefore, with the same condition as for the previous term, namely

< 2 ¡ (2 ¡ )";
we infer, taking < 0 small enough, (

¡ )V@ z1 L 0 ( n ) V ;Bd n = o c n !0 (c n 1+ ): 1 
This concludes the proof of step 3.2.

Step 3.3. Proof of

NL@ z 1 ( n) V ;Bd n = o c n !0 (c n 1+
).

We recall

NL @ z 1 ( n ) = V (1 ¡ )@ z 1 (¡r n :r n + jV j 2 S( n )); with S( n ) = e 2Re( n) ¡ 1 ¡ 2Re( n ). We compute @ z1 (¡r n :r n + jV j 2 S( n )) = ¡2r@ z1 n :r n + 4Re(@ x1 V ¡1 V ¡1 )S( n ) + jV j 2 @ z1 S( n ):
Now, with Corollary 2.3.3 and (2.2.13), we check that, for any 0

< < 0 < 1, r 1 > 2, jr@ z 1 n :r n j 6 K(; 0 ) r 1 2+2 d n 2¡2 0 ; j4Re(@ x 1 V ¡1 V ¡1 )S( n ) + jV j 2 @ z 1 S( n )j 6 K(; 0 ) r 1 2+2 d n 2¡2 0 ; therefore, taking < 0 < 1 ¡ 2 , we check that k(1 ¡ )(¡2r@ z1 n :r n + 4Re(@ x1 V ¡1 V ¡1 )S( n ) + jV j 2 @ z1 S( n ))k ;Bd n = o cn!0 (c n 1+ ):
The proof of step 3.3 is complete.

Step 3.4. Proof of

Errloc + Errfar + Errcut V ;Bd n = o cn!0 (c n 1+
).

We recall

Err cut = @ z1 (L( n ) ¡ VL 0 ( n ) + ic@ x2 n + r n :r n ¡ jV j 2 S( n ))
;

Err loc = @ z1 (R( n )) ¡ @ d (c n ; d n )Z dn ; Err far = @ z 1 V (1 ¡ )(¡r n :r n + jV j 2 S( n )):
Err cut is compactly supported in r ¡1 6 2 , therefore Err cut = 0 in B dn , hence Err cut V

;Bd n = 0:

Now, Err loc is supported in r 1 6 2 , and from Lemma 2.1.7, we know that R( n ) is a sum of terms at least quadratic in n or n localized in the area where = / 0. Therefore, from Corollary 2.3.3 and (2.2.14), we check that

j@ z1 (R( n ))j 6 K() d n 2¡2 ;
and we have check in step 1 that j@ d (c n ;

d n )j = O cn!0 (c n 2¡ ). Thus, taking < 1 ¡ 2 , Err loc V ;B dn = o cn!0 (c n 1+ ):
From (2.2.13), we check that, for any 1 > 0 > > 0,

j¡r n :r n + jV j 2 S( n )j 6 K(; 0 ) (1 + r 1 ) 2+2 d n 2¡2 0 ;
and from Lemma 2.3.4, we have

j@ z1 V j 6 K d n 2¡" ;
therefore, choosing < 0 small enough, we have

@ z1 V V (1 ¡ )(¡r n :r n + jV j 2 S( n )) ;B dn = o c n !0 (c n 1+ ):
This ends the proof of step 3.4 and hence of (2.3.4).

Step 4. Three additional estimates on h n .

This step is devoted to the proof of the following three estimates:

kVh n k L 1 ({r ~63}) + kr ~1+ Re(h n )k L 1 ({r ~>2}) + kr ~2+ Im(h n )k L 1 ({r ~>2}) 6 K(; 0 )c n 1¡ 0 : (2.3.6)
In the right half-plane, we want to show that

jh n j 6 K()c n 1+ (1 + r 1 ) ; (2.3.7)
and, in the left half-plane,

jh n j 6 K()c n 1¡ (1 + r ¡1 ) 2 : (2.3.8)
Observe that h n is not symmetrical with respect to x 1 because of the cuto. Recall that

Vh n = @ z 1 (TW c n (V )) + L @z 1 ( n ) + NL @ z 1 ( n ) + Err loc + Err far + Err cut :
We complete estimates done in the previous step to show that (2.3.6), (2.3.7) and (2.3.8) hold.

Step 4.1. Estimates for @ z 1 (TW c n (V )).

From Step 3.1, we have

@ z1 (TW c (V )) = ¡4rV 1 :r@ x1 V ¡1 + 2(1 ¡ jV 1 j 2 ) V 1 @ x1 ((1 ¡ jV ¡1 j 2 ) V ¡1 ) ¡ 2ic@ x2 (V 1 @ x1 V ¡1 ):
In view of Lemma 2.1.1, equation (2.1.3) and the estimate

(1 + r 1 )(1 + r ¡1 ) > d n (1 + r ~), we have k@ z 1 (TW c (V ))/V k ;;d n 6 K()c n 1¡ :
Furthermore, in the left half-plane, with Lemma 2.1.1 and equation (2.1.3), we check easily that

j@ z1 (TW c (V ))j 6 Kc n (1 + r 1 ) 2 :
Furthermore, in the right half-plane, we have 1 (1 + r¡1) 6 Kc n , therefore, still using Lemma 2.1.1 and equation (2.1.3), we check that j@ z1 (TW c (V ))j 6

Kc n

2

(1 + r 1 ) :

Step 4.2. Estimates for L @ z 1 ( n ).

We have, from Step 3.2, that

L @ z 1 ( n ) = @ z 1 L( n ) + (1 ¡ )V@ z 1 L 0 ( n ) + L(@ z 1 V n ) + (1 ¡ )@ z 1 VL 0 ( n ); with (@ z1 L)( n ) = 4 Re(V ¡1 @ x1 V ¡1 ) n + 4 Re(@ x1 V ¡1 V 1 n )V + 4 Re(V n )V 1 @ x1 V ¡1 ; L 0 ( n ) = ¡ n ¡ 2 rV V :r n + 2jV j 2 Re( n ) ¡ ic n @ x2 n and j@ z 1 L 0 ( n )j 6 K @ x 1 rV ¡1 V ¡1 :r n + K jRe(@ x 1 V ¡1 V ¡1 )Re( n )j: (2.3.9)
Similarly as in Step 4.1, every local term (in the area = / 0 ) satises the two estimates, using k n k ; 1¡ 2 ;dn 6 K()c n . The two nonlocal terms are (1 ¡ )V@ z1 L 0 ( n ) and (1 ¡ )@ z1 VL 0 ( n ). For the rst term, in view of Lemma 2.1.1, equations (2.1.3), (2.2.14) and (2.3.9), we check that

kV (1 ¡ )@ z1 L 0 ( n )k L 1 ({r ~63}) + kr ~1+ Re((1 ¡ )@ z1 L 0 ( n ))k L 1 ({r ~>2}) + kr ~2+ Im((1 ¡ )@ z1 L 0 ( n ))k L 1 ({r ~>2}) 6 K(; 0 )c n 1¡ 0
and, in the left-half plane,

j(1 ¡ )V@ z1 L 0 ( n )j 6 K()c n 1¡ (1 + r ¡1 ) 2
Furthermore, using now k n k ; 1¡ 2 ;d n 6 K()c n , we check that, in the right half-plane,

j(1 ¡ )V@ z 1 L 0 ( n )j 6 K()c n 1+
(1 + r 1 ) :

Finally, for the term (1 ¡ )@ z1 VL 0 ( n ), we use k n k ;;dn 6 K(; 0 )c n 1¡ 0 and (2.2.14) to check that

jL 0 ( n )j 6 K()c n 1¡ 0 (1 + r ~)1+ :
Combining this estimate with j@ z1 V j 6

K (1 + r ~) , we show that (1 + r ~)2+ (1 ¡ ) @ z 1 V V L 0 ( n ) L 1 (R 2 ) 6 K(; 0 )c n 1¡ 0 ;
and, in the left half-plane,

j(1 ¡ )@ z1 VL 0 ( n )j 6 K()c n 1¡ (1 + r ¡1 ) 2 :
Furtherore, using k n k ; 1¡ 2 ;dn 6 K()c n and (2.2.14), we also have the estimate

jL 0 ( n )j 6 K()c n (1 + r ~) ;
and using j@ z1 V j 6 Kc n in the right half-plane, we estimate in this same area that

j(1 ¡ )@ z1 VL 0 ( n )j 6 K()c n 1+ (1 + r ~) :
Step 4.3. Estimates for NL @z 1 ( n ). 2 ), we check without diculties that

From Step 3.3, NL @ z 1 ( n ) = V (1 ¡ )@ z 1 (
k NL @z 1 ( n )k L 1 ({r ~63}) + kr ~1+ Re(NL @z 1 ( n )/V )k L 1 ({r ~>2}) + kr ~2+ Im(NL @z 1 ( n )/V )k L 1 ({r ~>2}) 6 K()c n 1¡ ;
and, with, some margin, that in the left half-plane,

jNL @z 1 ( n )j 6 K()c n 1¡ (1 + r ¡1 ) 2 : Now, using k n k ; 1¡ 4 ;dn 6 K()c n 1+ 2
and Corollary 2.3.3 (for

1 ¡
2 ), we have, in the right half-plane,

jNL @z 1 ( n )j 6 K()c n 1+ (1 + r ~) :
Step 4.4. Estimates for Err loc + Err far + Err cut .

For Err loc = @ z1 (R( n )) ¡ @ d (c n ; d n )Z dn , the same computations as in Step 4.3 yield the estimates (because this term is compactly supported in the area = / 0 ) needed for (2.3.6) to (2.3.8).

For Err cut = @ z1 (L( n ) ¡ V L 0 ( n ) + i c@ x2 n + r n :r n ¡ jV j 2 S( n )), this term is compactly supported near the vortex ¡1, hence is 0 in the right half-plane. Furthermore, using k n k ;/2;d n 6 K()c n 1¡ , we check easily that

kErr cut /V k ;;dn 6 K()c n 1¡
and, since it is compactly supported, in the left half-plane,

jErr cut j 6 K()c n 1¡ (1 + r ¡1 ) 2
Finally, for Err far = @ z1 V (1 ¡ )(¡r n :r n + jV j 2 S( n )), from (2.2.14) we have

j(1 ¡ )(¡r n :r n + jV j 2 S( n ))j 6 K()c n 1¡ (1 + r ~)2+ ;
and we conclude as in Step 4.2.

This concludes the proof of estimates (2.3.6), (2.3.7) and (2.3.8).

Step 5. Inner estimates.

By the estimation we have just proved, we have in particular

h n (: ¡ d n e 1 ~) k@ z1 n k ;B dn 0 ! 0
in C loc 0 (which corresponds to follow the +1 vortex). Therefore, at the limit, in the distribution sense,

L V 1 (G) = 0 in all R 2 .
If we show that hG; @ x 1 V 1 i = 0 for a cuto near 0, we can then use Theorem 2.1.16 to show, similarly as in the proof of Proposition 2.1.17, that G = 0 since (V@ z1 n )(:

¡ d n e 1 ~) k@ z 1 n k ;B dn 0 ;B dn = 1; hence kGk H V 1 < +1.
We recall that, by construction, we have h c;d ; Z d i = 0. By symmetry, this implies that h c;d ; (y)@ d V i = 0. Both c;d and (y)@ d V are C 1 with respect to d, and therefore

0 = @ d h c;d ; (y)@ d V i = h@ d c;d ; (y)@ d V i + h c;d ; @ d ((y)@ d V )i: Furthermore, h@ x1 c;d ; (y)@ d V i = ¡h c;d ; @ x1 (y)@ d V i, thus h@ z1 c;d ; (y)@ d V i = ¡h c;d ; (y)@ z1 @ d V i;
and we check easily that j(y)@ z 1 @ d V j 6 Kc(y), therefore, since k c;d k ;;d 6 K(; 0 )c 1¡ 0 , we have jh@ z1 c;d ; (y)@ d V ij 6 K(; 0 )c 2¡ 0 , and thus, taking 0 < 0 < 1 ¡ , for c n and d n , n ! 1, we infer that hG;

@ x 1 V 1 i = 0.
We continue as in the proof of Proposition 2.1.17. The fact that G = 0 gives us that for any R > 0, we have

kV@ z 1 n k L 1 ({r 1 6R}) + kr(V@ z 1 n )k L 1 ({r 1 6R}) k@ z 1 n k ;B dn 0 ! 0:
Step 6. Outer computations.

We have the same outer computations as in step 2 of the proof of Proposition 2.1.17, but with ). We have, as in the proof of Proposition 2.1.17, outside

Y n = @z 1 n k@ z 1 n k ;B dn
Y n = Y 1 + iY 2 and H n = H 1 + iH 2 , 8 > < > : Y 1 ¡ 2jV j 2 Y 1 = ¡H 1 ¡ 2Re rV V :rY n + c@ x 2 Y 2 Y 2 + c@ x2 Y 1 = ¡H 2 ¡ 2Im
r 1 6 R but in B d n 0 , that kY n k ;B dn 0 = 1 and kH n k ;Bd n = o n!1 (1), therefore jY 1 ¡ 2Y 1 j 6 o R!1 (1) + o n!1 R (1) (1 + r 1 ) 1¡
(2.3.10) and 

jY 2 + c@ x2 Y 1 j 6 o R!1 (1) + o n!1 R (1) (1 +
jc n @ x2 Y 2 j 6 d n 1+ c n 2¡ (1 + r 1 ) 1+ = o n!1 (1) (1 + r 1 ) 1¡ taking > 0 small enough. We use Y n = @z 1 n k@z 1 nk ;B dn 0 , 1 k@z 1 n k ;B
1 d n 3 + 1 r 1 3 d n 1+ r 1 1+ d n 1¡ and Re(rY n ):Im rV V 6 K() d n 1+ r 1 2+ d n 1¡ 1 d n 2¡" + 1 r 1 ! :
In B dn nB d n 0 , we have d n " > r 1 > d n " 0 , and with similar estimates as for the previous term, we check that, since < (1 + )" 0 , we have

< (2 + )" 0 ;
for the rst term, and

< (1 + )" 0
for the second one. We can nd > 0 such that

Im rV V :rY n 6 o n!1 (1) (1 + r 1 ) 2¡
in B dn nB dn 0 . We deduce that (2.3.11) holds on B dn . Additionally, we will use (from Lemma 2.2.3) for 0 < < 0 < 1,

kVY n k C 1 ({r ~63}) + kr ~1+ Re(Y n )k L 1 ({r ~>2}) + kr ~1+ rRe(Y n )k L 1 ({r ~>2}) + kr ~ Im(Y n )k L 1 ({r ~>2}) + kr ~1+ rIm(Y n )k L 1 ({r ~>2}) 6 K(; 0 )c n 1¡ 0 d n 1+ 6 K(; 0 )d n + 00
(2.3.12) and from (2.3.6),

kVH n k L 1 ({r ~63}) + kr ~1+ Re(H n )k L 1 ({r ~>2}) + kr ~2+ Im(H n )k L 1 ({r ~>2}) 6 K(; 0 )d n + 00 (2.3.13)
to do estimates outside of B d n . These estimates are not optimal (in particular in the smallness in c n ) but we will only use them on parts far away from the center of V 1 . Thanks to (2.3.7), we have a slightly better estimate in the right half-plane, that is, for 0 < < 1,

jH n j 6 K jh n jd n 1+ 6 K()d n ¡ (1 + r 1 ) : (2.3.14)
Step 7. Elliptic estimates.

We follow the proof of Proposition 2.1.17. At this point, we have on

Y n that kY n k ;B dn 0 = 1, kVY n k L 1 ({r16R}) + kr(VY n )k L 1 ({r16R}) ! 0 as n ! 1 for any R > 1, and with Y n = Y 1 + iY 2 , jY 2 + c@ x2 Y 1 j 6 o R!1 (1) + o n!1 R (1) (1 + r 1 ) 2¡ ; jY 1 ¡ 2jV j 2 Y 1 j 6 o R!1 (1) + o n!1 R (1) (1 + r 1 ) 1¡ :
We want to show that

kY n k ;B dn 0 = o R!1 (1) + o n!1 R
(1). We want to use similar elliptic estimates as in the proof of Proposition 2.1.17 ), with " 0 < ".

Step 7.1. Elliptic estimate for Y 2 .

We start by solving the following problem in R 2 :

= f ; with f := ¡H 2 ¡ 2Im rV V :rY n ;
which is odd in x 2 (the derivation with respect to z 1 breaks the symmetry on x 1 , but not on x 2 ) and satises ), 

jf j 6 o R!1 (1) + o n!1 R (1) (1 + r 1 ) 2¡ in B dn = B(d n e 1 ~; d n " ),
r(x) = 1 2 Z R 2 x ¡ Y jx ¡ Y j 2 f (Y
f (Y )dY = 0; hence Z B(dne1;d n " ) x ¡ Y jx ¡ Y j 2 f (Y )dY = Z B(dne1;d n " ) f (Y ) x ¡ Y jx ¡ Y j 2 ¡ 1 jY ¡dne1j62jx¡dne1j x ¡ d n e 1 jx ¡ d n e 1 ~j2 
dY ;

and then, we infer 1 2

Z B(dne1;d n " ) f (Y ) x ¡ Y jx ¡ Y j 2 ¡ 1 jY ¡dne1j62jx¡dne1j x ¡ d n e 1 jx ¡ d n e 1 ~j2 dY 6 Z B(dne1;d n " ) (o R!1 (1) + o n!1 R (1)) (1 + jY j) 2¡ x ¡ Y jx ¡ Y j 2 ¡ 1 jY ¡dne1j62jx¡dne1j x ¡ d n e 1 jx ¡ d n e 1 ~j2 dY :
We do the same change of variable Z = Y ¡ d n e 1 ~as in the proof of lemma 2.1.8, and we are now at 1 2

Z B(d n e 1 ;d n " ) f (Y ) x ¡ Y jx ¡ Y j 2 ¡ 1 jY ¡d n e 1 j62jx¡d n e 1 j x ¡ d n e 1 jx ¡ d n e 1 ~j2 dY 6 Z B(0;d n " ) (o R!1 (1) + o n!1 R (1)) (1 + jZ j) 2¡ x ¡ d n e 1 ~¡ Z jx ¡ d n e 1 ~¡ Z j 2 ¡ 1 jZ j62jx¡d n e 1 j x ¡ d n e 1 jx ¡ d n e 1 ~j2 dZ:
We want to follow the same computations as in the proof of Lemma 2.1.8, but now 

(o R!1 (1) + o n!1 R (1)) (1 + jZ j) 2¡ x ¡ d n e 1 ~¡ Z jx ¡ d n e 1 ~¡ Z j 2 dZ 6 Z B(0;d n " )\ jZ j>2jx¡dne1j (o R!1 (1) + o n!1 R (1)) (1 + jZ j) 2¡ jZ j dZ 6 o R!1 (1) + o n!1 R (1) (1 + jx ¡ d n e 1 ~j) 1¡ :
Then, in jZ j 6 2jx ¡ d n e 1 ~j , we follow exactly the same computation as in the proof of the proof of Lemma 2.1.8 for the remaining part of the integral, and we conclude that 1 2

Z B(d n e 1 ;d n " ) f (Y ) x ¡ Y jx ¡ Y j 2 ¡ 1 jY ¡dne1j62jx¡dne1j x ¡ d n e 1 jx ¡ d n e 1 ~j2 dY 6 o R!1 (1) + o n!1 R (1) (1 + jx ¡ d n e 1 ~j) 1¡ :
We are left with the estimation of (after a translation) Z

R 2 nB(0;d n " ) jf (Z + d n e 1 ~)j jZ ¡ (x ¡ d n e 1 ~)j dZ:
By symmetry (see Lemma 2.2.4), we have Z 

R 2 nB(0;d n " ) f (Z + d n e 1 ~) jZ j dZ = 0; therefore Z R 2 nB(0;d n " ) f(Z + d n e 1 ~) jZ ¡ (x ¡ d n e 1 ~)j dZ = Z R 2 nB(0;d n " ) f (Z + d n e 1 ~) 1 jZ ¡ (x ¡ d n e 1 ~)
f(Z + d n e 1 ~) 1 jZ ¡ (x ¡ d n e 1 ~)j ¡ 1 jZ j dZ 6 K(; 0 )d n " 0 ++ 0 d n 2" Z R 2 nB(dne1;d n " ) 1 (1 + r ~)2+ 6 K(; 0 )d n " 0 +¡2"+ 0 :
In particular, we have

Z R 2 nB(0;d n " ) f (Y + d n e 1 ~) 1 jY ¡ (x ¡ d n e 1 ~)j ¡ 1 jY j dY 6 o n!1 (1) (1 + jx ¡ d n e 1 ~j) 1¡ if, since jx ¡ d n e 1 ~j 6 d n " 0 , K(; 0 )d n " 0 +¡2"+ 0 6 o n!1 (1)
d n " 0 (1¡) ;
hence, since we make the assumption Here, we cannot integrate from innity (since the estimate is only on a ball) to get an estimation on , but this will be dealt with later on. Now, following the proof of Proposition 2.1.17, we dene Y 2 0 := Y 2 ¡ , and we have, for

+ " 0 (1 ¡ ) < 2" ¡ " 0 ; we can nd 0 > 0 such that, for x 2 B(d n e 1 ~; d n " ), jr(x)j 6 o R!1 (1) + o n!1 R (1) (1 + jx ¡ d n e 1 ~j
j 2 1; 2 , @ xj Y 2 0 = K j f 0 ;
where

f 0 := ¡H 1 ¡ 2Re rV V :rY n ¡ (1 ¡ jV j 2 )Y 1 ¡ c@ x 2 :
We rst estimate the convolution in B(d n e 1 ~; d n " ). With kY n k ;B dn 0 = 1, we check that, with some margin in ), we have

B(d n e 1 ~; d n " 0 ), 2Re rV V :rY n ¡ (1 ¡ jV j 2 )Y 1 6 o R!1 (1) (1 + r 1 )
j(1 ¡ jV j 2 )Y 1 j 6 d n + 0 r 1 3+ 6 
d n + 0 ¡(2+¡ 00 )" 0 r 1 1¡+ 00 = o n!1 (1) r 1 1¡+ 00
given that 0 and 00 are small enough since ¡ (2 + )" 0 < 0. Therefore, following the proof of Lemma 2.1.13 (only changing the integral from R 2 to B(d n e 1 ~; d n " )), we check with the same computations (since we have some margin 00 > 0 on the decay) that

Z B(d n e 1 ;d n " ) K j (x ¡ Y ) 2Re rV V :rY n ¡ (1 ¡ jV j 2 )Y 1 (Y )dY 6 o R!1 (1) (1 + r 1 ) 1¡ :
Now, using (2.3.17), we check that, following the proof of Lemma 2.1.13 (using Hölder inequality instead of Cauchy-Schwarz in the last estimate to make sur that the two integrals are well dened, this does not change the nal estimate),

Z B(d n e 1 ;d n " ) K j (x ¡ Y )(c@ x2 )(Y )dY 6 c(o R!1 (1) + o n!1 R (1)) (1 + r 1 ) 1¡¡1/10
: ) in the proof), we infer

And, since x 2 B(d n e 1 ~; d n " 0 ), c(1 + r 1 ) 1/10 6 K, therefore Z B(dne1;d n " ) K j (x ¡ Y )(c@ x2 )(Y )dY 6 o R!1 (1) + o n!1 R (1) (1 +
Z B(dne1;d n " ) K j (x ¡ Y )H 1 (Y )dY 6 o R!1 (1) + o n!1 R (1) (1 + r 1 ) 1¡ :
Combining these estimates, we have shown that

Z B(dne1;d n " ) K j (x ¡ Y )f 0 (Y )dY 6 o R!1 (1) + o n!1 R (1) (1 + r 1 ) 1¡ :
Now, we focus on the left half-plane. From (2.3.8), we have

jH 1 j 6 K()c n 1¡ d n 1+ (1 + r ¡1 ) 2 :
Furthermore, we check, using (2.3.11) and (2.3.18) that, in the left half-plane, ¡2Re rV

V :rY n ¡ (1 ¡ jV j 2 )Y 1 6 K(; 0 )d n 1+ c n 1¡ 0 (1 + r ¡1 ) 2+ and jc n @ x2 j 6 K(; 0 )d n + 0 c n (1 + r ¡1 ) 1+ :
We have by Theorem 2.1.12 (since

x 2 B(d n e 1 ~; d n " 0 )) that jK j (x ¡ Y )j 6 K d n (1 + r ~(Y )) 2¡
for Y in the left half-plane, for any 0 6 6 2. Therefore, taking = 2 ¡ , we have

Z y 1 60 K j (x ¡ Y )H 1 (Y )dY 6 Z R 2 K(; 0 )d n ++ 0 ¡2 (1 + r ~)2+ 6 K(; 0 )d n ++ 0 ¡2+(1¡)" 0 (1 + jx ¡ d n e 1 ~j) 1¡ :
Taking = 2, we have

Z Y160 K j (x ¡ Y ) ¡2Re rV V :rY n ¡ (1 ¡ jV j 2 )Y 1 (Y )dY 6 Z R 2 K(; 0 )d n + 0 ¡2 (1 + r ~)2+ 6 K(; 0 )d n + 0 ¡2+(1¡)" 0 (1 + jx ¡ d n e 1 ~j) 1¡ ;
and nally, taking = 1, we estimate

Z Y160 K j (x ¡ Y )c n @ x2 (Y )dY 6 Z R 2 K(; 0 )d n + 0 ¡2 (1 + r ~)2+ 6 K(; 0 )d n + 0 ¡2+(1¡)" 0 (1 + jx ¡ d n e 1 ~j) 1¡ :
Thus, taking 0 > > 0 small enough, since ¡ 2 + (1 ¡ )" 0 < 0, we have

Z Y160 K j (x ¡ Y )f 0 (Y )dY 6 o n!0 (1) (1 + jx ¡ d n e 1 ~j) 1¡ :
We are left with the estimation in :=

Y 1 > 0 nB(d n e 1 ~; d n "
). We infer that, in , we have, for ), we have from Theorem 2.1.12 that

0 < < 0 < 1 jf 0 j 6 K( 0 )d n ¡ 0 (1 + r 1 ) + K()d n + (1 +
jK j (x ¡ Y )j 6 K d n 2"
and

jK j (x ¡ Y )j 6 K (1 + r ~(Y )) 3/2 d n "/2 :
We deduce that, for

x 2 B(d n e 1 ~; d n " 0 ), Z jK j (x ¡ Y )j K( 0 )d n ¡ 0 (1 + r 1 (Y )) dY 6 K( 0 )d n ¡ 0 ¡"/2 Z R 2 K (1 + r ~(Y )) 5/2 dY 6 K( 0 )d n ¡ 0 +(1¡)" 0 ¡"/2 (1 + jx ¡ d n e 1 ~j) 1¡ = o n!0 (1) (1 + jx ¡ d n e 1 ~j) 1¡
taking 0 < 1 large enough (since + (1 ¡ )" 0 ¡ 1 ¡ "/2 < 0), and Z

jK j (x ¡ Y )j K()d n + (1 + r ~(Y )) 2+ dY 6 K()d n + ¡2" Z R 2 1 (1 + r ~(Y )) 2+ dY 6 K()d n ++(1¡)" 0 ¡2" (1 + jx ¡ d n e 1 ~j) 1¡ = o n!0 (1) (1 + jx ¡ d n e 1 ~j) 1¡
taking > 0 small enough (since + (1 ¡ )" 0 ¡ 2" < 0). We deduce that, for

x 2 B(d n e 1 ~; d n " 0 ), j@ x j Y 2 0 j = jK j f 0 j 6 o n!0 (1) + o R!1 (1) (1 + jx ¡ d n e 1 ~j) 1¡ :
With (2.3.17), we have shown that 10), by integration from d n e 1 ~, we check that, since > 0,

j@ xj Y 2 j 6 o n!0 (1) + o R!1 (1) (1 + jx ¡ d n e 1 ~j) 1¡ : Now, since jY 2 j + jrY 2 j = o R!1 (1) in B(d n e 1 ~;
jY 2 j 6 o n!0 (1) + o R!1 (1) (1 + jx ¡ d n e 1 ~j) ¡ :
Step 7.2. Elliptic estimate for Y 1 .

For Y 1 we also use the function K 0 and we have , which is enough to show that

Y 1 = 1 2 K 0 ¡ 2 p j:j (¡Y 1 + 2Y 1 ); therefore jY 1 j(x) 6 Z B ~dn (x) 1 2 K 0 ¡ 2 p jx ¡ Y j j(¡Y 1 + 2Y 1 )(Y )jdY + Z RnB ~dn (x) 1 2 K 0 ¡ 2 p jx ¡ Y j j(¡Y 1 + 2Y
jrY 1 j + jY 1 j 6 o n!1 (1) + o R!1 (1) (1 + r 1 ) 1¡ :
Step 8. Conclusion.

We conclude that there is a contradiction, as in the end of the proof of Proposition 2.1.17. This ends the proof of Proposition 2.3.5.

In the rest of this chapter, we take ; "; " 0 ; such that they satisfy the conditions of Proposition 2.3.5, and

+ (1 ¡ )" 0 > 1: 2.3.4 Proof of R B(de 1 ;d " 0 ) Re(@ d V@ z 1 (TW c (V ))) jd=d c = ¡ d c 2 + o d c !1 1 d c 2 From (2.1.2), the equation on V is TW c (V ) = E ¡ ic@ x2 V = ¡2rV 1 :rV ¡1 + (1 ¡ jV 1 j 2 )(1 ¡ jV ¡1 j 2 ) V 1 V ¡1 ¡ ic@ x2 (V 1 V ¡1 ):
We use Lemma 2.3.2 to compute

@ z1 V = @ x1 V 1 V ¡1 + @ x1 V ¡1 V 1 ¡ (¡@ x1 V 1 V ¡1 + @ x1 V ¡1 V 1 ) = 2@ x1 V 1 V ¡1 : Therefore @ z1 TW c (V ) = ¡4rV 1 :r@ x1 V ¡1 + 2(1 ¡ jV 1 j 2 )V 1 @ x1 ((1 ¡ jV ¡1 j 2 )V ¡1 ) ¡ 2 ic@ x2 (V 1 @ x1 V ¡1 ); and then Z B(de1;d " 0 ) Re(@ d V@ z1 (TW c (V ))) = ¡4 Z B(de1;d " 0 ) Re(@ d V rV 1 :r@ x1 V ¡1 ) + 2 Z B(de1;d " 0 ) Re(@ d V (1 ¡ jV 1 j 2 ) V 1 @ x1 ((1 ¡ jV ¡1 j 2 ) V ¡1 )) ¡ 2 Z B(de 1 ;d " 0 ) Re(@ d V i c@ x 2 (V 1 @ x 1 V ¡1 )):
We want to compute this quantity at d = d c . We omit the subscript and use only d in this proof. In fact, it works for any d such that

1 2d 6 c 6 2 d .
Step

1. Proof of R B(de1;d " 0 ) Re(@ d V (1 ¡ jV 1 j 2 ) V 1 @ x 1 ((1 ¡ jV ¡1 j 2 ) V ¡1 )) = o d!1 ¡ 1 d 2 . First remark that @ x 1 ((1 ¡ jV ¡1 j 2 )V ¡1 ) = O d!1 ¡ 1 d 3 in B(de 1 ~; d " 0
) by Lemma 2.3.4 and

(1 ¡ jV 1 j 2 )V 1 @ d V = O r 1 !1 1 r 1 3 therefore Z B(de 1 ;d " 0 ) Re(@ d V (1 ¡ jV 1 j 2 ) V 1 @ x 1 ((1 ¡ jV ¡1 j 2 )V ¡1 )) = o d!1 1 d 2 :
Step 2. Proof of 

R B(de 1 ;d " 0 ) Re(@ d Vic@ x2 (V 1 @ x1 V ¡1 )) = o d!1 ¡ 1 d 2 . Now we compute ic@ x2 (V 1 @ x1 V ¡1 ) = ic@ x2 V 1 @ x1 V ¡1 + ic@ x1x2 V ¡1 V 1 ; hence Z B(de1;d " 0 ) Re(@ d Vic@ x 2 (V 1 @ x 1 V ¡1 )) = ¡c Z B(de1;d " 0 ) Re(@ x 1 V 1 V ¡1 i@ x 2 V 1 @ x 1 V ¡1 ) ¡ c Z B(de1;d " 0 ) Re(@ x1 V 1 V ¡1 i@ x1x2 V ¡1 V 1 ) + c Z B(de 1 ;d " 0 ) Re(@ x 1 V ¡1 V 1 i@ x 2 V 1 @ x 1 V ¡1 ) + c Z B(de1;d " 0 ) Re(@ x1 V ¡1 V 1 i@ x1x2 V ¡1 V
Re(@ x1 V 1 V ¡1 i@ x2 V 1 @ x1 V ¡1 ) 6 c Z B(de 1 ;d " 0 ) j@ x 1 V 1 @ x 2 V 1 j jV ¡1 @ x 1 V ¡1 j 6 K Z B(de 1 ;d " 0 ) 1 (1 + r 1 2 ) 1 d 3¡" 0 6 K ln(d " 0 ) d 3¡" 0 : Since " 0 > 0, we have c Z B(de 1 ;d " 0 ) Re(@ x 1 V 1 V ¡1 i@ x 2 V 1 @ x 1 V ¡1 ) = o d!1 1 d 2 : (2.3.20)
Using Lemma 2.3.4, for the second term of (2.3.19), we have c

Z B(de1;d " 0 ) Re(@ x1 V 1 V ¡1 i@ x1x2 V ¡1 V 1 ) 6 c Z B(de1;d " 0 ) Im(@ x1 V 1 V 1 ) Re(@ x1x2 V ¡1 V ¡1 ) + c Z B(de1;d " 0 ) Re(@ x1 V 1 V 1 )Im(@ x1x2 V ¡1 V ¡1 ) 6 Z B(de1;d " 0 ) K (1 + r 1 )d 4¡" 0 6 K d 4¡2" 0 = o d!1 1 d 2 since c 6 2 d and " 0 < 1.
For the third term of (2.3.19), we obtain similarly c

Z B(de1;d " 0 ) Re(@ x1 V ¡1 V 1 i@ x2 V 1 @ x1 V ¡1 ) 6 c Z B(de1;d " 0 ) Im(V 1 @ x2 V 1 ) Re(@ x1 V ¡1 @ x1 V ¡1 ) + c Z B(de1;d " 0 ) Re(V 1 @ x2 V 1 )Im(@ x1 V ¡1 @ x1 V ¡1 ) 6 Z B(de1;d " 0 ) K (1 + r 1 )d 5¡2" 0 = o d!1 1 d 2 :
Finally, for the last term of (2.3.19), c

Z B(de 1 ;d " 0 ) Re(@ x 1 V ¡1 V 1 i@ x 1 x 2 V ¡1 V 1 ) 6 c Z B(de 1 ;d " 0 ) Im(V 1 V 1 ) Re(@ x 1 x 2 V ¡1 @ x 1 V ¡1 ) + c Z B(de 1 ;d " 0 ) Re(V 1 V 1 )Im(@ x 1 x 2 V ¡1 @ x 1 V ¡1 ) 6 Z B(de 1 ;d " 0 ) K d 5¡" 0 6 K d 5¡3" 0 = o d!1 1 d 2 :
This conclude the proof of step 2.

Step 3. Proof of

R B(de 1 ;d " 0 ) Re(@ d V (¡4rV 1 :r@ x1 V ¡1 )) = ¡ d 2 + o d!1 ¡ 1 d 2 .
We have

¡4rV 1 :r@ x 1 V ¡1 = ¡4@ x 1 V 1 @ x 1 x 1 V ¡1 ¡ 4@ x 2 V 1 @ x 1 x 2 V ¡1 :
Remark that using j@ d V j 6 K (1 + r1) and Lemma 2.3.4 once again,

Z B(de1;d " 0 ) Re(@ d V@ x1 V 1 @ x1x1 V ¡1 ) 6 Z B(de1;d " 0 ) K (1 + r 1 2 )d 3¡" 0 = o d!1 1 d 2
as for (2.3.20). Moreover,

¡4 Z B(de 1 ;d " 0 ) Re(@ d V@ x 2 V 1 @ x 1 x 2 V ¡1 ) = 4 Z B(de1;d " 0 ) Re(@ x1 V 1 V ¡1 @ x2 V 1 @ x1x2 V ¡1 ) ¡ 4 Z B(de1;d " 0 ) Re ¡ @ x1 V ¡1 V 1 @ x2 V 1 @ x1x2 V ¡1 : (2.3.21)
For the rst integral in (2.3.21), we write

4 Z B(de1;d " 0 ) Re(@ x1 V 1 V ¡1 @ x2 V 1 @ x1x2 V ¡1 ) = 4 Z B(de1;d " 0 ) Re(@ x1 V 1 @ x2 V 1 ) Re(V ¡1 @ x1x2 V ¡1 ) ¡ Im(@ x1 V 1 @ x2 V 1 )Im(V ¡1 @ x1x2 V ¡1 ):
For the rst contribution, we have

Z B(de 1 ;d " 0 ) Re(@ x1 V 1 @ x2 V 1 ) Re(V ¡1 @ x1x2 V ¡1 ) 6 Z B(de 1 ;d " 0 ) K (1 + r 1 2 )d 3¡" 0 = o d!1 1 d 2
by the same computations as (2.3.20). For the second contribution, recall from Lemma 2.1.2 that

@ x 1 V 1 = cos( 1 ) u ¡ i r 1 sin( 1 ) V 1 and @ x 2 V 1 = sin( 1 ) u + i r 1 cos( 1 ) V 1 ;
therefore

Im(@ x 1 V 1 @ x 2 V 1 ) = u r 1 jV 1 j 2 ;
and then, by Lemma 2.3.4,

¡4 Z B(de1;d " 0 ) Im(@ x1 V 1 @ x2 V 1 )Im(V ¡1 @ x1x2 V ¡1 ) = ¡4 Z B(de1;d " 0 ) u r 1 1 4 d 2 jV 1 j 2 dr 1 + o d!1 1 d 2 since Z B(de 1 ;d " 0 ) u r 1 1 4 d 2+1/4 jV 1 j 2 dr 1 = o d!1 1 d 2 :
We compute, using jV

1 j 2 = 1 2 , u = 1 0 1 and Lemma 2.1.1, ¡4 Z B(de 1 ;d " 0 ) u r 1 jV 1 j 2 4 d 2 dr 1 = ¡2 d 2 Z 0 d " 0 1 0 (r 1 )(r 1 ) dr 1 = ¡ d 2 [ 1 2 ] 0 d " 0 = ¡ d 2 + o d!1 1 d 2 :
We obtain the estimate for the rst integral in (2.3.21):

4 Z B(de1;d " 0 ) Re(@ x 1 V 1 V ¡1 @ x 2 V 1 @ x 1 x 2 V ¡1 ) = ¡ d 2 + o d!1 1 d 2 :
For the second integral in (2.3.21), we estimate

Z B(de1;d " 0 ) Re ¡ @ x1 V ¡1 V 1 @ x2 V 1 @ x1x2 V ¡1 6 Z B(de1;d " 0 ) K (1 + r 1 )d 4¡" 0 = o d!1 1 d 2 :
This ends the proof of this subsection.

Proof of @ d R B(de

1 ;d " 0 )[B(¡de 1 ;d " 0 ) Re(@ d V TW c (Q c;d )) jd=d c = ¡2 d c 2 + o d c !1 1 d c 2
In order to prove the result of this subsection, by using (2.3.1) and the result of subsection 2.3.4 we just have to show that at d = d c , Z

B(de1;" 0 ) Re(@ d VL(@ z1 ¡ c;dc )) + Z B(de1;d " 0 ) Re(@ d V (@ z1 L)(¡ c;dc )) + Z B(de1;d " 0 ) Re(@ d V@ z 1 (NL V (¡ c;d c ))) = o d c !1 1 d c 2 :
Similarly to subsection 2.3.4, we omit the subscript on d c in the proof.

Step 1. Proof of R B(de

1 ;d 3/4 ) Re(@ d VL(@ z 1 ¡ c;d )) = o d!1 ¡ 1 d 2 .
For this term, we want to do integration by parts and use that L(@ d V ) is very small, but since the integral is not on the whole space, there are the two boundary terms:

Z B(de 1 ;d " 0 ) Re(@ d VL(@ z 1 ¡ c;d )) 6 Z B(de 1 ;d " 0 ) Re(L(@ d V )@ z 1 ¡ c;d ) + Z @B(de1;d " 0 ) Re(@ d V r@ z1 ¡ c;d ) + Z @B(de1;d " 0 ) Re(r@ d V@ z1 ¡ c;d ) ;
where @B(de

1 ~; d " 0 ) is the boundary of B(de 1 ~; d " 0
). On @B(de 1 ~; d " 0 ), we have

¡ c;d = V (e c;d ¡ 1); hence @ z1 ¡ c;d = 2V 1 @ x1 V ¡1 (e c;d ¡ 1) + V@ z1 c;d e c;d (2.3.22)
and 

r@ z1 ¡ c;d = 2rV 1 @ x1 V ¡1 (e c;d ¡ 1) + 2V 1 r@ x1 V ¡1 (e c;d ¡ 1) + 2V 1 @ x1 V ¡1
~; d " 0 ) that, for any 1 > > 0, j@ z1 ¡ c;d j 6 K() d 2¡" 0 d 1¡ + K d 1+¡" 0 : (2.3.24)
Thus, still on @B(de 1 ~; d " 0 ), from Lemma 2.1.6 we compute

Z @B(de1;d " 0 ) Re(r@ d V@ z1 ¡ c;d ) 6 K d " 0 K() d 2¡" 0 d 1¡ + K d 1+¡" 0 6 K() d 3¡ + K d 1++(1¡)" 0 : Since 3 ¡ > 2 and + (1 ¡ )" 0 > 1 by (2.3.2), we have Z @B(de 1 ;d " 0 ) Re(r@ d V@ z 1 ¡ c;d ) = o d!1 1 d 2 :
For (2.3.23), we estimate on @B(de 1 ~; d " 0 ), still using Lemmas 2.1.2 and 2.3.4, Proposition 2.3.5 and (2.2.14), for any 1 > > 0,

j2rV 1 @ x1 V ¡1 (e c;d ¡ 1) + 2V 1 r@ x1 V ¡1 (e c;d ¡ 1) + 2V 1 @ x1 V ¡1 r c;d e c;d j 6 K() d 3¡ ; and jrV@ z 1 c;d e c;d + V r@ z 1 c;d e c;d + V@ z 1 c;d r c;d e c;d j 6 K d 1++(1¡)" 0 + K() e 2++(1¡)" 0 ¡ :
In particular, from (2.3.23), we can nd 1 > > 0 such that, on @B(de

1 ~; d " 0 ), jr@ z1 ¡ c;d j = o d!1 1 d 2 ; thus Z @B(de 1 ;d " 0 ) Re(@ d V r@ z 1 ¡ c;d ) = o d!1 1 d 2 :
From (2.1.45), we know that

jL(@ d V )j 6 K (1 + r ~2)d :
Moreover, by Proposition 2.3.5, we have j@ z 1 ¡ c;d j 6

K d 1+¡" 0 in B(de 1 ~; d " 0 ), which is enough to show that Z B(de1;d " 0 ) Re(L(@ d V )@ z 1 ¡ c;d ) = o d!1 1 d 2 :
Step 2. Proof of R

B(de1;d " 0 ) Re(@ d V (@ z1 L)(¡ c;d )) = o d!1 ¡ 1 d 2 .
We have

(@ z 1 L)(¡ c;d ) = 4 Re(V ¡1 @ x 1 V ¡1 ) ¡ c;d + 4 Re(@ x 1 V ¡1 V 1 ¡ c;d )V + 4 Re(V ¡ c;d ) V 1 @ x 1 V ¡1 ; thus Z B(de1;d " 0 ) Re(@ d V (@ z1 L)(¡ c;d )) = 4 Z B(de1;d " 0 ) Re(@ d V ¡ c;d )Re(V ¡1 @ x1 V ¡1 ) + 4 Z B(de 1 ;d " 0 ) Re(@ x 1 V ¡1 V 1 ¡ c;d )Re(@ d VV ) + 4 Z B(de1;d " 0 ) Re(@ d VV 1 @ x1 V ¡1 )Re(V ¡ c;d ): (2.3.25) Using j@ d V j 6 K 1 + r1 , Re(V ¡1 @ x1 V ¡1 ) = O d!1 1 d 3
and j¡ c;d j 6 K (1 + r 1 ) 1/2 d 1/2 from Lemma 2.1.6, Lemma 2.1.2 and (2.2.9) respectively, we may bound

Z B(de 1 ;d " 0 ) Re(@ d V ¡ c;d )Re(V ¡1 @ x1 V ¡1 ) 6 Z B(de 1 ;d " 0 ) K (1 + r 1 ) 1+1/2 d 3+1/2 = o d!1 1 d 2 :
The second term of (2.3.25) is

4 Z B(de1;d " 0 ) Re(@ x1 V ¡1 V 1 ¡ c;d )Re(@ d VV ):
We compute that 17/8 and jRe(@ d VV )j 6 

jRe(@ x1 V ¡1 V 1 ¡ c;d )j 6 K (1 + r 1 ) 1/8 d
K (1 + r 1 ) 3 in B(de 1 ~; d " 0 ) using j¡ c;d j 6 K (1 + r 1 )
4 Re(@ x1 V ¡1 V 1 ¡ c;d ) Re(@ d VV ) = o d!1 1 d 2 :
The last term of (2.3.25) is Z

B(de 1 ;d " 0 ) Recalling that jRe(V ¡ c;d )j 6 K jRe( )j 6 K (1 + r 1 ) 1+1/8 d 7/8 and jRe(V 1 @ x1 V ¡1 @ d V )j 6 K d 5/4 (1 + r 1 )
;

we deduce Z B(de1;d " 0 ) 4 Re(V ¡ c;d )Re(V 1 @ x1 V ¡1 @ d V ) = o d!1 1 d 2 : Step 3. Proof of R B(de1;d " 0 ) Re(@ d V@ z 1 (NL V (¡ c;d ))) = o d!1 ¡ 1 d 2 .
Recall that

@ z1 NL V ¡ ¡ c;d = 4 Re(@ x1 V ¡1 V 1 ¡ c;d )¡ c;d + 2 Re(V @ z1 ¡ c;d )¡ c;d + 2 Re(V ¡ c;d )@ z1 ¡ c;d +2 Re ¡ ¡ c;d @ z1 ¡ c;d (V + ¡ c;d ) + j¡ c;d j 2 (2@ x1 V ¡1 V 1 + @ z1 ¡ c;d ):
We write Z

B(de 1 ;d " 0 ) Re(@ d V@ z1 (NL V (¡ c;d ))) = I 1 + I 2 + I 3 + I 4 + I 5 ;
with

I 1 = Z B(de 1 ;d " 0 ) 4Re(@ d V ¡ c;d )Re(@ x1 V ¡1 V 1 ¡ c;d ); I 2 = Z B(de1;d " 0 ) 2Re(@ d V ¡ c;d )Re(V @ z1 ¡ c;d ); I 3 = Z B(de1;d " 0 ) 2Re(V ¡ c;d )Re(@ d V @ z1 ¡ c;d ); I 4 = Z B(de 1 ;d " 0 ) 2Re ¡ ¡ c;d @ z 1 ¡ c;d Re(@ d VV ) + 2Re ¡ ¡ c;d @ z 1 ¡ c;d Re(@ d V ¡ c;d ); I 5 = Z B(de 1 ;d " 0 ) j¡ c;d j 2 Re(@ d V (2@ x1 V ¡1 V 1 + @ z1 ¡ c;d )):
Estimate for I 1 .

We estimate, by using j¡ c;d j 6

K (1 + r1) 9/16 d 7/16 that jRe(@ d V ¡ c;d ) Re(@ x1 V ¡1 V 1 ¡ c;d )j 6 j¡ c;d j 2 K (1 + r 1 ) d 5/4 6 K (1 + r 1 ) 2+1/8 d 17/8
Then, since 17/8 > 2, Z

B(de 1 ;d " 0 ) 4 Re(@ d V ¡ c;d ) Re(@ x1 V ¡1 V 1 ¡ c;d ) = o d!1 1 d 2 : Estimate for I 2 .
From (2.3.22), we have 

@ z1 ¡ c;d = 2V 1 @ x1 V ¡1 (e c;d ¡ 1) + V@
jRe(V @ z1 ¡ c;d )j 6 K() d 3¡" 0 ¡ + K (1 + r 1 ) 1¡ d 1+ + K() d 2+¡ (1 + r 1 ) ¡ : Combining this with jRe(@ d V ¡ c;d )j 6 K() (1 + r 1 ) d 1¡ since j¡ c;d j 6 K() d 1¡ , we infer Z B(de1;d " 0 ) 2 Re(@ d V ¡ c;d ) Re(V @ z1 ¡ c;d ) 6 Z B(de1;d " 0 ) K() (1 + r 1 ) d 4¡" 0 ¡2 + Z B(de1;d " 0 ) K() (1 + r 1 ) 2¡ d 2+¡ + Z B(de1;d " 0 ) K() (1 + r 1 ) 1¡ d 3+¡2 ;
and since + (1 ¡ )" 0 > 1, we conclude, taking > 0 small enough, Z

B(de1;d " 0 ) 2 Re(@ d V ¡ c;d ) Re(V @ z1 ¡ c;d ) = o d!1 1 d 2 :
Estimate for I 3 .

We have from (2.3.22) that

@ z 1 ¡ c;d = 2V 1 @ x 1 V ¡1 (e c;d ¡ 1) + V@ z 1 c;d e c;d ; therefore jRe(@ d V@ z 1 ¡ c;d )j 6 K 1 (1 + r 1 )d 3¡2" 0 + 1 (1 + r 1 ) 1¡ d 1+ ;
and jRe(V

¡ c;d )j 6 K jRe( c;d )j, hence jRe(V ¡ c;d )j 6 K() (1 + r 1 ) 1+ d 1¡ ; then Z B(de1;d " 0 ) 2 Re(@ d V@ z1 ¡ c;d ) Re(V ¡ c;d ) 6 Z B(de1;d " 0 ) K() (1 + r 1 ) 2+ d 4¡2" 0 ¡ + Z B(de1;d " 0 ) K() (1 + r 1 ) 2+ ¡ d 2+¡ = o d!1 1 d 2
by taking > 0 small enough and using + (1 ¡ )" 0 > 1.

Estimate for I 4 .

Recall that jRe(@ d VV )j 6 K (1 + r 1 ) 3 ; and we have

jRe(@ d V ¡ c;d )j 6 K (1 + r 1 ) 1+6/8 d 2/8 since j¡ c;d j 6 K (1 + r1) 1+6/8 d 2/8 . Therefore, with 1 d 6 K (1 + r 1 ) , jRe(@ d VV ) + Re(@ d V ¡ c;d )j 6 K (1 + r 1 ) 2
Now, we use j¡ c;d j 6 K()

(1 + r1) d 1¡ and Proposition 2.3.5 to get jRe ¡ ¡ c;d @ z1 ¡ c;d j 6 K (1 + r 1 ) ¡ d 2+¡ 0 :
We conclude as for the previous estimates, Z

B(de1;d " 0 ) 2(Re(@ d VV ) + Re(@ d V ¡ c;d )) Re ¡ ¡ c;d @ z 1 ¡ c;d = o d!1 1 d 2 :
Estimate for I 5 .

We have, by Proposition 2.3.5, Therefore, for > 0 small enough, since

jRe(@ d V (@ x1 V ¡1 V 1 + @ z1 ¡ c;d ))j 6 K (1 + r 1 ) 1 d 2¡" 0 + 1 (1 + r 1 ) 1¡ d 2+¡
+ (1 ¡ )" 0 > 1, Z B(de 1 ;d " 0 ) j¡ c;d j 2 Re(@ d V (2@ x 1 V ¡1 V 1 + @ z 1 ¡ c;d )) = o d!1 1 d 2
which concludes the estimates.

Proof of @

c d c = ¡ 1 c 2 + o c!0 ¡ 1 c 2
Recall that d c is dened by the implicit equation

Z B(de1;d " 0 )[B(¡de1;d " 0 ) Re(@ d V TW c (Q c;d )) = 0:
We showed in subsection 2.3.5 that

@ d Z B(de1;d " 0 )[B(¡de1;d " 0 ) Re(@ d V TW c (Q c;d )) |d=dc = ¡2 d c 2 + o dc!1 1 d c 2 :
Therefore, by the implicit function theorem,

@ c d c = @ c R B(de1;d " 0 )[B(¡de1;d " 0 ) Re(@ d V TW c (Q c;d )) |d=d c ¡2 d c 2 + o d c !1 1 d c 2 :
We compute for

TW c (Q c;d ) = ¡ic@ x 2 Q c;d ¡ Q c;d ¡ (1 ¡ jQ c;d j 2 ) Q c;d that, with @ c Q c;d = @ c (V + ¡ c;d ) = @ c ¡ c;d at xed d, we have (still at xed d) @ c (TW c (Q c;d )) = ¡i@ x2 Q c;d ¡ L Qc;d (@ c ¡ c;d );
where

L Q c;d (h) := ¡h ¡ ic@ x 2 h ¡ (1 ¡ jQ c;d j 2 )h + 2Re(Q c;d h)Q c;d :
We are left with the computation of

@ c Z B(de 1 ;d " 0 )[B(¡de 1 ;d " 0 ) Re(@ d V TW c (Q c;d )) |d=d c = ¡ Z B(de1;d " 0 )[B(¡de1;d " 0 ) Re(@ d V (i@ x2 Q c;d )) |d=dc ¡ Z B(de1;d " 0 )[B(¡de1;d " 0 ) Re(@ d VL Qc (@ c ¡ c;d )) |d=dc :
As above, we omit the subscript in d c for the computations.

Step 1. Proof of R

B(de1;d " 0 )[B(¡de1;d " 0 ) Re(@ d V (¡i@ x 2 Q c )) |d=d c = 2 + o c!0 (1).
We have

@ x2 Q c = @ x2 V + @ x2 ¡ c;d , hence ¡ Z B(de 1 ;d " 0 )[B(¡de 1 ;d " 0 ) Re(@ d V (i@ x 2 Q c )) = ¡ Z B(de1;d " 0 )[B(¡de1;d " 0 ) Re(i@ d V @ x2 V )) ¡ Z B(de1;d " 0 )[B(¡de1;d " 0 ) Re(i @ d V@ x2 ¡ c;d ): Since j@ d V j 6 K (1 + r 1 ) and j@ x2 ¡ c;d j 6 K (1 + r 1 ) 1+1/2 d 1/2 ; we have Z B(de 1 ;d " 0 ) Re(i@ d V @ x 2 ¡ c;d ) = o c!0 (1): Furthermore, ¡ Z B(de 1 ;d " 0 ) Re(i@ d V @ x 2 V ) = Z B(de 1 ;d " 0 ) Re ¡ i @ x 1 V 1 @ x 2 V 1 + o c!0 (1);
and we already computed in (2.1.43) that Z

R 2 Re(i@ x 2 V 1 @ x 1 V 1 ) = ¡ + o c!0 (c 1/4 ) hence Z B(de1;d " 0 )[B(¡de1;d " 0 ) Re(@ d V (¡i@ x 2 Q c )) |d=d c = 2 + o c!0 (1): Step 2. Proof of R B(de1;d " 0 )[B(¡de1;d " 0 ) Re(@ d VL Qc (@ c ¡ c;d )) |d=dc = o c!0 (1).
From the denition of ¡ c;d , at xed d, we have

@ c ¡ c;d = V@ c c;d + (1 ¡ )V@ c c;d e c;d : (2.3.26)
We have, by denition,

L Qc (@ c ¡ c;d ) = ¡ic@ x2 @ c ¡ c;d ¡ @ c ¡ c;d ¡ (1 ¡ jQ c j 2 )@ c ¡ c;d + 2Re(Q c @ c ¡ c;d )Q c ;
and using j@ d V j 6

K (1 + r 1 ) with j@ x2 @ c ¡ c;d j 6 K c ¡1/2
(1 + r1) 1+1/2 since @c¡c;d V ;1/2;d 6 Kc ¡3/4 from Lemma 2.2.9 and (2.3.26), we have

Z B(de 1 ;d " 0 ) Re(@ d V (¡ic@ x 2 @ c ¡ c;d )) 6 K Z B(de 1 ;d " 0 ) c 1/4 (1 + r 1 ) 2+1/2 = o c!0 (1):
The estimate on B(¡de 1 ~; d " 0 ) is similar.

We dene

L ~Qc (h) := ¡h ¡ (1 ¡ jQ c j 2 )h + 2Re(Q c h)Q c
and we are then left with the computation of Z

B(de1;d " 0 ) Re ¡ @ d V L ~Qc (@ c ¡ c;d ) ;
the part on B(¡de 1 ~; d " 0 ) being symmetrical. We want to put the linear operator onto @ d V since L ~Qc (@ d V ) is close to L V (@ d V ) which is itself small. We then integrate by parts:

Z B(de 1 ;d " 0 ) Re ¡ @ d V L ~Qc (@ c ¡ c;d ) 6 Z B(de 1 ;d " 0 ) Re ¡ L ~Qc (@ d V ) @ c ¡ c;d + Z @B(de 1 ;d " 0 ) Re(@ d V r@ c ¡ c;d ) + Z @B(de 1 ;d " 0 )
Re(r@ d V @ c ¡ c;d ) :

We have on @B(de 

1 ~; d " 0 ), that j@ d V j 6 K d 3/4 ; jr@ d V j 6 K d 3/
d 5/8¡ and j@ c ¡ c;d j 6 K()d 1/2¡ d (3/4)(1/2) 6 K()d 1/8¡
. We then obtain, for > 0 small enough,

Z @B(de1;d " 0 ) Re(@ d V r@ c ¡ c;d ) 6 Z @B(de1;d " 0 ) j@ d V jjr@ c ¡ c;d j 6 d 3/4 K()d 2 d 3/4 d 5/8 = o c!0 (1); Z @B(de1;d " 0 ) Re(r@ d V @ c ¡ c;d ) 6 Z @B(de1;d " 0 ) jr@ d V jj@ c ¡ c;d j 6 d 3/4 K() d 1/8+ d 3/2 = o c!0 (1): Therefore, Z B(de1;d " 0 ) Re ¡ @ d V L ~Qc (@ c ¡ c;d ) = Z B(de1;d " 0 ) Re ¡ L ~Qc (@ d V ) @ c ¡ c;d + o c!0 (1):
Now, from (2.1.45), we have that that

jL V (@ d V )j 6 K (1 + r ~2)d
and by Lemma 2.2.9 and (2.3.26), we have j@ c ¡ c;d j 6

Kd 1/4 (1 + r1) 1/2 , hence Z B(de1;d " 0 ) Re(L V (@ d V ) @ c ¡ c;d ) 6 K Z B(de1;d " 0 ) 1 (1 + r 1 ) 2+1/2 d 1/4 = o c!0 (1):
We deduce from this that Z

B(de1;d " 0 ) Re ¡ @ d V L ~Qc (@ c ¡ c;d ) = Z B(de1;d " 0 ) Re ¡¡ L ~Qc ¡ L V (@ d V ) @ c ¡ c;d + o c!0 (1): We have L ~Qc (h) = ¡h ¡ (1 ¡ jQ c j 2 )h + 2Re(Q c h)Q c and L V (h) = ¡h ¡ (1 ¡ jV j 2 )h + 2Re(V h)V , therefore ¡ L ~Qc ¡ L V (@ d V ) = (jQ c j 2 ¡ jV j 2 )@ d V + 2Re(V @ d V )(Q c ¡ V ) + 2Re(Q c ¡ V @ d V )Q c :
We have by (2.2.17) that jjQ c j 2 ¡ jV j 2 j 6 K c 3/4 (1 + r ~)1+1/4 , hence

Z B(de1;d " 0 ) Re( (jQ c j 2 ¡ jV j 2 )@ d V@ c ¡ c;d ) 6 K Z B(de1;d " 0 ) c 1/4 (1 + r 1 ) 2+3/4 = o c!0 (1):
We have from (2.2.16) that jQ c ¡ V j 6 c 3/4 (1 + r ~)1/4 , and, in B(de 1 ~; d " 0 ), we have (by Lemmas 2.1.1 and

2.1.2) that jRe(V @ d V )j 6 K (1 + r 1 ) 3 , therefore Z B(de1;d " 0 ) Re( 2Re(V @ d V )(Q c ¡ V )@ c ¡ c;d ) 6 K Z B(de1;d " 0 ) c 1/4 (1 + r 1 ) 3+3/4 = o c!0 (1):
Finally, by using the same estimates, we have

Z B(de 1 ;d " 0 ) Re( 2Re(Q c ¡ V @ d V )Q c @ c ¡ c;d ) 6 K Z B(de 1 ;d " 0 ) c 3/4 (1 + r 1 ) 1+1/4 jRe(Q c @ c ¡ c;d )j: We compute Re(Q c @ c ¡ c;d ) = Re(V@ c ¡ c;d ) + Re(¡ c;d @ c ¡ c;d ):
By using @c¡c;d V ;1/2;d 6 K()c ¡1/2¡ from Lemma 2.2.2 and (2.3.26), we have jRe(V@ c ¡ c;dc )j 6

K() c ¡1/2¡

(1 + r 1 ) 3/2 . Furthermore, with j¡ c;d j 6

K c 1/2 (1 + r 1 ) 1/2 , we have jRe(¡ c;d @ c ¡ c;d )j 6 K()c ¡
(1 + r1) : With these estimates, we infer, taking > 0 small enough,

Z B(de 1 ;d " 0 ) Re( 2Re(Q c ¡ V @ d V )Q c @ c ¡ c;d ) = o c!0 (1)
which ends the proof of Z

B(de1;d " 0 ) Re ¡¡ L ~Qc ¡ L V (@ d V ) @ c ¡ c;d = o c!0 (1):
Step 3. Conclusion.

We showed that

@ c d c = 2 + o c!0 (1) ¡2 d c 2 + o dc!1 1 d c 2 ;
therefore, with

d c = 1 + oc!0(1) c
from Proposition 2.1.26 we have

@ c d c = ¡ 1 + o c!0 (1) c 2 :
As a result of subsection 2.3.5, at xed c, therefore, there exists d 0 such that (c; d 0 ) = 0 and @ d ((c; d 0 )) |d=d 0 > 0, but then, since (c; d 0 ) = 0, we have @ d ((c; d)) |d=d 0 < 0, which is in contradiction with @ d ((c; d 0 )) |d=d 0 > 0. Now that we have uniqueness in the choice of d c (in

@ d Z B(de 1 ;d " 0 )[B(¡de 1 ;d " 0 ) Re(@ d V TW c (Q c;d )) |d=dc = /
1 2c ; 2 c
), we have uniqueness of c;d in the set 2 C 1 (R 2 ; C); kk ;;dc 6 K 0 (; 0 )c 1¡ 0 for K 0 (; 0 ) > 0 dened in Proposition 2.1.21.

Proof of the estimate on @ c Q c

We conclude the proof of Theorem 1.3.1 with the following lemma. Lemma 2.3.6. For any 0 < < 1, there exist c 0 () > 0 such that for any c < c 0 (),

@ c Q c V + 1 + o c!0 (1) c 2 @ d V |d=d c V ;;dc = o c!0 1 c 2 :
With this estimate and by using the same computations as in the proof of Lemma 2.2.6, we show that

@ c Q c + 1 + o c!0 (1) c 2 @ d (V 1 (: ¡ de 1 ~)V ¡1 (: + de 1 ~)) |d=d c p = o c!0 1 c 2 :

Chapter 3 Coercivity and applications

This chapter is devoted to the proofs of the results in section 1.4. Section 3.1 is devoted to the proof of Proposition 1.4.1. We start by giving some estimates on the branch of travelling waves in subsection 3.1.1, we then show the equivalents when c ! 0 for the energy and momentum, as well as the relations between them and some specic values of the quadratic form in subsection 3.1.2. Finally, in subsection 3.1.3, we study the travelling wave near its zeros. In section 3.2, we infer some properties of the space H Qc . First, we explain why we can not have a coercivity result in the energy norm in subsection 3.2.1, and we show the well posedness of several quantities in subsections 3.2.2 and 3.2.3. A density argument is given in subsection 3.2.4, that will be needed for the proof of Proposition 1.4.3.

Section 3.3 is devoted to the proofs of Propositions 1.4.2 and 1.4.3. We start by writing the quadratic form for test functions in a particular form (subsection 3. The next part, section 3.4, is devoted to the proof of Theorem 1.4.4 and its corollaries. We show the coercivity under four orthogonality conditions by showing that we can modify the initial function by a small amount to have the four orthogonality conditions of Proposition 1.4.3, and that the error commited is small in the coercivity norm. We then focus on the corollaries of Theorem 1.4.4 in subsection 3.4.5. We show there composition of the kernel of L Qc (Corollary 1.4.5), and the results in H 1 (R 2 ): Corollary 1.4.6, Proposition 1.4.7 and Corollary 1.4.9.

The penultimate section (3.5) is devoted to the proofs of Proposition 1.4.10, 1.4.11 and Theorem 1.4.12. In subsection 3.5.1, we study the space H Q c exp , in particular we give a density argument, that allows us to nish the proof of Proposition 1.4.10. Then, in subsection 3.5.2, we compute how the additional orthogonality condition improves the coercivity norm, both in the symmetric and non symmetric case, and we can then show Proposition 1.4.11 and Theorem 1.4.12. Section 3.6 is devoted to the proof of Theorem 1.4.13. We use here classical methods for the proof of local uniqueness, by modulating on the ve parameters of the family, and using a coercivity result. One of the main point is to write the problem additively near the zeros of Q c and multiplicatively far from them. The reason for that is that we do not know the link between the speed and the position of the zeros of a travelling wave in general, and we therefore cannot write a perturbation multiplicatively in the whole space. Because of that, we require here an orthogonality on the phase, and we cannot avoid it, as we did for instance the proof of Proposition 1.4.3 by choosing correctly the position of the vortices.

We will use many cutos in the proofs. As a rule of thumb, a function written as ; or will be smooth and have value 1 at innity and 0 in some compact domain. The function itself is reserved for B Qc and B Qc exp (see equations (1.4.3) and (1.4.4)).

Properties of the branch of travelling waves

This section is devoted to the proof of Proposition 1.4.1. In subsection 3.1.1, we recall some estimates on Q c dened in Theorem 1.3.1 from previous works ( [7], [START_REF] Gravejat | Decay for travelling waves in the Gross-Pitaevskii equation[END_REF], [START_REF] Hervé | Étude qualitative des solutions réelles d'une équation diérentielle liée à l'équation de Ginzburg-Landau[END_REF] and Chapter 2). In subsection 3.1.2, we compute some equalities and equivalents when c! 0 on the energy, momentum and the four particular directions (@ x1 Q c ; @ x2 Q c ; @ c Q c and @ c ?Q c ). Finally, the properties of the zeros of Q c are studied in subsection 3.1.3. and for 0 < < 0 < 1, there exists K(; 0 ) > 0 such that

jD 2 Im( c )j + jrRe( c )j + jr 2 Re( c )j 6 K(; 0 )c 1¡ 0 (1 + r ~)2+ : (3.1.11)
From Lemmas 1.2.1, with Theorem 1.3.1, we deduce in particular that for c small enough, there exist universal constants K 1 ; K 2 > 0 such that on R 2 nB(d c e 1 ~; 1) we have

K 1 6 jQ c j 6 K 2 : (3.1.12)
To these estimates, we add two additional lemmas. We write

k k ;dc := kV k C 1 ({r ~63}) + kr ~1+ Re( )k L 1 ({r ~>2}) + kr ~2+ rRe( )k L 1 ({r ~>2}) + kr ~Im( )k L 1 ({r ~>2}) + kr ~1+ rIm( )k L 1 ({r ~>2}) ;
where r ~= min (r 1 ; r ¡1 ), with

r 1 = jx d c e 1 ~j; (3.1.13)
and with d c dened in Theorem 1.3.1. The rst lemma is about Q c and the second one about @ c Q c .

Lemma 3.1.1. For any 0 < < 1, there exist c 0 (); K() > 0 such that, for 0 < c < c 0 () and

Q c dened in Theorem 1.3.1, if ¡ c = Q c ¡ V ; then ¡ c V ;d c 6 K()c 1¡ :
Proof. This estimate is a consequence of

¡ c = (1 ¡ )V c + V (e c ¡ 1)
and equation (2.2.14).

Lemma 3.1.2. (Lemma 2.3.6)

There exists 1 > 0 > 0 such that, for all 0 < < 0 < 0 < 1,There exists c 0 (; 0 ) > 0 such that for any 0 < c < c 0 (;

0 ), Q c dened in Theorem 1.3.1, c 7 ! Q c is a C 1 function from ]0; c 0 (; 0 )[ to C 1 (R 2 ; C), and 
@ c Q c V + 1 + o c!0 (c 1¡ 0 ) c 2 @ d V |d=dc V ;dc = o c!0 ; 0 c 1¡ 0 c 2 :
These results are technical, but quite precise. They give both a decay in position and the size in c of the error term. The statement of Lemma 2.3.6 has o c!0 (1) 

and o c!0 ¡ 1 c 2 instead of respectively o c!0 (c 1¡ 0 ) and o c!0 c 1¡ 0 c 2
, but its proof gives this better estimate (given that 0 is close enough to 1). We recall that o c!0 ; 0

(1) is a quantity going to 0 when c ! 0 at xed ; 0 . We recall that @ c rQ c = r@ c Q c . We conclude this subsection with a link between the k:k norms and k:k HQ c . We recall

k'k HQ c 2 = Z R 2 jr'j 2 + j1 ¡ jQ c j 2 jj'j 2 + Re 2 (Q c '): Lemma 3.1.3. There exists a universal constant K > 0 (independent of c) such that, for Q c dened in Theorem 1.3.1, khk H Qc 6 K h V 3/4;dc :
The value = 3/4 is arbitrary here, this estimate holds for other values of .

Proof. We compute, using Lemma 1.2.1, that Z

R 2 jrhj 2 6 K h V 3/4;d c 2 + Z {r ~>1} r h V V 2 6 K h V 3/4;d c 2 + 2 Z {r ~>1} r h V 2 + jrV j 2 jhj 2 jV j 2 :
From Lemma 1.2.1 and the denition of k:k 3/4;dc , we check that

2 Z {r ~>1} r h V 2 + jrV j 2 jhj 2 jV j 2 6 K h V 3/4;dc 2 Z {r ~>1} 1 (1 + r ~)3+1/2 6 K h V 3/4;dc 2 :
Furthermore, from equation (3.1.6) with = 1/2, we have the estimate Z

R 2 j1 ¡ jQ c j 2 jjhj 2 6 K h V 3/4;d c 2 Z R 2 1 (1 + r ~)9/4 6 K h V 3/4;d c 2 : Finally, we compute Z R 2 Re 2 (Q c h) 6 K h V 3/4;dc 2 + Z {r ~>1} Re 2 (Q c h);
and

Z {r ~>1} Re 2 (Q c h) = Z {r ~>1} Re 2 VQ c h V 6 2 Z {r ~>1} Re 2 h V Re 2 (VQ c ) + Im 2 h V Im 2 (VQ c ):
With the denition of k:k 3/4;d c , Lemmas 1.2.1 and 3.1.1, we check that

Z {r ~>1} Re 2 h V Re 2 (VQ c ) 6 K Z {r ~>1} Re 2 h V 6 K h V 3/4;dc 2 Z {r ~>1} 1 (1 + r ~)3+1/2 6 K h V 3/4;dc 2 : From Lemma 3.1.1 with = 1/2, we check that, since Im 2 (VQ c ) = Im 2 (VV + ¡ c ) = Im 2 (V ¡ c ), we have Z {r ~>1} Im 2 h V Im 2 (VQ c ) 6 K h V 3/4;d c 2 Z {r ~>1} 1 (1 + r ~)2+1/2 6 K h V 3/4;d c 2 :
Combining, these estimates, we end the proof of this lemma.

Faraway estimates on Q c

Since E(Q c ) < +1 thanks to Theorem 1.3.1, from Theorem 7 of [START_REF] Gravejat | Decay for travelling waves in the Gross-Pitaevskii equation[END_REF], we have the following result. 

j1 ¡ jQ c j 2 j 6 C(c) (1 + r) 2 ; j1 ¡ Q c j 6 C(c) 1 + r ; jrQ c j 6 C(c) (1 + r) 2 and jrjQ c jj 6 C(c) (1 + r) 3 :

Furthermore, such estimates hold for any travelling waves with nite energy (but then the constant C(c) also depends on the travelling wave, and not only on its speed).

This result is crucial to show that some terms are well dened, since it gives better decay estimates in position than the estimates in subsection 3.1.1.2 (but with no smallness in c). Remark that 1 ¡ jQ c j 2 is not necessarily positive. In fact it is not at innity (see [START_REF] Gravejat | Asymptotics for the travelling waves in the Gross-Pitaevskii equation[END_REF]). In particular, the estimate

j1 ¡ jQ c j 2 j > C(c) 1 + r 2
does not hold because of the possibility of jQ c j = 1. This happens, but only for few directions and it can be catched up. We show the following sucient result, which is needed to show that some quantities we will use are well dened. Furthermore, in these estimates, the constant depends on c, and thus can not be used in error estimates (since the smallness of the errors there will depend on c).

Lemma 3.1.5.

There exists c 0 > 0 such that, for 0 < c < c 0 , there exists C(c) > 0 such that for ' 2 H Qc and the function

Q c dened in Theorem 1.3.1, Z R 2 j'j 2 (1 + jxj) 2 dx 6 C(c) Z R 2 jr'j 2 + j1 ¡ jQ c j 2 jj'j 2 :
Proof. From Propositions 5 and 7 of [START_REF] Gravejat | Asymptotics for the travelling waves in the Gross-Pitaevskii equation[END_REF] (where = 1 ¡ jQ c j 2 ), we have in our case, for

x = r 2 R 2 with r 2 R + ; j j = 1, = ( 1 ; 2 ) 2 R 2 , that r 2 (1 ¡ jQ c j 2 )(r) ! c(c) 0 @ 1 1 ¡ c 2 2 + c 2 2 2 2 ¡ 2 2 2 1 ¡ c 2 2 + c 2 2 2 2 2 1 A
uniformly in 2 S 1 when r ! +1, where (c) > 0 depends on c and Q c . Remark that our travelling wave is axisymmetric around axis x 2 (and not x 1 for which the results of [START_REF] Gravejat | Asymptotics for the travelling waves in the Gross-Pitaevskii equation[END_REF] are given), hence the swap between 1 and 2 between the two papers. We have

1 1 ¡ c 2 2 + c 2 2 2 2 ¡ 2 2 2 1 ¡ c 2 2 + c 2 2 2 2 2 = 1 ¡ c 2 2 ¡ 2 ¡ c 2 2 2 2 1 ¡ c 2 2 + c 2 2 2 2 2 ;
this shows in particular that jQ c j = 1 when r 1 c is possible only in cones around sin()

= 2 = 1 ¡ c 2 /2 2 ¡ c 2 /2 q
. Therefore, for c small enough, for some > 0 small and R > 0 large (that may depend on c), we have Z

R 2 j1 ¡ jQ c j 2 jj'j 2 > K(c; ; R) Z R 2 n(B(0;R)[D()) j'j 2 (1 + r) 2 ;
where D() = re i 2 R 2 ; sin()

1 ¡ c 2 /2 2 ¡ c 2 /2 q 6
. We want to show that for ' 2

H Q c , Z D()[(R 2 nB(0;R)) j'j 2 (1 + r) 2 6 C(c; ; R) Z R 2 jr'j 2 + Z R 2 n(B(0;R)[D()) j'j 2 (1 + r) 2 :
For 0 any of the four angles such that sin()

1 ¡ c 2 /2 2 ¡ c 2 /2 q
= 0, we x r > 0 and look at '() as a function of the angle only. We compute, for 2 [ 0 ¡ 2 ; 0 + 2] ( > 0 being a small constant depending on such that {x = re i 2 R 2 ; 2 [ 0 + 3; 0 + ]} \ D() = ;, and such that D() is included in the union of the [ 0 ¡ ; 0 + ] for the four possible values of 0 ),

'() = '(2 + ) ¡ Z 2+ @ '()d; hence, j'()j 6 j'(2 + )j + Z 0¡ 0+3 j@ '()jd: This implies that j'()j 2 6 2j'(2 + )j 2 + K Z 0 2 j@ '()j 2 d
by Cauchy-Schwarz, and, integrating between 0 ¡ and 0 + yields

Z 0¡ 0+ j'()j 2 d 6 2 Z 0+ 0+3 j'()j 2 d + K Z 0 2 j@ '()j 2 d:
Now multiplying by

r (1 + r) 2 and integrating in r on [R; +1[, we infer Z ¡02[¡ ;] Z r 2[R;+1[ j'j 2 (1 + r) 2 rdrd 6 2 Z ¡02[;3] Z r 2[R;+1[ j'j 2 (1 + r) 2 rdrd + K(c; ; R) Z R 2 jr'j 2 dx 6 2 Z R 2 n(B(0;R)[D()) j'j 2 dx (1 + jxj) 2 + K(c; ; R) Z R 2
jr'j 2 dx; using j@ 'j 2 (1 + r) 2 6 j@ 'j 2 r 2 6 jr'j 2 : Therefore,

Z D()[(R 2 nB(0;R)) j'j 2 (1 + r) 2 6 K Z R 2 n(B(0;R)[D()) j'j 2 (1 + r) 2 dx + K(c; ; ; R) Z R 2 jr'j 2 dx; and thus Z R 2 nB(0;R) j'j 2 (1 + r) 2 6 K(c; ; ; R) Z R 2 jr'j 2 + j1 ¡ jQ c j 2 jj'j 2 :
We are left with the proof of Z

B(0;R) j'j 2 (1 + r) 2 6 K(c; ; R) Z R 2 jr'j 2 + Z R 2 nB(0;R) j'j 2 (1 + r) 2 : (3.1.14)
We argue by contradiction. We suppose that there exists a sequence

' n 2 H Qc such that R B(0;R) j'nj 2 (1 + r) 2 = 1 and R R 2 jr' n j 2 + R R 2 nB(0;R) j'nj 2 (1 + r) 2 ! 0. Since ' n is bounded in H 1 (B(0; R + 1)
), by Rellich's Theorem, up to a subsequence, we have the convergences ' n ! ' strongly in L 2 and weakly in H 1 to some function ' in B(0; R + 1). In particular R B(0;R+1) jr'j 2 = 0, hence ' is constant on B(0; R + 1), and with R

B(0;R+1)nB(0;R) j'j 2 (1 + r) 2 = 0 we have ' = 0, which is in contradiction with 1 = R B(0;R) j'nj 2 (1 + r) 2 ! R B(0;R) j'j 2
(1 + r) 2 by L 2 (B(0; R + 1)) strong convergence. This concludes the proof of this lemma.

Construction and properties of the four particular directions

Denitions

The four directions we want to study here are @ x1 Q c ; @ x2 Q c ; @ c Q c and @ c ?Q c . The rst two are derivatives of Q c with respect to the position, the third one is the derivative of Q c with respect of the speed, and we have its rst order term in Theorem 1.3.1. The fourth direction is dened in Lemma 3.1.6 below. The directions @ x1 Q c and @ x2 Q c correspond to the translations of the travelling wave, @ c Q c and @ c ?Q c to changes respectively in the modulus and direction of its speed. These directions will also appear in the orthogonality conditions for some of the coercivity results. 

~:= Q jc ~j R ¡ solves (TW c ~)(v) = i c ~:rv ¡ v ¡ (1 ¡ jvj 2 )v = 0 jvj ! 1 as jxj ! +1;
where Q jc ~j is the solution of (TW jc ~j) in Theorem 1:3:1. In particular, Q c ~is a C 1 function of and

@ Q c ~(x) = ¡R ¡ (x ? ):rQ jc ~j(R ¡ (x)): Furthermore, at = 0, the quantity @ c ?Q c := (@ Q c ~)|=0 satises @ c ?Q c (x) = ¡x ? :rQ c (x); is in C 1 (R 2 ; C) and L Qc (@ c ?Q c ) = ¡ic@ x1 Q c :
Proof. Since the Laplacian operator is invariant by rotation, it is easy to check that

Q jc ~j R ¡ solves (TW c ~)(Q jc ~j R ¡ ) = 0. The function 7 ! R is C 1 , hence (; x) 7 ! Q c ~(x) is a C 1 function, and we compute (@ Q c ~)(x) = @ (Q jc ~j R ¡ )(x) = @ (R ¡ (x)):rQ jc ~j(R ¡ (x)):
We remark that

@ (R ¡ (x)) = ¡R ¡ (x ? );
where x ? = (¡x 2 ; x 1 ), hence

@ Q c ~(x) = ¡R ¡ (x ? ):rQ jc ~j(R ¡ (x)): In particular, for = 0, @ Q c ~(x) |=0 = ¡x ? :rQ c (x): We recall that Q c ~solves i c ~:rQ c ~¡ Q c ~¡ (1 ¡ jQ c ~j2 )Q c ~= 0;
and when we dierentiate this equation with respect to (with jc ~j = c), we have

¡i@ c ~:(rQ c ~) + L Q c ~(@ Q c ~) = 0: At = 0, Q c ~= Q c , @ c ~= ¡c e ~1 and @ Q c ~|=0 = @ c ?Q c , therefore L Qc (@ c ?Q c ) = ¡ic@ x1 Q c :

Estimates on the four directions

We shall now show that the functions @ x 1 Q c ; @ x 2 Q c ; @ c Q c and @ c ?Q c are in the energy space and we will also compute their values through the linearized operator around Q c , namely

L Qc (') = ¡ ' ¡ ic@ x2 ' ¡ (1 ¡ jQ c j 2 )' + 2 Re(Q c ')Q c : Lemma 3.1.7.
There exists c 0 > 0 such that, for 0 < c < c 0 , Q c dened in Theorem 1.3.1, we have

@ x 1 Q c ; @ x 2 Q c ; @ c Q c ; @ c ?Q c 2 H Q c ;
and

L Q c (@ x 1 Q c ) = L Q c (@ x 2 Q c ) = 0; L Qc (@ c Q c ) = i@ x2 Q c ; L Qc (@ c ?Q c ) = ¡ic@ x1 Q c :
We could check that we also have [START_REF] Gravejat | Asymptotics for the travelling waves in the Gross-Pitaevskii equation[END_REF]), but we expect that @ c Q c ; @ c ?Q c 2 / L 2 (R 2 ). For @ c ?Q c , this can be shown with Lemma 3.1.6 and [START_REF] Gravejat | Asymptotics for the travelling waves in the Gross-Pitaevskii equation[END_REF].

@ x 1 Q c ; @ x 2 Q c 2 H 1 (R 2 ) (see
Proof. We have dened k'k HQ c 2 = Z R 2 jr'j 2 + j1 ¡ jQ c j 2 jj'j 2 + Re 2 (Q c '):
For any of the four functions, since they are in C 1 (R 2 ; C), the only possible problem for the integrability is at innity.

Step 1. We have

@ x1 Q c ; @ x2 Q c 2 H Qc .
From Lemma 1.2.1 and equation (3.1.11) (for

1 > 0 > = 3/4), we have Z R 2 jr@ x 1 Q c j 2 + Z R 2 jr@ x 2 Q c j 2 6 Z R 2 K(c; 0 ) (1 + r) 7/2 < +1: From Theorem 3.1.4, we have Z R 2 j1 ¡ jQ c j 2 jjrQ c j 2 + Re 2 (Q c rQ c ) 6 Z R 2 K(c) (1 + r) 4 < +1; hence @ x1 Q c ; @ x2 Q c 2 H Qc .
Step 2. We have @ c Q c 2 H Qc .

From Lemmas 3.1.2 and 3.1.3, we have that for > 0 small enough

@ c Q c + 1 + o c!0 (c ) c 2 @ d V |d=d c 2 H Q c ;
therefore we just have to check that @ d V |d=d c 2 H Q c , which is a direct consequence of Lemma 2.1.6.

Step 3. We have

@ c ?Q c 2 H Q c .
From Lemma 3.1.6, we have @ c ?Q c = ¡x ? :rQ c . With Theorem 3.1.4, Lemma 1.2.1 and equation (3.1.11), we check that Z

R 2 jr@ c ?Q c j 2 + j(1 ¡ jQ c j 2 )jj@ c ?Q c j 2 < +1:
Now, from Lemma 1.2.1 and equation (3.1.6) (with = 1/2), we have

Z R 2 Re 2 (Q c @ c ?Q c ) 6 K Z R 2 (1 + r 2 )Re 2 (rQ c Q c ) 6 K(c) Z R 2 1 (1 + r) 3 < +1; thus @ c ? Q c 2 H Q c .
Step 4. Computation of the linearized operator on

@ x 1 Q c ; @ x 2 Q c ; @ c Q c ; @ c ?Q c .
For the values in the linearized operator, since

¡ic@ x2 Q c ¡ Q c ¡ (1 ¡ jQ c j 2 )Q c = (TW c )(Q c ) = 0;
by dierentiating it with respect to x 1 and x 2 , we have

L Qc (@ x1 Q c ) = L Qc (@ x2 Q c ) = 0:
By dierentiating it with respect to c, we have (we recall that

@ c Q c 2 C 1 (R 2 ; C)) ¡i@ x2 Q c + L Qc (@ c Q c ) = 0:
Finally, the quantity L Q c (@ c ?Q c ) is given by Lemma 3.1.6.

The next two lemmas are additional estimates on the four directions that will be useful later on. They estimate in particular the dependence on c of k:k C on these four directions. Lemma 3.1.8. There exists K > 0 a universal constant, independent of c, such that, for

Q c dened in Theorem 1.3.1, k@ x1 Q c k C + k@ x2 Q c k C + kc 2 @ c Q c k C 6 K: Furthermore, for any 1 > > 0, kc@ c ? Q c k C = o c!0 (c ¡ ): Proof. We dened, for ' = Q c 2 H Qc , k'k C 2 = Z R 2 jr j 2 jQ c j 4 + Re 2 ( )jQ c j 4 :
We recall that, since

' = Q c , Z R 2 jr j 2 jQ c j 4 = Z R 2 jr' ¡ rQ c j 2 jQ c j 2 6 K Z R 2 jr'j 2 jQ c j 2 + jrQ c j 2 j'j 2 (3.1.15) Step 1. We have k@ x1 Q c k C + k@ x2 Q c k C 6 K.
From Lemmas 1.2.1 and 3.1.1 and equations (3.1.9) to (3.1.11), we have that, for r ~= min (r 1 ; r ¡1 ),

jrQ c j 6 K (1 + r ~) and jr 2 Q c j 6 K (1 + r ~)2 : Therefore, Z R 2 jr(@ x1 Q c )j 2 jQ c j 2 + jr(@ x2 Q c )j 2 jQ c j 2 6 K ;
and we also have Z

R 2 jrQ c j 2 jrQ c j 2 6 K ; thus, with equation (3.1.15), Z R 2 r @ x1 Q c Q c 2 jQ c j 4 + Z R 2 r @ x2 Q c Q c 2 jQ c j 4 6 K:
By equation (3.1.9) (for = 1/4), we have Z

R 2 Re 2 rQ c Q c jQ c j 4 6 K Z R 2 Re 2 (rQ c Q c ) 6 K Z R 2 1 (1 + r ~)5/2 6 K: We conclude that k@ x 1 Q c k C + k@ x 2 Q c k C 6 K.
Step 2. We have

kc 2 @ c Q c k C 6 K. From Lemma 3.1.2, we have, writing c 2 @ c Q c = (1 + o c!0 (1))@ d V |d=d c + h, that h V ;d c = o c!0 (1). In particular if we show that k@ d V |d=dc k C 6 K and khk C 6 K, then kc 2 @ c Q c k C 6 K. From Lemma 2.1.6, we check directly that Z R 2 jr@ d V |d=dc j 2 + j@ d V |d=d c j 2 (1 + r ~)3/2 + Re 2 (V@ d V |d=dc ) 6 K:
In particular, with (3.1.15), it implies that Z

R 2 r @ d V |d=dc Q c 2 jQ c j 4 6 K and we estimate Z R 2 Re 2 @ d V |d=dc Q c jQ c j 4 6 K Z R 2 Re 2 (V @ d V |d=d c ) + jV ¡ Q c j 2 j@ d V |d=d c j 2 6 K
with the same arguments and equation (3.1.7). Similarly, Z

R 2 r @ d V |d=dc Q c 2 jQ c j 4 6 2 Z R 2 jr@ d V |d=d c j 2 jQ c j 2 + jrQ c @ d V |d=d c j 2 6 K ; therefore k@ d V |d=d c k C 6 K.
We now have to estimate khk C . The computations are similar, since we check easily that Z

R 2 jrhj 2 + jrQ c j 2 jhj 2 6 K h V 3/4;dc 2 and Z R 2 Re 2 (Q c h) 6 K Z R 2 Re 2 (V h) + jV ¡ Q c j 2 jhj 2 6 K h V 3/4;d c 2 :
Step 3. We have kc@

c ?Q c k C = o c!0 (c ¡ ).
By denition, c@ c ?Q c = ¡c x ? :rQ c (x), and we check by triangular inequality that cjx ? j 6

K(1 + r ~) since r ~= min (jx ¡ d c ~e1 ~j; jx + d c ~e1 ~j) and c d ~c ! 1. Therefore, Z R 2 jr(c@ c ? Q c )j 2 6 c 2 Z R 2 jrQ c j 2 + Z R 2 (cjx ? j) 2 jr 2 Q c j 2 6 K 1 + Z R 2 jr 2 Q c j 2 (1 + r ~)2 :
We have jr 2 Q c j 6 jr 2 V j + jr 2 ¡ c j, and with equation (3.1.11), we check that R R 2 jr 2 ¡ c j 2 (1 + r ~)2 6 K. With computations similar to the ones of Lemmas 2.1.3 and 1.2.1, we can show that

jr 2 V j 6 K (1 + r ~)2 and jr 2 V j 6 K c (1 + r ~)3 ; therefore, for any 1 > > 0, jr 2 V j 6 Kc ¡ (1 + r ~)2+ ;
and thus, by (3.1.15), Z

R 2 r c@ c ?Q c Q c 2 jQ c j 4 6 K Z R 2 jrc@ c ?Q c j 2 jQ c j 2 + jrQ c j 2 jc@ c ?Q c j 2 6 K()c ¡2 :
Furthermore, by equations (3.1.9) (for = 1/2) and (3.1.12), we have

Z R 2 Re 2 cx ? :rQ c (x) Q c jQ c j 4 6 K Z R 2 (1 + r ~)2 Re 2 (rQ c Q c ) 6 K Z R 2 1 (1 + r ~)3 6 K: We conclude that kc@ c ? Q c k C = o c!0 (c ¡ ).

Link with the energy and momentum and computations of equivalents

In this subsection, we compute the value of the four previous particular direction @ x1 Q c ; @ x2 Q c ; @ c Q c ; @ c ?Q c on the quadratic form. In particular, we shall show that one of them is negative. Lemma 3.1.9. There exists c 0 > 0 such that for 0 < c < c 0 , and for

Q c dened in Theorem 1.3.1, for A 2 @ x1 Q c ; @ x2 Q c ; @ c Q c ; @ c ?Q c , Re(L Qc (A)A ) 2 L 1 (R 2 ) and hL Qc (@ x1 Q c ); @ x1 Q c i = hL Qc (@ x2 Q c ); @ x2 Q c i = 0; hL Qc (@ c Q c ); @ c Q c i = ¡2 + o c!0 (1) c 2 ; hL Qc (@ c ?Q c ); @ c ? Q c i = 2 + o c!0 (1): Proof. For A 2 @ x 1 Q c ; @ x 2 Q c ; @ c Q c ; @ c ?Q c , we recall from Lemma 3.1.7 that A 2 H Q c . To show that Re(L Qc (A)A ) 2 L 1 (R 2 ), we need to show that ¡Re(AA ) ¡ Re(ic@ x2 AA ) ¡ (1 ¡ jQ c j 2 )jAj 2 + 2Re 2 (Q c A) 2 L 1 (R 2 ):
For that, we check that, for some > 1/2,

k(1 + r) Ak L 1 (R 2 ) + k(1 + r) 1+ (jrAj + jRe(A)j)k L 1 (R 2 ) + k(1 + r) 2+ Im(A)k L 1 (R 2 ) + k(1 + r) 1+ Re(A)k L 1 (R 2 ) < +1: (3.1.16) 
For @ x1 Q c and @ x2 Q c , this follows from Theorem 3.1.4, and, since

L Qc (@ x1;2 Q c ) = 0, from (@ x 1;2 Q c ) = ¡ic@ x 2 x 1;2 2 Q c ¡ (1 ¡ jQ c j 2 )@ x 1;2 Q c + 2Re(Q c @ x 1;2 Q c )Q c ;
which allows to estimate (@ x1;2 Q c ) with Theorem 3.1.4, Lemma 1.2.1 and equation (3.1.11) for any > 1/2. Now, for @ c Q c , the estimates not on its Laplacian are a consequence of Lemma 3.1.2, Theorem 3.1.4 and Lemma 2.1.6. Then, from Lemma 3.1.7, we have

L Qc (@ c Q c ) = i@ x2 Q c , thus (@ c Q c ) = ¡i@ x2 Q c ¡ ic@ x2 @ c Q c ¡ (1 ¡ jQ c j 2 )@ c Q c + 2Re(Q c @ c Q c )Q c :
By Theorem 3.1.4 and Lemma 3.1.2, we have, for any > 1/2,

j(1 ¡ jQ c j 2 )@ c Q c j + j2Re(Q c @ c Q c )Q c j 6 K(c; ) (1 + r) 2+ ; j@ x2 Q c j + j@ x2 @ c Q c j 6 K(c; ) (1 + r) 1+ and jRe(@ x2 Q c )j + jRe(@ x2 @ c Q c )j 6 K(c; ) (1 + r) 2+ ;
which is enough to show the estimates for @ c Q c .

Finally, from Lemma 3.1.6 we recall that

@ c ? Q c = ¡x ? :rQ c (x)
and

L Q c (@ c ?Q c ) = ¡ic@ x 1 Q c :
Similarly, the estimates not on its Laplacian follow from Theorem 3.1.4, Lemmas 1.2.1 and 3.1.1 and equation (3.1.11). We also have

(@ c ?Q c ) = ic@ x1 Q c ¡ ic@ x2 @ c ?Q c ¡ (1 ¡ jQ c j 2 )@ c ?Q c + 2Re(Q c @ c ?Q c )Q c ;
and with the same previous estimates, we conclude that @ c ?Q c satises the required estimates.

With the denition k:k HQ c , we check that the last two terms are in L 1 (R 2 ), and for the rst two, the integrands are in L 1 (R 2 ; R) by estimates in subsections 3.1.1.1 and (3.1.16).

Step 1. We have

hL Qc (@ x1 Q c ); @ x1 Q c i = hL Qc (@ x2 Q c ); @ x2 Q c i = 0.
From Lemma 3.1.7, we have

L Q c (@ x 1 Q c ) = L Q c (@ x 2 Q c ) = 0, hence hL Qc (@ x1 Q c ); @ x1 Q c i = hL Qc (@ x2 Q c ); @ x2 Q c i = 0:
Step 2. We have

hL Q c (@ c Q c ); @ c Q c i = ¡2 + oc!0(1) c 2 .
From Lemma 3.1.7, we have

L Qc (@ c Q c ) = i@ x2 Q c ; therefore hL Q c (@ c Q c ); @ c Q c i = hi@ x 2 Q c ; @ c Q c i: (3.1.17) 
From Lemma 3.1.2, we can write

@ c Q c = ¡ 1 + oc!0(1) c 2 @ d V |d=dc + h with h V ;d c = o c!0 ¡ 1 c 2 :
Similarly, from Lemma 3.1.1, we write

Q c = V + ¡ c with ¡c V ;dc = o c!0 (1)
, and we compute

hL Q c (@ c Q c ); @ c Q c i = i@ x 2 V ; ¡ 1 + o c!0 (1) c 2 @ d V |d=d c + hi@ x 2 V ; hi + i@ x2 ¡ c ; ¡ 1 + o c!0 (1) c 2 @ d V |d=dc + hi@ x2 ¡ c ; hi: (3.1.18) By symmetry in x 1 of V , we compute hi@ x 2 V ; @ d V |d=d c i = ¡2hi@ x 2 V 1 V ¡1 ; @ x 1 V 1 V ¡1 i + 2hi@ x 2 V 1 V ¡1 ; @ x 1 V ¡1 V 1 i: In equation (2.1.43), we computed hi@ x 2 V 1 V ¡1 ; @ x 1 V 1 V ¡1 i = ¡ + o c!0 (1): Furthermore, jhi@ x2 V 1 V ¡1 ; @ x1 V ¡1 V 1 ij = Z R 2 Re(i@ x2 V 1 V 1 @ x1 V ¡1 V ¡1 ) 6 Z R 2 Re(@ x2 V 1 V 1 )Im(@ x1 V ¡1 V ¡1 ) + Z R 2 Im(@ x2 V 1 V 1 )Re(@ x1 V ¡1 V ¡1 ) :
From Lemma 1.2.1, we have the estimates

jRe(@ x2 V ¡1 V ¡1 )j 6 K (1 + r ¡1 ) 3 and jRe(@ x1 V 1 V 1 )j 6 K (1 + r 1 ) 3 ; as well as jIm(@ x2 V ¡1 V ¡1 )j 6 K 1 + r ¡1 and jIm(@ x1 V 1 V 1 )j 6 K 1 + r 1 :
We deduce, in the right half-plane, where r ¡1 > d c , that jIm(rV ¡1 V ¡1 )j = o c!0 (1) and thus

Z {x 1 >0} Re(@ x2 V 1 V 1 )Im(@ x1 V ¡1 V ¡1 ) 6 o c!0 (1) Z {x 1 >0} 1 (1 + r 1 ) 3 = o c!0 (1):
In the left half-plane, we have

1 1 + r 1 6 K 1 + r ¡1 and 1 1 + r 1 = o c!0 (1), therefore Z {x 1 60} Re(@ x2 V 1 V 1 )Im(@ x1 V ¡1 V ¡1 ) 6 o c!0 (1) Z {x 1 60} 1 (1 + r ¡1 ) 3 = o c!0 (1): We therefore have Z R 2 Re(@ x 2 V 1 V 1 )Im(@ x 1 V ¡1 V ¡1 ) = o c!0 (1); and by similar estimates, Z R 2 Im(@ x 2 V 1 V 1 )Re(@ x 1 V ¡1 V ¡1 ) = o c!0 (1): We can thus conclude that hi@ x2 V 1 V ¡1 ; @ x1 V ¡1 V 1 i = o c!0 (1): Therefore, 1 + o c!0 (1) c 2 hi@ x 2 V ; ¡@ d V |d=d c i = ¡2 c 2 + o 1 c 2 : (3.1.19) Now, we estimate jhi@ x2 V ; hij = Z R 2
Re(i@ x2 Vh )

6 o c!0 (1) + Z {r ~>1} Re(i@ x 2 Vh ) 6 o c!0 (1) + Z {r ~>1} Re i@ x2 VV h V ! because khk L 1 = o c!0
(1) and j@ x 2 V j is bounded near d ~c by a universal constant. Furthermore,

Z {r ~>1} Re i@ x2 VV h V ! 6 Z {r ~>1} Re(@ x2 VV )Im h V + Z {r ~>1} Im(@ x2 VV )Re h V :
From Lemmas 1.2.1 and 3.1.2 (taking = 1/2), we have

Z {r ~>1} Re(@ x2 VV )Im h V 6 K h V 1/2;dc Z {r ~>1} 1 (1 + r ~)3+1/2 = o c!0 1 c 2 and Z {r ~>1} Im(@ x 2 VV )Re h V 6 K h V 1/2;dc Z {r ~>1} 1 (1 + r ~)2+1/2 = o c!0 1 c 2 ; therefore jhi@ x2 V ; hij = o c!0 1 c 2 : (3.1.20)
Now, by Lemmas 1.2.1 and 3.1.1 (taking = 1/2), we have

1 + o c!0 (1) c 2 jhi@ x2 ¡ c ; @ d V |d=dc ij 6 K c 2 ¡ c V 1/2;dc Z R 2 1 (1 + r ~)2+1/2 = o c!0 1 c 2 : (3.1.21)
Finally, by Lemmas 3.1.1 and 3.1.2, we check easily that 

jhi@ x 2 ¡ c ; hij 6 K ¡ c V 3/4;dc h V 1/2;dc Z R 2 1 (1 + r ~)2+1/4 = o c!0 1 c 2 : ( 3 
hL Qc (@ c Q c ); @ c Q c i = ¡2 + o c!0 (1) c 2 :
Step 3. We have hL Qc (@ c ?Q c ); @ c ? Q c i = 2 + o c!0 (1).

From Lemma 3.1.7, we have L Qc (@ c ?Q c ) = ¡ic@ x1 Q c and from Lemma 3.1.6, we have @ c ?Q c = ¡x ? :rQ c . Therefore,

hL Qc (@ c ? Q c ); @ c ?Q c i = chi@ x1 Q c ; x ? :rQ c i: We have hi@ x1 Q c ; ¡x 2 @ x1 Q c i = ¡ Z R 2 Re(ix 2 j@ x1 Q c j 2 ) = 0; hence hL Q c (@ c ?Q c ); @ c ?Q c i = chi@ x 1 Q c ; x 1 @ x 2 Q c i: (3.1.23) From Lemma 3.1.1, we write Q c = V + ¡ c with ¡c V ;d c 6 K()c 1¡ for any 0 < < 1, and we compute hi@ x1 Q c ; x 1 @ x2 Q c i = hi@ x1 V ; x 1 @ x2 V i + hi@ x1 V ; x 1 @ x2 ¡ c i + hi@ x1 ¡ c ; x 1 @ x2 V i + hi@ x1 ¡ c ; x 1 @ x2 ¡ c i:
We write

x 1 = d c + y 1 , therefore hi@ x1 V ; x 1 @ x2 V i = d c hi@ x1 V ; @ x2 V i + hi@ x1 V ; y 1 @ x2 V i: We have hi@ x1 V ; @ x2 V i = hi@ x1 V 1 V ¡1 ; @ x2 V 1 V ¡1 i + hi@ x1 V ¡1 V 1 ; @ x2 V ¡1 V 1 i + hi@ x1 V 1 V ¡1 ; @ x2 V ¡1 V 1 i + hi@ x1 V ¡1 V 1 ; @ x2 V 1 V ¡1 i;
and, from the previous step and by symmetry, we have

hi@ x1 V 1 V ¡1 ; @ x2 V 1 V ¡1 i = hi@ x1 V ¡1 V 1 ; @ x2 V ¡1 V 1 i = + o c!0 (1)
and

jhi@ x1 V 1 V ¡1 ; @ x2 V ¡1 V 1 ij + jhi@ x1 V ¡1 V 1 ; @ x2 V 1 V ¡1 ij = o c!0 (1); thus hi@ x 1 V ; @ x 2 V i = 2 + o c!0 (1): With V 1 centered around d c e 1 ~, we write V = V 1 V ¡1 and we compute hi@ x1 V ; y 1 @ x2 V i = Z R 2 Re(iy 1 @ x1 V 1 @ x2 V 1 jV ¡1 j 2 + iy 1 @ x1 V ¡1 @ x2 V ¡1 jV 1 j 2 ) + Z R 2 Re ¡ iy 1 @ x1 V 1 V 1 V ¡1 @ x2 V ¡1 + iy 1 @ x1 V ¡1 V ¡1 V 1 @ x2 V 1 :
By decomposition in polar coordinates, with the notation of (3.1.13) and Lemma 1.2.1, we compute Z

R 2 Re(iy 1 @ x1 V 1 @ x2 V 1 jV ¡1 j 2 ) = Z 0 +1 Z 0 2 jV ¡1 j 2 1 (r 1 ) 1 0 (r 1 )cos( 1 ) r 1 dr 1 d 1 :
By integration in polar coordinates, we check that

Z 0 +1 Z 0 2 1 (r 1 ) 1 0 (r 1 )cos( 1 ) = 0; hence Z R 2 Re(iy 1 @ x1 V 1 @ x2 V 1 jV ¡1 j 2 ) = Z R 2 (1 ¡ jV ¡1 j 2 )Re(iy 1 @ x1 V 1 @ x2 V 1 ):
In particular, since, from Lemma 1.2.1, we have

(1 ¡ jV ¡1 j 2 ) 6 K (1 + r ¡1 ) 2 and j 1 0 (r 1 )j 6 K (1 + r 1 ) 3 ; we can deduce that Z R 2 Re(iy 1 @ x 1 V 1 @ x 2 V 1 jV ¡1 j 2 ) = o c!0 (1)
and, similarly, Z

R 2 Re(iy 1 @ x 1 V ¡1 @ x 2 V ¡1 jV 1 j 2 ) = o c!0 (1):
Therefore, we conclude that

hi@ x1 V ; x 1 @ x2 V i = (2 + o c!0 (1))d ~c = 2 + o c!0 (1) c :
Now, we want to show that

jhi@ x1 V ; x 1 @ x2 ¡ c ij + jhi@ x1 ¡ c ; x 1 @ x2 V ij + jhi@ x1 ¡ c ; x 1 @ x2 ¡ c ij = o c!0 1 c ;
which is enough to end the proof of this step. By triangular inequality, we have jx 1 j 6

K(1 + r ~) c
, and with Lemmas 1.2.1 and 3.1.1 (for = 1 / 2), we estimate

jhi@ x 1 V ; x 1 @ x 2 ¡ c ij = Z R 2 x 1 Re(@ x 1 VV )Im ¡ @ x 2 ¡ c V + Z R 2 x 1 Im(@ x 1 VV )Re ¡ @ x 2 ¡ c V 6 K c Z R 2 (1 + r ~) (1 + r ~)3 c 1/2 (1 + r ~)3/2 + (1 + r ~) (1 + r ~) c 1/2 (1 + r ~)5/2 ! = o c!0 1 c :
Similarly, we check with the same computations that jhi@ x1 ¡

c ; x 1 @ x2 V ij = o c!0 ¡ 1 c . Finally, using Lemma 3.1.1 (for = 1/4), we estimate jhi@ x1 ¡ c ; x 1 @ x2 ¡ c ij 6 Kc 3/2 kx 1 k L 1 ({r ~61}) + K Z {r ~>1} Re ix 1 @ x1 ¡ c V @ x2 ¡ c V :
We have kx 1 k L 1 ({r ~61}) 6 K c . Moreover, we infer

Z {r ~>1} Re ix 1 @ x 1 ¡ c V @ x 2 ¡ c V 6 Z {r ~>1} jx 1 j Re @ x 1 ¡ c V Im @ x 2 ¡ c V + Z {r ~>1} jx 1 j Im @ x1 ¡ c V Re @ x2 ¡ c V ;
and, with Lemma 3.1.1 (for = 1/4), we have

Z {r ~>1} Re ix 1 @ x1 ¡ c V @ x2 ¡ c V 6 K Z {r ~>1} jx 1 j c 3/2 (1 + r ~)3+1/2 = o c!0 (1); since jx1jc (1 + r ~) 6 K by triangular inequality. We conclude that hi@ x1 ¡ c ; x 1 @ x2 ¡ c i = o c!0 (1);
which, together with the previous estimates, shows that

hL Q c (@ c ?Q c ); @ c ?Q c i = 2 + o c!0 (1):
These quantities are connected to the energy and momentum. This is shown in this next lemma.

Lemma 3.1.10. There exists c 0 > 0 such that for 0 < c < c 0 , Q c dened in Theorem 1.3.1, we have

P 1 (Q c ) = @ c P 1 (Q c ) = 0; P 2 (Q c ) = 1 c B Qc (@ c ?Q c ) = 2 + o c!0 (1) c and @ c P 2 (Q c ) = B Qc (@ c Q c ) = ¡2 + o c!0 (1) c 2 : Furthermore, @ c E(Q c ) = c@ c P 2 (Q c );
and

E(Q c ) = (2 + o c!0 (1))ln 1 c :
Proof. We have

P 1 (Q c ) = 1 2 hi@ x1 Q c ; Q c ¡ 1i; by the symmetries (3.1.3), @ x 1 Q c is odd in x 1 and Q c ¡ 1 is even. Therefore, P 1 (Q c ) = @ c P 1 (Q c ) = 0:
We have

P 2 (Q c ) = 1 2 hi@ x2 Q c ; Q c ¡ 1i;
and from Lemma 3.1.9 and (3.1.23), we have

2 + o c!0 (1) = B Q c (@ c ?Q c ) = chi@ x 1 Q c ; x 1 @ x 2 Q c i:
By integration by parts (which can be done thanks to Theorem 3.1.4, Lemma 1.2.1 and equation (3.1.11)), we compute

hi@ x1 Q c ; x 1 @ x2 Q c i = ¡hi(Q c ¡ 1); @ x2 Q c i ¡ hi(Q c ¡ 1); x 1 @ x1x2 Q c i; and hi(Q c ¡ 1); x 1 @ x 1 x 2 Q c i = ¡hi@ x 2 Q c ; x 1 @ x 1 Q c i = hi@ x 1 Q c ; x 1 @ x 2 Q c i:
Therefore,

P 2 (Q c ) = 1 2 hi@ x1 Q c ; x 1 @ x2 Q c i = 1 c B Qc (@ c ?Q c ) = 2 + o c!0 (1) c : We have P 2 (Q c ) = 1 2 R R 2 Re(i@ x2 Q c (Q c ¡ 1)
), and we check that, with Lemmas 3.1.1 and 3.1.2 that

j@ c @ x 2 Q c (Q c ¡ 1)j + j@ x 2 Q c @ c Q c j 6 K (1 + r ~)5/2 ;
and is therefore dominated by an integrable function independent of c 2 ]c 1 ; c 2 [ given that c 1 ; c 2 > 0 are small enough. We deduce that c 7 ! P 2 (Q c ) 2 C 1 (]0; c 0 [; R) for some small c 0 > 0 and that, by integration by parts,

2@ c P 2 (Q c ) = hi@ x2 @ c Q c ; Q c ¡ 1i + hi@ x2 Q c ; @ c Q c i = 2hi@ x2 Q c ; @ c Q c i;
and, from Lemma 3.1.9 and equation (3.1.17), we have

hi@ x2 Q c ; @ c Q c i = B Qc (@ c Q c ) = ¡2 + o c!0 (1) c 2 ; therefore @ c P 2 (Q c ) = ¡2 + o c!0 (1) c 2 :
We recall that

E(Q c ) = 1 2 Z R 2 jrQ c j 2 + 1 4 Z R 2 (1 ¡ jQ c j 2 ) 2 :
We check with Lemmas 3.1.1, 3.1.2 that

j@ c rQ c :rQ c j + j@ c (jQ c j 2 )(1 ¡ jQ c j 2 )j 6 K (1 + r ~)5/2
and is therefore dominated by an integrable function independent of c 2 ]c 1 ; c 2 [ given that c 1 ; c 2 > 0 are small enough. We deduce that c 7 ! E(Q c ) 2 C 1 (]0; c 0 [; R) for some small c 0 > 0 and that,

@ c 1 2 Z R 2 jrQ c j 2 = 1 2 Z R 2 Re(rQ c r@ c Q c ) + Re(r@ c Q c rQ c ):
We check, with Theorem 3.1.4 and (TW c )(Q c ) = 0, that we can do the integration by parts, which yields

@ c 1 2 Z R 2 jrQ c j 2 = h¡Q c ; @ c Q c i:
We check similarly that

@ c 1 4 Z R 2 (1 ¡ jQ c j 2 ) 2 = ¡ Z R 2 (1 ¡ jQ c j 2 )Re(@ c Q c Q c ); hence @ c 1 4 Z R 2 (1 ¡ jQ c j 2 ) 2 = h¡(1 ¡ jQ c j 2 )Q c ; @ c Q c i: Now, since ¡ic@ x 2 Q c ¡ Q c ¡ (1 ¡ jQ c j 2 )Q c = 0, we have @ c E(Q c ) = h¡Q c ¡ (1 ¡ jQ c j 2 )Q c ; @ c Q c i = ch¡i@ x2 Q c ; @ c Q c i: Now, since P 2 (Q c ) = 1 2 hi@ x 2 Q c ; Q c ¡ 1i, we have @ c P 2 (Q c ) = 1 2 (hi@ x2 @ c Q c ; Q c ¡ 1i + hi@ x2 Q c ; @ c Q c i):
By integrations by parts, we compute

@ c P 2 (Q c ) = h¡i@ x2 Q c ; @ c Q c i:
We deduce that @ c E(Q c ) = c@ c P 2 (Q c ), and in particular, we deduce that

@ c E(Q c ) = ¡2 + o c!0 (1) c :
By integration (from some xed

c 0 > c > 0), we check that E(Q c ) = (2 + o c!0 (1))ln ¡ 1 c .
We conclude this subsection with an estimate on Q c connected to the energy that will be useful later on. Lemma 3.1.11. There exists K > 0, a universal constant independent of c, such that, if c is small enough, for

Q c dened in Theorem 1.3.1, Z R 2 jIm(rQ c Q c )j 2 jQ c j 2 6 K ln 1 c :
Proof. We recall that r 1 = jx d c e 1 ~j. Since rQ c is bounded near the zeros of Q c (by Lemmas 1.2.1 and 3.1.1), and jQ c j > K on R 2 nB(d c ~e1 ~; 1) by (3.1.12), we have Z

R 2 jIm(rQ c Q c )j 2 jQ c j 2 6 K 1 + Z {r ~>1} jIm(rQ c Q c )j 2 :
Now, by (3.1.12), Lemma 3.1.10 and the denition of the energy,

Z {r ~>1} jIm(rQ c Q c )j 2 6 Z {r ~>1} jrQ c j 2 jQ c j 2 6 K Z R 2 jrQ c j 2 6 KE(Q c ) 6 K ln 1 c :
We could check that this estimate is optimal with respect to its growth in c when c ! 0.

Zeros of Q c

In this subsection, we show that Q c has only two zeros and we compute estimates on Q c around them. In a bounded domain, a general result about the zeros of solutions to the Ginzburg-Landau problem is already known, see [START_REF] Qing | Zeros of wave functions in Ginzburg-Landau model for small[END_REF].

Lemma 3.1.12. For c > 0 small enough, the function Q c dened in Theorem 1.3.1 has exactly two zeros. Their positions are d c ~e1 ~, and, for any 0 < < 1,

jd c ¡ d c ~j = o c!0 (c 1¡ );
where d c is dened in Theorem 1.3.1.

The notation o c!0

(1) denotes a quantity going to 0 when c ! 0 at xed . Combining Lemmas 3.1.9, 3.1.10 and 3.1.12, we end the proof of Proposition 1.4.1.

Proof. From (3.1.3), we know that Q c enjoys the symmetry Q c (x 1 ; x 2 ) = Q c (¡x 1 ; x 2 ) for (x 1 ; x 2 ) 2 R 2 ,
hence we look at zeros only in the right half-plane. From Theorem 1.3.1, we have (1). In the right halfplane and outside of B(d c e 1 ~; ) for any > 0, by Lemma 1.2.1, we estimate

Q c = V 1 ¡ : ¡ d c e 1 ~V ¡1 (: + d c e 1 ~) + ¡ c with k¡ c k L 1 (R 2 ) + kr¡ c k L 1 (R 2 ) = o c!0
jQ c j > jV1 ¡ : ¡ d c e 1 ~ V ¡1 (: + d c e 1 ~)j ¡ o c!0 (1) > K() > 0
if c is small enough (depending on ). Now, we consider the smooth function

F : R R 2 ! C dened by F (; z) := ¡ V 1 ¡ : ¡ d c e 1 ~V ¡1 (: + d c e 1 ~) + ¡ c (:) (z + d c e ~1):
We have 

F (0; 0) = V 1 (0)V ¡1 (2d c e 1 ~) = 0 by Lemma 1.2.1 and F (1; z) = Q c (z + d c e ~1). For jj 6 1 and jzj 6 1, since kr¡ c k L 1 (R 2 ) = o c!0
jd z F (;z) () ¡ rV 1 (z): j = o c!0 (1)j j (3.1.24) uniformly in 2 [0; 1]. Now, from Lemma 1.2.1, we estimate (for x = re i = / 0 2 R 2 ) @ x1 V 1 (x) = cos() 0 (r) ¡ i r sin()(r) e i = (cos() ¡ i sin())e i + o r!0 (1) = + o r!0 (1);
and thus, by continuity, @ x1 V 1 (0) = > 0. Similarly, we check that @ x2 V 1 (0) = ¡i, and therefore,

rV 1 (z) = 1 ¡i + o jz j!0 (1):
Identifying C with R 2 canonically, we deduce that the Jacobian determinant of F in z, J(F ), satises

J (F )(; z) = J(V 1 )(z) + o c!0 (1) = ¡ 2 + o c!0 (1) + o jz j!0 (1) = / 0;
given that c and jz j are small enough. By the implicit function theorem, there exists 0 > 0 such that, for jj 6 0 , there exists a unique value z() in a vicinity of 0 such that F (; z()) = 0, and since @ F (;

z) = ¡ c (d c e ~1 + z) = o c!0 (c 1¡ ) uniformly in z (by (3.1.4)), it satises additionally z() = o c!0 (c 1¡ ).

Now, let us show that we can take

0 = 1. Indeed, if we dene 0 = sup > 0; ! z() 2 C 1 ([0; ]; R 2 ) > 0 and we have 0 < 1, since ! z() 2 C 1 ([0; 0 ]; R 2 ) with jd zj() = o c!0 (c 1¡ ) uniformly in [0; 0 ], it can be continuously extended to 0 with F ( 0 ; z( 0 )) = 0 and z( 0 ) = o c!0 (c 1¡ ).
Then, by the implicit function theorem at ( 0 ; z( 0 )) (since 0 < 1 with equation (3.1.24)), it can be extended above 0 , which is in contradiction with the denition of 0 .

Since

F (1; :) = Q c (: + d c e ~1), we have shown that there exists z 2 R 2 with jz j = o c!0 (c 1¡ ) such that Q c (z + d c e
~1) = 0. Now, for c small enough and j j 6 1, we have

r(Q c ( + z + d c e ~1)) = rV 1 (z) + o c!0 (1) + o jj!0 (1) = 1 ¡i + o c!0 (1) + o jj!0 (1):
We deduce, with

Q c ( + z + d c e ~1) = R 0 j j rQ c j j + z + d c e ~1 : j j d, that Q c ( + z + d c e ~1) ¡ : 1 ¡i = o j j!0 (j j) + o c!0 (1)j j:
Therefore, Q c has no other zeros in B(z + d c e ~1; ) for some > 0 independent of c. Therefore, since for c small enough, jQ c j > K() > 0 outside of B(z + d c e ~1; ) in the right half-plane, Q c has only one zero in the right half-plane. 

By the symmetry

Q c (x 1 ; x 2 ) = Q c (x 1 ; ¡x 2 ) (see (3.1.3)),
(c 1¡ ), jd c ¡ d c ~j = o c!0 (c 1¡ ):
We dene the vortices around the zeros of Q c by 

V ~1 (x) := V 1 (x d c ~e1 ~ 
jQ c ¡ V 1 ~j = o c!0 ( 1) 
;

jrQ c ¡ rV 1 ~j 6 o c!0 (1) 1 + r ~1 and jr 2 Q c ¡ r 2 V 1 ~j 6 o c!0 (1) 1 + r ~1 :
Proof. From equations (3.1.7) and (3.1.1), as well as Lemmas 2.1.6, 3.1.12 and the mean value theorem, in

B ¡ d c ~e1 ~; d ~c 1/2 , jQ c ¡ V 1 ~j 6 jQ c ¡ V j + jV ¡ V 1 ~j 6 o c!0 (1) + jV 1 (: ¡ d c ~e1 ~) ¡ V 1 ~j 6 o c!0 (1) + jd c ¡ d c ~j k@ x1 V k L 1 (R 2 ) 6 o c!0 (1); (3.1.25)
which is the rst statement.

For the second statement, we write

Q c = V 1 (: ¡ d c e 1 ~)V ¡1 (: ¡ d c e 1 ~) + ¡ c
, and from equation (3.1.5) (with some margin), we have

jr¡ c j 6 o c!0 (1) 1 + r ~1 : Furthermore, since V ~1 = V 1 (: ¡ d c ~e1 ~), r(V 1 (: ¡ d c e 1 ~)V ¡1 (: + d c e 1 ~)) ¡ rV 1 ~= rV 1 (: ¡ d c e 1 ~)V ¡1 (: + d c e 1 ~) ¡ rV 1 ~+ V 1 (: ¡ d c e 1 ~)rV ¡1 (: + d c e 1 ~); and from (3.1.2), in B ¡ d c ~e1 ~; d ~c 1/2
, we have

jrV ¡1 (: + d c e 1 ~)j 6 o c!0 (1) 1 + r ~1 : We compute rV 1 (: ¡ d c e 1 ~)V ¡1 (: + d c e 1 ~) ¡ rV 1 ~= rV 1 (: ¡ d c e 1 ~)(V ¡1 (: + d c e 1 ~) ¡ 1) ¡ rV 1 ~+ rV 1 (: ¡ d c e 1 ~)
and, from (3. (1). Finally, from Lemmas 1.2.1 and 3.1.12, we estimate (with the mean value theorem)

1.1), in B ¡ d c ~e1 ~; d ~c 1/2 , we have jV ¡1 (: + d c e 1 ~) ¡ 1j = o c!0
jrV 1 (: ¡ d c e 1 ~) ¡ rV 1 ~j 6 jd c ¡ d c ~j sup d2 d c ;d ~c [ d ~c;d c jr 2 V 1 (x ¡ d)j 6 K jd c ¡ d c ~j (1 + r ~1) 2 = o c!0 (1) (1 + r ~1) 2 ;
hence 

jrQ c ¡ rV 1 ~j 6 o c!0 (1) 1 + r ~1 : (3.1.26) Now, writing w = Q c ¡ V 1 ~, in B ¡ d c ~e1 ~; 2d ~c 1/2 , we estimate (since TW c (Q c ) = 0 and V 1 ~¡ (jV 1 ~j2 ¡ 1)V 1 ~= 0) jwj = j¡ic@ x2 Q c ¡ (1 ¡ jQ c j 2 )Q c + (1 ¡ jV 1 ~j2 )V 1 ~j 6 o c!0 (1) 1 +
jrwj = o c!0 (1) in B ¡ d c ~e1 ~; 2d ~c 1/2
. By Theorem 6.2 of [15] (taking a domain

= B x ¡ d c ~e1 ~; jx ¡ d ~ce1j 2
, and = 1 / 2, but it also holds for any 0 < < 1), we have, for

x 2 B ¡ d c ~e1 ~; 2d ~c 1/2 , (1 + r ~1) 2 jr 2 w(x ¡ d c ~e1 ~)j 6 K(kwk C 1 () + (1 + r 1 ~)2 kwk C 1 () );
and from the previous estimates, we have kwk C 1 () = o c!0 (1) and kwk C 1 () 6

oc!0(1)

(1 + r ~1) , therefore jr 2 (Q c ¡ V 1 ~)j = jr 2 wj 6 o c!0 (1) (1 + r 1 ~) : Lemma 3.1.14. In B ¡ d c ~e1 ~; d ~c 1/2 , for Q c dened in Theorem 1.3.1, we have Q c V 1 ~¡ 1 = o c!0 (c 1/10 ): In particular, Q c V 1 ~ = 1 + o c!0 (c 1/10 ):
The power 1/10 is arbitrary, but enough here for the upcoming estimations.

Proof. We recall that both Q c and V ~1 are C 1 since they are solutions of elliptic equations. We have that Q c (d c ~e1 ~) = 0 by Lemma 3.1.12, thus, for x 2 R 2 , by Taylor expansion, for jxj 6 1,

Q c (x + d c ~e1 ~) = x:rQ c (d c ~e1 ~) + O jxj!0 (jxj 2 ): From Theorem 1.3.1, we have Q c = V 1 ¡ : ¡ d c e 1 ~V ¡1 (: + d c e 1 ~) + ¡ c , therefore, with V 1 being centered around d c e 1
~for the rest of the proof,

rQ c (d c ~e1 ~) = rV 1 (d c ~e1 ~)V ¡1 (d c ~e1 ~) + V 1 (d c ~e1 ~)rV ¡1 (d c ~e1 ~) + r¡ c (d c ~e1 ~): We have V 1 (d c ~e1 ~)rV ¡1 (d c ~e1 ~) + r¡ c (d c ~e1 ~) = o c!0 (c 1/2
) by Theorem 1.3.1, Lemma 1.2.1 and (3.1.2). Furthermore, by (3.1.1), Lemmas 1.2.1 and 3.1.12,

rV 1 (d c ~e1 ~)V ¡1 (d c ~e1 ~) = rV 1 (d c ~e1 ~) + o c!0 (c 1/4 )
We deduce that

Q c (x + d c ~e1 ~) = x:(rV 1 (d c e 1 ~) + o c!0 (c 1/4 )) + O x!0 (jxj 2 ): (3.1.27) We also have V 1 ~(x + d c ~e1 ~) = x:rV 1 ~(d c ~e1 ~) + O x!0 (jxj 2 ) (since V 1 ~(d c ~e1 ~) = 0) and rV 1 (d c e 1 ~) = rV 1 ~(d c ~e1 ~), hence Q c (x + d c ~e1 ~) = V 1 ~(x + d c ~e1 ~) + x:o c!0 (c 1/4 ) + O jxj!0 (jxj 2 ):
Now, by Lemma 1.2.1, there exists K > 0 such that, in B(d c ~e1 ~; c 1/4 ) for c small enough,

jV 1 ~(x + d c ~e1 ~)j > K jxj. We deduce that Q c V 1 ~¡ 1 6 jxjo c!0 (c 1/4 ) jV 1 ~(x + d c ~e1 ~)j + O jxj!0 (jxj 2 ) jV 1 ~(x + d c ~e1 ~)j 6 o c!0 (c 1/4 ) + O jxj!0 (jxj) 6 o c!0 (c 1/5 ): Outside of B(d c ~e1 ~; c 1/4 ) and in B ¡ d c ~e1 ~; d c ~1/2
, we have jV 1 ~j > Kc 1/4 by Lemma 1.2.1, and

Q c = V 1 + O c!0 (c 1/2 )
by Theorem 1.3.1, equations (3.1.7) and (3.1.1). We deduce

Q c V 1 ~¡ 1 (x) = V 1 + O c!0 (c 1/2 ) V 1 ~¡ 1 (x) = V 1 (x) V 1 ~(x) ¡ 1 + o c!0 (c 1/10 ):
Furthermore, by Lemma 3.1.12 (for = 1/2), we have

V 1 (x) V 1 ~(x) ¡ 1 = V 1 ~(x) + O d c ¡d ~c !0 (jd c ¡ d c ~j) V 1 ~(x) ¡ 1 = O d c ¡d ~c !0 (jd c ¡ d c ~j) c 1/4 = o c!0 (c 1/10 ):
We conclude that

Qc V ~1 ¡ 1 = o c!0 (c 1/10 ) in B ¡ d c ~e1 ~; d c ~1/2 .
By the symmetries of Q c (see (3.1.3)), the result of Lemma 3.1.14 holds if we change e 1 ~by ¡e

1 ãnd V 1 ~by V ~¡1 .
We conclude this section with the proof that in

B ¡ d ~ce 1 ~; d ~c 1/2 , we have, for 2 C c 1 ¡ R 2 n d ~ce 1 ~ ; C , Z 0 2 j = / 0 j 2 d ~1 6 r ~1 2 Z 0 2 jr j 2 d ~1 : (3.1.28)
We recall that the function = / 0 is dened by

= / 0 (x) = (x) ¡ 0;1 (r ~1)
in the right half-plane, and

= / 0 (x) = (x) ¡ 0;¡1 (r ~¡1 )
in the left half-plane.

To show (3.1.28), it is enough to show that, for

2 C c 1 (R 2 n 0 ; C), we have, with x = re i , Z 0 2 ¡ Z 0 2 d 2 d 6 r 2 Z 0 2 jr j 2 d:
This is a Poincaré inequality. By decomposition in harmonics and Parseval's equality, we have

Z 0 2 ¡ Z 0 2 ()d 2 d = Z 0 2 X n2Z n (r)e i n 2 d = Z 0 2 X n2Z j n (r)j 2 d; and Z 0 2 jr j 2 d > Z 0 2 1 r 2 j@ j 2 d > Z 0 2 X n2Z i n n (r) r e in 2 d > 1 r 2 Z 0 2 X n2Z n 2 j n (r)j 2 d > 1 r 2 Z 0 2 X n2Z j n (r)j 2 d:
This concludes the proof of (3.1.28). With jQc

¡ x d ~ce 1 ~j = O r ~1!0 (r ~1 ) and (3.1.28), we have, for r ~1 6 R, Z 0 2 jQ c j 2 j = / 0 j 2 d ~1 6 K Z 0 2 r ~1 2 j = / 0 j 2 d ~1 6 K Z 0 2 r ~1 4 jr j 2 d ~1 6 K(R) Z 0 2 jQ c j 4 jr j 2 d ~1 : (3.1.29)
This result will be usefull to estimate the quantities in the orthogonality conditions.

Estimations in H Q c

We give several estimates for functions in H Qc . They will in particular allow us to use a density argument to show Proposition 1.4.3 once it is shown for test function in section 3.3. We will also explain why a coercivity result with the energy norm k:k HQ c is impossible with any number of local orthogonality conditions, and show that the quadratic form and the coercivity norm are well dened for functions in H Q c .

Comparaison of the energy and coercivity norms

In the introduction, we have dened the quadratic form by

B Qc (') = Z R 2 jr'j 2 ¡ (1 ¡ jQ c j 2 )j'j 2 + 2 Re 2 (Q c ') ¡ c Z R 2 (1 ¡ )Re(i@ x2 '' ) ¡ c Z R 2 Re(i@ x2 Q c Q c )j j 2 + 2c Z R 2 Re Im@ x2 jQ c j 2 + c Z R 2 @ x2 Re Im jQ c j 2 + c Z R 2
Re Im @ x2 (jQ c j 2 ) (see (1.4.3)). We will show in Lemma 3.2.3 below that this quantity is well dened for ' 2 H Qc .

As we have seen, the natural energy space H Qc is given by the norm

k'k H Qc 2 = Z R 2 jr'j 2 + j1 ¡ jQ c j 2 jj'j 2 + Re 2 (Q c '):
We could expect to remplace Theorem 1.4.4 by a result of the form: up to some local orthogonality conditions, for ' 2 H Qc we have

B Qc (') > K(c)k'k HQ c 2 :
However such a result can not hold. This is because of a formal zero of L Q c which is not in the space H Qc : iQ c (which comes from the phase invariance of the equation). We have

L Qc (iQ c ) = 0 and iQ c 2 / H Q c because (1 ¡ jQ c j 2 )jiQ c j 2
is not integrable at innity (see [START_REF] Gravejat | Asymptotics for the travelling waves in the Gross-Pitaevskii equation[END_REF], where it is shown that this quantity decays like 1 / r 2 ). We can then create functions in H Qc getting close to iQ c , for instance

f R = R iQ c ;
where R is a C 1 real function with value

1 if R 0 < jxj < R and value 0 if jxj < R 0 ¡ 1 or jxj > 2R. In that case, when R ! +1, kf R k HQ c ! +1 and B Qc (f R ) ! C a constant independent of R, making the inequality B Qc (') > K k'k HQ c 2
impossible (and the local orthogonality conditions are veried for R 0 large enough since f R = 0 on B(0; R 0 ¡ 1)). That is why we get the result in a weaker norm in Proposition 1.4.11: we will only get for ' 2 H Q c , up to some local orthogonality conditions,

B Qc (') > K(c)k'k H Qc exp 2 ;
where k:k H Qc exp is dened in subsection 1.4.3.1. In particular, k:k H Qc exp is not equivalent to k:k HQ c .

The coercivity norm and other quantities are well dened in H Q c

We have dened the energy space H Qc by the norm

k'k H Qc 2 = Z R 2 jr'j 2 + j1 ¡ jQ c j 2 jj'j 2 + Re 2 (Q c '):
By Lemma 3.1.5, we have that, for

' 2 H Qc , Z R 2 j'j 2 (1 + jxj) 2 dx 6 C(c)k'k HQ c 2 :
(

The goal of this subsection is to show that for ' 2 H Qc , k'k C and B Qc ('), as well as the quantities in the orthogonality conditions of Proposition 1.4.3 and Theorem 1.4.4, are well dened. This is done in Lemmas 3.2.1 to 3.2.3.

Lemma 3.2.1.

There exists c 0 > 0 such that for 0 < c 6 c 0 , there exists C(c) > 0 such that, for Q c dened in Theorem 1.3.1 and for any

' = Q c 2 H Qc , k'k C 2 = Z R 2 jr j 2 jQ c j 4 + Re 2 ( )jQ c j 4 6 C(c)k'k HQ c 2 :
Proof. We estimate for ' = Q c 2 H Qc , using equations (3.1.12), (3.2.1) and jrQ c j 6

C(c) (1 + r) 2 from Theorem 3.1.4, that Z R 2 jr j 2 jQ c j 4 = Z R 2 jr' ¡ rQ c j 2 jQ c j 2 6 K Z R 2 jr'j 2 jQ c j 2 + jrQ c j 2 jQ c j 2 6 K(c) Z R 2 jr'j 2 + j'j 2 (1 + r) 4 6 K(c)k'k H Qc 2 : Similarly, for ' = Q c , Z R 2 Re 2 ( )jQ c j 4 = Z R 2 Re 2 (Q c ') 6 k'k H Qc 2 : We conclude that Z R 2 jr j 2 jQ c j 4 + Re 2 ( )jQ c j 4 6 C(c)k'k H Qc 2 : (3.2.2)
We conclude this subsection with the proof that the quantities in the orthogonality conditions are well dened for ' 2 H Q c .

Lemma 3.2.2.

There exists K > 0 and, for c small enough, there exists K(c) > 0 such that, for

Q c dened in Theorem 1.3.1 and ' = Q c 2 H Qc , 0 < R < d ~c 1/2 , we have Z B ¡ d ~ce1;R Re @ x1 V ~1 V ~1 + Z B ¡ d ~ce1;R Re @ x2 V ~1 V ~1 6 K(c)k'k HQ c ; Z B ¡ d ~ce 1 ;R [B ¡ ¡d ~ce 1 ;R Re @ x 1;2 Q c Q c = / 0 6 K(c)k'k H Qc ; Z B ¡ d ~ce 1 ;R [B ¡ ¡d ~ce 1 ;R Re @ c Q c Q c = / 0 6 K(c)k'k HQ c and Z B ¡ d ~ce1;R [B ¡ ¡d ~ce1;R Re ¡x ? :rQ c Q c = / 0 6 K(c)k'k HQ c :
We recall that = / 0 (x) = (x) ¡ 0;1 (r ~1) in the right half-plane and = / 0 (x) = (x) ¡ 0;¡1 (r ~¡1 ) in the left half-plane, with r ~1 = jx d c ~e1 ~j and 0;1 (r ~1 ) the 0-harmonic of around d c ~e1 ~.

Proof. From Lemma 3.1.14, we have, for

' = Q c 2 H Qc , jV ~1 j = j'j V ~1 Q c 6 2j'j
given that c is small enough. We deduce by Cauchy-Schwarz, Lemmas 1.2.1 and 3.1.5 that

Z B ¡ d ~ce1;R Re @ x1 V ~1 V ~1 6 2 Z B ¡ d ~ce1;R j@ x1 V ~1 j j'j 6 K(c)k'k H 1 ¡ B ¡ d ~ce1;R 6 K(c)k'k H Qc ;
and similarly

R B ¡ d ~ce1;R Re @ x 2 V ~1 V ~1 6 K(c)k'k H Qc .
By Cauchy-Schwarz, equation (3.2.2) and Theorem 1.3.1 (for p = +1), we conclude that

Z B ¡ d ~ce 1 ;R [B ¡ ¡d ~ce 1 ;R Re @ c Q c Q c = / 0 6 K(c) Z B ¡ d ~ce 1 ;R [B ¡ ¡d ~ce 1 ;R jr j 2 jQ c j 4 s 6 K(c)k'k H Qc :
We can estimate the other terms similarly.

On the denition of B Q c

We start by explaining how to get B Qc (') from the natural quadratic form Z

R 2 jr'j 2 ¡ (1 ¡ jQ c j 2 )j'j 2 + 2Re 2 (Q c ') ¡ Re(ic@ x2 '' ):
For the rst three terms of this quantity, it is obvious that they are well dened for ' 2 H Qc , but the term ¡Re(ic@ x2 '' ) is not clearly integrable. Take a smooth cuto function such that

(x) = 0 on B(d c ~e1 ~; 1), (x) = 1 on R 2 nB(d c ~e1 ~; 2). Then, taking for now ' = Q c 2 C c 1 (R 2 ), Re(i@ x2 '' ) = Re(i@ x2 '' ) + (1 ¡ )Re(i@ x2 '' ); and writing ' = Q c , Re(i@ x 2 '' ) = Re(i@ x 2 Q c Q c )j j 2 + Re(i@ x 2 )jQ c j 2 = Re(i@ x 2 Q c Q c )j j 2 ¡ Re Im@ x 2 jQ c j 2 + Re@ x2 Im jQ c j 2 : Furthermore, Re@ x 2 Im jQ c j 2 = @ x 2 (Re Im jQ c j 2 ) ¡ @ x 2 Re Im jQ c j 2 ¡ Re Im@ x 2 jQ c j 2 ¡ Re Im @ x2 (jQ c j 2 ); thus we can write Z R 2 Re(i@ x2 '' ) = Z R 2 @ x2 (Re Im jQ c j 2 ) + Z R 2 (1 ¡ )Re(i@ x 2 '' ) + Z R 2 Re(i@ x 2 Q c Q c )j j 2 ¡ 2 Z R 2 Re Im@ x 2 jQ c j 2 ¡ Z R 2 @ x 2 Re Im jQ c j 2 ¡ Z R 2
Re Im @ x2 (jQ c j 2 ):

The only diculty here is that the rst integral is not well dened for ' 2 H Qc , but it is the integral of a derivative. Therefore, this is why we dened instead the quadratic form

B Qc (') = Z R 2 jr'j 2 ¡ (1 ¡ jQ c j 2 )j'j 2 + 2Re 2 (Q c ') ¡ c Z R 2 (1 ¡ )Re(i@ x2 '' ) ¡ c Z R 2 Re(i@ x2 Q c Q c )j j 2 + 2c Z R 2 Re Im@ x 2 jQ c j 2 + c Z R 2 @ x 2 Re Im jQ c j 2 + c Z R 2 Re Im @ x 2 (jQ c j 2 ):
It is easy to check that this quantity is independent of the choice of . We will show in Lemma 3.2.3 that this quantity is well dened for ' 2 H Qc . By adding some conditions on ',

for instance if ' 2 H 1 (R 2 ), we can show that R R 2 @ x 2 (Re Im jQ c j 2 )
is well dened and is 0. In these cases, we therefore have

B Qc (') = Z R 2 jr'j 2 ¡ (1 ¡ jQ c j 2 )j'j 2 + 2 Re 2 (Q c ') ¡ Re(ic@ x2 '' ):
This is a classical situation for Schrödinger equations with nonzero limit at innity (see [8] or [START_REF] Mari³ | Traveling waves for nonlinear Schrödinger equations with nonzero conditions at innity[END_REF]): the quadratic form is dened up to a term which is a derivative of some function in some L p space.

Lemma 3.2.3.

There exists c 0 > 0 such that, for 0 < c 6 c 0 , Q c dened in Theorem 1.3.1, there exists a constant C(c) > 0 such that, for ' = Q c 2 H Qc and a smooth cuto function such that

(x) = 0 on B(d c ~e1 ~; 1), (x) = 1 on R 2 nB(d c ~e1 ~; 2), we have Z R 2 j(1 ¡ )Re(i@ x2 '' )j + Z R 2 j Re (i@ x2 Q c Q c )j j 2 j + Z R 2 j Re Im(@ x 2 )jQ c j 2 j + Z R 2 j@ x 2 Re Im jQ c j 2 j + Z R 2 j Re Im @ x 2 (jQ c j 2 )j 6 C(c)k'k HQ c 2 : Proof. Since j1 ¡ jQ c j 2 j > K > 0 on B(d c
~e1 ~; 2) for c small enough by Lemma 1.2.1 and Theorem 1.3.1, we estimate Z

R 2 j(1 ¡ )Re(ic@ x 2 '' )j 6 C(c) Z B ¡ d ~ce1;2 [B ¡ ¡d ~ce1;2 j1 ¡ jQ c j 2 jj'jj@ x 2 'j 6 C(c)k'k H Qc 2 :
Furthermore, by (3.1.12) and Lemma 3.

1.5, Z R 2 j Re(ic@ x2 Q c Q c )j j 2 j 6 C(c) Z R 2 jrQ c jj j 2 6 C(c) Z R 2 jrQ c jj'j 2 6 C(c)k'k HQ c 2 since jrQ c j 6 C(c)
(1 + r) 2 from Theorem 3.1.4. By Cauchy-Schwarz, equations (3.1.12) and Lemma

3.2.1, Z R 2 jRe Im@ x 2 jQ c j 2 j 6 K Z R 2 Re 2 ( ) Z R 2 jr j 2 r 6 C(c)k'k HQ c 2 : (3.2.3)
Now, still by equations (3.1.12) and Lemma 3.2.1, since

@ x 2 is supported in B(d c ~e1 ~; 2)nB(d c ~e1 ~; 1), Z R 2 j@ x2 Re Im jQ c j 2 j 6 K k'k HQ c 2 :
Finally, since jrQ c j 6

C(c)

(1 + r) 2 by Theorem 3.1.4, by Cauchy-Schwarz and Lemma 3.

1.5, Z R 2 j Re Im @ x2 (jQ c j 2 )j 6 C(c) Z R 2 Re 2 ( ) Z R 2 Im 2 (1 + r) 4 r 6 C(c)k'k HQ c 2 :

Density of test functions in H Q c

We shall prove the coercivity with test functions, that are 0 in a vicinity of the zeros of Q c . This will allow us to divide by Q c in several computations. We give here a density result to show that it is not a problem to remove a vicinity of the zeros of Q c for test functions.

Lemma 3.2.4. C c 1 (R 2 n d c ~e1 ~; ¡d c ~e1 ~ ; C) is dense in H Q c for the norm k:k H Qc .
This result uses similar arguments as [10] for the density in

H V 1 .
For the sake of completeness, we give a proof of it.

Proof. We recall that

k'k H Qc 2 = Z R 2 jr'j 2 + j1 ¡ jQ c j 2 jj'j 2 + Re 2 (Q c ');
and since, for all > 0,

K 1 () Z B(0;) jr'j 2 + j'j 2 6 Z B(0;) jr'j 2 + j1 ¡ jQ c j 2 jj'j 2 + Re 2 (Q c ') 6 K 2 () Z B(0;) jr'j 2 + j'j 2 ;
by standard density argument, we have that C c 1 (R 2 ; C) is dense in H Qc for the norm k:k HQ c . We are therefore left with the proof that C c

1 (R 2 n{d c ~e1 ~; ¡d c ~e1 ~}; C) is dense in C c 1 (R 2 ; C) for the norm k:k HQ c . For that, it is enough to check that C c 1 (B(0; 2)n{0}; C) is dense in C c 1 (B(0; 2); C) for the norm k:k H 1 (B(0;2))
. This result is a consequence of the fact that the capacity of a point in a ball in dimension 2 is 0. For the sake of completeness, we give here a proof of this result.

We dene " 2 C 0 (B(0; 2); R) the radial function with When ! 0, we have by dominated convergence that R B(0;2) ";;

" (x) = 0 if jxj 6 ", " (x) = ¡ ln(jxj) ln(") + 1 if jxj 2 ["; 1] and " (x) = 1 if 2 > jxj > 1. Then, we dene "; 2 C 1 (B(0; 2); R) a radial regularisation of " with "; (x) = 0 if jxj 6 "/2 such that "; ! " in H 1 (B(0; 2)) when ! 0. Finally, we dene ";; = "; ¡ x for a small > 0. Now, given ' 2 C c 1 (B(0; 2); C), ";; ' 2 C c 1 (B(0; 2)n{0}; C) for all " > 0; > 0; > 0,
2 jr'j 2 ! R B(0;2) jr'j 2 and Z R 2 j'j 2 (x) "; "; ! j'j 2 (0) Z R 2 "; "; = ¡j'j 2 (0) Z R 2
jr "; j 2 : Now, taking ! 0, we deduce that lim

!0 lim !0 Z B(0;2) jr( ";; ')j 2 = Z B(0;2) jr'j 2 ¡ j'j 2 (0) Z R 2 jr " j 2 :
From the denition of " , we compute Z

R 2 jr " j 2 = Z " 1 1 ln(") 2 r 2 rdr = 1 ln(") 2 Z " 1 1 r dr = ¡1 ln(") ! 0
when " ! 0. We deduce that lim

"!0 lim !0 lim !0 Z B(0;2) jr( ";; ')j 2 = Z B(0;2) jr'j 2 :
This concludes the proof of this lemma.

Coercivity results in H Q c

This section is devoted to the proofs of Propositions 1.4.2 and 1.4.3. Here, we will do most of the computations with test functions, that is functions in

C c 1 ¡ R 2 n d ~ce ~1; ¡d ~ce ~1 ; C
. This will allow to do many computations, including dividing by Q c in some quantities.

Expression of the quadratic forms

We recall that if a smooth cuto function such that

(x) = 0 on B(d c ~e1 ~; 1), (x) = 1 on R 2 n(B(d c ~e1 ~; 2) [ B(¡d c ~e1 ~; 2))
, where d c ~e1 ~are the zeros of Q c . Furthermore, from [10], we recall the quadratic form around a vortex V 1 :

B V1 (') = Z R 2 jr'j 2 ¡ (1 ¡ jV 1 j 2 )j'j 2 + 2Re 2 (V 1 '):
We want to write the quadratic form around V 1 and Q c in a special form. For the one around Q c , it will be of the form

B Q c exp , dened in (1.4.4). Lemma 3.3.1. For ' = Q c 2 C c 1 (R 2 n d c ~e1 ~; ¡d c ~e1 ~ ; C), we have hL Qc ('); 'i = B Qc exp (');
where B Qc exp (') is dened in ( 1.4.4). Furthermore, for

' = V 1 2 C c 1 (R 2 n 0 ; C)
, where V 1 is centered at 0, and ~a smooth radial cuto function with value 0 in B(0; 1), and value 1 outside of B(0; 2),

B V 1 (') = Z R 2 (1 ¡ ~)(jr'j 2 ¡ (1 ¡ jV 1 j 2 )j'j 2 + 2Re 2 (V 1 ')) ¡ Z R 2 r ~:(Re(rV 1 V 1 )j j 2 ¡ 2Im(rV 1 V 1 )Re( )Im( )) + Z R 2 ~(jr j 2 jV 1 j 2 + 2Re 2 ( )jV 1 j 4 + 4Im(rV 1 V 1 )Im(r )Re( )): Proof. We recall that L Qc (') = ¡ic@ x2 ' ¡ ' ¡ (1 ¡ jQ c j 2 )' + 2Re(Q c ')Q c . Writing ' = Q c 2 C c 1 (R 2 n d c ~e1 ~; ¡d c ~e1 ~ ; C), we decompose L Q c (') = ¡ic@ x 2 Q c ¡ Q c ¡ 2rQ c :r + 2Re( )jQ c j 2 Q c + TW c (Q c ) : Since TW c (Q c ) = 0, hL Qc ('); 'i = h(1 ¡ )L Qc ('); 'i + hL Qc ('); Q c i = Z R 2 (1 ¡ )Re((¡ic@ x2 ' ¡ ' ¡ (1 ¡ jQ c j 2 )' + 2Re(Q c ')Q c )' ) + Z R 2 Re((¡ic@ x2 Q c ¡ Q c ¡ 2rQ c :r + 2Re( )jQ c j 2 Q c )Q c ): By integration by parts, Z R 2 (1 ¡ )Re((¡ic@ x2 ' ¡ ' ¡ (1 ¡ jQ c j 2 )' + 2Re(Q c ')Q c )' ) = Z R 2 (1 ¡ )(jr'j 2 ¡ Re(ic@ x2 '' ) ¡ (1 ¡ jQ c j 2 )j'j 2 + 2Re 2 (Q c ')) ¡ Z R 2
r:Re(r'' ):

Similarly, we compute Z R 2 Re((¡ic@ x 2 Q c ¡ Q c ¡ 2rQ c :r + 2Re( )jQ c j 2 Q c )Q c ) = Z R 2 (Re(¡ic@ x2 jQ c j 2 ) ¡ Re( )jQ c j 2 + 2Re 2 ( )jQ c j 4 ¡ 2Re(rQ c :r Q c )) = Z R 2 (cjQ c j 2 (Im(@ x2 )Re( ) ¡ Re(@ x2 )Im( )) + 2Re 2 ( )jQ c j 4 ¡ 2Re(rQ c :r Q c )) + Z R 2 jr j 2 jQ c j 2 + 2 Z R 2 Re(rQ c Q c ):Re(r ) + Z R 2 r:Re(r )jQ c j 2 :
We continue, we have

¡ Z R 2 jQ c j 2 Re(@ x2 )Im( ) = Z R 2 jQ c j 2 Re( )Im(@ x 2 ) + Z R 2 @ x 2 jQ c j 2 Re( )Im( ) + 2 Z R 2 Re(@ x 2 Q c Q c )Re( )Im( ); as well as Z R 2 Re(rQ c :r Q c ) = Z R 2 Re(rQ c Q c ):Re(r ) + Z R 2 Im(rQ c Q c )Im(r ); therefore Z R 2 Re((¡ic@ x2 Q c ¡ Q c ¡ 2rQ c :r + 2Re( )jQ c j 2 Q c )Q c ) = Z R 2 (jr j 2 jQ c j 2 + 2Re 2 ( )jQ c j 4 + 2cIm(@ x2 )Re( )) + Z R 2 (2cRe(@ x2 Q c Q c )Re( )Im( ) ¡ 2Im(rQ c Q c )Im(r )) + c Z R 2 @ x 2 Re( )Im( )jQ c j 2 + Z R 2 r:Re(r )jQ c j 2 : Since ic@ x 2 Q c = Q c + (1 ¡ jQ c j 2 )Q c , we have cRe(@ x 2 Q c Q c ) = Re(iQ c Q c ). By integration by parts, 2 Z R 2 Re(iQ c Q c )Re( )Im( ) = 2 Z R 2 r:Im(rQ c Q c )Re( )Im( ) ¡ 2 Z R 2 Im(rQ c Q c ):Re(r )Im( ) ¡ 2 Z R 2 
Im(rQ c Q c ):Re( )Im(r );

3.3 Coercivity results in H Qc and ¡2 Z R 2 Im(rQ c Q c )Im(r ) = ¡2 Z R 2
Im(rQ c Q c )(Im(r )Re( ) ¡ Im( )Re(r )):

Combining these estimates, with Z

R 2 r:Re(r'' ) = Z R 2 r:(Re(rQ c Q c )j j 2 + Re(r )jQ c j 2 );
we conclude the proof of

hL Q c ('); 'i = B Q c exp ('):
Now, for the proof for B V1 ('), the computations are identical, simply replacing c by 0, by ~, and

Q c by V 1 .

A coercivity result for the quadratic form around one vortex

This subsection is devoted to the proof of Proposition 1.4.2, and a localized version of it (see Lemma 3.3.2).

Coercivity for test functions

Proof. (of Proposition 1.4.2) We recall the result from [10], see Lemma 3.1 and equation (2.42) there.

If ' = V 1 2 C c 1 (R 2 n 0 ; C) with the two orthogonality conditions Z B(0;R) Re(@ x 1 V 1 ' ) = Z B(0;R) Re(@ x 1 V 1 ' ) = 0;
then, writing 0 (x) = 1 2 R 0 2 (jxj cos(); jxj sin()d), the 0-harmonic around 0 of , and = / 0 = ¡ 0 , then

B V1 (') > K Z R 2 jr(V 1 = / 0 )j 2 + jr 0 j 2 jV 1 j 2 + jV 1 = / 0 j 2 (1 + r) 2 + Re 2 ( )jV 1 j 4 :
We recall from Lemma 1.2.1 that there exists

K 1 > 0 such that K 1 6 jV1j r 6 1 K 1
, and that jV 1 j is a radial function around 0. Therefore, by Hardy inequality in dimension 4, Z B(0;1)

j 0 j 2 6 K Z B(0;2) jr 0 j 2 jV 1 j 2 + Z B(0;2)nB(0;1) j 0 j 2 :
By Poincaré inéquality, using R B(0;R)nB(0;R/2) Im( ) = 0 and jV 1 j 2 > K outside of B(0; 1), we have Z B(0;10)nB(0;1)

j 0 j 2 6 K Z B(0;R) jr 0 j 2 jV 1 j 2 + Re 2 ( 0 )jV 1 j 4 :
Here, the constant K > 0 depends on R > 0, but we consider R as a universal constant. We deduce that Z B(0;10) j'j 

jV 1 = / 0 j 2 6 K Z R 2 jr(V 1 = / 0 )j 2 + jr 0 j 2 jV 1 j 2 + jV 1 = / 0 j 2 (1 + r) 2 + Re 2 ( )jV 1 j 4 ! : Similarly, Z B(0;10) jr'j 2 6 Z B(0;10) jr(V 1 ( 0 + = / 0 ))j 2 6 K Z B(0;10) jr(V 1 0 )j 2 + Z B(0;10) jr(V 1 = / 0 )j 2 6 K Z B(0;10)
jr 0 j 2 jV 1 j 2 + j 0 j 2 jrV 1 j 2 + Z B(0;10) 

jr(V 1 = / 0 )j 2 6 K Z R 2 jr(V 1 = / 0 )j 2 + jr 0 j 2 jV 1 j 2 + jV 1 = / 0 j 2 (1 + r) 2 + Re 2 ( )
j = / 0 j 2 r 2 6 Z R 2 nB(0;5) jr j 2 :
We therefore suppose that is a radial compactly supported function. We dene a smooth radial cuto function with (r)j j(r)@ r j j(r) dr ln(r)

6 K 0 @ Z B(0;10)nB(0;5) j j 2 + Z R 2 nB(0;5) (r)j j 2 r 2 ln 2 (r) Z R 2 nB(0;5) jr j 2 s 1
A :

The proof is complete.

Localisation of the coercivity for one vortex

Now, we want to localize the coercivity result. We dene, for D > 10,

' = V 1 2 H V1 , B V1 locD (') := Z B(0;D) (1 ¡ ~)(jr'j 2 ¡ (1 ¡ jV 1 j 2 )j'j 2 + 2Re 2 (V 1 ')) ¡ Z B(0;D) r ~:(Re(rV 1 V 1 )j j 2 ¡ 2Im(rV 1 V 1 )Re( )Im( )) + Z B(0;D) ~(jr j 2 jV 1 j 2 + 2Re 2 ( )jV 1 j 4 + 4Im(rV 1 V 1 )Im(r )Re( ));
where ~is a smooth radial cuto function such that ~(x) = 0 on B(0; 1), ~(x) = 1 on R 2 nB(0; 2).

Lemma 3.3.2. There exist

K ; R; D 0 > 0 with D 0 > R, such that, for D > D 0 and ' = V 1 2 C c 1 (R 2 n 0 ; C), if the following three orthogonality conditions Z B(0;R) Re(@ x 1 V 1 ' ) = Z B(0;R) Re(@ x 2 V 1 ' ) = Z B(0;R)nB(0;R/2)
Im( ) = 0 are satised, then

B V1 locD (') > K Z B(0;10)
jr'j 2 + j'j 2 + Z B(0;D)nB(0;5) jr j 2 jV 1 j 2 + Re 2 ( )jV 1 j 4 + j j 2 r 2 ln 2 (r) : Proof. We decompose in harmonics j 2 N; l 2 1; 2 , with the same decomposition as (2.5) of [10]. This decomposition is adapted to the quadratic form B V1 locD , see equation (2.4) of [10], that also holds if the integral is only on B(0; D).

For j = 0, the proof is identical. For j > 2, l 2 1; 2 from equation (2.38) of [10] (that holds on B(0; D) as the inequality is pointwise), the proof holds if it does for j = 1, l 2 1; 2 . We therefore focus on the case j = l = 1. We write = 1 (r)cos() + i 2 (r)sin(), with 1 ;

2 2 C c 1 (R + ; R).
The other possibility (l = 2) is = 1 (r)i cos() + 2 (r)sin(), which is done similarly. We will show a more general result, that is, for any

' = V 1 2 C c 1 (R 2 n 0 ; C) satisfying the orthogonality conditions, B V1 locD (V 1 = / 0 ) > K Z B(0;10) jr(V 1 = / 0 )j 2 + jV 1 = / 0 j 2 + Z B(0;D)nB(0;5) jr = / 0 j 2 jV 1 j 2 + Re 2 ( = / 0 )jV 1 j 4 + j = / 0 j 2 r 2 ! :
With the previous remark, it is enough to conlcude the proof of this lemma. In the rest of the proof, to simplify the notation, we write instead of = / 0 , but it still has no 0-harmonic. We remark that, for D > R 0 > 2, Z B(0;D)nB(0;R0)

jr j 2 jV 1 j 2 + 2Re 2 ( )jV 1 j 4 + 4Im(rV 1 V 1 ):Im(r )Re( ) > Z B(0;D)nB(0;R0) jr j 2 jV 1 j 2 + 2Re 2 ( )jV 1 j 4 ¡ K jV 1 j 2 R 0 jIm(r )Re( )j > 1 2 Z B(0;D)nB(0;R0) jr j 2 jV 1 j 2 + 2Re 2 ( )jV 1 j 4 (3.3.1)
if R 0 is large enough. We therefore take R 0 > R large enough such that (3.3.1) holds. For D 2 > > R 0 , we dene a smooth cuto function such that (r) = 1 if r 6 , = 0 if r > 2, and j 0 j 6 K . In particular, since R 0 > 2, we have Supp( 0) Supp( ~) and Supp(1 ¡ ~) Supp( ). This implies that Z B(0;D)

(1 ¡ ~)(jr'j 2 ¡ (1 ¡ jV 1 j 2 )j'j 2 + 2Re 2 (V 1 ')) = Z B(0;D) (1 ¡ ~)(jr( ')j 2 ¡ (1 ¡ jV 1 j 2 )j 'j 2 + 2Re 2 (V 1 '))
and Z

B(0;D) r ~:(Re(rV 1 V 1 )j j 2 ¡ 2Im(rV 1 V 1 )Re( )Im( )) = Z B(0;D) r ~:(Re(rV 1 V 1 )j j 2 ¡ 2Im(rV 1 V 1 )Re( )Im( )):
Now, we decompose Z

B(0;D) ~(jr j 2 jV 1 j 2 + 2Re 2 ( )jV 1 j 4 + 4Im(rV 1 V 1 )Im(r )Re( )) = Z B(0;D) (1 ¡ 2 ) ~(jr j 2 jV 1 j 2 + 2Re 2 ( )jV 1 j 4 + 4Im(rV 1 V 1 )Im(r )Re( )) + Z B(0;D) 2 ~(jr j 2 jV 1 j 2 + 2Re 2 ( )jV 1 j 4 + 4Im(rV 1 V 1 )Im(r )Re( ));
and by equation (3.3.1), Z

B(0;D) (1 ¡ 2 ) ~(jr j 2 jV 1 j 2 + 2Re 2 ( )jV 1 j 4 + 4Im(rV 1 V 1 )Im(r )Re( )) > K Z B(0;D) (1 ¡ 2 )jr j 2 jV 1 j 2 + 2Re 2 ( )jV 1 j 4 : Furthermore, Z B(0;D) 2 ~(jr j 2 jV 1 j 2 + 2Re 2 ( )jV 1 j 4 + 4Im(rV 1 V 1 )Im(r )Re( )) = Z B(0;D) ~(jr( )j 2 jV 1 j 2 + 2Re 2 ( )jV 1 j 4 + 4Im(rV 1 V 1 )Im(r( ))Re( )) ¡ Z B(0;D)
~((jr( ) ¡ r j 2 ¡ jr( )j 2 )jV 1 j 2 ¡ 4Im(rV 1 V 1 ):r Im( )Re( ));

and thus

B V 1 locD (V 1 ) > B V1 locD (V 1 ) + K Z B(0;D) (1 ¡ 2 )jr j 2 jV 1 j 2 + 2Re 2 ( )jV 1 j 4 ¡ Z B(0;D) ~((jr( ) ¡ r j 2 ¡ jr( )j 2 )jV 1 j 2 ¡ 4Im(rV 1 V 1 ):r Im( )Re( )): Since V 1 2 C c 1 (B(0; D)), we have B V 1 locD (V 1 ) = B V 1 (V 1 )
, and since = 1 in B(0; R) and V 1 satised the orthogonality conditions, so does V 1 . By Proposition 1.4.2, we deduce that

B V 1 locD (V 1 ) > K Z B(0;10) jr(V 1 )j 2 + jV 1 j 2 + K Z B(0;D)nB(0;5)
jr( )j 2 jV 1 j 2 + Re 2 ( )jV 1 j 4 + j j 2 r 2 ln 2 (r) :

Now, remarking that jr( )j 2 jV 1 j 2 > K 1 jr j 2 2 jV 1 j 2 ¡ K 2 jr j 2 j j 2 jV 1 j 2 ;

and since = 1 in B(0; 10), we deduce that We infer that there exists D 0 > R 0 a large constant such that, for D > D 0 , for all

B V1 locD (V 1 )
' = V 1 2 C c 1 (R 2 n 0 ; C), there exists 2 h R 0 ; D0 2 i such that Z B(0;2)nB(0;) j j 2 (1 + r) 2 6 " Z B(0;D)nB(0;5) jr j 2 jV 1 j 2 (3.3.5)
for some small xed constant " > 0. Indeed, if this does not hold, then R B(0;D)nB(0;5) jr j 2 jV 1 j 2 = / 0 and Z B(0;D)nB(0;5)

j j 2 (1 + r) 2 > Z R 0 D0 j j 2 (1 + r) 2 rdr > X n=0 j log2 D 0 2R 0 k ¡2 Z 2 n R0 2 n+1 R0 j j 2 (1 + r) 2 rdr > X n=0 j log2 D 0 2R 0 k ¡2 " Z B(0;D)nB(0;5) jr j 2 jV 1 j 2 > " log 2 D 0 2R 0 ¡ 1 Z B(0;D)nB(0;5) jr j 2 jV 1 j 2 > 1 K Z B(0;D)nB(0;5) jr j 2 jV 1 j 2
for D 0 large enough. Taking " > 0 small enough, with equation (3.3.2) to (3.3.5), we conclude the proof of this lemma.

A consequence of Lemma 3.3.2 is that, for a function 

' = V 1 2 C c 1 (R 2 n 0 ; C)

Coercivity for a travelling wave near its zeros

We recall from Lemma 3. 

'i = Z R 2 (1 ¡ )(jr'j 2 ¡ Re(ic@ x2 '' ) ¡ (1 ¡ jQ c j 2 )j'j 2 + 2 Re 2 (Q c ')) ¡ Z R 2 r:(Re(rQ c Q c )j j 2 ¡ 2Im(rQ c Q c )Re( )Im( )) + Z R 2 c@ x 2 Re( )Im( )jQ c j 2 + Z R 2 (jr j 2 jQ c j 2 + 2Re 2 ( )jQ c j 4 ) + Z R 2 (4Im(rQ c Q c )Im(r )Re( ) + 2cjQ c j 2 Im(@ x 2 )Re( )):
For D > D 0 (D 0 > 0 being dened in Lemma 3.3.2), we dene, with

' = Q c , B Qc loc1;D (') := Z B ¡ d ~ce 1 ;D (1 ¡ )(jr'j 2 ¡ Re(ic@ x 2 '' ) ¡ (1 ¡ jQ c j 2 )j'j 2 + 2 Re 2 (Q c ')) ¡ Z B ¡ d ~ce1;D r:(Re(rQ c Q c )j j 2 ¡ 2Im(rQ c Q c )Re( )Im( )) + Z B ¡ d ~ce1;D c@ x2 Re( )Im( )jQ c j 2 + Z B ¡ d ~ce1;D (jr j 2 jQ c j 2 + 2Re 2 ( )jQ c j 4 ) + Z B ¡ d ~ce 1 ;D (4Im(rQ c Q c )Im(r )Re( ) + 2cjQ c j 2 Im(@ x2 )Re( )):
We infer that this quantity is close enough to B V ~1 locD (') for the coercivity to hold, with V ~1 being centered at d ~ce 1 ~, the zero of Q c in the right half plane.

Lemma 3.3.3.

There exist R; D 0 > 0 with D 0 > R, such that, for D > D 0 , 0 < c < c 0 (D) and

' = Q c 2 C c 1 ¡ R 2 n d ~ce 1 ~ ; C , if the following three orthogonality conditions Z B ¡ d ~ce1;R Re ¡ @ x 1 V ~1' = Z B ¡ d ~ce1;R Re ¡ @ x 2 V ~1' = Z B ¡ d ~ce1;R nB ¡ d ~ce1;R/2
Im( ) = 0 are satised, then

B Qc loc1;D (') > K(D)k'k H 1 ¡ B ¡ d ~ce1;D 2 :
Proof. First, remark that we write ' = Q c and not ' = V ~1 , as we did in the proof of Proposition 1.4.2. Hence, to apply Lemma 3.3.2, the third orthogonality condition becomes

Z B ¡ d ~ce1;R nB ¡ d ~ce1;R/2 Im Q c V ~1 = 0:
With Lemma 3.1.14, we check that

Z B ¡ d ~ce 1 ;R nB ¡ d ~ce 1 ;R/2 Im Q c V ~1 6 Z B ¡ d ~ce 1 ;R nB ¡ d ~ce 1 ;R/2 Im( ) + o c!0 (1)k k L 2 ¡ B ¡ d ~ce 1 ;R nB ¡ d ~ce 1 ;R/2 6 Z B ¡ d ~ce 1 ;R nB ¡ d ~ce 1 ;R/2 Im( ) + o c!0 D (1)k'k H 1 ¡ B ¡ d ~ce 1 ;D ;
therefore, by standard coercivity argument, we can change this orthogonality condition, given that c is small enough (depending on D). With equation (3.3.6), it is therefore enough to show that

jB Q c locD (') ¡ B V ~1 locD (')j 6 o c!0 D (1)k'k H 1 ¡ B ¡ d ~ce 1 ;D 2
to complete the proof of this lemma. Thus, for

' = Q c 2 C c 1 ¡ R 2 n d ~ce 1 ~ ; C , writing ' = V 1 Qc V 1 in B V ~1 locD ('), we have B Q c loc1;D (') ¡ B V ~1 locD (') = Z B ¡ d ~ce1;D ¡Re(ic@ x2 '' ) + ¡ jQ c j 2 ¡ jV ~1j 2 j'j 2 + 2 ¡ Re 2 (Q c ') ¡ Re 2 ¡ V 1 ' ¡ Z B ¡ d ~ce 1 ;D r:(Re(rQ c Q c )j j 2 ¡ 2Im(rQ c Q c )Re( )Im( )) + Z B ¡ d ~ce 1 ;D r: Re ¡ rV ~1V ~1 Q c V ~1 2 ¡ 2Im ¡ rV ~1V ~1 Re Q c V ~1 Im Q c V ~1 + Z B ¡ d ~ce1;D c@ x2 Re( )Im( )jQ c j 2 + Z B ¡ d ~ce1;D (jr j 2 jQ c j 2 + 2Re 2 ( )jQ c j 4 ) ¡ Z B ¡ d ~ce1;D r Q c V ~1 2 jQ c j 2 + 2Re 2 Q c V ~1 jQ c j 4 + Z B ¡ d ~ce 1 ;D (4Im(rQ c Q c )Im(r )Re( ) + 2cjQ c j 2 Im(@ x 2 )Re( )) ¡ Z B ¡ d ~ce 1 ;D 4Im(rQ c Q c )Im r Q c V ~1 Re Q c V ~1
: With Theorem 1.3.1 (for p = +1) and Cauchy-Schwarz, we check easily that

Z B ¡ d ~ce 1 ;D jRe(ic@ x 2 '' )j + jjQ c j 2 ¡ jV ~1j 2 jj'j 2 + 2 Re 2 (Q c ') ¡ Re 2 ¡ V 1 ' 6 o c!0 D (1)k'k H 1 ¡ B ¡ d ~ce1;D 2 : Since r is supported in B ¡ d ~ce 1 ~; 2 nB ¡ d ~ce 1 ~; 1 , still with Theorem 1.3.1 (for p = +1), we check that Z B ¡ d ~ce1;D r:Re(rQ c Q c )j j 2 ¡ rRe ¡ rV ~1V ~1 Q c V ~1 2 6 K Z B ¡ d ~ce 1 ;D r:Re(rQ c Q c )j'j 2 ¡ rRe ¡ rV ~1V ~1 Q c V ~1 ' 2 6 r:Re(rQ c Q c ) ¡ rRe ¡ rV ~1V ~1 Q c V ~1 2 L 1 ¡¡ d ~ce1;D k'k H 1 ¡ B ¡ d ~ce1;D 6 o c!0 D (1)k'k H 1 ¡ B ¡ d ~ce 1 ;D 2 :
We check similarly that the same estimate hold for all the remaining error terms, using the fact that is supported in

R 2 nB ¡ d ~ce 1 ~; 1 .
Remark that, by density argument (see the proof of Lemma 3.2.4), Lemma 3.3.3 holds for any ' 2 H 1 (B(0; D)). Now, we want to remove the orthogonality condition on the phase. For that, we have to change the coercivity norm Lemma 3.3.4. There exist R; D 0 > 0 with D 0 > R, such that, for D > D 0 , 0 < c < c 0 (D) and

' = Q c 2 C c 1 ¡ R 2 n d ~ce 1 ~ ; C , if the following two orthogonality conditions Z B ¡ d ~ce1;R Re @ x1 V ~1V ~1 = Z B ¡ d ~ce1;R Re @ x2 V ~1V ~1 = 0
are satised, then

B Q c loc1;D (') > K(D) Z B ¡ d ~ce1;D
jr j 2 jQ c j 4 + Re 2 ( )jQ c j 4 :

Proof. Take a function ' 2 H 1 (B(0; D)) that satises the orthogonality conditions

Z B ¡ d ~ce1;R Re @ x1 V ~1V ~1 = Z B ¡ d ~ce1;R Re @ x2 V ~1V ~1 = Z B ¡ d ~ce1;R nB ¡ d ~ce1;R/2
Im( ) = 0;

and let us show that B Qc loc1;D ('

) > K k'k H 1 ¡ B ¡ d ~ce1;D 2
. Take " 1 ; " 2 ; " 3 2 R and we dene

' ~= ' ¡ " 1 @ x 1 Q c ¡ " 2 @ x 2 Q c ¡ " 3 iQ c :
We have, for ' = Q c , by Theorem 1.3.1 (for p = +1) and Lemma 3.1.14,

Z B ¡ d ~ce1;R Re @ x1 V ~1V ~1 ¡ Z B ¡ d ~ce1;R Re(@ x1 Q c Q c ) 6 Z B ¡ d ~ce1;R Re @ x1 V ~1 V ~1 Q c ' ¡ @ x1 Q c ' ! 6 K @ x 1 V ~1 V ~1 Q c ¡ @ x 1 Q c L 1 ¡ B ¡ d ~ce1;R k'k H 1 ¡ B ¡ d ~ce 1 ;D 6 o c!0 D (1)k'k H 1 ¡ B ¡ d ~ce 1 ;D : Similar estimates hold for R B ¡ d ~ce 1 ;R Re @ x 2 V ~1V ~1
. By standard arguments, we check that there exists " 1 ; " 2 ; " 3 2 R with j" 1 j + j" 2 j + j"

2 j 6 o c!0 (1)k'k H 1 ¡ B ¡ d ~ce1;D
such that ' ~satises the three orthogonality conditions of Lemma 3.3.3. We deduce that, since (by Theorem 1.3.1 for p = +1)

k@ x 1 Q c k H 1 ¡ B ¡ d ~ce 1 ;D + k@ x 2 Q c k H 1 ¡ B ¡ d ~ce 1 ;D + kiQ c k H 1 ¡ B ¡ d ~ce 1 ;D 6 K(D); B Q c loc1;D (') > B Q c loc1;D (' ~) ¡ o c!0 D (1)k'k H 1 ¡ B ¡ d ~ce1;D 2 > K(D)k' ~kH 1 ¡ B ¡ d ~ce1;D 2 ¡ o c!0 D (1)k'k H 1 ¡ B ¡ d ~ce1;D 2 > K(D)k'k H 1 ¡ B ¡ d ~ce 1 ;D 2 ¡ o c!0 D (1)k'k H 1 ¡ B ¡ d ~ce 1 ;D 2 > K(D)k'k H 1 ¡ B ¡ d ~ce1;D 2 ;
given that c is small enough (depending on D). For ' = Q c , we infer that

Z B ¡ d ~ce 1 ;D jr j 2 jQ c j 4 + Re 2 ( )jQ c j 4 6 K(D)k'k H 1 ¡ B ¡ d ~ce1;D 2 : Indeed, we have Z B ¡ d ~ce 1 ;D Re 2 ( )jQ c j 4 6 K Z B ¡ d ~ce 1 ;D Re 2 (') 6 K k'k H 1 ¡ B ¡ d ~ce 1 ;D 2 ; and Z B ¡ d ~ce1;D jr j 2 jQ c j 4 = Z B ¡ d ~ce1;D jr' ¡ rQ c j 2 jQ c j 2 6 K Z B ¡ d ~ce1;D jr'j 2 + Z B ¡ d ~ce1;D jrQ c j 2 jQ c j 2 ! 6 K Z B ¡ d ~ce1;D jr'j 2 + Z B ¡ d ~ce1;D j'j 2 ! :
We deduce that, under the three orthogonality conditions, for 

' = Q c , Z B ¡ d ~ce1;R Re @ x1 V ~1V ~1 = Z B ¡ d ~ce1;R Re @ x2 V ~1V ~1 = Z B ¡ d ~ce1;R nB ¡ d 
For ' 2 C c 1 (R 2 ; C), we have L Qc (' ¡ iQ c ) = L Qc (') 2 C c 1 (R 2 ; C), thus hL Qc (' ¡ iQ c ); ' ¡ iQ c i is well dened, and hL Qc (' ¡ iQ c ); ' ¡ iQ c i = hL Qc ('); ' ¡ iQ c i = h'; L Qc (' ¡ iQ c )i = hL Qc ('); 'i:
With computations similar to the one of the proof of Lemma 3. For this last equality, it comes from the fact that

R B ¡ d ~ce1;R Re ¡ irV ~1V ~1 = 0, since Re ¡ irV ~1V ~1
has no zero harmonic (see Lemma 1.2.1). We also check that Z

B ¡ d ~ce 1 ;R nB ¡ d ~ce 1 ;R/2 Im( ) = Z B ¡ d ~ce 1 ;R nB ¡ d ~ce 1 ;R/2 Im( ~) + K for a universal constant K > 0. Therefore, choosing 2 R such that R B ¡ d ~ce1;R nB ¡ d ~ce1;R/2
Im( ~) = 0, we have, for a function ' = Q c that satises

Z B ¡ d ~ce1;R Re @ x 1 V ~1V ~1 = Z B ¡ d ~ce1;R Re @ x 2 V ~1V ~1 = 0; that B Qc loc1;D (') = B Qc loc1;D (' ~) > Z B ¡ d ~ce1;D jr ~j2 jQ c j 4 + Re 2 ( ~)jQ c j 4 = Z B ¡ d ~ce 1 ;D jr j 2 jQ c j 4 + Re 2 ( )jQ c j 4 :
This concludes the proof of this lemma.

Proof of Proposition 1.4.3

Proof. (of Proposition 1.4.3) From Lemma 3.3.1, we have, for

' = Q c 2 C c 1 ¡ R 2 n d ~ce 1 ~; ¡d ~ce 1 ~ ; C that B Q c (') = Z R 2 (1 ¡ )(jr'j 2 ¡ Re(ic@ x 2 '' ) ¡ (1 ¡ jQ c j 2 )j'j 2 + 2 Re 2 (Q c ')) ¡ Z R 2 r:(Re(rQ c Q c )j j 2 ¡ 2Im(rQ c Q c )Re( )Im( )) + Z R 2 c@ x 2 Re( )Im( )jQ c j 2 + Z R 2
(jr j 2 jQ c j 2 + 2Re 

> ¡K (1 + D) Z R 2 n ¡ B ¡ d ~ce 1 ;D [B ¡ ¡d ~ce 1 ;D jr j 2 jQ c j 4 + Re 2 ( )jQ c j 4 :
Therefore, taking D > D 0 large enough (independently of c or c 0 , D > 10K + 1) and c small enough (c 6

K ), we have Z R 2 n ¡ B ¡ d ~ce1;D [B ¡ ¡d ~ce1;D jr j 2 jQ c j 2 + 2Re 2 ( )jQ c j 4 + Z R 2 n ¡ B ¡ d ~ce 1 ;D [B ¡ ¡d ~ce 1 ;D 4Im(rQ c Q c ):Im(r )Re( ) + 2cjQ c j 2 Im(@ x 2 )Re( ) > K Z R 2 n ¡ B ¡ d ~ce 1 ;D [B ¡ ¡d ~ce 1 ;D jr j 2 jQ c j 4 + Re 2 ( )jQ c j 4 : 10 
We deduce that, for

' = Q c 2 C c 1 (R 2 n d c ~e1 ~; ¡d c ~e1 ~ ; C), B Q c (') > K k'k C 2 if Z B ¡ d ~ce1;R Re @ x1 V ~1V 1 ~ = Z B ¡ d ~ce1;R Re @ x2 V 1 ~V1 ~ = 0; Z B ¡ ¡d ~ce1;R Re @ x 1 V ~¡1 V ~¡1 = Z B ¡ ¡d ~ce1;R Re @ x 2 V ~¡1 V ~¡1 = 0:
We argue by density to show this result in H Qc . From Lemma 3.2.1, we know that k:k C is continuous with respect to k:k HQ c . Furthermore, we recall from Lemma 3.2.2, that Z

B ¡ d ~ce1;R Re @ x1 V 1 ~V1 ~ 6 K(c)k'k HQ c ;
and similar estimates hold for

Z B ¡ d ~ce1;R Re @ x2 V 1 ~V1 ~ ; Z B(¡dce1;R) Re @ x1 V ~¡1 V ~¡1 and Z B ¡ ¡d ~ce 1 ;R Re @ x 2 V ~¡1 V ~¡1 : (3.3.7)
In particular, we check that these quantities are continuous for the norm k:k HQ c , and that we can pass to the limit by density in these quantities by Lemma 3.2.4. We are left with the passage to the limit for the quadratic form. For ' 2 H Qc , we recall from (1.4.3) that

B Qc (') = Z R 2 jr'j 2 ¡ (1 ¡ jQ c j 2 )j'j 2 + 2 Re 2 (Q c ') + c Z R 2 (1 ¡ )Re(i@ x2 '' ) + c Z R 2 Re(i @ x2 Q c Q c )j j 2 ¡ 2c Z R 2 Re Im@ x2 jQ c j 2 ¡ c Z R 2 @ x2 Re Im jQ c j 2 ¡ c Z R 2
Re Im @ x2 (jQ c j 2 ):

Following the proof of Lemma 3.2.3, we check easily that, for

' 1 = Q c 1 ; ' 2 = Q c 2 2 H Qc , we have Z R 2 jr' 1 r' 2 j + j(1 ¡ jQ c j 2 )' 1 ' 2 j + jRe(Q c ' 1 )Re(Q c ' 2 )j + Z R 2 (1 ¡ )jRe(i@ x2 ' 1 ' 2 )j + Z R 2 jRe(i@ x2 Q c Q c )jj 1 2 j + Z R 2 jRe 1 Im@ x2 2 jjQ c j 2 + Z R 2 j@ x2 Re 1 Im 2 jjQ c j 2 + Z R 2 jRe 1 Im 2 @ x 2 (jQ c j 2 )j 6 K(c)k' 1 k H Qc k' 2 k H Qc ;
and thus we can pass at the limit in B Qc by Lemma 3.2.4. This concludes the proof of Proposition 1.4.3.

Proof of Theorem 1.4.4 and its corollaries

Link between the sets of orthogononality conditions

The rst goal of this subsection is to show that the four particular directions (@ x1 Q c ; @ x2 Q c ; c 2 @ c Q c ; c@ c ?Q c ) are almost orthogonal between them near the zeros of Q c , and that they can replace the four orthogonality conditions of Proposition 1.4.3. This is computed in the following lemma.

Lemma 3.4.1. For R > 0 given by Proposition 1.4.3, there exist K 1 ; K 2 > 0, two constants independent of c, such that, for Q c dened in Theorem 1.3.1,

K 1 6 Z B ¡ d ~ce1;R j@ x1 Q c j 2 + Z B ¡ d ~ce1;R j@ x2 Q c j 2 + Z B ¡ d ~ce1;R jc 2 @ c Q c j 2 + Z B(dce1;R) jc@ c ?Q c j 2 6 K 2 : Furthermore, for A; B 2 @ x1 Q c ; @ x2 Q c ; c 2 @ c Q c ; c@ c ? Q c , A = / B, we have that, for 1 > 0 > 0 a small constant, Z B ¡ d ~ce 1 ;R [B ¡ ¡d ~ce 1 ;R Re(AB ) = o c!0 (c 0 ): Proof. From Lemma 3.1.1, we have, in B(d c ~e1 ~; R), that (for 0 < = 1 ¡ 0 < 1) Q c (x) = V 1 (x ¡ d c e 1 ~)V ¡1 (x + d c e 1 ~) + o c!0 (c 0 )
and

rQ c (x) = r(V 1 (x ¡ d c e 1 ~)V ¡1 (x + d c e 1 ~)) + o c!0 (c 0 ):
In this proof a o c!0 (c 0 ) may depend on R, but we consider R as a universal constant. From Lemmas 1.2.1 and 3.1.12 and equation (3.1.7), we show that, by the mean value theorem, in

B(d c ~e1 ~; R), Q c = V 1 V ¡1 + o c!0 (c 0 ) = V 1 + o c!0 (c 0 ) = V ~1 + o c!0 (c 0 ) (3.4.1)
and, similarly,

rQ c = rV ~1 + o c!0 (c 0 ): (3.4.2)
Thus, in B(d c ~e1 ~; R), we have

@ x1 Q c = @ x1 V ~1 + o c!0 (c 0 ) (3.4.3)
and

@ x2 Q c = @ x2 V ~1 + o c!0 (c 0 ): (3.4.4)
Furthermore, by Lemma 3.1.2, we have in particular that in B(d c ~e1 ~; R),

c 2 @ c Q c = (1 + o c!0 (c 0 ))@ d (V 1 (x ¡ de 1 ~)V ¡1 (x + de 1 ~)) |d=dc + o c!0 (c 0 ):

Some useful elliptic estimates

We want to improve slightly the coercivity norm near the zeros of Q c . This is done in the following lemma. The improvement is in the exponent of the weight in front of f 2 .

Lemma 3.4.3.

There exists a universal constant K > 0 such that, for any D > 2, for V 1 centered at 0 and any function

f 2 C c 1 ¡ R 2 n d ~ce ~1; ¡d ~ce ~1 ; R , we have Z B ¡ d ~ce ~1;D f 2 jV 1 j 3 dx 6 K Z B ¡ d ~ce ~1;D jrf j 2 jV 1 j 4 + f 2 jV 1 j 4 dx:
In particular, this implies that, for 2

C c 1 (R 2 n 0 ; C), Z B(0;D) Re 2 ( )jV 1 j 3 dx 6 K Z B(0;D) jr j 2 jV 1 j 4 + Re 2 ( )jV 1 j 4 dx:
This lemma, with Lemmas 3.1.14 and 3.2.4, implies that, for

' = Q c 2 H Q c , Z R 2 Re 2 ( )jQ c j 3 6 K k'k C 2 : (3.4.11)
Proof. Since jV 1 j > K > 0 outside of B(0; 1), we take a radial smooth non negative cuto with value 0 in B(0; 1) and value 1 outside B(0; 3/2). We have

Z B(0;D) f 2 jV 1 j 3 dx 6 K Z B(0;D) f 2 jV 1 j 4 dx 6 K Z B(0;D) f 2 jV 1 j 4 dx:
In B(0; 2), from Lemma 1.2.1, there exists 

K 1 ; K 2 > 0 such that K 1 > jV1j r > K 2 , and thus Z B(0;D) (1 ¡ )f 2 jV 1 j 3 dx 6 K Z 0 2 Z 0 2 (1 ¡ (r))f 2 (x)r
(1 ¡ )f 2 jV 1 j 3 dx 6 K Z B(0;D) jrf j 2 jV 1 j 4 + f 2 jV 1 j 4 dx;
which ends the proof of this lemma.

We estimate here some quantities with the coercivity norm. These computations will be useful later on.

Lemma 3.4.4. There exists

K > 0, a universal constant independent of c, such that, if c is small enough, for Q c dened in Theorem 1.3.1, for ' = Q c 2 C c 1 (R 2 n d c ~e1 ~; ¡d c ~e1 ~ ; C), we have Z R 2 Re( )Im(rQ c Q c ) 6 K ln 1 c k'k C and Z R 2 Im( )Re(rQ c Q c ) 6 K k'k C :
Proof. By Cauchy-Schwarz, Lemmas 3.1.11 (with a slight modication near the zeros of Q c that does not change the result) and 3.4.3,

Z R 2 Re( )Im(rQ c Q c ) 6 Z R 2 Re 2 ( )jQ c j 3 Z R 2 jIm(rQ c Q c )j 2 jQ c j 3 r 6 K ln 1 c Z R 2 Re 2 ( )jQ c j 3 r 6 K ln 1 c k'k C :
We now focus on the second estimate. We take a smooth function with value 1 outside of r ~> 2 and 0 inside fr ~6 1g, and that is radial around

d ~ce 1 ~in B ¡ d ~ce 1 ~; 2 . We remark that Re(rQ c Q c ) = 1 2 r(jQ c j 2 ) = 1 2 r((jQ c j 2 ¡ 1) + (1 ¡ )jQ c j 2 ) + 1 2 r;
thus, by integration by parts, we have Z

R 2 Im( )Re(rQ c Q c ) = 1 2 Z R 2 Im( )r((jQ c j 2 ¡ 1) + (1 ¡ )jQ c j 2 ) + 1 2 Z R 2 rIm( ) = ¡1 2 Z R 2 Im(r )(jQ c j 2 ¡ 1) ¡ 1 2 Z R 2 Im(r )(1 ¡ )jQ c j 2 + 1 2 Z R 2 rIm( ):
and, since is radial around

d ~ce 1 ~in B ¡ d ~ce 1 ~; 2 , Z R 2 Im( )r = Z B ¡ d ~ce1;2 [B ¡ ¡d ~ce1;2 Im( = / 0 )r: Since r is supported in ¡ B ¡ d ~ce 1 ~; 2 [ B ¡ ¡d ~ce 1 ~; 2 n ¡ B ¡ d ~ce 1 ~; 1 [ B ¡ ¡d ~ce 1 ~; 1
, by equations (3.1.12), (3.1.28) and Cauchy-Schwarz,

Z B ¡ d ~ce1;2 [B ¡ ¡d ~ce1;2 Im( = / 0 )r 6 K Z R 2 jr j 2 jQ c j 4 r :
Now, by Cauchy-Schwarz, we check that

Z R 2 Im(r )(1 ¡ )jQ c j 2 6 K Z R 2 jr j 2 jQ c j 4 Z R 2 (1 ¡ ) 2 r 6 K Z R 2
jr j 2 jQ c j 4 r : Furthermore, we check that ( being supported in r ~> 1 ) 

Z R 2 Im(r )(jQ c j 2 ¡ 1) 6 Z R 2 jr j 2 Z R 2 (jQ c j 2 ¡ 1) 2 r 6 K Z R 2
' = Q c 2 H Q c , Q c dened in Theorem 1.3.1, if Re Z B ¡ d ~ce 1 ;R [B ¡ ¡d ~ce 1 ;R @ x 1 Q c Q c = / 0 = Re Z B ¡ d ~ce 1 ;R [B ¡ ¡d ~ce 1 ;R @ x 2 Q c Q c = / 0 = 0; Re Z B ¡ d ~ce 1 ;R [B ¡ ¡d ~ce 1 ;R @ c Q c Q c = / 0 = Re Z B ¡ d ~ce 1 ;R [B ¡ ¡d ~ce 1 ;R @ c ?Q c Q c = / 0 = 0; then B Q c (') > K k'k C 2 : Proof. For ' = Q c 2 C c 1 (R 2 n d c ~e1 ~; ¡d c
~e1 ~ ; C), we take " 1 ; " 2 ; " 3 ; " 4 four real parameters and we dene

:= + " 1 @ x1 Q c Q c + " 2 c 2 @ c Q c Q c + " 3 @ x2 Q c Q c + " 4 c@ c ?Q c Q c : Since, by Lemma 3.1.7, @ x 1 Q c ; @ x 2 Q c ; @ c Q c ; @ c ? Q c 2 H Q c , we deduce that Q c 2 H Q c . Furthermore, we have Z B ¡ d ~ce 1 ;R Re @ x 1 V 1 ~V1 ~ = Z B ¡ d ~ce 1 ;R Re @ x 1 V 1 ~V1 ~ + " 1 Z B ¡ d ~ce1;R Re @ x1 V 1 ~@x1 Q c V 1 Qc ! + " 2 Z B ¡ d ~ce1;R Re @ x1 V 1 ~c2 @ c Q c V 1 Qc ! + " 3 Z B ¡ d ~ce 1 ;R Re @ x 1 V 1 ~@x 2 Q c V 1 Qc ! + " 4 Z B ¡ d ~ce1;R Re @ x1 V 1 ~c@ c ?Q c V 1 Qc ! : From (3.4.8), we compute @ x1 V 1 ~V1 = cos ¡ ~1 0 (r ~1) (r ~1) ¡ i r ~1 sin ¡ ~1 jV 1 ~j2 ;
and in particular, it has no 0-harmonic (since jV 1 ~j2 is radial). Therefore,

Z B ¡ d ~ce 1 ;R Re @ x 1 V 1 ~V1 ~ = Z B ¡ d ~ce 1 ;R Re @ x 1 V 1 ~V1 ~ = / 0 = Z B ¡ d ~ce 1 ;R Re @ x1 Q c Q c = / 0 + Z B ¡ d ~ce 1 ;R Re ¡¡ @ x1 V 1 ~V1 ¡ @ x1 Q c Q c = / 0 :
By Cauchy-Schwarz and equation (3.1.28),

Z B ¡ d ~ce1;R [B ¡ ¡d ~ce1;R jQ c = / 0 j 2 6 K Z B ¡ d ~ce1;R [B ¡ ¡d ~ce1;R jQ c j 4 jr j 2 6 K k'k C 2 :
(3.4.12)

Here, K depends on R, but we consider R as a universal constant. We remark, by equations (3.4.3), (3.4.5) and (3.4.12) that

1 2 Re Z B ¡ d ~ce1;R [B ¡ ¡d ~ce1;R (@ x1 Q c ¡ c 2 @ c Q c )Q c = / 0 = Z B ¡ d ~ce 1 ;R Re @ x1 Q c Q c = / 0 + o c!0 (c 0 )K k'k C 2 ;
where 0 > 0 is a small constant. We supposed that

Re Z B ¡ d ~ce1;R [B ¡ ¡d ~ce1;R @ x 1 Q c Q c = / 0 = Re Z B ¡ d ~ce1;R [B ¡ ¡d ~ce1;R @ c Q c Q c = / 0 = 0; therefore Z B ¡ d ~ce1;R Re @ x1 Q c Q c = / 0 = o c!0 (c 0 )K k'k C 2 :
Furthermore, by equations (3.1.7), (3.1.28), (3.4.3), Lemma 3.1.14 and Cauchy-Schwarz,

Z B ¡ d ~ce 1 ;R Re ¡¡ @ x 1 V 1 ~V1 ¡ @ x 1 Q c Q c = / 0 6 o c!0 (c 0 ) Z B ¡ d ~ce 1 ;R j = / 0 j 2 jQ c j 2 s 6 o c!0 (c 0 )K k'k C
Now, from Lemma 3.1.14 and equation (3.4.3), we estimate

Z B ¡ d ~ce1;R Re @ x1 V 1 ~@x1 Q c V 1 Qc ! = Z B ¡ d ~ce1;R j@ x1 V 1 ~j2 + o c!0 (1):
With (3.4.4), we check

Z B ¡ d ~ce 1 ;R Re @ x 1 V 1 ~@x 2 Q c V 1 Qc ! = o c!0 (1):
Similarly, by (3.4.5) and Lemma 3.1.14, we have

Z B ¡ d ~ce 1 ;R Re @ x1 V 1 ~c2 @ c Q c V 1 Qc ! = ¡ Z B ¡ d ~ce 1 ;R j@ x1 V 1 ~j2 + o c!0 (1)
and by (3.4.6), we have

Z B ¡ d ~ce 1 ;R Re @ x 1 V 1 ~c@ c ? Q c V 1 Qc ! = o c!0 (1):
Thus, with (3.4.7) we deduce that, writing

K(R) = Z B(0;R) j@ x1 V 1 (x)j 2 dx; since K(R) = Z B ¡ d ~ce1;R j@ x1 V 1 ~j2 = Z B ¡ ¡d ~ce1;R j@ x1 V ~¡1 j 2 = Z B ¡ d ~ce1;R j@ x2 V 1 ~j2 = Z B ¡ ¡d ~ce1;R j@ x2 V ~¡1 j 2 ;
we have

Z B ¡ d ~ce 1 ;R Re @ x 1 V 1 ~V1 ~ = (" 1 ¡ " 2 )K(R) + o c!0 (1)(" 1 + " 2 + " 3 + " 4 ) + o c!0 (c 0 )K k'k C
Similarly we can do the same computation for every orthogonalities, and we have the system 0

B B B B B B B B B @ R B ¡ d ~ce 1 ;R Re @ x1 V 1 ~V1 ~ R B ¡ ¡d ~ce1;R Re @ x 1 V ~¡1 V ~¡1 R B ¡ d ~ce1;R Re @ x 2 V 1 ~V1 ~ R B ¡ ¡d ~ce1;R Re @ x2 V ~¡1 V ~¡1 1 C C C C C C C C C A = 0 B B @ K(R) 0 B B @ 1 ¡1 0 0 1 1 0 0 0 0 1 ¡1 0 0 1 1 1 C C A + o c!0 (1) 1 C C A 0 B B @ " 1 " 2 " 3 " 4 1 C C A + o c!0 (c 0 )K k'k C :
Therefore, since the matrix is invertible and K(R) > 0, for c small enough, we can nd " 1 ; " 2 ; " 3 ; " 4 2 R such that j" 1 j + j" 2 j + j" 3 j + j"

4 j 6 o c!0 (c 0 )K k'k C (3.4.13)
and

Z B ¡ d ~ce 1 ;R Re @ x 1 V 1 ~V1 ~ = Z B ¡ d ~ce 1 ;R Re @ x 2 V 1 ~V1 ~ = 0; Z B ¡ ¡d ~ce1;R Re @ x1 V ~¡1 V ~¡1 = Z B ¡ ¡d ~ce1;R Re @ x2 V ~¡1 V ~¡1 = 0:
Therefore, by Proposition 1.4.3, since Q c 2 H Qc , we have

B Q c (Q c ) > K kQ c k C 2 :
From Lemma 3.1.8, we have,

k@ x1 Q c k C + k@ x2 Q c k C + kc 2 @ c Q c k C + c 0/2 kc@ c ?Q c k C 6 K( 0 ) hence, since Q c ( ¡ ) = " 1 @ x1 Q c + " 2 c 2 @ c Q c + " 3 @ x2 Q c + " 4 c@ c ?Q c , kQ c k C 2 6 kQ c k C 2 + kQ c ( ¡ )k C 2 6 kQ c k C
2 + K( 0 ) (j" 1 j + j" 2 j + j" 3 j + c ¡0/2 j" 4 j) 2 ; therefore, for c small enough, by (3.4.13), we have

kQ c k C 2 > K kQ c k C 2 and B Qc (Q c ) > K kQ c k C 2 Finally, we compute, since Q c ( ¡ ) = " 1 @ x1 Q c + " 2 c 2 @ c Q c + " 3 @ x2 Q c + " 4 c@ c ?Q c , by Lemma 3.4.2, that B Q c (') = B Q c (Q c ) + B Q c (Q c ( ¡ )) + 2hQ c ; L Q c (Q c ( ¡ ))i:
Furthermore, we compute, still by Lemma 3.4.2,

hQ c ; L Q c (Q c ( ¡ ))i = ¡B Q c (Q c ( ¡ )) + hQ c ; L Q c (Q c ( ¡ ))i; therefore B Q c (') = B Q c (Q c ) ¡ B Q c (Q c ( ¡ )) + 2hQ c ; L Q c (Q c ( ¡ ))i > K kQ c k C 2 ¡ B Q c (Q c ( ¡ )) + 2hQ c ; L Q c (Q c ( ¡ ))i:
We have

Q c ( ¡ ) = ¡(" 1 @ x 1 Q c + " 2 c 2 @ c Q c + " 3 @ x 2 Q c + " 4 c@ c ?Q c );
and from Lemma 3.1.7, we have

L Q c (Q c ( ¡ )) = ¡c 2 " 2 i@ x 2 Q c + c 2 " 4 i@ x 1 Q c :
We compute

B Qc (Q c ( ¡ )) = h¡(" 1 @ x1 Q c + " 2 c 2 @ c Q c + " 3 @ x2 Q c + " 4 c@ c ? Q c ); ¡c 2 " 2 i@ x2 Q c + c 2 " 4 i@ x1 Q c i;
and with (3.1.3), we check that

B Qc (Q c ( ¡ )) = " 2 2 c 4 hL Qc (@ c Q c ); @ c Q c i ¡ " 4 2 c 2 hL Qc (@ c ?Q c ); @ c ?Q c i:
With Lemma 3.1.9 and equation (3.4.13), we estimate

jB Q c (Q c ( ¡ ))j 6 Kc 2 (" 2 2 + " 4 2 ) 6 o c!0 (1)kQ c k C 2 :
Finally, we have

hQ c ; L Qc (Q c ( ¡ ))i = hQ c ; ¡c 2 " 2 i@ x2 Q c + c 2 " 4 i@ x1 Q c i:
We compute

c 2 hQ c ; irQ c i = c 2 Z R 2 Im( )Re(rQ c Q c ) ¡ c 2 Z R 2 Re( )Im(rQ c Q c );
and to nish the proof, we use

jchQ c ; irQ c ij 6 Kcln 1 c kQ c k C (3.4.14)
for a constant K > 0 independent of c by Lemma 3.4.4, which is enough to show that (1). We have shown that, for

jhQ c ; L Qc (Q c ( ¡ ))ij 6 o c!0 (1)(j" 2 j + j" 4 j)kQ c k C 6 o c!0 (1)kQ c k C 2 ; since cln ¡ 1 c = o c!0
' 2 C c 1 (R 2 n{d c ~e1 ~; ¡d c ~e1 ~}; C) B Qc (') > K kQ c k C 2 ¡ B Qc (Q c ( ¡ )) + 2hQ c ; L Qc (Q c ( ¡ ))i > (K ¡ o c!0 (1))kQ c k C 2 > K 2 kQ c k C 2
for c small enough. Now, by Lemma 3.2.4, we conclude by density as in the proof of Proposition 1.4.3.

Coercivity under three orthogonality conditions

Lemma 3.4.6. There exists R; K > 0 such that, for 0 < < 0 , 0 a small constant, there exists c 0 (); K() > 0 with, for 0

< c < c 0 (), Q c dened in Theorem 1.3.1, ' = Q c 2 H Qc , if Re Z B ¡ d ~ce 1 ;R [B ¡ ¡d ~ce 1 ;R @ x 1 Q c Q c = / 0 = Re Z B ¡ d ~ce 1 ;R [B ¡ ¡d ~ce 1 ;R @ x 2 Q c Q c = / 0 = 0; Re Z B ¡ d ~ce1;R [B ¡ ¡d ~ce1;R @ c Q c Q c = / 0 = 0; then B Q c (') > K()c 2+ k'k C 2 :
Proof. As for the proof of Lemma 3.4.5, we show the result for

' = Q c 2 C c 1 (R 2 n d c ~e1 ~; ¡d c ~e1 ~ ; C)
, and we conclude by density for ' 2 H Q c .

For

' = Q c 2 C c 1 (R 2 n d c
~e1 ~; ¡d c ~e1 ~ ; C), we take " 1 ; " 2 ; " 3 ; " 4 four real parameters and we dene

:= + " 1 @ x1 Q c Q c + " 2 c 2 @ c Q c Q c + " 3 @ x2 Q c Q c + " 4 c@ c ?Q c Q c :
With the same computation as in the proof of Lemma 3.4.5, we check that Q c 2 H Qc , and using similarly the estimates of Lemma 3.4.1, we can take " 1 ; " 2 ; " 3 ; " 4 2 R such that j" 1 j + j" 2 j + j" 3 j = o c!0 (c 0 )k'k C ; j" 4 j 6 K k'k C and such that satises the four orthogonality conditions of Lemma 3.4.5. Therefore,

B Qc (Q c ) > K kQ c k C 2 : (3.4.15)
We write

T = " 1 @ x1 Q c + " 2 c 2 @ c Q c + " 3 @ x2 Q c ;
and we develop, by Lemma 3.4.2,

B Qc (Q c ) = B Qc (Q c ) + c 2 " 4 2 B Qc (@ c ? Q c ) + B Qc (T ) ¡ 2hQ c ; c" 4 L Qc (@ c ?Q c )i ¡ 2hQ c
; L Qc (T )i + 2c" 4 hL Qc (@ c ?Q c ); T i:

Using Lemmas 3.1.7 and 3.1.9, we compute

jB Qc (T )j = jhL Qc (T ); T ij = jhL Qc (" 2 c 2 @ c Q c ); " 2 c 2 @ c Q c ij = " 2 2 c 4 jhL Q c (@ c Q c ); @ c Q c ij 6 K" 2 2 c 2 = o c!0 (c 2+20 )k'k C 2 (3.4.16)
Now, we compute, by Lemma 3.1.7, that

hQ c ; c" 4 L Q c (@ c ?Q c )i = " 4 c 2 hQ c ; i@ x 1 Q c i:
From Lemma 3.4.4, we have

jchQ c ; i@ x1 Q c ij 6 o c!0 (c 1¡0/2 )k' k C ; therefore jhQ c ; c" 4 L Qc (@ c ?Q c )ij 6 o c!0 (c 1+ 0/2 )k' k C k'k C : (3.4.17)
Similarly, we compute

hQ c ; L Qc (T )i = hQ c ; " 2 c 2 L Qc (@ c Q c )i = " 2 c 2 hQ c ; i@ x2 Q c i:
Still from Lemma 3.4.4, we have

jchQ c ; i@ x2 Q c ij 6 Kc ln 1 c k' k C ; therefore jhQ c ; L Q c (T )ij 6 K j" 2 jc 2 ln 1 c k' k C 6 o c!0 (c 1+ 0 )k' k C k'k C : (3.4.18)
Finally, we compute similarly that

cj" 4 hL Q c (@ c ?Q c ); T ij = cj" 4 hic@ x 1 Q c ; T ij = c 2 j" 4 hi @ x 1 Q c ; " 2 c 2 @ c Q c + " 3 @ x 2 Q c ij: Using Lemma 3.4.4 for ' = c 2 @ c Q c (with Lemma 3.2.4), we infer jhi@ x1 Q c ; c 2 @ c Q c ij 6 K kc 2 @ c Q c k C ; and kc 2 @ c Q c k C 6 K by Lemma 3.1.8. Furthermore, since Q c (¡x 1 ; x 2 ) = Q c (x 1 ; x 2 ), we have hi@ x1 Q c ; @ x2 Q c i = 0:
We conclude that jc" 4 hL Qc (@ c ?Q c ); T ij 6 Kc 2 j" 4 j(j" 2 j + j"

3 j) = o c!0 (c 2+0/2 )k'k C 2 : (3.4.19)
Now, combining (3.4.15) to (3.4.19), and with B Qc (@ c ?Q c ) = 2 + o c!0 (1) from Lemma 3.1.9, we have

B Q c (') > K k' k C 2 + K" 4 2 c 2 ¡ o c!0 (c 2+ 0/2 )k'k C 2 ¡ o c!0 (c 1+ 0/2 )k' k C k'k C :
by Lemma 3.1.7, and using (3.4.22), we have

B Q c (' ) = B Q c (' ¡ A) = B Q c (A):
From Lemma 3.4.6, we have

B Q c (' ) > Kc 2+ 0/2 k' k C 2 .
Furthermore, from Lemmas 3.1.7 and 3.1.9,

B Q c (A) = " 3 2 c 2 B Q c (@ c Q c ) = (¡2 + o c!0 (1))" 3 2 6 0:
We deduce that " 3 = 0 and k' k C = 0, hence ' = iQ c for some 2 R. Since ' = ' ¡ R 2 H Qc , we deduce that = 0 (or else k' k

H Qc 2 > R R 2 j' j 2
(1 + r ~)2 = +1). Therefore,

' = " 1 @ x 1 Q c + " 2 @ x 2 Q c 2 Span R (@ x 1 Q c ; @ x 2 Q c ):
Finally, the fact that (ii) implies (i) is a consequence of Lemma 3.1.7. This concludes the proof of this lemma.

Spectral stability

We have

H 1 (R 2 ) H Qc , therefore B Qc (') is well dened for ' 2 H 1 (R 2 ). Furthermore, the fact that i@ x2 Q c 2 L 2 (R 2
) is a consequence of Theorem 3.1.4, and in particular this justies that h'; i@ x2 Q c i is well dened for ' 2 H 1 (R 2 ). For ' 2 H 1 (R 2 ), there are no issue in the denition of the quadratic form, as shown in the following lemma.

Lemma 3.4.7. There exists c

0 > 0 such that, for 0 < c < c 0 , Q c dened in Theorem 1.3.1, if ' 2 H 1 (R 2 ), then B Qc (') = Z R 2 jr'j 2 ¡ Re(ic@ x2 '' ) ¡ (1 ¡ jQ c j 2 )j'j 2 + 2Re 2 (Q c '): Proof. We recall that H 1 (R 2 ) H Qc and, for ' = Q c 2 H 1 (R 2 ), B Q c (') = Z R 2 jr'j 2 ¡ (1 ¡ jQ c j 2 )j'j 2 + 2 Re 2 (Q c ') ¡ c Z R 2 (1 ¡ )Re(i@ x 2 '' ) ¡ c Z R 2 Rei @ x 2 Q c Q c j j 2 + 2c Z R 2 Re Im@ x 2 jQ c j 2 + c Z R 2 @ x 2 Re Im jQ c j 2 + c Z R 2
Re Im @ x 2 (jQ c j 2 ):

Since ' 2 H 1 (R 2 ), the integral R R 2 Re(ic@ x 2 ''
) is well dened as the scalar product of two L 2 (R 2 ) functions. Now, still because ' = Q c 2 H 1 (R 2 ), we can integrate by parts, and we check that Z

R 2 Re Im@ x2 jQ c j 2 = ¡ Z R 2 Re@ x2 Im jQ c j 2 ¡ Z R 2 @ x2 Re Im jQ c j 2 ¡ Z R 2
Re Im @ x2 (jQ c j 2 ):

We conclude by expanding Z

R 2 Re(i@ x2 '' ) = Z R 2 Re(i@ x2 Q c Q c )j j 2 + Z R 2 Re(i@ x2 )jQ c j 2 = Z R 2 Re(i@ x2 Q c Q c )j j 2 + Z R 2 Re(@ x2 )Im jQ c j 2 + Z R 2 Re( )Im@ x2 jQ c j 2 :
The rest of this subsection is devoted to the proofs of Corollary 1.4.6, Proposition 1.4.7 and Corollary 1.4.9. Now, assume that there exists no ' 2 C c 1 (R 2 ; C) such that B Qc (') < 0. Then, for any ' 2 C c 1 (R 2 ; C), we have B Q c (') > 0. Following the density argument at the end of the proof of Proposition 1.4.3, we have B Qc (') > 0 for all ' 2 H Qc , and in particular B Qc (@ c Q c ) > 0 (we recall that @ c Q c 2 H Qc but is not a priori in H 1 (R 2 )), which is in contradiction with Lemma 3.1.9. Therefore, there exists ' 2 C c 1 (R 2 ; C) H 1 (R 2 ) such that B Qc (') < 0, and in particular

B Q c ' k'k L 2 (R 2 )
< 0 and

' k'k L 2 (R 2 ) L 2 (R 2 ) = 1, hence c < 0.
Remark that we did not show that @ c Q c 2 L 2 (R 2 ), and we believe this to be false. This estimation on c is the only time we need to work specically with Q c from Theorem 1.3.1. From now on, we can suppose that Q c is a travelling wave with nite energy such that c < 0.

To show that there exists at least one negative eigenvalue, it is enough to show that c is achieved for a function ' 2 H 1 (R 2 ). Let us take a minimizing sequence

' n 2 H 1 (R 2 ) such that k' n k L 2 (R 2 ) = 1 and B Q c (' n ) ! c . We have Z R 2 jr' n j 2 = B Qc (' n ) + Z R 2 Re(ic@ x2 ' n ' n ) + (1 ¡ jQ c j 2 )j' n j 2 ¡ 2Re 2 (Q c ' n ); therefore, by Cauchy-Schwarz, Z R 2 jr' n j 2 6 j c j + Kckr' n k L 2 (R 2 ) + K:
We deduce that, for c small enough,

kr' n k L 2 (R 2 ) 2 ¡ Kckr' n k L 2 (R 2 ) 6 K(c); hence kr' n k L 2 (R 2 )
2 is bounded uniformly in n given that c < c 0 for some constant c 0 small enough. We deduce that ' n is bounded in H 1 (R 2 ), therefore, up to a subsequence, ' n ! ' weakly in H 1 (R 2 ). Now, we remark that for any ' 2 H 1 (R 2 ), by integration by parts (see Lemma 3.4

.7), Z R 2 ¡Re(ic@ x2 '' ) = ¡c Z R 2 Re(@ x2 ')Im(') + c Z R 2 Re(')Im(@ x2 ') = 2c Z R 2 
Re(')Im(@ x 2 '):

For R > 0, since ' n ! ' weakly in H 1 (R 2 ), this implies that ' n ! ' strongly in L 2 (B(0; R)) by Rellich-Kondrakov theorem. In particular, we have Z

B(0;R) Re(' n )Im(@ x 2 ' n ) ! Z B(0;R)
Re(')Im(@ x 2 '):

since ' n ! ' strongly in L 2 (B(0; R)) and @ x2 ' n ! @ x2 ' weakly in L 2 (B(0; R)). We deduce that, up to a subsequence, Z

B(0;R) jr'j 2 + 2cRe(')Im(@ x2 ') ¡ (1 ¡ jQ c j 2 )j'j 2 + 2Re 2 (Q c ') 6 liminf n!1 Z B(0;R) jr' n j 2 + 2cRe(' n )Im(@ x 2 ' n ) ¡ (1 ¡ jQ c j 2 )j' n j 2 + 2Re 2 (Q c ' n ) + o n!1 R
(1):

Furthermore, we have, by weak convergence

k'k H 1 (R 2 ) 6 liminf n!1 k' n k H 1 (R 2 ) 6 K(c) therefore, we estimate Z R 2 nB(0;R) jr'j 2 + 2cRe(')Im(@ x 2 ') ¡ (1 ¡ jQ c j 2 )j'j 2 + 2Re 2 (Q c ') 6 K k'k H 1 (R 2 nB(0;R)) 2 = o R!1 (1):
We deduce that

B Qc (') 6 liminf n!1 Z B(0;R) jr' n j 2 + 2cRe(' n )Im(@ x2 ' n ) ¡ (1 ¡ jQ c j 2 )j' n j 2 + 2Re 2 (Q c ' n ) + o n!1 R (1) + o R!1 (1): Now, we have liminf n!1 Z B(0;R) jr' n j 2 + 2cRe(' n )Im(@ x 2 ' n ) ¡ (1 ¡ jQ c j 2 )j' n j 2 + 2Re 2 (Q c ' n ) = liminf n!1 B Qc (' n ); ¡ liminf n!1 Z R 2 nB(0;R) jr' n j 2 + 2cRe(' n )Im(@ x 2 ' n ) ¡ (1 ¡ jQ c j 2 )j' n j 2 + 2Re 2 (Q c ' n ) and B Q c (' n ) ! c , therefore B Q c (') 6 c + o n!1 R (1) + o R!1 (1) ¡ liminf n!1 Z R 2 nB(0;R) jr' n j 2 + 2cRe(' n )Im(@ x2 ' n ) ¡ (1 ¡ jQ c j 2 )j' n j 2 + 2Re 2 (Q c ' n ): From Theorem 3.1.4, we have (1 ¡ jQ c j 2 )(x) ! 0 when jxj ! 1, therefore, since k' n k L 2 (R 2 ) = 1, we have by dominated convergence that Z R 2 nB(0;R) (1 ¡ jQ c j 2 )j' n j 2 6 Z R 2 nB(0;R) (1 ¡ jQ c j 2 ) 2 Z R 2 j' n j 2 s 6 o R!1 (1):
Furthermore, we check easily that (since

(A + B) 2 > 1 2 A 2 ¡ B 2 ) Z R 2 nB(0;R) Re 2 (Q c ' n ) > 1 2 Z R 2 nB(0;R) Re 2 (Q c )Re 2 (' n ) ¡ Z R 2 nB(0;R) Im 2 (Q c )Im 2 (' n ); and from Theorem 3.1.4, Im(Q c )(x) ! 0 and Re(Q c )(x) ! 1 when jxj ! 1, therefore, since k' n k L 2 (R 2 ) = 1, by dominated convergence, Z R 2 nB(0;R) 2Re 2 (Q c ' n ) > Z R 2 nB(0;R) Re 2 (' n ) ¡ o R!1 (1):
We deduce that, since c < 2 p ,

B Qc (') 6 c + o n!1 R (1) + o R!1 (1) ¡ liminf n!1 Z R 2 nB(0;R) jr' n j 2 + 2cRe(' n )Im(@ x2 ' n ) + Re 2 (' n ) 6 c + o n!1 R (1) + o R!1 (1) ¡ liminf n!1 Z R 2 nB(0;R) (jr' n j + cRe(' n )) 2 + (2 ¡ c 2 )Re 2 (' n ) 6 c + o n!1 R (1) + o R!1 (1):
Thus, by letting n ! 1 and then R ! 1, B Qc (') 6 c :

In particular, this implies that k'k L 2 (R 2 ) = / 0, or else B Qc (') = 0 6 c and we know that c < 0. Furthermore, by weak convergence, we have k'k L 2 (R 2 ) 6 1, and if it is not 1, then, since c < 0,

B Q c ' k'k L 2 (R 2 ) 6 c k'k L 2 (R 2 ) 2 < c
which is in contradiction with the denition of c . Therefore k'k L 2 (R 2 ) = 1 and B Q c (') = c . This concludes the proof of Proposition 1.4.7.

Proof. (of Corollary 1.4.9)

The hypothesis to have the spectral stability from Theorem 11.8 of [START_REF] Lin | Instability, index theorem, and exponential trichotomy for linear hamiltonian pdes[END_REF] are:

-The curve of travelling waves is C 1 from ]0; c 0 [ to C 1 (R 2 ; C) with respect to the speed. This is a consequence of Theorem 1.3.1. This is enough to legitimate the computations done in the proof of Theorem 11.8 of [START_REF] Lin | Instability, index theorem, and exponential trichotomy for linear hamiltonian pdes[END_REF].

-

Re(Q c ) ¡ 1 2 H 1 (R 2 ), rQ c 2 L 2 (R 2 )
, jQ c j ! 1 at innity and kQ c k C 1 (R 2 ) 6 K. These are consequences of Theorem 7 of [START_REF] Gravejat | First order asymptotics for the travelling waves in the Gross-Pitaevskii equation[END_REF].

-n ¡ (L Q c ) 6 1. This is a consequence of Proposition 1.4.7.

-@ c P 2 (Q c ) < 0. This is a consequence of Proposition 1.4.1.

Coercivity results with an orthogonality on the phase

This section is devoted to the proofs of Proposition 1.4.10, 1.4.11 and Theorem 1.4.12.

Properties of the space H Q c exp

In this subsection, we look at the space H Qc exp . We recall the norm

k'k H Qc exp 2 = k'k H 1 ({r 610}) 2 + Z {r ~>5} jr j 2 + Re 2 ( ) + j j 2 r ~2ln(r ~)2 :
The quadratic form we look at is

B Q c exp (') = Z R 2 (jr'j 2 ¡ Re(ic@ x2 '' ) ¡ (1 ¡ jQ c j 2 )j'j 2 + 2 Re 2 (Q c ')) ¡ Z R 2 r:(Re(rQ c Q c )j j 2 ¡ 2Im(rQ c Q c )Re( )Im( )) + Z R 2 c@ x 2 jQ c j 2 Re( )Im( ) + Z R 2 (1 ¡ )(jr j 2 jQ c j 2 + 2Re 2 ( )jQ c j 4 ) + Z R 2 (1 ¡ )(4Im(rQ c Q c )Im(r )Re( ) + 2cjQ c j 2 Im(@ x2 )Re( ))
We will show in Lemma 3.5.

1 that B Q c exp (') is well dened for ' 2 H Q c exp .
The main dierence between B Qc and B Q c exp is the space on which they are dened. In particular, we can check easily for instance that, for

' 2 C c 1 (R 2 ) with support far from the zeros of Q c , we have B Q c exp (') = B Q c ('),
as the terms with the gradient of the cuto are exactly the ones coming from the integrations by parts. We start with a lemma about the space H Q c exp .

Lemma 3.5.1. The following properties of H Q c exp hold:

H Q c H Q c exp ; iQ c 2 H Q c exp : Furthermore, there exists K(c) > 0 such that, for ' 2 H Qc exp , k'k C 6 K k'k H Qc exp ; (3.5.1) k'k H Qc exp 6 K(c)k'k HQ c : (3.5.2)
and the integrands of 

B Q c exp ('), dened in ( 1.4.4), are in L 1 (R 2 ) for ' 2 H Q c exp , and B Q c exp does not depend on the choice of . Finally, if ' 2 H Qc H Qc exp , B Qc (') = B Q c exp ( 
(') = Z R 2 (1 ¡ )(jr'j 2 ¡ Re(ic@ x2 '' ) ¡ (1 ¡ jQ c j 2 )j'j 2 + 2 Re 2 (Q c ')) ¡ Z R 2 r:(Re(rQ c Q c )j j 2 ¡ 2Im(rQ c Q c )Re( )Im( )) + Z R 2 c@ x 2 jQ c j 2 Re( )Im( ) + Z R 2 (jr j 2 jQ c j 2 + 2Re 2 ( )jQ c j 4 ) + Z R 2 (4Im(rQ c Q c )Im(r )Re( ) + 2cjQ c j 2 Im(@ x 2 )Re( )):
For > 0, we have k'k H 1 (B(0;)) 6 K(c; )k'k H Qc exp , therefore (since 1 ¡ is compactly supported) we only have to check that the integrands in the last two lines are in L 1 (R 2 ), and this is a consequence of Cauchy-Schwarz, since Z R 2

(jr j 2 jQ c j 2 + 2Re 2 ( )jQ c j 4 + 4jIm(rQ c Q c )Im(r )Re( )j + 2cjQ c j 2 jIm(@ x2 )Re( )j)

6K Z R 2 (jr j 2 + Re 2 ( )) 6 K k'k H Qc exp 2 :
Furthermore, for two cutos ; 0 such that they are both 0 near the zeros of Q c and 1 at innity, we have

B Q c ; exp (') ¡ B Q c ; 0 exp (') = Z R 2 ( 0 ¡ )(jr'j 2 ¡ Re(ic@ x 2 '' ) ¡ (1 ¡ jQ c j 2 )j'j 2 + 2Re 2 (Q c ')) + Z R 2 r( ¡ 0 ):(Re(rQ c Q c )j j 2 ¡ 2Im(rQ c Q c )Re( )Im( )) ¡ c@ x 2 ( ¡ 0 )jQ c j 2 Re( )Im( ) + Z R 2 ( 0 ¡ )(jr j 2 jQ c j 2 + 2Re 2 ( )jQ c j 4 ) + Z R 2 ( 0 ¡ )(4Im(rQ c Q c )Im(r )Re( ) + 2cjQ c j 2 Im(@ x2 )Re( ))
and, developping ' = Q c (see the proof of Lemma 3.3.1) and by integration by parts using that ¡ 0 = / 0 only in a compact domain far from the zeros of Q c , we check that it is 0. Finally, for ' 2 H Qc , B Qc (') and B Qc exp (') are both well dened. We recall

B Qc (') = Z R 2 jr'j 2 ¡ (1 ¡ jQ c j 2 )j'j 2 + 2 Re 2 (Q c ') ¡ c Z R 2 (1 ¡ )Re(i@ x2 '' ) ¡ c Z R 2 Rei @ x2 Q c Q c j j 2 + 2c Z R 2 Re Im@ x2 jQ c j 2 + c Z R 2 @ x2 Re Im jQ c j 2 + c Z R 2 
Re Im @ x2 (jQ c j 2 ): 

or if 8x 2 R; '(x 1 ; x 2 ) = '(¡x 1 ; x 2 ) and Re R B ¡ d ~ce1;R [B ¡ ¡d ~ce1;R i Q c ' = 0, then B Q c exp (') > K k'k H Qc
= Q c 2 C c 1 ¡ R 2 n d ~ce ~1; ¡d ~ce ~1 ; C such that Z B ¡ d ~ce 1 ;R Re @ x 1 V ~1V 1 ~ = Z B ¡ d ~ce 1 ;R Re @ x 2 V 1 ~V1 ~ = 0;
we have

B Qc loc1;D (') > K(D) Z B ¡ d ~ce1;D jr j 2 jQ c j 4 + Re 2 ( )jQ c j 4 :
By Lemma 3.3.3, we infer, by a standard proof by contradiction (with the rst two orthogonality conditions),

B Qc loc1;D (') > K 1 (D)k'k H 1 ¡ B ¡ d ~ce1;D 2 ¡ K 2 (D) Z B ¡ d ~ce1;R nB ¡ d ~ce1;R/2 Im( ) ! 2 :
We deduce, with Lemma 3.3.3, that for any small " > 0

B Qc loc1;D (') > K(D)(1 ¡ ") Z B ¡ d ~ce1;D jr j 2 jQ c j 4 + Re 2 ( )jQ c j 4 + K 1 (D)"k'k H 1 ¡ B ¡ d ~ce1;D 2 ¡ K 2 (D)" Z B ¡ d ~ce1;R nB ¡ d ~ce1;R/2 Im( ) ! 2 : By Poincaré inéquality, if Re R B(0;R) i = 0, then Z B ¡ d ~ce1;R nB ¡ d ~ce1;R/2 Im( ) 6 K(c) Z R 2 n ¡ B ¡ d ~ce1;R/2 [B ¡ ¡d ~ce1;R/2 jr j 2 s 6 K(c) Z R 2
jr j 2 jQ c j 4 r :

Therefore, for any small > 0, taking " > 0 small enough (depending on c; D and ),

B Qc loc1;D (') > K(D) Z B ¡ d ~ce1;D jr j 2 jQ c j 4 + Re 2 ( )jQ c j 4 + K 1 (D; c; )k'k H 1 ¡ B ¡ d ~ce 1 ;D 2 ¡ Z R 2 jr j 2 jQ c j 4 :
With similar arguments, we have a similar result for B Q c loc¡1;D ('). Now, as in the proof of Proposition 1.4.3, we have, taking > 0 small enough and D > 0 large enough, 

B Qc (') > B Qc loc1;D (') + B Qc loc¡1;D (') + K Z R 2 n ¡ B ¡ d ~ce1;D [B ¡ ¡d ~ce1;D jr j 2 jQ c j 4 + Re 2 ( )jQ c j 4 ! > K Z R 2 jr j 2 jQ c j 4 + Re 2 ( )jQ c j 4 + K 1 (c; )k'k H 1 ¡ B ¡ d ~ce1;10 2 ¡ Z R 2 jr j 2 jQ c j 4 > K k'k C 2 + K(c)k'k H 1 ¡ B ¡ d 
Z R 2 j'j 2 (1 + r ~)2 ln 2 (2 + r ~) 6 K k'k H 1 ¡ B ¡ d ~ce 1 ;10 2 + Z R 2 jr j 2 jQ c j 4 ; therefore B Q c (') > K k'k C 2 + K(c)k'k H Qc exp 2 :
In the symmetric case, the proof is identical, exept that, by symmetry,

Re Z B ¡ d ~ce1;R iQ c ' = 0;
and we check by Poincaré inequality that for a function ' satisfying this orthogonality condition,

' = Q c , Z B ¡ d ~ce1;R nB ¡ d ~ce1;R/2 Im( ) 6 K k'k H 1 ¡ B ¡ d ~ce1;R ;
for a universal constant K > 0. By a similar computation as previously, we conclude the proof of this lemma.

We now have all the elements necessary to conclude the proof of Proposition 1.4.11. 

Proof. (of

by = + " 1 @ x1 Q c Q c + " 2 c 2 @ c Q c Q c + " 3 @ x2 Q c Q c + " 4 c@ c ? Q c Q c + " 5 i: From Lemma 3.5.3, we check that ' 2 H Q c exp
. Now, similarly as the proof of Lemma 3.4.5, we check that

Z B ¡ d ~ce1;R Re @ x1 V 1 ~V1 ~ = Z B ¡ d ~ce1;R Re @ x1 V 1 ~V1 ~ + " 1 Z B ¡ d ~ce 1 ;R Re @ x1 V 1 ~@x1 Q c V 1 Qc ! + " 2 Z B ¡ d ~ce 1 ;R Re @ x 1 V 1 ~c2 @ c Q c V 1 Qc ! + " 3 Z B ¡ d ~ce1;R Re @ x1 V 1 ~@x2 Q c V 1 Qc ! + " 4 Z B ¡ d ~ce 1 ;R Re @ x1 V 1 ~c@ c ?Q c V 1 Qc ! + " 5 Z B ¡ d ~ce1;R Re @ x1 V 1 ~iV 1 ~: Furthermore, with Lemma 1.2.1, we check that Z B ¡ d ~ce 1 ;R Re @ x 1 V 1 iV 1 ~= 0;
and the other terms are estimated as in the proof of Lemma 3.4.5. Similarly,

Z B ¡ d ~ce1;R Re @ x2 V 1 iV 1 ~= Z B ¡ ¡d ~ce1;R Re ¡ @ x1 V ¡1 iV ¡1 = Z B ¡ ¡d ~ce1;R Re ¡ @ x2 V ¡1 iV ¡1 = 0:
We also check that, from (3.1.9), (3.1.10), Lemmas 3.1.2 and 3.1.6 that

Z B(0;R) Re i @ x 1 Q c Q c + Z B(0;R) Re i @ x 2 Q c Q c + Z B(0;R) Re ic 2 @ c Q c Q c + Z B(0;R) Re ci @ c ?Q c Q c = o c!0 ( 1 
); Re(i i) = ¡R 2 < 0:

We deduce, as in the proof of Lemma 3.4.5, that 0

B B B B B B B B B B B @ R B ¡ d ~ce1;R Re @ x 1 V 1 ~V1 ~ R B ¡ ¡d ~ce1;R Re @ x1 V ~¡1 V ~¡1 R B ¡ d ~ce 1 ;R Re @ x2 V 1 ~V1 ~ R B ¡ ¡d ~ce 1 ;R Re @ x 2 V ~¡1 V ~¡1 Re R B(0;R) i = 0 1 C C C C C C C C C C C A = 0 B B B B @ 0 B B B B @ K(R) ¡K(R) 0 0 0 K(R) K(R) 0 0 0 0 0 K(R) ¡K(R) 0 0 0 K(R) K(R) 0 0 0 0 0 ¡R 2 1 C C C C A + o c!0 (1) 1 C C C C A 0 B B B B @ " 1 " 2 " 3 " 4 " 5 1 C C C C A + o c!0 (c 0 )K k'k C :
Therefore, we can nd " 1 ; " 2 ; " 3 ; " 4 ; " 5 2 R such that j" 1 j + j" 2 j + j" 3 j + j" 4 j + j"

5 j 6 o c!0 (c 0 )k'k C
and ' satises the ve orthogonality conditions of Lemma 3.5.4. Therefore,

B Qc exp (' ) > K(c)k' k H Qc exp 2 + K k' k C 2 :
We continue as in the proof of Lemma 3.4.5, and with the same arguments, we have

B Qc exp (') > K(c)k' k H Qc exp 2 + K k'k C 2 :
Now, by Lemma 3.5.3, we have

k' k H Qc exp > k'k H Qc exp ¡ k" 1 @ x 1 Q c + " 2 c 2 @ c Q c + " 3 @ x 2 Q c + " 4 c@ c ?Q c + " 5 ik H Qc exp > k'k H Qc exp ¡ o c!0 (c 0/2 )k'k C ;
thus, since we can take K(c) 6 1, we have

B Q c exp (') > K(c)k'k H Qc exp 2 :
We conclude by density as in the proof of Proposition 1.4.3, thanks to Lemma 3.5.2. We are left with the proof of

B Q c exp (') 6 K k'k H Qc exp 2
. With regards to (1.4.4), the local terms can be estimated by

K k'k H 1 ({r ~610}) 2 6 K k'k H Qc exp 2
and the terms at innity, by Cauchy Schwarz, can be estimated by

K R {r ~>5} jr j 2 + Re 2 ( ) + j j 2 r ~2ln 2 (r ~) 6 K k'k H Qc exp 2 .
As for the remark above equation (3.4.20), we can replace the orthogonality condition Re R

B ¡ d ~ce1;R [B ¡ ¡d ~ce1;R @ c Q c Q c = / 0 = 0 by Re Z B ¡ d ~ce 1 ;R [B ¡ ¡d ~ce 1 ;R @ d (V 1 (x ¡ de ~1)V ¡1 (x + de ~1)) |d=d c Q c = / 0 (x)dx = 0 (3.5.4)
in Propositions 1.4.10 and 1.4.11.

Proof. (of Theorem 1.4.12) This proof follows closely the proof of Proposition 1.4.11, First, From Lemma 3.1.3 and the denition of @ c ? Q c in Lemma 3.1.6, we check that @ x1 Q c and @ c ?Q c are odd in x 1 , and for

' = Q c 2 C c 1 ¡ R 2 n d ~ce ~1; ¡d ~ce ~1 ; C with 8(x 1 ; x 2 ) 2 R 2 ; '(x 1 ; x 2 ) = '(¡x 1 ; x 2 ), we check that in B ¡ d ~ce 1 ~; R [ B ¡ ¡d ~ce 1 ~; R , Q c = / 0 is even in x 1 .
Therefore, these two orthogonality conditions are freely given.

Similarly, we have

kQ c ~0 ¡ Q jc ~0je ~2k L 1 (R 2 ) 6 K ? (ce 2 ~; c ~0) + j:j (ce 2 ~; c ~0) c and kQ jc ~0je ~2 ¡ Q c k L 1 (R 2 ) 6 K j:j (ce2; c ~0) c 2
. We deduce that (since c 6 1) 

kQ ¡ Q c k L 1 (R 2 ) 6 K jX j + j:j (ce 2 ~; c ~0) c 2 + ? (ce 2 ~; c ~0) c + j j ! ; ( 3 
kr@ x2 Qk L 1 (R 2 ) + c 2 kr@ c Qk L 1 (R 2 ) + ckr@ c ?Q k L 1 (R 2 ) + kirQ c k L 1 (R 2 ) 6 K:
We deduce that

kr(Q ¡ Q c )k L 1 (R 2 ) 6 K jX j + j:j (ce 2 ~; c ~0) c 2 + ? (ce 2 ~; c ~0) c + j j ! ;
and, by (3.6.4), 

kr(Z ¡ Q)k L 1 (B(0;)) 6 K()kZ ¡ Q c k H Qc exp + K jX j + j:j (
K ; K() > 0 such that kQ k C 1 (B(0;)) 6 K()kZ ¡ Q c k H Qc exp + K jX j + j:j (ce 2 ~; c ~0) c 2 + ? (ce 2 ~; c ~0) c + j j ! :
Proof. First, taking " 0 (c) small enough (depending on c), we check that c 2 6 jc ~0j 6 2c. We recall equation (3.6.2):

(

¡ )Q + Q(e ¡ 1) = Z ¡ Q: We write it in the form + (e ¡ 1 ¡ ) = Z ¡ Q Q ; 1 
and in = 0 , we therefore dene In this set, we have that 

= Z ¡ Q Q : ( 3 
Z ¡ Q Q C 1 () 6 K" 0 (c) + K()kZ ¡ Q c k H Qc
= 0} which intersect , we can construct Q 2 C 1 (B(0; + 1); C) such that Q + (1 ¡ )Q(e ¡ 1) = Z ¡ Q in B(0; + 1).
Furthermore, we use here the hypothesis that, outside of B(0; ), jZ ¡ Q c j 6 0 . We deduce that (taking 0 < 1 4 ) there exists > 0 such that jZ j > outside of B(0; ). In particular, since can be taken large, we have that outside of B(0; ), = 1. The equation on then becomes e = Z Q ;

and by equation (3.1.12) and jZ j > , we deduce that there exists a unique solution to this problem in C 1 (R 2 nB(0; ); C) that is equal on B(0; + 1)nB(0; ) to the previously constructed function .

Therefore, there exists

Q 2 C 1 (R 2 ; C) such that (1 ¡ )Q + Q(e ¡ 1) = Z ¡ Q in R 2
. Furthermore, we check that (by the xed point argument), since = / 1 B(0; ),

k k C 1 ({= / 1}) 6 K Z ¡ Q Q C 1 ({= / 1}) 6 K()kZ ¡ Q c k H Qc exp + K jX j + j:j (ce 2 ~; c ~0) c 2 + ? (ce 2 ~; c ~0) c + j j ! :
From equation (3.1.12) and Lemma 3.6.1, we have

kQ k C 1 (B(0;)) 6 kZ ¡ Qk C 1 (B(0;)) + K k k C 1 ({= / 1}) + K()kZ ¡ Q c k H Qc exp 6 K()kZ ¡ Q c k H Qc exp + K jX j + j:j (ce 2 ~; c ~0) c 2 + ? (ce 2 ~; c ~0) c + j j ! :
This concludes the proof of the lemma.

Lemma 3.6.3. The functions Q and , dened respectively in ( 3.6.1) and Lemma 3.6.2, satisfy

' := Q 2 H Q exp :
Furthermore, ' 2 C 2 (R 2 ; C) and there exists K(; c; kZ ¡ Q c k H Qc exp ; " 0 ; Z) > 0 such that, in = 1 (i.e. far from the vortices), jr j + jRe( )j + j j 6 K(; c; kZ ¡ Q c k H Qc exp ; " 0 ; Z) (1 + r) 2 ;

jrRe( )j 6 K(; c; kZ ¡ Q c k H Qc exp ; " 0 ; Z) (1 + r) 3 and

jIm( + i)j 6 K(; c; kZ ¡ Q c k H Qc exp ; " 0 ; Z) (1 + r) :
Proof. From Lemma 3.6.2, for any

> 10 c , kQ k C 1 (B(0;)) 6 K()kZ ¡ Q c k H Qc exp + K jX j + j:j (ce 2 ~; c ~0) c 2 + ? (ce 2 ~; c ~0) c + j j ! ; (3.6.8)
therefore, we only have to check the integrability at innity of

Q to show that ' = Q 2 H Q exp : In = 1 , we have e = Z Q :
We have shown in the proof of Lemma 3.6.2 that K > Z Q > /2 outside of B(0; ) for some > 0, and together with (3.6.8), we check that

k k C 0 ({=1}) 6 K(; kZ ¡ Q c k H Qc exp ; " 0 ): (3.6.9)
This implies that Z {=1} jQ j 2 r ~2ln(r ~)2 < +1:

Similarly, we check that, in = 1 , since e = Z Q , r = e ¡ Q r(Z ¡ Q) ¡ rQ Q (1 ¡ e ¡ ); therefore jr j 6 K(; kZ ¡ Q c k H Qc exp ; " 0 )(jr(Z ¡ Q)j + jrQj): (3.6.10)
From Theorem 3.1.4, we have

jrZ j + jrQj 6 K(c; Z) (1 + r) 2 ; therefore, Z {=1} jrQj 2 j j 2 < +1 and Z {=1} jr(Z ¡ Q)j 2 6 Z { =1} K(c; Z) (1 + r) 4 < +1:
We deduce that R {=1} jr j 2 < +1, and, furthermore, equation (3.6.10) shows that

jr j 6 K(; c; kZ ¡ Q c k H Qc exp ; " 0 ; Z) (1 + r) 2 in = 1 . Now, still in = 1 , we have Qe = Z ; we deduce that Q e ¡i (e +i ¡ 1) = Z ¡ Q e ¡i . Now, we recall that k k C 0 ({=1}) 6 K(; kZ ¡ Q c k H Qc exp ; " 0 ), thus jRe(e +i ¡ 1 ¡ ( + i))j 6 K(; kZ ¡ Q c k H Qc exp ; " 0 )jRe(e +i ¡ 
1)j. We deduce from this, with (3.6.8) that, in { = 1}, with

1 4 k + i k L 1 (R 2 ) 6 jRe(e +i ¡ 1)j 6 K k + i k L 1 (R 2 ) , jRe( )j = jRe( + i)j 6 jRe(e +i ¡ 1)j + jRe(e +i ¡ 1 ¡ ( + i))j 6 K(; kZ ¡ Q c k H Qc exp ; " 0 )jRe(e +i ¡ 1)j 6 K(; kZ ¡ Q c k H Qc exp ; " 0 ) Re (Z ¡ Qe ¡i )Qe i jQj 2 ! 6 K(; kZ ¡ Q c k H Qc exp ; " 0 )(jRe(Z ¡ Qe ¡i )j + jIm(Z ¡ Qe ¡i )Im(Qe i ¡ 1)j): From Theorem 3.1.4, jRe(Z ¡ Qe ¡i )j 6 jRe(Z ¡ 1)j + jRe(1 ¡ Qe ¡i )j 6 K(c; Z) (1 + r) 2 and jIm(Z ¡ Qe ¡i )Im(Qe i ¡ 1)j 6 K(c; Z) (1 + r) 2 :
We conclude that, in = 1 , we have jRe( )j 6 and jRe(r )j 6

K ; c; kZ ¡ Qck H Qc exp; "0; Z (1 + r) 3 in = 1 . We recall that, in = 1 , r = e ¡ Q r(Z ¡ Q) ¡ rQ Q (1 ¡ e ¡ )
, from which we compute, by dierentiating a second time,

= ¡ r :r(Z ¡ Q) Q e ¡ ¡ rQ Q e ¡ :r(Z ¡ Q) + e ¡ Q (Z ¡ Q) ¡ Q Q (1 ¡ e ¡ ) + rQ:rQ Q 2 (1 ¡ e ¡ ) ¡ rQ Q :r e ¡ : Using Theorem 3.1.4, Q = ¡ic ~0:rQ ¡ (1 ¡ jQj 2 )Q, Z = ¡ic@ x2 Z ¡ (1 ¡ jZ j 2
)Z and previous estimates on , we check that, in = 1 ,

j j 6 K(; c; kZ ¡ Q c k H Qc exp ; " 0 ; Z) (1 + r) 2 :
We have Qe ¡i (e +i ¡ 1) = Z ¡ Qe ¡i in = 1 , therefore 3 :

e +i ¡ 1 = Z Qe ¡i ¡ 1 We check, since k k C 0 ({=1}) 6 K(; kZ ¡ Q c k H Qc exp ; " 0 ), that we have by Theorem 3.1.4 jIm( + i)j 6 K(; kZ ¡ Q c k H Qc exp ; " 0 )jIm(e +i ¡ 1)j 6 K(; kZ ¡ Q c k H Qc exp ; " 0 ) Z Qe ¡i ¡ 1 6 K(; c; kZ ¡ Q c k H Qc exp ; " 0 ; Z) (1 + r) : Finally, since r = e ¡ Q r(Z ¡ Q) ¡ rQ Q (1 ¡ e ¡ ) = rZ Q e ¡ ¡ rQ Q ,
; Z) (1 + r) 2 Im e ¡ QZ + K(; c; kZ ¡ Q c k H Qc exp ; " 0 ; Z) (1 + r)
We compute in = 1 , still using Theorem 3.1.4,

Im e ¡ QZ = 1 jQZ j 2 jIm(e ¡ ¡i Q Ze i )j 6 K(jIm(e ¡ ¡i ¡ 1)Re(Q Ze i )j + jRe(e ¡ ¡i )Im(Q Ze i )j) 6 K(; c; kZ ¡ Q c k H Qc exp ; " 0 ; Z) 1 + r + K(; c; kZ ¡ Q c k H Qc exp ; " 0 ; Z)jIm(Q Ze i )j 6 K(; c; kZ ¡ Q c k H Qc exp ; " 0 ; Z) (1 + r) + K(; c; kZ ¡ Q c k H Qc exp ; " 0 ; Z)(jQe ¡i ¡ 1j + jZ ¡1j) 6 K(; c; kZ ¡ Q c k H Qc exp ; " 0 ; Z) (1 + r) :
This concludes the proof of this lemma.

We remark that here, since 9 0 at innity (if = / 0), we do not have Q 2 H Q . This is one of the main reasons to introduce the space H Q exp . Lemma 3.6.4. The functions Q and , dened respectively in ( 3.6.1) and Lemma 3.6.2, satisfy, with

' = Q , hL Q exp ('); (' + iQ)i = B Q exp ('); where L Q exp (') = (1 ¡ )L Q (') + QL Q 0 ( ), with L Q 0 ( ) = ¡ ¡ 2 rQ Q :r + i c ~:r + 2Re( )jQj 2 : Furthermore, L Q (') = QL Q 0 ( ): The equality hL Q exp ('); (' + iQ)i = B Q exp (') is not obvious for functions ' 2 C 2 (R 2 ; C) \ H Qc exp
(because of some integration by parts to justify) and we need to check that, for the particular function ' we have contructed, this result holds. We will use mainly the decay estimates of Lemma 3.6.3. Morally, we are showing that, since L Q (iQ) = 0, that we can do the following computation:

hL Q ('); ' + iQi = h'; L Q (' + iQ)i = h'; L Q (')i = B Q (').
The goal of this lemma is simply to check that, with the estimates of Lemma 3.6.3, the integrands are integrable and the integration by parts can be done to have hL

Q exp ('); (' + iQ)i = B Q exp ('). Proof. First, let us show that L Qc () = Q c L Qc 0 ( ) if = Q c 2 C 2 (R 2 ; C). With equation (3.6.1), it implies that L Q (') = QL Q 0 ( ): We recall that L Q c () = ¡ ¡ ic@ x 2 ¡ (1 ¡ jQ c j 2 ) + 2Re(Q c )Q c ;
and we develop with

= Q c , L Qc () = TW c (Q c ) ¡ Q c ¡ 2rQ c :r ¡ icQ c @ x2 + 2Re( )jQ c j 2 Q c ; thus, since (TW c )(Q c ) = 0, we have L Q c () = Q c L Q c 0 ( ). Now, for ' = Q , we have h(1 ¡ )L Q (') + QL Q 0 ( ); (' + iQ)i = Z R 2 Re((1 ¡ )L Q (')(' + iQ)) + Z R 2 jQj 2 Re ¡ ¡ 2 rQ Q :r + i c ~:r ( + i) + jQj 4 Re 2 ( ):
With Lemma 3.6.3, we check that all the terms are integrable independently (in particular since

' + iQ = Q( + i) and k( + i)(1 + r)k L 1 ({=1}) < +1 by Lemma 3.6.3). We recall that L Q (') = ¡' + i c ~:r' ¡ (1 ¡ jQj 2 )' + 2Re(Q ')Q, and thus Z R 2 Re((1 ¡ )L Q (')(' + iQ)) = Z R 2 (1 ¡ )(Re(i c ~:r'' ) ¡ (1 ¡ jQj 2 )j'j 2 + 2Re 2 (Q ')) + Z R 2 (1 ¡ )Re(¡'' ) + Z R 2 (1 ¡ )Re(L Q (')iQ):
We recall that 1 ¡ is compactly supported and that ' 2 C 2 (R 2 ; C). By integration by parts, Z

R 2 (1 ¡ )Re(¡'' ) = Z R 2 (1 ¡ )jr'j 2 ¡ Z R 2 r:Re(r'' ); and we decompose Z R 2 (1 ¡ )Re(L Q (')iQ) = Z R 2 (1 ¡ )Re(¡'iQ + c ~:r' Q ) ¡ Z R 2 (1 ¡ )Re((1 ¡ jQj 2 )'iQ):
By integration by parts, that we have Z

R 2 (1 ¡ )Re(c ~:r' Q ) = ¡c ~:Z R 2 ¡rRe('Q ) + (1 ¡ )Re('rQ ) and Z R 2 (1 ¡ )Re(¡'iQ) = Z R 2 ¡r:(Re(i'rQ ) ¡ Re(ir'Q )) + Z R 2 (1 ¡ )Re(i'Q ):
Combining this computations, we infer Z

R 2 Re((1 ¡ )L Q (')(' + iQ)) = Z R 2 (1 ¡ )(jr'j 2 + Re(i c ~:r'' ) ¡ (1 ¡ jQj 2 )j'j 2 + 2Re 2 (Q ')) ¡ Z R 2 r:Re(r'' )c ~:Z R 2 rRe('Q ) ¡ Z R 2 r:(Re(i'rQ ) ¡ Re(ir'Q )) + Z R 2 (1 ¡ )Re('(¡ c ~:rQ + i(1 ¡ jQj 2 )Q + iQ )): Since ¡Q + i c ~:rQ ¡ (1 ¡ jQj 2 )Q = 0, we have ¡c ~:rQ + i(1 ¡ jQj 2 )Q + iQ = 0, therefore Z R 2 Re((1 ¡ )L Q (')(' + iQ)) = Z R 2 (1 ¡ )(jr'j 2 + Re(ic ~:r'' ) ¡ (1 ¡ jQj 2 )j'j 2 + 2Re 2 (Q ')) ¡ Z R 2 r:Re(r'' ) ¡ ¡c ~:Z R 2 rRe('Q ) + Z R 2 r:(Re(i'rQ ) ¡ Re(ir'Q ))
:

Until now, all the integrals were on bounded domain (since 1 ¡ is compactly supported). Now, by integration by parts, (that can be done thanks to Lemma 3.6.3 and Theorem 3.

1.4) Z R 2 jQj 2 Re(¡ ( + i)) = Z R 2 r:jQj 2 Re(r ( + i)) + Z R 2 r(jQj 2 ):Re(r ( + i)) + Z R 2 jQj 2 jr j 2 :
Now, we decompose (and we check that each term is well dened at each step with Lemma 3.6.3 and Theorem 3.

1.4) Z R 2 jQj 2 Re ¡2 rQ Q :r ( + i) = ¡2 Z R 2 Re(rQQ :r ) ¡ 2 Z R 2 
Re(rQQ :r (i));

with ¡2 Z R 2 Re(rQQ :r ) = ¡2 Z R 2 Re(rQQ ):Re(r ) + 2 Z R 2 
Im(rQQ ):Im(r );

and since r(jQj 2 ) = 2Re(rQQ ), we have Z

R 2 jQj 2 Re ¡ ¡ 2 rQ Q :r ( + i) = Z R 2 jQj 2 jr j 2 + 2 Z R 2 (1 ¡ )Im(rQQ ):Im(r ) + Z R 2 r:jQj 2 Re(r ( + i)) + 2 Z R 2 
Im(rQQ ):Im(r (i))):

We continue. We have

2 Z R 2 Im(rQQ ):Im(r ) = 2 Z R 2 Im(rQQ ):Re( )Im(r ) ¡ 2 Z R 2 
Im(rQQ ):Re(r )Im( );

and by integration by parts (still using Lemma 3.6.3 and Theorem 3.1.4),

¡2 Z R 2 Im(rQQ ):Re(r )Im( ) = 2 Z R 2 
Im(rQQ ):Re( )Im(r )

+ 2 Z R 2 
Im(QQ )Re( )Im( )

+ 2 Z R 2 
r:Im(rQQ )Re( )Im( ):

We have

Im(QQ ) = Im(i c ~:rQ ¡ (1 ¡ jQj 2 Q)Q ) = Re(c ~:rQQ ), therefore Z R 2 jQj 2 Re ¡ ¡ 2 rQ Q :r ( + i) = Z R 2 jQj 2 jr j 2 + 4 Z R 2 Im(rQQ ):Re( )Im(r ) + 2 Z R 2 Im(rQQ ):Im(r (i))) + 2 Z R 2 Re(c ~:rQQ )Re( )Im( ) + Z R 2 r(jQj 2 Re(r ( + i)) + 2Im(rQQ )Re( )Im( )): Now, we compute c ~:Z R 2 jQj 2 Re(ir ( + i)) = c ~:Z R 2 jQj 2 Re(r )Im( + i) ¡ c ~:Z R 2 jQj 2 Im(r )Re( );
and by integration by parts (still using Lemma 3.6.3 and Theorem 3.1.4),

c ~:Z R 2 jQj 2 Re(r )Im( + i) = ¡c ~:Z R 2 r jQj 2 Re( )Im( + i) ¡ c ~:Z R 2 r(jQj 2 )Re( )Im( + i) ¡ c ~:Z R 2 jQj 2 Re( )Im(r ): Since r(jQj 2 ) = 2Re(rQQ ), we infer Z R 2 jQj 2 Re ¡ ¡ 2 rQ Q :r ¡ ic ~:r ( + i) = Z R 2 (jQj 2 jr j 2 + 4Im(rQQ ):Re( )Im(r ) ¡ 2c ~:Im(r )Re( )) + 2 Z R 2 Im(rQQ ):Im(r (i))) ¡ 2 Z R 2 
Re(c ~:rQQ )Re( )

+ Z R 2 r:(jQj 2 Re(r ( + i)) + 2Im(rQQ )Re( )Im( )) + c ~:Z R 2 rjQj 2 Re( )Im( + i): Combining these computation yields Z R 2 Re(L Q exp (')(' + iQ)) = B Q exp (') ¡ ¡c ~:Z R 2 rRe('Q ) + Z R 2 r:(Re(i'rQ ) ¡ Re(ir'Q )) + 2 Z R 2 Im(rQQ ):Im(r (i))) ¡ 2 Z R 2 
Re(c ~:rQQ )Re( )

+ Z R 2 r:jQj 2 Re(r (i)) ¡ c ~: Z R 2 rjQj 2 Re( ):
We compute, by integration by parts (still using Lemma 3.6.3 and Theorem 3.1.4), that

2 Z R 2 Im(rQQ ):Im(r (i))) = ¡2 Z R 2 Im(rQQ ):Re(r ) = 2 Z R 2 r:Im(rQQ )Re( ) + 2 Z R 2 
Im(QQ )Re( );

and since Im(QQ ) = Re(c ~:rQQ ) and Re(r

(i)) = Im(r ), we have Z R 2 Re(L Q exp (')(' + iQ)) = B Q exp (') ¡ ¡c ~:Z R 2 rRe('Q ) + Z R 2 r:(Re(i'rQ ) ¡ Re(ir'Q )) + 2 Z R 2 r:Im(rQQ )Re( ) + Z R 2 r:jQj 2 Im(r ) ¡ c ~: Z R 2 rjQj 2 Re( ):
we check that Re('Q ) = jQj 2 Re( ), Re(i'rQ ) = ¡Re(rQQ )Im( ) + Im(rQQ )Re( ) and that

¡Re(ir'Q ) = ¡Re(irQ c Q ) ¡ Re(ir )jQj 2 = Im(rQQ )Re( ) + Re(rQQ )Im( ) + Im(r )jQj 2 ; thus concluding the proof of Z R 2 Re(L Q exp (')(' + iQ)) = B Q exp ('):

Properties of the perturbation

We look for the equation satised by ' = Q in the next lemma.

Lemma 3.6.5. The functions Q and , dened respectively in ( 3.6.1) and Lemma 3.6.2, with ' = Q , satisfy the equation

L Q (Q ) ¡ i(ce 2 ~¡ c ~0):H( ) + NL loc ( ) + F ( ) = 0; with L Q the linearized operator around Q: L Q (') := ¡' ¡ i c ~:r' ¡ (1 ¡ jQj 2 )' + 2Re(Q ')Q, S( ) := e 2Re( ) ¡ 1 ¡ 2Re( ); F ( ) := Q(¡r :r + jQj 2 S( )); H( ) := rQ + r(Q )(1 ¡ ) + Qr e (1 ¡ ) + e
and NL loc ( ) is a sum of terms at least quadratic in , localized in the area where = / 1. Furthermore,

jhNL loc ( ); Q( + i)ij 6 K(kQ k C 1 ({= / 1}) + j j)kQ k H 1 ({= / 1}) 2 :
Remark that here, the equation satised by ' has a source term, i(ce 2 ~¡ c ~0):H( ), coming from the fact that Z and Q c might not have the same speed at this point. We will estimate it later on.

Proof. The function Z solves (TW c ), hence,

i(ce 2 ~¡ c ~0):rZ = ¡i c ~0:rZ ¡ Z ¡ (1 ¡ jZ j 2 )Z:
From (3.6.2), we have

Z = Q + (1 ¡ )Q + Q(e ¡ 1):
We dene 

:= 1 + ¡ e : We replace Z = Q + (1 ¡ )Q + Q(e ¡ 1) in ¡i c ~0:rZ ¡ Z ¡ (1 ¡ jZ j 2 )Z
L Q (Q ) ¡ i(ce 2 ~¡ c ~0):H( ) + NL loc ( ) + F ( ) = 0:
Finally, we check, similarly as in the proof of Lemma 2.1.7, that

jhNL loc ( ); Q( + i)ij 6 K(kQ k C 1 ({= / 1}) + j j) Z R 2 jNL loc ( )j; hence jhNL loc ( ); Q( + i)ij 6 K(kQ k C 1 ({= / 1}) + j j)kQ k H 1 ({= / 1}) 2 :
Now, we want to choose the right parameters ; c ~0; X so that ' satises the orthogonality conditions of Proposition 1.4.10 and 1.4.11 (with remark 3.5.4). Lemma 3.6.6. For the functions Q and , dened respectively in ( 3.6.1) 

G 0 B B B B @ 0 0 0 0 0 1 C C C C A 6 o kZ ¡ Qck H Qc exp!0 ;c
(1):

Let us compute @ X2 G. We recall that Q 2 C 1 (R 2 ; C). Since depends on X, we have

@ X2 Re Z @ x2 QQ = / 0 = Z @ Re @ x2 QQ = / 0 ¡ Z Re @ x2x2 2 QQ = / 0 + Z Re @ x2 Q@ X2 (Q = / 0 ) :
By estimate (3.6.12), we have

Z @ Re @ x 2 QQ = / 0 + Z Re @ x 2 x 2 2 QQ = / 0 6 o kZ ¡ Q c k H Qc exp!0 ;c (1) + K jX j + j:j (ce 2 ~; c ~0) c 2 + ? (ce 2 ~; c ~0) c ! ; and since Q = Z ¡ Q and = / 0 = ¡ 0 in , we check that, Z Re @ x2 Q@ X2 (Q = / 0 ) = ¡ Z j@ x2 Qj 2 + Z Re ¡ @ x2 Q@ X (Q 0 ) : Now, using Q = Z ¡ Q, we check that, in B(d c ~0;1 ; R), where x = r 1 e i1 , 2@ X2 (Q 0 ) = @ X2 Q Z 0 2 Z ¡ Q Q d 1 = @ x2 Q Z 0 2 Z ¡ Q Q d 1 + Q Z 0 2 ¡@ x2 Q Q d 1 + Q Z 0 2 ¡(Z ¡ Q)@ x2 Q Q 2 d 1 + Q Z 0 2 @ x2 Z ¡ Q Q d 1 Therefore, we estimate (since R is a universal constant) Z B(d c ~0;1 ;R) Re ¡ @ x2 Q@ X (Q 0 ) 6 Z B(d c ~0;1 ;R) Re @ x2 QQ Z 0 2 ¡@ x2 Q Q d 1 + K kZ ¡ Qk C 1 () : Let us show that, in B(d c ~0;1 ; R), Q Z 0 2 ¡@ x 2 Q Q d 1 = o c!0 (1): (3.6.13)
We have in this domain that 

Q V1 = 1 + o c!0 (
; R), Q Z 0 2 ¡@ x2 Q Q d 1 = V 1 Z 0 2 ¡@ x2 V 1 V 1 d 1 + o c!0 (1):
Finally, by Lemma 1.2.1, we check that

@x 2 V1 V1 has no 0-harmonic around d c ~0;1 , therefore V 1 Z 0 2 ¡@ x2 V 1 V 1 d 1 = 0: (3.6.14)
By symmetry, the same proof holds in B(d c ~0;2 ; R). Adding up these estimates, we get

@ X 2 Re Z @ x 2 QQ = / 0 + Z j@ x 2 Qj 2 6 
o kZ ¡Qck H Qc exp!0 ;c (1) + o c!0 (1) + K jX j + j:j (ce 2 ~; c ~0) c 2 + ? (ce 2 ~; c ~0) c + j j ! :
By a similar computation, we have

@ X2 Re Z @ d VQ = / 0 ¡ Z Re(@ d V@ x2 Q) 6 o kZ ¡Qck H Qc exp!0 ;c (1) + o c!0 (1) + K jX j + j:j (ce 2 ~; c ~0) c 2 + ? (ce 2 ~; c ~0) c + j j ! :
By Lemma 3.4.1 and Theorem 1.3.1 (for p = +1), we have

Z Re(@ d V@ x2 Q) 6 Z Re(c 2 @ c Q@ x2 Q) + Z Re((@ d V ¡ c 2 @ c Q)@ x2 Q) = o c!0 (1): Similarly, we check @ X 2 Z @ x 1 QQ = / 0 ¡ Z Re(@ x 1 Q@ x 2 Q) 6 o kZ ¡Qck H Qc exp!0 ;c (1) + o c!0 (1) + K jX j + j:j (ce 2 ~; c ~0) c 2 + ? (ce 2 ~; c ~0) c + j j ! :
Still by Lemma 3.4.1, we have

Z Re(@ x 1 Q@ x 2 Q) = o c!0 (1):
With the same arguments, we check that

@ X2 Z c@ c ?QQ = / 0 6 o kZ ¡Qck H Qc exp!0 ;c (1) + o c!0 (1) + K jX j + j:j (ce 2 ~; c ~0) c 2 + ? (ce 2 ~; c ~0) c + j j ! :
Finally, with equations (3.1.6) to (3.1.10) and (3.6.12), we check easily that

@ X2 Re Z 0 i 6 o kZ ¡Q c k H Qc exp!0 ;c (1) + o c!0 (1) + K jX j + j:j (ce 2 ~; c ~0) c 2 + ? (ce 2 ~; c ~0) c + j j ! :
We deduce that

@ X2 G 0 B B B B @ X 1 X 2 1 2 1 C C C C A + 0 B B B B B @ 0 R j@ x2 Qj 2 0 0 0 1 C C C C C A 6 o kZ ¡Q c k H Qc exp!0 ;c (1) + o c!0 (1) + K jX j + j:j (ce 2 ~; c ~0) c 2 + ? (ce 2 ~; c ~0) c + j j ! :
We can also check, with similar computations, that

@ X1 G 0 B B B B @ X 1 X 2 1 2 1 C C C C A + 0 B B B B B @ R j@ x1 Qj 2 0 0 0 0 1 C C C C C A 6 o kZ ¡Q c k H Qc exp!0 ;c (1) + o c!0 (1) + K jX j + j:j (ce 2 ~; c ~0) c 2 + ? (ce 2 ~; c ~0) c + j j ! :
We infer that this also holds with a similar proof for the last two directions, namely

c 2 @ 1 G 0 B B B B @ X 1 X 2 1 2 1 C C C C A + 0 B B B B B @ 0 0 R jc 2 @ c Qj 2 0 0 1 C C C C C A 6 
o kZ ¡ Qck H Qc exp!0 ;c (1) + o c!0 (1) + K jX j + j:j (ce 2 ~; c ~0) c 2 + ? (ce 2 ~; c ~0) c
+ j j ! (using the fact that @ d V is dierentiable with respect to 1 , which is not obvious for c 2 @ c Q and is the reason we have to use this orthogonality) and

c@ 2 G 0 B B B B @ X 1 X 2 1 2 1 C C C C A + 0 B B B B B @ 0 0 0 R jc@ c ?Q j 2 0 1 C C C C C A 6 o kZ ¡Qck H Qc exp!0 ;c (1) + o c!0 (1) + K jX j + j:j (ce 2 ~; c ~0) c 2 + ? (ce 2 ~; c ~0) c + j j ! :
We will only show for these directions that, in

B(d c ~0;1 ; R), Q Z 0 2 c 2 @ c Q Q d 1 + Q Z 0 2 c@ c ? Q Q d 1 = o c!0 (1);
the other computations are similar to the ones done for @ X2 F (using Lemma 3.4.1). We recall from Lemma 3.1.2 that, in B(d c ~0;1 ; R),

kc 2 @ c Q ¡ @ d V k C 1 (B(d c ~0;1 ;R)) = o c!0 (1); where k@ d V + @ x1 V 1 k C 1 (B(d c ~0;1 ;R)) = o c!0 (1), V 1 being centered around a point d c ~0 2 R 2 such that jd c ~0 ¡ d c ~0;1 j = o c!0 (1): Therefore, we check that Q Z 0 2 c 2 @ c Q Q d 1 6 V 1 Z 0 2 @ x1 V 1 V 1 d 1 + o c!0 (1) = o c!0 (1)
from (3.6.14). Finally, we have, from Lemma 3.1.6 that @ c ? Q = ¡x ?; ? (ce2;c ~0) :rQ, where x ?; ? (ce2;c ~0) is x ? rotated by an angle ? (ce 2 ~; c ~0). We remark that, in

B(d c ~0;1 ; R), Q Z 0 2 cd c ~0;1 :rQ Q d 1 6 V 1 Z 0 2 cd c ~0;1 :rV 1 V 1 d 1 + o c!0 (1) and V 1 Z 0 2 cd c ~0;1 :rV 1 V 1 d 1 = 0
by (3.6.14) and the same result for @ x 1 instead of @ x 2 . Therefore, since jx ?

; ? (ce2;c ~0) ¡ d c ~0;1 j 6 K in B(d c ~0;1 ; R), Q Z 0 2 c@ c ?Q Q d 1 6 Q Z 0 2 c(x ?; ? (ce2;c ~0) ¡ d c ~0;1 ):rQ Q d 1 + o c!0 (1) 6 Kc + o c!0 (1)
= o c!0 (1):

Finally, we infer that

@ G 0 B B B B @ X 1 X 2 1 2 1 C C C C A + 0 B B B B B @ 0 0 0 0 Re R 0 Q 1 C C C C C A 6 
o kZ ¡Qck H Qc exp!0 ;c (1) + o c!0 (1) + K jX j + j:j (ce 2 ~; c ~0) c 2 + ? (ce 2 ~; c ~0) c + j j ! :
The proof is similar of the previous computations, and we will only show that, in ,

j@ (Q = / 0 )j 6 o kZ ¡Qck H Qc exp!0 ;c (1): 
We have

j@ (Q = / 0 )j = j@ (Q ) ¡ @ (Q 0 )j 6 ¡iQ ¡ Q 2 Z 0 2 ¡iQ Q d + o kZ ¡Qck H Qc exp!0 ;c (1) 6 o kZ ¡ Qck H Qc exp!0 ;c (1) 
:

From Theorem 1.3.1, Re R 0 Q = Re R 0 ¡1 + o c!0 (1) 6 ¡K < 0.
We conclude, by Lemma 3.4.1, that, for c and kZ ¡ Q c k H Qc exp small enough, dG is invertible in a vicinity of (0; 0; 0; 0; 0) of size independent of kZ ¡ Q c k H Qc exp . Therefore, by the implicit function theorem, taking c small enough and "(c; ) small enough, we can nd X ; c ~0 2 R 2 ; 2 R such that

jX j + j:j (ce 2 ~; c ~0) c 2 + ? (ce 2 ~; c ~0) c + j j 6 o kZ ¡Qck H Qc exp!0 ;c (1) 
; 

and satisfying Re Z B(d c ~0;1 ;R)[B(d c ~0;2 ;R) @ x1 QQ = / 0 = Re Z B(d c ~0;1 ;R)[B(d c ~0;2 ;R) @ x2 QQ = / 0 = 0; Re Z B(d c ~0;1 ;R)[B(d c ~0;2 ;R) @ d VQ = / 0 = Re Z B(d c ~0;1 ;R)[B(d c ~0;2 ;R) @ c ? QQ = / 0 = 0; Re Z B((d c ~0;1 +d c ~0;2 )/2;R) i = 0: 3 
@ c Qij = Z R 2 Re(r iQc 2 @ c Q) 6 Z R 2 Re(r )Im(Qc 2 @ c Q) + Z R 2 Im(r )Re(Qc 2 @ c Q) 6 Z R 2 Re( )r(Im(Qc 2 @ c Q)) + K k'k H Qc exp + k'k C Z R 2 Re 2 (Qc 2 @ c Q) r :
From Lemmas 3.1.1 and 3.1.2, we check that R R 2 Re 2 (Qc 2 @ c Q) 6 K, and furthermore, jr(Im(Qc 2 @ c Q))j 6 c 2 j@ c QjjrQj + Kc 2 jr@ c Qj and with Lemma 3.1.2 (with = 1/2), we check that

jr(Im(Qc 2 @ c Q))j 6 K (1 + r ~)3/2 ; thus, by Cauchy-Schwarz, Z R 2 Re( )r(Im(Qc 2 @ c Q)) 6 K k'k C : Using jc ~0 ¡ ce 2 ~j 6 K(c)( j:j (ce 2 ~; c ~0) + ? (ce 2 ~; c ~0)) 6 o kZ ¡ Qck H Qc exp!0 ;c (1) and k'k C 6 K k'k H Qc exp , we deduce that i(c ~0 ¡ ce 2 ~): (1 ¡ )r(Q ) + e Qr ( 1 
¡ ) + e ; c 2 @ c Q 6 o kZ ¡ Qck H Qc exp!0 ;c (1): 
Furthermore, we check that, by symmetry (see

(3.1.3)), hi(c ~0 ¡ ce 2 ~):r x Q; c 2 @ c Qi = j:j (ce 2 ~; c ~0) i c ~0 jc ~0j :rQ; c 2 @ c Q : Furthermore, from Lemma 3.1.7, we have L Q (@ c Q) = ir c ~0Q, therefore, from Proposition 1.4.1, i c ~0 jc ~0j :rQ; c 2 @ c Q = c 2 B Q (@ c Q) = ¡2 + o c!0 (1):
We deduce that

j:j (ce 2 ~; c ~0) 6 K jhQ ; c 2 L Q (@ c Q)i + hNL loc ( ) + F ( ); c 2 @ c Qij + o kZ ¡ Qck H Qc exp!0 ;c (1)k'k H Q exp : Now, since L Q (@ c Q) = i c ~0 jc ~0j :rQ, we check that hQ ; c 2 L Q (@ c Q)i = c 2 Q ; i c ~0 jc ~0j :rQ ; and Q ; i c ~0 jc ~0j :rQ 6 Z R 2 Re( )Im c ~0 jc ~0j :rQQ + Z R 2 Im( )Re c ~0 jc ~0j :rQQ : From Lemma 3.4.4, we deduce that jhQ ; c 2 L Q (@ c Q)ij 6 Kc 2 ln 1 c k'k C :
Now, we check easily that, with Lemmas 3.6.1 and 3.6.5,

jhNL loc ( ); c 2 @ c Qij 6 K(c)k'k H Q exp k'k C 1 (B(0;)) 6 o kZ ¡ Q c k H Qc exp!0 ;c (1)k'k H Q exp :
To conclude the proof of estimate (3.6.19), we shall estimate

jhF ( ); c 2 @ c Qij 6 o kZ ¡ Qck H Qc exp!0 ;c (1)k'k H Q exp + K 0 + o kZ ¡ Qck H Qc exp!0 ;c (1) k'k C ;
with F ( ) = Q(¡r :r + jQj 2 S( )). First, we estimate, for > > 10 c , with Lemma 3.6.2,

jh¡Qr :r ; c 2 @ c Qij = Z R 2 Re(r :r c 2 Q @ c Q) 6 Z R 2 jr j 2 jc 2 Q @ c Qj 6 K kr k L 1 (B(0;)\{= / 0}) Z B(0;) jr j 2 s Z B(0;) jc 2 Q @ c Qj 2 s + kc 2 Q @ c Qk L 1 (R 2 nB(0;)) Z R 2 nB(0;) jr j 2 6 o kZ ¡ Q c k H Qc exp!0 ;c (1)k'k C + o !1 (1)k'k C ; since, by Lemma 3.1.2, jc 2 Q @ c Qj 6 K (1 + r ~)1/2 . We deduce that jh¡Qr :r ; c 2 @ c Qij 6 o kZ ¡Q c k H Qc exp!0 ;c (1)k'k C : Now, in = 1 , since e = Z Q and 1 ¡ K 0 6
jZ j jQj 6 1 + K 0 (by our assumptions on Z), we have jRe( )j 6 K 0 . We deduce, with Lemma 3.6.1, that in { = / 0}, jRe(

)j 6 K 0 + o kZ ¡ Qck H Qc exp!0 ;c (1):
With S( ) = e 2Re( ) ¡ 1 ¡ 2Re( ), we check that, in = / 0, jS( )j 6 K jRe( )j 2 (given that 0 and kZ ¡ Q c k H Qc exp are small enough), and with similar computations as for jh¡Qr :r ; c 2 @ c Qij, we conclude that jhF ( ); c Step 2. We have the estimate (3.6.20). Now, we take the scalar product of (3.6.16) with c@ c ?Q:

hi(c ~0 ¡ ce 2 ~):H( ); c@ c ?Q i = hQ ; cL Q (@ c ?Q)i + hNL loc ( ) + F ( ); c@ c ?Q i:

We check that, since

i(c ~0 ¡ ce 2 ~): r(Q )(1 ¡ ) + Qr e (1 ¡ ) + e ; c@ c ?Q 6 K j(c ~0 ¡ ce 2 ~):h(1 ¡ )iQr ; c@ c ?Q ij + K jc ~0 ¡ ce 2 ~jk'k H Qc exp ;
and

jhiQr ; c@ c ?Q ij = Z R 2 Re(r iQc@ c ?Q) 6 Z R 2 Re(r )Im(Qc@ c ?Q) + Z R 2 Im(r )Re(Qc@ c ?Q) 6 Z R 2 
Re( )r(Im(Qc@ c ?Q))

+ K k'k H Qc exp + k'k C Z R 2
Re 2 (Qc@ c ?Q):

We check, with Lemmas 3.1.1 and 3.1.2, that Z R 2

Re 2 (Qc@ c ?Q) 6 K and jr(Im(Q@ c ? Q))j 6 jrQjj@ c ?Q j + jr@ c ?Q j 6 K(c) (1 + r) ;c

(1) + K 0 k'k C 2 .
We recall F ( ) = Q(¡r :r + jQj 2 S( ));

S( ) = e 2Re( ) ¡ 1 ¡ 2 Re( ):

First, we look at hF ( ); Q i. We have jhF ( ); Q ij 6 jhQ(1 ¡ )r :r ; Q ij + jhQ(1 ¡ )jQj 2 S( ); Q ij:

We check that k'k L 1 (R 2 ) 6 K k k L 1 (R 2 nB(0;)) + K k'k L 1 (B(0;)) 6 K 0 + o kZ ¡ Qck H Qc exp!0 ;c
(1)

jhQr :r ; Q ij 6 k'k L 1 (R 2 ) Z R 2 jr j 2 6 K 0 + o kZ ¡ Qck H Qc exp!0 ;c (1) k'k C 2 :
Finally, since k'k L 1 (R 2 ) 6 K a uniform constant for c and kZ ¡ Q c k H Qc exp small enough,

jhQjQj 2 S( ); Q ij 6 k'k L 1 (R 2 ) Z R 2 Re 2 ( ) 6 K 0 + o kZ ¡ Q c k H Qc exp!0 ;c (1) k'k C 2 :
Now, we compute jhF ( ); Qi ij 6 j j 

Conclusion

Combining the steps 1 to 3 and (3.6.18) in (3.6.17), we deduce that, taking c small enough, and then kZ ¡ Q c k H Qc exp small enough (depending on c and ), we have

0 > K k'k C 2 + K(c)k'k H Q exp 2 ¡ o c!0 (1) + K 0 + o kZ ¡ Qck H Qc exp!0 ;c (1) k'k C 2 ¡ o kZ ¡ Qck H Qc exp!0 ;c (1)k'k H Q exp 2 ;
hence, if 0 is taken small enough (independently of any other parameters) then c small enough and kZ ¡ Q c k H Qc exp small enough (depending on and c),

K(c)k'k H Qc exp 2 + K k'k C 2 6 0:
We deduce that ' = 0, thus Z = Q. Furthermore, from (3.6.19) and (3.6.20) we deduce that c ~0 = ce 2 ~, and since Z ! 1 at innity, we also have = 0 (or else kZ ¡ Q c k H Qc exp = +1). This concludes the proof of Theorem 1.4.13.

Chapter 4 Inversion of the linearized operator and applications

In section 4.1, we recall previous results (mainly from the previous chapters) on the branch of travelling wave of Theorem 1.3.1, and show some corollaries that will be useful here. Section 4.2 is devoted to the proof of Theorem 1.5.1, and section 4.3 to the proof of Theorem 1.5.2, which relies mainly on Theorem 1.5.1.

We recall from subsection 1.5 that, with d c dened in Theorem 1. [START_REF] Bethuel | On the NLS dynamics for innite energy vortex congurations on the plane[END_REF] We dened the spaces, for ; 0 2 R, 

E ; = ' = Q c 2 C 2 (

:

We have kirQ c k C 1 ({r ~63}) 6 kQ c k C 2 (R 2 ;C) 6 K, and (1 + r ~)3 by Lemmas 2.1.2 and 2.1.6. Finally, for the third term, we recall that jrjV j 2 j 6 K (1 + r ~)3 , which is more than enough to do the required estimates.

rQ c Q c = rQ c Q c jQ c
We recall the denition of the energy space:

H Qc = ' 2 H loc 1 (R 2 ); Z R 2
jr'j 2 + j1 ¡ jQ c j 2 jj'j 2 + Re 2 (Q c ') < +1

;

Remark in particular that for all 0 < < 1, with (4.1.1) to (4.1.3) and the denition of k:k ; , that E ; H Qc :

Inversion of the linearized operator around Q c

This section is devoted to the proof of Theorem 1.5.1.

Inversion of the linearized operator at innity

The (additive) linearized operator around Q c is dened by

L Qc (') = ¡ ' ¡ ic@ x2 ' ¡ (1 ¡ jQ c j 2 )' + 2Re(Q c ')Q c ;
and, for ' = Q c , we dene the multiplicative linearized operator

L Qc 0 ( ) := ¡ ¡ ic@ x 2 ¡ 2 rQ c Q c :r + 2Re( )jQ c j 2 :
The rst step of the proof of Theorem 1.5.1 is to invert these operators in suitable spaces.

Since 

(TW c )(Q c ) = ¡ Q c ¡ ic@ x2 Q c ¡ (1 ¡ jQ c j 2 )Q c =
L Q c (') = Q c L Q c 0 ( ) = Q c h becomes ¡ic@ x 2 ¡ + 2Re( ) = h:
We have already inverted this operator, see Lemma 2.1.15 for the result. We will use this result extensively in this subsection. A consequence of this lemma is an estimate on @ c Q c .

Corollary 4.2.1. For 0 < < 1, there exists c 0 () > 0 such that, for all 0 < c < c 0 (),

@ c Q c Q c ; 6 K()c ¡2 :
Proof. We recall from Lemma 3.1.7 that

L Q c (@ c Q c ) = i@ x 2 Q c ;
and by elliptic estimates on this equation, as well as Lemmas 2.1.6 and 2.3.6, we check that

k@ c Q c k C 3 ({r ~63}) 6 Kc ¡2 : (4.2.1)
Now, take a smooth cuto function with value 1 outside of r ~6 3 and 0 in r ~6 2 . We have

L Qc (@ c Q c ) = Q c L Qc 0 @ c Q c Q c = i@ x2 Q c + E ;
where E are error term supported in {2 6 r ~6 3}, and since

L Q c 0 ( ) = ¡ic@ x2 ¡ ¡ 2 rQ c Q c :r + 2Re( )jQ c j 2 ;
we have

(¡ic@ x2 ¡ + 2Re) @ c Q c Q c = i@ x2 Q c + E Q c + 2 rQ c Q c :r @ c Q c Q c ¡ 2Re @ c Q c Q c (1 ¡ jQ c j 2 ):
is the minimum of the distances to d c e ~1 and ¡d c e ~1, and that we have dened the norms, for 2 R, ' = Q c 2 C 2 (R 2 ; C), = 1 + i 2 , and Q c h 2 C 1 (R We want to invert the linearized operator around Q c from E ; to E ;¡" for 1 > > 0, " > 0.

These spaces are close to E ; and E ;¡" in Chapter 2. In fact, in Proposition 2.1.20, we inverted the linearized operator around V = V 1 V ¡1 in the -spaces, and here we want to invert it around Q c = V + o c!0 (1) for the -spaces. Furthermore, in Chapter 2, we supposed two symmetries in the space E ; , and here we only have one. Therefore, we will need to add an orthogonality condition on @ x 2 Q c , but we will also have to deal with the phase. For that, we dene

:= ((jx ¡ d c j) + (jx + d c j))Q c ;
where is the cuto function from Lemma 4.2.3. As we have done for one vortex in Lemma 4.2.3, we will look for a solution of L Qc (') = i to deal with the phase. This solution will also grow at innity. We dene a cuto function, whith (x) = ~(r 1 ) + ~(r ¡1 ) and ~is a C 1 positive cuto with ~(r) = 0 if r 6 R + 1 and 1 if r > R + 2 (R is considered as a universal constant). We then dene, for ' = Q c 2 E ; ; Q c h 2 E ; 0, 1 > 0 > > 0, The proof of the inversion will be done in Lemmas 4.2.6 to 4.2.8. They follow closely the proofs of Proposition 2.1.17, Lemma 2.1.19 and Proposition 2.1.20. To show the existence of a solution, we start with an a priori estimate, then we solve the equation on a large bounded domain (to have compactness), then we extend it to the whole space. The next lemma is the a priori estimate. We will use the notation = / 0 , dened in (1.5.3).

We now dene ~n := n . Since L Qc n (' n ) = Q cn h n ¡ ( n ; h n )i, multiplying this equation by , we have

L 0 ( n ) = h n ¡ ( n ; h n ) i Q c :
Now, we compute (1) + o !1 (1); hence, taking large enough and then n large enough, this is in contradiction with k n k ; = 1.

L 0 ( n ) = ¡ic@ x2 n ¡ n ¡
We continue as in Chapter 2. We want to show existence of a solution by constructing one on a large ball B(0; a) by Fredholm alternative, then pass at the limit a! 1 to have a solution in R 2 .

We dene, for a > 10/c 2 , R > 0 a large constant and ' = Q where V () is the volume of , the average of the imaginary part of in B(0; 10/ c 2 )nB(0; 5/ c 2 ). Lemma 4.2.7. For 0 < 0 < 1 there exists c 0 ( 0 ) > 0 such that, for 0 < c < c 0 ( 0 ), there exists K( 0 ; c); R > 0 such that there exists a 0 (c; ) > 10/ c 2 such that, for any Q c h 2 E ; 0, a > a 0 (c; 0 ), the problem 8 > > > > > < > > > > > :

L Qc (') = Q c h ¡ a ( ; h)i in B(0; a) ' = 0 on @B(0; a) This proof follows closely the proof of Lemma 2.1.19. The orthogonality conditions on h are required to apply the Fredholm alternative.

' = Q c 2 H a ; Re R B(dce1;R)[B(¡dce1;R) @ c Q c ' = Re R B(dce1;R)[B(¡dce1;R) @ x 2 Q c Q c = / 0 = 0 Re R B(dce1;R)[B(¡dce1;R) @ c Q c Q c h = Re
Proof. We argue by contradiction on the estimation, assuming the existence. Suppose that there exists a sequence a n > 10 c 2 , a n ! 1, functions ' n = Q c n 2 H a n , ' n = 0 on @B(0; a n ) and Q cn h n 2 E ; 0 such that k' n ¡ i( n )Q c k Ha n = 1, kh n k ; 0 ! 0 and L Qc (' n ) = Q c h n ¡ an ( n ; h n )i on B(0; a n ). In particular, remark here that c is independent of n, only the size of the ball grows. Our goal is to show that k' n ¡ i( n )Q c k Ha n = o n!1 (1), which leads to the contradiction.

As in the proof of Lemma 2.1.19, we pass at the limit when n ! 1, and up to a subsequence, in C loc 1 (R 2 ), ' n ¡ i( n )Q c ! ' = Q c 2 H 1 with L Q c (') = ¡( ; 0)i in R 2 (the convergence a n ( n ¡ i( n ); h n ) ! ( ; 0) up to a subsequence comes from the bilinearity of and (4. 

@ x 2 Q c Q c = / 0 = 0:
Let us check that this implies that ' = iQ c for some 2 R.

As in the proof of Lemma 4.2.6, with the same cuto function , we dene ~= , that satises

(¡ic@ x2 ¡ + 2Re)( ~)
= ¡ic@ x2 ¡ ¡ 2r:r + 2 rQ c Q c :r ¡ 2Re( )(jQ c j 2 ¡ 1) ¡ ( ; 0)i:

Let us check that the right hand side is in E ; 0 with 0 < 0 < 1. Thanks to the equation L Qc (') = ¡( ; 0)i, we have that ' 2 C loc 1 (R 2 ; C), thus ¡ic@ x2 ¡ ¡ 2r:r ¡ ( ; 0)i 2 E ; 0 for any 0 < 0 < 1, as these terms are compactly supported. For the two remainings term, the proof is identical as the proof of Lemma 2.1.18. From Lemma 2.1.15, we deduce that there exists 2 E ; for some 0 < < 0 such that

(¡ic@ x2 ¡ + 2Re)() = ¡ic@ x 2 ¡ ¡ 2r:r + 2 rQ c Q c :r ¡ 2Re( n )(jQ c n j 2 ¡ 1) ¡ ( ; 0)i:
Now, we have that

(¡ic@ x 2 ¡ + 2Re)( ~¡ ) = 0;
and we check that, for > 0, E ; H 1 , thus ~¡ 2 H 1 . From the proof of Lemma 2.1.15, we deduce that ~¡ 2 C[X 1 ; X 2 ], and we check easily that H 1 \ C[X 1 ; X 2 ] = Span R (i), thus there exists 2 R such that ~¡ i = 2 E ; . In particular, if we dene ' = ' ¡ iQ c , = ¡ i, then 

@ x2 Q c Q c = / 0 = Re Z B(dce1;R)[B(¡dce1;R) @ x2 Q c Q c = / 0 = 0;
we have ' = 0, and thus

' n ¡ i( n )Q c ! iQ c in C 1 (B(0;
)) for all > 0. Furthermore, since ( n ¡ i( n )) = 0, taking > 10/c 2 , we deduce that = 0. This implies that, for all > 0, k'

n ¡ i( n ) Q c k C 1 (B(0;)) = o n!1
(1). Furthermore, since (i; 0) = 0 for any 2 R, we have an ( n ¡ i( n ); h n ) ! 0 when n ! 1. Now, as in the proof of Lemma ~; 2R + 1), will be the solution of (using Lemma 4.2.2)

¡ i( n ) Q c k C 1 (B(0;)) = o n!1 (1), that Z B(0;) Im ¡ h ~n Im ¡ ~n ¡ i( n ) = o n!1 ; (1) 
¡ic@ x 2 ¡ + 2Re() = L Q c 0 (i 1 + i ¡1 ) ¡ i;
and is a remainder, that will solve

L Q c 0 () = ¡ic@ x 2 () ¡ () + 2Re() ¡ L Q c 0 () ¡ ¡(; ¡ic@ x2 () ¡ () + 2Re() ¡ L Qc 0 ()):
The idea of this ansatz is to compare Q c with two vortices, where i 1 are a solution of this problem. The error terms are then small when c! 0, but still does not decay enough to use Lemma 4.2.8. This is why we introduce , that solves this problem at innity. The reminder is then small when c ! 0, and has now enough decay, i.e. is in E ; for some > 0, and ties the reminders up, and will be constructed using Lemma 4.2.8.

First, let us estimate L Qc 0 (i 1 + i ¡1 ) ¡ i:

By Lemma 4.2.3, i = L V 1 0 (i 1 ) + L V ¡1 0 (i ¡1 )
, where V 1 are centered at d c e 1 ~, and

L V1 0 ( ) = ¡ ¡ 2 rV 1 V 1 :r + 2Re( )jV 1 j 2 :
We have

L Q c 0 (i 1 + i ¡1 ) ¡ i = L Q c 0 (i 1 ) ¡ L V 1 0 (i 1 ) + L Q c 0 (i ¡1 ) ¡ L V ¡1 0 (i ¡1 ):
We recall

L Q c 0 ( ) = ¡ ¡ ic@ x2 + 2Re( )jQ c j 2 ¡ 2 rQ c Q c :r ;
thus, since 1 is real-valued,

L Q c 0 (i 1 ) ¡ L V 1 0 (i 1 ) = c@ x2 1 + 2i rV 1 V 1 ¡ rQ c Q c :r 1 :
We write

Q c = V 1 V ¡1 + ¡ ~c, where V 1 is centered at d c e 1 ~.
We compute

L Qc 0 (i 1 ) ¡ L V1 0 (i 1 ) = c@ x2 1 + 2i ¡ rV ¡1 V ¡1 ¡ r¡ ~c ¡ ~c ! :r 1 :
We estimate, for all 0 < < 1, with Lemmas 2.2.8, 4.2.3 and We deduce that ¡L Q c 0 (i 1 + i ¡1 ) + i 2 E ;0 with, for all " > 0, kL Qc 0 (i 1 + i ¡1 ) + ik ;0 6 K(")c 

(L Qc 0 (i 1 + i ¡1 ) ¡ i) = L Qc 0 (i 1 + i ¡1 ) ¡ i;
and therefore ¡ic@ x2 () ¡ () + 2Re() = ¡L Q c 0 (i 1 + i ¡1 ) + i ¡ ic@ x2 ¡ ¡ 2r:r:

We deduce that, writing = i 1 + i ¡1 + + for some function ,

L Q c 0 ( ) ¡ i = L Q c 0 (i 1 (x ¡ d c ) + i ¡1 (x + d c ) + + ) ¡ i = L Q c 0 (i 1 (x ¡ d c ) + i ¡1 (x + d c )) ¡ i + L Q c 0 () + L Q c 0 ()
= ic@ x2 () + () ¡ 2Re() + L Q c 0 () + ic@ x2 + + 2r:r + L Qc 0 ():

We therefore look at h = ¡ic@ x 2 () ¡ () + 2Re() ¡ L Q c 0 () ¡ ic@ x 2 ¡ ¡ 2r:r: 

Since L Q c 0 ( ) = ¡ ¡ ic@ x 2 +
@ c Q c i@ x 2 Q c = 2Re Z B(0;R) @ x 1 V 1 (x)i@ x 2 V 1 (x) + o c!0 (1) = 2Re Z B(0;R) @ x1 V 1 (x)i@ x2 V 1 (x) + o c!
@ c Q c i@ x2 Q c > 1 K : We choose 2 R such that Re Z B(dce1;R)[B(¡dce1;R) @ c Q c Q c h 0 = 0:
We check with Theorem 1. where K > 0 does not depend on c. We deduce that there exists ' 0 = Q c 0 2 E ; 0; 2 R such that

L Qc (' 0 + ' ) = Q c h 0 ;
with (using Lemma 4.1.1) jj + k' 0 k ; 0 6 K(; 0 )kh 0 k ; 6 K(; 0 )(khk ; + jj ki@ x2 Q c k ; ) 6 K(; 0 ) c khk ; : Now, we recall from Lemma 3.1.7 that L Qc (@ c Q c ) = i@ x2 Q c , thus

L Q c (' 0 + ' + @ c Q c ) = Q c h: Therefore, dening ' = Q c := ' 0 + @ c Q c , we check that L Q c (' + ' ) = Q c h and k k ; 6 K(; 0 )(khk ; 0 + jj k@ c Q c k ; ) 6 K(; 0 ) c 2 khk ; 0;
which concludes the proof of this proposition.

Inversion with two symmetries

We recall the spaces ) to E ; 2sym for some small constant c 0 (; 0 ) > 0.

Proof. With this second symmetry, we can check that ( ; h) = 0 and that the orthogonality condition on @ x2 Q c is automatically satised in Proposition 4.2.10. This implies the existence of a solution with the require estimate.

To show uniqueness, suppose that ' 0 2 E ; 2sym also satises this equation. Then ' ¡ ' 0 2 E ; 2sym

H Qc , and L Qc (' ¡ ' 0 ) = 0. From Corollary 1.4.5, this implies that ' ¡ ' 0 = @ x1 Q c + @ x2 Q c for some ; 2 R, and by the symmetries (see subsection 4.1.1), = = 0. We now focus on the continuity. One diculty is that the spaces E ; 2sym ; E ; 0 2sym and their associated norms depends on c. Similarly as in subsection 2.2.1, we recall that for c; c 0 > 0 small and close enough, the norms between the associated spaces are equivalent, with a constant independent of c; c 0 . Here, to show the continuity, we take c n ! c and Q cn h n ! Q c h in E ; 0 2sym , using for all the norms the limit value c for the speed. Given that n is large enough, this choice does not change the spaces. Now, there exists ' n = Q cn n 2 E ; 00 2sym for all 0 > 00 > 0 such that

L Q cn (' n ) = Q c n h n :
We also dene ' = Q c 2 E ; 00 2sym such that L Qc (') = Q c h. To show the continuity, it is enough to show that ' n ! ' in E ; 00 2sym . First, we remark that k n k ; 00 6 K( 0 ; 00 )kh n k ; 0;

and since kh n k ; 0 ! khk ; 0, is bounded uniformly in n. We compute

L Qc (' n ¡ ') = Q cn h n ¡ Q c h + (L Qc ¡ L Qc n )(' n );
and therefore we simply have to show that

Q cn h n ¡ Q c h Q c ; 0 + (L Qc ¡ L Qc n )(' n ) Q c ; + 0 2 ! 0
when n! 1. The fact that

Qc n hn ¡ Qch Qc ; 0 ! 0 comes from the hypothesis, and we are left with the proof of

(LQ c ¡ LQ cn )('n) Q c ; + 0 2 ! 0. Since c ! Q c ¡ 1 2 C 1 (]0; c 0 (&)[; E ;& 2sym
) for all 0 < & < 1, we have that

(L Qc ¡ L Qc n )(' n ) Q c ; + 0 2 6 jc n ¡ cj @ c L Q c (' n ) Q c ; + 0 2
for some c 2 [min (c; c n ); max (c; c n )]. Let us show that, more generally, for any 1 > 00 > 0 > 0, ' = Q c 2 E ; 00 2sym , we have @ c L Qc (') Q c ; 0 6 K( 0 ; 00 )k k ; 00: (4.2.6) Equality (4.2.6) is enough to conclude the proof of this proposition. We recall that

L Q c (') = ¡' ¡ (1 ¡ jQ c j 2 )' + 2Re(Q c ')Q c ¡ ic@ x 2 ';
and thus

@ c L Q c (') = 2Re(Q c @ c Q c )' + 2Re(@ c Q c ')Q c + 2Re(Q c ')@ c Q c ¡ i@ x 2 ':
We check, with regards to the denition of the norms k:k ; 0; k:k ; 00 that, for 1 > 00 > 0 > 0, (with computations similar to the proof of Lemma 4.1.1) ki@ x 2 'k ; 0 6 k'k ; 00: and we check similarly that jr(Re(Q c ')@ c Q c )j 6 K( 0 ; 00 )

(1 + r ~)2+ 0 . This concludes the proof of (4.2.6). 

Smoothness of the branch of travelling wave

L Qc (@ c Q c ) = i@ x2 Q c :
We dene the operator

@ c L Q c (') := 2Re(@ c Q c Q c )' + 2Re(@ c Q c ')Q c + 2Re(Q c ')@ c Q c ¡ i@ x 2 ':
Take " > 0 a small constant, and remark that L Qc+" (@ c Q c+" ) = i@ x2 Q c+" . We compute

L Q c (@ c Q c+" ¡ @ c Q c ) = (L Q c ¡ L Q c+" )(@ c Q c+" ) ¡ i@ x 2 Q c+" + i@ x 2 Q c :
Let us show that for all " > 0, (L Qc ¡ L Qc+" )(@ c Q c+" ) ¡ i@ x2 Q c+" + i@ x2 Q c 2 E ; 2sym and that

(L Qc ¡ L Qc+" )(@ c Q c+" ) ¡ i@ x2 Q c+" + i@ x2 Q c " ! @ c L Qc (@ c Q c ) + i@ x2 @ c Q c
when " ! 0 for the norm 1 Qc :

;

. Fort that, is is enough to show that @ c L Q c (@ c Q c ) + i@ x 2 @ c Q c 2 E ; 2sym . From Corollary 4.2.1, we have @ c Q c 2 E ; 2sym , thus we check that i@ x2 @ c Q c 2 E ; 2sym (as in the proof of Lemma 4.1.1). Now, still using Corollary 4.2.1, we check that

@ c L Q c (@ c Q c ) := 4Re(@ c Q c Q c )@ c Q c + 2j@ c Q c j 2 Q c ¡ i@ x 2 @ c Q c 2 E ; 2sym ;
using in particular that j@ c Q c j 2 is real valued. We deduce that, with Proposition 4.2.11,

@ c Q c+" ¡ @ c Q c " ! L Qc ¡1 (@ c L Qc (@ c Q c ) + i@ x2 @ c Q c )
when " ! 0. In particular c ! L Qc ¡1 (@ c L Qc (@ c Q c ) + i@ x2 @ c Q c ) is a continuous function (for the norm k:k ; ) and thus c ! Q c ¡ 1 2 C 2 (]0; c 0 ()[; E ; 2sym ) for c 0 () > 0 small enough, depending only on .

Dierentiation of the energy and momentum

First, we check that, if A 2 E ; and B 2 E ; , then i@ x2 A 2 E ; and Re(AB ) 2 L 1 (R 2 ; R) since, outside of r ~6 1 ,

jRe(AB )j 6 K Re A Q c Re B Q c + Im A Q c Im B Q c 6 K() (1 + r ~)2+ kAk ; kB k ;
for some > 0. From Proposition 1.4.1, we have

@ c P (Q c ) = hL Q c (@ c Q c ); @ c Q c i = hi@ x 2 Q c ; @ c Q c i:
Now, we recall that @ c Q c ; @ c 2 Q c 2 E ; , i@ x 2 Q c 2 E ; , and i@ x 2 @ c Q c 2 E ; . We deduce that

Re(i@ x 2 @ c Q c @ c Q c ); Re ¡ i@ x 2 Q c @ c 2 Q c 2 L 1 (R 2 ; R);
and therefore hi@ x2 Q c ; @ c Q c i 2 C 1 (]0; c 0 [; R) (for c 0 = c 0 (); = 1/2 for instance) with

@ c (hi@ x2 Q c ; @ c Q c i) = hi@ x2 @ c Q c ; @ c Q c i + hi@ x2 Q c ; @ c 2 Q c i:
We deduce that P (Q c ) 2 C 2 (]0; c 0 [; R) and

@ c 2 P (Q c ) = hi@ x2 @ c Q c ; @ c Q c i + hi@ x2 Q c ; @ c 2 Q c i:
Now, we recall from Proposition 1.4.1 that @ c E(Q c ) = c@ c P (Q c ). We deduce that E(Q c ) 2 C 2 (]0; c 0 [; R) and

@ c 2 E(Q c ) = @ c P (Q c ) + c@ c 2 P (Q c ): (4.3.1)

Generalisation to higher order derivatives

We argue by induction on n > 1. We dene the set of functions

A n := Span 06k<n (i@ x2 @ c k Q c ) + Span k;l;m>0;06k+l+m<n ¡ Re ¡ @ c k Q c @ c l Q c @ c m Q c :
We suppose the following results for n > 1: for all 0 < < 1, there exists c 0 () > 0 such that As in the previous subsection, we show that A n (c); @ c A n (c) 2 E ; 2sym and @ c L Qc (@ c n Q c ) 2 E ; 2sym , using @ c n Q c 2 E ; 2sym instead of @ c Q c 2 E ; 2sym . Now, as in the proof in subsection 4.3.1.1, we can show similarly that

¡ c ! Q c ¡ 1 2 C n (]0; c 0 ()[; E ; 2sym ) ¡ L Q c (@ c n Q c ) = A n (c) 2 A n .
@ c n Q c+" ¡ @ c n Q c " ! L Qc ¡1 (@ c L Q c (@ c n Q c ) + @ c A n (c))
when " ! 0 for the norm 1 Qc :

;

. We deduce that c ! Q c ¡ 1 2 C n+1 (]0; c 0 ()[; E ; 2sym ) and that, dening A n+1 (c) := @ c L Qc (@ c n Q c ) + @ c A n (c), we have L Qc (@ c n+1 Q c ) = A n+1 (c) 2 A n+1 . Finally, we check that for all n; m > 0, Re(i@ x 2 @ c n

Q c @ c m Q c ) 2 L 1 (R 2 ; R) since @ c n Q c ; @ c m Q c 2 E ; 2sym
. Therefore, we check by induction that P 2 (Q c ) 2 C 1 (]0; c 0 [; R), with

@ c l P 2 (Q c ) = X n+m=l a n;m hi@ x 2 @ c n Q c ; @ c m Q c i
for some (a n;m ) 2 R. Using @ c E(Q c ) = c@ c P 2 (Q c ), we deduce that E(Q c ) 2 C 1 (]0; c 0 [; R). This concludes the proof of Theorem 1.5.2.
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 123 (Theorem 1.1 of [10]) For ' 2 H V1 , B V1 (') > 0

Theorem 1 . 2 . 1 ) 4 r:

 1214 10. ([13])For Q c a solution of (TW c with nite energy,kQ c k L 1 (R 2 ) 6 1 + c 2Theorem 1.2.11. ([21], Theorems 1 and 2, Propositions 5 and 7) For Q c a solution of (TW c 1

  ( d ? (¡F (:/V ))): E ;;d ! E ;;d ;

¡ 1 d

 1 ¡ c + O c!0 (c 2¡ ), and from the implicit function theorem on c;d , we have that k@ d c;d k ;;d = O c!0 ; 0 (c 1¡ 0 ) (since k c;d k ;;d = O c!0 ; 0 (c 1¡ 0

Finally, the

  function Q c has exactly two zeros. Their positions are d c ~e1 ~, with d c ¡ d ~c = o c!0 (1); where d c is dened in Theorem 1.3.1.

Proposition 1 . 4 . 3 .

 143 There exists c 0 ; R > 0 such that, for 0 < c 6 c 0 , if one denes V ~1 to be the vortices centered around d c ~e1 ~(d c ~is dened in Proposition 1.4.1), there exist K > 0 such that for

1. 4 . 5 . 1 1 In

 4511 Sketch of the proof of Proposition 1.4.Theorem 1.3.1, we have shown that

  With d c dened in Theorem 1.3.1 (d c e ~1 are the center of the vortices from which Q c is constructed as a perturbation of), we dene r ~:= min (jx ¡ d c e 1 ~j; jx + d c e 1 ~j);

1 " 1 c , and such that 1

 111 

' 2 H 0 1 ( 1 (

 11 B(0; a)); h'; Z d i = 0 , and we remark that the norms k:k Ha and k:k H 1 are equivalent on B(0; a). By Riesz's representation theorem, the elliptic equation L() + (1 ¡ ) VL 0 ( ) = Vh can be rewritten in the operational form + K() = S(h) where K is a compact operator in H 0 1 (B(0; a)), and it has no kernel in H a (i.e. in ' 2 H 0 B(0; a)); h'; Z d i = 0 ) by the estimation we just showed. Therefore, there exists a unique solution 2 H a , and it then satises kk Ha 6 K( 0 ; c)khk ; 0: Proposition 2.1.20. Consider the problem, for 0

Proposition 2 . 1 . 26 .

 2126 For (c; d); = V dened in the equation ofProposition 2.1.21, namely 

2 c

 2 and c < c 0 (; 0 ) dened in Proposition 2.1.21, we dene c;d = V c;d 2 E ;;d the fonction constructed by the contraction mapping theorem in Proposition 2.1.21. From Corollary 2.1.25, for any 0

) 2 :

 2 We want to show that (c; d) 7 ! c;d is of class C 1 from values of c; d such that 0 < c < c 0 () and 1 2d < c < 2 d to E ;;d . The rst obstacle is that E ;;d depends on d (through r ~), both in the weights in k:k ;;d and in the orthogonality required: h; Z d i = 0. To be able to use the implicit function theorem, we rst need to write an equation on in a space that does not depend on d. The norm k:k ;;d depends on d (through r ~):

(? 9 E

 9 L(:) + (1 ¡ ) VL 0 (:/V )) ¡1 o d ? goes from E ~~; 0 ;d ~to E ~;;d ~, and that (for 0 < < 0 < 1) 9(L(:) + (1 ¡ ) VL 0 (:/V )) ¡1 o d ~~; 0 ;d ~!E ~;;d ĩs bounded independently of c; d and d ~if jd ¡ d ~j < . Indeed, the norms k:k ;;d and k:k ~;

1 2d 6 c 6 2 d

 12 and the proof of Proposition 2.1.17 holds with the orthogonality h;Z D (k(d))i = 0 for any value of d in ]D (k(d)) ¡ / 2; D (k(d)) + / 2[. We denote D (k(d)) = d ~.The inversion of the linearized operator then holds for d 2 ]D (n) ¡ /2;D (n) + /2[ with D (n) = d ~, for all n 2 N large enough.Furthermore, the contraction arguments given in the proof of Proposition 2.1.21 still hold (because the norms are equivalent), hence we can dene c;d by a xed point argument if and jd ¡ d ~j < in the space E ~;;d~t hat does not depend on d.

H 1 2d < c < 2 d 1 2d < c < 2 d

 1212 (; c; d) := (L(:) + (1 ¡ ) VL 0 (:/V )) ¡1 (¡ d ? (F (/V ))) + : The function c;d 2 E ~;;d~i s dened, for and jd ¡ d ~j < , by being the only solution in a ball of E ~;;d ~(with a radius depending on ; 0 and c but not d) to the implicit equation on : H(; c; d) = 0. This means that we shall be able to use the implicit function theorem in the space E ~;;d~o n the equation H(; c; d) = 0 to show that c;d is a C 1 function of d in E ~;;d~( for values of d such that and jd ¡ d ~j < ). We want to dierentiate this equation with respect to at a xed c and d, and show that we can invert the operator obtained when we take close to c;d . Since (L(:) + (1 ¡ )VL 0 (:/V )) ¡1 and d ? are linear operators that do not depend on , it is easy to check that H(; c; d) is dierentiable with respect to , and we compute d H(; c; d)(') = (L(:) + (1 ¡ )VL 0 (:/V )) ¡1 ( d ? (¡d F ('/V ))) + ': To show that d H(; c; d): E ~;;d ~! E ~;;d ~and that it is invertible, it is enough to check that 9(L(:) + (1 ¡ ) VL 0 (:/V )) ¡1 ( d ? (d F (:/V )))9 E~;;d ~!E~;;d ~= o c!0 (1);

1 2c0( 1 2d < c < 2 d 2 d

 1122 ) . We dene, for c 2 R such that and 0 < c < c 0 (), the operatorH c : 7 ! (L(:) + (1 ¡ ) VL 0 (:/V )) ¡1 ( d ? (F (/V ))) from E ~;;d~t o E ~;;d~.The dependency on c is coming from both F and (L(:) + (1 ¡ ) VL 0 (:/ V )) ¡1 , and in this proof, we will add a subscript on these functions giving the value of c where it is taken. Take c 0 2 R such that 1 2d < c 0 < and 0 < c 0 < c 0 (), and let us show that kH c+" ( c 0 ;d ) ¡ H c ( c 0 ;d )k ~;;d~= o "!0 ;c (1):

  );d~w hen " ! 0. We deduce that c 7 ! c;d is C 1 in E ~;;d ~(and therefore in E ;;d ). Now, we show the dierentiablity of c;d with respect to d.

  r@ c c;d ':Therefore @ c r c;d = r@ c c;d in the distribution sense, and thus in the strong sense. Furthermore, thanks to the equationL( c;d ) + (1 ¡ ) VL 0 ( c;d ) + F ( c;d ) = (c; d)Z d , we can isolate c;d as in (2.1.23), and show in particular that it is a C 1 function of c. By similar arguments as for the gradient, we can show that @ c c;d = @ c c;d . Furthermore, the same proof holds if we dierentiate c;d with respect to d. We can therefore inverse derivatives in position and derivatives with respect to c or d on c;d .Let us also show that (c; d) 7 ! @ c c;d is a continuous function from := (c; d) 2 R 2 ; 0 < c < c 0 ();

Lemma 2 . 2 . 4 .

 224 continuous from to E ;();d . We check also that (c; d) (: / V ))) is continuous from to E ;();d ! E ;;d , and thus (c; d) 7 ! @ c c;d is a continuous function from to E ;;d . The same proof holds for (c; d) 7 ! @ d c;d .We end this subsection with the symmetries of @ d c;d . The function @ d c;d satises the symmetries: for

  c;d with respect to c and d at d = d c .

  ¡r c;d :r c;d + jV j 2 S( c;d )): Finally, we write the cuto error Err cut := @ z1 (L( c;d ) ¡ VL 0 ( c;d ) + ic@ x2 c;d + r c;d :r c;d ¡ jV j 2 S( c;d )) which is supported in the area 2 6 r ¡1 6 3 , and in particular is zero in B(d c e 1 ~; d c "

  playing the role of n and H n = hn k@ z 1 n k ;B dn playing the role of h n , since they satisfy the same equation. We showed in (2.3.4) that kH n k ;B dn = o n!1 (1); and the system of equation is, with

rVV

  :rY n : Recall the two balls B d n = B(d n e 1 ~; d n " ) and B dn 0 = B(d n e 1 ~; d n " 0

  , but we have to show that they still work if we only have the estimate in B dn = B(d n e 1 ~; d n " ) and we want the nal estimates in B d n 0 = B(d n e 1 ~; d n " 0

and using j¡ c;d j 6 K

 6 

2 c . If there exist d 1 = / d 2 in 1 2c ; 2 c

 2112 0 for c small enough. By the implicit function theorem, taking some 0 < c < c 0 (), we can construct a C 1 branch c 7 ! d c in a vicinity of c . We dene C as the set of c > c ~> 0 such that there exists a C 1 branch c 7 ! d c on ]c ~; c [. We have just shown that C is not empty. Let us suppose that c ~:= inf C = / 0. Then, c 7 ! d c is uniformly bounded on ]c ~; c [ in C 1 by subsection 2.3.6, and can therefore be extended by continuity to c ~, and we denote d ~its value there. We can construct the perturbation c~;d~b y continuity since c; d 7 ! c;d are C 1 functions in the Banach space 2 C 1 (R 2 ; C); kk ;;d~< +1 for its canonical norm (which is equivalent to k:k ;;d for any d 2 [d ~; d c ]). By passing to the limit, we have k c ~;d ~k; ;d ~6 K 0 (; 0 )c 1¡ 0 for K 0 (; 0 ) dened in Proposition 2.1.21. By continuity of , we check that we have (c ~; d ~) = 0 (for the perturbation c~;d~) . Therefore, by the implicit function theorem, there exists a unique branch c 7 ! d c in a vicinity of (c ~; d ~) such that (c; d c ) = 0. This branch, by uniqueness, corresponds to the branch we had on ]c ~; c [, and is also C 1 by the implicit function theorem. Therefore inf C < c ~, which is in contradiction with c ~= inf C, and thus inf C = 0. In particular, the travelling wave Q c on this branch is uniquely dened by this construction and is a C 1 function of c. Indeed, we shall now show that there is only one choice of d c such that (c; d c ) = 0 in 1 2c ; such that (c; d 1 ) = (c; d 2 ) = 0, by Subsection 2.3.5, we have @ d ((c; d)) |d=d 1 < 0 and @ d ((c; d)) |d=d 2 < 0;

  3.1), and we then show Proposition 1.4.2 and 1.4.3 respectively in subsections 3.3.2 and 3.3.4. To show Proposition 1.4.3, we use Proposition 1.4.2 and the fact that we know well the travelling wave near its zeros from subsection 3.1.3.

Theorem 3 . 1 . 4 . ([ 19 ], Theorem 7 )

 314197 There exists a constant C(c) > 0 (depending on c) such that, for Q c dened in Theorem 1.3.1, 

Lemma 3 . 1 . 6 .

 316 Take c ~2 R 2 such that jc ~j < c 0 for c 0 dened in Theorem 1.3.1. Dene such that c ~= jc ~jR (¡e ~2), where R : R 2 ! R 2 is the rotation of angle . Then, Q c

  (c 1¡ ) by equation (3.1.5), with Lemma 1.2.1 and equation (3.1.1), we check that

  z must be colinear to e 1 ~, therefore we dene d c ~2 R by d c ~e1 ~:= z + d c e ~1, and we conclude that, since jz j = o c!0

Lemma 3 . 1 . 13 .

 3113 ); and we will use the already dened polar coordinates around d c ~e1 ~of x 2 R 2 , namely r ~1 = jx d c ~e1 ~j; ~1 = arg(x d c ~e1 ~): One of the idea of the proof is to understand how Q c is close, multiplicatively, to vortices V ~1 centered at its zeros, since by construction it is close to a vortex centered around d c e 1 ~, which is itself close to d c ~e1 ~. In particular, Lemma 3.1.14 below will show that the ratio Qc V ~1 is bounded and close to 1 near d c ~e1 ~. In Lemma 3.1.13 to follow, we compute the additive perturbation between derivatives of Q c and a vortex V ~1 centered around one of its zeros. In Lemma 3.1.14, we compute the multiplicative perturbation. All along, we work in B ¡ d c ~e1 ~; d ~c 1/2 , the size of the ball d ~c 1/2 being arbitrary (any quantity that both goes to innity when c ! 0 and is a o c!0 (d c ~) should work). We recall that r ~1 = jx d c ~e1 ~j. Uniformly in B ¡ d c ~e1 ~; d ~c 1/2 , for Q c dened in Theorem 1.3.1, one has

2 6 Z

 6 

  (r) = 0 if r 6 4 and (r) = 1 if r > 5.Then, by Cauchy-Schwarz,

jr j 2 jV 1 j 2 + 6 K

 26 Re 2 ( )jV 1 j 4 jr( ) ¡ r j 2 ¡ jr( )j 2 )jjV 1 j 2 + jIm(rV1 V 1 ):r Im( )Re( )j) ¡ K Z B(0;D)nB(0;5) jr j 2 j j 2 jV 1 j 2 : (3.3.2)Since r is supported in B(0; 2)nB(0; ) with jr j , we have Z B(0;D)nB(0;5) jr j 2 j j 2 jV 1 j 2 6 K Z B(0;2)nB(0;) jr( ) ¡ r j 2 ¡ jr( )j 2 )jjV 1 j 2 )

2

 2 

4 )

 4 Since has no 0 harmonics, we have that Z B(0;D)nB(0;5) j j 2 (1 + r)2 6 K Z B(0;D)nB(0;5) jr j 2 jV 1 j 2 :

2 :

 2 satisfying the three orthogonality conditions in Lemma 3.3.2 and D > D 0 , thenB V 1 locD (') > K(D)k'k H 1 (B(0;D))

jr j 2 jQ c j 4 +

 4 Re 2 ( )jQ c j 4 : Now, let us show that for any 2 R, ' 2 H 1 ¡ B ¡ d ~ce 1 ~; D , B Qc loc1;D (' ¡ iQ c ) = B Qc loc1;D ('):

  3.1 and by density, using r( ¡i) = r and Re( ¡ i) = Re( ), we deduce that B Q c loc1;D (' ¡ iQ c ) = B Q c loc1;D ('). Now, for 2 R, ' ~= ' ¡ iQ c , ~= ¡ i, ' ~= Q c ~,we have B Qc loc1;D (') = B Qc loc1;D (' ~), Z B ¡ d ~ce1;D jr j 2 jQ c j 4 + Re 2 ( )jQ c j 4 = Z B ¡ d ~ce1;D jr ~j2 jQ c j 4 + Re 2 ( ~)jQ c j 4 and Z B ¡ d ~ce 1 ;R Re rV ~1V ~1 = Z B ¡ d ~ce 1 ;R Re rV ~1V ~1 ~:

2 ( 1 ¡ 5 Z 0 2 @ r (( 1 ¡ )g 2 )r 5 dr = ¡2 5 Z 0 2 ( 1 ¡ 4 Z 0 2 0 2 j 0 2 g 2 2 ( 1 ¡ 6 Z 0 2 (@ r g) 2 r 5 dr Z 0 2 g 2 (r)r 5 dr s :deduce that Z 0 2 ( 1 ¡ 2 (@ r g) 2 r 5 dr + Z 0 2 g 2

 215212521422022216222s21222 (r))g 2 (r)r 4 dr = ¡1 (r))@ r g(r)g(r)r 5 dr + 1 (r)g 2 (r)r 5 dr;and since 0 (r) = / 0 only for r 2 [1; 2], we have Z 0 (r)jg 2 (r)r 5 dr 6 K Z 0 (r)r 4 dr;and, by Cauchy-Schwarz, Z 0 (r))j@ r g(r)g(r)jr5 drWe (r))g 2 (r)r 4 dr 6 K Z 0 (r)r 5 dr ; and taking, for any 2 [0; 2], g(r) = f (r cos(); r sin()), and since r 6 K jV 1 j in B(0; 2) (by Lemma 1.2.1), by integration with respect to , we conclude that Z B(0;D)

jr j 2 jQ c j 4 r: 2 ( 2 2 jr j 2 jQ c j 4 r 6 K 3 . 4 . 3 Lemma 3 . 4 . 5 .

 422246343345 Indeed, we have, from equation (3.1.6) (for = 1/2), thatjjQ c j 2 ¡ 1j 6 K (1 + r ~)3/2 ; which is enough to show that Z R jQ c j 2 ¡ 1) 2 6 K:Combining these estimates, we conclude the proof ofZ R Im( )Re(rQ c Q c ) 6 K Z R k'k C : Coercivity resultunder four othogonality conditionsThe next result is the rst part of Theorem 1.4.4, the second part (for the coercivity under three orthogonalities) is done in Lemma 3.4.6 below. We recall that, in B ¡ d ~ce 1 ~; R , we have = / 0 (x) = (x) ¡ 0;1 (r ~1 ) with 0;1 (r ~1 ) the 0-harmonic centered around d ~ce 1 ~of . There exist R; K ; c 0 > 0 such that, for 0 < c 6 c 0 and

exp 2 : 1 ¡ R 2

 212 Proof. Let us show these results for' = Q c 2 C c n d ~ce ~1; ¡d ~ce ~1 ; C. We then conclude by density. We start with the nonsymmetric case.By Lemma 3.3.4, for '

~ce1;10 2 :

 2 Then, by the same Hardy type inequality as in the proof of Proposition 1.4.3, we show that

3. 5

 5 Coercivity results with an orthogonality on the phase and Z B(0;R)

.6. 7 )

 7 Now, we dene the set := B(0; + 1)n(B(d c e ~1; R ¡ 1) [ B(¡d c e ~1; R ¡ 1)).

2 @c

 2 Qij 6 o kZ ¡ Qck H Qc exp!0 ;c (1)k'k C :This concludes the proof ofj:j (ce 2 ~; c ~0) 6 o kZ ¡Qck H Qc exp!0 ;c (1)k'k H Q exp + Kc 2 ln 1 c + o kZ ¡ Qck H Qc exp!0

Z R 2 ( 1 ) 2 jr j 2

 2122 ¡Re(ir :r )jQj 2 + jQj 4 Re(S( )i) ; and since S( ) is real-valued, we check that, since j j = o kZ ¡ Q c k H Qc exp!0 ;c by Lemma 3.6.6, jhF ( ); Qi ij 6 j j Z R jQj 2 6 o kZ ¡ Qck H Qc exp!0 ;c (1)k'k C 2 :

j 2 :K( 1 + 3 : 6 Kj 2 !jQ c j 2 !j 2 ! 6 K 6 K( 1 +@ 6

 21362226616 Outside of r ~6 3 , Q c = Ve c;dc , and thus rQ c Q c = rVV + r c;dc jV j 2 jQ c j 2 e 2Re( c;dc) : From equation (2.2.14), we have j(1 + r ~)2+ Re(r c;d c )j + j(1 + r ~)1+ Im(r c;d c )j 6 K()c 1¡ ;and since, in r ~> 3 , jV j 2 jQ c j 2 e 2Re( c;dc) 6 K ; we have r ~1+ Im r c;dc jV j 2 jQ c j 2 e 2Re( c;dc)L 1 ({r ~>2}) 6 K()c 1¡ and r ~2+ Re r c;dc jV j 2 jQ c j 2 e 2Re( c;dc ) L 1 ({r ~>2}) 6 K()c 1¡ : Now, from Lemma 1.2.1, we have, for a vortex V 1 centered at 0, j2Re(rV 1 V 1 )j = jrjV 1 j 2 j r)3 , thus, by translation, jRe(rVV)j 6 K (1 + r ~)Still from Lemma 1.2.1, we check that jrV j (1 + r ~) , and from Lemma 2.1.3, we have jrV jK (1 + r ~)2 c , therefore, by interpolation, jIm(rVV )j 6 K jrV j 6 Kc ¡ (1 + r ~)1+ : We deduce r ~1+ Im rQ c Q c L 1 ({r ~>2}) + r ~2+ Re rQ c Q c L 1 ({r ~>2}) 6 K()c ¡ :4.1 Previous results on the branch We now focus on the derivatives of rQc Qc . We compute r rQ c Q c = r e 2Re( c;dc) jQ c (rVV + r c;dc jV j 2 ) + r(rVV ) + jV j 2 r 2 c;dc jQ c j 2 e 2Re( c;dc) + r c;d c rjV j 2 jQ c j 2 e 2Re( c;dc) : = 2rRe( c;dc )e 2Re( c;dc) jQ c j 2 ¡ r(jQ c j 2 ) jQ c j 4 e 2Re( c;dc) ; and by equation (2.2.13), (4.1.2) and (4.1.3), we check that r e 2Re( c;dc) jQ c (1 + r ~) :This is enough to show the estimates for the rst term of (4.1.5). For the second term, from equation (2.2.14) (with 0 = r ~)3 ;and with Lemmas 1.2.1 and 2.1.2, we check easily that jr(rVV )j r ~)2 . To conclude the estimation of this term, we are left with the proof ofjr(rVV )j 6 Kc ¡1 (1 + r ~)3 : We compute rVV = (rV 1 V 1 )(: ¡ d c e 1 ~)jV ¡1 (: + d c e 1 ~)j 2 + (rV ¡1 V ¡1 )(: + d c e 1 ~)jV 1 (: ¡ d c e 1 ~)j 2 = (rV 1 V 1 )(: ¡ d c e 1 ~) + (rV ¡1 V ¡1 )(: + d c e 1 ~) + (rV 1 V 1 )(: ¡ d c e 1 ~)(jV ¡1 (: + d c e 1 ~)j 2 ¡ 1) + (rV ¡1 V ¡1 )(: + d c e 1 ~)(jV 1 (: ¡ d c e 1 ~)j 2 ¡ 1):We check easily, with Lemma 1.2.1, thatjr((rV 1 V 1 )(: ¡ d c e 1 ~)(jV ¡1 (: + d c e 1 ~)j 2 ¡ 1) + (rV ¡1 V ¡1 )(: + d c e 1 ~)(jV 1 (: ¡ d c e 1 ~)j 2 ¡ 1))j 6 K (1 + r ~)3 : Furthermore, with Lemma 1.2.1, we have that Im(r(rV 1 V 1 ))(x) = ¡Im(r(rV ¡1 V ¡1 ))(x),therefore, with Theorem 1.3.1 (stating that d c 6 Kc ¡1 ), jIm(r((rV 1 V 1 )(: ¡ d c e 1 ~) + (rV ¡1 V ¡1 )(: + d c e 1 ~)))j = jIm(r(rV 1 V 1 )(: ¡ d c e 1 ~) + r(rV ¡1 V ¡1 ))(: + d c e 1 d (r(rV 1 V 1 ))(: ¡ d c e 1 ~) Kd c (1 + r ~)3 6 Kc ¡1

  0, we can check that, on R 2 n d ~ce ~1; ¡d ~ce ~1 ,with ' = Q c , L Qc (') = Q c L Qc 0 ( ) (we recall that d ~ce ~1 are the zeros of Q c , see Proposition 1.4.1). Formally, at innity in position, the equation

2 2 rQc 2 jIm 2 K 2 2 (

 222222 Im h ¡ ic@ x 2 ¡ ¡ 2r:r + Let us show that j( ; h)j 6 K(; 0 )(k k ; + khk ; 0): (4.2.3) First, since = 1 on R 2 n(B(d c e 1 ~; R + 2) [ B(¡d c e 1 ~; R + 2)), ; r and @ x2 are compactly supported in B(d c e 1~; R + 2) [ B(¡d c e 1 ~; R + 2). We deduce that Z R 2 jIm(¡ic@ x2 ¡ ¡ 2r:r )j 6 K()k k ; :With regards to the denition of khk ; 0, we check easily that Z R r ~)2+ 0 6 K( 0 )khk ; 0:Now, with (4.1.2) and (4.1.3), we check easily thatZ k k ; (1 + r ~)2+ 6 K()k k ; : Im(i((x ¡ d c ) + (x + d c ))) = Z R (x ¡ d c ) + (x + d c )); and since Supp (|:|) = 1 , R R 2 ((x ¡ d c ) + (x + d c )) = R R 2 ((x ¡ d c ) + (x + d c )) > K > 0.This concludes the proof of (4.2.3).

2 +ZR 2 (jQ c j 2 ¡ 1 ) 2 ZR 2 jrQ c j 2 ZR 2 n{r ~6R} jr j 2 s 6 K

 222122226 c 2 H loc 1 (B(0; a)) the norm k'k Ha 2 := k'k H 1 ({r ~62R}) n{r ~6R}jr j 2 + Re 2 ( ) + j j 2 (1 + r ~)5/2 ; as well as the spaceH a := ' 2 H loc 1 (B(0; a)); k'k Ha < +1 : We dene a ( ; h) := R B(0;a) Im h ¡ ic@ x2 ¡ ¡ 2r:r + 2Let us check that, for 0 > 0,j a ( ; h)j 6 K(c; 0 )(k k Ha + khk ; 0): (4.2.4)As for the proof of (4.2.3), for a > 10 / c 2 , we have RB(0;a) Im i Qc > K > 0. Since = 1 on R 2 n(B(d c e 1 ~; R + 2) [ B(¡d c e 1 ~; R + 2)), we check easily by Cauchy-Schwarz that Z B(0;a) jIm(h ¡ ic@ x 2 ¡ ¡ 2r:r )j 6 K( 0 )(k k H a + khk ; 0):Now, we estimate by Cauchy-Schwarz that Z (E(Q c ))k k Ha : We recall the notation, around d ~ce 1 ~, h = / 0 = h ¡ h 0 , 10/c 2 )nB(0; 5/c 2 )) Z B(0;10/c 2 )nB(0;5/c 2 )Im( );

RB

  (dce1;R)[B(¡dce1;R) @ x 2 Q c Q c h = / 0 = 0 admits a unique solution with k' ¡ i( )Q c k Ha 6 K( 0 ; c)khk ; 0:

  2.4)), and, since they are invariant by adding iQ c to ', Re Z B(d c e 1 ;R)[B(¡d c e 1 ;R) @ c Q c ' = Re Z B(d c e 1 ;R)[B(¡d c e 1 ;R)

' 2 E

 2 ; (since = ¡ i = + ¡ ~, where ¡ ~is compactly supported) withL Qc (' ) = ¡( ; 0)i; since L Qc (iQ c ) = (i; 0) = 0. By Lemma 4.2.6 (for h = 0 2 E ; 0), since Re Z B(dce1;R)[B(¡dce1;R) @ c Q c ' = Re Z B(dce1;R)[B(¡dce1;R) @ c Q c ' =0 by symmetry, and Re Z B(dce1;R)[B(¡dce1;R)

n ) r ~n 2 Z 2 ( 1 + r) 1 / 8 Im 2 ¡j 2 s+ o ! 1 c( 1 2 :j 2 s+ o ! 1 c( 1 1 ( 1 ) 2 6 o n! 1 c 2 = o n! 1 c( 1 )

 22118221122111121211 B(0;a n )nB(0;) rQ c n Q cn Im 2 ¡ ~n ¡ i( n ) s ~n ¡ i( n ) (1 + r) )k' ~n ¡ i( n )Q c k Ha nNow, taking the scalar product of the real part of the equation with Re ¡ ~n , the computation is identical to the one in Lemma 2.1.19, and we have ZB(0;a n ) )k' ~n ¡ i( n )Q c k H an : Now, since r ~n = r ¡ ~n ¡ i( n ) , Re ¡ ~n = Re ¡ ~n ¡ i( n ) , and k' n ¡ i( n ) Q c k C 1 (B(0;)) = o n!,we compute, with the same Hardy type inequality as in the proof of Lemma 2.1.19, thatk' n ¡ i( n ) Q c k Ha n (1) + K Z B(0;a n ) jr ~nj 2 + Z B(0;a n ) Re 2 ¡ ~n :Combining these estimates, we deduce thatk' n ¡ i( n ) Q c k Ha n + o !1 c (1): Proof. The equation, on R 2 n d c e 1 ~; ¡d c e 1 ~ , is L Qc 0 ( ) = i Q c. We look for an ansatz of the form= i 1 (x ¡ d c ) + i ¡1 (x + d c ) + + ;where 1 are dened in Lemma 4.2.3, R > 0 is given by Lemma 4.2.8, is a smooth cuto function with value 0 in B(d c e 1 ~; 2R) [ B(¡d c e 1 ~; 2R) and 1 in B(d c e 1 ~; 2R + 1) [ B(¡d c e 1

1 ( 1 + r 1 )( 1 + r ¡1 ) 6

 11116 Qc 0 (i 1 ) ¡ L V1 0 (i 1 )))j 6 Kc (1 + r 1 ) 2 + K (1 + r ¡1 ) 2 (1 + r 1 ) + K (1 + r ¡1 )(1 + r 1 ) 2 + K()c 1¡ (1 + r ~)2+/2 (1 + r 1 ) 6 K()c 1¡ (1 + r ~)2 ;as well asjIm(L Qc 0 (i 1 ) ¡ L V1 0 (i 1 ))j 6 K (1 + r 1 )(1 + r ¡1 ) 3 + K()c 1¡ (1 + r 1 )(1 + r ~)2+/2 6 K()c 1¡ (1 + r ~)2+andjr(Im(L Qc 0 (i 1 ) ¡ L V1 0 (i 1 )))j 6 K (1 + r 1 )(1 + r ¡1 ) 3 + K()c 1¡ (1 + r 1 )(1 + r ~)2+6K()c 1¡ (1 + r ~)2+ :

2 2

 22 ;R)[B(¡dce1;R) @ c Q c Q c h 0 = Re Z B(d c e 1 ;R)[B(¡d c e 1 ;R) @ c Q c Q c h ¡ Re Z B(d c e 1 ;R)[B(¡d c e 1 ;R) @ c Q c i@ x 2 Q c :From and Theorem 1.3.1 (for p = +1), we havec Re Z B(dce1;R)[B(¡dce1;R) @ c Q c i@ x2 Q c 6 K:For R > 0 large enough, using Lemma 4.1.1, c Re Z B(d c e 1 ;R)[B(¡d c e 1 ;R)

  )(r)dr + o c!0 (1) = 4(1 ¡ o R!1 (1)) + o c!0 (1);and thusc 2 Re Z B(dce1;R)[B(¡dce1;R)

3 . 1 ( 6

 316 for p = +1) that jj Kc 2 Re Z B(dce1;R)[B(¡dce1;R) j@ c Q c jjQ c hj 6 K khk ; ;

For

  the other terms, the estimates are clear in the arear ~6 3 . With ' = Q c , since c ! Q c ¡ 1 2 C 1 (]0; c 0 (&)[; E ;& 2sym ) for all 0 < & < 1, taking & = 1 + 0 ¡ 00 < 1, outside of r ~6 3 , jRe(Q c @ c Q c ) j 6 K( 0 ; 00 ) (1 + r ~)1+&+ 00 6 K( 0 ; 00 ) (1 + r ~)2+ 0 : We check similarly that jr(Re(Q c @ c Q c ) )j 6 K( 0 ; 00 ) (1 + r ~)2+ 0 : Now, 2Re(@ c Q c ') is real valued, and still with & = 1 + 0 ¡ 00 < 1, outside of r ~6 3 , jRe(@ c Q c ')j 6 j@ c Q c Q c j 6 K( 0 ; 00 ) (1 + r ~)&+ 00 6 K( 0 ; 00 ) (1 + r ~)1+ 00 ;and, with Lemma 4.1.1,jrRe(@ c Q c ')j 6 K(jr@ c Q c jj j + jrQ c jj jj@ c Q c j + jr jj@ c Q c j) 6 K( 0 ; 00 ) 1 (1 + r ~)1+&+ 00 + 1 (1 + r ~)1+ 00 +& + 1 (1 + r ~)1+ 00 +& 6 K( 0 ; 00 ) (1 + r ~)2+ 0 :Finally, still with Lemma 4.1.1, we check that jRe(Q c ')@ c Q c j = jQ c j 2 jRe( )@ c Q c j 6 K( 0 ; 00 ) (1 + r ~)1+ 00 +& 6 K( 0 ; 00 ) (1 + r ~)2+ 0 ;

4. 3 . 1 Second derivative with respect to the speed 4 . 3 . 1 . 1

 314311 Proof of the dierentiabilityWe recall thatL Qc (') = ¡ic@ x2 ' ¡ ' ¡ (1 ¡ jQ c j 2 )' + 2Re(Q c ')Q c and that

4. 3

 3 Smoothness of the branch of travelling waveIn subsection 4.3.1.1, we have shown this results for n = 2. Let us show that these results then holds for n + 1 if they do for a given n > 1.
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	x1 r 1 r ¡1	6	1 r ~if r ~> 1 and	r	1 r 1	6	K r 1 2	that, for r ~> 1,
			r	cos( 1 ) r 1	¡	cos( ¡1 ) r ¡1	6	Kd (1 + r ~)3 :
	With a similar estimation for r	sin(1) r1	¡	sin(¡1) r¡1	and Lemma 2.1.1, we conclude with

  then ln jx ¡ Y j jxj ! 0 when jxj ! 1 and we recall that f is bounded in L 1 . We have, for jxj > 2 that jx ¡ Y j 6 jxj(jyj + 2) and therefore, for jx ¡ Y j > 1; jxj > 2, ln

	jx ¡ Y j jxj	6 K ln(jyj + 2), hence

  6 ¡ jV j 2 ) 1 are similar to what has already been done since we only have r ~; 1 2 L 2 (R 2 ) at this point).

	= > 0),					K(c; R; ; 0 ; kkH 1 ; khk ; 0) (1 + jxj)	, and by Lemma 2.1.10 (for
		j ~1j + jr ~1j 6	K(c; R; ; 0 ; kk H1 ; khk ; 0) (1 + jxj)
	(where the estimation for the terms Re		
	With this rst set of estimates, looking at equation (2.1.29), we have enough to show that
	and	~1 ¡ 2 ~1 ¡ c@ x2	~2	6	K(c; R; ; kk H 1 ; khk ; 0) (1 + jxj) 1+
		~2 + c@ x 2	~1		6	K(c; R; ; kk H1 ; khk ; 0) (1 + jxj) 2+	:

rV V :r ~ and 2(1

  in the distribution sense, and this function satises the estimate k k ;;d 6 C(; 0 )khk ; 0 ;d . Now, we dene (for 2 C 0 (R

2 ; C)) d ?

  As such, by the contraction mapping theorem, it admits a unique xed point 2 E ;;d in 2 E ;;d ; k k ;;d 6 K 0 (; 0 )c 1¡ 0 , and there exists (c; d) 2 R such that

  > 0 are absolute when jd ¡ d ~j < . Indeed, we check with simple geometric arguments that if r ~~> 1, V taken in d, then r ~> 1/2 and we have

r ~~= min (r 1;~; r ¡1;~) with r 1;~= jx ¡ d ~e1 ~j; r ¡1;~= jx + d ~e1 ~j. Then, for = V 2 E ;;d (V taken in d), K 1 k k ;;d 6 kk ~;;d~6 K 2 k k ;;d (2.2.1) where K 1;2

  R is a sum of terms at least quadratic in and is supported in r ~6 2 (see the proof of Lemma 2.1.7), when we dierentiate, every term has or r as a factor. Therefore,kd R( )k ; ();d 6 K kk C 2 ({r ~62}) kV k C 2 ({r ~62}) Im(r :r )k L 1 ({r ~>2}) 6 kr ~2+() rRe :rIm k L 1 ({r ~>2})+ kr ~2+() rIm :rRe k L 1 ({r ~>2}) Re( )(e 2Re( ) ¡ 1)k L 1 ({r ~>2}) 6 K kr ~1+() Re( )Re( )k L 1 ({r ~>2})

	Similarly,		
	kr ~2+() 6 K k k ;;d k k ;;d 6 K k k ;;d k k ;;d :	r ~2+() r ~3+2	L 1 ({r ~>2})
	With similar computation, we check that	
	Finally, we have	kr ~2+() r(r :r )k L 1 ({r ~>2}) 6 K k k ;;d k k ;;d :
	d S( ) = 2Re( )(e 2Re( ) ¡ 1); a real-valued term, and since k k ;;d 6 1, we estimate	
	kr ~1+() 6 K k k ;;d k k ;;d	r ~1+() r ~2+2	L 1 ({r ~>2})

6 K k k ;;d k k ;;d : Now, for Re(r :r ), since > 0; () < 1, we estimate kr ~1+() Re(r :r )k L 1 ({r ~>2}) 6 kr ~1+() jr j jr jk L 1 ({r ~>2}) 6 K k k ;;d k k ;;d r ~1+() r ~2+2 L 1 ({r ~>2}) 6 K k k ;;d k k ;;d : 6 K k c;d k ;;d k k ;;d ; as well as

2 Proof of the dierentiabilities of c;d with respect of c and d We

  

6 K k c;d k ;;d k k ;;d : These estimates imply kd F ( )k ; ();d 6 C k c;d k ;;d k k ;;d : 2.2.1.shall now show that c 7 ! c;d is C 1 and compute estimates on @ c c;d at xed d, and then show that d 7 ! c;d is C 1 at xed c and estimate @ d c;d . These estimates will be usefull in subsection 2.3.6. For d 7 ! c;d , we will use the implicit function theorem (see Lemma 2.2.3), but we start here with the derivation with respect to c. Lemma 2.2.2. For 0 < < 1, there exists c 0 () > 0 such that, at xed d >

  and the equation is satised in the strong sense. Furtheremore, since d ~~; 2+ 3 ;d ~by Lemmas 2.1.22 to 2.1.24 with k d ? (F c+" ( c 0 ;d / V ))k ~~; 2+ 3 ;d ~6 K() (since c 0 ;d 2 E ~; 2+ 3 ;d ~with k c 0 ;d k ~; 2+ 3 ;d ~6 K()), we have, by Lemma 2.1.18, that H c+" ( c 0 ;d ) 2 E ~;();d~( since () <

	2 +

? (F c+" ( c 0 ;d / V )) 2 E

  The next step is to show that c 7 ! c;d is a continuous function in E ;;d . Take " n a sequence such that " n ! 0 when n ! 1, then k c+"n;d k ;;d 6 K 0 (; 0 )(c + " n ) 1¡ 0 (for K 0 (; 0 ) the constant in Proposition 2.1.21), and (in the strong sense) With the same arguments as in step 1 of the proof of Proposition 2.1.17, we check that, up to a subsequence, c+" n ! locally uniformly in R 2 for some function 2 E ;;d such that kk ;;d 6 K 0 (; 0 )c 1¡ 0 . Then, since H c+"n ( c+"n;d ) + c+"n;d = 0; by taking the limit when n ! 1, up to a subsequence, since H c+" ( c 0 ;d ) ! H c ( c 0 ;d ) when " ! 0 in E ;;d (the norm is equivalent to the one of E ~;;d ~) uniformly in c 0 , we have But then, 2 E ;;d , kk ;;d 6 K 0 (; 0 )c 1¡ 0 and H c () + = H(; c; d) = 0. By Proposition 2.1.21, this implies that = c;d , therefore c;d is an accumulation point of c+"

	L(:) + (1 ¡ ) VL 0	: V	c+"n	( c+"n;d ) + d ? (F c+"n ( c+"n;d /V )) = 0:
			H c () + = 0:

n ;d . It is the only accumulation point, since any other will also satisfy 2 E ;;d , kk ;;d 6 K 0 (; 0 )c 1¡ 0 and H(; c; d) = 0. Therefore, c+" n ;d ! c;d in E ;;d , hence c 7 ! c;d is a continuous function in E ;;d . Now, let us show that it is a C 1 function in E ;;d . Since H c ( c;d ) + c;d = 0, we have L

  invertible from E ~;;d ~to E ~;;d ~(with an operator norm equal to 1 + o c!0 (1) if taken in = c;d , see Lemma 2.2.1). Furthermore, c;d is continuous with respect to c in E ~; ();d ~(with the same computations as previously, replacing by ()), therefore

  We will check in the next step that @ d (F d ( / V d )) 2 E ~~;();d ~. Let us suppose this result for now and nish the proof of the dierentiability.

2 E ~~; ();d~. Combining the dierent estimates, we have in particular that L(:) + (1 ¡ ) VL 0 : V d (H d+" () ¡ H d ()) ! 0 in E ~~; ();d~w hen " ! 0. By Proposition 2.1.17 (from E ~~; ();d~t o E ~;;d~) , this implies that

  By the implicit function theorem, with Lemma 2.2.1, since k c;d k ;;d 6 K(; 0 )c 1¡ 0 this implies that, for c small enough, d 7 ! c;d is a C 1 function, and @ d c;d = ¡d H ¡1 (@ d H( c;d ; d; c)): Now, let us check that indeed @ d (F d (/V d )) 2 E ~~; ();d~f or 2 E ~;;d~.

  With the same compactness argument used in the proof of the continuity of c 7 ! c;d , we can show that (c; d) 7 ! c;d is continuous from to E ;;d . From the proof of Lemma 2.2.2, we have that Id + L

	1 2c < d <

2 c to E ;;d .

  2.1.26, with Lemmas 2.2.2 and 2.2.3, we can check that the O c!0(c 2¡ ) is continuous with respect of c and d. Therefore, by the intermediate value theorem, there exists d c > 0 such that (c; d c ) = 0, with

  by Lemma 2.1.3 and (2.2.14). For (2.2.16), if r ~> 3, we compute

  dc k ;;dc and the estimate (2.2.16) holds. Similarly, for r ~> 3, jjQ c j 2 ¡ jV j 2 j 6 jV j 2 je 2Re(We have je 2Re( c;dc) j 6 1 for c small enough and by Lemma 2.1.1 we have jIm(rVV )j 6

		K
	jRe(rVV )j 6 (2.2.19) hold.	1 + r ~and (1 + r ~)1+ from (2.2.14), estimates (2.2.18) and K()c 1¡

c;dc) ¡ 1j 6 K()c 1¡ (1 + r ~)1+ and for the same reason if r ~6 3 the estimate (2.2.17) holds. Inequalities (2.2.18) and (2.2.19) are clear if r ~6 3 and we compute, for r ~> 3,

rQ c Q c = r(Ve c;dc )V e c;dc = rVV e 2Re( c;dc) + jV j 2 r c;d c e 2Re( c;dc) : K (1 + r ~)3 : Combining it with jr c;d c j 6

  1, together with subsection 2.2.2, ends the proof of Theorem 1.3.1. Subsections 2.3.1 to 2.3.7 are devoted to the proof of Proposition 2.3.1. In this section, to make the dependances on c and d clear, we use the following notations. We denote c;d ; c;d and ¡ c;d in order to emphasize the dependence of ; and ¡ in Proposition 2.1.21 on c and d. A value of d that makes (c; d) = 0 in Proposition 2.1.26 is written d c . We will show later on that there exist one and only one value of d c satisfying this in c

	2 ; 2c	. With these notations,

  They are the norms k:k ;¡;d and k:k ;¡;d of subsection 2.1.3, but without the second derivatives, less decay on the gradient of the real part for k:k ;B d 0 , and only on B d 0 = B(de 1 ~; d " 0 ) for k:k ;B d 0 and on B d := B(de 1

{d " >r 1 >2}) :

  With Lemma 2.2.3 and Corollary 2.3.3, as well as Lemma 2.1.6, we infer that the terms contributing to the O c!0 (c 2¡ ) are such that, when dierentiated with respect to d, their contributions are still a O c!0 (c 2¡ ). Indeed, if the derivative with respect to d fall on a c;d , then by Lemma 2.2.3 and Corollary 2.3.3, the same estimates used in the proof of Proposition 2.1.26 still hold. If the derivative fall on a term depending on V , by Lemma 2.1.6, we gain some decay in the integrals. We deduce that, since (c; d

2¡ 

):

  1/" ; since we are in B dn = B(d n e 1

	~; d n " ), and		
		< 2 ¡ "(2 ¡ );	
	which is one of the hypothesis of the lemma, we have	
	iIm	4rV 1 :r@ x1 V ¡1 V	;Bd n	= o cn!0 (c n 1+

  Since kH n k ;Bd n = o n!1 (1) from (2.3.4), the estimates on H 1 and H 2 are already on B dn , leaving c@ x2 Y 2 and the real and imaginary parts of rV V :rY n to estimate. First, we check that, in B dn nB dn 0 ,

	r 1 ) 2¡	:	(2.3.11)
	We want to extend these estimates in B dn = B(d n e 1 ~; d n " ) and not only on B d n 0 = (d n e 1 ~; d n " 0 ).

  r 1 ) 1¡ :

	For the last remaining term, we use (2.3.7) with =	+ 1 2	to estimate
	jH 1 j 6	o n!0 R (1) (1 + r 1 )	;

and then, from Lemma 2.1.13 (only changing the integral from R 2 to B(d n e 1 ~; d n "

  r 1 ) 2+ : Indeed, from equation (2.3.14) and (2.3.18), we have jH 1 ¡ c@ x2 j 6

	we check that					+ K()d n (1 + r 1 ) , and using (2.3.11),
	2Re	rV V	:rY n	¡ (1 ¡ jV j 2 )Y 1	6	K()d n

+ (1 + r ~)2+ : Now, for y 2 , x 2 B(d n e 1 ~; d n " 0

  The rst term can be computed as in the proof of Lemma 2.1.10, and for the second term, in RnB dn , we have

	K 0 ¡	2 p	jxj	6 Ke ¡d n "/2	e ¡jxj 1/2
	from Lemma 2.1.9, which, with (2.3.11) and (2.3.13), make the term integrable and a o d n !1 ¡ e ¡d n "/4

1 )(Y )jdY ; where B dn (x) = B(x ¡ d n e 1 ~; d n "

).

  1/8 d 7/8 by (2.2.14) and the denition of ¡ c;d . Therefore, since 17/8 > 2, Z

B(de1;d

" 0 )

  2 from Lemma 2.1.6. Moreover, by ¡1/2¡ from Lemma 2.2.9 and (2.3.26), we deduce jr@ c ¡ c;d j 6

	@c¡c;d V K()	;1/2;d	6 K() c K() d 1/2+ d (3/4)(3/2) 6

  Now, extending ' to R 2 by ' = 0 outside of B(0; 2), we have by change of variables Z

			Z					Z
	B(0;2) j'j 2 ";; ";; =	R 2 j'j 2 ";; ";; =	R 2	j'j 2 (x) "; "; :
								and by
	dominated convergence, we check that Z			Z	
		B(0;2) j ";; 'j 2 !	B(0;2) j'j 2
	when ! 0. Furthermore, we compute by integration by parts Z Z Z
	B(0;2) jr( ";; ')j 2 =	Z	B(0;2)	";; 2	jr'j 2 + 2	B(0;2)	r ";; ";; Re(r'' )
	+	Z	B(0;2) jr ";; j 2 j'j 2	Z
	=		B(0;2)	";; 2	jr'j 2 ¡	B(0;2)

j'j 2 ";; ";; :

  jV 1 j 4This is a Hardy type inequality, and it would conclude the proof of this proposition. Remark that for the harmonics other than zeros, this is a direct consequence of Z

						!
						:
	Finally, outside of B(0; 5), we have, by Lemma 1.2.1, that
				Z	Z
	Let us show that	Z	R 2 nB(0;5)	R 2 nB(0;5) jr j 2 6 K Z j j 2 r 2 ln 2 (r) 6 K R 2 nB(0;5) R 2 nB(0;5) jr j 2 jV 1 j 2 : Z jr j 2 + B(0;10)nB(0;5) j j 2	:
				R 2 nB(0;5)	

  jr j 2 jQ c j 4 + Re 2 ( )jQ c j 4 ; by(3.1.10). With these estimates and by Cauchy-Schwarz, for D > D 0 , Z jr j 2 jQ c j 4 + Re 2 ( )jQ c j 4 ;

		R 2 n ¡ Z B	¡	d ~ce 1 ;D	[B	¡	¡d ~ce 1 ;D	2cjQ c j 2 Im(@ x2 )Re( )
		> ¡Kc		R 2 n ¡	B	¡	d ~ce1;D	[B	¡	¡d ~ce1;D
	and	Z						
		R 2 n ¡	B	¡	d ~ce1;D	[B	¡	¡d ~ce1;D	4Im(rQ c Q c ):Im(r )Re( )
		Z							2 ( )jQ c j 4 )
		+	R 2	(4Im(rQ c Q c )Im(r )Re( ) + 2cjQ c j 2 Im(@ x 2 )Re( )):
	We decompose the integral in three domains, B R 2 n ¡ B ¡ d ~ce 1 ~; D [ B ¡ ~; D for some D > D 0 > 0, where D 0 is dened in Lemma 3.3.3. ¡ d ~ce 1 ~; D (which yield B Qc loc1;D (')) and ¡d ~ce 1 Then, with the four orthogonality conditions and Lemma 3.3.3, we check that
									Z
		B Q c loc1;D (') > K(D)	B	¡	d ~ce1;D
	and, by symmetry of the problem around B L 1 ¡ B ¡ ¡d ~ce 1 ~; D , and checking that multiplying the vortex by ¡1 does not change the result, that ¡ d ~ce 1 ~; D , since Q c = ¡V ¡1 ¡ : + d ~ce ~1 + o c!0 (1) in Z
		B Qc loc¡1;D (') > K(D)	B	¡	¡d ~ce1;D	jr j 2 jQ c j 4 + Re 2 ( )jQ c j 4 :
	Furthermore, there exist K 1 ; K 2 > 0, universal constants, such that, outside of B(d c ~e1 ~; 1) [ B(¡d c ~e1 ~; 1) for c small enough, we have
	by (3.1.12). We also have						K 1 > jQ c j 2 > K 2
						jIm(rQ c Q c )j 6 K	1 (1 + r ~1)	+	1 (1 + r ~¡1 )

  '):Furthermore, we compute, by equations (3.1.12), (3.2.1) and Proposition 3.1.4, Z

			Z				Z	Z
	{r ~>5}	jr j 2 6 K	{r ~>5}	jr j 2 jQ c j 4 6 K				{r ~>5}	jr'j 2 +	{r ~>5}	jrQ c j 2 j'j 2	6 K(c)k'k HQ c 2 :
	We deduce that (3.5.2) holds, and therefore H Qc H Qc exp . Now, we check that
	kiQ c k H Qc exp 2	6 kiQ c k H 1 ({r ~610}) 2	+ K	Z	{r ~>5}	jij 2 r ~2ln(r ~)2 +	Z	{r ~>5}	jrij 2 < +1:	(3.5.3)
	With regards to the denition of k:k C , we check easily that k'k C 6 k'k H Qc exp :
	Finally, we recall the denition of B Qc exp (') from equation (1.4.4),
	B Qc exp								
	Proof. First, let us show (3.5.2). We have		
						k'k H 1 ({r ~610}) 6 K k'k HQ c ;
	and, by equation (3.1.12) and Lemma 3.1.5, we check that
						Z				
				{r ~>5}	j j 2 r ~2ln(r ~)2 6 K	Z	{r ~>5}	j'j 2 (1 + r ~)2 6 K(c)k'k HQ c

{r ~>5} Re 2 ( ) 6 K k'k H Qc 2 ;

and also that Z 2 :

  @ c ?Q c = ¡x ? :rQ c and equation (3.1.11), we have

							.6.5)
	and thus kZ ¡ Qk L 1 (B(0;)) 6 K()kZ ¡ Q c k H Qc exp + K jX j +	j:j (ce 2 ~; c ~0) c 2	+	? (ce 2 ~; c ~0) c	+ j j	! :	(3.6.6)
	Finally, from Lemmas 1.2.1, 3.1.1 and 3.1.2,						

  L 1 ({= / 0}) < for > 0 small enough), we deduce that on , given that " 0 and kZ ¡ Q c k H Qc

	exp
	by Lemma 3.6.1 and (3.1.12). Therefore, since e ¡ 1 ¡ is at least quadratic in 2 C 1 (; C), by a xed point argument (on H( ) := Z ¡ Q Q ¡ (e ¡ 1 ¡ ), which is a contraction on k k

exp are small enough (depending on for kZ ¡ Q c k H Qc exp ), there exists a unique function 2 C 1 (; C) such that

+ (e ¡ 1 ¡ ) = Z ¡ Q Q in .

By unicity, since we have a solution of the same problem on {

.6.3 End of the proof of Theorem 1.4.13

  

	We compute with Lemma 3.1.2 that		
	jhiQr ; c 2					
	jX j +	j:j (ce 2 ~; c ~0) c 2	+	? (ce 2 ~; c ~0) c	+ j j 6 o kZ ¡Qck H Qc exp!0 ;c (1);	(3.6.15)

From Lemmas 3.6.3 and 3.6.6, we can nd

' = Q 2 H Q exp such that

2 Estimations on the remaining terms

  2 ; therefore, as for the previous estimation, Furthermore, from Lemma 3.1.7, we haveL Q (@ c ?Q) = ¡ic ¡B Q (@ c ?Q) = ¡2 + o c!0 (1): K jhQ ; cL Q (@ c ?Q)i + hNL loc ( ) + F ( ); c@ c ?Q ij + o kZ ¡Q c k H Qc exp!0 Let us show in this subsection that jhi(c ~0 ¡ ce 2 ~):H( ); Q( + i)ij + jhNL loc ( ); Q( + i)ij + jhF ( ); Q( + i)ij 6 o c!0 (1) + o kZ ¡ Qck H Qc exp!0 Proof of jhNL loc ( ); Q( + i)ij 6 o kZ ¡ Qck H Qc exp!0

	Step 2. Proof of										
				jhi(c ~0 ¡ ce 2 ~):H( ); Q( + i)ij
	i(c ~0 ¡ ce 2 ~): 6 o c!0 (1) + o kZ ¡ Qck H Qc exp!0 (1 ¡ )r(Q ) + e Qr (1 ¡ ) + e ;c (1)	; c@ c ?Q k'k C 2 + o kZ ¡ Qck H Qc exp!0 6 o kZ ¡Qck H Qc exp!0 ;c (1)k'k H Q exp : ;c (1)k'k H Q exp 2
	We check that, by symmetry (see equation (3.1.3))					
		hi(c ~0 ¡ ce 2 ~):rQ; c@ c ?Q i = ? (ce 2 ~; c ~0)	i	c ~0 jc ~0j	:rQ; c@ c ? Q
	1.4.1,	*		+								c ~0? jc ~0j :rQ, therefore, from Proposition
	c = We deduce that i c ~0? jc ~0j :rQ; @ c ?Q								
				? (ce 2 ~; c ~0) 6					
												;c	(1)k'k H Q
			*	+							
		6	Z	Q ; i R 2 Re( )Im c ~0? :rQ jc ~0j c ~0? jc ~0j	:rQQ	!	+	Z	R 2 Im( )Re	c ~0? jc ~0j	:rQQ	!	;
	and with Lemma 3.4.4, we deduce that								
	We conclude that		cjhQ ; L Q (@ c ?Q)ij 6 Kcln	1 c		k'k C :
	? (ce 2 ~; c ~0) 6	Kc 2 ln	1 c	+ o kZ ¡ Qck H Qc exp!0 ;c (1)	k'k C + o kZ ¡ Qck H Qc exp!0 ;c (1)k'k H Qc exp :
	3.6.3.;c		(1) + K 0	k'k C 2 + o kZ ¡ Qck H Qc exp!0 ;c (1)k'k H Q exp 2 :	(3.6.21)
	Step 1. ;c						(1)k'k H Q exp 2 .
	From Lemma 3.6.5, we have									
	jhNL ;c					(1)k'k H Q exp 2 :

exp :

As previously, we check that

jhNL loc ( ) + F ( ); c@ c ?Q ij 6 o kZ ¡Q c k H Qc exp!0 ;c (1)k'k H Q exp + o kZ ¡ Q c k H Qc exp!0 ;c (1)k'k C

and from Lemma 3.1.7, we have

jhQ ; L Q (@ c ? Q)ij = loc ( ); Q( + i)ij 6 K(kQ k C 1 ({= / 1}) + j j)k'k H 1 ({= /

1}) 2 ; therefore, from Lemmas 3.6.2, 3.6.6 and equation (3.6.15), we deduce jhNL loc ( ); Q ij 6 o kZ ¡Qck H Qc exp!0

:

  We separate the estimation in two parts. First, we look at hi(c~0 ¡ ce 2 ~):H( ); Q i. We recall that H( ) = rQ + (1 ¡ )r(Q ) + e Qr (1¡ ) + e, and, since jc ~0 ¡ ce 2 ~j 6 o kZ ¡ Qck H Qc exp!0 Re( )Im(r )jQj 2 j 6 K k'k C 2 . Now, by integration by parts (using Lemma 3.6.3), we haveIn the area = / 0 , sincej j = o kZ ¡ Qck H Qc exp!0 C + o kZ ¡ Q c k H Qc exp!0

	3.6 Local uniqueness result thus					
	hi(c ~0 ¡ ce 2 ~):H( ); Qi i =	i(c ~0 ¡ ce 2 ~):	(1 ¡ )r(Q ) + e Qr (1 ¡ ) + e	; Qi	:
				;c				(1) by Lemma 3.6.6, since
	jc ~0 ¡ ce 2 ~j 6 K by estimates (3.6.19) and (3.6.20), we check that cln 1 c + o kZ ¡Q c k H Qc exp!0 ;c (1) compactly supported, we check easily that i(c ~0 ¡ ce 2 ~): (1 ¡ )r(Q ) + e Qr k'k ;c ; Q Z {= / 0} Re i(c ~0 ¡ ce 2 ~): (1 ¡ )r(Q ) + e Qr Qi 6 o kZ ¡ Qck H Qc exp!0 (1)k'k H Q exp ;c (1) and 1 ¡ is 6 ;c (1)k'k H Q exp 2 ; (1 ¡ ) + e (1 ¡ ) + e o kZ ¡ Q c k H Qc exp!0 ;c (1) and therefore (with Lemma 3.6.3 that justies the integrability) ¡ exp 2 : Z jhiQr ; Q ij + K(c)k'k H Q Furthermore, we check that jhi(c ~0 ¡ ce 2 ~):H( ); Qi ij 6 (c ~0 ¡ ce 2 ~): R 2 jQj 2 Re(r ) + o kZ ¡ Qck H Qc exp!0 ;c (1)k'k H Q exp 2 :
	jhiQr ; Q ij 6 and by Cauchy-Scwharz, j R By integration by parts (since jRe( )j 6 Z R 2 Re( )Im(r )jQj 2 K K exp; "0; Z ; c; kZ ¡ Qck H Qc by Lemma 3.6.3) and Cauchy-Schwarz, + Z R 2 Im( )Re(r )jQj 2 ; c; kZ ¡ Qck H Qc exp; "0; Z (1 + r) 2 and jRe(r )j 6 ; (1 + r) 3 Z Z Z R 2 Z R 2 Im( )Re(r )jQj 2 6 Z R 2 Re( )Im(r )jQj 2 Z R 2 jQj 2 Re(r ) 6 R 2 + r(jQj 2 )Re( ) rjQj 2 Re( ) R 2 6 K(c)k'k H Q
									+	Im( )Re( )r(jQj 2 )
										Z	R 2
									+	R 2 Im( )Re( )jQj 2 r	;
	and by Cauchy-Schwarz, we check that			
				Z					
	We deduce that			R 2	Im( )Re(r )jQj 2	exp : 6 K k'k H Q 2
	i(c ~0 ¡ ce 2 ~):	(1 ¡ )r(Q ) + e Qr (1 ¡ ) + e	; Q	6 o kZ ¡Qck H Qc exp!0 ;c (1)k'k H Q exp 2 :
	Finally, we write								
										*	+
	jhi(c ~0 ¡ ce 2 ~):rQ; Q ij 6 j:j (ce 2 ~; c ~0)	i	c ~0 jc ~0j	:rQ; Q	+ ? (ce 2 ~; c ~0)	i ~0? c jc ~0j	:rQ; Q	:
	With Lemma 3.4.4, we check that				
							*		+
	i	c ~0 jc ~0j	:rQ; Q	+	i ~0? c jc ~0j	:rQ; Q	6 K ln	1 c	k'k C :
	With (3.6.19) and (3.6.20), we deduce that		
	jhi(c ~0 ¡ ce 2 ~):rQ; Q ij 6	Kcln 2	1 c	+ o kZ ¡ Q c k H Qc exp!0 ;c (1)	k'k C 2 + o kZ ¡Q c k H Qc exp!0 ;c (1)k'k H Q exp 2
			6	o c!0 (1) + o kZ ¡ Q c k H Qc exp!0 ;c (1)	k'k C 2 + o kZ ¡ Q c k H Qc exp!0 ;c (1)k'k H Q exp
						Z				Z
						R 2 Re(rQQ ) =	2	R 2 r(jQj 2 ¡ 1) = 0;

2

:

Now, we look at hi(c ~0 ¡ ce 2 ~):H( ); Qi i. We check that hirQ; Qi i = exp :

Since j j = o kZ ¡ Qck H Qc exp!0 ;c (1)

by Lemma 3.6.6 and jc ~0 ¡ ce 2 ~j 6 K(c) + o kZ ¡Qck H Qc exp!0 ;c (1) k'k H Q exp by (3.6.19), (3.6.20) and Lemma 3.5.1, we conclude that jhi(c ~0 ¡ ce 2 ~):H( ); Qi ij 6 o kZ ¡ Qck H Qc exp!0 ;c (1)k'k H Q exp 2 : Step 3. Proof of jhF ( ); Q( + i)ij 6 o kZ ¡ Qck H Qc exp!0

  .1 (d c e ~1 are the center of the vortices from which Q c is constructed as a perturbation of), we dened r ~= min (jx ¡ d c e 1 ~j; jx + d c e 1 ~j);as well as the two norms, for; 0 2 R, ' = Q c 2 C 2 (R 2 ; C), = 1 + i 2 , and Q c h 2 C 1 (R 2 ; C), h = h 1 + ih 2 , k k ; = kQ c k C 2 ({r ~63}) + kr ~1+ 1 k L 1 ({r ~>2}) + kr ~2+ r 1 k L 1 ({r ~>2}) + kr ~2+ r 2 1 k L 1 ({r ~>2}) + kr ~ 2 k L 1 ({r ~>2}) + kr ~1+ r 2 k L 1 ({r ~>2}) + kr ~2+ r 2 2 k L 1 ({r ~>2})andkhk ; 0 = kQ c hk C 1 ({r ~63}) + kr ~1+ 0 h 1 k L 1 ({r ~>2}) + kr ~2+ 0 rh 1 k L 1 ({r ~>2})+ kr ~2+ 0 h 2 k L 1 ({r ~>2}) + kr ~2+ 0 rh 2 k L 1 ({r ~>2}) :

4.1 Previous results on the branch

  ; 0; 8(x 1 ; x 2 ) 2 R 2 ; Q c h(x 1 ; x 2 ) = Q c h(x 1 ; ¡x 2 ) :This section contains mostly results previously known on the branch of Theorem 1.3.1. This allows us to present them in a way adapted to the proofs to come, and to regroup the properties from other chapters and articles.From Proposition 1.4.1, Q c has exactly two zeros, and they are near d c e ~1. In particular, with r ~= min (jx ¡ d c e 1 ~j; jx + d c e 1 ~j), we have shown (see equation (3.1.12)) that outside of r ~6 2 , ; are separated in an estimate on r ~6 3 and another outside this domain, to allow the division by Q c . Now, since jV j 6 1 by Lemma 1.2.1, jV ¡ 1j 6 2, and by interpolation,

	E ; 0 2sym = thus, for c small enough, We recall that, with k:k ; dened in (1.5.2), Q c h 2 E 1 K jQ c ¡ 1j 6 irQ c Q c ; = kirQ c k C 1 ({r ~63}) + r ~1+ Re irQ c Q c L 1 ({r ~>2}) Kc ¡ (1 + r ~) ; K()c ¡ (1 + r ~) : + + r ~2+ Im irQ c Q c L 1 ({r ~>2}) + = krQ c k C 1 ({r ~63}) + r ~1+ Im rQ c Q c L 1 ({r ~>2}) + r ~2+ rIm r ~2+ rRe r ~2+ rIm 6 jQ jV ¡ 1j 6 + r ~2+ Re rQ c Q c L 1 ({r ~>2}) + r ~2+ rRe	irQ c Q c irQ c Q c rQ c Q c rQ c Q c	L 1 ({r ~>2}) L 1 ({r ~>2}) L 1 ({r ~>2}) L 1 ({r ~>2})

R 2 ; C); k k ; < +1; 8(x 1 ; x 2 ) 2 R 2 ; '(x 1 ; x 2 ) = '(¡x 1 ; x 2 ) ;

E ; 2sym = ' = Q c 2 E ; ; 8(x 1 ; x 2 ) 2 R 2 ; '(x 1 ; x 2 ) = '(x 1 ; ¡x 2 )

and

E ; 0 = Q c h 2 C 1 (R 2 ; C); khk ; 0 < +1; 8(x 1 ; x 2 ) 2 R 2 ; Q c h(x 1 ; x 2 ) = Q c h(¡x 1 ; x 2 ) ; c j 6 K

for a universal constant K > 0. This is why the norms k:k ; and k:k

  2 ; C), h = h 1 + ih 2 , k k ; = kQ c k C 2 ({r ~63}) + kr ~1+ 1 k L 1 ({r ~>2}) + kr ~2+ r 1 k L 1 ({r ~>2}) + kr ~2+ r 2 1 k L 1 ({r ~>2}) + kr ~ 2 k L 1 ({r ~>2}) + kr ~1+ r 2 k L 1 ({r ~>2}) + kr ~2+ r 2 2 k L 1 ({r ~>2}) and khk ; = kQ c hk C 1 ({r ~63}) + kr ~1+ h 1 k L 1 ({r ~>2}) + kr ~2+ rh 1 k L 1 ({r ~>2}) + kr ~2+ h 2 k L 1 ({r ~>2}) + kr ~2+ rh 2 k L 1 ({r ~>2}) :

  2 rQ cn Q cn :r n + 2 Re( n )jQ cn j 2 = ¡ic@ x2 ~n ¡ ~n + 2Re ¡ ~n + ic@ x2 n + n + 2r:r n + 2Re( n )(jQ cn j 2 ¡ 1)We deduce that¡ic@ x 2 ~n ¡ ~n + 2Re ¡ ~n = h n ¡ ( n ; h n ) i Q c ¡ ic@ x2 n ¡ n ¡ 2r:r n ¡ 2Re( n )(jQ cn j 2 ¡ 1)We denoteh ~n = h n ¡ ic@ x2 n ¡ n ¡ 2r:r n ¡ 2Re( n )(jQ cn j 2 ¡ 1) + 2 rQ c n Q Im h n ¡ ic@ x2 n ¡ n ¡ 2r:r n + 2 Now, from Lemma 2.1.15, since ¡ic@ x 2 ~n ¡ ~n + 2Re ¡ ~n = h ~n, R It implies, with k' n k C 2 ({r ~6}) = o n!1

			¡ 2	rQ c n Q cn	:r n :
							+ 2	rQ c n Q cn	:r n :
	Furthermore, we have that		i Q cn Z Im ; 0 ;1 ¡ h ~n = 0; = o n!1 (1):
	since	( n ; h n ) =	R	R 2 R 2 rQc n Q cn R Q cn R 2 Im i	:r n	:
	~n 2 E ; 1 , we deduce					R 2 Im ¡	h ~n	1 = 0, h ~n 2 E ;	and
		~n	;;1 6 K(; 0 )	h ~n	; 0 ;1 6 o n!1 (1) + o !1 (1):
							(1) and (2.1.18), that
		k n k ; 6 K	¡	k' n k C 2 ({r ~6}) +	~n	;;1	= o n!1

cn :r n ¡ ( n ; h n ) i Q cn :

We check, as in the proof of Proposition 2.1.17, that h ~n

; 0 ;1 = o !1 (1) + o n!1

(1):

The only additional term we have to check is

( n ; h n ) i Q c

, and since

( n ; h n ) = o n!1 (

1

), and i Qc n is compactly supported in B(d c n e 1 ~; R + 2) [ B(¡d c n e 1 ~; R + 2), we check easily that ( n ; h n )

  4.2.6, multiplying the equation by , we write it, with ~n = n , on the form ¡ic@ x 2 ~n ¡ ~n + 2Re ¡ ~n = h ~n;Now, the proof varies a little from the one of Lemma 2.1.19. Taking the scalar product of the imaginary part of the equation with Im ¡ ~n , we infer Z By integration by parts, since ~n = 0 on @B(0; a n ), we have Z

		B(0;an)	c@ x2 Re ¡ ~n Im ¡ ~n	+	Z	B(0;an) ¡Im ¡ ~n Im ¡ ~n	=	Z	B(0;an) Im ¡	h ~n Im ¡ ~n :
	and	Z	B(0;a n )	B(0;a n ) c@ x 2 Re ¡ ~n ¡Im ¡ ~n Im ¡ ~n Im ¡ ~n c Z 6 B(0;a n ) = Z B(0;a n ) jrIm ¡ ~n j 2 Re ¡ ~n @ x 2 Im ¡ ~n 6 c Z B(0;a n ) Re 2 ¡ ~n Z B(0;a n ) jrIm s ¡ ~n j 2	:
	Furthermore, since	R	B(0;an) Im ¡	h ~n	= 0, we have
				Z	B(0;an) Im ¡	h ~n Im ¡ ~n	=	Z	B(0;an) Im ¡	h ~n Im ¡ ~n ¡ i(

where

h ~n = h n ¡ ic@ x2 n ¡ n ¡ 2r:r n ¡ 2Re( n )(jQ cn j 2 ¡ 1) + 2 rQ cn Q c n :r n ¡ a n ( n ; h n ) i Q c : n ) ;

and we estimate, since k' n

  1¡" : From Lemma 4.2.2, there exists= 1 + i 2 2 C 2 (R 2 ; C) such that ¡ic@ x2 ¡ + 2Re() = ¡L Qc 0 (i 1 + i ¡1 ) + i;andkk ;¡";1 6 K(")kL Qc 0 (i 1 + i ¡1 ) + ik ;0 6 K(")c 1¡" : (4.2.5) Now, since L Q c 0 (i 1 + i ¡1 ) ¡ i = 0 in B(d ce 1 ~; 2R + 1) [ B(¡d c e 1 ~; 2R + 1), we have

  2Re( )jQ c j 2 ¡ 2We check, with Lemma 2.2.8 and (4.2.5), that 2Re()(1 ¡ jQ c j 2 ) ¡ 2Similarly, as it is compatcly supported, with the estimates on we check easily that kic@ x2 ¡ ¡ 2r:rk ; 6 K(")c 1¡" :We deduce, from Lemma 4.2.8, the orthogonality conditions being satised since the source is 0 in

							rQc Qc :r , we deduce
						h = 2Re()(1 ¡ jQ c j 2 ) ¡ 2	rQ c Q c	:r():
		> 0, and				rQc Q c	:r() 2 E ; for some
						2Re()(1 ¡ jQ c j 2 ) ¡ 2	rQ c Q c	:r()
	B	¡	d ~ce 1 ~; R	[ B	¡	¡d ~ce 1

;

6 K(")c 1¡" : ~; R (because of the cuto ), that there exists 2 E ; 0, 0 < 0 < such that

L Qc 0 () = 2Re()(1 ¡ jQ c j 2 ) ¡ 2 rQ c Q c :r + (1 ¡ )L Qc 0 (i 1 + i ¡1 ) ¡ (; h)Q c i;

  ; 0 2sym = Q c h 2 E ; 0; 8(x 1 ; x 2 ) 2 R 2 ; Q c h(x 1 ; x 2 ) = Q c h(x 1 ; ¡x 2 ) : Proposition 4.2.11. Given 0 < < 0 < 1 and Q c h 2 E ; 0 2sym, there exists a unique function' = Q c 2 E ; 0 2sym such that L Q c (') = Q c h:

	E ; 2sym = ' 2 E Furthermore, and is a continuous function from (]0; c 0 (; 0 )[; E ; 0 k k ; 6 K(; 0 ) c 2 (c; Q c h) ! ' khk ; 0 2sym

; ; 8(x 1 ; x 2 ) 2 R 2 ; '(x 1 ; x 2 ) = '(x 1 ; ¡x 2 )

and E
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= K 0 h 1 + cH ; (2.1.14) 

2 L 

3/2 (R 2 ; C) and thus is a tempered distribution.2.1 Lyapunov-Schmidt reduction

Smooth branch of travelling waves

2.2 Construction and properties of the travelling wave

2.3 Differentiability of the branch c 7 ! Q c
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3.4 Proof of Theorem 1.4.4 and its corollaries

3.6 Local uniqueness result

4.2 Inversion of the linearized operator around Q c

Remerciements

for all +1 > p > 2 if c is small enough, which ends the proof of Theorem 1.3.1.

Proof. From subsection 2:3:5, we know that Q c is a C 1 function of c. We have

where we used

@ d V thanks to subsection 2.3.6. ¡ c;dc depends on c directly and through d c . We will write @ c ¡ c;dc for the derivatives with respect to c but at a xed d c , and @ d ¡ c;dc for the derivate with respect to d c but at xed c. In particular, @ c (¡ c;dc ) = @ c ¡ c;dc + @ c d c @ d ¡ c;dc : From Lemma 2.2.9 and (2.3.26), we showed that @ c ¡ c;dc V ;;dc , therefore @ c (¡ c;dc ) V

This concludes the proof of Lemma 2.3.6, which itself concludes the proof of Theorem 1.3.1.

Decay estimates

Estimates on vortices

We recall that vortices are stationary solutions of (GP) of degrees n 2 Z (see [7]):

V n (x) = n (r)e in ; where x = re i , solving

V n ¡ (jV n j 2 ¡ 1)V n = 0 jV n j ! 1 as jxj ! 1:

We regroup here estimates on quantities involving vortices. We also dene, as in Chapter 2

The function

, since, from Lemma 1.2. We recall that B ¡ d c e 1 ~; 2d c 1/2 is near the vortex of degree +1 of Q c and that r ~= min (r 1 ; r ¡1 ), with r 1 = jx d c e 1 ~j.

Estimates on Q c from Chapter 2

We recall, for the function Q c dened in Theorem 1.3.1, that

In particular, @ c Q c enjoys the same symmetries, since (3.1.3) holds for any c > 0 small enough. We recall that Q c 2 C 1 (R 2 ; C) by standard elliptic regularity arguments. Finally, we recall some estimates on Q c and its derivatives, coming from Lemma 2.2.8 and equations (2.2.10), (2.2.12). We denote r ~= min (r 1 ; r ¡1 ), the minimum of the distances to d c e ~1 and ¡d c e ~1, and we recall that

2.8))

. There exists K > 0 and, for any 0 < < 1, there exists K() > 0 such that 

Thus, in B(d c

~e1 ~; R), with Lemmas 1.2.1 and 3.1.12, we estimate

Finally, from Lemma 3.1.6, we have c@ c ?Q c = ¡cx ? :rQ c with x ? = (¡x 2 ; x 1 ). In B(d c ~e1 ~; R), we have, since cd c ~= 1 + o c!0 (c 0 ) and Lemma 3.1.12,

Now, from Lemma 1.2.1, we have

for universal constant K 1 ; K 2 > 0 (depending only on R). By a change of variable, we have, writing V ~1 = (r ~1 )e i ~1 (with the notations of Lemma 1.2.1),

by integration in polar coordinates, we have With (3.4.3) to (3.4.6), we check that these four directions are close to the ones in the orthogonality conditions of Proposition 1.4.3. This will appear in the proof of Lemma 3.4.5. Now, we give a way to develop the quadratic form for some particular functions.

Now, with (3.1.16) (that holds also for A by linearity) and (3.1.9), (3.1.10), we check easily that Re(L Qc (A)A ) 2 L 1 (R 2 ; R). Now, from subsection 3.2.3, to show that for

) is well dened and is 0. For = A or = ' + A, this is a consequence of (3.1.16), Lemma 3.1.16 and

Similarly as in the proof of Lemma 3.4.5, we have from Lemma 3.1.8 that, for any 0 /2 > > 0,

for c small enough (depending on ).

Lemmas 3.1.12, 3.4.5 and 3.4.6 together end the proof of Theorem 1.4.4. Remark that in both Lemmas 3.4.5 and 3.4.6, we could replace the orthogonality condition Re R

since, by Theorem 1.3.1 (for p = +1),

and thus this replacement creates an error term that can be estimate as the other ones in the proof of Lemma 3.4.5. Proof. We start with the proof that (i) implies (ii). We start by showing that, for '

Proof of the corollaries of

We take ' 0 = Q c 0 2 C c 1 (R 2 ; C) and, by integration by parts, from (i), we check that

Similarly as in the proof of Proposition 1.4.3, we argue by density that this result holds for ' 0 2 H Qc . Now, taking ' 0 = ¡', we infer from (3.4.21) that B Qc (') = 0, thus, for ' 2 H Qc ,

Now, similarly as the proof of Lemma 3.4.5, we decompose

such that ' veries the three orthogonality conditions of Lemma 3.4.6. We write

Similarly as in the proof of Lemma 3.4.5, we can nd " 1 ; " 2 ; " 3 2 R such that ' satises the three orthogonality conditions of Lemma 3.4.6, and thus (since

Now, we compute, by Lemma 3.4.2 and with a density argument, that

We have from Lemma 3.1.7 that L Qc ("

and, from Lemma 3.1.9, we have

and

for c small enough. This also shows that if

We can now nish the proof of Proposition 1.4.7.

Proof. (of Proposition 1.4.7) First, we have from Theorem 3.1.

). Now, with Corollary 1.4.6, it is easy to check that n ¡ (L Qc ) 6 1. Indeed, if it is false, we can nd u; v 2 H 1 (R 2 ) such that for all ; 2 R with (; ) = / (0; 0), u + v = / 0 and B Q c (u + v) < 0. Then, we can take (; ) = / (0; 0) such that

which implies B Qc (u + v) > 0 and therefore a contradiction. Let us show that L Qc has at least one negative eigenvalue (with eigenvector in H 1 (R 2 )), which implies that n ¡ (L Q c ) = 1 and that it is the only negative eigenvalue. We consider

B Qc ('):

We recall, from Lemma 3.4.7, that (since

In particular, this implies that c = / ¡1.

With the same computation as in the proof of Lemma 3.3.1, we check that for

With the same arguments as in the density proof at the end of the proof of Proposition 1.4.3, we check that this equality holds for ' 2 H Qc . Now, we state some lemmas that where shown previously in H Q c , that we have to extend to H Q c exp to replace some arguments that were used in the proof of Propositions 1.4.3 for the proofs of Propositions 1.4.10, 1.4.11 and Theorem 1.4.12. We start with the density argument.

Proof. The proof is identical to the one of Lemma 3.2.4, as we check easily that, for

We also want to decompose the quadratic form, but with a fth possible direction: iQ c .

Proof. As for the proof of Lemma 3.4.2, we only have to show that Re(L Qc (A)A ) 2 L 1 (R 2 ) to show the rst equality. By simple computation (or by invariance of the phase), we check that

From the proof of Lemma 3.4.2, we have

We check, from (1.4.4), that, for

, this equality holds by integration by parts and because Re(

We then argue by density, as in the proof of Proposition 1.4.3. We deduce, from Lemmas 3.1.7 and 3.4.2, that for

and we check, with Lemma 3.1.7, that for some v 2 R 2 depending on A,

From Lemma 3.1.8, we have,

and with Lemmas 1.2.1, 3.1.2 and equations (3.1.9), (3.1.10), (3.1.11), we check with the denition of k:k

Finally, we check that

We can now end the proof of Proposition 1.4.10. 

Proof. (of

We then conclude by density, as in the proof of Proposition 1.4.3, using Lemma 3.5.2. The proof for the density in B Q c exp is similar to the one for B Qc in the proof of Proposition 1.4.3. The coercivity under three orthogonality conditions can be shown similarly.

Then, for the computation of the kernel, the proof is identical to the one of Corollary 1.4.5. With Lemma 3.5.1, we check easily that we can do the same computation simply by replacing B Qc (') by B Qc exp ('). The only dierence is at the end, when we have k' k C = 0, it implies that ' = iQ c for some 2 R, and we can not conclude that = 0, since we only have

Using Lemma 3.1.7 and 3.5.3, we check easily the implication from (ii) to (i).

Change of the coercivity norm with an orthogonality on the phase

We now focus on the proofs of Proposition 1.4.11 and Theorem 1.4.12. In these results, we add an orthogonality condition on the phase. We start with a lemma giving the coercivity result but with the original orthogonality conditions on the vortices, adding the one on the phase. Lemma 3.5.4. For ' = Q c 2 H Qc exp , if the following four orthogonality conditions are satised:

We decompose as previously for, " 1 ; " 2 ; " 3 three real-valued parameters,

and we show, as in the proof of Lemma 3.4.5, that we can nd " 1 ; " 2 ; " 3 2 R such that

and ' satises the ve orthogononality conditions of Lemma 3.5.4 (we recall that two of them are given by symmetry). Here, since we did not remove the 0-harmonics, the error is only controlled by

Now, from Lemma 3.5.4, since ' 2 H Q c exp , we have

We continue, as in the proof of Lemma 3.4.5, with j" 1 j + j" 2 j + j"

We conclude the proof of Theorem 1.4.12 by density.

Local uniqueness result

This section is devoted to the proof of Theorem 1.4.13. This proof will follow classical schemes for local uniqueness using the coercivity. Here, we will use Propositions 1.4.10 and 1.4.11, with the remark (3.5.4).

Construction of a perturbation

For a given c ~0 2 R 2 , 0 < jc ~0j 6 c 0 (c 0 dened in Theorem 1.3.1), X 2 R 2 and 2 R, we dene, thanks to (1.4.1), the travelling wave

We dene a smooth cuto function , with value

. The rst step is to dene a function such that

with Q satisfying the orthogonality conditions of Propositions 1.4.10 and 1.4.11. We start by showing that there exists a function solution of (3.6.2). We denote j:j (ce

At xed c, these two quantities characterize c ~0. We will use them as variables instead of c ~0, this decomposition being well adapted to the problem. Since both Z and jQj go to 1 at innity, we have that such a function is bounded at innity. The perturbation here is chosen additively close to the zeros of the travelling wave, and multiplicatively at innity. This seems to be a t form for the perturbation, and we have already used it in the construction of Q c . 

We will mainly use this result for = + 1, > 0 dened in Theorem 1.4.13.

Proof. We recall that such a function Z is in C 1 (R 2 ; C) by elliptic regularity.

We start with the estimation of w := Q c ¡ Z in B(0; ). Since both Z and Q c solve (TW c ), we have

From Theorem 8.8 of [15], we have that for x 2 R 2 , := B(0; ), 2 = B(0; 2),

We compute that

From [START_REF] Farina | From Ginzburg-Landau to Gross-Pitaevskii[END_REF], we have that any travelling wave of nite energy is bounded in L 1 (R 2 ) by a universal constant, i.e. jQ c j + jZ j 6 K ;

(3.6.3) therefore j1 ¡ jQ c j 2 j + jZ j (jQ c j + jZ j) 6 K for a universal constant K. Thus,

and we deduce, from Lemma 3.1.5, that

By standard elliptic arguments, we have that for every k > 2,

By Sobolev embeddings, we estimate

From (3.6.4), we have

We estimate

We check, with Theorem 1.3.1 and Lemma 3.1.

6 K, and that it also holds for any travelling wave of the form

) 6 K j j; and we estimate (by the mean value theorem) Here, the notations for the harmonics are done for Q, and are therefore centered around d c ~0;1 or d c ~0;2 . This means that = / 0 (x) = (x) ¡ 0;1 (r 1 ) with r 1 := jx ¡ d c ~0;1 j, x ¡ d c ~0;1 = r 1 e i1 2 R 2 and 0;1 being the 0-harmonic of around d c ~0;1 in B(d c ~0;1 ; R), and = / 0 (x) = (x) ¡ 0;2 (r 2 ) with r 2 := jx ¡ d c ~0;2 j in B(d c ~0;2 ; R) and 0;1 being the 0-harmonic of around d c ~0;2 . We will denote 0 (x) the quantity equal to 0;1 (r 1 ) in the right half-plane and to 0;2 (r 2 ) in the left half-plane.

Remark that d c

~0;1 2 R 2 , whereas d ~c 2 R. We recall that, taking kZ ¡ Q c k H Qc exp small enough, we have j:j (ce2; c ~0) c 2 6 1, and in particular, for c small enough, it implies that Proof. For X = (X 1 ; X 2 ); c ~0 2 R 2 , we dene, as previously, the function

We dene, to simplify the notations,

which is between the two vortices. We dene

given by 1 = j:j (ce 2 ~; c ~0) and 2 = ? (ce 2 ~; c ~0). Here, we use the notation @ c Q for @ c Q c|c=c 0. We remark from (3.6.7) and the denition of , that in , we have 

Now, from Lemma 3.6.5, satises the equation

We remark that

and by Lemmas 3.6.3 and 3.6.4,

We deduce that

Since Q 2 H Q exp by Lemma 3.6.3, with the orthogonality conditions satised (see Lemma 3.6.6), we can apply Propositions 1.4.10 and 1.4.11 with remark (3.5.4). We have

(3.6.18)

Better estimates on c ~0 ¡ ce 2

The term i(c ~0 ¡ ce 2 ~):H( ) contains a source term, because Z and Q do not satisfy the same equation (since the travelling waves Z and Q may not have the same speed at this point). We want to show the following estimates: 

This subsection is devoted to the proof of (3.6.19) and (3.6.20).

Step 1. We have the estimate (3.6.19).

We take the scalar product of (3.6.16) with c 2 @ c Q, which yields

We check here, with the L 1 estimates on and its derivatives, as well as on @ c Q (see Lemma 3.1.2 and 3.6.3), that hL Q (Q ); c 2 @ c Qi is well dened and that all the integrations by parts can be done.

We recall that H(

, and we check that, since 1 ¡ is compactly supported (in a domain with size independent of c; c ~0), with equation (3.6.11)

Symmetries of the travelling wave

We recall that for all x = (

Remark that these three quantities all have dierent symmetries. We also check that

see Lemma 3.1.6. We will not need it, since functions even in x 1 satised the orthogonality on this direction.

Decay estimates for the travelling wave

In this subsection, we recall some decay in position satised by the travelling wave. First, from subsection 3.1.1.2, we recall that for all 0 < < 1,

and from equations (2.2.13) and (2.2.15), with the fact that (TW c )(Q c ) = 0 (or see [6]),

We now give an estimate of Q c using the norm k:k ; .

Lemma 4.1.1. For all 0 < < 1, there exists c 0 (); K() > 0 such that, for all 0 < c < c 0 ();

Proof. From equation (4.1.4), we check that

Now, from section 2.2.2, outside of r ~6 3 , we can write

From equation (2.2.13), we have j c;d c j 6

K()c 1¡

(1 + r ~) , and from Lemma 2.1.3, jrV j 6

(1 + r ~)2 , therefore, integrating from innity (on axes where x 1 is constant), we check that

and with (4.2.1), we check easily that 

We deduce, with Lemma 2.1.15 (taking

It will be useful to invert the equation ¡ic@ x 2 ¡ + 2Re( ) = h in the case h 2 E ;0 1 . There, the function will be in E ;¡" 1 for all " > 0. Lemma 4.2.2. For h 2 E ;0 1 and 1 > " > 0, there exists a function 2 E ;¡" 1 , such that

and this function satises

Furthermore, all solutions of this problem in E ;¡" 1 dier by an element of Span R (i).

In particular, remark that such a solution does not necessarily go to 0 at innity on its imaginary part, but it does on its real part and for its derivatives. We believe that we could show that

but it is not necessary for the computations to come. Remark also that, for 0 < " 0 < ", E ;¡" 0 E ;¡" , and thus the function does not depend on " > 0. Also, we do not require that R R 2 Im(h) = 0 here. This proof is similar to the proof of Lemma 2.1.15, with some slightly dierent technical points.

Proof. For j 2 1; 2 , we dene the function

From Lemma 2.1.13, we have (for 0 = 2 ¡ " < 2 and = 2 + 0 2 ) that 1;j 2 C 1 (R 2 ; C), with j 1;j j + jr 1;j j 6 K(")khk ;0;1

As in the proof of Lemma 2.1.15, we dene, if x 2 > 0,

1;2 (x 1 ; y 2 )dy 2 ; and if x 2 < 0,

We have @ x1 1;2 = @ x2 2;1 and thus R ¡1 +1 1;2 (x 1 ; y 2 )dy 2 = 0 as previously. We then check similarly that

Now, we dene

and from Lemma 2.1.14, we have, for 0 = 2 ¡ " < 2, = 2 + 0 2 , 2;j ;k 2 C 0 (R 2 ; C), with j 2;j ;k j 6 K(")khk ;0;1 (1 + r ~)2¡" :

For 0 < " < 1, the decay is still enough to construct 2;j 2 C 1 (R 2 ; C) as in the proof of Lemma 2.1.15. We now diverge from the proof of Lemma 2.1.15, and we dene 2 using 2 (x 1 ; x 2 ) = 2 (¡x 1 ; x 2 ), by 2 (d c e 1 ~) = 0, and r 2 = 2;1 2;2

:

We then check that 2 2 C 0 (R 2 ; C), and by integration from innity for r 2 and integration from d c e 1 ~for 2 , that

Finally, as in the proof of Lemma 2.1.15, we check that

since both sides of the equations are still temperated distribution, are bounded and goes to 0 at innity in position. Furthermore, if ~2 E ;¡" 1 is another solution of this problem, then

and using the decays of ¡ ~2 E ;¡" 1 , we check that (with " < 1)

at innity, hence it is i for some 2 R.

Inversion of the linearized operator around Q c

We recall

We also recall that, since

Inversion of the linearized operator around a vortex

This subsection uses mainly arguments from [10]. We recall the linearized operator around a vortex:

and with

we have (where

This operator also has a resonance: L V1 (iV 1 ) = 0. We give here a way to invert L V1 on this direction.

For R > 0 a large constant, we dene We recall 

in the distribution sense admits the solution

which satises ' 1 2 C 1 (R 2 ; C) and

Remark that ' 1 = 0 in B(0; R) since = 0 in B(0; R). See [10] for more general results on the inversion of the linearized operator around V 1 .

Proof. We look for an ansatz of the form

From Lemma 2.1.2, we have rV1 V1 :e r ~= 0 (r) (r) , and therefore

This equation can be factorized in (r 2 (r) 1 0 (r)) 0 = ¡r 2 (r)(r);

and therefore a solution is

we have, by Lemma 1.2.1,

when r ! 1. Now, we compute

and with Lemma 1.2.1, we infer the equivalents of 1 0 (r) and 1 00 (r) when r ! 1.

We deduce the following small improvement of Theorem 1.2 of [10], since we removed an orthogonality condition. It is also a good rst step to understand some of the ideas of the proof of Theorem 1.5.1. Lemma 4.2.4. For h 2 L loc 2 (R 2 ; C) such that R R 2 jhj 2 (1 + r) 2+ < +1 for some > 0, and with hh; 

Similarly, hh 0 ; @ x 2 V 1 i = 0, and

by (4.2.2). From Theorem 1.2 of [10], we deduce that there exists ' 0 2 H V1 such that

We also infer the following result, that will be useful in the proof of Lemma 4.2.6.

Lemma 4.2.5. The problem

Proof. By standard elliptic estimates, we have that if such a function ' 2 H V1 exists, then ' 2 C 1 (R 2 ; C). Following the proof of Lemma 4.2.3, writing ' = V 1 and decomposing in harmonics, we check that (r 2 (r) 1 0 (r)) 0 = ¡r 2 (r)(r), with 1 2 C 1 (R + ; R) being the 0 harmonic of .

We deduce that r 2 (r)

for some K 2 2 R. By Lemma 4.2.3, this implies that 1 (r) s ¡ln(r) when r ! 1, which leads to the contradiction

Inversion of the linearized operator around Q c

We recall that r ~= min (jx ¡ d c e 1 ~j; jx + d c e 1 ~j) Lemma 4.2.6. For 0 < 0 < < 1, there exists K(; 0 ); c 0 (; 0 ); R > 0 such that, if for 0 < c < c 0 (; 0 ) and some

Proof. This proof follows closely the proof of Proposition 2.1.17. We argue by contradiction. Suppose that it does not hold. Then there exists c n ! 0,

We argue as in step 1 of the proof of Proposition 2.1.17. The functions ' n (: ¡ d cn e 1 ~) are equicontiuous and bounded, as we check with the same arguments as in Chapter 2, that, up to a subsequence, it converges to some limit 2

We check similarly that Q c n (:

) by Theorem 1.3.1 (for p = +1), and therefore satises the equation

By Lemma 4.2.5, this implies that = 0 (since 2 H V1 ). Furthermore, we have

With the two previous orthogonality conditions on , we deduce that " 1 = " 2 = 0, and thus = 0. By symmetry, the same result holds if we shift by +d cn e 1 ~instead of ¡d cn e 1 ~. Now, since

when n ! 1 (since = 0), we check, as in the proof of Proposition 2.1.17, that this implies

for any > R.

We concluded the proof of the estimation, taking and n large enough. Now, for the existence, we argue by Fredholm's alternative in 8 < :

' 2 H 0 1 (B(0; a)); Re 

) by the estimation we just showed and the boundary condition. Therefore, there exists a unique solution ' = Q c 2 H a , and it then satises 

the problem

Furthermore, this solution satises k k ; 6 K(; 0 )khk ; 0:

Proof. The proof is identical to the one of Proposition 2.1.20, using Lemma 4.2.7 instead of Lemma 2.1.19. The other dierence is that, when we have a solution in the whole space which is in H 1 , we have ' ¡ iQ c 2 E ; for some 2 R (as in the proof of Lemma 4.2.7). The consider solution is ' ¡ iQ c , as we check that L Qc (') = L Qc (' ¡ iQ c );

To complete the inversion of L Qc , we need to inverse the problem L Qc (') = i.

Lemma 4.2.9. For c > 0 small enough, there exists a function ' 2 C 2 (R 2 ; C) such that

For all " > 0, this function ' = Q c is in E ;¡" and, for c > 0 small enough (depending on "),

6 K(")c 1¡" : with Q c ; + j(; h)j 6 K(")c 1¡" :

We deduce that

For c > 0 small enough (depending on "), j(; h)j < 1/2. We therefore dene 

Then, from Lemma 4.2.6, there exists 2 R, ' = Q c 2 E ; such that

with k k ; 6 K(; 0 )khk ; 0 and jj 6 K(; 0 )(khk ; 0 + k k ; ) 6 K(; 0 )khk ; 0. From Lemma 4.2.9, L Q c (' ) = i, therefore

In that case, k k ; 6 K(; 0 )khk ; 0, where K(; 0 ) does not depend on c > 0.

Now, in the general case, we decompose for some 2 R,

We have, by symmetry,