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Sur l’existence et la non dégénérescence d’ondes progressives dans 1’équation de
Gross-Pitaevskii en dimension deux

Dans cette thése, nous nous intéressons aux ondes progressives dans 1’équation de Gross-
Pitaevskii i0u + Au = (Ju|? — 1)u en dimension 2, avec la condition a l'infini |u|(z) — 1 quand
|x] — oo. Cette équation a fait l'objet d’une étude intensive, que ce soit en physique ou en
mathématiques. Il s’agit d'un modéle pour les condensats de Bose-Einstein, et décrit entre autres
le comportement de superfluides.

Nous regardons des questions liées au programme de recherche de Jones-Roberts, notamment
sur l’existence et l'unicité d’'une onde progressive qui est un minimiseur globale de 1’énergie a
moment fixé. Ces questions ont été abordées dans des travaux précédents en utilisant des méthodes
variationnelles. On construit ici, par des méthodes perturbatives et pour des petites vitesses, une
branche d’onde progressive réguliére par rapport a la vitesse, qui est constituée de deux vortex
éloignés l'un de l'autre. Grace aux propriétés connues sur les vortex, on peut en déduire des
propriétés qualitatives satisfaisantes sur cette branche, qui sont meilleurs que ce que 'on peut
obtenir par des constructions variationnelles.

Ensuite, on s’intéresse a des propriétés de stabilité sur cette branche. On montre tout d’abord
des résultats de coercivité, en améliorant pour cela les résultats de coercivité connus sur les vortex.
On en déduit en particulier le noyau de 'opérateur linéarisé, un résultat de stabilité spectrale, ainsi
que des résultats d’unicités locales dans ’espace d’énergie. On inverse aussi I’'opérateur linéarisé
prés d’une onde progressive dans des espaces adaptés. Ces résultats sont une étape cruciale pour la
compréhension de la stabilité de la branche, et pour démontrer I'unicité du minimiseur de ’énergie.
Ces résultats peuvent aussi servir & comprendre 'interaction entre plusieurs ondes progressives
dans un méme milieu.

Mots clefs: EDP, Gross-Pitaevskii, Ondes progressives, Coercivité, Stabilité

On existence and non degeneracy of travelling waves for the two dimensional Gross-
Pitaevskii equaation

In this thesis, we focus on the study of travelling waves in the Gross-Pitaevskii equation i9,u +
Au = (|u]? — 1)u in dimension 2, with the condition at infinity |u|(z) — 1 when |z| — oco. This
equation has been studied extensively, both in physical and mathematical works. It is a model for
Bose-Einstein condensates, and describes the behaviour of superfluids.

We are interested in problems related to the research program of Jones-Roberts, in particular
about the existence and unicity of a travelling wave, that minimise the energy at fixed momentum.
These questions have been studied, in previous works, using variationnal methods. We construct
here, using perturbative methods and for small speeds, a branch of travelling waves, smooth with
respect to the speed, which behaves like two vortices far from each other. Using known properties
of the vortices, we can deduce good qualitative properties on this branch, that are better than the
ones obtained using variationnal methods.

Then, we study stability properties of this branch. First, we show coercivity results, improving
for that the known coercivity results on the vortices. In particular, we deduce the kernel of the
linearized operator, a result about spectral stability, and a local uniqueness result in the energy
space. We also are able to invert the linearized operator near a travelling wave in adapted spaces.
These results are a key step for the understanding of the stability of the branch, and to show the
unicity of the minimiser of the energy. These results are also a first step in understanding the
interaction between several travelling waves.

Keywords: PDE, Gross-Pitaevskii, Travelling waves, Coercivity, Stability
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Chapter 1

General introduction and presentation of the
results

In this chapter, we summarize the known results on travelling waves in the Gross-Pitaevskii equa-
tion in dimension 2, including the results of this thesis. After an introduction on the Gross-
Pitaevskii equation, we present, in section 1.2, previous results on this problem and on vortices.
This gives an overview of the field, but also gives theorems that will be used in the proofs of the new
results. Then, we present the main new results in sections 1.3 to 1.5. We will also give a sketch of
the proofs, and provide some context and applications. The full proofs of these results compose the
remaining chapters. Some related open problems are given at the end of this chapter, in section 1.6.

1.1 Presentation of the Gross-Pitaevskii equation
We are interested in the Gross-Pitaevskii equation in dimension 2:

10+ Au= (|u]?> — 1)uin R?
|ul(x) — las|x| — 0.

It is a physical model for Bose-Einstein condensate (see [16], [39]). It also describes the behaviour
of superfluids, as for instance a thin liquid helium film. This equation is closely related to the
Ginzburg-Landau equation and superconductivity problems. It is associated with the Ginzburg-

Landau energy
E(v)izl/ IWIQJrl/ (1—Jv[*)2
2 R2 4 R2

We are interested in the qualitative description of solutions for the Gross-Pitaevskii equation (we
refer to [4], [14], [24] for the question of long time existence). It has some particular stationnary
solutions, named vortices, that play the role of solitons. They solve the equation

() Au+ (1 - |u|*)u=0inR?
|ul(x) — las|x| — 0.

The stationnary problem (S) is in itself an interesting one, as it is a particular case of (GP).
Stationnary vortices solutions with radial symmetry (of the form V,(z) = pn(r)e'™?) have been
constructed (see [7]), and the uniqueness of these solutions (up to a translation and a shift of phase)
with degree one at infinity have been shown [38]. We are interested in several questions about (GP)
and the vortices. Can we find particular solutions of the Gross-Pitaevskii equation that behave
like multi vortices ? Are these solutions stable 7 Can we understand the long time behaviour of
solutions that are close to a multi vortex solution ?

Here, we will focus on the study of travelling waves in (GP). They are, in a sense, the most
simple type of solutions after the stationnary ones. In particular, many conjectures exist on them in
the physical litterature. We refer mainly to the series of works from Jones, Putterman and Roberts
([17], [26], [27] and references therein). In this both physical and numerical study, it is conjectured
that travelling waves can only have speed between 0 and /2 (this limit being the speed of sound
in the model). Furthermore, they predicted the existence of a particular branch of travelling waves
on the full range of possible speeds, which is a global (or at least local) minimizer of the energy
(at fixed either speed or momentum). This branch behaves, in the limit ¢ — v/2, up to a rescale,
to a solution of Kadomtsev-Petviashvili KP — I (see [5]), and in the limit ¢— 0, as two vortices, of
degree +1 and —1, at a distance of order 2/¢ from each other (see [4]). We also refer to [31] for
the construction of other travelling waves in (GP), and [29] for similar equations.

11



12 GENERAL INTRODUCTION AND PRESENTATION OF THE RESULTS

Many mathematical results have been proven in this direction. Non existence for supersonic
speeds (¢>+/2) has been rigorously justified (see [18] and [20]), and this Jones-Roberts branch has
been constructed using energy methods. We refer for instance to the partial construction of the
branch by minimizing the energy at fixed small speed in [4], or at fixed momentum, in [6]. More
recently, a method construction has been given for almost all subsonic speeds, in [2]. A main open
problem is to show that all these constructions give in fact the same branch.

These methods of construction have been extended to other but similar problems. There are
existence results on the Gross-Pitaevskii equation, but in other dimensions (see [32]), or with
different nonlinearities ([8]).

These constructions by energetic methods give solutions that locally minimize the energy, but
the conjectured structure in term of vortices in the limit ¢ — 0 remains unclear. This structure is
visible in some sense in [4], but it is not clear for instance that the constructed travelling waves
form a branch (namely, that ¢ — @Q., where Q. is the travelling wave of speed ¢, is continuous in
some sense for these constructions).

We can therefore look for another way of constructing these travelling waves, which will make
the branch structure clearer, rather than having properties on the energy of the solution. For that,
perturbative methods are more adapated than energy ones. With this method of construction,
and some known properties of vortices (in particular [10]), it allows a more precise study of this
branch, and its stabilty.

We give a few notations, that hold in all the chapters. We denote, for functions f, g€ L% (R?,C)
such that Re(fg) € L'(R?, C), the quantity

(F.):= [ e(sa),

even if f,g¢ L*(R? C). We also use the notation B(z,r) to define the closed ball in R? of center
x € R? and radius r > 0 for the Euclidean norm. We define, between two vectors X = (X1, Xa),
Y = (Y3, Ys) € C?, the quantity

X.Y :=X1Y1 4+ XoYs.

1.2 Previous results
We recall the Gross-Pitaevskii equation in dimension 2 (for u: R; x R2 — ©)
(GP)(u) :=i0u+ Au — (Ju|? — 1)u=0.
The condition at infinity for (GP) will be
lu| —1 as |z|— 4oo,

and it is associated with the Ginzburg-Landau energy

1 1
B =g [ V0P [ -2

The Gross-Pitaevskii equation can be seen as a nonlinear Schrodinger equation, with a non trivial
condition at infinity and a nonlinearity adapted to this condition. However, the condition |u| —
1 as |z| — +oo allows solutions to have a non trivial behaviour at infinity (behaving like e? for
instance), and thus the equation is not simply solved by the sum of a constant and a solution of a
nonlinear Schrédinger equation going to 0 at infinity. An exemple such solutions are vortices.

1.2.1 Vortices in Gross-Pitaevskii
1.2.1.1 Existence and decay properties
Vortices are some particular stationnary solutions of the Gross-Pitaevskii equation. They solve

() Au+(1—|u|*)u=0inR?
|ul(x) — las|z| — oo,
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and are of the form u(x) = p,(r)e’™, where n € Z*, (r,6) are the polar coordinates of x € R?, and
pn is a real-valued function. For n=+1, existence of such functions, and some of their properties,
are listed in the following result.

Lemma 1.2.1. ([7] and [25]) A vortex centered around 0, Vi(z) = p1(r)e®, verifies V1(0) =0,
E(V1) =400 and there exist constants K,k >0 such that

Vr>0,0<pi(r) <1, pi(r) ~r—o k7, p1(r) ~r—o K

1
PE) 03 40) = Oro 2 ) 0]+ 1) < K

1 1
1- |V1(l')| :2_7“2+ Or—»oo(ﬁ)a
K K
<—, |V <
|VV1| X 1+’I"’ |v ‘/1| X (1+7“)2
and
VVi(z) =i Vi) e+ O L
1(1’) =1 1($)ﬁ+ r— 00 F 9
where vt = (—x9,11), x=7re" € R2. Furthermore, similar properties holds for V_1, since

V71(IL') :V1($)

Here is a graph of pi(r) for r €0, 8].

We refer to [25] for the existence and similar properties for vortices of other degrees. Still from
[25], it is possible to compute asymptotics at all order of p,(r) for r— 0 and r — co. Furthermore,
by the invariances of (GP), we have that

{Vii(z — X)e', X eR% y€R}
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are solutions of the problem (.5).

Since pi1(r) =0 if and only if r =0, we define the center of a vortex by being the only point
where the function is 0. Remark that, up to a shift of phase, a vortex in this manifold is completely
defined by its degree (£1) and its center.

It has been shown that these particular solutions of (S) are the only ones with degree +1:

Theorem 1.2.2. ([38]) If u is a solution of Au+ (1—|u|?)u=0 in R? with

/ (1=Jul?)? < 4o
R2

and u— e — 0 at infinity, then there exists X € R? such that
u= V:tl(~ - X) .

This result will be not used in itself in the study of travelling waves in (GP). However, it shows
that the vortices have a special role in this problem.

From Lemma 1.2.1, the energy of vortices is infinite. Despite that, they will play a role in the
construction of finite energy travelling waves. Their energy is infinite because of their behaviour
at infinity (the degree is not zero), but a multi vortex solution with a sum of degrees equal to 0 is,
at least formally, of finite energy.

About vortices of degrees n > 2, few properties are known. We refer to [40] for some numerical
results.

1.2.1.2 Coercivity results on vortices of degree +1

For a vortex Vi centered at 0, we define the quadratic form, formally defined by the second
variation of the energy E around Vii:

Brale)i= [ Vel = (1= [Var Pl +2Re(Va),

for functions ¢ € Hy,, the associated energy space:
Hui= {0 € Hbe(B2,C), [ [Vl + (1= Vaa ol + ReX(Varg) < o0 .
R
Remark by Lemma 1.2.1 that 1 — [V4]?> 0.
Theorem 1.2.3. (Theorem 1.1 of [10]) For p € Hy,,,
BVil(cp) 20
and if By, ,(p) =0, then
pe SpanR(é'leil, (9I2V:|:1).

We will use this result, but also elements of its proof (in [10]) in the proofs of the new results.
In summary, vortices of degree +1 are well understood, despite some difficulties. They have infinite
energy, slow decays in position, and a weak coercivity result. This will make the construction by

perturbative method difficult, but allow a rich dynamic. We refer to [41] (in particular, Corollary
3.3) and [37] for more related coercivity or stability results.

1.2.2 Travelling waves in Gross-Pitaevskii
Travelling wave solutions of (GP), i.e. solutions of the form

u(t, ) =v(x1, x2 + ct)
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with ¢ € R (the equation is invariant by rotation, we therefore choose, without loss of generality,
that the travelling wave moves in the direction —€s), solve the equation

0=(TW,)(v) :=—icOpv — Av— (1 — |[v]?)v.

1.2.2.1 Momentum and range of possible speeds

As in similar physical problems, we want to define the momentum of such a solution, but it is
not easy since a travelling wave does not go at 0 at infinity. We refer to [32] for a definition in
dimension n > 3.

Theorem 1.2.4. ([8]) A travelling wave with finite energy converges to a constant at infinity in
position. Up to a shift of phase, we can therefore suppose that a travelling wave of finite energy
solves the problem

—icpv — Av — (1 = [v]?)v=0inR?
v(xz) —las|x| — 0.

rwh
Then, the quantity
P(v):=(iVuv,v—1)
is well defined, and is the momentum of the solution. Furthermore, for ¢ € H'(R2, C),

(104,00, 0 — 1) = —(ith, Oy, v).

Remark that P(v) € R2, and we denote Pi(v) and Py(v) its two components. We now focus
on the possible speeds of a travelling wave. It has been first conjectured in physics, then shown
rigorously, that there are no travelling waves at sonic or supersonic speed:

Theorem 1.2.5. ([18] and [20]) If |c| > V2, the only solution with finite energy of (TW}) is
the constant 1.

In (GP), up to the physical rescaling, V/2 is the speed of sound. It is fully expected that all the
speeds in ]0, V2 [ are reached by a travelling wave. We now give some precise existence results.

1.2.2.2 Existence results for travelling waves

Travelling waves have been constructed using energy methods. The idea is to look for a minimizer of
the energy at fixed momentum and using a mountain pass argument. Such constructions have been
done in different regimes. First, for small speeds, with the apparition of a two vortices structure.

Theorem 1.2.6. ([4]) There exists some constant co >0 such that, for 0 <c<cg, there exists a
non constant solution v of (TWE) with finite energy. Moreover, there exists Ao, A1 >0 such that

2r|loge| + Ao < E(v) < 2m|loge| + Aj.

This function v is smooth, and there exists 0 < &1 <ea <1, p € [c™°, ¢?], exactly two points aq,
as € R? such that

p@I=1/2 on RAU Blai,n),
deg(a;) = (—1)’
and

cl|lar — ag| — 2|+ |a1,1 — az,1] = 0c—o(1).

We see that the solution cancels only in two regions, separated by a distance of order 2 /¢, and
the degrees are +1. This is the only construction by energy method where this structure has been
shown.
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Another way to construct solutions of (TW}) is to fix the momentum, and minimize locally
the energy. This can be done for any momentum Ps(v) > 0. Remark that large momentum yields
small speeds in dimension 2, and small momentum speeds close to /2 (still in dimension 2).

Theorem 1.2.7. ([6]) Let p>0. There exists a non constant finite energy solution v, to (TW})
for a speed c=c(p), such that Pi(vp) =0, Pa(vp) =p. This function is solution to the minimization
problem

E(vy) =inf{E(v),v e W(R), Py(vp) =0, Py(v) = p},
where W(R?) = {1} + V(R?) and

V(R?) = {v:R?~ C, Vv, Re(v) € LA(R?),Im(v) € LY(R?), VRe(v) € LY3(R?)}.

Here, the speed appears as a Lagrange multiplier. The method of construction used here has
also been improved and extended for other nonlinearities in [8]. There, they show in addition some
precompactness and orbital stability results. We state here the results in the case of the Gross-
Pitaevskii equation in dimension 2.

Theorem 1.2.8. ([8]) For ¢>0, let

Emin(Q) = inf{E('(/J)’ |'(/]| —-1le L2(R2)7 Vi€ L2(R2)7 P2(¢) = Q}-
Then:

(i) The function Enin is concave, increasing on [0,00[, Emin(q) < V2q for any ¢ =0, the right
derivative of Emin at 0 is V2, Enin(q) — 00 and E’%MHO as q— 00.

(ii) Let go = inf {q > 0, Enin(q) < \/§q} For any q > qo, all sequences (Pn)n>1 C {1,
|| — 1€ L3(R?), Vy € LA(R?)} satisfying Pa(n) — q and E(1)y,) — Ewmin(q) are precompact for the
semi distance do(t)1, 12) = [|[Vh1 — Vo p2re) + [[|901] = [¢2|l|L2(r2) (modulo translations).

The set Sy={1, || — 1€ L*(R?), Ve € L*(R?), Px(¢)) = ¢, E(¢)) = Emin(q)} is not empty and is
orbitally stable (for the semi distance dy by the flow associated to i0;® + AP — (|®]2 - 1)®=0)

(111) Any g € Sq is a travelling wave for the Gross-Pitaevskii equation, of speed c(iq) €
[T Ermin(q), d”Fmin(q)], where we denote by d~ and dt the left and right deriatives. We have
c(1q) =0 as ¢g— 0.

More recently, another construction has been done for almost all speeds in ]0, V2 [

Theorem 1.2.9. ([2]) There exists a subset S C ]0, \/5[ of full measure such that, for any c€ S,
there exists a non constant finite energy solution v. of (TW}).
Furthermore, for any co € ]O, \/5[ , there exists K(co) >0 such that

0<(E —cP2)(ve) < K(co)
forallce S, ¢z cy.

It is still an open problem to show that all of these constructions yield the same solution.

1.2.2.3 Qualitative properties of travelling waves
We present here some qualitative properties of travelling waves, assuming the existence. In partic-

ular, their asymptotics development at infinity in position have been computed.

Theorem 1.2.10. ([13]) For Q. a solution of (TW}) with finite energy,

2
1QellLmz) <A/ 1+
Theorem 1.2.11. ([21], Theorems 1 and 2, Propositions 5 and 7) For Q). a solution of
(TW}) with finite energy, writing Qu(z) =|Q.|(z)e®®, for e R?, x=Ro, R>0, 0 =(01,02) €3,
where B! is the unit circle,
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R(QC(RJ) - 1): (1 52(1:'—06220%) JFO?%—MXJ(U;
T2 2
1 203 .
R2(1—|Qc>)(Ro) = aec — 620260 5 |+ 0%—oo(1)
(R (e
in CY($1), and
RH(R(T) = (1 c?fi2a§) JFO(}Z%—»oo(l)
T2 2

in C?($1), with ae:=

Here, 0% (1) denotes a quantity going to 0 when R— oo for a fixed ¢> 0.

This thesis aims to improve qualitative results on the branch in the limit ¢ — 0. We want to
improve the smoothness of the branch with respect to the speed, and we want to study the structure
in term of vortices. In particular, in none of the three constructed branch is it proven that the
branch is even continuous with respect to the speed, and the vortices structure can be made clearer.

1.3 Smooth branch of travelling waves for small speed

The result presented in this section have been submitted for publication as a paper in collaboration
with David Chiron. We refer to Theorem 1.3.1 for the main result. A sketch of its proof is given
in subsection 1.3.2. Chapter 2 is devoted to the full proof of this theorem.

1.3.1 Construction of the branch

The main result of this subsection is the construction of a branch of solution by perturbation of
the product of two vortices for any small speed ¢ > 0, and the fact that this branch of solution is
C' with respect to the speed.

Theorem 1.3.1. There exists co >0 a small constant such that, for any 0 <c<cg, there exists a
solution of (TW.) of the form
Qe=Vi(. —dee1)V_i(. +de€1) + Te a,,

1+o0c-0(1)
C

where d.= is a continuous function of c. This solution has finite energy (F(Q.) < +00)

and Q.— 1 when |z|— +o0.
Furthermore, for all +00>p>2, there exists co(p) >0 such that if ¢ < co(p), for the norm

IB]lx, = Bl Lrpg2) + I VAl o1 (r2)
and the space X,:={ f € LP(R?),V f€LP~ (R?)}, one has

ITe.dcllx, = 0c—o(1).
In addition,
¢ Qe —1€C(J0, co(p)[, Xp),

with the estimate (for v(c) :HOZ—;O(U

104G+ (VAL ~ dE8)V-r (4 431 = 0co( 5 )
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<
"
K

®

+4.8°
b-o8’

]
N

In this representation of @, the lines around +d.€; represent equivalues for |Q.|.

Here, we use an implicit function argument to construct the solution, using technics developped
in [11] or [29] for instance, displaying a clear understanding of the shape of the solution (see Lemma
2.2.8 for instance). We show in addition that the constructed branch is C'!, which is, to the best
of our knowledge, the first result of this kind in dimension larger than one.

The formal method for this kind of construction is well known. Namely, it is a Lyapunov-
Schmidt reduction in weighed L spaces. It has been done for instance rigorously in a bounded
domain for the Ginzburg Landau equation ([11]). One of the difficulties here is to find the right func-
tional setting to construct the C! branch, in particular with regards to the transport term icd,.,v.
On the contrary of what is claimed in [29], the transport term can not be treated perturbatively.
This is why we use another functional setting than [29] or [31] (see Remark 2.1.11 for more details)

1.3.2 Sketch of the proof of Theorem 1.3.1

As mentioned above, we look for an ansatz which is a perturbation of two vortices. Take d =
Oc_,o(%) a large free parameter, 7 a smooth cutoff function such that =1 in B(+dé, 1) and 0
outside of B(+déi,2), and an ansatz of the form

Qcl@) = n(@)V (2)(1 +¥(2)) + (1 = n(2))V (x)e* ),

with V(z) =Vi(z — dé;)V_1(xz + dé;). Writing the perturbation as an exponential is well adapted
to the problem. This can not be done near +dé;, since there, the product of the vortices V' has
zeros. This explains the shape of the ansatz, it is additive close to the center of the vortices, and
exponential far from them. A similar decomposition was used in [11] and [29]. We look for a
perturbation ¥ =W, +i¥y €&, 5 4, small in the norm of this space, that is, for 0 <o <1,

[Wleoa = [IV8llezrcay + 1T 70 Lo iz T 17TV Lo (22}
+ |‘f0‘1’2|‘Lw({f>2}) + ||7:1+0V‘1’2||Lw({f22}) + |‘7:2+UV2‘I’HLOO({;>2})>

where 7 =min (|x — dé1], |z 4+ d€1|) is the minimum to the distance to the two vortices. At the end
of the proof, we will have that || V| .4 < K(0,0')c' =7 for any 0 < 0 < ¢’ < 1. We also suppose
that the ansatz has two symmetries:

Vo = (21, 72) € R%, U (21, 22) = U (21, —2) = U(—21, 72).

For now, the parameter d is free, it will help to cancel a Lagrange multiplier later on.
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The equation on the perturbation is then written as (see Lemma 2.1.7)
nL(®)+ (1 —n)VL (V) + E —icd,,V + V(1 —n)(=VU.VU + |V[2S(T)) + R(¥),

where =V,

(W) = —AW— QV—VV.V\I! + 2|V PRe() — icdy, T,

L(®)=-A®—(1-|V[)®+2Re(VP)V —ic),,P

are the linearized operator around V' (with the exponential or additive perturbation respectively),
E—icd,V=—AV —(1—|V[)V —icd,,V=TW.V) is the small source term, and S(¥), R(¥)
are nonlinear terms. The goal is to do a Lyapunov-Schmidt reduction to construct the function ¥,
and reduce the problem to a one dimensional one, on d € R.

For that, the first step, as for general method of construction by a perturbative method, is to
invert the linearized operator L (or equivalently L’) around V in the space &, » 4 (from another
weighed L space Eix 07,4, see subsection 2.1.3). In the limit ¢ — 0 (thus d — c0), the function
V =Vi(. — dé1)V_1(. +dé;) will behave like two decoupled vortices. The linearized operator around
a single vortex is well understood (see Theorem 1.2.3), and has two zeros. We therefore expect
four directions that might pose difficulties for the inversion (coming from the two translations for
each vortices). With the two symmetries, there is only one direction left, and thus we will invert
the operator with one orthogonality condition. This direction is 04V (z) = — 04, Vi(z — dé1) V_1(x +
dé1) + 0z, V_1(x — dé1)Vi(x + déy), and will be dealt with by choosing the right value for the
parameter d later on.

For the inversion, we start with an a priori estimate on the problem

L(®)=Vh.

We want to show that if ® = V¥ and h satisfy this equation, with an orthogonality condition
on @, then for small speeds, ||V« s.04 < K(0, 0')||h|lss,07.q (the norm ||.|[s«,07,q is & weighed L
norm, as |.||«,,d, see subsection 2.1.3, and 0 < o <o’ < 1). This is done by contradiction. Suppose
that it does not hold. Then, there exist ¢, — 0 (thus d,, — o), [|¥y|l+,0,a =1, &, = VT, and
[lAnlsx,07,a, — O such that L(®,) = Vh,. Then, following the vortices (by a translation and up
to a subsequence, using standards compactness arguments), ®,,(. F d,é1) — ® with Ly, (®) =0,
thus ® =0 by the orthogonality condition and the symmetries. This implies that locally near the
vortices, @, (. Fdé1) — 0 when n— oco. Then, to show that || ¥y« 4, — 0 when n— oo (and thus
contradicting ||¥,|/«,»,4, = 1), this becomes an elliptic estimate problem. We want to use the
equation L(®,) = Vh,, the fact that h, is small (||hn]|«x,07,4, — 0 when n — c0), and that ®@,, is
small locally near the vortices to show that ®,, is small in the whole space. We use for that the
Gross-Pitaevskii kernels, that have been studied in [19]. Writing ® =V ¥, the equation L(®)=Vh
becomes, at infinity in position and at first order,

—icO,, U — AU+ 2Re(T) = h.

The Gross-Pitaevskii kernels are used to invert this problem, writing ¥ as a convolution using h,
and estimates on these convolution kernels (done in [19]) are enough to show the smallness of ®
(through ¥) given the smallnes of & in the right norms.

Now, to show the existence of a solution ® to the problem L(®) = Vh, we use the Fredholm
alternative. To add the required compactness to apply it, we look at the same equation in a bounded
domain (large compared to the distance between the vortices) with a Dirichlet boundary condition.
Here, the existence is thus a consequence of another a priori estimate, that will be a consequence
of the previous one (see Lemma 2.1.19). Then, we let the size of the domain goes to infinity, and
that provide the full inversion theorem for L (see Proposition 2.1.20), with one local orthogonality
condition on 9,V .

The next difficulty for the existence of the solution are the nonlinear and source terms. We will
use a fixed point theorem, by looking at the operator

(nL()+ (@ =) VL'(/ V) TG (=F(/V))): Exod— Enods
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where F' contains the source term and nonlinear terms, and ITJ is a projector encoding the ortho-
gonality condition, as we have yet to deal with this other problem. This operator is a contraction
(for small perturbations, in order to kill the nonlinearity), and thus we can, at this point, construct
a solution ®. 4=V ¥, 4 to the problem

(TWe)(Qe) = Ale, d) Za,

where Zg is a localized version of 94V, and A(c,d) € R is a Lagrange multiplier (coming from the
orthogonality condition). We thus look for a good choice of d € R to cancel it (with d= OCHO(%)).
This is now only a one dimensional problem. For that, an estimate shows that

e, d) = w@ - c) 107 (2.

At this point, we do not know if the OZ_,((c?>~7) is continuous with respect to ¢ and d. We want
to apply the intermediate value theorem to cancel A(c, d). For that, we need to show that the
functions ¢, d+— ®. 4, with ®. 4 the perturbation constructed by the Lyapunov-Schmidt reduction
described above, are continuous functions.

Since our goal is to show the differentiability of the branch, we will show a stronger result, that
is that @, 4 is a C! function of ¢ and d in the weighed L spaces. Leaving some technical details
aside, the main ingredient is the implicit function theorem. We look at the functional

H(®,c,d):=(nL(.)+ 1 —n) VL'(./V)) N~z (F(®/V))) + &,
for which H(®. 4,c,d)=0. We compute its differential with respect to its first variable
doH(®,c,d)() = (nL(.) + (L= n)VL'(./V)) ' (Uz(=deF(/V))) + ¢,

and thus, if ®. 4 is small (which would make small the term dyF' (¢ / V), since it is the differential of
terms at least quadratic, and thus still containing ®. q), we can apply the implicit function theorem
(deH (P, ¢, d) is then a perturbation of the identity). This will follow from smallness and decays
estimates on ®. 4 and its derivatives in position (for general values of ¢ and d, without requiring
that A(c,d) =0).

We can now finally finish the construction of the travelling wave. We fix d. a value such that
A(e,d.) =0 (several can exist at this point), and now (TW.)(Q.) =0. We check that Q. has finite
energy, and from the smallness of ¥, 4in &, » 4, we give some estimates on (). and its derivatives
in position (see Lemma 2.2.8).

The remaining difficulty to show that the branch ¢+ Q. is C'! with respect to the speed, is to
show that ¢c— d. is a C" function. Unfortunately, this is quite convoluted. We will use the implicit
function theorem on the equation A(c, d) =0 that defined d., and for that, we have to show that

da\(c, d.) # 0. We recall that A(c, d) = 71(% —¢) + 0Z_o(c*9), and from the implicit function

theorem on W, 4, we have that [|[0g¥, gll«.o.a= 0%} ~7") (since || ¥, gllv.0.a=0L%(c~7")). In
particular, we check that dg\(c,d) = —mc? +0Z_,o(c?~7) for any o >0, and thus we cannot conclude
that 94\ # 0 for ¢ > 0 small enough a priori.

There is a moral reason for this. When ¢ moves, the vortices move, and thus the error term ®.. 4,
is, at least at first order and near the vortices, translated. Therefore, 9;®. 4. will be of the same size
as @, 4. (that is Og;o(cl_"/)), but, if we remove the translation, by looking at 04®c g, — 0z, Pc,q.
near the vortex +1 for instance, we could expect a better estimate. For that term, we would only
see the change of influence of the second vortex, which is already far away. We can check that the
difficulty when computing 94 is indeed local, near the vortices, is coming from 94®.,q_, and that
the translation part cancels out exactly.

This is a simple idea, but it yields a fair amount of technical difficulties. We have to recast the
way to choose d., change the norms and the spaces. In Proposition 2.3.5, we compute this gain, and
we show that ||04®. 4 — Oz, Pe.al| = Oc—o(c!T°) in L near the vortex +1, for some € > 0. We in fact
have a better but more technical estimate. Using this estimate in the equation on dz\, we find that
daX(c,d) = —7c® 4+ Op—o(c?>T¢) for some € > 0. This ends the sketch of the proof of Theorem 1.3.1.
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1.4 Coercivity results on the branch and applications

The results presented in this section have been submitted for publication as a paper in collaboration
with David Chiron.

1.4.1 Some particular values for the branch

With the solution Q. constructed in Theorem 1.3.1, we can construct travelling waves of any small
speed, i.e. solutions of

(TWz)(v):=iéVv—Av—(1—|v[?)v
for any @€ R? of small modulus. For &= |¢|e?%~7/2) ¢ R2, |¢| < ¢y, we have that
Qz:= Qg1 0 Ry, (1.4.1)
is a solution of (TWg), with R, being the rotation of angle o and Q¢ defined in Theorem 1.3.1.

Furthermore, the equation is invariant by translation and by changing the phase. Thus, we have
a family of solutions of (GP) depending on five real parameters, ¢ € R?, |¢| <cp, X €R? and v € R:
Q. — X — Bt)e”.

We remark that, for a vortex of degree £1, the family of solutions has three parameters (the two
translations and the phase): Vii(. — X)e? is solution of (GP) for X € R? v € R. In particular,
between a travelling wave and the two vortices that compose it, we lose a parameter (since the phase
is global). This is one of the difficulty that will appear when we study the stability of this branch.

First, we give additional results on this branch of travelling waves: we will study the position of
its zeros, its energy and momentum, as well as some particular values appearing in the linearization.
The (additive) linearized operator around Q. is

Lo (@) :=—Ap—icdup— (1—|Qc?) o+ 2Re(Qe) Q.

We want to define and use four particular directions for the linearized operator around ., which
are

a.’L'lQCa aﬁszCa

related to the translations (i.e. related to the parameter X € R? in the family of travelling waves),
and

acha accha

related to the variation of speed (i.e. related to the parameter ¢ € R?), if we change respectively
its modulus or its direction. The functions 0y, Q., 0x,Q. and 0.Q). are defined in Theorem 1.3.1,
and we will show that

acLQc(x) = 8&(@50 Rfa) la=0= 7$L-VQc(x);

with 21 = (—x9, 1) (see Lemma 3.1.6). We infer the following properties.

Proposition 1.4.1. There exists co >0 such that, for 0<c<cg, the momentum ﬁ’(Qc) =(P1(Q.),
Py(Q.)) of Q. from Theorem 1.3.1, defined by

PU(Qe) =512, Qe Qe 1),

Po(Qe) =5 (i02,Qe, Qe 1),
verifies ¢ P(Q.) € C1(]0, co, R?),
PI(QC) :acPI(QC) =0,

_ 27 + 0c—0(1)
c

PQ(QC)
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and

0:.P2(Q.) :M_

c

Furthermore, the energy satisfies c— E(Q.) € CY(]0, co[, R), and

E(Qu) = (27 + ocﬁ0(1))1n<l).

c
Additionally, Re(Lg (A)A) € LY(R% R) for A€ {(911626, 02,Q¢, 0.Q., 8CLQC} , and

<LQc(aCElQC)’ aI1626> = <LQC(812QC)a 8I2Q6> = 07

(Lo.(0:Qc), 0:Qc) = .Po(Q.) = —27+0eol)

2

<LQc(acch)a alec> = CP2(QC) =2+ Oc—»O(l)
and

acE(Qc) = CaCPQ(Qc) :_27T++C"O(1)

Finally, the function Q. has exactly two zeros. Their positions are +d.\, with

|dc - &c| = OCHO(1)7
where d. is defined in Theorem 1.5.1.

The momentum has a generalized definition for finite energy functions (see [32] in 3d and [8]).
For travelling waves going to 1 at infinity, it is equal to the quantity defined in Proposition 1.4.1.

The equality (Lg (0:Q¢), 0:Qc) = 0:P2(Q.) is a general property for Hamiltonian system, see
[23]. The equality 0.E(Q.) = c0.Pa2(Q.) has been conjectured and formally shown in [26], provided
we have a smooth branch ¢ — ., which is precisely shown in Theorem 1.3.1. We remark that
the energy E(Q.) is of same order as the energy of the travelling waves constructed in [4], which
also exhibit two vortices at distance of order % We believe that both construction give the same
branch, and that this branch minimises globally the energy at fixed momentum. However, we were
not able to show even a local minimisation result of the energy for Q. defined in Theorem 1.3.1.

In the limit ¢ — 0, the four directions (9z,Q¢, 92,Q¢, c20.Q., cd..Q.) are going to zeros of the
quadratic form (while being of size of order one), and we see here the splitting of this kernel for
small values of ¢. In particular, two directions give zero (9,,Q. and 0,,Q.), one becomes positive
(0,1Q¢) and one negative (0.Q.).

1.4.2 Coercivity results

One of the main ideas is to reduce the problem of the coercivity of a travelling wave to the coercivity
of vortices. We will first state such a result for vortices (Proposition 1.4.2) before the results on
the travelling waves (see in particular Theorem 1.4.4).

1.4.2.1 Coercivity in the case of one vortex

A coercivity result for one vortex of degree +1 is already known, see [10], and in particular equation
(2.42) there. We consider both vortices of degrees +1 and —1 here at the same time, since V; =V_;.
Here, we present a slight variation of the results in [10] that will be useful for the coercivity of the
travelling waves. We recall from [10] the quadratic form around Vi:

Bule)= [ [VeP=(1= PP+ 2e(Vie),

for functions in the energy space

HVl:{(‘DEHEOC(R%C)’H('D'%{“:A{JV@P"’G—|V1|2)|<,0|2+9‘ie2(\/1<p)<+oo},
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As the family of vortices has three parameters, we expect a coercivity result under three ortho-
gonality conditions. The three associated directions are 0,,V1, 0.,V (for the translations) and iV}
(for the phase).

Proposition 1.4.2. There exist K > 0, R > 5, such that, if the following three orthogonality
conditions are satisfied for ¢ =Viv € C(R*\{0},C),

/ Re(0,, VA ViD) = / Re(0,, Vi Vi) = / Jm(v) =0,
then B(0,R) B(0,R) B(0,R)\B(0,R/2)

2
Bvl(so)>K</ IVsD|2+|sD|2+/ va|2|V1|2+9%e2(¢)|‘/1|4+2|1¢—2|>-
B(0,10) R2\B(0,5) r?n?(r)

The same result holds if we replace Vi by V_;. We remark that the coercivity norm is not
|-l ey, but is weaker (the decay in position is stronger), and this is due to the fact that Vi ¢ Hy;.
That is why this result is stated for compactly supported function. The fact that the support of
© avoids 0 is technical and can be removed by density (see Lemma 3.2.4).

Proposition 1.4.2 is shown in subsection 3.3.2. The proofs there are mostly slight variations or
improvements of proofs given in [10].
1.4.2.2 Coercivity and kernel in the energy space

The main part of this section consists of coercivity results for the family of travelling waves
constructed in Theorem 1.3.1. We will show it on Q. defined in Theorem 1.3.1, and with (1.4.1),
it extends to all speed values ¢ of small norm. We recall the linearized operator around Q.:

Lo.(p)=—A¢—iclup — (1-]Qcl*) o +2Re(Qep) Qe
The natural associated energy space is
HQc = {90 € HllOC(R2)> ”‘JDHHQC < +OO}’

where

ol i= [ IVl + 1= 1Quof + e @)

First, there are difficulties in the definition of the quadratic form for ¢ € Hg_, because of the
transport term. A natural definition for the associated quadratic form for ¢ € Hg, could be

A{JVMQ —(1=1Qc?)|¢|? +2Re*(Qep) — Re(icDay0p), (1.4.2)

unfortunately the last term is not well defined for ¢ € Hg,, because we lack a control on Im(Q.)
in L*(R?) in ||.|| ., see [32]. We can resolve this issue by decomposing this term and doing an
integration by parts, but the proof of the integration by parts can not be done if we only suppose
@ € Hq, (see section 3.2 for more details). We therefore define the quadratic form with the
integration by parts already done. Take a smooth cutoff function n such that n(xz) =0 on B(+d.€1,
1), n(x)=1 on ]RQ\B(iJcé’l, 2), where +d,é; are the zeros of Q.. We define, for ¢ = Q1) € Hg,,

Bae) == [ [VeP=(1-1Q:Plel+2%e(Q)
= of -nelionge) —c [ nne(i2,Q.20 1P
R?2 R?2
+ 2c/ n%e¢3m(6x2z/))|Qc|2+c/ OpynReIm | Q|2
R?2 R?2
T A IRy Im 0., Q. ) (1.4.3)

See subsection 3.2.3 for the details of the computation. For functions ¢ € H'(IR?) for instance,
both quadratic forms (1.4.2) and (1.4.3) are well defined and are equal (see Lemma 3.4.7). We
will show that By, is well defined for ¢ € Hg, (see Lemma 3.2.3), and that for A € {0,,Qc, 0:,Qc,

0.Qc, acch}a BQC(A) = <LQC(A)> A>-
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From Proposition 1.4.1, we know that (. has only two zeros. We will write the quadratic
form Bg, around the zeros of Q. (for a function ¢ = Q. € Hg,) as the quadratic form for one
vortex (computed in Proposition 1.4.2), up to some small error. As we want to avoid to add an
orthogonality on the phase, we change the coercivity norm to a weaker semi-norm, that avoids i@,
the direction connected to the shift of phase.

We will therefore infer a coercivity result under four orthogonality conditions near the zeros of
Q. (two for each zero). Then, we shall show that far from the zeros of Q., the coercivity holds,
without any additional orthogonality conditions.

Proposition 1.4.3. There exists co, R >0 such that, for 0 <c<co, if one defines Viq to be the
vortices centered around +d.€1 (d. is defined in Proposition 1.4.1), there exist K >0 such that for
p=Qp e Hg,, 0<c<cy, if the four orthogonality conditions

L(&Caﬁ)%e(%%‘@)/B(&CGHLR)%(&MW)0,

[B(&caﬂ)%e(&lvlvl@A(&Caﬁ)iﬁe(azzvlm)o

are satisfied, then, for

liolfei= | [PwPIQcl + Rl Qul,

the following coercivity result holds:
Ba.(p)= K| ¢l2

We will check that ||¢]|¢ is well defined for ¢ € Hg, (see section 3.2). Proposition 1.4.3 is proven
in subsection 3.3.4.

We point out that ¢ = Qcp — [[¢]|c is not a norm but a seminorm since [,V [*Qc[* +
Re2(1)|Qc|* =0 implies only that ¢ =\iQ, for some A € R, and i Q. is the direction connected to
the shift of phase.

Now, we want to change the orthogonality conditions in Proposition 1.4.3 to quantities linked

to the parameters ¢ and X of the travelling waves, that is 0y, Qc, 0z,Q¢, 0cQc and 9.1 Q.. We can
show that for ¢ = Q) € Hg,, for instance

[B(cha,mm(mﬁm)

but such an estimate might not hold for Re [ B(

<Klele,

Elca,R)uB(—Elca,R)aleCch (because of the lack of

control on Jm(%) in L%(IR?) in the coercivity norm ||.|¢). It is therefore difficult to have a local
orthogonality condition directly on 0,,Q. for instance. B

To solve this issue, we shall use the harmonic decomposition around +d.€;. For the constructed
travelling wave ., two distances play a particular role, they are d. (defined in Theorem 1.3.1) and

d. (defined in Proposition 1.4.1 and is connected to the position of the zeros of @.). In particular,
we define the following polar coordinates for z € R?:

re’: =z cR?,
ryqefE =g — (+d.)é1 € R2,
fileiéil = — (:l:d;)e_'l cR2
We will also use 7:=min (r1,7_1) and 7 :=min (#,7_1). For a function 1 such that Q. € HL.(IR?)

and j € Z, we define its j — harmonic around +d.€; by the radial function around +d,.é;:

) 1 [27 _~ .
, £l o ~ i041) ,—1j0+1
1/)] 1(’]"i1) = 27{'/0 Q/J(T:tle + ) (& Jv+ de:tl'
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Summing over the Fourier modes leads to
1/)(1.) _ Z 1/)j’i1(7::tl)€ijéil~
JEZ
and we define, to simplify the notations later on, the function ¥#°, by

PF0(x) = () — O (F)
in the right half-plane, and
VP0(w) = () — ()
in the left half-plane. This notation will only be used far from the line {xl = O}. We now state the

main coercivity result.

Theorem 1.4.4. There exist co, K, Bp > 0 such that, for R >0 defined in Proposition 1.4.3, for
any 0< B < Bo, there exists co(5), K(B) >0 such that, for c<co(B), if o= Q) € Hg, satisfies the
following three orthogonality conditions:

i)%e/ ~ - achch#O:%e/ ~ ) az2QcW:0
B(d.&1,R)UB(—d.&1,R) B(d.50, R)UB(— 4.5, R)

and
Re / 0:QQA7° =0,
B(d.e1,R)UB(—d.&1,R)
then,
Bq.(¢) = K(B)+P| o],
with

lolle= [ V0 PIQ +Re(w)| el

If o= QY also satisfies the fourth orthogonality condition (with 0<c<cp)

iﬁe/ ~ - acL QchdﬂéO = 05
B(d.el,R)UB(—d.€1,R)
then

Ba.(¢) =2 K|le].

Theorem 1.4.4 shows that under four orthogonality conditions, we have a coercivity result
in a weaker norm ||.||c, instead of ||.||g,_ with a constant independent of ¢, and with only three

orthogonality conditions, we have the coercivity but the constant is a OCBHO(CQJFB ). This is because,
of the four particular directions of the linearized operator, 0y, Q¢, 0z,Q. are in its kernel, 0.Q. is
a small negative direction, and 0..Q. is a small positive direction (see Proposition 1.4.1). About
the orthogonality conditions, we remark that, for ¢ = Q) € Hg,,

is close to

%8/ alecW
B(d.eh, R)UB(—d.el,R)

(we have %QIB(&Ca.R)aleCQCwOJ = 0c0(1)||¢| g, for instance), but the first quantity can be

controlled by ||¢]|c, and the second can not be.
Theorem 1.4.4 is a consequence of Proposition 1.4.3, and is shown in section 3.4. From this
result, we can also deduce the kernel of the linearized operator in Hq,.

Corollary 1.4.5. There exists co > 0 such that, for 0 <c<cy, Q. defined in Theorem 1.3.1, for
p € Hg,, the following properties are equivalent:

i. Lo.(¢)=0in H Y(R?), that is, Vo* € H(R?),

[ BT TE) — (1= |Qul2)He(5) + 2 Ko Q) Re Q") — (i) =0
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. pe Span]R(axl QC; aIQQC) .

This corollary is proven in subsection 3.4.5. This nondegeneracy result is, to our knowledge,
the first one on this type of model. It is a building block in the analysis of the dynamical stability
of the travelling wave and the construction of multi-travelling wave. Here, the travelling wave is
not radial, nor has a simple profile, which means that we can not use classical technics for radial
ground states for instance (see [43]).

1.4.2.3 Spectral stability in H*(IR?)

In this subsection, we give some result on the spectrum of Lg_: H*(R?) — L*(R?). In particular, we
are interested in negative eigenvalues of the linearized operator. We can show that H'(R?) C Hy,,
and prove the following corollary of Theorem 1.4.4.

Corollary 1.4.6. There exists co > 0 such that, for 0 < c < ¢, Q. defined in Theorem 1.5.1, if
© € HY(IR?) satisfies

(0,102,Qc) =0,
then
Bq.(¢) 20.

We can show that Lo (0.Q.) =i0,,Q. € L*(R?), and thus ¢id,,Q. € LY(R?) for p € H(R?).
This result shows that we expect only one negative direction for the linearized operator, and it
should also hold in Hg,. For ¢ € H!(R?), we have that Bg, () is equal to the expression (1.4.2).

Now, we define & to be the collection of subspaces S C H*(IR?) such that B () <0 for all
p#0,p €S, and we define

n~(Lg,) :=max {dimS,S € ®}.

Proposition 1.4.7. There exists co >0 such that, for 0 <c<cg, for Q. defined in Theorem 1.5.1,
n_(LQC) =1.
Furthermore, Lo,: H*(R?) — L*(R?) has ezactly one negative eigenvalue with eigenvector in

L¥(R?).

With this result, Theorem 1.3.1 and Proposition 1.4.1, we have met all the conditions to show
the spectral stability of the travelling wave:

Theorem 1.4.8. (Theorem 11.8 (i) of [30]) For 0<c;<cy and c— U, a C! branch of solutions
of (TW.)(U:)=0 on ]eci, co with finite energy, for c. €]ci, ca], under the following conditions:

i. for all ¢ € |e, cof, Re(U, — 1) € HY(R?), Im(VU,) € L}(R?), |U.| — 1 at infinity and
Uellor(rzy < +o00
i. n (Lo, )<1
iti. 0cPo(Ue)|c=c, <0,
then U., is spectrally stable. That is, it is not an exponentially unstable solution of the linearized

equation in H'(R?, C).

Corollary 1.4.9. There exists cg > 0 such that, for any 0 < ¢ < cq, the function Q. defined in
Theorem 1.3.1 is spectrally stable in the sense of Theorem 1.4.8.

The notion of spectral stability of [30] is the following: for any ug€ H'(IR?, C), the solution to
the problem

{ 10w =Lg,(u)
u(t=0)=ug
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<42|Vu|2(t)dx)e_”—>0

when t — oo. The result of [30] is a little stronger: the norm that does not grow exponentially in
time is better than the one on H'(R2, C), but weaker than the one on H'(IR2,C), and is not explicit.

satisfies that, for all A >0,

1.4.3 Generalisation to a larger energy space and use of the phase

There are two main difficulties with the phase. The first one, as previously stated, is that we
lose a parameter when passing from two vortices to a travelling wave. The second one is that for
the direction linked to the phase shift, namely iQ., we have iQ. ¢ Hg, (and even for one vortex,
iV1 ¢ Hy,). This will be an obstacle when we modulate on the phase for the local uniqueness result.
Therefore, we define here a space larger than Hg,.

exp

1.4.3.1 Definition and properties of the space H,_
We define the space Hg ", the expanded energy space, by

HGP = {p€ Hho(R?), [lp | age < +00},
with the norm, for o= Q.Y € Hlloc(RQ),

2 R 2 2 2 |,(/)|2
ol = el <oy + /{ o TUE R+

where 7 =min (71, 7_1), the minimum of the distance to the zeros of Q.. It is easy to check that
that there exists K >0 independent of ¢ such that, for ¢ = Q) € H,?,

1 2 |1/)|2 2
?HSDHHl({SgFglO}) < /{5<F<10}|V1/’|2+9%2(1/’) +—7;21n(7~;)2 < KH80||H1({5<T~<10})~
We will show that Hqo, C HoP and iQ. € Hy”, whereas iQ. ¢ Hg,. This space will appear in the
proof of the local uniqueness (Theorem 1.4.13 below). The main difficulty is that Bg, () is not
well defined for p € H,” because for instance of the term (1 —|Qc|?)|¢|? integrated at infinity. If
we write the linearized operator multiplicatively, for ¢ = Q. (using (TW.)(Q.) =0),

VQC
—gte
Qc
exp

then there will be no problem at infinity for ¢ € H;)" for the associated quadratic form (in ¢), but
there are instead some integrability issues near the zeros of Q.. We take as before a smooth cutoff
function 7 such that n(z) = 0 on B(£d.€1, 1), n(x) =1 on R?\B(+d.€1, 2), where +d.é) are the
zeros of Q.. The natural linear operator for which we want to consider the quadratic form is then

LEP(9) :=(1=n)Lq.(¢) + nQcLi (¥),

exp

and we therefore define, for ¢ = Q. € Hy) ",

QuLiy, (1) := Lo.(¢) = Qc(—icamw Ay .vw+zme<w>|cgc|2),

BE) = [ (1= n)(Vel = Relicdhupp) — (1= QPP+ 2%62(Q)
— [ TnO(TQE) - 20m(V Q) Re(v)Im())
+ [ chme(w)am(u)| Q.
[ TP+ 2@l
[ (T QI (V)Re(1) + 2l Qe PIm(D ) (). (1.44)



28 GENERAL INTRODUCTION AND PRESENTATION OF THE RESULTS

This quantity is independent of the choice of 7.

We will show that BGP(¢) is well defined for ¢ € HGP and that, if p € Ho, C HP, then
BoP(¢) = Bq.(w). Writing the quadratic form BgP is a way to enlarge the space of possible
perturbations to add in particular the remaining zero of the linearized operator. We infer the
following result.

Proposition 1.4.10. There exist co, K, R, o> 0 such that, for any 0 <3< By, there exists co(3),
K(B) >0 such that, for 0<c<co(f), if p=Qp € Hgip satisfies the following three orthogonality
conditions:

%o / D0, QuQui 70 = e / 02,QuQu70 =0
B(d.&i,R)UB(—d.é1,R) B(d.&i,R)UB(—d.é1,R)

and
9‘{2/ achch#O = 07
B(d.e1,R)UB(—d.e,R)
then,
BaP(p) = K(B)* P lpll2,
with

liollg= [ IT9PIQcl +Re2(u)] el

If o= Qb also satisfies the fourth orthogonality condition (with 0<c<cp)

then
BGP(p) =2 K02

Furthermore, for o € H,, the following properties are equivalent:

i. Lo (p)=0 in H=Y(R?), that is, Vp* € HY(R?),

Rﬁe(vw-V?) — (1= [Qc*)Re(pp7) +2Re(Qeip) Re(Qep*) — Re(icOr, ™) =0.

it pe SpanR(i Qc: a;leCa angc)

Proposition 1.4.10 is proven in subsection 3.5.1. The additional direction in the kernel comes
from the invariance of phase (Lg (iQ.) = 0). The main difficulties, compared to Theorem 1.4.4,
exp

is to show that the considered quantities are well defined with only ¢ € H, ", and that we can
conclude by density in this bigger space.

1.4.3.2 Coercivity results with an orthogonality on the phase

The main problem with adding a local orthogonality condition on i@, is to choose where to put it.
Indeed, we want this condition near both zeros of Q., or else the coercivity constant will depend
on the distance between the vortices, which itself depends on c.

The first option is to let the coercivity constant depend on c. In that case, we can also remove
the orthogonality condition on J.1Q)., the small positive direction. We infer the following result.

Proposition 1.4.11. There ezist universal constants Ki, cg > 0 such that, with R > 0 defined
in Proposition 1.4.3, for 0 < ¢ < c¢g, for the function Q. defined in Theorem 1.5.1, there exists
Ks(c) > 0 depending on ¢ such that, if ¢ = Qp € HLP satisfies the following four orthogonality
conditions:

me/ achch#O = me/ achch;&O =0,
B(d.e1,R)UB(—d.e1,R) B(d.e1,R)UB(—d.é1,R)

me/~ ~ achch*O:%e/ i =0,
B(d.&1, R)UB(—d.&,R) B(0,R)
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then
Killg e > BEP(2) > Kal0) | ol

Here, the orthogonality condition on Q. is around 0, between the two vortices, but it can be
chosen near one of the vortices for instance, and the result still holds.

The second possibility is to work with symmetric perturbations, since the orthogonality condi-
tion can then be at both the zeros of Q.. We then study the space

HZ?XCP’S = {gp e Hgip,V:r = (21, 72) €ER?, (21, 22) = p(—21, xg)}

We show that, under three orthogonality conditions, the quadratic form is equivalent to the norm
on HZP.
QC

Theorem 1.4.12. There exist R, K, co> 0 such that, for 0<c<cy, Q. defined in Theorem 1.5.1,

exp, s

if a function o € Hy " satisfies the three orthogonality conditions:

0.Qcp = me/ 02,Qcp =0,

SRe/
B(dce1,R)UB(—d.ei,R) B(deel,R)UB(—d.el,R)

%e/ 1Q.p=0,
B(del,R)UB(—d.e1,R)
then

1 ex
el > BEP() > K ¢ lhe

We remark that here, the orthogonality condition to 0, and 0..Q). are freely given by the
symmetry. We also do not need to remove the 0-harmonic near the zeros of Q..

Propositions 1.4.11 and Theorem 1.4.12 hold if we replace Bg‘cp by Bg, for ¢ =Q) € Hg, with
the symmetry, but the coercivity norm will still be ||.[| e

1.4.4 Local uniqueness result
With Propositions 1.4.10 and 1.4.11, we can modulate on the five parameters (¢, X, ) of the

travelling wave, and these coercivity results will be enough to show the following theorem.

Theorem 1.4.13. There exist constants K, co, €9, o > 0 such that, for 0 < ¢ < cg, Q. defined
in Theorem 1.3.1, there exists R. > 0 depending on c¢ such that, for any A > R., if a function
Z € C*(R?,C) satisfies, for some small constant e(c,\) >0, depending on ¢ and X,

~ (IW)(2)=0
- E(Z)<+x
- |1Z = Qcllerma\B(o,0) < Ho
=12 = Qullr (e, ),
then, there exists X € R? such that |X|< K| Z — Qcllrg», and

Z:Qc(-_X)'

The conditions E(Z) <+o0 and ||Z — Qc||mg» <&(c, A) imply that the travelling wave Z — 1 at
infinity, and therefore Z = Q.e"” with v € R, v #0 is excluded. The fact that £(c, \) depends on ¢
comes in part from the constant of coercivity in Proposition 1.4.11, which depends itself on ¢. The
condition that ||Z — Q.||c1(r2\B(0,x)) < o outside of B(0, A) is mainly technical. We believe that
this condition is automatically satisfied with the other ones (with A depending only on ¢), but we
were not able to show it.
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To the best of our knowledge, this is the first result of local uniqueness for travelling waves in
(GP). It does not suppose any symmetries on Z, and therefore shows that we can not bifurcate
from this branch, even to nonsymmetric travelling waves.

We believe that, at least in the symmetric case, Theorem 1.4.13 should hold for || Z — Qc[|pg» <e
with € > 0 independent of ¢ and A. We also remark that the condition ||Z — Qcl|gg» <e(c, A) is
weaker than ||Z — Q.|/m,, <e(c, ), and thus we can state a result in Hg,.

1.4.5 Sketch of the proofs

1.4.5.1 Sketch of the proof of Proposition 1.4.1
In Theorem 1.3.1, we have shown that Q.= Vi(x —d.61)V_1(z + d.€1) + T, and

1 . . s
0cQc= ?(&i(vl(l' —dé)V_1(z + dé1)) a=d.+ Te),

where T, and T, are small perturbations when ¢ — 0 (in some weighed L> spaces). For all the
first order computations of this proposition when ¢ — 0, it boils down to showing that the error
terms, I, and T, contribute less than the main terms. For the main terms, the computations are
(almost) explicit, and, for some of them, were done in formal computations in physical works.
For the different equalities on the linearized operator, this is simply coming from straight forward
computations, with estimates from Theorem 1.2.11 to show that all the quantities are well defined,
and to justify some integrations by parts.

For the position of the zeros, this is a consequence of the fact that, for a vortex Vi, centered
at 0, V11(0) =0, and the Jacobian of VV1(0) is not 0. Thus, the zero of vortices are simple, and
adding a small perturbation might change slightly its position, but not its order, nor its existence.

1.4.5.2 Sketch of the proofs of the coercivity results

We give here a sketch of the proofs of Propositions 1.4.2, 1.4.3, Theorem 1.4.4, Propositions 1.4.10,
1.4.11 and Theorem 1.4.12. We will not discuss here the proofs of the well posedness of the different
terms. We take here functions smooth and compactly supported away from the zeros of @, that
will allow all the computations needed. We refer to Lemmas 3.2.4 for a density argument and
Lemmas 3.2.1 to 3.2.3 for the well posedness of the quantities.

We consider V; a vortex centered at 0. We recall that

Bule)= [ VP = (1 =[ViPleP +2e(Vig).

The result of Proposition 1.4.2 is a simple variation of results in [10]. The linearized operator around
V1 has two elements in its kernel in the energy space, 0,,V1 and 0,,V1. The third orthogonality is
on the phase, iV}, which is not in the energy space, but can be approximated by functions in it,
and thus still require an orthogonality to avoid it. Once these three directions are removed, the
coercivity follows.

Now, we infer that, with ¢ =V19 (compactly supported away from 0),

Bule) = Bu(v)i= [ [V6PIVAR+ 2RI+ 4Tm(TViTs) I (V) ().
Remark that, with Lemma 1.2.1, |V4|~1 and |VV;]|~0 far from zero, thus, by Cauchy-Scwharz,
Bu() > K [ [V0PP+ RV
for functions v supported outside of B(0, A) for some large (but independent of ¢) A > 0. Thus,

the coercivity hold without orthogonality conditions at infinity. We can therefore localized the
coercivity result (see equation (3.3.6)). Writing

BR(p) = [3 B e T e S UT!
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we infer that, under the three orthogonality conditions of Proposition 1.4.2, for D >0 a large but
universal constant,

Bi(¢) = K(D)|l|# (50, p))-

Here, the coercivity norm has been replaced by |.||z1(B(0,p)) since they are equivalent (using
fB(O,R)\B(O,R/Q)jm(w) =0). ~VVe use a cutoff function to write the quadratic form in the form By, (¢)
near zero, and in the form By, (%) far from it.

We then compare it to the quadratic form around @, written in the form (1.4.4). Locally, that
is near the zeros of the two vortices that composes it, it is close to B‘Zl((p), where V.1 is centered
around +d.€;. Indeed,

Ba.(¢) = ||Vl = (1= Q)¢+ 206 @) — Me(irao)

and

Bé{«o):/~ IV[2 — (1= [Vi2)| o2 + 2R (Vi)
B(de#1,D)

with Q.=V;i + 0c—0(1) and ¢> 0 is small.
Thus, taking ¢ >0 small enough, the coercivity on Bg, localized in B(&cé'l, D) holds. Now, we
infer that the same result holds with the coercivity norm (for ¢ = Q1)

[ IVOPIQ A REWIQ < KD e i, )y
B(d.&,D)

This norm does not see the phase (for 1) =14, hence ¢ =i@Q)., the direction connected to the shift of
phase, it is zero), and we check that the quadratic form and the two orthogonality conditions on
the translations does not see the phase either (their values for ¢ and ¢ —iAQ. are identical for all
A €R). Thus, we can modulate on A to remove the orthogonality condition on the phase around
both vortices. We have a local coercivity result for By, near the vortices.

Now, at infinity in position, as for By, (1), the coercivity for Bg,(¢) (that can also be written
in term of 1) is obtained without orthogonality conditions, with the same coercivity norm.
Regrouping these two estimates, we conclude the proof of Proposition 1.4.3.

For the proof of Theorem 1.4.4, the idea is simply to change the orthogonality conditions
to ones that are close to a linear combinaison of the previous ones. The main difference is that
they are more adapted to the four particular directions computed in Proposition 1.4.1. This uses
classical arguments when changing the orthogonality conditions in a coercivity result. The main
point is, although the coercivity norm ||.||¢ is not Hi. and was reduce to a semi norm to remove
the orthogonality condition on the phase, it still control the four previous orthogonality conditions,
and the four new ones. In fact, the error between them is small in this coercivity semi norm.

Now, one of the direction is a positive one, on J.1Q)., by Proposition 1.4.1. We can therefore
remove it, but the coercivity constant will then depend on ¢ (as this is a small positive direction
when ¢ is small). It uses the fact that the four orthgonality are orthogonal between themselves.
This completes the proof of Theorem 1.4.4.

Now, we focus on the proof of the coercivity results with an additional orthogonality on the
phase. For the symmetric case, we simply keep the coercivity norm ||¢||z1(B(0,p)) locally, with
the three orthogonality condition around each vortices. Then, by symmetry, the two orthogonality
conditions on the phase (one for each vortex) are in fact the same. To complete the coercivity norm
to have [|.|| gge, this is simply a Hardy type inequality.

In the non symmetric case, in the proof of the coercivity for one vortex, we move the ortho-
gonality on the phase far from the vortex, so that it is the same orthogonality condition for both
vortices. Since the distance we use depends on ¢, so will the coercivity norm. This gives Proposition
1.4.11.
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1.4.5.3 On the Proofs of the corollaries of the coercivity and of the local uniqueness

With Theorem 1.4.4, and the fact that only one of the direction is negative, we can use classical
methods to show results on the linearized operator, for instance the computation of its kernel.
The only difficulty is that the coercivity norm is only a semi norm, but if ||¢||¢c =0, it implies that
P =1AQ, for some A € R, but if we know that ¢ € Hg_, since iQ. ¢ Hq,, then A=0. The semi norm
||.llc is in fact a norm on the energy space Hg,. Since H'(R? C) C Hg,,, with this same argument,
we check that the operator has only one negative eigenvalue, thanks to Theorem 1.4.4. Then, the
spectral stability follows from [30], a general work on Hamiltonian problems.

Now, we focus on the local uniqueness result, Theorem 1.4.13. By Proposition 1.4.11, using the
fact that iQ.€ H 8‘5’, we now have all the tools to do a classical proof of local uniqueness, using a
coercivity result in H;P by modulating on the parameters. There are two difficulties. First, the
coercivity norm in that case depends on ¢, and thus, the error term has to be small with respect
to c. Secondly, we need to show that, with the notations of Theorem 1.4.13, |Z — Q.||c1(r2) is
small (see Lemma 3.6.1). This require a technical condition, and is used to write the perturbation

exponentially far from the zeros of @., and to estimate some nonlinear terms.

With this technical result, we can modulate on the five parameters of the travelling wave (two
parameters for the translation, two for the speed, and one for the phase) so that the error term
between Z and the travelling wave has the orthogonality conditions of Propositions 1.4.10 and
1.4.11 (both coercivity are required). A few computations are required to show that, when taking
the scalar product of the equation with the perturbation, all the terms are well defined, and the
quadratic form appears (see Lemma 3.6.3). Furthermore, since we modulate on the speed, a source
term appears, but by taking the scalar product of the equation with the two small directions of
the linearized operator (9.Q. and 0.1@Q.), we can estimate them with respect to the perturbation.
We then conclude as in classical proofs of local uniqueness using a coercivity result.

1.5 Inversion of the linearized operator around Q.

Our goal in this section is to improve some results on the branch ¢+— Q. constructed in Theorem
1.3.1, by giving two new properties. The first one is about the inversion of the linearized operator
around @), and the second one is about the smoothness of the branch with respect to the speed.
In the rest of this section, Q. refers to the solution of (TW,) from Theorem 1.3.1.

1.5.1 Inversion result for the linearized operator around Q.

We want to invert the (additive) linearized operator around Q. in some weighed L°° spaces:

Lo (0)=—Ap—(1—[Qc[*) ¢ +2Re(Qep) Qc — icOyyp.

We have computed its kernel in Corollary 1.4.5. It is Spang (0, Qc, 0.,Q.) in the energy space

Ho.= {<P€H1%C(1R2,@),/IV<P|2+ 1= 1Qcll]? + MeX(Qep) < +O<>}~

It has also a resonance, Lg (iQ.) =0, due to the invariance by shifting the phase, with iQ. ¢ Hg..
That poses an issue when trying to invert Lg,. In the proof of Theorem 1.3.1 (see Proposition
2.1.20), the operator

Ly(p):i=—Ap — (1—[V]?) ¢+ 2Re(Vip)V — icOypp

with V' = Vi(. — de€1)V_1(. + de€1) (which is close to Q.) was inverted in a space with two
symmetries, where the problem of the resonance disappears. Here, we invert Lg,_ in a space with
only one symmetry (even in z1), that do not avoid the resonance. By adding the second symmetry,
the space is also orthogonal to the kernel of Lg_, and in that case we can invert the operator
without any orthogonality condition.
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With d. defined in Theorem 1.3.1 (+d.6; are the center of the vortices from which Q. is
constructed as a perturbation of), we define

7:=min (|z — dcéil, |z + deéi),

as well as the two norms, for 0 € R, ¢ = Q. € C?(R?, C), ¢ = 91 + ithe, and Q.h € CH(R?, C),
h=nhi+1ihs,

[V]l0,0 = Q¥ oz
+ [P Y| ez 2 + 172V Y1 || Loz 2y + (|72 HOV201 || Lo 7> 21
+ 177 al ez + 17TV ol poo o + 1727V 2] poo 52 (1.5.1)

and

[hlles,e = [Qchllcr@<ay
+ |‘f1+0h1||Loo({,:>2})+|‘7:2+0Vh1||L°°({7:22})
+ 17257 hall Lz oy + 17247 Vho|| oo >2)- (1.5.2)

We define the spaces, for 0 € R,
E.0:={p=Q € C}(R?, C),||¢| @,r < +00,¥(21,32) € R, (21, 72) = p(—x1,72) },

5@2;,“{? ={o=Qup €&y ,,V(x1,12) €R? (21, 22) = (w1, —72) }
and

Eom,01={Qch € CY R C), ||h]lee,o < +00,V(z1, 32) €R?, (Qch) (21, 22) = (Qch)(—x1,22) },

Extre = {Qeh € Eg 0, (w1, 22) € R?, Qch(21, w2) = Qch(wr, —22) }.

These spaces are close to the spaces & ¢, Eix, o introduced the proof of Theorem 1.3.1 (see subsec-
tion 2.1.3). The decays in position are related, but we change the symmetries, added estimates
on the second derivatives, and locally we look at Q. instead of Vi(. — d.€1)V_1(. + d.€1)% (and
similarly for h). Remark in particular that £g » C Hg, for ¢ > 0. Also, for e >0, p € Eg _. is not
necessarly bounded, and not a priori in the energy space (nor in the extended energy space, H5").
o
the norm is different on {F < 2} and outside of this domain (Q. has zeros there, see Proposition
1.4.1). Finally, with the first symmetry (being even in x,), functions in £g , are orthogonal to
Oz, Q¢, one of the elements of the kernel of Lg,.

To infer the inversion result, we need to deal with a difficulty coming from a resonance in L,
by removing some harmonics around +d.&;, the two zeros of Q. (see Proposition 1.4.1). This is
reminiscent of the requirement on the orthogonality condition in Theorem 1.4.4. For R > 0 and

he L (R?), 7 < R and 6 the polar coordinates around +d.€;, we define

Furthermore eC °°({77 > 2}, C), and is uniformly bounded in this space. It explains why

27 . .
W)= [ h(rei®)aa,
2 0
and
h70(z) := h — hO(7). (1.5.3)

Theorem 1.5.1. There exists R, co > 0 such that, for any o >0, € >0, there exists K(o,e) >0
such that, for Q.h € Egg.0, 0<c<co with

S)C{e‘/ aszchhyﬁO =0,
B(do#, R)UB(~d.é, R)
there exists o= QY € Eg _ such that

LQC(QD) = Qch?

. K (e,
with [[¢]|s,—- < EG2| ] g0
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sym

Furthermore, for any 0 <o <o’ <1 and Q.h € 52® o, Without any orthogonality condition,
there exists a unique function ¢ € EQSym such that

LQC(SD) = Qcha

and it satisfies ||Y] .0 < K(U Z )Hh||®® or. There,

(¢, Qch) — 0 € CO(10, col, E5 ) — €577

A few remarks on this result. First, if 0 <o/, £g.5 CEg o and Egg,oc C Egw,o’- In particular,
the solutions ¢ constructed does not depend on the choice of € >0 in the non 2-symmetry case, and

o’ <o in the 2-symmetry case. In the estimates of the norm, the constant being in = 1 comes from

the fact that the smallest nonzero eigenvalue of L. is of order —c? when ¢— 0 (see Proposition
1.4.1). This constant can be made independant of ¢, provided that we add a local orthogonality
condition (on 0.Q), see the proof of Proposition 4.2.10).

In the case with one symmetry, we can be more precise on the part of the function ¢ that
grows at infinity. There, the function ¢ will be the sum of two functions, one in g, , for some
0<o’< o, that decays well at infinity, and A(h, c)¢y, where A(h,c) € R and pr €& . (Ve >0) is
a particular function, connected to the resonance. See Proposition 4.2.10 for more details. In the
case with two symmetries, the orthogonality condition on 0,,Q. is automatically satisfied.

Let us consider a model to understand the difficulties from the resonance L, (1Q:) =0, iQ. ¢
&9 0, with 0> 0. Consider the equation Au= f in R?, with f € C2°(R?% R). The Green function
for the Laplacian in R? is 2(7:) and thus the fundamental solution is ug= 12(:) x f. We can check
that this function is well defined, C'*° and at infinity, ug~ ln (r) f R2 f. If we want this solution to be

bounded, we must impose that [, f=0. In that case, we can check that |ug| < (Ifj_ )) But if we

instead looked at the equation Au —V (z)u= f, where V>0,V € C°(R% R) and f € C°(R?, R),
the condition fR2 f =0 has no reason to be enough to show that a typical solution ug is bounded.
In fact, we then must show that f R2 f+ Vu=0, which is more complicated to understand what it
means on the source f. We remark that if we impose f to be odd, and the potential V' to be even,
this problem disappears.

The situation is very similar here, on the equation of the imaginary part of v, with ¢ = Q1.
The element ¢ =1i(Q). is an element of the kernel, that can not be dealt with a local orthogonality
condition, similarly as 1 for the operator A, if we want to stay in function spaces where functions
are bounded.

In the case with one symmetry, we believe that the growth of ¢ at infinity is of order In(r)
instead of smaller than r—¢ for all € >0, as it is shown here.

This result could be interesting for the construction of a multi travelling wave solution of (GP).
One of the step there is to construct an approximate solution, and to compute the error terms,
it is necessary to invert the linearized operator around Q.. We can also use it to improve the
differentiability of the branch with respect to the speed.

1.5.2 Infinite differentiability of the branch of travelling waves
We will show that, for all 0 <o <1, there exists co(c) >0 such that

c— 0:Q. € C°(]0, co(0)[, EST™)
(see Lemma 4.1.1). Furthermore, from Lemma 3.1.6, we have
Lq.(0.Qc) =10z,Qc.

We want to differentiate this equation with respect to ¢. Formally, this would yield

(82 ) = 2|8CQ5| Q.+ 49%(@ 0.Qc ) 0cQc — 210,,0.Qc € gésélz
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for all 0 < o < 1. This gives us a way to define 92Q. with Theorem 1.5.1. We use similar
computations to show that the branch is infinitely differentiable.

Theorem 1.5.2. For all 0 <o <1, there exists cy,co(c) >0 such that

= 0:Qc € C(]0, co(0)[, EXL™).
Furthermore,

c— E(Qc) € C*(]0, co[, R),
and the momentum Pa(Q.) :%@'8@@6, Q.— 1) satisfies

c— P(Qc) € C*(]0, co, R).

This result implies in particular that ¢ — Q. — 1 € C°(]0, co(p)[, Xp) for all 2 < p < +o0, with
X, defined in Theorem 1.3.1. The fact that the branch, as well as the energy and momentum, are
C? with respect to the speed could be useful for the proof of the orbital stability of this branch of
travelling wave. Remark that we do not give an equivalent of 92Q), when c¢— 0. This seems to be
a rather complicated computation, but we fully expect that 83QC~C—148§V when ¢— 0.

1.5.3 Sketch of the proofs of Theorems 1.5.1 and 1.5.2

We want to invert the problem Lq (¢) = Qch in the weighed L spaces Eg , and Egg ,. Writing
©=Q, at first order at infinity in position, the problem become —icd,, v — Ay + 2Re(¢) = h,
as it was the case for the proof of Theorem 1.3.1. But here, we suppose only one symmetry, and
we can invert this problem in the required space under the condition that fR23m(h) =0. That is
why we show the inversion in a large settingn in Lemma 2.1.15. This condition was freely given
when we inverted this problem with two symmetries, for the proof of Theorem 1.3.1.

Therefore, we look at the problem Lg.(¢) = Qch — p(h, 9)iY, where YT is a particular
smooth and compactly supported function, and p(h, ) is linear in h, ¢, with values in C,
and they are choosen such that, when writing the problem at infinity in position on the form
—icpyt) — Atp + 29Re(¢)) = h, where h depends on both h, ¢ and ju(h, v), then f]RQJm(ﬁ) =0.
This allows us to invert the problem at infinity. Since the kernel of L, is known (see Corollary
1.4.5), to invert locally the operator (with the additional term —pu(h,1)iT), we also require a local
orthogonality condition (one of the two elements of the kernel is avoided by symmetry). Here, the
constant of inversion depends on ¢, since Lg,_ has some small directions (see Proposition 1.4.1).
The construction still requires a Fredholm alternative argument, that has to be modified because
of the difficulties on the phase. This changes only slightly the proofs compared to Chapter 2, since
the change is only on a one dimensional direction, thus the compactness arguments are identical.

To complete the inversion of Lg,, we need to invert the particular direction Y. This is done
explicitely for one vortex (see [10]), since there, the problem is an ODE. With an ansatz using this
solution for each vortices, by constructing an inverse as a perturbation of it, we can invert this
direction for L, (see Lemma 4.2.9). This particular solution does not decay as well at infinity
compare to the function ¢ in Lg (@)= Qch — pu(h, )iY, but this is expected, since it is also the
case for a single vortex (where it grows like In(r)).

Now, in the case with two symmetries, p(h, 1) =0 and thus the solution has a better decay, and
both elements of the kernel of Lg, are avoided. We can thus invert it, without any orthogonality
condition.

For the proof of Theorem 1.5.2, we use the inversion in the case with two symmetries, and the
equality Lo, (0.Q¢) =105,Q. (both 9.Q. and i0,,Q. have the two required symmetries). We thus
write 0.Q.= Léi(z’@ch), and we check that the operator Léi is differentiable with respect to the
speed. This shows that 0.Q. is C! with respect to the speed, thus ¢— Q. is C2. By induction, we
show that c¢— Q. is C'°° with respect to the speed.
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1.6 Some open problems and conjectures

We present here some questions that are only partially answered by the results of this thesis, or
that are natural follow up problems.

e Construction of a travelling wave behaving like two vortices of degree +n for
n>2.

From [25], there exists vortices of any degree n € Z*. We constructed a travelling wave (of speed
¢>0) behaving like two vortices of degree 1 at distance of order 2 /¢ in Theorem 1.3.1. It used the
fact that the kernel of the linearized operator around V. is known, and contains, in the associated
energy space, only the translations (see [10]). Such a property (Kerp,, =Spang(9z,Vin,0z,Ven))
is not known on vortices of degree n > 2. However, if it is shown that it holds for such vortices,
then the construction done in Chapter 2 should work similarly (the distance between the vortices
will be of order 2n/c in that case). Such branches have been seen numerically in [9]:

Energy ws momentum
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160 H 2
140 4
7~
- 120 4 ’
= ] / +- 2 vortex branch
o 100 o .
W 3 brafich
80 :
/
80 i W 2 branch
40 4
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0 50 100 150 200 250 300 350 400
mamentum

This graph represents different branches of travelling waves constructed numerically. We recall
that large momentum yield speeds close to 0, and small momentum speeds close to v/2. The JR
(for Jones-Roberts) branch is the one constructed in Theorem 1.3.1. The £2 and £3 vortex branch
are the ones descibed above. The W5 and W3 branches are constructed from the limit ¢ — V2.

Furthermore, if it is also possible to show a coercivity result on By, the quadratic form
associated to the vortex V,,, then the coercivity results (such as Theorems 1.4.4 and 1.4.12) should
also hold. It has been shown numerically that By, can take negative values ([40]). But, if a
coercivity result is shown, with several local orthogonality conditions, for By;, (to kill the finitely
many negative directions), we should have a coercivity result for the branch V;,V_,,, with twice as
many orthogonality conditions. This would show that this branch is likely unstable, but has no
additional unstability directions than those of the vortices that compose it.

e The constructions of Theorems 1.2.6, 1.2.7 and 1.3.1 yield the same branch

The constructions of Theorems 1.2.7 and 1.2.6 respectively minimize locally the energy at fixed
momentum, or is a critical point of a well chosen Lagrangian. This is not shown for the one from
Theorem 1.3.1. However, in this last construction, the branch is C*° with respect to the speed,
and the structure in term of vortices is well understood, and these properties are not shown in
Theorems 1.2.6 and 1.2.7.
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Showing that these branches are identical would combine these properties. Furthermore,
the proof of such a result would most likely give the fact that the branch is isolated in the
Energy/Momentum graph above (for large momentum), which would be a major step in the
completion of the Jones-Roberts program.

To show such a result, it might be possible to improve the local uniqueness result of Theorem
1.3.1, to show for instance that any travelling wave behaving like two vortices (with a small error
in L for instance) is an element of the branch of Theorem 1.3.1. With such a result, it would
only require an improvement on the structure of the branches in Theorems 1.2.6 and 1.2.7 (namely,
showing that they behave like two vortices in L*°).

e Extension of the branch of Theorem 1.3.1 for large speeds

The construction of Theorem 1.3.1 is done for small speeds, less than some small ¢g > 0. It is
conjectured that this branch extend in all speeds in }0, V2 [ Adapting some proof in Chapter 4,
using that Lg (0:.Q.) =105,Q., it is possible to show that, as long as ¢0,,(). remains orthogonal to
the kernel (which is true only shown for small speeds), then, for any for 0 < ¢ < /2, if the branch
is still defined, 0.Q). is bounded in some weighed L space. This could give a way to continue the
branch, even when the speed is no longer small, by integrating 0.Q). with respect to the speed.

e Construction of smooth branches of solutions in other problems

The method of the construction of travelling waves of Theorem 1.3.1 has been used in other
cases, for instance [11] or [29]. In these other cases, only the construction was done, not the
differentiability with respect to the parameter. By adapting elements of section 2.3, it might be
possible to show the differentiability with respect to the parameter in these other cases.

e Orbital stability and multi travelling wave solutions

With a coercivity result such as Theorem 1.4.12, we could expect (at least in the symmetric case)
to have an orbital stability result. However, there are some technical difficulties, connected to the
weakness of the coercivity norm compared to the norm of the energy space. Furthermore, another
difficulty is that we need to modulate on the speed, which makes the functional E(u) — ¢ Ps(u) not
independent of time.

Theorem 1.5.1 is a first step in the construction of a multi travelling wave solutions, at least
with a symmetry (for instance, one travelling wave moving in the direction €3 and the other in
the direction —€2), using methods developed in [28], [33] or [34]. With the equivalents of Theorem
1.2.11, it is possible to compute the first order of the interaction between them. There are some
technical difficulties left to complete such a construction, in particular with respect to the phase.

If such multi travelling wave solutions exists, their stability would be an interesting question,
as for other multi soliton solutions, see for instance [35] or [36].






Chapter 2

Smooth branch of travelling waves

This chapter is devoted to the proof of Theorem 1.3.1. We start by reducing the problem to a one
dimensional one in section 2.1. The construction of the travelling wave Q. is completed in section
2.2. Furthermore, in subsection 2.2.2, we show that (). has finite energy and we compute some
estimates particular to the branch of solutions. Finally section 2.3 is devoted to the proof of the
differentiability of the branch.

2.1 Lyapunov-Schmidt reduction

The proof of Theorem 1.3.1 follows closely the construction done in [11] or [29]. The main idea is
to use perturbation methods on an approximate solution.

In subsection 2.1.1 we define this approximate solution V' which consists in two vortices at
distance 2d from each other. We then look for a solution of (TW,.) as a perturbation of V, with
an additive perturbation close to the vortices and a multiplicative one far from them. This is
computed in subsection 2.1.2. We define suitable spaces in subsection 2.1.3 that we will use to invert
the linear part and use a contraction argument. We ask for an orthogonality on the perturbation,
and the norms are a little better but more technical than the ones in Theorem 1.3.1. In particular
I'c.q, in Theorem 1.3.1 verifies better estimates which are discussed for instance in Corollary 2.1.25
and in Lemma 2.2.8. We invert the linearized operator in Proposition 2.1.17 and show that the
perturbation is a fixed point of a contracting functional in Proposition 2.1.21. The orthogonality
condition create a Lagragian multiplier (see subsection 2.1.6), which left us with a problem in one
dimension. This multiplier will be cancelled for a good choice of the parameter d in section 2.2.

2.1.1 Estimates on vortices

From [25], we can find stationary solution of (GP):

Va(a) = pu(r)e’™”
where  =rel? n € Z*, solving

{ A‘/n* (|Vn|2* 1)‘/n:0

V=1 as |z|—oo.

These solutions are well understood and, in particular, we have some estimates (see [25] for
instance) that we will use. We also know the kernel of the linearized operator around Vi; ([10]),
which we will need for inverting the linearized operator around the approximate solution V' defined
using these vortices

V(ZE) = Vl(ZE - dél)v_1($ + de_i)

where d >0, 2 = (z1, 22). The function V is the product of two vortices with opposite degrees at
a distance 2d from each other. One vortex alone in R? is a stationary solution, and it is expected
that two vortices interact and translate at a constant speed of order ¢~ %, see [3]. Hence for the
two parameters of this problem c,d > 0, we let them be free from each other, but with the condition

¢ is of order 1/d by imposing that % <d< %

39
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We will study in particular areas near the center of each vortices. We will use coordinates
adapted to this problem:

v = (v1,m3) =7,

y = (y1,y2) =1 —dé)=re%

2 = (21,2):=y+2déi =z +dé; =r_1e"%1,

7 := min(ry,r_1). (2.1.1)

Using y coordinate mean that we are centered around Vj, and z coordinate for around V_;. Note
that we have

V(z)=Vi(y)V-1(2)

using these notations. If it is not precised, V' will be taken in x, V7 in y and V_1 in z. If we compute
(TW,) for V, ie. —icO.,V — AV —(1—|V [}V, we get

(TW)(V)=FE —icdy,V,
where we defined
E:=-AV-(1-|VH)V.
We have V =V1V_; and, by using —AV. = (1 — |V.|?)V; for ¢ = £1, we compute
E=-2VV1.VV_i+ V1V71(1 — |‘/1|2 +1-— |V,1|2 — 14+ |V1V71|2).
Hence

E=—=2VVi.VV_ 1+ (1= Vi) (1= |V, HViV_ 1. (2.1.2)

The rest of this subsection is devoted to the computation of estimates on V, E, 04V and ic0,,V
using estimates on V; and V_;. Let us start with the properties on Vi, we need.

Lemma 2.1.1. ([25]) Vi(z) = p1(r)e’? verifies V1(0) =0, and there exists a constant >0 such
that, for allr >0, 0< p1(r) <1, pi(r) >0, and

P1 (T) ~r—0RT,

1 1

. at 1

where x+= (—x2,21), x= re'?. Furthermore we have similar properties for V_1 since

V71(IL') :V1($)

We will use the O notation for convergence independent of any other quantity. Now let us write
all the derivatives of a vortex in polar coordinate, which will be useful all along the proof of the
results.
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_ pi(r1)

o) Then,

Lemma 2.1.2. We define u:
0., 7:() = ot
1

1

0,.7:() = (sin(0)

u— Lsin(Gl)

u+ Lcos(t?l)

41

o

)Vla

u

! ) + 2 sin(61)cos (1) (% —
1

Opy5,V1(Y) = <cosQ(91)(u2+u’) +sin2(91)<£ 5
T ri r1
Opy2,V1(Y) = (sin(@l)cos(Gl) <u2 +u'+ % - E) — i cos(264) (% - i) )Vl.
rt rY T

We obtain the derivatives of V_; by changing i — —i,y — 2, 01 —0_1, 11 —r_1 and V1 — V_;.
We remark in particular that the first derivatives are of first order Til and the second derivatives
are of first order % for large values of 1. From [25], we can check that, more generally, we have

1
K(n)
DMV (y)| € =———H—. 2.1.3
| 1(y)| X (1 —l—Tl)" ( )
Proof. With the notation of (2.1.1) in radial coordinate around déj, the center of Vi:

s, = cos(0h)dy, — 2201,
1

cos(f1)

0y, =sin(61)0r, + 0o
1

19

we compute directly the first two equalities of the lemma. Now, we compute
sin(f
( 1)891(8901‘/1)

Oz, V1 =c08(61)0r, (05, V1) — —
1
O, (05, V1) = (u(cos(@l)u - %sin(@l)) + cos(bh)u’ + r%sin(@) )Vl

09,(0,V1) = <z cos(f1)u+ Ti sin(6;) — sin(61)u — - cos(fy) )Vl
1 1

with
and

for the third inequality. We use them also in
cos(61)

6301162‘/1 :Sin(el)a’fl(axl‘/l) + r 691(8301‘/1)
1

for the fourth relation, with cos?(6;) — sin?(0;) = cos(26;).

Now, we compute some basic estimates on V.
Lemma 2.1.3. There exists a universal constant K >0 and a constant K(d) >0 depending only

on d>1 such that
n-vp< A

<1- VP,
0 Vi (1+7)2
_K
(1+7)3
K
(1+7)’

IV(IVDI<

and we have
IVV|<
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as well as
Kd
<-—°2
VWIS a7
where ¥ =min (r1,7_1). Furthermore,
K
2 <
VVISTr72
and
Kd
2 <7
VVISG e

Proof. For the first inequality, we are at fixed d. Since V =|V; V_1|ei(91_9*1) and 61,60_1 are angles
from points separated by 2d, we infer

and [VAV_4|=1+ Ofﬁm(%) from Lemma 2.1.1 where Ofﬂoo(%) is a quantity that decay in % is
at fixed d. Therefore,
2
< K(d) .
(1+7r)2

H-VP2=1-W V_1|ez'(91—9,1)|2: ‘K(d)or_,oo<%>

From Lemma 2.1.1, we compute

1 1 K

1-|V2P=1-|ViP+ V1P = VD) <K < —,

. | | | 1| +| 1|( | 1|) ((1+7’1)2+(1+7“_1)2) (1+7")2
an

(1+r)3  (I+7r_1)3 ) (1+7)%
We check that VV =VV1V_1 + VV_1V4, and therefore, with Lemma 2.1.2, we have
K N K < K
(1+7r) (A+r_y) (Q+7)

|V(|V|)|<|V(|V1|)|V—1||+|V(|V—1|)|V1||<K< Lo, )< K

IVVI<

Furthermore, by Lemma 2.1.1,

+7 1
VVi1 = 7’_:‘:169:(:1 + OTil*}oo(F)'

1
For 7 > 1 (the last estimate on |[VV| for 7 <1 is a consequence of |[VV|< %), since e+ =
x F dey,
cos(61) 7 cos(0—1) r1—d 7 r1+d
1 r_1 (r1—d)2+23 (21+d)2+23
T 1 1
= —2—((z1+d)?+a3— ((x1 - d)*>+a3)) — d<—2 + T)
LR | LS s |
d
= (221 —ri-12y), (2.1.4)
Ty
therefore
cos(01) cos(f-1) Kd
— < —
ol r_q (1+7)2
since Tlﬁil g% if 7>1. With a similar estimation for %101) — %, we infer
V| < [P Co)y K
T (1+7)3
Kd
< - —
TETIEARE=oE
Kd

A+
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Finally, for the second derivatives, we have for j, k € {1, 2}
azj:vkvzaszkvl 1+8x]V1asz 1+8sz18I]V 1+az]zk 1V1;

therefore, with (2.1.3),

K K K K

VIV < —
N R cyrven A s wrarmae e By S Py PR s

We check with (2.1.4), <L if 7>1 and ‘v(i) <X
- T3
cos(91) _ cos(f-1) . Kd
r_1 = (1+7)3

1)) and Lemma 2.1.1, we conclude with

)‘+(1fr) < (ﬁi)?f =

sin( sin(
6

(eel

Now we look at the convergence of some quantities when we are near the center of V; and
d — oo. When we are close to the center of V; and d goes to infinity, we expect that the second
vortex as no influence.

Vv
With a similar estimation for V (
vV < ‘

Lemma 2.1.4. As d— oo, we have, locally uniformly in R?,
V( + dél) = ‘/1()‘/_1( + Zdél) — ‘/1(),

E(.+dé)—0
and
04V (. +dér) — =9, V1(.).

Proof. In the limit d— oo, for y € R?,

V(y+déy) =V1(y)ei91<1 + o(%))
]

V(.)—W()

by Lemma 2.1.1, hence

locally uniformly since §_1 — 0,r_1 — +00 when d— oo locally uniformly. On the other hand, since
V(z) =Vi(y)V-1(y + 2 dé;), we have

(0aV)(y + dé1) = =02, Vi(y)Vor(y + 2 dér) + Vi(y) 0z, Vi (y + 2 dé).
Since 0, V_1(y +2dé1) =VV_1(y + 2 dé;).€1 — 0 locally uniformly as d — oo, we have
04V () = —0uA()

locally uniformly. Finally, from (2.1.2), we have that

E(x) =—2VVi(y).VV_1(2) + (1 = [Vi(y) ) (1 = [V_1(2) )Vi(y) V=i (2)
with the notations from (2.1.1), therefore, locally uniformly,

E(.4+dé;)—0
as VV_; — 0 and |V_1| — 1 locally uniformly when d — oo. O
We now do a precise computation on the term icd,,V, which appears in (TW,)(V).

Lemma 2.1.5. There exists a universal constant C >0 (independent of d) such that if r1,7—1 > 1,

Z.&@V 3 —d?— 23
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Remark that this shows that the first order term of z'aw—év is real-valued and the dependence on
d of this term is explicit.

Proof. Recall from Lemma 2.1.2 that for e = =41,

01,V =12 cos(0)V. + orﬁoo<i3>.

Te 3

We have
axQV o 832‘/1 + axQV—l

vV W V_1

and
X1 — ed

cos(f.) = I

yielding
0z, V . .Z‘l—d_l‘l—l—d

1
2 2
14 1 1

re

1 1 1 1
) Yo T T o5 7d 5 5 O”’ — OO
Z<x1<r% r2_1> <r%+7“2_1>>+ ! (

We compute with (2.1.1) that

1
) + OT1~>OO<TT_1>

1 1 (mi+d)?+a3—(z1—d)?—23  4dx

=
S

7’_%_ 2 riry iy
and
N 1 7(:E1+d)2+x%+(x17d)2+x%72x%+d2+x%
’I"% T2_1 ’I"% T2_1 ’I"% 7”2_1
yielding the estimate. O

Finally, we show an estimate on 94V = 0g(Vi(x — deé1)V_1(x +dé1)) = =0, VAV_1+ 02, V_1 V1.

Lemma 2.1.6. There exists a constant K >0 such that

K
9aV | < =
VIS T3
K
< B
|Vadv| S (1+7~’)2
and
- K
<—.
[Re(VOV)| < 177
Furthermore,
K
2 < -
|adV| X (1_’_7:)2
and
K
2 <—.
|8dVV| B (1+7~’)3

Proof. We have that 04V = —0,,V1V_1+ 0,,V_1V1 and from Lemma 2.1.2,

K K
02, V1| < < —.
NS Ty ST
Similarly, |05, V_1| < (1—Iff) and this proves the first inequality. Furthemore, for V9,V every terms

1

) by (2.1.3), this shows the second inequality. Finally,

has two derivatives, each one bringing a
we compute

9{6(‘78,1‘/) = —|V_1|29{6(‘718$1V1) + |V1|29ie(VT16x1V_1).
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K K

From Lemma 2.1.1, [Re(V10,, V1) Sm < REaE

and |V_1|2< 1. Similarly we have

— K
2 <
||V1| %e(vflamvflﬂ X (1+7:)3
Furthermore, since 93V = 651‘/1‘/_1 — 20, V105, V_1 + 831‘/_1‘/1, with equation (2.1.3), we check
easily the estimations on 93V and 93VV. g

2.1.2 Setup of the proof

In the same way as in [11] (see also [29]), we will look at a solution of (TW,) as a perturbation of
V' of the form
vi=nV(1+ W)+ (1—n)Ve?
where n(x) =7(r1) + 7(r_1) and 7 is a C* positive cutoff with 7(r)=1if » <1 and 0 if » >2. The
perturbation is ¥ and we will also use
O:=VVU.

We use such a perturbation because we want it to be additive (in ®) near the center of the vortices
(where v =V + ®), and multiplicative (in ¥) far from them (where v =Ve¥). We shall require ®

to be bounded (and small) near the vortices. The problem becomes an equation on ¥, with the
following Lemma 2.1.7, we shall write

nL(®)+ (1 —n)VL (V) + F(¥)=0

where L and L’ are linear. The main part of the proof of the construction consists of inverting the
linearized operator nL(®)+ (1 —n)VL'(¥) in suitable spaces, and then use a contraction argument
by showing that F is small and conclude on the existence of a solution ¥ by a fixed point theorem.

Lemma 2.1.7. The function v=nV(1+ W)+ (1 —n)Ve? is solution of (TW.,) if and only if

nL(®)+(1—n)VL'(¥)+ F(¥)=0,
where =V,
vV

L(W):= =AY =22 VU 42|V *Re(V) —icd,, ¥,

L(®):=—A®— (1—|V|2)®+2Re(VP)V —icd,,®,
F(U):=E —ic0.,,V+V(1—n)(=VU.VV+|V|2S(¥)) + R(T),
with
E=-AV-(1-|V]?)V,
S(W) =) 1 _ 29Re(V)

and R(V) is a sum of terms at least quadratic in ¥ or ® localized in the area where n #+ 0.
Furthermore, there exists C,Cy >0 such that the estimate

|R(D)| +[VR(V)| < C||@][E2 (<2

holds if ||®||c2r2) < Co (a constant independent of ¢), where 7 =min (|x — dé|, |z +déi|) for z € R?.
Additionally, L(®) and L'(V) are related by

L(®) = (E —icdy, V)V + VL'(T).

The main reason for such a perturbation ansatz is because V(dé1) = V(—dé1) = 0, so we can
not divide by V as done in L’ for instance when we look near the vortices, therefore an additive
perturbation is more suitable. But far from the vortices, the perturbation is easier to compute
when written multiplicatively with a factorisation by V. Remark also that this allows us to take
¥ to explode at dé; and —deé; as long as ® =V does not. This is needed for the norm we use in
subsection 2.1.3.
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As we look for ® small (it is a perturbation), the conditions ||®||c2(r2) < Co will always be true.
We need them because some of the error terms have an exponential contribution in ¥, and not
only quadratic. We recall that, with our notations, VU.VW is complex-valued.

Remark that the quantity F' contains only nonlinear terms and the source term, which is
E —icd,,V. Furthermore, contrary to the work [29], the transport term is in the linearized operator,
and not considered as an error term in F'.

The rest of this subsection is devoted to the proof of Lemma 2.1.7.
Proof. First we show that L(®)=(F —ic0,,V)¥ + L'(V)V. We use ®=VV in L(P) to compute
L(®)=—-AVUY -~ AUV —2VU.VV — (1 — [V|2) VU + 2|V |2V Re(V) — i c VD,V —icd,,VV.

We have that E=—AV — (1 — |V |*)V hence (E—icd,,V)¥ =—-AVU — (1 — |V ]2 )V¥ —icd,, V¥
and the remaining terms are exactly equal to VL'().

We denote (:=1+ ¥ —e?. Remark that ( is at least quadratic in ¥. We compute the different
terms in (TW,):

—icOp,v — Av—(1—|v|})v=0
with
v=nV(1+0)+(1—n)Ve?.
We have v=V + ® — (1 — )(. In general, our goal in this computation is to factorize any term

when possible by V(1 + (1 — n)e%) and compute the other terms, which will be supported in the
area 1(1 —n) #0. First compute

Oz =
N0,V (1 4+9) + 0, ¥ V) + 0V (1 + V) + (1 — 1) e¥ (04, V + 02,9 V) — O ynVe?,
therefore

D,V
v

ic@z2vV(n+(1n)e‘I’)<ic icam\ll> —1cn0z, VU —ic0z,n V(. (2.1.5)

For the second term, we compute
Av = AnV(1+T —e¥)+2Vn.V(V(1+ T —e¥))
+ n(AV(1+9)+2VV.VU + VAT)
+ (1=n)(AVeY +2VV.VTe¥ + V(AT + VU.V)eY),
hence

—Av = V(n—l—(1—n)e‘1’)<—A—‘;/—2v—‘;/.V‘I!—A\I/)

— nAVY —(1—-n)VVE.VU ¥ —VAn¢ —2Vn.V(VC). (2.1.6)
Finally, let us write A:= V(1 + ¥) and B := Ve?, so that v = nA + (1 — 1) B, and remark that
V(= A — B. We then have
(1= [vPv=(1=7*|AP = (1 =n)*|B]> = 2n(1 — n)Re(AB))(nA + (1 — 1) B).
We want to bring out the terms not related to the interaction between A and B, namely n(1 —
|AI2)A+ (1—n)(1—|B|?)B. We have
(L= oo = (1= [AR)A+ pAl(L— ) A]2 — (1 - n)?|BJ> — 2n(1 - n)Re(AB)] )
+ (1=n)A—=|BP)B+(1-n)B[(1—-(1-n)%)|B]*=n*|A]> = 2n(1 — n)Re(AB)].
Now, factorizing n(1 —n) we get
(1= = n(1—-[AP)A+(1-n)(1~|B]*)B )
+ (1 =n)[(1+nAJAP = (1 —n)A|B|* - 21 ARe(AD)]
+ n(1=n)[(2-n)B|B]> = nB|A]> = 2(1 — n)BRe(AB)].
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Remark that the last two lines yield 0 if we take A= B, since V(= A — B, we can write
(1= Jv[)v=n1—[A)A+ (1 —n)(1—|B[*)B+n(l—n)(V(G(Y)+ VCH (D))

where G, H are functions satisfying |H (V)| |G(¥)|,|VH(¥)|,|VG(V)| < C(1 +|¥|+|V¥| + |e¥] +
|[VWe¥|) for some universal constant C' > 0. We recall that A=V (1+ ¥) hence

A-[AP)A=A-|VPL+ YV (1+D),
therefore we get a constant (in @), a linear and a nonlinear part in ¥:

(1-[A2)A = (1= |[V)V+(1— V]V -2V 2V Re(T)
2|V 2V Re(¥)U — VU2V (1+ 7).

We have B = Ve, hence

(1= IB)B=e"((1—|[V])V —2Re()|V|*V - [V [?VS (D)),
where S(¥) = e?R¢(Y) _1 — 29Re(W) is nonlinear in ¥. We add these relations and obtain

n(1=[AP) A+ (1= =[BP)B = V(n+1-n)e")(1-|V) —2Re(T)[V[?)

n(1=n)(VCG(Y) + VCH (V)
+ (1= VAV = 2[V]PVRe(D)T — VT2V (1 + )
— (1=n)eY|V|2VS(D). (2.1.7)

Now adding the computations (2.1.5), (2.1.6) and (2.1.7) in —icO,0 — Av — (1 — [v|?)v =0 yields

+

V(n+(1-n )< “a“VJrL'(\I/))

(B — icOp, V)T + 2]V |2V Re(V)T + [VI2V (1 + T))

+V(1—-n)e (|V|QS( ) —VU.VY)
—ic0,nV¢ =V AnC —2Vn.V(VC) — n(1l — n)(VLG(Z) + VCH (¥)) = 0. (2.1.8)
We divide by n+ (1 —n)e?, which is allowed since n+ (1 —n)e? =1+ (1—n)(e¥ —1) and in {n+#1},
0| < I‘il\
enough, in {n+#1}, we have |e¥ — 1| <1/2. We also remark that

(1—-n)e¥ e’ —1
(n+(1—n)e?) _(1_n)+n(1_n)<n+(1—n)e‘y>’

therefore (2.1.8) become

K||®| oo(r2) < KCo by our assumption || ®||zer2) < Co, therefore, choosing Cy small

E—icd,,V +VL(¥

)
LV (1= ) (~VE.VT + |V 2S(D))
ey (0 )Y+ 2V EVR(D)T + VIRV (14 )
+R1(¥) = 0,
where
Ri(¥) := m( 1c0y,mVC —VANC —2Vn.V(VC) —n(1 —n)(VCG(P) + VCH (¥)))

4 1 9
+ V(- n)<m>(v\p.w+ IV [25(®)).

Remark that R1(¥) is nonzero only in the rings where n(1 —n) #0, i.e. 1 <7 <2, since every term
has either 9,.,m, An or n(1—n) as a factor. Furthermore they all have as an additional factor ¢,V (,
S or VU.VV. Hence, if we suppose that |¥|, |[V¥|,|V2¥| < KCy in the rings (which is a consequence
of =V and [|®||c2(r2) < Co), then those terms can be bounded by C’||‘I/H%1({1<,:<2}). Therefore
if U], VY[, |V2¥| < KCp in the rings, then

| Ry (0)] + [VRU(D)| < K[| W][E0 <reon < K @l 227 <2



48 SMOOTH BRANCH OF TRAVELLING WAVES

for some universal constant K > 0, since in the rings, V is bounded from below by a nonzero
constant. Now, we use

— 41— )i
+1-nen) T T gyt

to compute
n (B —ic0,,V) U =n(E —icd,,V)T + Ry(V),

where (n+(1—mn)e?)

(1—e")(E - ic@xQV)\Ij

Ro(W):=n(1 =) ==

We show easily that Ro(¥) satisfies the same estimates as R;(V). Remark that, using & =V7,

'm(2|V|2V9&e(W)\P+|V\Il|2V(1+\I/)) =
e CRAOVIE 4 0V 0)] < Kol
and
V(e @0 + 0PV +0) )| < K10l

if || @ Loe(r2) < Co (so that the term in e¥ is bounded) since n#0 only if 7 <2. We define
n 2 2
R(V):=R:i(¥) + Rao(¥) + 2[VIPVRe(V)U + VIV (1 + 1)),
(V) := R (V) + Ro(V) (nJr(lin)e@)(l PV R(V)W + [V V(1 + W)
which satisfies

[R(D)|, [V(R(D))| < K[|®[|Z2 (<)

for some universal constant K > 0, provided that [|®[/c2r2) < Co. The equation (2.1.8) then
becomes

E—icd,V+VL(9)+V(1—n)(=VE.VU +|V[2S(¥))
+n(E —ic0, V)T +R(T) = 0.
Now we finish by using —icV0,,¥ = —nicV0,, ¥ — (1 — 1)icV0,,¥ and
Dy, VU + 0, UV =0, @
to obtain
VL' (¥) +n(E —icd, V)W —icndy,® + V(1 —n)(=VE.VU + |V [2S(¥)) + R(¥) =0.
Finally, since we have shown that L(®)=(E —icd,,V)¥ + L'(¥)V, we infer
VL' (U)+n(E —icdp,V) U =nL(®)+ (1—n)VL' (V).
The proof is complete. O

2.1.3 Setup of the norms

For a given o € R, we define, similarly as in [11] and [29], for ¥ = Uy +i Wy and h = h; + ihg, the
norms

1U)so.a = IV¥]lc2qrgay
+ [P0 Loz + 72OV Loz 2y + (72T OV | Lo (21
+ ([P Loz oy + |7V Vs Lo sy + 72OV Loc (7 21),
[Allss,o.a = [[Vhllcrarga
+ 7R | Loz 2y + 172 TOV R Lo (> 20)
>

+ (172 hal| Loz 2 + P27V hal Lo (72 2)),
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where 7 =min (r1,7_1) (which depends on d). These are the spaces we shall use for the inversion
of the linear operator for suitable values of o.
This norm is not the “natural” energy norm that we could expect, for instance:

||‘I’H%{V1=A>LJV¢|2+(1—|V|2)|<I>|2+9‘{e(17c1>)2.

In particular, we require different conditions on the decay at infinity (with, in a way, less decay).
As a consequence, the decay we have in Theorem 1.3.1 is not optimal (see [22]). This decay will be
recovered later on by showing that the solution has finite energy. The main advantage of the norms
[Il4,0,a and ||.|[s+,0,a is that they will allow us to have uniform estimates on the error, without
constants depending on ¢ or d.

We are looking for a solution ¥ on a space of symmetric functions: we suppose that
Vo = (z1,72) € R%, U(x1, 22) = ¥(21, —22) = ¥(—21, 72)

because V' and the equation has the same symmetries. With only those symmetries we will not be
able to invert the linearized operator because it has a kernel, we also need an orthogonal condition.
We define

Za(x) :=0aV () (7)(4r1) + 71(4r 1)),

where 7] is the same function as the one used for v: it is a C°° non negative smooth cutoff with
7(r)=11if r<1and 0if r >2. In particular Z4(z)=01if 7 >1/2, which will make some computations
easier. The other interest of the cutoff function is that without it

AV (x) =—0,,ViV_1 4 0,,V_1V1
is not integrable in all R%2. We define the Banach spaces we shall use for inverting the linear part:
Exo,di=
{@=VVeCR2C),||¥|x,0,a < +00; (®, Zg) =0; Vo € R%, W(x1, x2) = ¥(21, —22) = U(—21,22) },
Eiv,orai={VheCYR2,C), ||h|lss,0r,a<+00}

for 0,0’ € R. We shall omit the subscript d in the construction and use only &, », Ewx 0. Remark
that &, , contains an orthogonality condition as well as the symmetries.

Our first goal is to invert the linearized operator. This is a difficult part, which requires a lot
of computations and critical elliptic estimates. The next subsection is devoted to the proof of the
elliptic tools use in the proof of the inversion. In particular, our paper diverges here from [29] (see
Remark 2.1.11 thereafter).

2.1.4 Some elliptic estimates

In this subsection, we provide some tools for elliptic estimate adapted to L°° norms.

2.1.4.1 Weighted L°° estimates on a Laplacian problem

Lemma 2.1.8. Ford>5,0<a<1, there exists a constant K (o) >0 such that, for f € C°(R2,C)
such that

V($1,IE2)€R2, f(lﬁl,%g):*f(l'l,*l'g)
and with

efa= (@) 1+ poome) < +o0,

there exists a unique C*(R?) function ¢ such that
AC=f
in the distribution sense,
V(w1,22) €ER?, - ((21,22) = — (21, —22)



50 SMOOTH BRANCH OF TRAVELLING WAVES

and ( satisfies the following two estimates:

Ve e R2,|¢(z)] g%

and

K(o)ey

2 ,Q
Remark here that for a given function f, if it satisfies two inequalities with different values

of (ef,q, @), then the associated function ¢ satisfies the estimates with both sets of values by

uniqueness. Furthermore, with only the hypothesis f € C°(IR?), we do not have ¢ € C%(IR?) a priori.

Proof. The uniqueness of such a function ¢ is a consequence of the fact that ¢ is bounded (by
vz e R?,|¢(x)| < fi—f)“a) the linearity of the Laplacian, and that the only weak solution to A =0
that tends to 0 at infinity is 0. We define

C:=Gxf,

where G is the fundamental solution of the Laplacian in dimension 2, namely G(z) := %ln(|x|)
Since || f(z)(1+7)2T%| Loo(r2) < +00, we check that ¢ is well defined. Let us show that ¢ € C*(R?,
C). If feC (R?), then, for je {1,2},

C(l""hé’j)_g(m) _ L/ 1n(|$—Y|))f(Y+h€j)_f(Y)dY

| 2 Re |

. %A{anﬂx —Y))dy,f (V) dY

when |h| — 0. Then, for € >0,

1
2T

/ Il =Yy ) dy' < K@)V £ 1=t

and by integration by parts,

1 1
37 o Y DOy = o [ By
— o[ eV ) SV)E;Tdo
2m 9B(x,¢e)

. 1 S 5 .
and since ‘EfaB(a;,a)anx —Y|))f(Y)ej.1/da‘ S K| fllpe(r2)e|In(e)|, taking e — 0 we deduce that

((z+hé)—((x) 1 =
| =57 [l =Y 1)y, f(¥)dY = 27%14%* |2f()

when |h|— 0. This implies that, for f € C2°(R?),
Vi) =5 [ i)Y
2’/T R2 |£L' — Y|2
Now, for f € C°(IR?, ©) such that | f(z)(1 4+ 7)?T%||Le(r2) < +00, we take f, € C°(R?, C) such
that f,— f in L3(R?) and (1+7)*/2f,— (1+7)*/2f in L'(IR?) (we check easily that f e L3(RR?)
and (1+7)%/2f € L'(R?)). In particular, f, — f in L'(IR?). Then, for ¢, such that A¢, = f,, we
check that, by Holder inequality,

'vcn@c) ;NAW_ el )dY‘<%/ %dy

/3
[fn(Y) = F(Y)] 4y . / awv ) Kl
/{Ix—Ylgl} |z —Y| Shn=Fllzwe) (le—v|<1} |z — Y [>/? < K| fo— fllzsme)
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and

1Y) = 1Y), -
/{la: Y|>1} Y| Y<lifo= fllzme),

|z —

therefore VQHHQ—;fRQﬁf(Y)dY uniformly in R2.

Similarly, we estimate

)= [ Wiz = \ o [ 500 = ) =Y Dy

2/3
/ |f2(Y) = f(Y)| In(Jz =YY < | fn— f||L3(JR2)</ In(|z —Y|)|3/2dY>
{lo-v|<1) {le-YI<1}
< K| fo— flloswe
and

/ [fa(Y) = FV)[In(lz = Y DAY < K[[(1+7)2 fu = (1+7)*2f || 11(r2),
{lz—Y|>1}

thus ¢, — G * f = ¢ uniformly in IR?, which implies by differentiation of a sequence of functions,
that ¢ € C*(R? C) and
1
V@)= 5= [ TR0y

We check that ( satisfies
AC=f
in the distribution sense. Indeed, for ¢ € C°(IR?), (see [12], chapter 2, Theorem 1)

[@snae= [ rceao= [

V(z1,22) €ER?, - ((21,22) = —((21, —22).
Now, if |z — dé;1]| < 1, we check that

It is also easy to check that

1 dy
< — — < <
V()] \K[R2|Y||f(ac Y)|dY\K5f7a[RQ|Y|(1_H:(Y_x))yra < Key,a,

and, similarly,

(@) < Kef,a

which is enough to show the required estimate of this lemma for these values of z. We can make
the same estimate if |z + déj| < 1, we therefore suppose from now on that |x —déi|, |x +dér| > 1.
First, let us show that

/ f(Y)dY:/ F(Y)dY =0. (2.1.9)
{riz0} {ri<0}

Ef o
odd with respect to x2, (2.1.9) holds. We deduce that

The integrals are well defined because |f(x)| < and therefore f is integrable. Since f is

1 r—Y T —del
Vv < — — — Y)dY
IV(()l o /{Y1>O}<|$_Y|2 |x—del|2)f( )

1 r—Y r+déy

—_— — Y)dY|.
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Now, using | f(z)] < (1?;%’ we estimate
x—Y x —dél dy
2n|V{(x)| < € — =
Vel < eraf IR o T 0
z-Y x+déy dy

+ € /
" <o)

By the change of variable Y = Z + déj, we have

|t —Y ]2 |z+de2|(14+r_i(Y))2+e

r=Y z-—dea day
/{Y1>0} [z =Y fe—déP|(1+r(Y))*+*
_ (x—dér)—Z _ x—dey dZ
a /{Zl>d} ((z—de1) =27 [z —dei?|(1+]2])*+
< / (x—deét)—Z  x—dé dz
S Jrell@—de) = ZP Je—dé P (1+]Z])7 e
Now, if |Z]| > 2|z — déi|, by triangular inequality, we check that
‘ (x—de1)—Z  x—de& . K
hemce |(x —dé&l)—Z]2 |z —dé&|?|~ |z —dé|’
/ (x—den)—Z  x—dé dz
(2152 —azi)| Tz —de) = 2P~ o= daP| T+ 127

K dzZ K(a)

< —— =7 < = . 2.1.10
|.Z'—d€1| {\Z|22\x—d€‘1\}(1+|zl)2+a |£I)—d€1|1+a ( )
We now work for |Z| < 2|z — déi|. We remark that
(x—dei)—Z  x—deé 2 am 2
Ge—de) 2P e —dep| " I md) =2
= [z —dé)(|z —déi | - [(x — déy) = Z|*) = Z|w — déi?|
= |(z—dé1)(2(w —dé1).Z - |Z|?) = Z|z — d&y ||
= [((z—dé) - 2)(2(x — dé1).Z —|Z|*) = Z|(x — dé1) — Z|?|
de Z Z Z .
~ (o dei) - 2)12]| {E=9D =2 (200 @n|||zorﬂu@nzw
and we estimate
(x—dé1)—7Z B oy
=t “1w| {77l dE -2
d€1) Z
< . 7 = - = —
< 2lo-dal + |{E=9H=Z (|2 medm -2
Furthermore,
w, 2y — 2\ 1221 — deyy — 212

= [((z— 5) )|Z|2+Z|(ir*d61) zZP?1?
= [(z—der) = ZPIZ|*+|Z)P|(2 — dé&1) — Z[* + 2(x — dé1 — Z).Z| Z | (x — der) — Z|?
= |(w—der) = ZPIZP(~|Z ] +|(z — dé1) — Z* + 2(x — dé1).Z)
= [(z—dé1) = Z||ZP|z — der P,
therefore

(x—dé&l)—Z x —déy

31|
de@zv|xda2

STe—del x|« —de) — 2]

We deduce that

/ (x—dér)—Z _ x—dey dZ
(1z|<2le—dan}| [(x —der) = Z]* |z —dei)?| (1+]|Z])*+
3 |Z|dZ

< ——= = .
|$*d61| {‘Z|<2|x_da|}|(lﬂ*del)*Z|(1+|Z|)2+a
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|z — dei|

We remark that, either |(z —de1) — Z| >———, and then
/ |Z|dZ
{|Z\gz\zfda\}m{\(xfda)fzg@}|(9E*dgl)*Z|(1+|Z|)2+“
2 |Z|dZ
= |x—d€1| {lZ‘<2|zida‘}m{‘(zideﬂl)iz‘>\w—zd?ﬂ}(l+|Z|)2+a

K(a)
S w—da”

|z — dei|
2

, and then |Z| > lx_—;e”, therefore

since a <1, or |(x —dé1) — Z| <
|Z|dZ

/{z|<2zda}m{|(xda)z<ﬂ”;5} ((z —der) — Z|(1+|Z])>*

< / |Z|dZ
h {Lﬂg\zlﬁ\x—dalﬂ(ﬂ”_da)_Z|(1+|Z|)2+a
<« K / __1Z2ldz
[z —dei* ™ J{ 1z - (2 —ae)|<8la—azi|} | (¥ — d€1) — Z|
< Faar
We conclude that
(x—dér)—Z x —deéy dz K(a)

(2.1.11)

/{|Z<2|rd51}

Combining (2.1.9) and (2.1.11), and by symmetry, we deduce that

(z—dé)—Z2 |z —de2|(1+|Z])2e |z —deyt+e

x=Y z-—d& dy
/{y1>o} [z =Y |o—dei?|(1+r(Y))> T
+/ r=Y  z+deé dY
<oyl [z =Y [? e +de [ (1T+r(Y))*+e
_ K@ K(a)
S|z —de|tte x4 deéi e
K(a)

and therefore (recall that |z —déi|, |z +déi| > 1),

Now, let us show that {(z) — 0 when |z| — co. We recall that

(@)=5 [ nllr =Y ) F(¥)ay.

and since [, f(Y)dY =0, for large values of x (in particular |z|>d),

(o) == 1n< |z — V| )f(Y)dY.

T2 e 2]

If |z — Y| <1, then | f(Y)| < —=22 _ hence

(14 |z])2+o?
|:17Y|) ‘ Kef.a /
In fY) € ——=— In(lz = Y|) —In(|z
/{zY@} < || ) (1+Jz])2te {|m—Y|<1}| ( ) (Il

Key o(1+1n(|z]))
S (I [x])re

—0



54 SMOOTH BRANCH OF TRAVELLING WAVES

when . — oco. If |z — Y| > 1, then ln( ‘w‘;‘yl ) — 0 when || — oo and we recall that f is bounded

in L. We have, for |z| > 2 that |z — Y| < |z|(Jy| + 2) and therefore, for |2 — Y| > 1, || > 2,

ln(lw‘;‘y‘ )‘ < KIn(ly| +2), hence

'1{zy>1}1n('x|z|y | )f(Y)' < KIn()Y|+2)f(Y) € L\(R2, C).

By dominated convergence theorem, we deduce that {(z) — 0 when |z| — co. Now, to estimate ,
we integrate from infinity. For instance, in the case x; >0, z2 >0, we estimate

+oo +oo dt K{;‘f,a

(I + |z —déi]+ )+ = a(l+7(2))*

¢(2)] <

0z, (21, t)dt‘ < st_,a/

T2 T2

2.1.4.2 Fundamental solution for —A + 2

We will use the fundamental solution of —A 41 and its following properties.

Lemma 2.1.9. ([1]) The fundamental solution of —A + 1 in R? is %KO(H), where Ky is the
modified Bessel function of second kind. It satifies Ko € C°(R**) and

o
2r

Ko(”f') ~r 0 7111(7“),

T _
K(S(’I“) ~r—oo T4/ 2_7“6 ",

1
K4(r) ~r—o0 -

Vr >0, Ko(r) >0,K)(r)<0 and K{(r)>0.

—r

KO(T) ~Npr—oo e,

Proof. The first three equivalents are respectively equations 9.7.2, 9.6.8 and 9.7.4 of [1]. The
fourth one can be deduced from equations 9.6.27 and 9.6.9 of [1]. For v € N, K, is C*°(R, R) since
it solves 9.6.1 of [1] and from the end of 9.6 of [1], we have that K, has no zeros. In particular
with the asymptotics of 9.6.8, this implies that K, (r) > 0. Furthermore, from 9.6.27 of [1], we have

Kj=—-K <0 and K = —K{="% 5, O

We end this subsection by the proof an elliptic estimate that will be used in the proof of
Proposition 2.1.17.

Lemma 2.1.10. For any a> 0, there exists a constant C(«) >0 such that, for any d > 1, if two
real-valued functions ¥ € H(R?), h € CO(R?) satisfy in the distribution sense

(—A+2)T=h,
and
[(L+F)*h | poo(rz) < +o0,

then ¥ € C1(R?) with
C@(1+7)*R L~ (wr2)
(14+7) '

MES\AIIS

Proof. The fundamental solution of —A + 2 in R? is %Ko(ﬁ |.|) where Kj is the modified Bessel
function of the second kind with the properties described in Lemma 2.1.9. Since ¥ € H'(IR?) and
the equation —A + 2 is strictly elliptic, we have

1
¥ =5—Ko(V2].]) h,
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therefore (using Ky > 0), for € R2,
dy
U(z)| < K||(14+7)%h|| g Ko(V2|z =Y |)——ir
@) KN+ | Fo(vVEle =Y Ry
If |t — déy| <1 or |z +déi| <1, we have
1
Ko(V2|x =Y |)m——=dY < | Ko(V2[z-Y|)dY < | Ko(v2|Y|)dY <K,
ol VBl =¥ ) ey < [ Kol(vBla =¥ )iy < [ Kol /2Y)
therefore the estimate holds. We now suppose that |z — déi|, |z + déi| > 1. We decompose
/KO(\/§|x—Y|)~;dY=/ Ko(ﬂ|x—Y|)L_,
R (1+7(Y))" {(vi>0} (1+[Y —def)e
dy
+ Ko(V2|z—-Y —,
{vi<0} (V2 |)(1+|Y+dn€1|)a
and we estimate, by a change of variable,
day dy
Ko(V2|r—-Y|)—F—+—< Ko(v2)Y = .
Sy 02 =Y D e < [ ol =g
Now, if |Y| g‘x_—zda‘, by Lemma 2.1.9 we have
dy
Ko(v2)Y =
/{|Y<w;?1} oV |)(1+|ﬂc—d€1—Y|)"
),
S — =14 Ko(V2[Y])dY
(1+ |z —déi|)™ {‘Ylg\z—;?ﬂ} (valv))
K
S 707
(T + e —dae
If Y| 2%‘1’7&', by Lemma 2.1.9 we have
dy
Ko(V2|Y =
/{|Y>zzd?1} 0( | |)(1+|:L'fd617Y|)a
< Kef|x7deﬁ1|/4/ 67|Y\/4dY
{Ivix=gall
< Ko
(14 |z —deéy|)e
By symmetry, we have
dy K
Ko(V2]|z-Y g S STa
/{Ylgo} o( V2] |)(1+|Y+del|)a (1+ |z +dei])>
and this shows that
K 14+7)*h|| L=
|\I/(:E)|< (Oé)”( —l—’l‘) HL (]RQ). (2112)

(1+7(2))"

For VWU, we have the similar integral form

1
VU=V (Ko(V2]))

Once again, we can show the estimate if |z —déi| <1 or |z + déj| < 1, and otherwise, we estimate

as previously

VU (z)| < KH(l+f)ah||Loo(]Rz)A>\2|VK0(\/§|fE*Ym(1+f1(y))ady
< KH(l+f)ah||Lw(R2>A;K6(‘/§|x_Ym(1+fl(y))ady
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since K( <0 (from Lemma 2.1.9). Now, we can do the same computation as for the estimation of
|¥|, using the properties of K{ instead of Ky in Lemma 2.1.9. The same proof works, since the
two main ingredients were the integrability near 0 and an exponential decay at infinity of Ky, and
— K verifies this too. We deduce

Cle)|(1+7) Rl

V@IS =T 7 @)e

(2.1.13) O

Remark 2.1.11. Lemma 2.1.10 is different from the equivalent one of [29] for the gradient, which
is equation (5.21) there. They claim that:
for any 0 < o < 1, there exists C' > 0 such that, if two real-valued functions ¥ € C'(RR?),
h € CO(R?) satisfy
(—A+2)T=h

in the distribution sense, and

FU 1+ )4 ety + [T 72 ey + (L4 ) oreny < 00,
then
Cll(1+7)'T7h| Lo (r2)

<
|\II|\ (1 +7Z)1+0

and
Cll(1+7)"Fh] Lo (m2)

U < =
|v | (1+,r)2+<7

The main difference they claim would be a stronger decay for the gradient. However, such a result
can not hold, because of the following counterexample:

0 if ||
Pe(@) =4 _sin?(r) |
(147)2+e

For € >0 small enough (in particular such that é>> %, and such that é is an integer multiple of T,
so that U, is C?), we have

10+ 7)1 () | e ey = (L4 7)o (A 4 2)0) (@) | oo < K2
and
(14 7)*T7 VO (2)]|| poo(mzy = 1/ 2.

CllA+ )R oo (r2)

SR can not hold.

Therefore, taking £ — 0, we see that the estimate |V (z)| <

For our proof of the inversion of the linearized operator (Proposition 2.1.17 below), we did not
choose the same norms ||.||«,o,a and ||.||««,07,a as in [29] (at the beginning of subsection 2.1.3). In
particular, we require decays on the second derivatives for ||.||s,07,a. Our proof of the inversion of
the linearized operator (the equivalent of Lemma 5.1 of [29]) will be different, and will follow more
closely the proof of [11].

2.1.4.3 Estimates for the Gross-Pitaevskii kernels

We are interested here in solving the following equation on 9, given a source term h and c€ }0, V2 [:
—1€0y, 10 — A + 2Re(1)) = h.

It will appear in the inversion of the linearized operator around V. See Lemma 2.1.15 for the exact
result. We give here a way to construct a solution formally. We will highlight all the important
quantities, as well as all the difficulties that arise when trying to solve this equation rigorously.

In this subsection, we want to check that a solution of this equation, with 1 = 11 4 )9 and
h=hy+ihs (where 11, 9, h1, ho are real valued) can be written

’lblzKo*hl—f—CH, (2114)
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with H a function that satisfies
Og ;H := K j* h,
and
Op ho=Gj—cKjxh, (2.1.15)
where similarly G; satisfies
02,G = (Lj  — Rj ) x ho,

where, for j, ke {1,2}, E=(&,6)eR?,

O T e[ 20e P - 26

ey £a28;

O ferraigr-og
—~ 2¢.
o) §264%

TP 21E P - 28)

and
Eﬁm?%%

We will check later on that, for continuous and sufficiently decaying functions h, these quantities
are well defined, and that H, G, 12 can be defined from there derivatives. The Gross-Pitaevskii
kernels, Ko, K, L; 1, and the Riesz kernels R; ; have been studied in [19], and we will recall some
of the results obtained there.

We write the system in real and imaginary part:

{ COpy2 — Atp1 + 2991 =hy
_Caxzwl — A’lbg = hg.

Now, taking the Fourier transform of the system, we have

i&ctn + (1€ + 2t =
—i&cr + |2 = ho,

EP+2 ice \( b \_( M
—ick €7 )\ s Y

Here, we suppose that 1 is a tempered distributions and h € LP(R?, C) for some p > 1.
Now, we want to invert the matrix, and for that, we have to divide by its determinant, |£|*+
2|€|2 — ¢2¢2. For 0 < ¢ <+/2, this quantity is zero only for £ =0. Thus, for £ 0,

121 _ 1 |§|2hA1jiC§2hAQA
P2 €12+ 2[612 = RGN\ (|62 4+ 2)ha+ic&hy )

and we write it

which implies that

Fim €2 L —icbhy
€14 +2(€]2 - 263 e[ +2[¢2 — 263
With the definition of Ko, we have % h1 = Kohy and, defining the distribution H by
ﬁ:mﬁg, we have, for £ #£0,
—— &oh o~
A= e g
Remark that ———2 ¢ L3/2(R2,C) and thus is a tempered distribution.

€14 +2[€]2 - 263
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Now, we have

0= €L +2)hs —c&i6h
! |E*F2[612 =265 |E]*+20¢]2 - 263
We check that mﬁl =—c I/(\jl{l, and we compute
€242 L( - 63 )ch &
e A L e T s ) A R (R e )

~ Se 2 ~
thus, denoting G :%hg, we have

— 2/\ — ~
6kaj = (C Lj7k — Rj,k>h2.

/\

We therefore have that, at least formally, for ££0, —icO,,1 — A + 2Re(v)) — h(£) =0. We deduce
that there exists P € C[X7, Xo] such that —ic0,,1 — Ay + 2Re(v0) — h= P Now, if the function
and h are such that the left hand side is bounded and goes to 0 at infinity, this implies that P =0.
This will hold under a condition on ~ (which will be fR2h2 =0 and some decay estimates, that ¢
will inherit). Another remark is that v is here in part defined through its derivatives, and we need
an argument to construct a primitive. See Lemma 2.1.15 for a rigorous proof of this construction.
Remark that —ic0;,% — A + 29Re(1)) = 0 has some nonzero or unbounded polynomial solutions,
for instance ¥ =1 or Y =ixo— %

The kernels Ky, K; and L; j have been studied in details in [19], [21] and [22]. In particular,
we recall the following result.

Theorem 2.1.12. ([19], Theorems 5 and 6) For K€ {Ko, K;,L; i} and any 0<co<+v/2, there
exist a constant K (cg) >0 such that, for all 0<c<co,
K(CO)
Klz)| <
o V21 + [ )2

K(Co)
VK < .
VKOS TBra T 2y

and

Proof. This is the main result of Theorems 5 and 6 of [19]. We added the fact that the constant K
is uniform in ¢, given that c is small. This can be easily shown by following the proof of Theorem
5 and 6 of [19], and verifying that the constants depends only on weighed L norms on K and its
first derivatives, which are uniforms in c¢ if ¢> 0 is small. The condition ¢ < ¢q is taken in ordrer
to avoid ¢ — /2, where this does not hold (the singularity near £ =0 of K changes of order at the
limit). We will take often ¢y =1. Furthermore, the factor 1/2 for the growth near =0 is not at
all optimal, but we will not require more here.

Remark that the speed in [19] is in the direction &, whereas it is in the direction &, in our case,
which explains the swap between £; and &; in the two papers. O

We recall that 7 = min (rq, 7—1) with r41 = |x F déi|, % <d< % We give some estimates of
convolution with these kernels.

Lemma 2.1.13. Take K € {KO, Kj,Lj,k} and h € C°(R?,R), and suppose that, for some a>0,
|R(14-7)%|| Loo(r2) < +00. Then, for any 0<a’<a, there exists C(a,a’) >0 such that, for 0<c<1,
if either

- a<?2
— 2<a<3,V(r1,22) €R% h(—x1,22) = h(x1,72) and fRtho,

then
(o, @)||R(1 +7)%| oo(m2)
(1+7)

|K*h|<c
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Furthermore, if o <3 (without any other conditions), then

(v, |1+ )7 poeqrer)
(1+7)e

|VK*h|<C

The symmetry and | r2N="0 in the case 2 <« <3 could be removed, if we suppose instead that
f{z1>0)h = fmgO)h =0. In particular, if we suppose that V(z1, z2) € R2, h(z1, z2) = —h(x1, —x2),
then the condition || r2N =0 is automatically satisfied.

Proof. First, since a > 0, h € LP(R2, C) for some large p > 1 (depdending on «), and VK,
K € Li(R?,C) for any %> g >1 by Theorem 2.1.12, thus K * h and VK * h are well defined. We
only look at the estimates for x € R? with 21 > 0. The case £; <0 can be done similarly. In this
case, we have 7(z) = |z — d.€]].

We first look at the case 0 < a < 2. By Theorem 2.1.12 and the change of variables z=x — y,
we have

| K« h|(x)
< Cllh(1+7)| / dy
S L>°(R?2 ~
T Jre o — y 21+ o — y )21+ 7 (y))®
. dy
< C(Q)[[M(1+ 7)Y poo(re =
T ool —y P20+ |z — )32 + |y — dés])
- dy
+ C()||h(1+7)*] o R2/ §
T i <orle =y 720+ [z — y])372(1 + [y + dei])
dz
< Cla)||h(1+7)%|| 1 2/
( )” ( ) ”L (R2) R2|Z|1/2(1+|Z|)3/2(1+|Z*(:Efde_i”)a
dz
+ C(a)||h(1+7)*|| g 2/ . (2.1.16)
( )” ( ) ”L (R?) ]R2|Z|1/2(1+|Z|)3/2(1+|Z—(l‘+d€1)|)o‘

dz

We focus on the estimation of fR2 2172+ 12)372(1 + | — (z — d&)|)e

I |z —deéi] <1, since a >0,

dz dz
§ <C(a)/ <C(a).
[RZIZII/Q(1 +12)*2(1+ |2 — (& — déy) ) Rr2|2|Y2(1 4 |2])¥2(1 + |2])=

Now, for |z — déi| > 1, we decompose

dz
Az|z|1/2<1+|z|>3/2<1+|z— (v —dey)|)”
- dz
Mgz min 2P+ 2P0+ | — (- de)])e
N / dz .
{13228 2 [P2(1+ 2721+ |2 — (2 — déy) )

In {|Z|<|z+dal}, we have |z — (z —dé1)| > |I72d‘?1| and |z — (z —dé1)| > |#|, thus, since « —a’>0

and |x —déj| =1,

dz
/{|z|<w;a}|z|1/2<1+|z|>3/2<1+ o= (@ —den))”

< C / dz

T e —dél a2 PR+ 2P+ [z])o
Cla—a')

X |$—d€1|a/
Cla—a',a’)

S (L |z —de))e”

|z — d&i| déy)|

In {|z|> 5 },we have |z|>%since

|2 = (z —der)| <[z] + o —déi| <z + 2|2 < 3[z],
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|z — dei|

and [2| > K(1+ |z]) since [2| >+

> % We then estimate, with 0 <o’/ < a <2,

dz
/{zXﬁ} 221+ ]2])*2(1+ |2 — (& — déy)|)™
< C / dz
S W=l (s iegeiy (T P (4o — (2 - dep)])e

C(a,a) / dz
(1+|x— dé’1|)a' r2(1+1]z—(x — d€1)|)2+a—a/
i
< Cloa)
(1+ |z —déi])>
With similar computations, we check that, since 1 >0,
/ dz Cla—d,a) Cla—d,a)
- < — 7 < — 7
r2|z|V2(1+ |2)%2(1 + |z — (z +dey)|)e ~ (1 + |z +dér])e” ~ (1+ |z —dér|)>

Therefore, for 0 < a < 2, we have

(a— o', @) [h(1+7)* || = (r2)
(1+7)

Now, if we consider VK instead of K and « < 3, a similar proof gives the result. The only change

|K*h|<c

is that we now use 3 — &’ > 0 since o’ < o < 3 in the estimate of the integral in {|z| > ‘z;del‘ },

with the extra decay coming from VK instead of K.
We now look at the case 2 < o < 3 and fRQh = 0. In particular, since a > 2, we indeed have

h € LY(R?). For 7(x) = |z — dé1| < 1, the proof is the same as in the case a < 2.
We now suppose that 7(z) = |z — déi| > 1. Since [,h=0 and Yz € R2, h(—z1, 2) = h(w1, 72),

we have
/ h(y)dy=/ h(y)dy =0,
{y1<0} {y120}

/ K(z+d€1)h(y)dy:/ K (2 — dé)h(y)dy =0.
{y1<0}

{y120}

hence

Therefore, we decompose

() (@)
— | [ K=

/ (K=K da))h(y)dy‘ ;

/ (=)~ K dai))h(y)dy

/ K (2 — y) — K (z — d&)||h(y)|dy
{y1=>0IN{|ly —dei|< |z —dei|/2}

+ K (2 —y) — K(x — dé1)||h(y)|dy

{y120N{|lz—y|<|z—dei]/2)

+ K (x —y) — K(x —den)||h(y)|dy.

/{y1>0}ﬁ{|96y?Ida/mﬁ{yda?Idal/?}

+ K (x —y) — K(x+deé1)[[h(y)|dy.
(y1<0)

In {y1>0}N{|y—deéi| <|z —dei|/2}, by Theorem 2.1.12,
K (2 —y) — K(x —dé)|

< |K((2—déy) — (y — dér)) — K (x — dey)|
<|yda|< sup |VK|)
B(x—dél, |z —dél|/2)
Cly — déi|

= (Lt fe—dal)®
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With |z —déi| > 1, o< 3 and the fact that in {y >0} N {|y —de1|<|z —dé1|/2}, 7(y) =y — déil,

we estimate

/ K (@ — ) — K — dé) | [h(y)ldy
{y1=20N{|ly—dei| < |z —déi|/2)

ClIh(L+7)%|[L=ma)|y — déi]
< s < dy
ly—dé|<|o—azy) 2 (L + [z —dei])3(1 + |y — deil)
< C|h(1+f)a||L°°(R2)/ ly — déi y
(I+lz—dei])®  Jyy—aeri<jo—azyya(1+ ]y —dei])>
Ch(1 4+ 7|00
< [h(1+7) ||£ ng)/ |2 _d:
(1+ |z — deil) 1z|<|o—dzr /2 (1 +12])
< C(a)|h(1+7)¥|| Lo (r2) " 1
h (1+ [z —deil)3 (1+ |z —déyf)—3
o C(a)|h(1+ 7)Y oo (r2)
h (1+ |z —dei|)™

Now, in {y1 >0} N{|z — y| <|z —déi|/2}, we have |y — dé1| > |z — dé1|/2, and thus

C()|h(1+7)* || Lo(m2)
Ih(y)l < A+lz—da)>

We deduce that

/ K (z — ) — Kz — dé)||h(y)ldy
{y120N{|lz —y| < |z —dei|/2}

C|h(147)|| Loo(r2)

< = Kr—vy — K(z—de} dy
frpa Ky K—da)
MLl
< = K(x—y)|dy+ |K(x —dey / dy
(1+ o —deyf) {|x—y|<\z—da\/2}| ( ) . ) o—y|<|z—dei|/2)
CIh(1 + 7)*|| po(r2 ) :
< (1+Ix—de*1|)g ) /{||< dﬁ‘/2)|K(z)|dz+|K(:z:—del)||xfdel|2
ClA+) o~m .
< = In(1 — deé; 1
At —daps nl+le—da)+1)
_ Ola=a)[lh(1+7)*| ()

(1 + |z — dei))
since |x —déi| > 1.
Now, in {y1 >0} N{|z —y| > |z —déi|/2} N {|y — déi| > |x — déi|/2}, we have

C

— ) — _de)l < _ —deVl < —
K (@~ 9) ~ K (e = dey)| < K (2 = )| + K @~ d63)| < =g

and
A1 +7)¥| Lo(re)
hy)| < = ;
M) < g
as well as
Ih(y)] < LD e

(1+[y —def)> -
We deduce, since o« — o’ >0, that

/ K (2 —y) — K (x —déy)||h(y)|dy.
{y1=20N{|lz —y| > |z —dei|/2iN{|ly —dei| > |z —déi|/2}

C||h(1+7:)a|L°°(]R2)/ dy
1+ o —da) 2 JsalF Jy—deie 72
Cla—a)[[h(1+7)*||L=(r2)

(1+ |z —de])™ '

AN
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We are left with the estimation of f{y |K(x —y) — K(x+dé1)||h(y)|dy. We decompose it,

1<0}

/’ K (2 —y) — K(x +déy)|[h(y)|dy
{y1<0}

K(x —y) — K(z+de)][h(y)|dy

o
/‘yl<0>ﬂ{|y+da|<w+del}

2
+ [ K (@ —y) — K (w+dé)][h(y)ldy.
{y1<0)m{|y+df?1l>“”+27€“}

In {y1<0}ﬂ{|y+dé’1| S@}, we have

Hh(l + f)a ||Loo(]R2)

h < = ;
|h(y)] (1 +y+dé))”
and
|K (2 —y) — K(z +dei)]
= |K((z+dé&) — (y+dér)) — K (z + déy)|
< |y +dé sup VK]
B(z+dél,|z+der]/2)
_Cly+da|
S (14 |z +dea)?
thus

/ _ | K(x—y) = K(x+dér)||h(y)|dy
{y1<0}m{\y+da‘<\w+7:el\}
C||h(1+f)a|Loo(Rz)/ lyeasl
(14 |z +dei])? {\y+da\<Lﬁ}(1+|y+d€1|)a
C||h(1+7~’)a”Loo(]R2) v C(Oé)
(1+ |z +dér))3 AT A=
Cla)||h(1+7)%|| Lo (m2)
1+ [z +déy])>
_ C@lIh(+7)*|| =2
S (1—|—|1‘_de“1|)a

since x1 > 0 (which implies that |z + déi| > |z — dél)).

Finally, in {5 <0} N {|y +dé| 2|z+—2da|}, we first suppose that |z — y| > |z +2df?1|7 thus

N

N

N

C

) — 2| < _ | PO
K@~ ) = K@ +d63)| < K (@~ )| + | 2+ 460 < gze
and we have
K(a)[[h(147)%| Lo (mr2)

h(y)| < ~ :
Ayl 1+ |z + déi))®

—~~|—

as well as
K(a)|[h(147)%|| Lo (r2)

h(y)| < =
N e R I

—~~|~—

We therefore estimate, since a —a’>0, |z + deéi| > |z — deéy|,

K(z—vy)— K(x+dey)l||lh d
/<y1<om{y+da>“*ja}n{|x—y|>“;?1}| (o) = Ko dliby)ldy
C|h(1+7~')a”L°°(]R2)/ 1
(1+ o +déi])> 2 Jpa (14 |y +deq|Jomo+2
Cla—a)[[h(1+7)* || ~(r2)

(1+ |z +dér])
Cla—a)[[h(1+7)* || ~(r2)
(1+ ]z —de])*’ '

S

AN
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1AL+ )|l Loo(m2)

(ENPEwEnE and we

The other case is when |z — y| < |E+—2da|, where we still have |h(y)| <
estimate
/ K (x — y) — K (x+de) [1(y)]dy
{y1<ON{lz —y| < |z+der|/2}
C||h(1+f)“|L°°(IR2>/
(I +z+de)* Jiy<onie—yl<ia+dei/
Cllh(1+7)* || L(r2)

=0 K= g)ldy+ K (o +dey)] dy)
(1+ |z +dei) (/{|zy<x+da/2} flz—y|<|e+dat]/2)

Cllh(1 +f)a|Lw(R2)</ )
= K(2)|dz+ |K(x+deéy)||x + déy|?
(14 |z +der))e {IZ\<\r+de?1|/2}| (2)] | K ( Bl 1]

C”ﬁ%’i Jé;ﬁw) (In(1+ |z +dei]) +1)
Cla—a)|A(1+7)° =)
(1+ |z +dei))™
Cla—a)|h(1+7)° =)
(1 + |z —der])o’ ’
which concludes the estimates of this lemma. O

N

|K(z—y) — K(z+dér)|dy

N

N

N

N

<

We complete these estimates with some for R; .

Lemma 2.1.14. Take h € CY(R? R) with Vo = (x1, 22) € R?, h(—x1, 22) = h(z1, 22), and suppose
that for some o >0, ||h(1 4 7)*| poo(r2) + [|[VA(1 + 7)%|| Loo(r2) < +00. Then, for any 0 <o’ < a,
for 0<c< 1, if either

a<2

2<a<3 and [;,h=0,

then, there exists C(a,a’) >0 such that

O, @) (111 +7) ey + VA +7)° )

|Rjkxh|<

(147)e
Proof. We recall from [19] (or see equation (30) of [21]) that

1 0g.klz = y* = 2(x — y);(z — Yk

Ripxh)(z) = — = J h(y)d

(Bwee) = 5 A ()dy
1 djklr —yl =2z — y)(z — Y
— : h(y) —h(z))dy. 2.1.17
sl 2 (h(y) ~ hz)dy.  (2117)

As in the proof of Lemma 2.1.13, we suppose x1 > 0. It implies that 7(z) = |x — dé|. The proof
can be done similarly if x1 <0.

First, we look at the case 0 < a < 2. We check that

/ 5j,k|x*yIQ*Q(fE*y)j(fE*y)kh(
lz—y|>1 |:E7y|4

y)dy

- h(y)ldy
\x—y\}l(l + |£L‘ - y|)2

< K|h(1 +f)a||Lw(R2)/
R2(

dy
I+ ]z —y)2(1 +7(y))>

dy
L+ [z —y[)? (1 +7(y)™

can be done exactly as the estimate of

The estimate of [,

dy
AV e =y |21+ o —y)* (1 + 7 (y))e
in the proof of Lemma 2.1.13 (see equation (2.1.16) and the proof below). We deduce that

[ o2 iy, ) KA e
lz—y|>1 |IL‘*y|4 (1+|‘r_d€1|)a/
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Now, if |z — y| <1, for 0 < a <3, we have

[VA(147)%| Loo(r2)
h(y)—h(z)|<|y—=z| sup |Vh|<|y—x — ,
) = W(w)| < ly =] sup V] <y =l =

thus
r—yl?=2(z—1y)(x -
z—y|<
K| Vh(1+7)* |L°°(JR2)/
< d
(e M LY
KHVh(l +7~’)QHLoo(]R2)
h (1+7(x))> '

This concludes the proof of the estimate in the case a < 2. We now suppose that 2 < a < 3 and
Jr2h=0. We already have estimate the second integral in (2.1.17) (since the computations were
done for 0 < a < 3), and for the first integral, the case |x —dé}| <1 is done as previously.

We now suppose that | —déi| > 1. We are left with the estimation of

/ Ople =y = 22 =)@ = Yy, g,
lz—y|>1

lz —yl*

. 2 _ .
We define F; 1(2) ::M and we check easily that, for |z]|>1,

[2]
K
|F k(2)] <Z—|2-

Since Yo € R?, h(—21, #2) = h(z1, 2) and [,k =0, we have
/ Fj,k(xfdé’l)h(y)der/ Fj ix(x+dér)h(y)dy=0.
{y120} {y1<0}

Furthermore, we estimate (since |z —déi| > 1)

/ |Fy a( — de)h(y)|dy
{y1=20N{|lz—y|<1}

| k(z — deér)| |h(y)|dy
{y1=20N{|lz—y|<1}
K

S AT e |h(y)|dy.
(I+]z— dell)Q/{y120}ﬁ{x—y<1}

K(@)[[h(1+7) ¥ Loo(r2)
(1+ |z — dexf)>

. K(a)||h(147)%||poo(r2
/ |Fj,k($*d€1)h(y)|dy< ( 1)” ( 7d)_‘ ||2L+DER).
1 >0Nfz—y|<1) (1+ |z —dei)

Similarly, since |z + déj| < |z — déy| since x1 >0,

Now, in {y1 >0} N {|z —y| <1}, we check that |h(y)|< and thus

- K(a)||h(147)%[|core)
Fj w(z+der)h(y)|dy < =
/{M@WNJ (@ + déh(y)) T To—de

Therefore, we estimate

ikl =yl =2(x —y)(@ —y)k
d h(y)d
/|x y|>1 |l’—y|4 (y) Y

< / IFj a(x — ) — F; (o — dé)|[R(y)|dy
{y >0f‘|{‘$ y|>1}

+ / |Fy 1z — ) — F i+ dé)| () dy
{y <0ﬂ{\z y|>1}

K()[[P(1+7)" | come)
(1+ |z —dey])*+e
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Now, we conclude as in the proof of Lemma 2.1.13 for the estimation of the two remaining integrals,
replacing the function K by F r, and having the domain of all integrals restricted to {|:r —yl= 1}.

We check that, in {|z]>1},
K K
Fy < < ’
[Fj.k(2)] (1+z])?

z|?
Kly|
(1+[=[)*

With these estimates replacing Theorem 2.1.12, we can do the proof of the estimates as in Lemma
2.1.13, in the case 2<a <3 and [p,h=0. O

and, in {|z —y[>1},
|Fj k(2 —y) = Fjp(2)] <

We can now solve the problem

—icOp,h — Ath + 2Re(1) = h,

A{ Im(h) =0

in some suitable spaces. We define the norms, for 0,0’ € R,

[Vll@.r0c = I(1+F) 1| poe(ma) + [ (1+7)* TV || Lo (re)
+ (L +7)2T0V21 || poo(me) + || (1 +7)° V2| Loo(m2)
+ 1@+ 7)ol poe(ma) + (14 7)2 TV || Lo (me)
and
[hlle@.oroe = [[(14+7)1H" Ryl Loome) + (1 + )27 Vhy| Loo(r2)
+ (A7) hof| oo (ma) + |(1+7)2 T Vo oo (r),
as well as the spaces
g(%oﬁ = {’(/) S 02(R2, C), H’(/)H(g),g,oo < +OO,V(£E1, $2) (S ]R2, ’(/)(161, $2) = ’(/)(—161, ZEQ)},

and
55@70/ = {h € Cl(IRQ, (D), ||h”®®7g‘/7oo < 400, V([L’l, IL'Q) S IRQ, h(IEl, xg) = h(*[L’l, 1'2)}

The norms ||.||g,0,00 and ||. s, differ only on {7 <3}, and £, has one less symmetry than &, ,.
Same remarks hold for ||.||g®,0/,00 and ||.||++,0+ and their associated spaces. Remark that if x >0
is a smooth cutoff function with value 0 on {77 < R/Q} and 1 on {77 > R}, then for any o € R,

1911+.0 < K(R, 0) IV llc2(<my + KXY @000 (2.1.18)

Lemma 2.1.15. Given 1>0'>0 >0, there exists K(o,0') >0 such that, for any h € £y , with
fRQTJm(h) =0 and 0<c<1, there exists a unique solution to the problem

=10y, — Atp 4+ 2Re(y)) = h,
in £ . This solution v € £, satisfies
[V]l@,0,00 <K (0, 0')||h 00,0700

Furthermore, if instead 0 €]—1,0[ and 1 >0’ >0, there exists then K(o,0’) >0 such that, for any
h € ESy. o with ¥(z1,x2) € R?, h(z1, x2) = h(x1, —x2), there exists a unique solution to the problem

—icOp, 1) — A+ 2Re(Y) = h
in {‘I/ €&F, V(x,20) € R2, U (1, x2) = ¥ (271, —xg)}. This solution 1 € £, satisfies

[¥ll@,0,00 S K(0: )[R0/, 00

The case o €]—1,0] is particular and such a norm will be used only in the proof of Lemma 2.1.18
(if |¥ || @,0,00 < +00 for o <0, the function ¢ is not necessarily bounded for instance). Remark that
the condition fRzﬁm(h) =0 is automatically satisfied if V(x1, z2) € R%, h(x1, x2) = h(z1, —72).
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Proof. For 1 > ¢’ > o > —1, we write in real and imaginary parts h = hy + iha. We define, for
je{1,2},
Wlmj = KO * 8zjh1 + CKj * hg.

If 1>0'>0>0, since 0;,h1,ha € LY(R?) (because 0'>0 and h€EZy /), and f]RQhQ: fwa”hl =0,
by Lemma 2.1.13 (applied with 0 <a=2+0'<3,0<a’'=2+ 0 < «), the function ¥, 5 is well
defined and satisfies

K(o,0)|Ih]|e®,0",00
A% Uy o < : — .
| 1,2| + | 172| (1 +T)2+U

This result still holds if 0 €]—1,0[ and 1 >0’ >0, since 0<a=2+0'<3,0<a’'=2+0<a. We
check, still with Lemma 2.1.13 (applied with 0 <a=2+0'<3,0<a’=2+0 <), that

K(o,0)||h]|es,0,0
(I+7)2F0

V¥ 4| <

K(o,0)hlgg,0’,00
If o0 €]—1,0[, we have |¥; 1] < (1+;)f§

even in 21, we can not apply Lemma 2.1.13 to estimate ¥ ; with the same decay in the case o > 0.
However, following the proof of Lemma 2.1.13, we check that the estimate holds if |z 4 dé1| <1 or
|x — dé1] <1, and that otherwise

by Lemma 2.1.13 (24 0 < 2). But since 0y, h; is not

K Nk o - R
W14 < (a,a)lljlg&g, 00 +'K(ac+del)/ 6x1h(y)dy+K(x—del)/ Owlh(y)dy‘.
(1+7) (51 <0) (120}
Since
{y1 <0} {y1 20} R
and
||hH®®O' o o dy2 N .o
Ah(o y2)dys \/—1+gdy2<c Ihl@s,0,0 Rw<K(UaU)C [h]l@®,0,00;
we have
'K(z+dé’1)/ 8I1h(y)dy+K(:rfdé'1)/ 8zlh(y)dy‘
{y1<0} {y1 >0}
< K(o,0")|K(z+dé1) — K(z —dé1)|c?[|h||gw,0,00-
By Theorem 2.1.12, if |z 4 déy], |z — dé1| > 1,
K K K

— _ _Jaz < <
Kz +dé)) - Kz —de)l S g rmm T Gam—da)? S a2

and, if 7 < 3d,

3 3 K Kd
_ _ < <
|K(x+dé1) — K(x d€1)|\(1+7~,)2\(1+f)3,
or if 7> 3d,
K (z+déy) — K(z —déy)| <Kd sup |[VE(x+v8)| < il
ve[—d,d] (1+7)%

therefore, by interpolation,

K (2 + déy) — K (2 — déy)| < <(1+—KT>2>1 " % (uf‘i)gyg i fg;g.

We deduce
'K(erdé’l)/ amlh(y)derK(:rfdé'l)/ 8zlh(y)dy‘
{y1 <0} {y120}
< K(o,0')|K(z+dé)) — K(z — déy)|c”||h]|ge,o07,00
K(o,0") (de)?
< W”h”t@@,o’,w
K(o,0")

X ( )2+g‘|| H®®U 00"
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Combining the previous estimates, we conclude that, for j € {1, 2},

K(o,o")||h o750
NAZWIESNSWIES ( (11‘f)||2§§’ 2, (2.1.19)

Let us show that ¥, ; € C'(R?, C) by dominated convergence theorem. For z,e € R?,
VU j(x+e) =V (@) = [ VEo(y)(0z,mm(z+e—y)—dshi(z—y))dy,
RQ
+ ¢f VEK;(y)(ho(z+e—y)—ha(z —y))dy.
RQ
We check that for any y € R?, 0, ,hi(z+¢ —y) — Op,hi(z —y) — 0, ho(z + ¢ —y) — ho(x — y) — 0
pointwise when |¢| — 0 (by continuity of d, k1 and hz), and
IVEo(y) (0,01 (x4 = y) — Oz (z — y))|
+ c|VK;(y)(ha(z +€ —y) — ha(z — y))|

< KOG, (1P
e L

< K(J,x)%ll%hl(l+7~’)2+"'||L°°<R2>

+ Ko ) (1 4+ 724 e € L)

for |e| <1 and a constant K (o, x) >0, giving the domination.

Now, we check, by taking their Fourier transforms, that 0,,¥; 2 = 9,,¥1 1 € L?(R?, C) (see
the computations at the beginning of subsection 2.1.4.3), and thus the integral of the vector field

( Y11 > on any closed curve of R? is 0. For a large constant D > 0, taking, for x; € R, the path

Wi,2
{(xlay)aye [7D,D]}U {Y:(ylayZ)ERQﬂ |($170)*Y|:D;y1>0};

K(o,0")|h o!,00
IMloo.0r00 g

since |‘I/1,2| S

(147)2+e
!/
/ | W1, <wao
{Y=(y1,y2) ER?,|(21,0)—Y|=D,y1 >0}
when D — oo (since 1+ 0 >0), we deduce that
+oo
/ U1 2(x1, y2)dy2 =0. (2.1.20)
—o0

We then define for (x1, 22) € R?,

T2
¢1($1,3€2)=/ Uy o(z1, y2)dyo,
and thus, if x5 <0, oo

T2
1/11(IE1,9€2):/ Uy (21, y2)dye.

With (2.1.19), we check that ¢; € C}(R?, C), and by simple integration from infinity using the

equations above (with 7 =min (|x — d.€1|, |z + d.€1]), and since 1+ o > 0), that

K(0.0)[h]| o 0t
< 3 bl .
|1/)1|\ (1 +7~,)1+0

Furthermore, we check that
89521/)1 = \11172 € Cl(R2, (D),
and (by taking their Fourier transforms)

6z1w1 = l11171 S CI(RQ, (D),
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therefore ¢ € C?(R?, C), and by (2.1.19),

(0,0 [hllo®.0".
(147)2Fe )

For j, ke {1,2}, we have 6§jxk1/)1:63;j\1117k, thus, by (2.1.19),

K
V| < [V |+ [P 2] <

K(o,0)|h]es,q
2 < ) ,o0",00
|V 1/}1|\ (1+f)2+0 .

Now, we define
\112,j,k = (CzLj,k — Rj,k) * h2 — CKJ' * Oxkhl

In the case 1 >0’ >0 >0, d;,h1, ha € L*(R?) and since fR2h2 = fW@xkhl =0, by Lemmas 2.1.13
and 2.1.14 (for a =2+0' <3, o/’ =24 0 <, and the same variant for K * 05, h, as in the proof
of (2.1.19)), this function is well defined in L>°(R2, C), and satisfies,

(0,0 [hllo®.o.
(147)2Fe )

We check, as for the proof of (2.1.19), that this result holds if 0 €]—1,0[ and 1 >0’ > 0.

Remark here that we do not have ¥s ; , € C}(R?, C), since in Lemma 2.1.14, the estimate on
R; 1 ho uses Vhg in the norm (showing that Wy ; € C1(IR2, C) would require estimates on V2hy).
However, we have that Wy ; ;, € C°(R? C) by dominated convergence and continuity of hy and
Oz h1 (as for VU ;). Furthermore, we check (by taking their Fourier transforms) that 0,,¥s j o=

K
W2 j,k] < (2.1.21)

0z,¥2, 5,1 in the distribution sense. We infer that the integral of ( izji ) on any bounded closed
2 Js

curve of R? is 0. Indeed, taking Y, a mollifier sequence, then y,, * Uy i1, Xn*Us o€ Cl(R?,©),
Oy (X% W2,5,2) = Oy (X % W2,5,1) = X * (02, ¥2,5,2 — 00, ¥2,5,1) =0,

therefore, for any closed curve C, the integral of the field ( Xn* g“}l > is 0. Using xn* V2 j 1— Va2 j &
n 5 J

Xn* W2 5,2

pointwise (by continuity of ¥s ; ) and the domination

| xXn* W2 j 1l Leom2) <[ W2,5,1]| Lo (m2) < +00,

2

we infer that this result holds for ( 3271 > We deduce, as for the proof of (2.1.20), that
IR

+oo
/ W2, j,2(21, y2)dyz = 0. (2.1.22)

— 00

We then define for (z1,22) €R?, j € {1, 2},

T2
Uy (1, 22) :/ Uy i 2(x1, y2)dys,
—+o0

T2
\I/Q,j(xl;xQ):/ Uy i o(x1, y2)dya.

and if x5 <0, by (2.1.22),

With arguments similar to the proof for 11, we check that W5 ;€ CH(R? C) with 8,, V2 ;= Vs ; ,

K(o,0")||h]le,0/,0
U, | < ! ~ o
| 2,J| (1+T)1+g

as well as

K(o,d")||h|g2,0%0
Uy 4] < ! - R
|V 2,J| (1 +,],,)2+o'
Finally, since 0,,Wg0=Vs 9 1=Ws 1 0=0,,V21 € L*(R? C) (by taking their Fourier transforms,
it follows from R; =Ry j, Lj r =Ly, ; and IA(jEk:I%k«fj), we have, as before, that

—+oo
/ Uy o(21, y2)dy2 =0.

We define
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T2
1/12(331,332):/ Uy o(21, y2)dyo,
and thus, if x5 <0, oo

¢2($1,$2)=/ Uy (21, y2)dys.

We check, as previously, by integration from infinity, that ¢, € C%(R?, C), &%jzkwg =Wy ; i, and

K(o,0)||h|lge,0’
2 < ) ®¥®,0',00
|v ¢2| = (1+7;)2+g )

K(o,0)|hles,0,00
< ) )

. |V¢2| X (1+f)1+‘7 )
as well as (if 0 >0)

K(o,0)|hlle®,0",00

< Sy
Remark that if h satisfies V(x1, 22) € R?, h(z1,22) = h(z1, —22), then by the definition of 1; and 1
above, for 1) = 1 + i1p2, we have that V(x1,z2) € R?, 9 (21, 22) = 1 (x1, —x2). Therefore, in the case
o €]-1,0[, since V(x1,z2) € R?, ¥a(1, x2) = —1p2(21, —22), we have 1(x1,0) =0, and we integrate

V) from the line {xQ = O} instead of infinity to show that |1)| < K(U’U(/i‘l_fll;i@’”/’“

We deduce that, in either cases, ¥ =1 +i)2 € £g ., and it satisfies

1]

Now, let us show that —icd,,1) — Ay + 29Re(p) = h. From the computations at the beginning of
subsection 2.1.4.3, we check that the Fourier transform (in the distribution sense) of both side of
the equation are equals on {5 €R2 ¢+ 0} (remark that they are both in LP(IR?, C) for some p > 2
large enough). This implies that

®,0,00 < K(0,0")||h]|g,0,00-

/\
Supp <—ic@x21/) — A+ 2%Re(y) — h) c{o},

and thus —icO;,% — A+ 2Re(y)) — h=P € C[ X1, Xo]. With the decay estimates on ¢ and h, we
check that P is bounded and goes to 0 at infinity (since o,c’ > —1), thus P=0.
Finally, if ¢ € £F, satisfies —ic0,,1) — A+ 2Re(¢p) = h, then ¢ — ¢ € C*(R?, C) and

(—icOpy — A+ 2Re) () — 1) =0.
With the computations at the beginning of subsection 2.1.4.3, since 1) — 9 is a tempered distri-

—
bution, we check that Supp ¢ — ¢ C {0}, therefore ¢ — 1) = P € C[X1, X3]. If 0 >0, since ¢ — P
goes to 0 at infinity, P=0. If o €]—1,0], then P=4A\ for some A € R (Re(y) — ¢) — 0 at infinity
and 7~ 7Jm(y) — 1/;) is bounded), and by the symmetry on v, ¥ we have in that case, A= 0. This
shows the uniqueness of a solution in £g, (with the symmetry if o €]—1,0[), and thus concludes
the proof of this lemma. O

2.1.5 Reduction of the problem

2.1.5.1 Inversion of the linearized operator

One of the key element in the inversion of the linearized operator is the computation of the kernel
for only one vortex. The kernel of the linearized operator around one vortex has been studied in
[10], with the following result.

Theorem 2.1.16. (Theorem 1.2 of [10]) Consider the linearized operator around one vortex
of degree e =+1,
Ly,

€

()= —AD — (1 — |Vo[)® + 2 Re(V.0)V..
Suppose that
@)%, = / VO + (1— [Vo[?)| B2 + Re(Vod) < +o0
]RZ
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and
Ly, (®)=0.
Then, there exist two constants ci,co € R such that

¢ = Claml‘/s + 628x2‘/€'

This result describes the kernel of Ly, that will appear in the proof of Proposition 2.1.17. It
shows that the kernel in Hy, := {® € Hy,.(R?), ||®||sr,, < +00} contains only the two elements we
expect: 0., Ve, 0.,Vz, which are due to the invariance by translation of (GP). One of the directions
will be killed by the symmetry and the other one by the orthogonality.

Now, we shall invert the linear part nL(®) + (1 — n)VL'(¥). We recall that & =V U. We first
state an a priori estimate result. We recall the definitions, for 0,0’ €]0, 1],

5*,0,(1:
{2=VUeCHR2 C), [ ¥||,0.a<+00: (B, Za) =0; Vo € R2, W(21, 22) = U (w1, —2) = U(—21,72) }
and
Eix,or,a={Vh e CHR2,C), ||hllss,0r,a < +0},
with
[P)oa = [VT|czgrea
[P0 ooz 2 + P2V U | ooz ) + |72V | Lo 2
+ 79| ooz + 1TV Loz + (|2 IV Lo (> 21,

+

[Allsx.0ra = [[VRllcrarsay
[| 71+

+

‘hl| ez + 1729 Vha || oo (22
240

+

7247 hall oo (72 + 1727 Vhal| oo (721

Proposition 2.1.17. For 1>0'>0 >0, consider the problem, in the distribution sense

NL(®) + (1 —n) VL'(¥) = Vh
O=VVel ,,Vhe .

Then, there exist constants co(o,0’) >0 small and C(o,0') >0 depending only on o and o', such
that, for any solution of this problem with 0 < c < co(o,0’), %< cd <2, it holds

1]

+0.dSC(0,0")[[A]lsx,07,a-

Proof. This proof is similar to the ones done in [11] for the inversion of their linearized operator.
The main difference is that we have a transport term. Fix 1 >¢'> o >0. We argue by contradiction.
Suppose that for given 1 >o’> 0 > 0, there is no threshold ¢o(o,0’) >0 such that, if 0 < c< ¢o(0,0")
we have ||U]],.0.a < C(0, 0')||h||sx,07.d- We can then find a sequence of ¢, — 0 (and so d,, — 00),
functions @, =VV¥,, €&, , and Vh,, € €., » solutions of the problem and such that

H\Iin”*-,a-,dn:l
and
thH**,oCdn_’O-

We look in the region ¥ := {xl > O} thanks to the symetry ¥(zi, x2) = ¥(—xz1, z2). The
orthogonality condition of £, , becomes 2Re IE(P_,,LZdn =0.

Step 1. Inner estimates.

The problem can be written (using VL'(¥,,) = —(E —icp 05,V ) ¥, + L(P,) from Lemma 2.1.7)
as

Vhy = L(®,) = (1= 0)(E — iy 02,V) ¥y,
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First, we recall that V and E are depending on n. The sequence (®,,(. 4+ d,€1))nen is equicontinuous
and bounded (1= ||¥,,||«,o 4 controls ®,, and its derivatives in L>°(IR?) uniformly in n).
Such a function ®,,, as a solution of

AD,=—(1—|V[})®,+2Re(VP,)V —icOp,®n — (1 —n)(E —icpds,V)¥,, — Vh, (2.1.23)

in the distribution sense, by Theorem 8.8 of [15] is H{.(IR?) (since the right hand side is C°(IR?)).
Furthermore, still by Theorem 8.8 of [15], we have, for # € R?,

[Pnllm2((w,1) S K1 Pnllr(B2,2) + 1AL L2(B(2,2)))-

By [|¥,|
bounded by a constant independent of n. Therefore, (®,),en is bounded in HIQOC(]RQ).

We deduce, by compact embedding, that there exists a function ® such that ®,(. + d,é1) — ®
in Hi,.(R?) (up to a subsequence).

*,0,d — 1, the quantities ||¢n||Loo(B(w,2)), Hv(bn||Loo(B(x72)) and ||A¢:’L||LOO(B(I,2)) are

Now, since L(®,,) =—A®,, — (1—|V[?)®,, +2Re(V®,,)V —icd,,P,, we have, in the weak sense,
AD, + Vh,=—(1- |V|2)<I>n + 29%(‘7@”)‘/ —1Cn 02, Pr — (L= (E —i¢p 0.,V ) ¥y,

therefore A®,,(. + d,é1) + Vhn(. + dn€1) is equicontinuous and bounded uniformly and then, by
Ascoli’s Theorem, up to a subsequence converges to a limit [ in C{,.(R?). Since Vhy,(. + d,é1) — 0
in C0c(R?) by ||hnlles.or.a— 0 and Ad,(. + d,€1) — A in the distribution sense, this limit must
be A® (in the Hy,.(R?) sense).

We have locally uniformly that Vh,(. + dné1) — 0 because ||hp|sx,07,a — 0 and |V| < 1, and
we have, from Lemma 2.1.4, that E(y + d,€1) — 0 and V(y + d,e1) — Vi(y) when n — oo locally
uniformly. Lastly, 9,,®, and (1 — 7)d,,V ¥, are uniformly bounded in R? independently of n.
Therefore when we take the locally uniform limit when d,, — oo in

we have (in the distribution sense)
Ly, (®)=0.

Using 9qV (. 4+ dé1) — —04,Vi(.) locally uniformly from Lemma 2.1.4, we show that
0= Q%e/cb_nZdH 2(0 | 7(. /4)0:, V1)
b

since Z; is compactly supported around 0 when we take the equation in y + d,€;. The problem at
the limit n— 0o becomes (in the H;,.(IR?) sense)

Ly, (®) =0
(®|7(5)02,V1) =0,

with ® =14 ¥ (since V(y + dé1) — Vi(y) from Lemma 2.1.4).
Let us show that [|®| g, <+oc. For that, we will show that

D, |? _ -
V¢n2+|—n+9%2v = dpé)®n) < K (o),
/B(dna,d;ﬂ)| Ptz TREWA( — dnéi)2n) < K (o)

where K (o) >0 is independent of n, which shall imply (by Lemma 2.1.3)

2 _
1]|%,. < limsup A . 9,2+ 20 Re(Vi(. — duet) )2 < K (0) < oo,

n— oo nt?l,dilm) (1+7’1)

First, ®,, € C?(R?) hence ®,, € Hj,.(R?). We have
VO, [P <2[VVIP |0, 2 + 2|V T, [*|14]%,
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with |[VV3|? = Orl_wo(%) by Lemma 2.1.2, and, in B(dné’l, di/z), |0, |2 < ﬁl\%lli o.ds
1 1 1Y
|V\I/n|2<( <

W||\I/n||zgd Therefore since || Uy, ]+,0,a < 1,

K

Ve, 2</ 515, < K(0).
/B(dna,dl/2)| | B(dnayd;’/2)(1+rl)2+20 ( )

n

L .o1/2 K )2 K
In addition, in B(dné1, dy/?), |®,]2 = V|2, |2 < WH‘I’n”ia,dn hence (1|+T|1)2 <
and

@5, / K
< s < K (o).
L(dna,diﬂ) (1 +r1)2 B(d,e1.d"/?) (1 +7’1)2+20 ( )

Lastly, still in B(dne_i, d,ll/Q), by Lemma 2.1.3,

K

Re(Vi®y)? = [Vi[*Re(Vo100) 2 < [VA[H(Re (W) + (1= [Voa ) [T [?) ST

giving the same result. We then have [|®||x,, <00, therefore, we can apply Theorem 2.1.16. We
deduce that

o= clalel + 6283;2‘/1

for some constants c1, ¢ € R.

Since Vo € R2, U, (71, 12) = ¥, (71, —22), we have Vy € R, ®(y1, y2) = ®(y1, —y2). The function
0z, V1 enjoys also this symmetry, therefore so does c20,,V1. It is possible only if co = 0. The
orthogonality condition then imposes

er [JonviPa(Y) ay=o.
implying that ¢; =0. Hence >
D,(.+dne1) —0
in CL.(R?). By equation (2.1.23) and standard elliptic estimates, this convergence also hold in

C2(R?). The same proof works for the z coordinate (around the center of the —1 vortex). As a
consequence, for any R >0, we have

@0l Lo <y + IV Pall Lo < my + VPl Lo < 1) — O (2.1.24)

as n— oo. With this result, to obtain a contradiction (which will be ||, ||«,»,a— 0) we still need
to have estimates near the infinity in space.

Step 2. Outer computations.

Thanks to the previous step, we can take a cutoff to look only at the infinity in space. For
R >4, we define x g a smooth cutoff function with value xr(z)=11if 7> R and xgr(z)=0if 7 < g,
with |V yz| <. We then define
U, := XrVn,

hn = XRhn

and we choose yr such that ¥,, and . enjoy the same symmetries than ¥,, and h,, respectively.
We compute on R?\(B(d,é1, R)UB(—d,é1, R)):

VU, =VXrVn+ xrVT,=VT,,
AU, =AxrY, +2VXrVY, + xpAT, =AU,

We deduce that W,, € £, and h,, € Xy o by (2.1.18), since ¥,, € C?(B(dn¢1, R)U B(—dné1, R),C),
h, € CY(B(dné1, R) U B(—d,é1, R), C) and, outside of B(d,é1, R) U B(—d,éi, R), ¥,, = ¥,, with
1Vnlls.0.a0,=1, as well as h, = hy,, with ||Ap ||«x,07.d, — 0 when n— co. In particular,

|| B”H RR®,0’,00 = Oﬁﬂoo(l)’
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where o , (1) is a sequence that, for fixed R > 4, goes to 0 when n — oo (it also depends on o
and o).

Since xg=1 on R?\(B(d.€1, R) U B(—d,é1, R)), we have there L'(‘i/n) = h,. Therefore, we can
write that in R? that L'(¥,,) = h,, + Loc(¥,,), with

Loc(W,) := =L L(V W) + (1= n) (L (xa¥n) = xRL/ (V).

a term that is supported in R?\(B(d,¢1, R) U B(—d,é1, R)). By (2.1.24) and ||hp s« 07,4, — 0 when
n— 00, it satisfies

[Loc(¥n) |l e®,0’,00
< K(R)||[Loc(¥n)llcr(r2\ (B(dnet, R)UB(—dnét, R))
<

K(R)||®nlc2(r2\(B(dnet, R)UB(~dnét, R)))

We recall that L'(¥) = —A¥ — 2V—VY.V\I/ +2|V|?Re(¥) —icd,, ¥, therefore

)= vy (T,).

—AT,, —ic0y, ¥, +2Re(V,,) = hy, + Loc(V,, )+27 VU, 4+2(1—|V[*)Re (2.1.25)

We define

By := hi + Loc (0, )+2ﬂ/ VU, +2(1 - [V[)Re(T,,).

Let us show that h,, € 38,00 With
H};”II’LH RR,0’,00 g 0713—>00(1) + OR"OO(]‘)’

where 0g— (1) is a quantity that goes to 0 when R— oo (in particular, independently of n). By
Lemma 2.1.15, (the condition fRQTJm(ﬂ;) =0 is a consequence of the symmetries on h, and )
this would imply, with equation (2.1.25) (and since ¥, € 3 ,), that

|“il|‘®70700<011’?~>00(1)+OR—>OO(1)- (2126)

This estimate has already been done for the terms Loc(¥,,) and R Therefore, we only have to
check that

< O’II’L%*)OO(:[) + 0R—>oo(1)-

H vV
RR,0’,00

N, +2(1— [V|)Re(T,,)

First, remark that the term (1 — |V|2)9{e(\i/n) is real-valued. By Lemma 2.1.3,
<K
(1+7)%
and with (2.1.24), ¥,,= 0, in {# >R}, |[¥p|.o=1,0<o<o’'<1,
[(1+7 )1~ |V|2)9%(~ )HLw(R?)

1+7, 1+0’
1+47)3

g O’II’L%*)OO( )+OR—>OO(1)

L= VPI+V(V]?) <

/A

of . oo(1) +KH

L>((F > R))

and

1L+ 72V (1= [V ) Re(9)) | (o) i
< l(L+7)*Fe V(IVIQ)%( Mz + 11 +7)257 (1= [V[2)Re(VE) || L (r2)

2+0’
1 ‘*‘7“ Leo(iF> R))
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This concludes the proof of
1200 = [VI)Re( V)| g 07 00 < Onmo0(1) + 0R—00(1)-

Now, we compute

S @) =)+ ),

and recall, by Lemma 2.1.1, that VV.(z) =ieV.(z ) |2 + O(i) for e = +£1. We deduce that, far

r3
from the vortices (for instance on R?\(B(dé,4) U B( déi, 4))), we have

\YA%4 Ayt 2t 1 1
7($):l<r—%—r—1 +O'r1—>oo 7’:% +O7-71_,00 E . (2127)
In particular, the first order of V—VV is purely imaginary, and the next term is of order + . We

check in particular, using (2.1.27) and Lemma 2.1.3, that on R?\(B(dé1,4) U B(— del, ))
[ VV 3 \44
‘(1+T)Jm<7)‘+‘( )zm( ! )'
\A% \A%
2 3
v frr)
< K. (2.1.28)
Therefore, with R > 4, equation (2.1.24), ¥,, = ¥,, in {F2R}, |¥n|s0o=1and 0<o<o’<1,
H(1+f)1+<f’me<v—vv W)
(147)t+e
(147)2Fe

< 0 oo(1) + 0r—00(1),

Loo(R2)

< o)+ K

Lo ({F = RY)

(147)%+7'VRe (v_‘;/ V\I/)

L>(RR?)
147)2+e
< of, (1)+K’—( =
e (147)3+ Loo({7 = RY)
g Orlfﬂoo(l)"’OReoo(l))
H (1+7)2+ Jm<V_V v@)
Vv L(R2)
H (1 +f)2+0’4m<ﬂ/>.me(v\i/) H (147)2+e sm(vv) Im(VE)
4 Loo(R2) 4 L>(R2)
240’ 240’
< of, (1) +KH% +KH (1+7)
1+7) Loo(i7> R)) L+ 7)2 4| oo 7>
< O’II’SHOO( )+OR—>OO(1)3
and, with a similar decomposition,
H(lJrf)”"/VJm<ﬂ/ V\I/) <o (1) +oma(l).
L°°(]R2)
This conclude the proof of HQ V\I/H <ol (1) +0Rr_oo(1), and thus of (2.1.26).

RR,0’,00
Step 3. Conclusion.

We have |V, ]«,0,d, < K(R)||<I’n||cz((f<3} +K|| \IlnH «.0.d, Py (2.1.18), therefore, with equations
(2.1.24) and (2.1.26),

H‘Iln ||*,cr,dn < 0713%00(1) + 0R~>oo(1)-
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If we take R large enough (depending on o,0’) so that op_,o(1) <1/10 and then n large enough
(depending on R, o and o) so that off (1) <1/10, we have, for n large, || ¥, ||«.o .4, <1/5, which
is in contradiction with

1Wnll,o.d, =1 O

2.1.5.2 Existence of a solution

At this point, we do not have existence of a solution to the linear problem

NL(®) + (1 —n) VL'(¥) = Vh
Del o, VhEE s o,

only an a priori estimate. The existence of a solution is done in Proposition 2.1.20, its proof being
the purpose of this subsection. In [11], the existence proof is done using mainly the fact that the
domain is bounded. We provide here a proof of existence by approximation on balls of large radii
for a particular Hilbertian norm. Given ¢>0 and a > 10/c?, we define

H,:=

Tm2(D)
o= C\pechBo,a,q>2;:cI>2lf,+/ VU2 +Re2(V) + —_ 3,
{ Q 10c(B(0,a)), 1]z, := [ |7 7<) {Dm{r@}l | (¥) A1)

and we also allow a = 4o00. We first state a result on functions in H.

Lemma 2.1.18. There exists co > 0 such that, for 0 <c<cp, 0<o <0’ <1, Vh€ o, if a
function ® € Ho, N CH(R?) satisfies, in the weak sense,

nL(®) + (1 —n) VL' (V) =Vh,
and =V, (VU Z,)=0;Ve € R% (21, x9) = VU(x1, —72) = U(—21, 72), then
el

Proof. First, we check that, as a solution of nL(®)+ (1 —n) VL (¥)=Vh, ® € C*(R?, C) and
12| oo ir <10/e2) + IV Rl Loo(r<10/¢2) + VPPl oot <10/62) < K (€5 [ s [1B]]4,67) < 00

Since ® € C?(IR?, C) and it satisfies the symmetries and the orthogonality condition, to show
that ® =V € &, ,, we only have to show that ||¥]. , 4 <+oo. Now, similarly as in the proof of
Proposition 2.1.17, we add a cutoff function xg, writing U =0, +i0y= yg7, h=hi+iho= XRrh
but this time its value is 1 if 7 >10/¢? and 0 if » <5/c?. In particular, its support is far from both
vortices. We check similarly that, with the same notations, we obtain the equation (2.1.25) that
we write in real and imaginary parts:

A\I/1—2|V|2\111_—h1—29‘{e(v7 V‘i’)—l—c@xz‘i/g—i—Locl(\I/) o129
- 2.1.29
ATy + 0,01 = —hy — sz( vV W) + Loca (D),

where Loc(¥) =Locy (V) +iLocg(¥), and this time the local terms is in {5/c?*<r<10/c?}. Recall
that ¥ =0 on {r<5/c*}. In particular, we look only at values of 2 such that || >5/c% Now,

we define a function ¢, solution of A¢ = —hy — 2Jm(7.V‘I/) +Locy(¥P) as in Lemma 2.1.8. With

Lemma 2.1.3 and V¥ € L2(R?) (since ® € H,,), we have YH%JWL(TV.V@)(Y) € L'(R?)
and thus ¢ is well defined. By Hélder inequality, we can check that Jm(v—vv.v\i/) € L3(R?) .
We check, with the same computations as in the proof of Lemma 2.1.8 (with o = 1/10 in the
computations), that ¢ € C*(R?) and that we have

V¢(2)| <%A¥ﬁ‘—52—2m<ﬂ/ w) +LOCQ(W)'(Y)dy,
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under the condition that V¥ € L%(R?) N L3*(R?). With the upcoming estimates, we will check in
particular that this condition is satisfied. From the proof of Lemma 2.1.8, we check that, since
Vh € Eun o and ~22 <1,

1to 1 -
sup (1+|z])2 / ——|—ha+ Loca(¥)| (Y)dY‘ <400
zER? r2|7 =Y

(here, its size may depend on o,0’,¢, R, ||®| g, and ||h||.x,07). Now, from Lemma 2.1.3, we have,

outside of { xg=0} that [VV| <(1K+—((;))2. We deduce
vV / [V |(Y)
RS v dY <K(c,R dy.
fetmpe( e oy <stem | oSy
V| (Y)

We focus now on the estimation of fR2de. From [15], Theorem 8.8, we check that
[V g1 (re) < K (e, R, ||®| #1.0, || ]| 44,07)- In particular, by Sobolev embedding, || V¥ zs(r2) < K (e,
R, ||®|| o, |7 ]| sx,07)- In the area {|z — Y |<1}, we have (1+|Y])>> K(1+ |z|)? and therefore, by

Holder inequality,

V) o K / H(Y)
/ﬂmgl}ww(mw S T (o yicr) e -1

_ K[V / av__\*?
h (L+z[)? {Jo— Y|<1}|JU—Y|3/2

(e, R, || ey [ ]l ,0)

b (1+|$|)
In the area {1< |z —Y|<|z|/2}, we have [V > lx | and |Y'| >+, therefore, by Cauchy-Schwarz
(since 120 <1),
/ VYY)
{1<\z7Y|<\z|/2}|x7Y|(1+|Y|)2
_ Koo R) V() dY
X + 1+o
(1+]z|) 2 J{1<lz— Y|<|z\/2}| —Y|(1+|z ,y|) (7)
K(o,¢,R - 4y
< Kool | f V) ay A
(1+|z)) = \[/ (1<le -y I<lel/2) n<le=YI<lel/2), _y P (557)
< K(CaR’U’Hq)HHoo)
~N 140 :
(I+lz))=
Finally, in the area {|z — Y| >|z|/2}, we estimate by Cauchy-Schwarz that
[VI|(Y)
dy
/{x Y\>\x|/2}|x_y|(1+|y|)2
1+|x| {lo- Y|>|z\/2} {lo—v|3lal/2} A+ YD
Kl
1+ |z
Combining these estimates, we conclude that
K(e,R,0,0',||® B, 0

(1+]a)) "
Now, we write U5 =W, — (, and the system becomes
ATy — 20 — ¢0,,Uh=—hy — me(v—v".v@) + Locy (W) — ¢8,,¢ — 2(1 — |V 7)1,
AV + ¢y, U1 =0.
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We deduce, as for equation (2.1.15), that for j € {1, 2},

B0, W= c K * ( o — Qme<V—VV w) + Locy (W) — ¢, ¢ —2(1 — |V|2)¢f1>.

1+o
2

We check that, with Lemma 2.1.13 (for 1 >a= >0, a0’ =0<q),

K(c, B, 0, |9 s 2]l 4v.07)

| K * (7};1 + Locy(0) — Caw2<)| <

, (1+[z[)”
since
7 R (b h EE N4
}*h1+LOC1( )768z2c} c z || ||H (|,| H )
(Lt =
Furthermore, from Lemma 2.1.3, outside of { )(R = 0} [VV| < 1K+(C))2 We check, with Theorem

2.1.12, that on {|:r -Y|< } we have |Y| > > 12l and

/{|x—v|<x/2}

¢ B | V() |
(L+12)2 ) ey <laly2) |z = Y V21 + [z - V)32

By Cauchy-Schwarz, we estimate

%

Kz Y)me<ﬂ/ vqf)( )‘dY

/ VU|(Y)
(le—vI<lal/2} o = Y [V2(1+ |z = Y|)3/2

~ dY
< ||VY|| p2(Rr2 /
| |L(R)\/ (lo=Y|<lzly2} |z =Y I1+ ]z =Y])?

< 400,

and in {|:c -Y| 2%}, we estimate

/{lmyl>z/2} Kj(x_y)me<VV Vv )( )‘ <(K(c—’R)[{ |V\if|(y) dY

L+12))? J iz —viglzl2y AV
and we conclude by Cauchy-Schwarz that

/{IIY|>II/2}

Since ||\i/1||L2 (R2) < K(c,R,||®||m.,), we estimate similarly

Kj(z — Y)%<ﬂ/ V\If)( )'dY<%

[ JEite =)= iy < Ko Ite),
and we conclude that |8 qj2| %ﬁyw) Therefore, since ¥y = ¢ + U3,
|Viy| < KR O [Pl le.e)

(1+[z[)”
By integration from the origin (using || @2” Lo (ir<10/c3) S K(c,||®|| g, ||h]||+«)), we deduce also that

K(c, R, 0,0 [|®] s, [ ]l x,07)

|\IIQ} (1+z)- T+

(2.1.30)

With these estimates and the equation

AV — 20 = —hy + ¢0,, W+ Locy (¥) — me(ﬂ/ vm) 2(1— |V ]P0y,
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K(e,R,0,0" @]l Hoos P]lsx,01)

we check that |—ﬁ1 + c@xz‘ilg + Locl(‘ll)| < TG

a=0>0),

, and by Lemma 2.1.10 (for

K(c,R,0,0", | @ e, 1]l 1x,07)
(1+|z[)”

||+ |V, <

(where the estimation for the terms sm(%".v@) and 2(1 — |V'|?)¥; are similar to what has already
been done since we only have V¥, ¥, € L(IR?) at this point).

With this first set of estimates, looking at equation (2.1.29), we have enough to show that

K(¢, R, 0, [Pl Hocs [|P]]15,07)
(1 [a]) e

K(¢; R, 0, || @ rrocs [|P]|55,07)
A+

From the computations at the beginning of subsection 2.1.4.3, we have that, for j € {1, 2},

|A\i/1 - 2\111 - c832\i/2| <

and

| AT, + ¢, T4 <

(995].@/1 :(%cho* (Aqfl — 2\I~/1 — Camz\ifg) +CKJ' * (A¢/2+Cam2¢/1),
therefore, by Lemma 2.1.13, taking a=1+c <2 and o’=1+0'<a,
(¢, R,0,0" [PllHes 1 ]l+x,0)

\YAY]
B (e
Furthermore, by Lemma 2.1.13, }K * (A\Ingrcamz\Ill)} < <Kl ij C‘T);ﬂfﬂf“) hence, since for x; >0,
- - - - +oo - -
Uy =Ko* (AVy — 201 — c0,,02) + ¢ K (AVy+ c8,,V1) dy;
z;

by integration from infinity, we also have (with a similar computation if z; <0)

|\I~/1} < K(C’ R,o0,0', HCI)HHoo’ Hh”**,a/) )
(14 [a])tHor?

Now, using Theorem 8.10 from [15], we have for any x € R? that
IV20|(2) K (| A Lo (51 + 1Pl (B o,0) + IVl 2 (01));
therefore (the limiting decay coming from (2.1.30))

K(c,R, 0,0, ||®|la, [F]|+, 0)

V20| <
VA< T ]a])- 17

With these estimates, we have that ¥ € €®,-3+0,00- Now, we define

h:=h+ 22/ VU +2(1 — |V [2)Re(T) + Loc(P),

and we infer that, for any a <o’
Allgs,a,00 S E(a e, R,0,0",8, 1@ s [l ex,o) (L4 ¥]],5,00) (2.1.31)
given that § > —2+ a. Indeed, we have that, for a <o’ |2 e®.a .00 < K (a, 0")||h]|xx.0r, and
[Loc(¥)||@@,a,00 < K (¢, @)@ c2gr<i0/e2) < K(e, . [| @] o, 1B, 07)-

We recall that (1 — |V |2)0Re(®) is a real-valued term, and with Lemma 2.1.3, 0 < 0 < 0/ < 1, we
estimate

19 @,5,00 < K (v, 6) ][] 9,500

. : 147)tte
L4+7) (1= [V2)Re() || L~ 2<KH(—
I 7)o VPR iy < K | s

7)3+90
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if 1+a>3+0 (which is a consequence of § > —2+ «), and

(147)>+e
(L)l

10+ 72T (1 — [V PYRe(8) | o re) < KH

H‘ilH(XJ,é,oo gK(aaé) D
R?)

Now, we estimate similarly (still using Lemma 2.1.3)

. \A% (1+7)tt < <
(1 +r)1+”‘i)%e< V\Il> gK(C)H—~, 1P |,6,00 < K(c,a,0)|| V] g,s,00s
H |4 Lo (R2) (L +7)3%0 ] oo (w2 ? ¥
. vV (147)** = =
1+r)2+0‘V9‘{e<— V‘P) <K C)H—~ V@,6,00 <K(c,a,d
I Foon)| <o R iess<Kiea)

and since
~ (VV vV ~ VV\ ~ ~
Jm(T V\I/) ( 7 ).%e(V\I/)—i—i)‘ie(T).Jm(V\ll),

with Lemma 2.1.3 and estimate (2.1.28), we infer that
T—a

H (1+7 2+“Jm< VVV)S)%(V@)

L>(R2)

H (147 2+ame<vvv) Im(VE)

Loo(]RZ)

(14+7)

1+7
(147" ||\If||®5oo+KH—M

< KO G5 e
< K(Cvav(s)”\i/”@.ﬁ,ooa

19| ©.5,00
R2)

and with similar estimates,

a4 revan( JLvw)

Vv gK(Caaa(s)”\in(@ﬁ,oo

L (R2)

This concludes the proof of (2.1.31). With ¥ € £g 34400, we therefore deduce that for £ >0 a

small constant, ||A||go, 110 —c,00 < +00, hence h € Egg,—140—c. With estimate (2.1.31), Lemma
2.1.15 and

— AV —icd,, U+ 2Re(V) =h,

and with the symmetries on T and h, we can bootstrap our estimates on U and then on £, and
we conclude that ¥ € Eg , (since o <o’). O

The next step is to construct a solution on a large ball in the space H,.

Lemma 2.1.19. For 0 <o’ <1, there exists co(c’) > 0 such that, for 0 < c < co(c’), there exists
ap(c,0’) > % such that, for Vh € €y 51, a > ap(c,0’), the problem

DL(®) + (1— ) VL (¥)=Vh inB(0,a)

RS Ha; o= V\I/ﬂ <V\I/5 Zd> :O,VZ' € B(()? a)ﬂ \P(IE1,$2) = \Ij(xla *IBQ) = \I/(thxg)
®=0 ondB(0,a)

(Vh, Z4) =0

admits a unique solution, and furthermore, there exists K(o',c) >0 independent of a such that
1], < K (", c)[[]lx0-
Here, a > 10/ ¢? is not necessary, the condition a > 10 /¢ should be enough. However, this
simplifies some estimates in the proof, and it will be enough for us here. Here, we require (Vh,

Z4) =0 in order to apply the Fredholm alternative in {¢ € Hq(B(0,a)), (¢, Zs) =0} to show the
existence of a solution.
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Proof. We argue by contradiction on the estimation. Assuming the existence, take any 0 <o’ <1,
and choose cy(o”) >0 smaller than the one from Proposition 2.1.17, and 0 < ¢ < ¢o(co”). Suppose that
there exists a sequence a,, > %, a, — o0, functions ®,, € H,,, ®, =0 on 9B(0,a,) and Vh, € &,y o/
such that | @, |z, =1, [|hn]l+,or— 0 and nL(®,) + (1 —n)VL' (¥,) = Vh, on B(0,a,). In particular,
remark here that c is independent of n, only the size of the ball grows. Our goal is to show that
|®n | H,, = 05— oo(1), Wwhere 0, . o(1) is a quantity going to 0 when n— oo at fixed ¢, which leads
to the contradiction.

Following the same arguments as in step 1 of the proof of Proposition 2.1.17, we check that
®,,— ® in CE(R?) and nL(®) + (1 —n) VL'(¥) =0 in R?. Furthermore, it is easy to check that,
since ||®y| g, = 1, we have |[®|| g, < 1. Then, by Lemma 2.1.18, since the orthogonality and
the symmetries pass at the limit, this implies that ® € &, , for any 0 < o < ¢’, and therefore, by
Proposition 2.1.17, & =0.

We deduce that ||®, | c2(B(0,10/c2)) = ©; L_,oo( ). Now, we use the same cutoff as in the proof of
Lemma 2.1.18, and we have the system on ¥, = U + i¥; (see equation (2.1.29)):

ATy — 20 — 8y, 0= —hy — me(V_VV.v@n) +Locy(W,) — 2(1 — [V 2) ¥,
AWy + 0,0 = —hy = 20m( 5LV, ) + Locy(W,).
Now, multiplying the first equation by ¥, and integrating on Q= B(0,a)\B(0,5/¢?), we have

/(A\i/l—ﬂ/l)\ifl:
Q

/<08£2\I/2—h1—29‘ie<ﬂ/ v, )—i—Locl(\I!n) (1 - |V|2)\i!1)\i!1. (2.1.32)
Q

We integrate by parts. Recall that || ®,,||c2(B(0,10/c2)) = 0n—oc(1) and &, =V V¥,, =0 on 9B(0, a,),
thus

/A\I~/1\I~/1:7/|V\I~/1|2+O%_,OO(1)
Q Q

Furthermore, since Vh,, € E.. o/, we check easily that H’51||L2<Q> < og;o(l), and we compute with
Lemma 2.1.3 and [|®,, ||c2(B(0,10/c2)) = 05— oo(1) that, since for z € Q,r > 5/c,

[ # e CEalima+ Moca(alma+ 10 = 1Vl <o) + 1)
This allows us to estimate the right hand side of (2.1.32): by Cauchy-Schwarz,
qu’lniz(n) Jr2”@1”%2(9) <

ch\il2||L2(Q)|| li’1”1:2(9) + (0c—0(1) + OfHoo(l))(Hv‘i’nHLz(Q) + H‘i’lnm(n)) + 05— oo (1)-

Now, we multiply the second equation by Us, and we integrate on €. By integration by parts, we
check

H V\I~12H%2(Q) <

+2/ 3m<ﬂ/.v\in)®2
o %

By integration by parts, since ||®,||c2(B(0,10/¢2)) = 0h—oo(1) and @, =0 on 9B(0, a,), we have

/ 18x2\112
Q

a&vzilliIQ +
Q

FLQ‘i’Q +/|LOCQ(‘IIH)@2| +0$L~>00(1)'
Q Q

Onﬁoo( ) +c

amqf Ty <

On~>oo ) +c ||®1HL2(Q)HV@2||L2(Q)
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We recall that }\i/g| =05 _, (1) on dB(0,5/c?), therefore

a 2 _ a _
/ |\2I/f|g rdr = T} 8T<L,)}\I/2|2d7"
r=5/c2T r=>5/c?

< B,/ 2/ |V ar
o' Jr=5
a 2
g n~>oo - / }V\I/2|27’d7"/ |\2Ij2|
r=>5/c? r=>5/c2T" +o!
We deduce that
a 2
/ |‘2112| rdr<0flioo(1)+K |VTo|2rdr,
r=5/c2T +o! o’ r=5/c?
and therefore
Wy

K. =~
< On—>oo 1) +FHV\I]2H?}(Q)'

a(l+|z[)>+

Since Vh,, € £ix 07, We estimate, by Cauchy-Schwarz, that

/ s
Q
Furthermore, since Locy(¥y,) is supported in B(0, 10/ ¢?) and ||y ||c1(B(0,10/¢2) = 05— o0(1), We
check that

|0
<Oc—>0(1) AWgOCHO HV‘IIQHL2(Q)+On~>oo(1)'

/ |LOC2(\I/n)\i/2| < 0%*,00(1)
Q

Finally, from Lemma 2.1.2, we check that, in R?,

vv yL 2+ n K < K
TP 2P )| e+ fa)? = e+ [z
and thus, by Cauchy-Schwarz,

v
/ 3m<ﬂ/ V‘I! )
Q

sl

_ K ||V 120 /
~ 4"
c o(l+]z])

In Q, |z|>5/c?, thus

|\i/2|2 2(2—o’ |\I/2| 2(2—0’)
it W< T2+ 1),

VV

hence
Uy <oZlo(1)]| VW] 1)+ 0fioo(1)-

We conclude that
9020y 2] 2 ~ ~
< CHV‘I’2||L2(Q)||‘I’1||L2(Q)+(OHO(U+0$Hoo(1))(}|v‘1’n”m(n)+||‘I’1||L2(Q))+0%Hoo(1)a
and
V0220 < 0fimoo(1) + €] V1] 2 | V2| L2y + 0E 0D VL[ 12
() () () ()
therefore
|W‘I’1HL2(Q)+H‘I’1HL2(Q)+HV‘I’QHLz(Q)gofwoo(l)JrOg;o(U

We have shown that for any ¢’ >0,

|02

o’ K -~
NP < (02500(1) +7HV‘I’2H%2(Q)>7
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thus

[Ws)? c
AW < On—oo(l) 4+ 0c—0(1).
Together with ||®y||c2(B(0,10/¢2)) = 05— o0(1), this is in contradiction with |||z, =1.

This concludes the proof of the estimation. Now, for the existence, we argue by Fredholm’s
alternative in {¢ € H}(B(0, a)), (¢, Za) = 0}, and we remark that the norms ||.|x, and ||.|[z:
are equivalent on B(0, a). By Riesz’s representation theorem, the elliptic equation nL(®) +
(1—n) VL'(¥) =Vh can be rewritten in the operational form ® + C(®) =S(h) where K is a compact
operator in Hj(B(0,a)), and it has no kernel in H, (i.e. in {¢ € Hj(B(0,a)), (¢, Za)=0}) by the
estimation we just showed. Therefore, there exists a unique solution ® € H,, and it then satisfies

[®]lm, < K (o', )[[A]lws,00- 0

Proposition 2.1.20. Consider the problem, for 0 <o <o’'<1,

nL(®) + (1 —n) VL (V) =Vh
VA€ Epngrs (VI, Zg) =0.

Then, there exist constants co(o,0’) >0 small and C(o,0") >0 depending only on o,0’, such that,
for 0<c<co(o,0’) and Vh € Es o with (Vh, Zg) =0, there exists ® € &, o, ©=VV solution of
this problem, with

I

#0,d SC(0,0) 2]l 07,a-

Proof. By Lemma 2.1.19, For a > ag(c,0’), there exists a solution to the problem

nL(®,)+(1—n) VL' (¥,)=Vh onB(0,a)

S, eH,, 0, =V, (VU,, Zy)=0;Vz € B(0,a), Vy(x1,22) = Vy(x1, —22) = Vo —x1, x2)
®,=0 ondB(0,a)

<h7Zd> =0

with || ||m, < K(0’, ¢)||h|«,o- Taking a sequence of values a,, > ag going to infinity, we can

construct by a diagonal argument a function ® € Hi..(IR?) which satisfies in the distribution sense
nL(®)+ (1—n)VL'(®)=Vh

(hence ® € C%(IR?) by standard elliptic arguments), such that

|| ., < limsup || ®y |
thus ® € Ho, and @ =V U (VU Z,;) =0;Vx € R2, U (21, 79) = ¥ (71, —72) = ¥(—x1,22). From Lemma
2.1.18, we deduce that ® €&, ,, and is thus a solution to the problem. Furthermore, by Proposition
2117, |¥|l4,0,a < C(o, 0")|| ]| 4x,67,4- Still by Proposition 2.1.17, this solution is unique in &, ,+. O

<K (0", )]l ,07,

an

2.1.5.3 Estimates for the contraction in the orthogonal space

We showed in Proposition 2.1.20 that the operator nL(.) + (1 — n)VL'(./V) is invertible from
Evnor,dN{{.; Za) =0} to & 5 a. The operator (nL(.)+ (1 —n)VL'(./V))~! is the one that, for a
given Vh € &, 57,4 such that (Vh, Z;) =0, returns the unique function ® =V € &, , 4 such that
nL(®) + (1 — n) VL'(¥) = Vh in the distribution sense, and this function satisfies the estimate
1¥]ls,0,a < C(a, )| 2]]1x,07,a-

Now, we define (for ® € CO(R?, C))

Zq

Hfi_(q)):q)i <(I)7Zd> 2 ’
1ZallZ2(r2)

the projection on the orthogonal of Z;. We want to apply a fixed-point theorem on the functional

(nL()+ (A=) VL'(./ V) Uz (=F(./V))): Exio— Ex o
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and for that we need some estimates on the function g oF (. /V): &, o — { VR E€Ews o1, (VR, Zg) =01}

The function F contains the source term £ —ic0,,V and nonlinear terms. The source term requires
a precise computation (see Lemma 2.1.22) to show its smallness in the spaces of invertibility. The
nonlinear terms will be small if we do the contraction in an area with small ¥ (which is the case
since we will do it in the space of function ® = V¥ € &, , such that || ¥, ,.4 < Ko(o,o')c' =7 for
a well chosen constant Ky(o,0”’) >0). This subsection is devoted to the proof of the following result.

Proposition 2.1.21. For 0 <o <o'< 1, there exist constants Ko(o,c’), co(o,0’) >0 depending
only on 0,0’ such that for 0<c<co(o,0’), the function (from Ei 5.4 to Ex 5.4)

® = (L) + (1= n) VL'(./ V) Iz (= F(®/V)))

is a contraction in the space of functions ®=VV €&, , 4 such that | V||, , a< Ko(o,0')c! 77", As
such, by the contraction mapping theorem, it admits a unique fized point ® €&, 5 q in {(I> € S*J,d,
[9]|v,0,a < Ko(o,0')ct ="}, and there exists A(c,d) €R such that

nL(®)+ (1 —n)VL'(V)+ F(¥)=A(c,d)Zg

i the distribution sense.

We recall that, from the definition of &, , 4 in subsection 2.1.3, & € &, , 4 implies that (®,
Zg) =0, which is the origin of the fact that nL(®) + (1 — n) VL'(¥) 4+ F(¥) is not zero, but only
proportional to Z.

We start with some estimates on the terms contained in F(¥). These are done in the following
three lemmas.

Lemma 2.1.22. For any 0 <o’ <1, there exists a constant C1(c’) >0 depending only on o’ such
that

1¢0g,V H ,
= < Cy(o’)et=7.
14 sk, 0’ d 14 sk, 0’ d
Proof. We have defined the norm
[P llex,or.a= VR crrsany + 1727 Pl Loe iz 2 + 1727 hal | Loe iz 21y + 172 VA | Loo 2. 2),

thus we separate two areas for the computation: the first one is where 7 < 3 which will be easy and
then far from the vortices, i.e. in {77 > 2}, where the division by V is not a problem.

Step 1. Estimates for F.

In (2.1.2), we showed that
E=1—|Vi]2)(1—|V_1]2)ViV_1 —2VV.VV_;.
Near V4, i.e. in B(dé}, 3), we have from Lemma 2.1.1,

(1= IVoiP)ler<sy S K and  ||[VVoi|lor, <3y < Ke,

E
HVV

where og'/_,o(l) is a quantity that for a fixed ¢’ >0, goes to 0 when ¢— 0. By symmetry, the result
holds in the area where 7 < 3.

hence

<Ke<oZlo(1)et =7, (2.1.33)
Cl(fr1<3))

We now turn to the estimates for # > 2. The first term (1 — [V1|?)(1 — [V_1|?) of Tb; is real
valued. Using the definition of 71 and r_; from (2.1.1), in the right half-plane, where ry <7_; and
r_1>= d}%, we have from Lemma 2.1.1

1

1—0o’

Iri " (1= VA (A = Vo)~ egr<r_n < K 5
1 1

Lee(2€<ri<r_1})
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and
[r2(1— VAR (A = Vo) poeegr<rm < K.

1

In this area,

! < Kc? and
1

1
-z < F’ thus

1— !
ry 7

It (= VAP (1 = Vo) e crcr ) S K (o) <oo(1) e,
By symmetry, the same result holds for the other half-plane, hence

’

7L = AP = [V sy S o (D) e (2134)

From Lemma 2.1.1, we have

. ot 1
VV(x) :ZEVE(:E)?Jr 0 =)

VVA.VV_; gyt 2t 1 1
ViV, rerd, * rir_q * 3T
Remark that the first term is real-valued. We compute first in the right half-plane, where 1 <r_;

and r,1>d>§,

hence

1+0’
T%+a’yL~ZJ_ ri
2.2
Tr_
, 1 pe@egngrny 1Y Hlze@egrngr_w
Since
1+o’ /
M T L S s
’ )
171 r—1) i@
we deduce
1L
’ .2 ’
7“%+0 ?12 = < K(U/)Cl—a
1=l Lee(2<r1<r_1})
and by symmetry,
1,1
~ ’ .2 ’
Flto 92 - <K(o')e =7, (2.1.35)
N RN
For the last two terms O(Tg,i ) +O(T31 - ),We will show that in the right half-plane
17-1 —171
’ 1 ’ 1 ’ ’
rite - + ||r2te 3 <o o(1)ct7". (2.1.36)
rir— L>(2<r1<r-1}) r-iT1 Loo(2<r<r_1))
This immediately implies
’ 1 ’ 1 ’ ’
rnt— + ||rite <0 (1) cte. (2.1.37)
rir-1 Lee(2<r1<r—_1}) r—imn Le(2<r<r_1)

! <Kecand -t < K(o'),

We compute in the right half-plane where r; <r_; and r_1 >d> %, — —
, o

thus

240’ 1 1 ’ 1—0o'
1 =7 <Ke<ol o)t 7.
rir-1 org r_1

Furthermore, still in the right half-plane,

’ 1+G, ’ ’ ’
e =<—”> L <K(0) 7 <of (1) 7

3y r_1 r27°

Gathering (2.1.36) to (2.1.37) and using the symmetry for the left half-plane, we deduce with the
previous esimates (2.1.33), (2.1.34), (2.1.35) that
/ E
F2to'gml =
r Jm( V)

E o E
[ et re()

<K(o")e 7.
Leo({F>2})

+
CL(17<3)

+
Leo(i722))
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Now, for the estimate on V(TE;), we have from Lemma 2.1.1, for 7 > 2,

K K
V(A=) = Vo) IV = Vo) 4 (= AP VIVA P S o+ s

=1 Tr-
VW.VV_, v\ Vv, VA%t VV_4 K K
— ]I < . . <
'V< ViV )WWV(»a) [= +‘ V( N o

)
1 V4 oy orir?y

and

thus, with similar estimates as previously, we deduce

/ E
~24+0 -
(%)

This concludes the proof of

< K(U')cl_" .
Lo ({7 22))

£
v

for some constant C{(c’) > 0 depending only on ¢’

(2.1.38)

< C{(UI)Cl_UI

sk, 0/ d

Step 2. Estimates for z'caw—év .

First, near the vortices, we have |0,V |+ |V.,V | < K a universal constant, therefore

BV
%

/

<Ke<oZlo(1)et =",
CL{F<3))

|4

Hic

We now turn to the estimate for 7 > 2. Recall Lemma 2.1.5, stating that for a universal constant
C >0, since r1,7_1>2,
c c
h <7"f 2y )

2 2 2
Remark that 2 cd % is real-valued. Using that c¢d < 2, that

17—1

0z,V 3 —d? — 23
2 —2cd )

4 rir-a

Xe

03 — &2 = (@1 — d) (a1 + d)| <ri7_y

. . K
and also that ac% <r17_1, we deduce that in the right half-plane, where r <r_j and r_1>d> -
2 2 2 140’
/ z{—d°—x T
o2 ed =t 2 < K|
2.2 )
ririy rr—i
Loo(2<r <r_1}) Lo(2<r<r_1))

and since we have

1+0’ o’

T 71 1 ol
2 (2 ,gK(O'/)Cl 7
rr— r_1

we infer

2 2
1 ’ .Z‘l—d — X2
27“1+U cd—-——"=

It is easy to check that in the right half-plane

240’ € ¢ o’ 1—
T (7%+TT1)<KC<OC—>0(1)C 7,

and therefore by symmetry for the left half-plane,

V(icaxQ‘/) + f1+”/9‘ie<icaxzv)
14 CL{F<3)) 4 Lo ({7 >2))
+ FQJF"'ﬁm(ica“V)

4 Los({7>2))

< K(o')e =7,
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From the proof of Lemma 2.1.5, we check (using Lemma 2.1.3) that, if 7>1
. 0,V 3 —d?— 23 c c
V|ic=~ -2cd—=——5—=||<K| =+— ).
( V rer?, T3y
With ‘V(%ﬂ)‘ < f if 7> 1 and similar computations as previously, we check that
T3
2_ 2 .2
V(?cdw>
LSRAS|
Therefore, there exists C{'(c’) > 0 such that

Ca;cQV
Vv

’

<K(o")e 7.

i

*x,07.d
We conclude by taking C4(0’) =max (Ci(c’), C{'(c")). O
Lemma 2.1.23. For 0 < 0 < o’ <1, for ® = VU, &' = VU € & , 4 such that |V|+,s,4,

1€/ +,0,a < Co with Cy defined in Lemma 2.1.7, if there exists K(o,0’) >0 such that ||¥|+.c,d,
19 s.0.a< K(0,0")c' 7", then

R(WU o’ —o’
H(T) *k, 0/ Cl< OCHO(l)Cl
and .
N /
HR(\P LA <ol o(D)[[¥" =¥l 0.4,
v *x,0/,d .

0,0’

where the 0727,(1) is a quantity that, for fivzed o and o', goes to 0 when ¢— 0.

Proof. Since 7#0 only in the domain where [|.[[«x,o7,a= |V .||c1(#<3)y and ||.|l«,0,a= IV .| c2@r<ap,
we will work only with these two norms. Recall from Lemma 2.1.7 that R(¥) is supported in

{n+#0} and
|R(®)|+ |VR(D)] < Cl|]|E27 <2

since ||¥]|+,0,a < Co. We deduce

2
Vv

= | R(Y)||crqrean < K (o) <07l o(1)ct 7.

’
sx,0/,d

Furthermore, using the definition of R(¥) in the proof of Lemma 2.1.7 we check that every term
is at least quadratic in ¥ (or its real or imaginary part), therefore, with || V||« 5.4, ||| +.0,a < Co,
R(U’) — R() can be estimated by

I —
’L‘/R(‘I’) = ||R(Y) — R(¥)|lcr(r<ap
K900+ 1% 1.0 a) ¥’ — ¥l 0.4

Oc—o(D)[[ W' = V| 5.a-

sk, 0’ d

NN

O

Lemma 2.1.24. For 0 < o < o' < 1, for ® = VU, &' = VU’ € & o4 such that |[¥|]s.0.q,
194,604 < Co with Coy defined in Lemma 2.1.7, if there exists K (o, c') >0 such that |V||«.c. 45
19]4.0.a< K(o,0")c' =7, then

1L = ) (~VETC V(D)) v ra < 05 (L)~
|1 = ) (~VE.VE + VT + V(S () = S(0))) e 0 < 075D = U]

Proof. As done in Lemma 2.1.23, we check easily that
[(1=n) (V&Y + |V ES()V || crrgay < K(0,0")e! =@ o2 <3,
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since in the area where (1 — )7& 0, C1 <|V|<1 for a universal constant C; >0, ® =V and using
HV‘I’Hcl T<3})<K(O‘ O‘) 1—o’ .

We then estimate (with n=0 in {7 >2})

714" Re(VU. V)| oo (7> 2
~1 /

Fl+

< KH\PH* o,d ~2+20

Leo({F>2))
< K(o,0))2=%
< ol (1)~

c—0

and

|72+ Tm(VE.VE)|| L (72 2)
< 22+ Im(VE) Re(VV)|| oo (> 2)
7o’

< K”‘IIH* o,d ~3+Qg

Loo({F>2))
< OU’U (1)0170,

c—0

and we check that with similar computations, that

’

7240V (VO.V )| ooz 2y < 07 Tp(1)et =,
thus
1L = ) (VLT v 7.0 < O 5L

Now, since (1 — n)(=VU'.V¥' + VI.VU) = —(1 — n)(V(¥" — U).V(P’ + ¥)), with similar
computations (and ||/ + ¥||,.,.a < 2K (0,0")c' "), we have

(1= ) (=VE. VU + VOV | 57,0 < 0 0(1) ¥ —

Finally, recall that

*,0,d-

S(W) = e?Re(¥) _ 1 — 2Re(W).

Moreover, e?7¢(¥) — 1 — 29Re(¥) is real-valued and for 7> 2, if ||¥||, 5.4 < Co,

’

|FLH V(2700 — 1 — 2%e(W))| < K |71+ Re2 (V)| < K (0, 0”) | W][2, .0 < 072 % (1) =,
and with Lemma 2.1.3,

7 TV 1 2me(@))

< 2|72 ' VRe(W) (2T )|+2|r2+<f V(V )27 — 1 — 20e(W))]
< K<|f2+<f’vme( )Re |+‘ 7 (W )D

/ 2 2o’
MRS Lo ({7 >2)

< ol %(1)e! 7,

c—0

hence

/

(L= IV 2S () ||s,07,a < 02 5p(1)et =7

With similar comutations on

n 1—k
[V2(S(T') — S(T)) =2|V|*(Re(T Z on— 12 Re (¥ me( i
we conclude with

1L = m)(IVP(S(E) = S(©)))[lee,0,a < 05D T = ¥, 0




88 SMOOTH BRANCH OF TRAVELLING WAVES

Now, we end the proof of Proposition 2.1.21

Proof. (of Proposition 2.1.21) We take the constants C(c, ¢’) defined in Proposition 2.1.17
and C1(o’) from Lemma 2.1.22. We then define Ky(o,0"):=C(0,0’)(C1(c’) +1).

To apply the contraction mapping theorem, we need to show that for 8=V, &'=VI¥'€&, , 4
with

/

||\II||*,U.,d7 H\I//”*,a,d g KO(J; 0/)6170 )

we have for small ¢ >0,

F() Ko(0,0") 1o
< o 2.1.
H V *x*,0',d C(O’,O'/) ¢ ( 39)
and o
F(9" — F(U 0,0’
e T O L T (2.1.40)

If these estimates hold, using Proposition 2.1.17, we have that the closed ball By, . ,(0, Ko(o,
o')c'=7") is stable by ® — V(nL(V.) + (1 — n) VL'(.))"Y(II; (= F(®/V))) and this operator is a
contraction in the ball (for ¢ small enough, depending on o,0’), hence we can apply the contraction
mapping theorem.

From Lemma 2.1.7, we have

F(W)=F —ic0,V+V(1—n)(-VU.VU+|V[2S(¥)) + R(V).

By Lemmas 2.1.22 to 2.1.24, we have, given that ¢ is small enough (depending only on o, c’), that
both (2.1.39) and (2.1.40) hold. Therefore, defining co(o, 0’) > 0 small enough such that all the
required conditions on ¢ are satisfied if ¢ < ¢y(o, '), we end the proof of Proposition 2.1.21.

We have therefore constructed a function ® =V WV €&, , 4 such that

®=(nL()+1=n) VL'(./V))" {Ig(=F(2/V))).

Therefore, by definition of the operator (nL(.) + (1 —n) VL'(./V))~!, we have, in the distribution
sense,

nL(®)+(1—n) VL'(¥) =g (-F(®/V)),
and thus, there exists A\(c,d) € R such that
DL(®) + (1 — n) VL (V) + F(¥) = A(c, d) Za. O

At this point, we have the existence of a function ®=VWV¥ €&, , 4 depending on ¢, d and a priori
o,0’, such that | U], 4 < K(0,0')ct 7" and

nL(®)+ (1 —n)VL (V) + F(V) = X(e,d)Zy (2.1.41)

in the distribution sense for some A(c, d) € R. By using elliptic regularity, we show easily that
® € C°°(R?, C) and that (2.1.41) is verified in the strong sense. The goal is now to show that
we can take A(c,d) =0 for a good choice of d, but first we need a better estimate on ® using the
parameters o and o’. We denote by ®, o= VU, ,/ the solution obtained by Proposition 2.1.21
for the values o <o’

Corollary 2.1.25. For 0<o;<01<1, 0<o2<05<1, there exists co(c1,01,02,0%) >0 such that
for 0<c<co(o1,01,02,09), @ o1=VVq, 01 =VU;, 1=, .. We can thus take any values of
o,0’ with o <o’ and the estimate

1[|,0,a < K (0, 07)e! =7
holds for 0 <c<co(o,0’). In particular, for ¢ small enough,
1@l c2(raay < K/
Proof. This is because for 01 < 02, &x, 5, C € 5, hence the fixed point for o2 (for any o5 > 02) yields

the same value of ¥ as the fixed point for ¢; for ¢ small enough (for any of > o1). In particular,
this implies also that A(c,d) is independent of o, ¢’ (for ¢ small enough). O
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2.1.6 Estimation on the Lagrange multiplier A(c, d)

To finish the construction of a solution of (TW.,), we need to find a link between d and ¢ such that
A(e,d)=01in (2.1.41). Here, we give an estimate of A(c,d) for small values of c.

Proposition 2.1.26. For \(c,d),® =V defined in the equation of Proposition 2.1.21, namely
NEL(®)+ (1= ) VL/(9) + F(W) = A, d) Za,
we have, for any 0 <o <1,

1
cd/ |04V |?n = ﬂ(z—c)—l—Ocﬂo( ).

We will take the scalar product of nL(®) + (1 — n) VL'(¥) + F(¥) — X, d)Zg with 94V
We will show in the proof that in the term (nL(®) + (1 — n)VL/(¥) + F(¥), 94V'), the largest
contribution come from the source term E —icd,,V in F(¥). We will show that (E,04V) ~ % and
(—ic0y,V, 04V ) ~ —me, so that, at the leading order, A(c,d) ~ (% - c) In the proof, steps 1,2
and 7 show that the terms other than £ —icd,,V are of lower order, and steps 3-6 compute exactly

the contribution of these leading order terms.

Proof. Recall from Lemma 2.1.7 that L(®) = (E —ic9,,V)¥ + VL'(¥), hence we write the equation
under the form

L(®) — (1= ) (E —icdy,V)¥ + F(¥) = X(c, d) Zq.

We want to take the scalar product with 94V. We will compute the terms (1 —n)EW (step 1), F'(¥)
(steps 2 to 6) and in step 7 we will show that we can do an integration by parts for (L(®), Z4) and
compute its contribution.

We have by definition Zz= nd;V, hence
(Z0iV)= [ oV P
]Rz

which is finite and independent of d since n=0 outside {7<2}. Recall that || ¥, .o < K(0,0')c' =7’
where

1T)ls0 = [IV®llor<ay + 177U | oo s + [[F2HOV | oo 75 2))
+ |7Vl poorza)) + ||7“1+UV‘I’2||L°o Feo) T+ HTHUVQ‘I’HLOOM >2))5
which we will heavily use with several values of o, ¢’ in the following computations, in particular
for o €]0, 1], the estimate
1]l /2,0 < K(o)c!™

Step 1. We have ((1—n)(E —ic0.,V)¥,04V)=07_o(c?°).

From Lemma 2.1.6, we have
K

<
|adv|\ 1+7

(2.1.42)

In (2.1.2), we showed that
E==-2V.VV_1+ (1 - |Vi|>)(1 = |V_1|H WV,

hence, with Lemmas 2.1.1 and 2.1.5 (estimating icd;,V as in step 2 of the proof of Lemma 2.1.22),
we have

Ke
E - T
| 1c0.,V | < 17
by using |[VV;| < 11_;_, |IVV_1] < = < Kcand |1 — |[V_1]?| < Kc? in the right half-plane and the
symmetric estimate in the other one. We also have, in {1 —n#+ 0},

1wl a/2d<K(0)cl_‘7
(1+7)72 = (7))

V<K
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hence
c2—a _
g_)o( 2 o’).

(=B oV 00)| < K@) [ -

T
Step 2. We have (F(U),04V )= (E —ic0,,V,04V) + O0%_o(c*~9).
In this step, we want to show that the nonlinear terms in F(¥) are negligible. Recall that
F(U)=E —icd,,V+R(Y)+V(1—n)(=VI.VV+|V|25(D)).
We first show that
(R(P),04V) = OZ_o(c*~7).

Indeed, R(¥) is localized in {7 <2} and |R(¥)| < C’|\(I)H2C1({T~<3)) (since ||¥]«,0,a < Co, see Lemma
2.1.7), and using that in {F <3}, [®|+|V®| < K(0)c'~7/? yields

|R(D)] < cl|0z,®lcogrgan + ClI@lE 7 <a) = O-0(c* 7).
Now, we use ||¥||. 52,4 < K(0)c' 77 to estimate, in {1 —n+#0},

K”‘I]H*ad K(U)CQ_U

|V‘IJV\I/| (1+ )2+a’ X (1+’F)2+a-7
therefore
1
. ] i < 20 —O)° 2—0 .
[(~VE.VOV(1-1n),0V)| < Kc /Rz—(uf)“a d—o(c*77)

The same argument can be made for
[(=IVIES(D)V (1= 1), 04V )| = OF_o(c* )

by using S(¥) = e27¢(¥) — 1 — 298¢(¥) and the fact that it is real-valued.
Step 3. We have (E —ic0,,V,04V )= —2 f{ —i¢03,V)0:, V1 V_1) + O0%_o(c*7°).

The goal of this step is to simplify the computation by using the symmetry. By symmetry, we
can only look in the right half-plane:

<E7¢cax2v,adv>:2/ Re((E —ic0,,V)03V).
{z1>0}

Recall that 04V = —0,,ViV_1 + 0,,V_1V1, hence we need to show that

/ Re((E — i 0, V)TV 1VA) = O o(2—).
{x12>0}

We compute

/ Re((E —icoy, V)TV Vi) = m(( ’C‘%VWP) AL 1)
(r130) (213 Vo
_ / %e( zc&m\/"/'Q)me 611V_1>
T V_l
+/ 3m< lcax2V|V|2)3m<ax1V_1).
€120} Vo

In the right half-plane, we have d <r_; and 7 <rj, hence

0z, V_1 K Kcl=o/?
Re| — <SG <———,
' e( | & )‘ riy T (147)2F/?

~ axlv—l
Jm(—v_1 )

10/2
<K<K

r_1 (1 +r)”/2’
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from Lemma 2.1.1. Moreover,

_ 1—0/2
‘%Q<E zcaz2V|V|2>‘< : Ke

% 1+ 7)to/2
~ B —ic0g,V 19 Kcl—o/2
Jm(—v |V| )‘ (1+ )2—}-0/2?

from Lemma 2.1.22. We thus deduce that

6170/2

s a1 .\ 1—0/2 —O° 2—o
’ / o T iV TLTTD) < K A{ T Ol ).

Step 4. We have
/ Re(ET, ViV 1) = —2 / Re(Da,ViTa V10, V1V 1) + 07 o(c>=).
[m>0} [m>0}

The goal of this step is to compute the part of F that produces the higher order term. Recall
from (2.1.2) that
E=-2V\1.VV_1+ (1 — |V1|2)(1 — |V71|2)V1V71
and since
Kc?
(1+7)2

(=)A= V)l <
by Lemma 2.1.1, we deduce

/ Re((1— Vi) (1 — [V_1 YAV 1BrVA V1) = OZ(c> ).
{2120}
Now we compute the first contribution from —2VV;.VV_; =—-20, V10,,V_1 —20,,V10.,V_1,
/ Re((—20,, Vida V)T VIV 1) = —2 / 100 V2 Re (0, V1 V7).
X } {$120

From Lemma 2.1.1 we have

Re(D,,V_1 V1) :o(%)
—1

since the main part in @QV 1V_1 is purely imaginary. Using 1 < r_jandr_1>d> % in the right

half-plane, we have —— Ko and, noting that |9,,V1|*> < -, we obtain

1
[ Vi T < ke | >O}W=owo<c5/4>.

Finally, the second contribution from —2VV1.VV_; is
/ Re((—20,Vide,V_1)Or Vi Voy) = —2 / Re(0,,Vi0 Vide, V1V )
[130) [130)
which concludes the proof of this step.
Step 5. We have f{m)O}%e(Ealel Vo) =Z+0Zo(c*7).

By Lemma 2.1.1, we have

8:62‘/71‘/_: |V, |2y1+2d+0< ;;’l )
T

~1 L]
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The O(T; ) yielding a term which is a OZ_(c?>~7) as in step 4, therefore
/ Re((—200,V100aV1)Te Vi V1) = 2 / Re(i0, VT V)V P21 07 o).
{x1>0} {:v1>0} —1

Now we compute in polar coordinate around dej, writing V3 = pl(rl)e“’l. From Lemma 2.1.2, we
have

= cos pi(rl) : —sin
alel = ( (el)pl(Tl) " (91)) ‘/1’
(r1)

/
B, Vi = <sin(6‘1)p1 "1 +—cos(91)> Vi.
pi(r1)
We then compute

!/ !/
Re(i0,,V105,V1) = _|m|2<c052(91)rf/1)1 +sin2(91)rf;1> ~vi |2Tfl1)1

From Lemma 2.1.1, we have pi(ri) = On_wo(%) As a consequence
1

+2d 1 +2d
| wipthy et [ ey
x>0} ™1 {r1<d'/?} 1p1 ™1

r1p1

1
< K2 ° —_—
ﬂﬁ>¢mgl+rv+%

’ 2 Ke2—©o
because when z; > 0andr; > d'/?, we have ‘|V1|2%|V,1|2y1; d’ < (1+;)2+2”' We deduce that
1P1 2,

!

+2d +2d o .

L/ Vil v 2T :/ |P”1W|ﬂ1 +07_(c*7).
{z1>0} r1p1 ] {ri<d/?} 2

In the ball {r; <d"/?}, we have

1
r21:4d2<1+0d_,oo<3)) and |V_ 1|2—1+O<d2>

li
/ IVI2 pl |v, |2y1+2d 12 V|22 (yy + 2d) + OF_o(>~).
T } r—q 4d {r1<d1/2} 1 P1

therefore

Since y; =11 cos(#1), by integration in polar coordinates we have

/
u/p |‘GJ2 P1 y1=0
{r1<d"/?} r1p1

! i
Re(ET, Vi V1) == ViLL 4 07 o (c20).
/3120} ( 1Vo1) d/{r1<d1/2}| 1] _— o(c®77)

Remark that |V;|? = p? hence

q1/2
/ 1

[ deanﬂ§2w+0dm(—)
{ri<d'/?} r1p1 0 d

Since p1 =1+ O(T—IQ) when 71 — 0o and p1(0) =0 by Lemma 2.1.1. Therefore, as claimed,
1

hence

/ Re(ETo ViV 1) =%+ 07 o(c2—2).
T } d
Notice that we have shown in particular that

Re(i0,,V10,,V1)|V_1]? = -7+ OT_o(ct 7). (2.1.43)
]RQ
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Step 6. We have f{z >0}9‘ie(—icasz8mV1 V_1)=—mc+ O0Z_o(c*77).
We are left with the computation of
/ Re(—ic0,, V0, V1 V_1) =
{120}
/ Re(—icOy,V10:,V1)|V_1]? + / Re(—ic0p,V_1V10,,V1 V_1) (2.1.44)
{z120} {z120}

since 0.,V = 0,,V1V_1+ 0,,V_1V3. For the second term in (2.1.44), we compute

+ Og—>0(c2is)

*C/ Re(i02,V_1 V10, V1 V_1) = c/ Re (D, VaV3) |V 2L JQF 2d
{z1>0} {

120} T/

in view of the relation

. — 2 1
10,V V1= —IV—1|2y1r;L = O(F)

from Lemma 2.1.1 and the fact that f{x S0y € O(%) = 07_0(c*9) (as in step 4). Now recall
1z 1
from Lemma 2.1.2 that
/ ;
0, V1= <cos(91)—”1(”> - Lsm(el)> Vi

NG 1
therefore prry)

li
Re(D,,V4V7) = Cos(91)%|V1|2.

In particular, |Re(9,,V1V1)| < TKM is integrable. Furthermore, |V,1|2%2d‘ =0,_o(c) in the right
1 —1

half-plane, therefore
e / Re(i00,V A ViTa ViV 1) = Ouso(c?) = OF (),
{z120}
The first contribution in (2.1.44) is

¢ / Re(i 0, ViTo V) [V 2= / Re(i Dy VATaVE) + 07 o(c2—7)
{0} {0}

1

r2y

using that [V_4|?=1 +O( ) From (2.1.43), we have

/ Re(i 0, Vi V1) = —1 + O o(c1=),
2120}
This conclude the proof of step 6, and combining step 4, 5 and 6 we deduce
/ Re((F —i¢c0z,V )0, V1 V1)7r<$c>+0g'_,0(c2“).
{z120}
Step 7. We have (L(®), 04V ) =05_(c*°).
We want to compute, by integration by parts, that

First, we recall that the left hand side is well defined, because we showed in the previous steps that
all the other terms are bounded, therefore this one is also bounded. We have

/ Re(ADITV) = / Re(VOITV).7i — Re(DVIIV).7i + / Re(DATTV),
B(0,R) 8B(0,R) B(0,R)
an

K
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therefore
/ %e(vq)ai_‘/).ﬁ*9%2(@V8d‘/).ﬁ:03ﬂoo(1)
0B(0,R)

and the integration by parts holds.

Recall that
L(h)=—=Ah—(1—|V[)h+2Re(Vh)V —icdz,h
and
Ly,(h) = —Ah — (1 — |Vi|2)h + 2Re(V1h) V1.
From Lemma 2.1.6 and ||¥||, 5,2 < K(0)c' =7, we check easily that

K 6270
(0) =07_o(c*77).

|<¢,anz2adv>|<A{2W

We therefore focus on the remaining part, with the operator
L(h):=—=Ah— (1= |V|))h+2Re(Vh)V —icdy,h.

We remark that we have Ly,(0,,V1) = 0, since 9,,(—AV; — (1 — [V1]?)V4) = 0. Recall that
04V = —0:,ViV_1+ 0,,V_1V1 and let us compute

L(V_1h) =Ly, (h)V_1 = A(V_1h)+ AhV_1 + (V|2 = [Vi]2)hV_1 + 2Re(Vih) (1 — [V_1 2V,
therefore, using the equation or V_j,
L(V_1h) =Ly, (h)V_1 —2VV_1.Vh+ (1 — [V_1|?)(1 — [V4|?) V_1h + 2Re(Vih) (1 — [V_4|?)V.
Taking h = 0,,V1 then yields
L(V_10,,V1) = =2VV_1.V 0, Vi + (1 = [V_1[2) (1 = [VA[*) V104, V2 + 2Re(V10:, V1) (1 — [V_4[A)V.
K
(I+r)A+r-1)*’

K
Vi< (T+r)3(1+r_1)?

K
(IT4+7r)3(1+7r_1)2

for a universal constant K >0 by Lemma 2.1.1,

Remark that [VV_1.V9,, V| <

and |2%8(V18I1V1)(1 — |V71|2)
therefore

(1= V) (1 = VA2 V_102, VA <

(@, L(0a, V1 V1)) = OZo(c* 7).
Exchanging the roles of V7 and V_;, we have similarly
L(V18,,V_1)=—2VVi.VO,, V_1+ (1 — V1)1 = |Vi|)) V10, V1.
We then conclude that
(L(®),04V) = O_o(c*~°),

which end the proof of this step. Notice that we have shown

Kc
< 1.
OV < s (2.1.45)
1 Ke .
because T ST H in the whole space.
Step 8. Conclusion.
Adding all the results obtained in steps 1 to 7, we deduce

/\(c,d)/ |8dV|2n:7r<l—c)+Ogﬁo(c2_”). O

R2 d

At this point, we cannot conclude that there exists d such that A(c,d) =0. For that, we need
to show that the OZ_,(c?~) is continuous with respect to ¢ and d. This will be shown in section 2.2.
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2.2 Construction and properties of the travelling wave

Given 0 <o <o’ <1, d,c> 0 satisfying % <d <% and ¢ < ¢g(o, 0’) defined in Proposition 2.1.21,
we define ®, g = VU, 4 € &, 5 4 the fonction constructed by the contraction mapping theorem
in Proposition 2.1.21. From Corollary 2.1.25, for any 0 < oy < of < 1, this function satisfies, for
c<co(o,01), that
1Pe.allo0,a < K (o1, 01)ct 7t

With equation (2.1.41) and Proposition 2.1.26, if we show that ®. ¢ is a continuous function of
c and d, then there exists ¢y > 0 such that, for any 0 < ¢ < ¢y, by the intermediate value theorem,
there exists d. > 0 such that A(c, d.) =0. This would conclude the construction of the travelling
wave, and is done in subsection 2.2.1. In subsection 2.2.2, we compute some estimates on @), which
will be usefull for understanding the linearized operator around .. We also show there that Q.
is a travelling wave solution with finite energy.

2.2.1 Proof that ®.4is a C"' function of ¢ and d

To end the construction of the travelling wave, we only need the continuity of ®. 4 with respect
to c and d. But for the construction of the C*! branch of travelling wave in section 2.3, we need its
differentiability.

2.2.1.1 Setup of the problem

From Proposition 2.1.21, the function ®. g is defined by the implicit equation on &, » 4

(nL()+ A =n) VL'(./ V) Iz (=F (Pc,a/ V) + Pe,a=0,

where (nL(.)+ (1 —n) VL'(./V))~!is the linear operator from E..,o1,.aN { (., Za) =0} to &, 4, that,
for a function Vh € Euy 5 g with (Vh, Zz) =0, yields the unique function ® =V €&, , 4 such that
nL(®)+ (1—5)VL/(¥)=Vh
in the distribution sense. We recall the quantity Zg(z) = 04V (z)(7(4r1) + 7(4r_1)) defined in
subsection 2.1.3 and we have defined the projection
Z

() = — (B, Zs)— 2L

[ Zall72(re)

We want to show that (c, d) — ®. 4 is of class C! from values of ¢, d such that 0 < ¢ < co(o) and
2—1d <c <% to &x,0,q- The first obstacle is that £, » ¢ depends on d (through ), both in the weights

in ||.|l«,0,4 and in the orthogonality required: (®, Z4) =0. To be able to use the implicit function
theorem, we first need to write an equation on ® in a space that does not depend on d. The norm
I-ll+,o,a depends on d (through 7):
1¥]ls.oa = [V¥lcarcay + 17V Lo rma + 172V | ooz
+ 177l Lo (rzany + 17OV Lz 2 + |72V oo 2.
For dg € R, dg > 10 and d € R such that |d — dg| < 0 for some small § > 0 (that we will fix later
on), we define

v [ @ s ®
[®llo,0.d0 = I1®llc2re<an + |76 %e(v—> +|[7EF V%e<?>
® i ® i
Leo({Fg 22}) Leo({fFg>2))
+ fgﬂm(i) + fg,;am(i)
Vs " Ve i
Leo({Fg 22}) Lo ({Fg >2})
N f?;gvz( ® ) |
Ve i
Le({fg>2})

where V@ = Vl(ZL' - d®é'1)V,1(x + d@é'l) and f@ = min (T17®, 7",17®) with T,® = |£L’ — d@éﬂ,
r_1,¢=|x+deei|. Then, for 2=V €&, ; 4 (V taken in d),

Ki[[¥]ls0,a <[1®ll®,0,d0 < Kol| ¥l (2.2.1)
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where K >0 are absolute when |d — dg| <J. Indeed, we check with simple geometric arguments
that if 7g > 1, V taken in d, then 7 >1/2 and we have

4 1‘<—K and ‘V(V)< K

v ST v )| STree (222

for a universal constant K > 0. Moreover, we have, for instance, if 7g > 2 (hence 7g < 27),
- (0] - (0] - o/ V

1+o i 140 = 140 il IR |
Tg iRe(V@) Tg 9%( V)‘—i— Tg 9%( V<V® ))'

P
< K||\I/H*,a,d+K T%‘—/' < KH\PH*,U,d~
Using (2.2.2), we can estimate similarly all the terms in (2.2.1).
We define similarly, for g=Vg(g1+1ig2) € C*(R?), 0/ >0

<

~ ’ ~ / -~ ’
l9lle®.0de = llgllcr@re<an + 176" gillLmiresan + 1757 gollLewoz2) + 1757 Vgl Lo >2)-

We have that there exist C1,Cy >0 universal constants such that, for 0 <o’< 1 and any d,dg > 10
with |d — dg| <, for any Vh € Eus 57,0, g=Vh,

Cillhllsx,ora <l gl@®.07.do < CollAllsx,07,a-
We define the spaces, for o,0’ >0,
Eo,0,de 1=
{<I> € C%(R? C), 1®]|@,0,de < +00, (P, Zg,) =0,Vx € R2, ® (21, 72) = ®(1, —22) = P(—21, 1'2)}
and
Eam,ods:=1{9€CHR2C), lglle.or,de <00}
We infer that, from Proposition 2.1.17, that the operator
(nL() + (1= ) VE'(./V)) oIl

goes from Eg@,o7,dy 10 8,0,dy, and that (for 0 <o <o’ <1)
L)+ Q=) VL' / V) olg e r i —~Eo0.a

is bounded independently of ¢, d and dg if |d — dg| < ¢. Indeed, the norms ||.|[+,o,¢ and ||.||@,0,ds
are equivalent, as well as the norms ||.[[««,07,q¢ and |[.|@®,0",de for any o, o’ > 0. About the
orthogonality, we replaced (®, Zg) = 0 by (®, Zg,) = 0. This does not change the proof of
Proposition 2.1.17, since when we argue by contradiction, if for a universal constant |[A| < J we
took the orthogonality (®, Z44 ) =0 instead of (®, Z;) =0, the proof does not change, given that
d is small enough (independently of d). To be specific, we have to take § small enough such that
(02,V1, 05, V1(.+ X)) >0 for all Ae]—4,0].

Therefore, we take a sequence D™ >0 going to infinity such that [D™+1) —D™| <§/2, and
for any given d large enough, there exists k(d) such that d € |[D*@) — §/2 D®) 4 §/2[ and
the proof of Proposition 2.1.17 holds with the orthogonality (®, Z ) =0 for any value of d in
|DF@) —5 /2 DKE) 15 /2] We denote D*(@) =dg. The inversion of the linearized operator then
holds for d € ]D™ —§/2, D™ +§/2[ with D™ =dg, for all n € N large enough.

Furthermore, the contraction arguments given in the proof of Proposition 2.1.21 still hold
(because the norms are equivalent), hence we can define ®. 4 by a fixed point argument if 2—1d <c g%
and |d —dg| <6 in the space £g, 5 4, that does not depend on d.

We want to emphasize the fact that we change a little the definition of the spaces compared
to section 2.1. In particular, for ® = V¥, the norm ||.||,o,d4, is on the function ®, and before, for
I-ll«,,4, it was on W. This is because V' depends on d, and we want to remove any dependence on
d. The same remark holds for ||.|@®,0,ds and ||.|e®,0’,a (with g=Vh).
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We continue, and we define
H(®,c,d):=(nL(.)+1—n) VL'(./V)) N~z (F(®/V))) + .

The function ®. 4€ &g 5,4, is defined, for 2—1d <c <% and |d — dg| < d, by being the only solution in
a ball of £g 4, (With a radius depending on ¢,0’ and ¢ but not d) to the implicit equation on ®:
H(®,c,d)=0. This means that we shall be able to use the implicit function theorem in the space

E®,0,ds On the equation H (P, c,d) =0 to show that ®. 4is a C"' function of d in E®,0,dg (for values
of d such that 2—1d <c <% and |d — dg| < d). We want to differentiate this equation with respect to

® at a fixed ¢ and d, and show that we can invert the operator obtained when we take ® close to
®, 4. Since (nL(.)+ (1—n)VL'(./V))~! and Il are linear operators that do not depend on @, it
is easy to check that H(®,c,d) is differentiable with respect to ®, and we compute

deH (P, ¢,d)(¢) = (nL(.) + (1= n)VL'(./V)) " ([T (=dwF(/V))) + .
To show that deH (®,c,d): £s, 0,4, — €®,0,d, and that it is invertible, it is enough to check that

(L) + Q=) VL'(/ V) Uz (deF () V)llgw.o. 00— 000 = 00—0(1), (2.2.3)
which implies that de H(®, ¢,d) is a small perturbation of Id for small values of ¢ (at fixed o). From
Proposition 2.1.17, we have that ||[(nL(.)+ (1 — n)VL’(./V))’loﬂj|\|g®®,o,’d®ﬁg®,md@ is bounded
independently of d and dg if |d — dg| <, thus it is enough to check that, for some o’ > o (we will
take U'ZHTU> o),

lldwE(les,o.ae—E0,07.00 = %e-0(1)-
This is a consequence of the following lemma (for functions ® = V¥ such that | ¥, »,¢=09_(1),

which is the case if @ is near ®, 4 since | V.. gll«.0.a < K(0,0")ct "), where we do the computations
with the x—norms since they are equivalent, with uniform constants, to the ®-norms. We define

7(0)::1;J>0.

Lemma 2.2.1. There exists C >0 such that, for 0 <o <1 and functions @=VV, o=Vp €&, ;. 4,
if %<C<% and || Ul]«,0,a<1, then

[dwF ()]l ex,7(0),a < Cl[¥]ls,0,all ]

*,0,d-

Proof. Recall from Lemma 2.1.7 that
FU)=F —icd,V+V(1—n)(=VU.VU+|V[25(¥))+ R()
with S(¥) =R () 1 — 20Re(W) and R(¥) at least quadratic in ® and supported in {r<2}. We

compute

dyF () =V (1 —n)(-2VE.VY+|V[>dS(¥)) + duR(¥).

We recall the condition 2—1d <c< % For the term dg R(%)), since R is a sum of terms at least quadratic

in ® and is supported in {f < 2} (see the proof of Lemma 2.1.7), when we differentiate, every term
has ¥ or V¥ as a factor. Therefore,

ldw R()|[sx,7(0),a < K| @llczarganllV lozrga)

<
< K| ¥s0allt]l0,a
Now, for Re(VU.V)), since o >0, v(c) <1, we estimate
|7 OR(VO.VY) | Locrzay < [FT7 DIV X V|| o221

Flt(o)

< K||9)lw,0,dl|Y 50,4 2T

Lo ((F>2)
< K| ¥v,odllt]l0,0
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Similarly,

[T (VOT ) |z < 17 OTRETING e
+ [P OVImY, vsaewl\m 7>2))

72+7(o)
773+2cr

N

K[ ¥[l,0,

*,0,d

Leo(iF>2))

N

K[ ¥[l,0,

*,0,d-

With similar computation, we check that

727V (V8. V)

*,0 de”* o,d-
Finally, we have

du (1) = 2Re(y)) (*HY) — 1),
a real-valued term, and since || V|| »,q¢< 1, we estimate
1717 ORe (1) (27 — 1) | eizay < KT ORe(9)Re(V)| w72

Flt(o)

< K|¢llso,dll¥[lx0,q 2720

Leo({7 >2))
< K|[¥e,dllvoal¥lls0.4;

as well as

1727V (Re() (27 = 1) |y < K[ OR(VY)Re(V)| o520
+ K[ ORe(4)Re(VO)| Loe (7> 2)

,,';2—‘,—’)/(0')
< Kl¥edlloalldllo.a| —s7z
Lo ({7 >2))
< K[9eallso.all®lls 0,0
These estimates imply
[dw F () [, 4(0),a S Cll¥e,allx,0.all P ll+.0,a- 0

2.2.1.2 Proof of the differentiabilities of ®. 4 with respect of ¢ and d

We shall now show that c¢— @, 4 is C* and compute estimates on 9.9, 4 at fixed d, and then show
that d+— @, 4 is C' at fixed ¢ and estimate 04P., 4. These estimates will be usefull in subsection
2.3.6. For d— ®. 4, we will use the implicit function theorem (see Lemma 2.2.3), but we start here
with the derivation with respect to c.

Lemma 2.2.2. For 0<o <1, there exists co(c) >0 such that, at fivred d >—-——

2¢ (a)
e @ geCY |22 A0, co(0)], Euoa ).
“ 2d’ d ’ 1T
Remark that, at fixed d, 0.®¢,q= V0¥, q.
Proof. In this proof, we consider a fixed d > 5——. We define, for ¢ € R such that 5 <c< 2 and

d
0 <c¢<co(o), the operator

He: @ (nL(.) + (1 =) VL'(./V) " Iz (F(®/V)))

from £ 5,45 t0 £@,0,ds- The dependency on ¢ is coming from both F' and (nL(.)+(1—n) VL'(./
V))~1, and in this proof, we will add a subscript on these functions giving the value of ¢ where it
is taken. Take ¢’ € R such that o5 <¢’ < = and 0< ¢’ <cp(o), and let us show that

Hete(Per,a) = He(Per,a) [ 0,0,d0 = 0250(1)-
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In particular, remark that we look for a convergence uniform in ¢’. By definition of the operator
(nL(.)+(1—n) VL'(./V))~!, the function Heyo(Pcr.a) (in Eg,0,4,) is such that, in the distribution

sense,

(nLO+A=VE(3)) | (Hess@0,0) =T (Fere(®@r,a/ V).

Since ®./ 4 € C*°(R?), we have that H.,.(®. 4) € C*°(R?) and the equation is satisfied in the
strong sense. Furtheremore, since 7 (F,io(®a/V)) € Egp, 2t g, Dy Lemmas 2.1.22 to 2.1.24
with |17 (Fere(®era/V)) loo. 222 4, SK(0) (since @er,g €€ 210 4 With [|®er allg 260 4 <K (),

240
3

we have, by Lemma 2.1.18, that Hey o(®er,q) € £g,~(0),de (since (o) < ) with, fom Proposition

2.1.17, [[Heq e (Per,a) |@, (), de < K (o). We check similarly that

(nLO+ A= VL(35)) (HA@er0) =T (Ful@er.a/ V).

c

Now, from the definitions of L and L’ from Lemma 2.1.7, we have

(nLO+a=mve(3)),, Here@ea) = (nLO+Q=m)VL(5)) Here(@er)
- ignaa:z]Hc-i-e(cI)c/,d)

— 25(1 - n)vax2<]Hc+8$/(vbC“d) )5
and therefore

(nLO+ A= VE(3)) (Hero(@erd) ~ He(@er)
= _(Hé_(Fc-f—a(cI)c’,d/V) - Fc(q)c/,d/v)))
— e Wnes () + (1= v, HeefPed ))

We check, using Hey o(Per,d) € o, 4(0),der Hete(Per d)|@,~(0),de < K (o) that

. Hc € (I)c’
ZE(T}aIQH‘IC+E((I)C/7d) + (1 — n)V()m(%”d))) (S 5@@7»»/(0)@@,

In particular, by Proposition 2.1.17 (from Egg, +(0),ds t0 £®,0,ds), We have

H]Hc+a(‘1>c’,d) - ]HC(‘I)d,d)”&mdea
< K(o)|Uf (Foge(@era/ V) = Fol(®era/ V)|l 0@,4(0),do
+ K(o)e.

with

< K(o)e.
®®,7(0),de

We recall that
F(U)=F —icd,V+V(1—n)(-=VU.VU +|V]25(¥)) + R.(P),
therefore
Fepe(®era/V) = Fe(®er,a/ V) = —i€0s,V + Reye(Pera/ V) — Re(®er,a/ V).
By Lemma 2.1.5 (for i0,,V’) and the definition of R, (in the proof of Lemma 2.1.7), we check that,
for any 0 <o <1, since | ¥ 4lls.0.a < K(0)co(0) =7 < K(0),
€

I (Fete(Per,a/ V) = Fe(®er,a/ V)low,0,d0 < K (o)

We conclude that
H]Hc—i-e(q)c/,d) - HC(®0/7d)|

thus Heqo(®era) — He(Perq) when € — 0 in g5 4, uniformly in ¢’. We remark that it is also
uniform in d in any compact set of |0, co(o)][.

®,0,de — ngo(l)a
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The next step is to show that c+— @, 4 is a continuous function in &, , 4. Take €, a sequence such
that €, — 0 when n — oo, then ||®.yc. dllv.o.a < Ko(o,o)(c+¢e,)' 7" (for Ko(o,0’) the constant
in Proposition 2.1.21), and (in the strong sense)

(nLO+ A= VE(3)) | (@eterd) + i (Feie (Pere,a/ V) =

With the same arguments as in step 1 of the proof of Proposition 2.1.17, we check that, up
to a subsequence, ®.y., — ® locally uniformly in R? for some function ® € &, , 4 such that
1®]l+.0.0 < Ko(o,0')c* =7, Then, since

H—Ic+€n(q)c+6n,d) + (I)c+6n,d == 07

by taking the limit when n — oo, up to a subsequence, since Heyo(Per, q) — He(Per,q) when € — 0
in £, 5,4 (the norm is equivalent to the one of £g » q,) uniformly in ¢’, we have

H,(®) + P =0.

But then, ® € & .4, ||®]lx.0.a < Koo, 0’)c' =" and H,(®) + & = H(®, ¢, d) = 0. By Proposition
2.1.21, this implies that ® = ®. 4, therefore ®. 4 is an accumulation point of ®.4., 4. It is the

only accumulation point, since any other will also satisfy ® € &, 5.4, |®||x.0.a < Ko(o,0')c' =7  and
H(®,c,d)=0. Therefore, ®cyc, ad— Pc.qin Es 5.4, hence c— P, 4is a continuous function in &, 4.
Now, let us show that it is a C! function in &, , 4. Since He(®P. q) + Pc,q =0, we have

(nLO+a=VE(3)) (@ere— )
= _(Hé_(FC+a(®c+s,d/V) - FC((PC,d/V)))

- ie(nazzq)ﬁ&d +(1- n)V8I2<(I)LV8’d) )

Furthermore, from |17 (Fete(®era/V) = Fo(Pera/ V) |lo®,0.de < K (0, c)e and

ie(n@mzq)c%,d +(1- n)V()m( ¢C‘+/€’d ))

we deduce that ||Peye d— P dll®,0,de <K (0, C)e.
From the definition of F', we infer that

Fere(®ctve,d/V) = Fe(Pe,a/V) = —iedy,V

VA=) (=VVeieaVViic i+ VU, q.VU. 4)

V(A =n)|VI(S(Were,a) — S(Ve,a)

Reye(Veye,a) — Re(Ve a).

Now, regrouping the terms of Hé(dq,Fc((CI)c+a,d —®.4)/V)) and using ||Pcyeca — Pedll®,0,de <
K (o, c)e for the remaining nonlinear terms (which will be at least quadratic in ®.4. ¢ — P, 4, since
F is C* with respect to W), as well as the fact that ¢c— R.€ C*(]0,co(0)[,C*(IR?)), for any 0 <o <1,

Hé(Fchs((I)chs,d/v) - FC(q)C,d/V» - Hé(d‘lfFC(((I)c+€-,d - @C,d)/v))
+ ellg(—i0,,V)
+ Of.,..(5%),

-1, 0,

< K(o,c)e,
®®,0,dg

+ + +

where O}y ,(€%) is a quantity going to 0 as 2 when ¢ — 0 in the norm ||.[|«x 5,4 at fixed o, c.
We deduce that

(1a+ (nLo VE(3)) WPl /V)) ) (@cea = Pe.a)

= (ﬁL(.)Jr( ( )) —ellf(—id,,V) — <U3x2¢c+g,d+(1n)vaz2<¢L‘;’d)>>
+ (nzO+a=mve(s))] ©Off L),
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and we have shown that (Id+ (nL(.)+ (1—n) VL’(‘;/))C_l(Hé(%/chFC(./V)))) is invertible from
E®,0,ds 10 €@,0,d, (With an operator norm equal to 14 07_ (1) if taken in ® = &, 4, see Lemma
2.2.1). Furthermore, ®. 4 is continuous with respect to ¢ in £g_ (4,4, (With the same computations
as previously, replacing o by (o)), therefore

P (O3
N0z, Peye.d+ (1 - 77)V3m<%8’d) — N0z, P a+ (1 - n)vaam( ‘C/’vd)

in €@, 4(0),de When € —0. We deduce that c— @, 4 is C' in Eg o4, (and therefore in &, 5 ). O
Now, we show the differentiablity of ®. 4 with respect to d.

Lemma 2.2.3. For 0<o <1, there exists co(c) >0 such that, for 0<c<co(o),

2¢’ ¢

dH(I)c,dEC“(] 1 2[ N ]d@%,d®+g|:,5®_’g?d®>.

We recall that § >0 is defined at the beginning of this subsection.
Proof. We fix 0 <c<cp(o). We define, for d € }2%, %[ N ]d® — g, dg +g|:, the function

Hy: @ — (nL(.) + (1= n) VL'(./ V) (g (Fa(®/V)))
from 5®_,g_,d® to €®_’g_,d®, so that
H(®,c,d)=Hy(P)+ P.

We took the same convention as in the proof of Lemma 2.2.2: we added a subscript in d in the
operators to describe at which values of d this operator is taken.

Step 1. Differentiability of Hy with respect to d.

To apply the implicit function theorem, we have to check that H(®, ¢, d) (or, equivalently
Hy(®)) is differentiable with respect to d, and that dqaH (®, ¢, d) € £g,o,4,- By definition of the
operator (nL(.)+ (1—n)VL'(./V))~!, we have, in the distribution sense,

(a0 v (B2 )} g (Puna(@ Vi) =0

and

(nuﬂd(«b)) +(1-7) VL'(MV‘”))dmdl(Fd(@/w» ~0.

From Lemma 2.1.7, we have, for any ® = V¥ € £g 5 4, that
(nLO)+ @ =mVE(5)) (@)= Lal®) = (1= na) (B = icd,,V)a¥,

and with the definition of L4 (in Lemma 2.1.7), we check that, for any ® € £g 5 44, in the
distribution sense,

((re0+0=mvie(s)), (20 +0-nvi(y)) )@

= (|Vd+€|2 — |Vd|2)(1> + Q%Q(VdJFE(I))VdJFE — Q%Q(qu))vd
— (1 — 77d+5)(E — ’L'CaIQV)d_;,_E + (1 /) (E — Z'CaxQV)d.
We therefore compute that, in the distribution sense,
(n2O+0=mVL(5)) (Hare(@) ~ Ho(@))
= —~((IVase* = Val ) Ha+ (@) + 2Re(Vay cHar o () Var e — 2Re(ValHa 4 (9)) Va)

(1= na+e) (B —ic0z,V )ate — (L= na)(E —ic0z,V)a)Hato(P)
(U e(Fire( @/ Vire)) — g (Fa(® / Va))-

+
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Since
OV =02 ViV_1 + 02V Vi —20,,V10,,V_1,

with Lemmas 2.1.1, 2.1.6 and equation (2.1.3), we check easily that
02%(?)
(1+7)3
Ogﬁo(&i)
(I+7)3°
It implies in particular that (|Vaye|> — Vi) Hite(P) € Eoo,(0),de> With
[(IVasel? = ValP) Hate(®) | 0®,7(0),de — O
when € — 0. We check similarly

Q%Q(VdJrEIHdJFE((I)))VdJrg — Q%Q(Vdﬂ{dJrg(q)))Vd
= £(2Re(gVHa4o(®))Va+ 2Re(ViH a4 o(9))0aVa) + Oﬁfﬁ@@ﬁ(a)w%(g),

[Vaye?— [Val?=edq(|V*) +

and

V([Varel?) = V(|Val?) =£0a(VIV[*) +

and that 2Re(0gVHa4c(®))Va + 2Re(ViHa4o(P))0Va € Egs,4(0),de- We continue, still with
Lemmas 2.1.1, 2.1.6 and equation (2.1.3), we infer
(1= na4e) (B —ic0z,V)ate — (1 = na) (E —ic0z,V)a)Hato(P)
= €0a((1 = na)(E —ic0y,V)a)Haso(®) + Of 1 (%)

lllo®.v(e).ae
and 0g((1 — na)(E —ic0z,V)a)Hate(P) € Eg@,4(0),de- Finally, we recall that
Fy(U) = (E —ic0:,V)a+ Va(1 —n)(=VEU.VU + |V [2S(V)) + Ra(V),
and we check similarly that

i (Fare(®/ Vise)) = M (Fa(® ) Vi) = 0l (Fa(® / Va))) + O} ().

oo, v(e).ae
We have
Aa(TTg (Fa(® / Va))) = (8allg) (Fu(® / Va)) + g (Da( Fu(® / Va))),
and since (9qll7)(Fy(®/V)) is compactly supported, (04017)(Fa(® /V)) € Egw,(0),de- We will
check in the next step that Ja(Fa(®/Va)) € Ee®,4(0),de- Let us suppose this result for now and

finish the proof of the differentiability.
Combining the different estimates, we have in particular that

(nL)+ 1= VL(3)) (Hare(®) ~ Ha(@)) =0
in £g@,~(0),de When € — 0. By Proposition 2.1.17 (from Egg,4(0),de t0 €®,0,ds), this implies that
Hypo(®) — Hy(P)
in £g,5,d, When € — 0. Now, taking the equation
(n2O)+ @ =mVE(3)) (Hare(®) — Ha(®))
~((Vage* = [Val) Hat (@) + 2Re(Viy cHar o(®)) Viry e — 29Re(VilHa (D)) Va)

+ (1= nd4e) (B —ic0z,V)ate — (1 = na) (B —ic02,V)a)Hay(P)
(74 (Fare(®/ Vage)) — g (Fa(® / Va)))

and dividing it by €, and then taking ¢ — 0, we check that d+— Hy(®) is a C function in g0, d,,
with

0uH (%, ,d) = 0Ha(®) = (nL() + (1 =) VL'(5;) ) (G(d, @),
with
G(d,®) := 8d(|V|2)IHd(<I>)+2i)%e(8(1_VII{d(<I>))Vd+Q%e(VdIHd(cD))&dVd

+ 9a((1 = na)(E —icdp,V)a)Ha(®) — 04z (Fu(® / Va))).
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0. d <K (0,0")c! =7 this implies

By the implicit function theorem, with Lemma 2.2.1, since || ¥,
that, for ¢ small enough, d— ®, 4 is a C*! function, and

8dq)c,d = 7d¢H*1(8dH(<I>C_,d, d, C))
Now, let us check that indeed Oq(Fa(®/Va)) € Eem,~(0),de fOr P € Es 0, dg-

Step 2. Proof of ‘ M‘d;/vd))

<K(0)c! ™7+ K| ¥]|s 0,0

sk, y(0),d

By the equivalence of the % and ® norms, these estimates imply that 0y(Fq(® / Va)) €
Eo®,~(0),dg- «,0,d <1. From Lemma 2.1.7, we have

Fd<§d> (B zc8z2V)d+Rd<§>+Vd( )(V(%).v<%>+|vd|25<%>>.

It is easy to check that at fixed P, c,

%(Rd—‘g%)) < K(o-)01*7(0)

*,0,d)

xx,y(0),d
since it is localized near the vortices. For the nonlinear part, we have
aa(va—n(-v(2)v(Z)+|v]2s(2
— Om(=VU.VU +|V|2S(1))
+ - )( 2V, ad<v<‘b)))
Va
+ (1= 1)2%e(V0aV)S(9)
P
J— 2 —
+ (1—-n)|V| 8d<S<Vd>>.
For the first line, from Lemma 2.1.6, ||¥||..»,q¢ <1 and the definition of |.||+,» 4, we have

v K[ 0)20a _ K[[¥]-0.a
v (1+7)3 S (1+7)3

(1—n)(~VEVT + [V [2S(D))| <

and
K”\II”* o,d *,0,d
(1+7)3 = (147)3

'v(aivva ) (—VOVT 4+ |V|QS(\I/))>‘ <

which is enough the estimate. Similarly, since 0y4n is compactly supported, we have

K90 o K[]+0a

Dan(=VE.TE + V2SO + VO~V E.VE +|V S S =755 <=7 79

Now, we develop

®\\_ VYD VIV 9V IVV
(7))

and we check, with Lemma 2.1.6, that
*,0,d K”\IJH* o, d

o veaf(2)) et
{0 (ovaf ()| A

Since [Re(VO,V)| <

similarly

as well as

(1+ T from Lemma 2.1.6 and |S(¥)| < K |PRe(¥)| (since ||| «,0,a< 1), we have

K| ¥]},0,q

(1 — 1) 2%Re(VOaV)S(T)| < L
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and finally, since

is real-valued, we check that

o K|V oa . K|[¥]0.a
— )< SALINS 7
(o)) s s

o KH\PHiad K”\I/”*O'd
— < Al it B
'vad<s<vd))' S (4732 T (14 7)2H(0)

arn

and this is enough for the estimate. Finally, we will show that for any 0 <o <1,

' a(E —icdy,V)

Vv
which would conclude the proof of this step (taking «(co) instead of o).
Let us show first that

<K(o)e'™7,

sk, 0, d

We have from (2.1.2) that
E=-2VV.VV_1+ (1= |Vi|>)(1 = |V_4|>) Vi V4,

hence

O4E =2V, Vi.VV_1 —2VV.V, V_1+ 0a((1 — VA2 (1 = |[V_1|)V2 V_y).

With Lemmas 2.1.1 and 2.1.2, we easily check that

K
(I+r)?(1+r-1)’

K
(I+r)(1+7-1)?

K K

IV, Vi.VV_1| <

IVVA.VO,, V1| <

and
|04((1 = [Vi]?) (1 — [Voa ) VAV-y)| €

In the right half-plane, where r; <r_; and r_; > d, we use

1
<K l1—0
(1+7“_1)170 ¢
1 1 2
+ < =
(I4+r)* (I+r_p> " (147

and

for @ >0 on the three previous estimates to show that

< -
|adE| ~ (1 +7:)2+<7

A+mPtr ) A+mPtr )

(2.2.4)

in the right half-plane. Similarly, the result holds in the left half-plane, and this proves (2.2.4).

With similar computations, we can estimate V( 6”‘1/E) and show that
E
‘ L1 R
Vv sk, 0,d
Let us now prove that
' 9a(ic0z,V) < K(o)ct7.
V sk, 0,d

We show easily that
chax2adv|‘cl({,;<3}) S Kec S Kcl_g,

(2.2.5)
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and since 0,04V = —05,2,V1V_1 + Op12,V_1V1 — 05, V102,V_1 + 02,V_10:,V1, by Lemma 2.1.2 we
have

K K
<— <=3
therefore
f1+0%e<icaxzadv) + f2+av<M> <Ke< Kel—o.
4 Leo({F>2)) v Loo({7>2))

This proves that (2.2.5) is true for the real part contribution. We are left with the proof of

cf”“ﬁm(—lax?/adv) < K(o)ct™7,

Loo((F>2))

which is more delicate and relies on some cancelations. We compute

~ iaxgadv _ 8I1I2V1 axlxzv—l _ axl‘/laxgv—l azlv—laxgvl
Jm( Vv )‘ zm( vV, Rl v, T v )

From Lemma 2.1.2, we have

0z, V1 i . 1
—_—t = 0 Or,—oo|l =
Vi T sin(0) + Ori—cc r3
icOz,V

Vv **,a,d'
. From Lemma 2.1.2, we

and the part in OTIHOO(%) can be estimated as in the proof of Lemma 2.1.22 for
1

In particular, we will just compute the terms of order less than % or
1

3
have also
Oz,V1 i 1
%: 0 cos(0y) + On—><>0<r_§,>
and
Orra,V1 | _ cos(01)sin(61) 1
%e( i )— 2 +0r -0 3 )

These two estimates hold by changing i — —i, 01 —60_1, 71 —7_1 and V1 — V_;. We then deduce that

3m<M> _ _( 005(91)2111(91)+COS(9—1)Sin(9—1)>

2
14 1 T4

1 r—1 r—1 1

1 1
ri—ool| — 3 r_1—ool — =2 | 2.2.
O 5 ) 0. <3> (2.2.6)

We start with the second term of (2.2.6) which is the easiest one. We use for e =41 that

- ( sin(01) cos(0-1) |, sin(9-1) cos(6)) )

+

cos(f.) = xlr;de and sin(6.) :%
to compute ‘ ‘
sin(f)cos(6_1) = (witd)zz
q mr-1
an
sin(f_1)cos(61) = (1= d)zs
rir—1
therefore

_ sin(f1) cos(f—1) | sin(f—1) cos(6) 2dxs

+ = :
o) r_q r_1 r1 (rir_1)?
We have, in the right half-plane, where r; <r_j; and r_1 >d > %,
_ 2dx R D |
CT2+U—22 =2 Cd2——21—_ <KC170
(rir—q) rirZyr—1r_7°
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since S 1, |w2| <landced < K. Similarly, we have the same estimate in the left half-plane.
Now for the ﬁrst term of (2.2.6), we have, for e==+1,

sin(f.)cos(6.) :m——gd)xg-
TE
Therefore,
7005(6‘1)21n(91) N cos(f_1)sin(f-1)  x2 . (41 + d) — 144 (21— d)).

r? r, ~(rira
We compute, for e =41,
ré= (1 —ed)? +23)? = (21 — ed)* + 2(x1 — ed)?x} + 23,

hence

Cos(91)§in(91) n Cos(9_1)25in(9_1)

1 (]
= ﬁ(xl —d)(x1+d)((21— d)* = (214 d)* +223((21 — d) — (21 + d)))
ﬁx%(zl +d—(z1—d)).

We simplify this equation to

. . _ . 5
7cos(91)§m(91) + 008(9,1)251n(6‘,1) _ —ma(11 d)(:il +d) (23 + 622 — 423d) + 2x3d a7
T r~1 (7’17”71) (7’17",1)

We now estimate separately each contribution of (2.2.7). We have, in the right half-plane, where
K
ri<ropandrog>2d>z—,

5 5 ~240
ot 2w3d —oleg T2 T 1 <Ko
7“17“—1)4 7’%7"3 1 7"%7’ 1 rt 17

since |xa| <71, |z <71 and = o < 1. Still in the right half-plane,

o

d? (x1—d) (z1+d)zo 727 1

1—0o

cfmxz(xl—d)(md)
re 1M r_q 7“17*%7"‘117*_1

3| —
1) 2d°| =

cd <Kl

since d< Kr_q, |z1 —d| <7y and |21 +d|<r_1. For the next term, we write 2 =23 — d?+ d? in

l’2(l‘1-d)(l‘1+d) .1‘2(1‘1 —d)(l‘1+d) l‘2(l‘1—d)(l‘1+d)

623d = 6(z7 —d?)d + 6d°.
(7“17“—1)4 ! (7“17“—1)4 ( ! ) (7“17“—1)4
In the right half-plane, using 23 — d? = (z; — d) (21 + d),
_ _ )2 2 ~2+0
crrrofT =)@t d)g 2 d2)d' —p|cg @A @A d) @ 7 1 g
(rir—1) 1 rZy rerrrZyr ©
using previous estimates. We continue in the right half-plane with
Cf2+dx2(x1_d)(xl+d)5d3 :6cd<x1_d> (l‘1—|—d) d? xq 72to 1 <Kol
(ryr—1)* r1 re1 r2yrirdre ety =
and
CFQJarg(acl — d)(x1+d)4x2d _4 Cd(acl —d) (z14d) 3 F2to < Kel-o
(rir—1)* 2 1 o1 o rdrt et

using previous estimates. Similarly, all these estimates hold in the left half-plane, which ends the
proof of
' 6d(ic6x2V)

v < Kcl-e. |

sk, 0,de
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We check easily by standard elliptic regularity arguments that 9.®. 4 € C*°(R?, C). Further-
more, c— @, 4is O with values in &, , 4, therefore 9.V®, 4 is well defined (in C°(R?2, C)). Let us
show that it is equal to VO.®. 4. For o € C°(R2, C), we have, by derivation under an integral, that

/ DN Deap — O, / Vo, 4

R2 R?

785/ q)c,dvsp
]Rz

= */ 8C<I>Cdega
]Rz

= / V(?C(I)C_’dcp.
]RZ

Therefore 9. V®, q= V0., 4 in the distribution sense, and thus in the strong sense. Furthermore,
thanks to the equation nL(®. q) + (1 —n) VL (Ve.q) + F(Vc.q) = e, d)Z4, we can isolate AP, 4
as in (2.1.23), and show in particular that it is a C! function of ¢. By similar arguments as for
the gradient, we can show that 0.A®. 4 = AJ.P. q. Furthermore, the same proof holds if we
differentiate ®. 4 with respect to d. We can therefore inverse derivatives in position and derivatives
with respect to c or d on ®. 4.
Let us also show that (¢,d)— 9.®.,q4 is a continuous function from Q:= {(¢,d) e R% 0 <c<co(0),

— < d<= } to £« o,a- With the same compactness argument used in the proof of the continuity of
c»—> <I>c7d, we can show that (¢,d)— @, 4 is continuous from 2 to &, » 4. From the proof of Lemma
2.2.2, we have that

(14 (nLO)+ =) VE(5) ) (T dE(/V)) ) (@)

= THOF(Peq/V)) — in0p,®e.a+ (1 — )vam< {;d).

Since (¢, d) — ®. 4 is continuous from Q to &, 4, and that the dependence on (¢, d) of the
other terms of the right-hand side is explicit, we check that TT7(9.F(®c.q/V)) — 102, Pc.a +
(1- )Vam( ) is continuous from Q to £, (+),a- We check also that (c,d)— (Id+ (nL(.)+ (1—

n) VL' (‘—/)) Y (deF(./V)))) is continuous from Q t0 Ewy ~(0),a— Ex,0,d, and thus (c,d) 0P g
is a continuous function from €2 to &, » 4. The same proof holds for (¢, d) — 9q®P. q4.

We end this subsection with the symmetries of 9q®., 4.
Lemma 2.2.4. The function 9,9, 4 satisfies the symmetries: for x = (x1, ) € R?,

0a®c, a(z1,22) = 0a®Pe,a,(—x1, x2) = 04Pc,a(x1, —22).

Proof. From subsection 2.1.3,
Vo= (x1,22) € R?, W, g(x1, 22) = V¢ (@1, —22) = ‘I’c,d(*xh T3)
and V' enjoys the same symmetries, therefore for all d € R such that - <d <

D, (1, x2) = Pc a(—21, T2) = Pc g(x1, —22).

Since

- P
04Pc,q=lim —C dte c’d,
e—0 9

these symmetries also hold for 9;®. g4. O

2.2.2 End of the construction and properties of Q.

A consequence of equation (2.1.41) and Proposition 2.1.26 is that, for 0 <o < 1, there exists co(c) >0
such that, for 0 <c< ¢p(o),

nL(®c,a) + (1= n)VL'(Ve,a) + F(Ve,a) = A(¢,d) Za
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with
zed) | |adV|2nw(lc)+ogﬁo<c2-a>.
. d

Following the proof of Proposition 2.1.26, with Lemmas 2.2.2 and 2.2.3, we can check that the

7_0(c*7) is continuous with respect of ¢ and d. Therefore, by the intermediate value theorem,

there exists d. > 0 such that A(c,d.) =0, with
1
de=L 4 0Z_g(c™),

for ¢ > 0 small enough. Then, for the function ®. 4, = VW, 4 with ||V, 4 |«.0.q0, < K(o,0")c 77,
we have

nL(®c,a.) + (1= n)VL'(Ye,a,) + F(¥e,a.) =0,
meaning that if we define
Qei=nV(1+V,q)+(1—n)Ve¥eie,
then Q. solves (TW,).

2.2.2.1 Behaviour at infinity and energy estimation

Lemma 2.2.5. The function Q. satisfies Q.(x) — 1 when |x|— oo.

Proof. From | ¥, g |«.0.a. < K(o, 0')c'=7" we have ¥, 4 (x) — 0 when |z| — co. Furthermore

1-V[]2< % by Lemma 2.1.3 and Q.= Ve for large values of ||, hence Q.(x) — 1 when

|z| — 0. O
In the statement of Theorem 1.3.1, we have set Q.=V + 1T 4., we therefore define

Dea, =0V Wea +(1—n)V(eYed —1). (2.2.8)
We compute that

Te.a.
R L 2 O St 270 (WS

*,0,dc

and since ||¥¢, g, ||+,0,d, <1 for ¢ small enough (depending on o), we have

+oo \Ijn;2
10 =m et = 1= W), K[ Q=)W =5
n=2 *,0,dc
Now, for 0 <o <o’ <1, we have L+o’ >1+Ta, hence
171+a’ 171+2a’
Ve | <K(0,0)———z and [V¥eq|<K(0,0)———.
147) 7 147t
therefore ( ) ( )
1—0o’ 1—0o’
2 c 2 c
e, <K(Ua0')w and [VWcq,| SK(U»U')w-

Thus, with |V2¥, 4 | < K(o, 0’)%, we check that, for any 0 <o <o’ <1,

2 = WC-,;CQ n,1—o’
(1*77)‘I/c,dcz - < K(o,0')c .
n=2

*,0,de

Combining this result with | W, g_||+.0.4, < K(0,0")c' =7, we deduce that

H FC7dC

% <K(o,0')ct 7" (2.2.9)

*,0,de
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In particular, we have, for any 0 <o <o’'<1, 0<c<co(o,0’), that

K(o,0")ct =7
| e CELA 2.2.1
| C,dc| (1+T)U ( O)
| P K(o,0")c' =7
de )| < 200 , 2.2.11
‘9%( 4 )‘ (1+7)t*e ( )
and, if 7> 2,
T4, VV| |Tea
FC g 5% - Qe ,
VT 4. 'V( v ) + v X %
therefore, using |VV| < (1+ 5 from Lemma 2.1.1, we have
K(o,0)c' =7
leg|<—"55— 2.2.12
|v .,dc| (1+7’)1+U ( )
Estimate (2.2.12) remains true in {7 <2} since ||Tc q.|lc1rcay < H‘E/ 4 < K(o,0')ct77". We

now show the estimates on I'c 4, of Theorem 1.3.1.

Lemma 2.2.6. For +oo > p > 2, there exists co(p) > 0 such that if 0 < ¢ < co(p), we have
T..q € LP(R?), Vg € LP~Y(R?) and

ITe,allzr@re) + IV ¢ .| Lr-1(r2) = 0c—0(1)-

Proof. If p=+o0, using (2.2.10) and (2.2.12), we infer
ITe.a.llLome) < K (o)t =7,
IVTe gl Loe(r2) < K (o) =7,

hence the result holds. If 2 < p < +o0o then, by (2.2.10),

Fc n (1—c’)p
|Fc,d |p</ H 1dH*adad K(O’,U)fpa
rz (1+7)P re  (1+7)

Taking 0 < o < ¢’ <1 such that po > 2 then gives the result. Furthermore, by (2.2.12),

K(o o)p
P
/ |Vch | / 1+7~ a'+1) diE,

so for p>1 we can take 0 <o <o’ <1 such that p(c+1) >2 and we have the result. O

dx.

Remark that we can have better estimates on I'; 4, in particular if we look at real and imaginary
parts of —=*< Le. dc For instance it is possible to show that

Fc,dc
(%)

for p>1 instead of p>2. This estimate does not hold for 7 small since it is not clear that ¥, 4, is
bounded there (but ®. 4, is). This is due to the fact that the zeros of ). are not exactly those of V.

= Ocﬁo(l)
LP({F>1})

Lemma 2.2.7. The travelling wave Q. has finite energy, that is:
1 2, 1 2)2
9 IVQc| +Z (1—1Qcl*)* < +oo0.
R?2 R?2

Proof. Far from the vortices, VQ.= V(V; V_1) eVede 4 VA 7 e¥ede. We know that, for
r>1,
K(o
V.| <)
and (by Lemma 2.1.3)

vy <&
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hence
K(c,0)
7:12—}-2(7

VQ.I’<
and is therefore integrable. On the other hand,
L= 1Qel?| = 11— VAV P 7ot | LK (1= [VAVoa* 4 ViV [Re(Le a,)),

and we have

1 1
1|V1V1|20<§) and %e(\yc?dc):O (m),
therefore

1
(1-1Q:7 =0( szt )
and is integrable. O

At this point, we have finish the proof of the construction of Q.. In the next two subsection,
we add some estimates on . that will be usefull for the differentiability of the branch, and others
that are interesting in themselves.
2.2.2.2 A set of estimations on Q.

The next Lemma gives additional estimates on ). which are more precise but more technical than
the ones in Theorem 1.3.1.
Lemma 2.2.8. For any 0 < 0 < o’ < 1, there exists co(o, o'), K(o, 0') > 0 such that for
0<c<co(o,0") we have

1%e.d.llo.a <K(o,a')c =" (2.2.13)

Furthermore, for any 0 <o <1, there exist co(o), K(0) >0 such that for 0 <c<cp(o) we have

Ve llcrics) + 177Im(We,a )| Lo (mz2) + 17 T7Re(Ve a,) | Loo(mn2)
+ [P Im(V e g,) | Lez2) + 172 TRV, a,) || Lo (7 2)

< K(o)e' 7, (2.2.14)
11— [Qcll S%, (2.2.15)

Qe —V| S%, (2.2.16)

1Qc>~ V| <%, (2.2.17)

[Re(VQQ.)| <%, (2.2.18)

[Im(VQ.Qc)| <TKF (2.2.19)

Equation (2.2.14) is a slight improvements of (2.2.13). It is, except for the second derivatives,
the estimate in the case ¢’ =o0.

Proof. The first estimate comes from the construction of the solution.

V\/:e now take x a cutoff function with value 1 in {77 > 2} and 0 in {77 < 1}, we write U = XV a,
and h = xh, where h contains the nonlinear and source terms. We recall from (2.1.29) that
U= @1 + i\ilg and h = le + ing satisfy the system

ATy — 20, = —hy — me(V_VV.v\i/) —2(1— [V|2) ¥y + cOy,Ts + Locy (V)
AUy =~y — 23m(v—VV.V\i/) + Locy(¥) — 8,01,
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where Loci(U), Loca (W) are localized terms. From Lemmas 2.1.22 to 2.1.24, we check that for any
O<o<1,

1llroa < K (@)t

Furthermore, as in the proof of Proposition 2.1.17, we check that (using H\I~l||*,g/2,d< K(o)c=9)

H— VI —2(1— |V |2)Re(¥) 4 Loc(¥)

< K(o)ct—o.

*k,0,d

Finally, with (2.2.13), for 0/ =27 >,

0¥l vera < K (@) € [F0.a < K(0)e 75 < K (0)e!
With Lemma 2.1.10 for =1+ ¢ >0, we deduce from the first equation of the system that

[+ 0| o e

(1 +f)1+0<—/51 — 2me<ﬂ/ vw) —2(1 = |V AU, + 0y, Vs +Loc1(\1/))

< K(o)ct=7,

< K(o)

L°°(]R2)

and, by differentiating the equation, by Lemma 2.1.10 for a =2+0 >0

(1 +7:)2+Uv\i/1HL°°(]R2)

(1 +7:)2+<7v< hy— 29@(@ vq,) 2(1 — |V|2)\i/1 +c@x2‘i/2 —I—Locl(\I/))

< K(o)c'—e.

< K(o)

Lo (R2)

Now, using Lemma 2.1.8 and ||(1+7)2+7V¥ < K(0)c! 77, we infer that

1HL°°(]R2)
(1 +F)0@2||L°°(]R2) +[|(1+7) 1+Uv‘i’2HLw(R2)
< K(o) (1+7~’)2+‘7<i~1223m<2f V\Il)JrLocQ(\Il)cam\i/l)
< K(o)ct=e, e

which concludes the proof of (2.2.14).

The estimate (2.2.15) is clear if # < 3. If # > 3, then Q. = Ve¥< % and, for ¢ small enough
(depending on o), [Re(P, 4.)| <1, thus

1-1Qc]| = [1—|V|=|V|(eWeVead) —1)|
< =|VII+ K [Re(Te,a,)]
< K K(o)ct=°

A+72 T T+rie
by Lemma 2.1.3 and (2.2.14). For (2.2.16), if 7 >3, we compute
K(o)ct=7
(1+7)
and if 7 <3, |Q.— V| < C||¥Y¢.4.|l+,0,4. and the estimate (2.2.16) holds. Similarly, for 7> 3,

[Qc=VI=[V|x|e¥ot — 1| <O a.| <

K(o)ct=°
2 _ 2| < 2|g2Re(Ve,a0) _ 1| < I
Q"= V<[V [Fle < I+ 7))+

and for the same reason if 7 < 3 the estimate (2.2.17) holds. Inequalities (2.2.18) and (2.2.19) are
clear if 7 <3 and we compute, for 7 > 3,

VQC@: V(Ve\Pc,dc)Ve‘I/c,dc = VVeRe(Pe,de) + |V|2v\1’c,d662me(q}c’d0).
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K

We have |e2%¢(¥e.a0)| <1 for ¢ small enough and by Lemma 2.1.1 we have [Jm(VVV)| < 7 and
[Re(VWW)| < 1. Combining it with |[V¥e,q,| < % from (2.2.14), estimates (2.2.18) and
(2.2.19) hold. O

2.2.2.3 Estimations on derivatives of ®. 4 with respect to c and d at d =d..

We cannot easily compute 0q¥. 4|4=d4, because of issues locally around the vortices (due to the
fact that ¥, 4 is unbounded near 7 =0, and changing d change the position of the vortices). We
shall prove here instead an estimate on 94®c,q4|d=d,, as well as an estimate on 9.¥. q|4=d.-

Lemma 2.2.9. For any 0<o <o’'<1,c€R such that %<c<% and 0<c<co(o,0’), we have

i

with K(o,0’) >0 depending only on o,0’.

109 c.djd=d. ||l «,0.a < K(0,0")c™"
and
0a®Pec.q

V. ld=d <K(o,00¢'"",

*,0,d¢

Proof. From the proof (and with the notations) of Lemma 2.2.2,
s -1
(1+ (L) +=m V() WAL/ V) )(@ererd = Do)
c

= (nLO+a=-mve(s) )‘1<—5Hdl(—¢ax2\/) - z’e<namq>c+a,d+ (1- n)vax2<¢L‘/f41)>>

c
1

+ (nLO+a=mvE(3)) O ),
thus, taking € — 0, we deduce that (with Lemma 2.2.2)
(10+ (n2O)+ = VL'(55)) " WdHdwE(/ V) ) 0ea)
= (20 +-nve(s) )_1<H$(0CF(¢c,d/V)) — 90, Pe,a+ (1 - n)va@( ‘I"c}d)).

Since at d =d., A(c,d.) =0, we have

1

, d. .
IHOF (e V) = in0nsteat (1= V0 22)  —-i0,.0.
ld=d.

hence, with Proposition 2.1.17,

10c¥e,dja=d.|lx,0,a < K|0Ye dja=d.||l®,0,de

< K(o,o)| Pl

®®,0’,dg

We will conclude by showing that for any 0 <o <o’/ <1,

% < K(O' g/)cfa'/
~ b .
4 @®,0,dg
By Lemma 2.1.22; we have
M < K(O‘)C_U,
V ®@®,0,dg

and using ||We 4. ||«.0.a. < K(0,0')c' 7 with Lemma 2.1.3, we check easily that, for ¢ small enough,

102,Qc

v <K(o,0")c "

®®,0,dg

We now focus on the estimation of 94®¢, 4jd=q,. At the end of step 1 of the proof of Lemma
2.2.3, we have shown that

adq)c_’dm:dc = —dq>H_1(adH((I)c_’dc, c, dc))
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From Lemma 2.2.1, we have that, at d=d,., ®=®, 4, the operator de H ~! is invertible from Eo,0,ds
to £s,0,d,, With an operator norm with size 14 07_(1). We therefore only have to check that

”adH((I)C-,dca ¢, dc)||*-,0-,dc < K(Uﬂ Ul)clig/'

Since OgH (®Pc 4, ¢, de) = (nL(.) +(1-mn) VL'(‘;/))fl(G(dc, ®. 4.)), By Proposition 2.1.17 (from
Eo®,0',dy 10 E9,0,dy), it Will be a consequence of

H G(de, ®c,a.)

7 <K(o,0")c' 7

’
*x,07.d

for any 0 <o <o’'<1.
We have, since Hg, (®c 4,) = Pc,q,, that

Glde, ®era)

Do) oV )Pt 4 2RV ,) + 2RV 0) Y

v
01 =) (B = i€00,1) ja=a e = 0T (Fal® V) ja=a.

Since 94(|V'|?) = 2Re(04VV), we check, with Lemma 2.1.6 that

V0V K(o,0)c' =7
<
| 8d(|v| ) ‘29%(‘/(1)6 d.) 1% ‘\ (1+7)2Fe
an
— K(o,0')ct=°
< )
|9{e(advq)c7dc)| X (1+7~a~)1+0 )
as well as

K(o,0")ct =7

(147)2te

V{ da(|V ) +29‘ie(V<I>cd )a—V+me(advq>cd) <
v

and this estimate a real valued quantity. From step 2 of the proof of Lemma 2.2.3, we have

<K(o)ct—e,

*x,0,d

H‘l/ad(a —)(E —icd,V))

which is enough to show that

Finally, in step 2 of the proof of Lemma 2.2.3, we have shown that (taking the estimate for
=P, 4.)

. D,
Ba((1 = n)(E —icdy,V)) |dmd,—2e

v <K(o,0)c' 7.

*%,0,d

<K(o,0')c' ™,

sk, 0, d

H‘l/ad(HdL(Fd(dVV))) | d=d.

which conclude the proof of this lemma. O

2.3 Differentiability of the branch c+— Q.

The goal of this section is to prove that the constructed branch is C*, and to give the leading order
term of 9.Q. as ¢— 0. The result is the following one.

Proposition 2.3.1. For any +o0o > p> 2, there exists co(p) >0 such that
c— Qc—1€CH(J0, co(p)[, Xp),

with the estimate

—o. (L
Xp_ o )

Proposition 2.3.1, together with subsection 2.2.2, ends the proof of Theorem 1.3.1. Subsections
2.3.1 to 2.3.7 are devoted to the proof of Proposition 2.3.1.

0Qe+ (”OZ—;O(”)@(W. —de)Vor(.+dE)) | ded,
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In this section, to make the dependances on ¢ and d clear, we use the following notations. We
denote ®. 4, V. 4and I'; 4in order to emphasize the dependence of ®, ¥ and I' in Proposition 2.1.21
on ¢ and d. A value of d that makes A(c,d) =0 in Proposition 2.1.26 is written d.. We will show
later on that there exist one and only one value of d, satisfying this in }%, 2c[. With these notations,
Qc=V1(. —dee1)V_1(. + dc€1) + T'¢ 4. is the solution of (TW,) we constructed in section 2.2.

In subsection 2.2.1 we showed that @, qis a C'" function of both ¢ and d. We also have computed
estimates for the derivatives of ®. 4 with respect to c and d in Lemma 2.2.9, that will be usefull here.

The goal is to show that d. is a C'! function of ¢c. We will do this by the implicit function theorem,
but this requires a lot of computations. In particular, in Proposition 2.1.26, d. was choosen so that

(L(®c,q) — (1 =n)(E —ic0s,V)V¢ q+ F(¥c.q),0aV) =0,
but we may equivalently define it by the implicit equation

/ Re((L(Do.a) — (1— 1) EVy g+ F(We.0))TaV) =0,
B(déi,ds"YUB(—déi,d=")

This is the same equation but the scalar product is not taken on the whole space but only on
B(déy, d*') U B(—dé,, d&') for some 0 < &’ < 1 (we will take ¢’ = 13 /24 but this value is purely
technical, other values are possible). The only reason why we take it in the whole space in Lemma
2.1.26 was because of the boundary terms that will appear in the integration by parts when we write

(L(®),0aV) = (@, L(0aV))-

With the boundary terms on the boundary of B(=%dé), d°'), e’ > 0, we are far enough from the
vortices to make them small enough for our estimations. Thanks to this we can separate what
happens near the vortex V; from what happens near the vortex V_; because now the integrals are
in two well separated domain, one around each vortex. We use this in subsection 2.3.1. We need to
differentiate the equation with respect to d. If we write Q.,q=V +T¢ 4, then 94Q.=04V + 9a(Tc 4).
The term 04V is easy to compute and to understand: we just move both vortices in opposite
direction. But 94l q is very difficult to understand, and our estimations on I'; 4, are not enough
to compute easily what happens with sufficient precision to control its contribution. We would
rather write (). ,q4 under the form

Qec,a(x) = (Vi(z — dé1) + Ti(z — dér)) + (Voi(z +dér) + T _1(x + déy) ) + Erx

where T';(z — dé) is centered near Vi, is small and is here because of the existence of V_; far away.
Then the term we understand is

8I1+d(V1(ZL' — d€1) +f‘1(£L’ — d€1))

which is what changes near the center of V; when we move only the other vortex. This can be
computed more easily and that is what we do in subsection 2.3.3. This term is easy to compute
only near the vortex V7, and that is one of the reasons we work only on B(deéj, d® "). The main
contribution to the variation of the position of V_; is as expected from the source term E —ic0,,V .
This is the computation of subsection 2.3.4.

Furthermore, most estimations boils down to what happen near each vortex, see for instance the
contribution of F in step 5 of the proof of Proposition 2.1.26, where we separate the contribution
far from both vortices and close to them. By integrating only on B(dé3, d* ") we reduce the number
of estimations we need to do. Moreover, in such a ball the contribution of the vortex V_; and its
derivatives are easy to compute, see subsection 2.3.2.

Subsection 2.3.5 gathers all the estimations needed to show that only the contribution from the
source term is of leading order. Subsection 2.3.6 and 2.3.7 are easy computations using previous
subsections to compute the first order term of 0.Q..

The main and most difficult part is subsection 2.3.3. We want to show that 8zl+d(f‘1(x — d€1))
is much smaller than fl(x —dé1), i.e. that the derivative with respect to x1 + d gives us additional
smallness in c. For this we do a proof by contradiction which follows closely what was done in the
proof of Proposition 2.1.17.
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We define the following differential operators:
Oy, 1= 0z, — 04,
0z, := 0z, + 04.

These notations follow the definitions of y; =21 —d and z; =21 + d from (2.1.1). The derivative
in d is taken at fixed c. The function 94%.,q is the derivative of ® with respect to d at fixed ¢ and
we shall use the notation

04®c.d,:=04Pec.d)d=d.,

and similarly for dgql'c.q, and 9q¥.,q,. The derivatives dy, and 0., behave naturally on function
depending on = and d only through y or z, as shown in the following lemma.

Lemma 2.3.2. For any § € Cl(]RQ’@)’ we have
Dy, (§(2)) = 0:,(F(y)) =0

and

9y, (3(y)) =20:,3(y),
0:,(3(2)) = 20,,3(2).
Proof. We compute
9y,(3(2)) = 02, (S (21 + d, 22)) — Oa(§ (21 + d, x2)) = 00, (2) — 02,3 (2) =0.
Similarly we have 8., (§(y)) = 0. Moreover,
9y,(3(y)) = 02,(F (21 — d, x2)) — 0a(F (21 — d, x2)) = 02,F(y) + 02,3 (y) = 202, (v)
and similarly, 0., (F(2)) = 20,5 (2). O

We have an estimate on 94®. 4d=a,, but it is not enough to show that d. is a C' function
of ¢. The main idea of the proof is to compute an estimate on 0,,®¢ 4, = 0z, Pc,a. + 0qPc 4, near
the vortex Vi which is better than the ones on 0;,®. 4, and 94®. 4.. In particular we will have
0:,®c.d, = 0c—o(ctT?) for some A > 0 instead of 0._,(c!~7) for & > 0. This estimate is done in
Proposition 2.3.5. First, we compute a first rough estimate on 0,,¥. 4 which is a corollary of Lemma
2.2.3.

Corollary 2.3.3. For x a smooth cutoff function with value 1 in {7“_1 > 3} and 0 in {r_l < 2},
for 0<o<o’'<1, there exist co(o,0’) >0 such that, for 0<c<co(o,o’), we have

HVX@Zl‘I’ad\d:dCH01({f<3))
+ ||f1+ame(821q]0»d‘d:dc)HLO@((@Q))+HFHUV%Q(OZl‘I’cvd‘d:dC)||Loo((f>2})
+ [|77Im(0.,¥c,a | ey T 17 HOVIM(02,Pe,a
< K(o,0')ct =7

Id:dc) \d:dc) ’L“’({f->2})

Proof. Remark that V104¥, ¢ might not be bounded near deé?, but V10,,¥, 4 is, since, by Lemma
2.3.2, 0,,V1 =0 hence

Vlazl\Ilc,d = azlq)c,d = adq)c,d + 8x1q)c.,da

with 949, ¢ bounded by Lemma 2.2.3. We take a cutoff x to avoid the fact that V_10,,¥, 4 is not
necessary bounded near —dé]. In particular, with these remarks, we easily check, with Lemma
2.2.3, that

’

Hvxazl‘I’c,d <K(o,0')ct77.

\d:dCHCI({K?)))
We now focus on the region {F > 2}. From the definition of 0,,, we have that

821\I/c,d\d:,ic = ad\Ilc.,dC + 8:vl\I/c,dc~
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We compute

8dq)c,d 04V

ad‘l’c,dC:Tc‘i‘T‘l’c,dca
and from Lemma 2.2.3, we have
' 0aPe,a, <K(o,0')c7".
Vv *,0,de
From Lemma 2.1.6, we have o
K
VIS T3
and
K
VoV |<+—,
VOV (1+7)2

and together with || ¥, 4_||+.0.0, <K (0,0")c' =7, we check that

7:1+09{6<6L‘/‘1/c7dc) + F2+0V9‘ie<@/\llc,dc>
4 Le>=({f>2}) 14 L>({F>2})
+ ‘f"ﬁm(aiv‘lladc) + FH"VJnl(aLV\I!QdC)

14 Leo({F>2}) 4 Lo ({7F>2))

< K(o,0')ct =7

Finally, for the contribution of 9, %, 4., using ||V, 4 |l«.0.4. < K(0,0")c' =", we show that, with

some margin,

|72+ 7Re(0z, Ve a,) | Loz 2 + 172 TTVR(Dr, Ve a,) | Lo (17> 2)
+ |77 3m(02, Ve, a,) | Loz 2y + 1FHOVIM(O0, We ) || Loo (17 >2))
< K(o,0")ct =7,

which ends the proof of this corollary. O

2.3.1 Recasting the implicit equation defining d,.

At this point, we do not know if d. is uniquely defined for ¢ > 0. We denote by d. a value defined
by the implicit equation on d:

<TWC(Qc,d)a adV> = 0,
where

Qc,d =V+ Fc,da

with Teg=nV ¥, q+ (1 —n) V(e‘I’“’d — 1), which is a C! function of d and ¢ in &, , 4 thanks to
subsection 2.2.1. Remark that d. is also defined by the implicit equation for 0 <&’ < 1:

/ 9{e(ad_‘/TVVc(Qc,d)) =0,
B(déi,d=")UB(—dé},d=")

that we will use instead because of the reasons explained at the begining of section 2.3. We
can check easily that 9,Qc,4, 0.Qc.a € C°°(R?) (by looking at the equations they satisfy in the
distribution sense and using standard elliptic regularity arguments), and furthermore, that d —
04Qc.a and ¢ — 0.Q. are continuous functions (on their domain of definition in Cf{(R?) for
instance). From now on, we take any 0 < &’ < 1, but we will fix its value later on. We want to
differentiate this quantity with respect to d and take the result at a value d. such that TW.(Q¢,q4.) =
0 in R?. In particular, we have

5'd/ Re(0aVTWe(Qe,d)) |d=d. =
B(dé},ds")UB(—déi,d=")

/ Re(TV0HTWe( Qo)) .-
B(déi,d=")UB(—déi,d=")
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Now, by symmetry, we remark that

Re(TVOu(TW Qo)) =2 / Re (VO TW(Qe.a))).

L(da,dsl)UB(da,dS') B(dé},d=")

We will use the two operators we have already defined:
Oy, =0z, —0q and 0., =0y, + 0a.

Since TW(Qc.a.) =0 everywhere in R?, we therefore have 0,,(TW(Qc,q4.)) =0, hence, at d=d,,
0a(TWe(Qc,q)) = 0-,(TWe(Qc,a))-

We write
TWe(Qc,a) =TWe(V) + L(Lc,q) + NLy(T'c,a),
with
L. a)=—ATca—icOpLea—(1—|V[))Tea+2Re(VI.a)V
and

NLy(Te,q):=2Re(Vea) Tea+ [De.al>(V +Tea)

We compute
am(TWC(Qc,d)) - 8Z1(TWC(V)) + L(amrad) + (aZ1L>(FC-,d) + 821(NLV(FC,d)),
therefore, at d=d.,

0 ROVIWAQua)= [ (GO (TWL(V))
B(dé3,d=") B(déy,d=")

+ / Re(TaVL(0.,Te.a)) + / Re(IaV (9., L) (Te.))
B(de3,d=")

B(déi,d=")
b (O, (L) (2.3.1)
B(dé,d=")

since the boundary term is 0 (when the differentiation is on the d in B(déj, d°')) because
TW(Qc,a.) = 0. We need to estimate those four terms at d = d., and that is the goal of the
next subsections. Subsections 2.3.2 and 2.3.3 yield estimates on the derivatives of V_; and 0,,¥. 4
respectively in Bj:= B(dej, da/). Subsection 2.3.4 is about the estimation of

/ Re(TaV0.,(TW(V))
B(dé1,d=")

which will be the leading order term, and subsection 2.3.5 shows that all the other terms are smaller
for d. large enough.

2.3.2 Estimates on the derivatives of V_; in B(dé}, d®)

Lemma 2.3.4. For 0<e <1, in B(déi,d®), with the O(.) being always real valued, we have

1 . 1
8I1V1(Odﬂm<$)+20dﬂm<F>)V1,

1 . 1
0z, V1= Od— 0 P +i04— 00 q V_1,

1 . 1

a:n1x1‘/*1: Odﬂoo W +ZOd~>oo F Vfla
1 ) 1
axwmv—l:(Od—MXJ(W)+Fd2<1+0d—>oo<F)))V—l-
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Proof. Recall from Lemma 2.1.2 that, with u= Zig::i,

0x,V_1= (cos(@l)u + Lsin(91)> V_1,

r—

O0z,V_1= (sin(@l)u — L‘(:05(6‘1)) V_1,

r

7'_1 T71

Opyz, V1= <0052(9_1)(u2 +u')+ sin2(9_1)<L - %) —24 sin(t9_1)(:os(6'_1)<2L - L)) Vo1

and

Opra,V_1= (sin(@l)cos(91)<u2 +u +2L - %) +1 COS(291)<2L - L)) V1.

] —1 (] r—1

In the ball B(dé}, d°), we have, by Lemma 2.1.1, that —— <

K
d

)

U= Od_,oo<%> and sin(f_q) = Od_wo(#),

the last one is because for (y1, y2) € B(dé1, d®), we have |ya| < d° hence

: lyo| _ K
sin(0_1)] :7“__1 < i

We also compute in the same way that

cos(f_1) =+/1—sin?(f_1) =1+ Odﬁm<#).

With the equation on p_; coming fom —AV_; — (1 —|V_1|})V_1 =0, we check easily that

u' = Odﬂoo(%)

as well (or see [25]). Finally, we estimate

cos(20_1)=1—2sin*(0_1) =1+ Od_,oo<#>

and

1 o\ 1 1
TT:l:(QdJrOdHOO(d ) 2rd2+0d*>00<w>'

With this estimations, we end the proof of the lemma. O

2.3.3 Estimate on 9,,¥, 4 in B(déy,d®)
We define the following norms for =W, +iWs and h=h1 +ihs, 0<a<1,0<e’<e<1:

19,5, == IV¥crar <o
_ 1—
+ I Wl peeae sy H T VY Lo e’ s 2
+ T ol pee e sy 2 ||7a%7av\112”Lw({d6/>r122})

and

IR llex,Ba = [[VRllcogr <3y
+ Irt* hallpeoqae sz 2 + IrE % hall Lo (as s i >2)-
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They are the norms ||.||«,—a,q and ||.||««,—a,q of subsection 2.1.3, but without the second derivatives,
less decay on the gradient of the real part for |||, p;, and only on B)= B(déi,d®) for ||.||.,p; and
on By := B(déi, d) for ||.|l«, B, The other main difference with the previous norms is that we
require less decay (we take —a < 0 instead of o > 0 in the decay) in space, which here, since the
norms are only in {r1 <d® }, can be compensated by some smallness in c.

From Corollary 2.3.3, we have that [0.,Wc a.|/+, 5, < +00. We want to show the following
proposition.

Proposition 2.3.5. For 0<a<1,0<e’'<e<1,0<A<1, if

A< (14+a)e,
A (1—a)e'<2e—¢
and
A<2—e(2—a),
we have
HaZl\IJC"dId:dC *7BéC:0c~>O(Cl+/\).

Such a choice of parameters (A, «, €, €’) exists, we can take for instance « =1/2, A =3/4,
£=19/24 and ¢’ =13/24. Furthermore, with this particular choice of parameters, we also have

A (1—a)e’>1, (2.3.2)

which will be usefull later on. These conditions are bounds on how much additional smallness we
can have on 0,,V, 4 near d.€}.
The main goal of this proposition is to have a decay in ¢ better than O._o(c), which is not

obvious from the estimates we have done until now. The estimate on 821\116_’51‘ ded from Corollary

2.3.3 will not be enough in the computation of 0.d. for the nonlinear terms. The proof of Propos-
ition 2.3.5 follows closely the proof of the inversibility of the linearized operator in Proposition
2.1.17. We want to invert the same linearized operator, but with a different norm, which is better
locally around the vortex Vj.

The reason why we take By a little bigger than B} is to make the elliptic estimates of step 2 in
Proposition 2.1.17 work here too. The main idea of this proposition is to show that if we move V_;
a little, then locally around V; the change is very small. We now start the proof of Proposition 2.3.5.

Proof. First, we remark that in By, since e <1, 7 =77.
Step 1. Computation of the equation on 0,,¥. 4.

Recall that ®. 4 solves the equation (with ®. 4=V, 4)
nL((I)c,d) + (1 - 77) VL,(‘I]c,d) + F(\I/c,d) = )\(Ca d)Zda

_ (F(¥Y¢,a), Za)

2
1ZalZ2 2,

and we recall that A(c, d) , and we check easily, with Lemma 2.2.3, that it is a C!

function of d. The equation on ®. 4 holds for any z € R? and any d € IR,2—1d <c< %, hence

02, (NL(Pe,q) + (1= 0) VL (e a) + Iz (F (Ve a)) = Ae, d) Zg) = 0.
We compute

9=, (Me,d)Za) = (0z,+0a)(Ac, d) Zq)
5‘d)\(c, d)Zd+ )\(C, d)aled,

and we recall, from the proof of Proposition 2.1.26 that

)\(c,d)/ |8dV|2772:7r<l—c)—i—OgHO(cQ_").
R2 d
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With Lemma 2.2.3 and Corollary 2.3.3, as well as Lemma 2.1.6, we infer that the terms contributing
to the OJ_o(c®>~7) are such that, when differentiated with respect to d, their contributions are
still a OZ_¢(c*9). Indeed, if the derivative with respect to d fall on a ¥, 4, then by Lemma 2.2.3
and Corollary 2.3.3, the same estimates used in the proof of Proposition 2.1.26 still hold. If the
derivative fall on a term depending on V', by Lemma 2.1.6, we gain some decay in the integrals.
We deduce that, since A(c,d.) =0,

aN(c,d) |d=d. = d_;r +0Zo(c*=7) =02 _o(c*7).

Here, we see why the fact that d is differentiable with respect to ¢ is not obvious. The main
contribution is at this point not enough to beat the error terms. Therefore, showing that dz\(c,
d) #0 is not simple here. This is why we need improved estimations on 9,,¥. 4., that will give us
the fact that the error terms are a O5_,(c?>*¢) for some & > 0.

Now, writing
TWe(Qc,a) =nL(Pc,a) + (1 —=n)VL (Ve ) + F(¥e,a),

(with the notations of Lemma 2.1.7), we have (since A(¢,d.) =0)

(azl(TWC(QC,d)) - ad)\(C, d)Zd) ld=d, = 0
We recall that

F(\Ilcyd) =F—- z‘c&sz + V(l — n)(fV\I/C_,d.V\Ilcyd+ |V|2 S(\I/c_’d)) + R(\I/cyd),

where R(¥. 4) is a sum of terms at least quadratic in . 4 or ®. 4 localized in the area where 7+ 0.
We compute

0:.(TW(Qc,a)) = nL(VO., Ve )+ (1—n)VL'(0:,%c,q)
N0 L(Pe.q) + (1 —n)VO,, L' (Ve q) + 0xy(E —icOy,V)
nL(0.,VVe a)+ (1 =)0, VL (¥c,a)

O (L(®e,q) — VL' (Ve ) —ic0z,Pc.q)

— OV (=003, Ve a— VU, .V, g+ V|2 S(T, q))

0z (R(¥e,q))

0 V(1 =) (=105, Ve a— V¥, 0.V, g+ VI2S(V..4))
V(1=1)02(=i€00,¥c,q— VU g. VU g+ |V [2S(Te q)).

-

+ + +

We regroup the terms in the following way. We define
ﬁ(azlq/c,d) = UL(V8Z1WC7d) + (1 - n)VL’(OZ;I/C’d),

which is the same linearized operator we have inverted in Proposition 2.1.17 (taken in 0,,%. 4),
and we define the operator

Lo. (Ve a) =10z L(Pe.a) + (1 = n)VO, L' (Ve a) + nL(0:, VW a) + (1 —10)0, VL (Ve a).
We already have TW¢(V)=FE —ic0,,V, therefore
0, (TW(V))=0.,(F —icdy,V).
We define the local error
Errioe:=0,,(R(¥¢,q)) — OaA(c, d) Zy,
the far away error
Errg :=0,,V(1 — 1) (=VV¥. a.VU, 4+ |V |2 S(TV))
and the nonlinear terms
NLo, (We,0) i= V(1= )0 (VU oV g+ V2 S(D.0).
Finally, we write the cutoff error

Erreyt := 0, n(L(Pe.q) — VL' (Ve,a) + 505,V e a+ VU, 0. VU, 4 — [VI2S(¥, 4))
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which is supported in the area {2 <r_1< 3}, and in particular is zero in B(d.€1,d). With these
definitions, we have, at d =d,
(02,(nL(®e,a) + (1= 1) VL' (Ve q) + F(Ve,a)) — OaX(c, d) Za) |a=d.
= L(0:,VYc,a)|d=d,
+ (0:(TW(V)) + Lo, (Ve,a) + NLo, (Ve d)) |d=d,
+ (Errioc + Erreay + Errent) |d=d,.-

The equation satisfied by 0,,¥. q at d =d. is therefore
(L(041Ve¢,q) + 0y (TWe(V)) + Loz (Ve,a) + NL@ZI(\I/C_,d) + Errioc + Errgay + Erreyt) ja=a. = 0.

Step 2. Beginning of the contradiction argument.

Now, suppose that the result of Proposition 2.3.5 is false. The scheme of this proof is the same
as in Proposition 2.1.17. Then, there exist an absolute constant ¢ > 0 and sequences 0,,¥,, ¢, — 0,
d,, — 0o such that

d'}z+/\|‘azlqj

nld:dn| *,Bén 2 63

where we write d,, =d,, (a value such that A(c,,d,)=0 in Proposition 2.1.26). We have just shown
that W,, (where we omit the subscripts in d,, ¢,) satisfies

L£(02,9,) + 0:,(TW, (V) + Lo2,(Vn) + NLa, (V,) + Errioe + Ertay + Erreyy = 0.

The function
(VO=, W) (. — dnel)
102,05 |

’
*Bg,,

converges locally uniformly up to a subsequence to a limit &, since it is bounded in ||.||, g for
any A > 0 (for the same reasons that ¥,, — ¥ locally uniformly in the beginning of the proof of
Proposition 2.1.17).

The equation on 0,,¥,, is
L(0,,9,)+Vh,=0, (2.3.3)
with

Vhy = 0,,(TWc,(V)) + Lo2,(Vn) + NLa. (V) + Errioc + Ertpay + Erreys.

The goal of Proposition 2.1.17 was to estimate ||¥||. o ¢ With |2 .« 07,4 for the equation L(¥)=h
if d is large enough (given an orthogonality condition on ¥). Here we do the same thing, but
localized in space, and with a very particular h,, that we will estimate. To continue as in the proof
of Proposition 2.1.17, we want to show that

hn(. = dnéi)
102 ¥s|

*7Bén
in Cf). so that we get at the limit (following the +1 vortex) in (2.3.3)
Ly,(6) =0,
using the sames techniques as in the proof of Proposition 2.1.17. It will be enough for that to show
that

hn

- —0 (2.3.4)
”an‘l’n H *Bg,

*%,Bgq,,

and we will also use this estimate later on. Remark that here, the problem is no longer symmetric
in x1, in particular, we cannot use the same argument near the —1 vortex, but it is not needed.
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Step 3. Proof of (2.3.4).

Recall the definition of ||.[[««, B, :

A llx,Ba, = [IVRllco@ <3y
+ |Ir1 ™ Bl e s s 2 + 115 hall Loo(as >y >20)-

Since
d;+x|‘am\11n|d:dn|\*73én26,
we have
1 1
||821\I/n| *,Bén h 5C}L+)\,

therefore it is enough to show that
2 v, B, = 0, —0(en ™) (2.3.5)
to have (2.3.4). We recall that
Vhy = 0:(TWe, (V) + Lo2,(¥5) + NLg, (Vn) + Errioc + Errfar + Erteyt.

The contribution of 9,,(TW,,(V')) will be established in step 3.1, Ly, (¥,,) in step 3.2, NLy, (V)
in step 3.3, and finally, Errjoc + Errgar + Errey in step 3.4.

02, TWen (V)
1%

1+A
*%, B, - 0‘371‘)0(672+ )

Step 3.1. Proof of ’

Recall from (2.1.2) that
TW(V)=E —icd,,V==2VVi.VV_1+ (1= [Vi|?)(1 = |[V_1|>)ViV_1 —icd,,V,
therefore, with Lemma 2.3.2, we have
0.,(TW(V))=—4VV1.VO,,V_1 +2(1 — |[Vi|?) V10s,(1 — [V_1]2) V_1) — 2000y (V10:,V_1).

We now estimate this quantity at d =d,. We have

K1
1+72 7 d3’

(1= Vi) Vada, (1 = [Voa ) Voa) <

and using A <1, a >0, we deduce

H (L= [VaJ*) Va0, (1 — [Va]?) Voa)
V

= Ocnﬁo(C}lJrA).

**,Bdn

We compute with Lemmas 2.1.2 and 2.3.4 that

m(wvl.vaxlv_l ) :49%( \vad ).sm( Ve,V 1 ) B 43m< A% )_3m< Ve,V 1 )

|4 1 V4 %] V4
leading to
AVV1.VO, V1 K K
R ! < +
' e( 4 )‘ (L+rD)dy= (I4r)dy

for a universal constant K. Since A <1 and a >0, we have

H%<M) = 0c,—~o(cn ).
Vv *%, B,
Similarly, we have
~ [ AVVINV O,V 1 K K
Jm < - + .
()| < T
Therefore, using
1 K
— S
dp, (1 + 7“1)1/6



2.3 DIFFERENTIABILITY OF THE BRANCH c— @,

since we are in By, = B(d,e1,dy,), and
A<2—¢(2—a),

which is one of the hypothesis of the lemma, we have

i ((AVVVO Vo
%

*%, Bq,,

= Ocn_’o(

C}LJF A

).

123

Now, for 2ic ,0y,(V10,,V_1) = 2i¢p02,V1045,V_1 + 2i¢p0z,2,V_1V1, we estimate (still using

Lemma 2.1.2 and 2.3.4)

‘9%(1% 02,V102,V_1 )‘ . K K
v S (O rdy
K

i O V1O, Vo K
<
‘j‘“< v )‘ ST

K

. 1
therefore, usimg a < W
n T1

A<2-¢(2-q)

=1+
1+7rf)dy,

, we have, under the condition

(1 + 7“1)d§b7€7

for the imaginary part (as for the previous term) and with no condition for the real part (since

a>0,\<1), that

2 n D, Vidn, Vo1
%

**7Bdn

We then compute (still using Lemma 2.1.2 and 2.3.4)

1¢n0p,2,V-1 V1
(gt

K
< 30
d;,

K

|4

.1 .
therefore, using —— < we have, under the condi
n

K
(1 +7,,1)1/a7

3m< icnaxlxgv—l | %1 )‘ <

44—’
dn

tions

= Ocnﬂo(c,l,ﬂ_)\).

A<2—¢(l—a) and A<3—¢(3—a),

which are met since

A<2—e(2—a)=2—-¢(l—-a)—e<2—-c(1-a),

and A\<2—¢(2—a)=3—-e(3—a)—14+e<3—-¢(3—a),

icaﬁm(‘/laxlxzv—l)
\%4

*x,Bg,,

This concludes the proof of step 3.1.

)

Step 3.2. Proof of H% 1+A).

= OCn—>0(Cn
**,Bdn

We have defined

Eé’zl(\PrJ =1 (02,L)(®n) + (1 =)V (92, L") (¥n) + nL((0:,V)¥n) +

We recall from Lemma 2.1.7 that
vV

L(Wn) = = AT, =25 VU, 42|V [Re(V,) — iy Oz, W,

L(®,)=—Ad, — (1—|V|)®,+2Re(VD,)V —icy, 0.,

hence

(0.,1)(®r) = 4Re(V_105,V_1) @y, + 4 Re(Tp, V1 Vi0,,)V + 4 Re(VD,) V10, V1.

that

= OCTL_’O(C’};‘_A)'

(1—=n)0.,, VL' (¥,,).
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We shall now estimate all these terms one by one.
Since n0.,L(®,) is compactly supported in {7 <2} and ||. |« B,, looks at tlle function only on
n \
{r1<d®}, using Lemma 2.3.4 (VV_1=0._¢(c)) and ||V, ||, 1-» , <K(X)c 2 , we check that
1 dn

V

= OCRH0(6%+A) .

**,Bdn

With the same arguments, we also check that

’ nL(0.,VU,)

14A
v )

- OCnHO(Cn
**x,Bq,,

Now, with | U, ||s.0.q, < K(o,0")ci ™", we check that for any 0 <o <o’ <1,

K(o,0")
(1+ry)ttod, "

IL'(¥)| <

therefore, with Lemma 2.3.4, we have
K(o,0')
(147 t+og3—=—"

(1 =82, VL ()| <

In particular, we check that if
A<2—-¢(2—a),

—e(2—a)—A

we can take 0,0’ such that 0 <o <o’/ < 2 T , hence

H (1= )0:,VL'(¥y)

1+
v )

= Ocn—>0(cn
**,Bdn

Finally, we estimate

VV_4

v, Vv,

|0, L' (¥,)| < K + K|Re (0, V_1V_1)Re(V,,)].

Oz,

With Lemma 2.3.4 and | W, ||«.0.a, < K(0,0") ¢t ™7 (from (2.2.13)), we check that

K(o,0")(1—-
= Vo, 1w, < K20,
r17od,
therefore, with the same condition as for the previous term, namely
A<2—(2—a)e,

we infer, taking o < o’ small enough,

= Ocnﬁo(C}lJrA).

H (1—-n)Vo.,L'(¥,)

Vv *x,Bq,,
This concludes the proof of step 3.2.
Step 3.3. Proof of HNLBZ—‘;@") =0, ~o(ch™).
**7Bdn .

We recall
NLo, (9,,) =V (1 = 1)9.,(=V¥,,.VT, + [V [>S(T,)),
with S(0,,) =e?P¢(¥n) 1 — 29Re(,,). We compute

0.,(~VU,. VU, +|[V[2S(¥,)) = —2V0,,V,. VT,
+ ARe(0,, V1V 1)S(T,)
+ |V|20.,5(T,).
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Now, with Corollary 2.3.3 and (2.2.13), we check that, for any 0 <o <o’'<1, r1 > 2,

K(o,0')
|V821\I/nv\11n| < W?

1 n

K(o,0")

[4Re (0, V1 V_1)S(V,) + |V [20.,5(¥,)| < 2202207
1 n

1—-X
2

therefore, taking o <o’ < , we check that

(1= n)(—=2V0,,¥,. VU, +4Re(0,,V_1V_1)S(¥,,) + |V |20.,5(¥,.)) || w#,Bq, = ocnﬂo(c}f’\).
The proof of step 3.3 is complete.

Errioc + Errgar + Errcyg
14

Step 3.4. Proof of ) 1),

= OCnHO(Cn
**x,Bq,,

We recall
Erreny = 0., n(L(®,) — VL'(V,) + 0,V + VY, VU, — |V |2S(\Iln)),

Errloc =0z (R(‘Iln)) - ad)‘(cm dn)Zdn7
Errpay =0,V (1 =) (=V¥,. V¥, + |V [2S(1,)).

Err¢yt is compactly supported in {7“_1 < 2}, therefore Erre, =0 in By, hence

=0.

**, Bq,,

Errcut
14

Now, Erry, is supported in {7“1 < 2}, and from Lemma 2.1.7, we know that R(¥,) is a sum of
terms at least quadratic in ¥,, or ®,, localized in the area where 7 # 0. Therefore, from Corollary
2.3.3 and (2.2.14), we check that

0. (RO < 5L

and we have check in step 1 that [Og\(cn, d,)| =02, _o(c2™7). Thus, taking o < %,

= ocn_,o(c,}[")‘).
**x,Bg,,

Errioc
\%

From (2.2.13), we check that, for any 1 >0’'>0 >0,

K(o,0")

. 2
|-V, VU, +[V[*S(¥,)] < (14 1q)2+20g2-2"

and from Lemma 2.3.4, we have

therefore, choosing o < ¢’ small enough, we have

7

This ends the proof of step 3.4 and hence of (2.3.4).

0.,V
14

= Ocnﬂo(C,}LJr)\).

*%,Bg,,

Step 4. Three additional estimates on h,,.

This step is devoted to the proof of the following three estimates:

VI || o gy + 70 Re ()| Loe i 521y + 172+ 0 Tm ()| ooz < K (0,07)eg 7 (2.3.6)



126 SMOOTH BRANCH OF TRAVELLING WAVES

In the right half-plane, we want to show that

K(O’)Cl_HT
L—tm_ 3.
|hn| < tr) (2.3.7)
and, in the left half-plane,
K(o)eh™°
< —71 .O.
hal < sy (238)

Observe that h, is not symmetrical with respect to x; because of the cutoff. Recall that
Vhp=0.,(TW, (V) + Lo.,(Vn) + NL@ZI(‘I/,,L) + Errioc + Errgar + Erreys.

We complete estimates done in the previous step to show that (2.3.6), (2.3.7) and (2.3.8) hold.

Step 4.1. Estimates for 9,,(TW,, (V).

From Step 3.1, we have
0., (TW(V)) = —=4VV1.VO,,V_1+2(1 — |V4|?) V10, (1 = |[V_1]?) V_1) — 2i ¢y, (V102 V_1).
In view of Lemma 2.1.1, equation (2.1.3) and the estimate (1+71)(1+7_1) > d,(1+7), we have
JOATWAV)) [V [l evr0., < K ()l
Furthermore, in the left half-plane, with Lemma 2.1.1 and equation (2.1.3), we check easily that

Ke,

O (TW(V) < (s

Furthermore, in the right half-plane, we have
and equation (2.1.3), we check that

(1+—17:1) < Kc,, therefore, still using Lemma 2.1.1

Kc2

O (TWV))| < i

Step 4.2. Estimates for Lo, (V).

We have, from Step 3.2, that
Lo 1(\1171) =005, L(®n) + (1 =)V, L'(Vy,) + nL(0.,V¥,) + (1 - 1)0., VL' (¥,),

z

with
(0,L)(®,) =4 Re(V_10,,V_1)®,, + 4 Re(0,,,V_1 V1®,)V + 4 Re(VD,)V10,,V_1,
, vV 9 :
L/(Wp) = =AWy = 2 VW + 2|V Re(W) — i 0, U
and
, VV_y —
0=, L/ (U3)| < K| O,V W + K [Re(00, V1 V1) Re (). (2.3.9)
-1

Similarly as in Step 4.1, every local term (in the area {n# 0}) satisfies the two estimates, using
[¥nll, 1=2 ; <K(0)cq. The two nonlocal terms are (1 —n)Vo.,L'(¥,) and (1 —n)0,VL'(¥,). For

2

the first term, in view of Lemma 2.1.1, equations (2.1.3), (2.2.14) and (2.3.9), we check that

[V (1 =n0)0:, L' (V)| Lo i< 31
+ 1 TRe((1 = 1) 02, L' (V) | Lo () + 172 7TIm((L = 0)02, L (U)o (7> 2)
< K(o,0')ct™

n

and, in the left-half plane,
K(o)eh™®

|(1—=n)VO.,L'(V,)] < Trr?
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Furthermore, using now [[¥,|, 1-- , <K(0o)cy, we check that, in the right half-plane,
5 5dn

K(o)elte
(I4r1)

Finally, for the term (1 — 7)., VL'(¥,,), we use | W, ||+.0.40, < K(c,0')ct ™" and (2.2.14) to check
that

|(1 =)V, L'(¥y)| <

K(o)en "™

li
)| < ———.
|L (‘Iln)l ~ (1+,,’:)1+cr

Combining this estimate with |0,,V | < we show that

K
(1+7)’
1—o'
<K(Uﬂ0/)cn Ua

Jasnm(a-nZle,) -

and, in the left half-plane,
K(o)e, °

|(1—=1)0:, VL' (¥,,)| < m

Furtherore, using || ¥,||, 1-- , <K(0)c and (2.2.14), we also have the estimate
5=dn

K(o)cy,

(1+7)’

and using |0, V| < K¢, in the right half-plane, we estimate in this same area that

K(o)ehte
(1+7)

[L/(Wn)| <

[(1 =)0, VL' (V)| <
Step 4.3. Estimates for NLg_ (V).

From Step 3.3,
NLo, (¥,) =V (1 =1)0,,(=V¥,. V¥, + [V|2S(¥,)).

1+
2

Using equation (2.2.14) for —~Z and Corollary 2.3.3 (also for HTU), we check without difficulties

that

| NLo.,(Wn) | Lo (7 <3
+ [|F1TRe(NLo, (V) / V) ooz + |72 T7Im(NLo, (¥n) / V)| Lo 21
< K(o)ey ™7,

and, with, some margin, that in the left half-plane,

K(o)e, °
L
INLoa,, (V)] < T+r_1)?

140

Now, using || ¥, ||, 1-- , <K(0)c,> and Corollary 2.3.3 (for Lo 7), we have, in the right half-plane,
k) 4 yYn

2

K(o)ehte
(1+7)

N

INLo., (¥,

Step 4.4. Estimates for Errioc + Errea, + Erreyt.

For Errjoe = 05, (R(¥V,,)) — OaX(cn, dn)Za,, the same computations as in Step 4.3 yield the
estimates (because this term is compactly supported in the area {77 + 0}) needed for (2.3.6) to
(2.3.8).

For Errey = 0,,n(L(®,) — VL' (V,) + icd.,V, + V¥,.V¥, — [V]25(¥,)), this term is
compactly supported near the vortex —1, hence is 0 in the right half-plane. Furthermore, using
1Vnlls,o/2,d, < K(0)e, %, we check easily that

HErrcut/VH**,a,dn < K(U)C’zia’
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and, since it is compactly supported, in the left half-plane,

K(o)en *
(147-1)?

Finally, for Errg,, = 9,,V (1 —n)(=VV,. V¥, +|V[25(¥,)), from (2.2.14) we have

|Errcut| <

K(o)en *

|(1=n)(=VV,. V¥, + |V[2S(¥,))] <Wa

and we conclude as in Step 4.2.
This concludes the proof of estimates (2.3.6), (2.3.7) and (2.3.8).
Step 5. Inner estimates.

By the estimation we have just proved, we have in particular

B = dné?)

—_)O
||8Z1\I/n”*,B,§n

in C2.. (which corresponds to follow the +1 vortex). Therefore, at the limit, in the distribution sense,

Ly,(6)=0

in all R2. If we show that (&, x9,,V1) =0 for x a cutoff near 0, we can then use Theorem 2.1.16
to show, similarly as in the proof of Proposition 2.1.17, that & =0 since

= 1,
*,Bq,

(VO W) (. — dnel)
Hazl\IIn”*,Bén

hence [|&|| g, < +00. We recall that, by construction, we have (®. 4, Zq4) =0. By symmetry, this
implies that (®. 4, 7(y)04V ) =0. Both ®. 4 and 1(y)d4V are C' with respect to d, and therefore

0=0a(Pc,a, N(y)9aV ) = (9a®Pec,a, 1(y)9dV ) + (P a, Oa(n(y)0aV))-
Furthermore, (0z,P¢ 4, 1(y)0aV ) = —(P¢.a, 05, m(y) 04V ), thus
<az1q)c,da U(y)adV> = _<q)c,da n(y)azladv>a

and we check easily that |7(y)0,,04V | < Kcn(y), therefore, since | W, gl|v.0.a < K(0,0")c =7, we
have [(9,,®. 4, n()04V )| < K(0,0")c>=7", and thus, taking 0 <o’ <1 — ), for ¢, and d,, n— oo,
we infer that (&, nd,, V1) =0.
We continue as in the proof of Proposition 2.1.17. The fact that & = 0 gives us that for any
R >0, we have
V02, Wi || Lo~ iy < ) + 1V (V21 W) || Low (11 < 1)
102, ¥l

— 0.

*Ba,,
Step 6. Outer computations.

We have the same outer computations as in step 2 of the proof of Proposition 2.1.17, but with
Ozy U playing the role of ¥,, and H,, = h playing the role of h,,, since they

Y, = S
0240k, By 1021 ¥ nll«, By

satisfy the same equation. We showed in (2.3.4) that
H.x ||**,Bdn =0n—oo(1),
and the system of equation is, with V,, = V1 +1i)s and H,, =H1 + iHo,
AV — 2|V 2V = —H; — 29%(V—VV.V%L) YO,
AVz+ 0,1 = —Hy —23m( LYY, ).



2.3 DIFFERENTIABILITY OF THE BRANCH c— Q. 129

Recall the two balls By, = B(dnéi, d5) and Bl = B(d,é, d5). We have, as in the proof of
Proposition 2.1.17, outside {ry < } but in By, that [|Vull. gy =1 and [[Hpllws, B, = 0n—oo(1),
therefore

B 0R—>oo(1)+0713—>oo(1)
AV —2)1] < e (2.3.10)

and
0R~>oo(1) + O’II’L%*)OO(]‘)

|Ay2+camzy1|< (1 +T.1)2—a

(2.3.11)

We want to extend these estimates in By, = B(dn€1, d5) and not only on Bj) = (d,él, d5). Since
| Hnll4x, Ba, = On—oo(1) from (2.3.4), the estimates on H; and H; are already on By, leaving ¢0,,)

and the real and imaginary parts of V—VY .V, to estimate.
First, we check that, in Bg,\Bg,,

d1+)‘ci_‘7 _ On—ool(1)

<1 —
|cn0u, Vo < (I+r)iFe (A+r)i-°

02, Vn 1

< Kd:™ and Corollary 2.3.3 to
00T oy Tl 5y S0 00 Y

taking o >0 small enough. We use V,, =
compute, for any 1 >0 >0,

vV K(o)dy” __ K(0)
()| <[ v < <

In Bg,\By,, we have rq > de’, therefore

Ry p—

v 1—ad—0—)\+(1+a+0)6"
1 n

Since we assume

A< (14+a)e,

then we can choose o >0 small such that —oc — A+ (1+ a+ o)e’ >0 and deduce, in By, \By, , that

e

-«
1

This result shows that (2.3.10) holds on Bg,. Now, we compute
Tm (ﬂ/ vyn)‘ ‘m(vv) IV + 'me(vyn)am(ﬂ/)',

and with Corollary 2.3.3, Lemma 2.1.2 and 2.3.4, we estimate
vV 1,1\ dt?
(5 Jameo <G )

vV drtA 1 1
R )

In By, \By,, we have d;, > > df;, and with similar estimates as for the previous term, we check
that, since A < (1+ a)e’, we have

and

A<(2+a)e’
for the first term, and

A<(14+a)e’
for the second one. We can find o > 0 such that

onﬂoo(l)
(1 + 7“1)2 o
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in Bg, \By,. We deduce that (2.3.11) holds on Bg,. Additionally, we will use (from Lemma 2.2.3)
for0<o<o'<1,

VX Inllcrr<an

+ [P oRe(Vn) [ ooz 2) + 17 OVR(Vn) | L (22

+ 177 Im(In)l| ooz 2 + 17TV IM(Pn) | oo (221

< K(U,U’)ci_gldi+A

e (2.3.12)

and from (2.3.6),
IVH | e ran + 17T Re(Hp) | oo (2 + |72 T0Tm(Hn) || oo (7 2ny < K (0, o)yt (2.3.13)

to do estimates outside of By,. These estimates are not optimal (in particular in the smallness in
¢n) but we will only use them on parts far away from the center of V3. Thanks to (2.3.7), we have
a slightly better estimate in the right half-plane, that is, for 0 <o <1,

K(o)dy~°

H,| < K |hy|dA T <
[Hon |hn|dy, )

(2.3.14)

Step 7. Elliptic estimates.

We follow the proof of Proposition 2.1.17. At this point, we have on Y, that | Vn|. 5; =1,
IVVnllLoo @< ry + IV (VYo Lo < rR)) — 0 @s n— oo for any R>1, and with Y, = Y1 + i),

OR—oo(1)+ 0,13_,00(1)
(1 +7“1)27a ’

|[AYs + Oy, V1| <

ORHOO(l) + 011’?%00(1)

— 2 <
|Ay1 2|V| y1|\ (1+7’1)1_a

We want to show that |V ||+, 51 =0r—oo(1) + 0 o (1). We want to use similar elliptic estimates
as in the proof of Proposition 2.1.17, but we have to show that they still work if we only have the
estimate in Bg, = B(d,€1,d;) and we want the final estimates in Bjj = B(d,é}, dfl/), with e’ <e.

Step 7.1. Elliptic estimate for )s.

We start by solving the following problem in R?:

AC=f,
with
fi=—Ha— 23m<2/.vyn),
v
which is odd in x5 (the derivation with respect to z; breaks the symmetry on 1, but not on x3)
and satisfies
OR_,oo(l) + Of_,oo(l)
(1 + 7“1)270‘

Ifl<
in By, = B(dnéi1,d;), and, from (2.3.11) and (2.3.13),

K(o,o))d e’
{—2-n 2.3.1
J (2315)
in R?, for any 1> ¢’ >0 >0. Similarly as in the proof of Lemma 2.1.8, we write, for x € B(d,é1, d,i,),

V() = % [R 2%]%3/)&/. (2.3.16)
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Furthermore, we have the same local result, that is, if |z —déj| <1,

V¢ ()] € 0r—o0(1) + 05— oo (1)

By symmetry (see in particular Lemma 2.2.4), we have

/ FY)dy =0,
B(dné1,2|x—dpell)

(Y)dY

hence

ﬁa(dna,d;) |z —

r—Y T — dn€l
(ot ds)f(Y)<—Y|2 1{\Y dnél|<2|z— dnel}m—)dY?
n€1 3

B |z — dnei]?

and then, we infer

1 x—Y x—dpel
Iy f <— 1 e r—dne —>dY
27/ B(dnei,d5) N=vp ~Hr-edict-adly =g &P

< / (0R—00(1) + 05— oo(1))
B(dné,d2) (I+[Y])?=e

We do the same change of variable Z =Y —d,é] as in the proof of lemma 2.1.8, and we are now at

1 z-Y —dnél
%[g(dna,d;)f(Y)<—|xY|2 1{|Y dnet|<2)z—dn el\}‘|x n61—|2)dY‘

r—Y x —dpel

|x_Y|2—1{|Y dnéi|<2]z— dnel\}—|x_

dy.
nell2

(0R—o0o(1) +0R (1)) & —dnér—Z x — dnel
< < ~1 ds dZ.
L(o ) (1+]Z])2~= |z —dnéi — Z|? {1Zz1<2le-d. 1‘}|JU dné1|?
We want to follow the same computations as in the proof of Lemma 2.1.8, but now W is

no longer integrable, and this is why we added the function 1 (12|<2]z—d

|10 |Z) > 202 — duéi,
then |x —d,é1—Z|>1|Z|/2 and

neil
/ (0R—oo(1) + 0B (1)| 2 —dnei—Z
B(0,d5)N{|Z|>2|z —dnei|} (1+1]Z])2~« |z —dnet — Z1?
/ (ORHOO(l)‘FO'rIfHOO(l))dZ
B(0,d5)N{|Z|>2]x —dnéi|} (1+1Z])?~=|Z]
0R—oo(1) + 0l (1)
(1+ |z —dpéi]|)t—o -

dz

<

AN

Then, in {|Z| <2z — dné'1|}, we follow exactly the same computation as in the proof of the proof
of Lemma 2.1.8 for the remaining part of the integral, and we conclude that

1 z—-Y T —dnel
%/( o n)f(Y)<—|xY|2 1{|Y dn&1| <2z — del\}‘|x, n61|2)dY‘
0R—oo(1) + 0l (1)

(1+ |z —dpei]|)t—o -

~X

We are left with the estimation of (after a translation)
R2\B(0,d5,) |Z — (z — dné))
By symmetry (see Lemma 2.2.4), we have
/ JZ 4 dnet) 57y,
R2\ B(0,d5)

|Z|
therefore

o tn) = | N )
Z—i—dne P —— 1 /4
[W\B(Odanz CEraa] B0 NZ=@ e 17
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Since |z — dné1| < d5 < d5, < |Z|, we have, for Z € R?\B(0,d5,),

K|z —dnéi] _ Kdy
Z]> T Ay

1 1

T7 7. 3 =N 17 <
|12 = (2 = dné3)]| |Z|'
thus, with (2.3.15),

1 1
f(Z+dpér (—_, ——>dZ'
Mz\m,di) Cr b\ z=—da) 12
K(U,Ul)dfl +A+o / 1~
dzs R2\B(dne,dz) (1 +7)2F7
< K(O_)U/)di/+/\f2s+a’.

N

In particular, we have

- 1 1 Onﬁoo(l)
F(Y +dye (—q—)dYk = -
'A%?\B(O,di) ( 1 Y —(z —dné1)|  [Y] (14 ]z —dnei])!

. . N e’
if, since |z — d,é1| < d5,,

"$A—2e+0’ _ On—oo(l)
K(U,U’)di+ eto <;5Toi(a)’
n
hence, since we make the assumption
At+e'(l—a)<2e—¢,
we can find o’ > 0 such that, for z € B(d,é1,dy,),

0R—00(1) + 0p—oo(1)

< . -0
IV((z)| < At —dena (2.3.17)
Using Lemma 2.1.8 and (2.3.15), we also have, in all R? this time, that
n g +o’
IV¢(2) K. 0)dn " (2.3.18)

(1+7)tte

Here, we cannot integrate from infinity (since the estimate is only on a ball) to get an estimation
on (, but this will be dealt with later on.

Now, following the proof of Proposition 2.1.17, we define Y5 := Yo — (, and we have, for
je{1,2},
0, Vs=Kjx [,
where

f/ = —Hq— 29{e<v—‘;/vyn) — (1 — |V|2)y1 — c@sz.

We first estimate the convolution in B(dnéi, dy,). With ||V, |« 5; =1, we check that, with some

’

margin in B(d,é1,d5),

2Re( ~L VY, | — (1 = |V|P)y| g —ZB=el)
‘ 9%( T \YAY ) (1—1]V| )yl‘ AEENTEET

Now, we have shown in step 6 that

‘ %(V‘/.vyn)

vy < Onﬂoo(l)
\%

S~
7,% ato

for some 0" > 0. In B(d,é, d5)\B(d,é, d5 ), we have

d)\Jra’ d)\+o’—(2+a—o”)€’ on (1
L R A =
1 1 1
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given that ¢’ and ¢” are small enough since A — (2 + «a)e’ < 0. Therefore, following the proof
of Lemma 2.1.13 (only changing the integral from R? to B(d,é1, d5)), we check with the same
computations (since we have some margin ¢” >0 on the decay) that

Ki(x —=Y)| 2Re| —.V —(1—|V|? Y)dY| < —=—~.

[ e =y (2o L2 ) - | < st

Now, using (2.3.17), we check that, following the proof of Lemma 2.1.13 (using Hélder inequality
instead of Cauchy-Schwarz in the last estimate to make sur that the two integrals are well defined,
this does not change the final estimate),

0r—co(1) + 0f— (1))
(1 + ,rl)lfafl/l()

[ Ee-vean0my] <X
B(dnel,dy)

And, since z € B(d,é1, dfl/), c(1+7r)/° < K, therefore

o OR—oo(1) + 0B (1)
[ K=Y,y | < 2ol

A+1

3 to estimate

For the last remaining term, we use (2.3.7) with o =

R
ol
] < 220

(1 + 7“1) ’
and then, from Lemma 2.1.13 (only changing the integral from R? to B(d,é1,d5,) in the proof), we
infer
0Rr—oo(1) + 05 oo (1)
(1 + 7“1)170‘ '

/ Ko — Y)Hl(Y)dY‘ <
B(dnel,ds,)

Combining these estimates, we have shown that

0R—oo(1) +0F_ (1)
(1 + 7“1)170‘

| K- Y)f’(Y)dY' <
B(dnei,ds,)
Now, we focus on the left half-plane. From (2.3.8), we have

K(o)e, dy ™
(1+7-1)2

Furthermore, we check, using (2.3.11) and (2.3.18) that, in the left half-plane,

[H:| <

VvV 9 K(o,o)d A=
—2%e( ~L. YV, |- (1 - V)| <
. ' 29%( 7 yn) 1= V) A e
n
K(o,o))d) e,
< ) n
|en0a, (| < (I+r_q)+e

We have by Theorem 2.1.12 (since x € B(dn€1,d3)) that |K;(z —Y)| <
the left half-plane, for any 0 < 3 < 2. Therefore, taking =2 — o, we have

K .
W for Y in

K(o, a')d;\1+‘7+a/_2 K(o, a')dAJFUJFULQHl*a)E/

n

< = < =
R2 (1+7)%+e (1+ |z —dper])t—

/ Kj(z — YYHL(Y)dY
{y1<0}
Taking §=2, we have

/{Ylgo}Kj( - Y)<2me<V_V‘,/.vyn> —(1- |V|2)y1>(y)dy

K(o,0")dpyt 2
r2 (1+7)%te
K(O’ Ul)d)\Jra’fQJr(lfa)s’
J n

S (+r—dea) e
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and finally, taking §=1, we estimate

K(o,o)d)"' "2 _K(o, U)d)‘” ~2H(1-a)e
R P i

/ Ki(x =Y)c, 05,¢(Y)dY | <
{v1<0}
Thus, taking o’ > ¢ > 0 small enough, since A —2+ (1 —a)e’ <0, we have

‘/ Kjfw—Y) f(Y)dy | <
{ri<o}

We are left with the estimation in Q) := {Y1 > 0}\B(dné’1, d,). We infer that, in Q, we have, for
0<o<o'<1

On_>0(1)
S (At e —dnei)' -

K(o)dy 7 K(o)dy™”

!
< .
|f| (1+7,.1) (1+r1)2+0
Indeed, from equation (2.3.14) and (2.3.18), we have |H; — ¢04,(]| é%, and using (2.3.11),
we check that
vV K(o)d)™
2 — —(1—|V|? <\
' 9‘%2( 7 Vyn) 1=V A+ 7)27e

Now, for y € Q, x € B(d,é1,d5, ) we have from Theorem 2.1.12 that

K
K =) <
and "
K

Ki(x-Y)l< - .

K VIS e

We deduce that, for « € B(dpé, dgl)
( )d)\ i / )\—a/—a/2/ K
K 204 gy < K(o')d) S —
/' 1+r1(Y)) () r2 (1 +7(Y))%/2
K(a/)dzfa',“r(l*a)ci'/*&/? B On*)()(l)

I+lz—dpei)' = (L+]z —dnéi])'
taking o’ < 1 large enough (since A+ (1 —a)e’—1—¢/2<0), and

( )d)\+g o Ao —2¢ 1
s Ay < Kl Azuw(n)“v”

K (0)d, 7T on—o(1)

A +]e—dner))i = (I+ ]z —dper]) @

S

taking o >0 small enough (since A + (1 — a)e’ — 2e <0). We deduce that, for z € B(d,é1,ds,),

on—0(1) +0r—o0(1)

/ /
o K% < .
| z1y2| | J f |\ (1 |IE dn€1|)1 @

With (2.3.17), we have shown that

on—0(1) + 0r—00(1)
(I+ |z —dper])t =

Now, since |Va| + |VIa| = 0r— (1) in B(d,éi1,10), by integration from d,€31, we check that, since
a>0,
on—0(1) +0r— (1)

A+ o —dpi)

| Va| <
Step 7.2. Elliptic estimate for ).

For ) we also use the function Ky and we have

V=g Ko(VaL) * (~AY1 +20),
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therefore

L k(V2l - YAV 20)(V)laY
Bazn,(ﬂﬂ)27r

Vi) < [
+/ ) QLKO(\@L@—y|)|(—Ay1+2y1)<Y)ldY,
R\ Ba,, () 4T

where By, (z) = B(x —dpn€i,d;,). The first term can be computed as in the proof of Lemma 2.1.10,

and for the second term, in R\ By, we have
1/2

Ko(V3r|) < Kem® ele]

from Lemma 2.1.9, which, with (2.3.11) and (2.3.13), make the term integrable and a
e/4
odnﬁoo(efd"/ ), which is enough to show that
0n—>oo(1)+0R—>oo(1)
(147)t-@ '

[V + | V1] <
Step 8. Conclusion.

We conclude that there is a contradiction, as in the end of the proof of Proposition 2.1.17. This
ends the proof of Proposition 2.3.5. a

In the rest of this chapter, we take a,e,e’, A such that they satisfy the conditions of Proposition
2.3.5, and

A (1—a)e’>1.

2.3.4 Proof off

_ o L
B(déi,dsl) %e(advazl(TWc(V))) |d=d. = d_g + Odc—>oo(_>

dz
From (2.1.2), the equation on V is

TW.(V)=E —ic0.,V=-2VV1.VV_1+(1— Vi) (1 = |V_1|>) Vi V_1 —icOp,(V1 V_1).
We use Lemma 2.3.2 to compute

(921‘/ = (9I1V1V71 + 8z1V71V1 - (*8951‘/1‘/71 + 8z1V71V1) == Qazlvlvfb
Therefore

0, TW (V)=—-4VV1.VI,, V_1+2(1 — |V1|2)V18:,31((1 — |V,1|2)V,1) —21¢0,,(V102,V_1),
and then

/ Re(IqV0.,(TW.(V)) = —4 / Re(TaVV ViV, V 1)
B(dé1,d=") B(déi,d=")
+ 2 / Re(FaV (1~ VA[2) Vil (1~ V1) V1))
B(dei,d=")

- 2 %e(ad_Vi €0z,(V102,V_1)).
B(dé},ds")

We want to compute this quantity at d =d.. We omit the subscript and use only d in this proof.

In fact, it works for any d such that 2—1d <e< %.

Step 1. Proof of fB(d )%e(ad_V(l — V1% Va0, (1 — |V_1>) V1)) :Od—mx;(%)-

&r.ds’
First remark that 0,,((1 —|V_1|?)V_1) = Od_,oo(%) in B(déy,d®") by Lemma 2.3.4 and

A 1
(1= APVOT =01, )

therefore !

N 1
[ RTT ) V01~ [VAPIV-) =0se 37 )
B(d&,d=")
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Step 2. Proof of fB(d(? da,)f)‘ie(iﬂd_Vz'cam(Vlale,l)) :()dﬁoo(%).

Now we compute
ic@xz(Vlale_l) = iCOxQ‘/lale_l + ic@sz_l Vi,

hence

/ Re(TaVicOu,(Vida,V_1)) = —c / Re(To ViV 1i0s, V100,V 1)
B(déi,ds") B(déi,d=")
— C/ D‘ie(azlvl Vfliazle‘/fl Vl)
B(dey,ds")

+ c/ Re(0y,V_1 V1105, V104, V_1)
B(dét,de")

+ C/ %e(@le_l Vﬂ@xlxz\/_l ‘/1) (2.3.19)
B(déi,d=")
Now, using Lemma 2.3.4, we estimate the first term of (2.3.19),
C / i)%e(&xlvl V71Z'(9I2V18IIV71) <
B(déi,d=")
— - 1 1 Kln(d®"
c 02, V10, V1| X |[V_10,,V_1| < K - < —.
/B(da,dfﬁl 10X V10V Bar,ae (L+rD) 3=~ dP==
Since ¢’ > 0, we have
I 1
C/ oo, %e(@xl\/l V_lz@@Vl@le_l) = Odﬁ&(ﬁ)- (2.3.20)
B(dei,ds")

Using Lemma 2.3.4, for the second term of (2.3.19), we have

¢ / Re(ToViV 1i 0wV 1 V)| < e / I ViVA) Re(r,a,V VT
B(dey,ds") B(déy,d=")
+ e / Re(ToViV2)Im(s, o,V VT
B(déy,d=")

K K 1
< 7 < 77— 0d—oco| 79
/B(da,dg/)(1+rl)d4€ d4—2¢ 0d <d2)

since cg% and ¢’ < 1. For the third term of (2.3.19), we obtain similarly

N

C/ %e(@le_l Vliaszlale_l)
B(déi,d=")

¢ / I (Vi V1) Re(Du,V_ 175V 7)
B(dé},ds")

C/ 9‘{e(\718$2\/1)3m(6x1V_16x1V_1)
B(dé&},ds")

[ S———
B(da,di’)(1+r1)d5—2e/_ d— oo 2 )

c/ Im(ViVy) Re(0ry0,V-102,V_1)
B(dét,de")

N

Finally, for the last term of (2.3.19),

C/ ERe(axl‘/fl ‘/liaxlxgvfl Vl)
B(dé},ds")

¢ / Re(ViV1)Im Dy, V1TV 1)
B(dét,de")

K K 1
< Af(d? da')—dE’*E' S—d573€, zod_mx;(ﬁ).

This conclude the proof of step 2.
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Step 3. Proof of [

i oy BT ATV 1)) =~ 00 ).

d2
We have
—4AVVI.VO0,,V_1=—405,V103,4,V-1 —402,V102,2,V_1.

. K
Remark that using |04V | < T

/ me(&d_‘/axlvlawlx1v—l)
B(déy,d=")

and Lemma 2.3.4 once again,

St @)
X T o~ a7 — 0d— ED)
B(da,dgl)(1+7a%)d3—e e8] 42

as for (2.3.20). Moreover,
74/ D‘ie(advamvlamzv,l) =
B(dét,de")

4 / Re(9p, V1 V_102,V102,2,V 1) — 4 / Re (02, Vo1 V102,V105,2,V-1). (2.3.21)
B(dey,ds") B(dei,d=")
For the first integral in (2.3.21), we write
f  RBTAV0i00 V) -
B(dé},d=")

4 / Re(TrViw V1) Re(V 10010V 1) — Im(Bo Vi Vi) Im(V 10s, 0,V 1)
B(déy,d=")

<f s =)
B(dey,a="y (14 77)d>¢ d?

by the same computations as (2.3.20). For the second contribution, recall from Lemma 2.1.2 that

For the first contribution, we have

/ Re(To Vi, V1) Re(V 10010V 1)
B(déy,d=")

0, Vi = (Cos(é'l) u— %sin(91)> Vi and 0,,Vi= (sin(&l) u+ Ticos(ﬁl) )Vl,
1

1
therefore
Im(0;, V10,V1) = %|V1|2,
and then, by Lemma 2.3.4,
U

4 / I (Ta Va0, Vi) IV 1000,V 1) = —4 /
B(dé1,d=")

1
B(déy,d=")T1 4d2|V1| drlJrOdHOO(ﬁ)

since

U 1 9 - 1
/B(da,df/)r_l 4d2+1/4'|V1| drq Od_>oo<ﬁ).

2= p3, u—p— and Lemma 2.1.1,

We compute, using |V;

w VA2 —2m [ T g 1
4[9@&,#/)7,—1 Tz =n /O pl(n)p(n)dnfﬁ[m]o d2 L4 0doo 2 )

We obtain the estimate for the first integral in (2.3.21):

1
4/ (6381‘/1 laxz‘/lax1w2v 1) d2 +Od—>oo<ﬁ)
B(dé},ds’ )

S (@)
X B(deﬁl,dfl)(1+r1)d47€/ d— oo d2 .

For the second integral in (2.3.21), we estimate

/ Re(Tr V1 Vi, Vi, aaVot)
B(dé,ds")

This ends the proof of this subsection.
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2.3.5 Proof of 8qf o
1 B(d&,,d=')UB(—dé,de

Odc—>c>o ?
(&

)me(ad_VTWc(Qc,d))M:dc = 27 4

d2

In order to prove the result of this subsection, by using (2.3.1) and the result of subsection 2.3.4
we just have to show that at d=d,,

/ Re(TVL (0. T ) + / Re(aV(0:,L)(Te.0.))
B(déi,e’) B(déi,d=")

s 1
+/ , %8(8d‘/azl(NLv(Fc_’dc))) Odcﬁoo<?>.
B(déi,d=") c
Similarly to subsection 2.3.4, we omit the subscript on d. in the proof.

Step 1. Proof of [

SV 1
B(d&},d®/) Re(0aVL(0:=Te.0)) = 0a—oo(2)-

d2

For this term, we want to do integration by parts and use that L(9;V) is very small, but since
the integral is not on the whole space, there are the two boundary terms:

/ %e(ad—vuazlrc,d))‘ <
B(déj,d=")

/ Re(L(0aV)IoToa)
B(dey,ds")

+ +

)

/ Re(04V' VT q) / Re(VIVD., T )
dB(déi,d=") dB(déi,d=")

where OB(dé}, d°') is the boundary of B(déy,d®’). On 0B(déy,de’), we have

Teqg=V(e¥"-1),
hence
02T a=2V10,,V_1(e¥od —1) + V0., U, ge¥e? (2.3.22)
and
V0. Tea = 2VV10,,V_1(eVed — 1)+ 2V1V,, V_1(e¥ed —1) 4+ 2V10,,V_ 1V, ge¥ed
+ VVO, U, qe¥e i+ VVI, U, qeVed 4 VO, U, gV, ge¥e. (2.3.23)

By Lemmas 2.1.2 and 2.3.4, Proposition 2.3.5 and (2.2.14), we infer on 0B(dé}, d®') that, for any

1>0>0,
K(o) K
d2—¢'qt—-o + d1+/\7as"

Thus, still on dB(déy, d*'), from Lemma 2.1.6 we compute

K K(o) K K(o) K
<E<dzs'd1a + d1+>\as’) < B+ JIHA+F(—a)e”

102,0¢,al < (2.3.24)

/ Re(VIgVO,.I'c a)
OB (dél,d=")

Since 3— o >2 and A+ (1 —a)e’>1 by (2.3.2), we have

1
0d—>oo<ﬁ>~

For (2.3.23), we estimate on 9B(dé1,d®’), still using Lemmas 2.1.2 and 2.3.4, Proposition 2.3.5 and
(2.2.14), for any 1 >0 >0,

/ Re(VIgV0.,Tc.q)
OB(dé},de")

12V V10,,V_1(e¥e? — 1) + 21V, V_1(e¥e? — 1) + 2V10,,V_ 1V ¥, ge¥ 4| < %,
and
|VVD,, V. 4e¥ed + V'V, U, ge¥o? + VD, U, gV, ge¥ed| < K + K(o)

= JTAA-a)e” T 24A+(1—a)e’—o”
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In particular, from (2.3.23), we can find 1> ¢ >0 such that, on dB(déj, d®),

1
|Vazlrc,d| == 0d~>oo<ﬁ>a

1
= 0d— o0 ﬁ .
K

(1+72)d

thus

/ Re(TgVVA.,T.a)
OB(dé},d=")

From (2.1.45), we know that
|L(0aV)| <

Moreover, by Proposition 2.3.5, we have |0,,I'¢ 4| < K — in B(der, dgl), which is enough to show

d1+A—a

that
AT 1
[ e @0T ) =orn( 3 )
B(dé&},de’)
Step 2. Proof of fB(da,de')me(‘%_V(azlL)(chd” :Odﬂm(%)_
We have
((921L) (Fc,d) =4 D‘ie(VTu’?mV,l) Fc,d +4 %e(mfcyd)v +4 i)%e(v Fc,d) Vlale,l,
thus

/ Re(aV(0,L)(Toa)) = 4 / Re(TaVTo.0)Re(V 100,V 1)
B(dél,d=") B(déy,d=")

+ 4 / Re(T VT ViTe o) Re(TaTV)
B(dé},ds")

+ 4/ Re(9gW10,,V_1)Re(VT, 4). (2.3.25)
B(déy,d=")
. K
USlIlg |adV| < Trm
Re(V 10,V 1) = O ! d [T.al< K
(Vo0 Vo)) =Ouce g ) and el S Simarm

from Lemma 2.1.6, Lemma 2.1.2 and (2.2.9) respectively, we may bound

/ Re(TgV To.0)Re(V 105, V_1)
B(dét,de")

) Ko (L
h B(da,de’)(l4—7“1)1H/2cl3“/2_OCHoo dz )

The second term of (2.3.25) is

4 / Re(Tr VT ViTe. ) Re (V).
B(déi,d=")
We compute that

- K AT, K
|9‘{e(0x1V_1 ‘/ch,d)| SW and |9{e(adW)| < (1 +7”1)3
in B(déy,d®") using
K
R —
|Fc7d| =X (1 —|—’r1)1/8d7/8

by (2.2.14) and the definition of T'c 4. Therefore, since 17/8> 2,
=7 - 1
/ o 49Re(0,,V_1 Vil ¢ a) Re(DaVV ) = Od%oo(ﬁ).
B(d&1,de’)

The last term of (2.3.25) is
/ 49{6(‘7Fc7d) %e(Vlale_ladV .
B(d&,d=")
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Recalling that

- K
Re(VI, )| < K|Re(P)| <
] | ( c | | ( | (1—|—r1)1+1/8d7/8
an
Re(Vidy V100V < D
d5/4(1+7“1)
we deduce

7 1
/ - ,4me(VFC»d)me(Vlax1V—1adV)=0d_>00<¥)-
B(deéi,ds")

Step 3. Proof of [ Re(9aV0.,(NLy(Te.a))) zodﬁm(%),

B(dé},de")
Recall that
9. NLy(Te,q) = 4Re(05, Vo1 Vile,a)le,a+ 2Re(VO.,Te,a)Te,a+2Re(VTc,q)0:. c,a
+2 9‘{Q(T,dazlrc,d) (V + Fc,d) + |Fc,d|2(28xlvfl Vl + azlrc,d)~
We write
/ Re(TV0sy (NLy (To.a)) = Ty + T+ Ty + Ts + I,
B(déy,d=")

with
. / AR TV T o) Re(Tr V1 Vi),

B(déy,d=")

1'2:/ 29%e(8d_VI‘C,d)9%e(V5'lec,d)a
B(dé},de")

= / 2Re(VT, o) Re (V0. v ),
B(dél,d=")

14=/ 2Re(T¢,a0z,Tec,q)Re(JaVV) + 2Re(T¢,a0z, T e, q) Re(aV T e, a),
B(déy,d=")

= / Ty P Re(aV (200, 1V + 02T ).
B(déy,d=")

Estimate for I.

K
(1+171)%/16 47/16

|%e(ad_vrc,d) SRe(axlvll Vlrc,d)| < |Pc,d|2

We estimate, by using |T'¢ 4| < that

K < K
(1 +T‘1) d5/4 = (1+7’1)2+1/8d17/8

Then, since 17/8> 2,
— — 1
/ 4Re(04V Tl ¢,a) Re(0z, Vo1 Vil 4) :Od—mxn(ﬁ)-
B(dé},ds")

Estimate for Is.

From (2.3.22), we have
02T e.a=2V10,,V_1(e¥? — 1) + V0, U, ge¥ed,
therefore, on B(dé,d®’), by Lemma 2.3.4, Proposition 2.3.5 and (2.2.13), for any 1> 0 >0,

K(o) K K(o)

% z Pc < 7 .
|£Re(‘/a 1 ,d)| q3—¢'—o (1 _’_rl)lfaler)\ + d2+)\70(1 +7a1)7a

Combining this with
K(o)

JR— < #lo)
|9{e(advrc,d)| X (1+T1) dl,a-
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K(o)

since [I'c,q| < 7=, we infer

TR (1 K(0)

2Re(04VT .a) Re Vo, I )| < / /

[B(da,ds’) ( e.d) e e.d) B(dey,a=y (1 +ry) di=—e'=2
K(o)
+
/B(d?l,dfl)(l +r1)2—ad2+)\—o
A K(o)
B(da,dal)(l +r1)1—ad3+)\—20 ’

and since A+ (1 — a)e’ > 1, we conclude, taking o > 0 small enough,

— . 1
/ 2Re(0aVT¢,a) Re(VO:,I'c a) :Od—>oo<ﬁ>-
B(dei,ds")
Estimate for I3.

We have from (2.3.22) that
0:Te.a=2V10,,V_1(e¥? — 1) + VO, U, ge¥ed,

therefore

— 1 1
Re(04V0,,I <K ; )
| e( d 1 C,d)| ((1 +T1)d3_2€ + (1 +T1)1O‘d1+/\)

and |Re(VI . q)| < K|Re(V. q)|, hence

K (o)

/ <
|me(vrc,d)| X (1+r1)1+0d1—0’

then
/ K (o)
B(da,dfl)(l +r1)2+0d4725’70

/ 2 Re(gV0,Te.a) Re(VT.a)| <
B(dé},de")

v K (o)
B(dﬁ E,)(1+r1)2+07ad2+kfa

€1,

by taking ¢ > 0 small enough and using A+ (1 —«a)e’ > 1.
Estimate for 1.

Recall that
K

(1 + 7’1)3,

K
(1 +T1)1+6/8 d2/8

[Re(0aVV)| <

and we have

|9{e(ad_VFc,d)| <

. K . 1 K
since |T¢ 4] Sm. Therefore, with — STy
J— N K
Re(04VV) +Re(04VT ST
[Re(04VV) +Re(0aVTc,a)l T+

K(o)

Now, we use |T'¢,q <—(1+T1)6d176

and Proposition 2.3.5 to get

K

SR Taz Pc < ’
| e( ,dVzy 7d)| (1+T.1)afad2+kfd

We conclude as for the previous estimates,

o o — 1
/ A Re(TVV) + Re(TaVT, 0)) Re(Toador T ) = Odw<¥>,
B(déi,ds")



142 SMOOTH BRANCH OF TRAVELLING WAVES

Estimate for Is.

We have, by Proposition 2.3.5,

~— K 1 1
— r < 7
IRV 00V Vit 0T )] < pes{ e+ iy )
and using |T'¢,q <%, we have
K(o
Peal?< o)

Therefore, for o >0 small enough, since A+ (1 —a)e’ > 1,

[ PR 20,V Vit 0. = odw<i2>
B(dé},ds") d

which concludes the estimates.

2.3.6 Proof of 9.d.= —% =+ Oc—»O(%)

Recall that d. is defined by the implicit equation

/ Re(TVTWo(Q.d)) =0,
B(déi,ds")UB(—déi,de")

We showed in subsection 2.3.5 that

A —2 1
ad/ Sy‘{e(ad‘/rrvvc(cgc,d))|d_dc_27-(-‘i’Od{‘.*>c>o<—2).
B(d&},ds")UB(—dé&},d=") d: d;

Therefore, by the implicit function theorem,

)%e(WTWc(Qc,d)) ld=d,

dedo= Oc) pact.aryvm aciar

—27

1
a2 +0dﬁ°°(ﬁ)

TWC(Qc,d) = *icaszc,d - AC?c.,d - (1 - |Qc,d|2) Qc,d
that, with 0.Qc.a=0:.(V + T q) =0.I'c 4 at fixed d, we have (still at fixed d)

ac(TVVc(Cgc,d)) = _iaa:ch,d - LQC,d(acrc,d)a

We compute for

where
LQC’d(h) :=—Ah—icO,h—(1— |Qcyd|2)h +2Re(Qc,ah) Qc.d-

We are left with the computation of

o, / Re(TaVTW,( Q) e, =
B(déi,d=")UB(—dé;,d=")

7/ Re(0aV (102,Qc,a)) |d=d.
B(dé},de")UB(—déy,de’)

7/ Re(JaVLQ. (0L c,a)) | d=d,-
B(déi,ds"YUB(—déi,de")

As above, we omit the subscript in d. for the computations.

Step 1. Proof of [

B(da7d€/)uB(_da7d€/)%e(adv(flazch)) |d=d, = 2T + OCH0(1>'
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We have 0;,Qc=0z,V + 0z,c, 4, hence

-/ Re(TV (102, Q2)) =
B(déy,d=")UB(—dei,d=")
- / Re(i0aV0.,V)) — / Re(i TV, . a).
. B(dé},ds")UB(—dél,d=") B(dé},ds")UB(—déi,de")
Since
K
V| <
10aV] (1+m)
and
K
|8x2Fc,d| X (1 + T1)1+1/2 d1/2’
we have
/ %e(i&'d_vazzl“cyd) = Oc*,()(l).
B(dét,de")
Furthermore,

_ / Re(i04V 0,V ) = / Re (i 05,V102,V1) + 0c—0(1),
B(déy,d=") B(déy,d=")
and we already computed in (2.1.43) that

Re(i0,,V105, V1) = —7 4 0c—o(cH*)
hence R

/ Re(TaV(~i02,Q0)) 1dmd, =27 + 0c—o(1).
B(déi,ds")UB(—déi,d=")

Step 2. Proof of fB(da7d€,)UB(_da7da,)

Re(0aVLQ (0L c,a)) |d=d. = 0c—o(1)-
From the definition of I'; 4, at fixed d, we have
Ol e a=nVoV. g+ (1 — VOV, ge¥e. (2.3.26)
We have, by definition,

LQc(ach,d> == *icazgacrc,d - Aach,d - (1 - |Qc|2)acrc,d + Q%Q(Eacrc,d) Qc;

. K . Kc~1/? . 9l a —3/4
and usmg |8dv| < m with |az28crcyd| gW sice ‘ v 012, < Ke from Lemma
2.2.9 and (2.3.26), we have
1/4

Cc

<K/ o oeoll).
B(da,dgl)(l_i_ﬁ)wl/z e—o(1)

/ Re(DaV (—i0,0cT e a))
B(dé},de")

The estimate on B(—dé}, d®") is similar.

We define
Lo.(h):=—Ah — (1= [Qc[?)h + 29%e(Qch) Q.

and we are then left with the computation of

/ %e(WEQC(&Fc,d))v
B(dé},de")

the part on B(—dey, d¢’) being symmetrical. We want to put the linear operator onto 94V since
L, (04V) is close to Ly (04V) which is itself small. We then integrate by parts:

/ %e(ad_VEQc(acl‘c,d)) ‘ < / %e(ch(adV) 601‘07(1)
B(d&},d=") B(dey,d=")

+ +

/ %e(@d_Vvach’d)
OB (dér,ds")

/ Re(VIVT.q)
dB(dé},d=")
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We have on dB(déy, d°'), that |94V < 3/4, IVoqV'| < 3/2 from Lemma 2.1.6. Moreover, by
o) d'/2te
BCF—VM *71/2,d< K(0)c™ /277 from Lemma 2.2.9 and (2.3.26), we deduce |[VO.I. 4| \%\
K(o K(o)d'/2—° . .
d5/(87)0 and |0.I¢ q| < W < K (0)d'/#=°. We then obtain, for o >0 small enough,

g/ |8dv||vacrc,d| < d3/4M Ocﬁo(l),
dB(déi,d=") d

MRe(9,V VI,
/é)B(da,ds/) (9a ) 3/145/8
(o) d'/3te

/ Re(VIV O 4) </ V4V |0 ch|<d3/4K —
8B (de),d=") OB (de),d=") d®/

Therefore,

= Oci,o(l).

/ Re(IaVLq (0L c,q)) = / Re(Lg,(0aV) 0L c,q) + 0c—o(1).
B(dé1,d=") B(dél,d=")

Now, from (2.1.45), we have that that

K

|Lv(0aV)| <m

Kd1/4

and by Lemma 2.2.9 and (2.3.26), we have |0.I'¢ 4| gm,
r1

hence

1
K
L(da,ds’) (147)2F1/2q1/4

/ Re(Ly(0aV) TTwn)| < — ouo(1).
B(dei,d=")

We deduce from this that
/ Re(0aVLq (0L c.q)) = / Re((Lg, — Lv)(04V) 0T .a) + 0c—o(1).
B(d&},de") B(dél,de")

We have EQc(h) =—Ah—(1—|Qc)*)h+2Re(Q.h)Q. and Ly (h)=—Ah—(1— |V |[))h+ 29‘{e(V_h)V,
therefore

(La.—Lv)(8aV) = (1Qc)* = [V )0aV + 2Re(VOaV ) (Qc — V) + 2Re(Qc = V4V ) Q.-

3/4

We have by (2.2.17) that ||Q.|? — [V |?| < \W, hence
/4
/( ,)%e((|Qc|2— [V [*)0aV.L e a)| < K 571 = %—o(1).
B(de,ds

B(det,ae’) (1+71)2+3/4

We have from (2.2.16) that |QC V< %, and, in B(déy, d®), we have (by Lemmas 2.1.1 and
2.1.2) that [Re(VO,V)| < m, therefore
1/4
= c
Re(2Re(VOV ) (Qe — V)ITwa)| <K o).
L(da,de’) (2l Qe VIO Blder,a’y (1 +ry)>+3/4° olh)

Finally, by using the same estimates, we have

|%6(Qcacrc,d)|'

3/4
Re(2Re(Qo — VOV )QdLc.a)| <K / S
/ e ) | SK [ s T ey

We compute
e(Qcach,d = %e(V@CFC,d) + %e(l‘c,dacl‘c,d .

< K(0)c /279 from Lemma 2.2.2 and (2.3.26), we have |Re(VOI . 4,)| <

K(o)c™1/2- Kcl/2
1+ )3/2 (1+r)¥?

estimates, we infer, taking o > 0 small enough,

*,1/2,d

. Furthermore, with T 4] < K(a)e”

(1+— With these

we have |Re(T¢ a0l ¢ a)| <

/ Re(2Re( Qe =VOuV) QDo) = 00sol)
B(dé3,d=")
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which ends the proof of
/ SRQ((EQC *Lv)(adV) achyd) :Oc*,()(l).
B(dei,d=")
Step 3. Conclusion.

We showed that
2T + Oc_,o(l)

acdc: 5 ’
—2m 1
7 oi—oe( )

therefore, with d. :H_o“—;“(l) from Proposition 2.1.26 we have

8cdc - - 1—+ 06;0(1) .
C

As a result of subsection 2.3.5, at fixed ¢,

o[ Re(aVTW.( Qo)) ja—a. £ 0

B(déi,ds" ) UB(—déi,d=")
for ¢ small enough. By the implicit function theorem, taking some 0 < ¢, < cg(0), we can construct
a C' branch ¢+ d. in a vicinity of c,. We define C as the set of ¢, > c@ = 0 such that there exists
a C*! branch ¢ — d,. on |cg, ci[. We have just shown that C is not empty. Let us suppose that
cg:=inf C #0. Then, ¢~ d, is uniformly bounded on ]cg, c.| in C* by subsection 2.3.6, and can
therefore be extended by continuity to cg, and we denote dg its value there. We can construct
the perturbation ®._ 4, by continuity since ¢, d — ®. 4 are C' functions in the Banach space
{® € CY(R?% C), || ®]|+,0,d4s < +00} for its canonical norm (which is equivalent to ||.+,,q for any
d€ldg,d.,]). By passing to the limit, we have ||®., 4 «,0,d5 < KO(J,J’)C%;”, for Ko(o,0") defined
in Proposition 2.1.21. By continuity of A, we check that we have A(cg,dg) =0 (for the perturbation
@y 45). Therefore, by the implicit function theorem, there exists a unique branch ¢ — d. in a
vicinity of (¢, dg) such that A(c,d.) =0. This branch, by uniqueness, corresponds to the branch
we had on |cg, 4], and is also C* by the implicit function theorem. Therefore inf C < cg), which is
in contradiction with cg =inf C, and thus inf C=0.

In particular, the travelling wave (. on this branch is uniquely defined by this construction
and is a C! function of c. Indeed, we shall now show that there is only one choice of d. such that
A(e,de)=01in ]2%,%[ If there exist di #ds in }2%, %[ such that A(c,d1) = A(¢,d2) =0, by Subsection
2.3.5, we have

6d(>\(c, d)) ld=d; < 0 and 8d(/\(c, d)) ld=dy < 0,

therefore, there exists d’ such that A(c,d’) =0 and 94(A(c,d’)) a=q’ =0, but then, since A(¢,d’) =0,

we have 04(\(¢,d))|a=a’ <0, which is in contradiction with 04(A(c,d’))|q=a’> 0. Now that we have
: . ; 912 . X

uniqueness in the choice of d. (in ]2—0, Z[)’ we have uniqueness of @, 4 in the set

[BECHR,©), 8]0 0, < Koo, 0")cA '}
for Ko(o,0’) > 0 defined in Proposition 2.1.21.

2.3.7 Proof of the estimate on 9.Q.
We conclude the proof of Theorem 1.3.1 with the following lemma.

Lemma 2.3.6. For any 0<o <1, there exist co(c) >0 such that for any c<co(o),
9.Qc <1+ocﬁo(1) )advm_dc _ ( 1 )
+ = 0c—0 BoRE
V *,0,dc ¢

c2 14
With this estimate and by using the same computations as in the proof of Lemma 2.2.6, we

show that
i)
= O0c—o0( —3 |-
» c

00+ (122 Yo, Vi~ a4+ i) -,
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for all 400> p>2 if ¢ is small enough, which ends the proof of Theorem 1.3.1.

Proof. From subsection 2.3.5, we know that Q. is a C'* function of ¢. We have Q.=V +T. 4., hence

-1 c—o(1
acC2c = ac‘/ + ac(rc,dc) = ++O()

ad‘/ + aC(FC,dC) )

where we used 0.V = (fc—ler OCHO(C—IZ) )adv thanks to subsection 2.3.6. I'. 4. depends on c directly
and through d.. We will write 0. 4, for the derivatives with respect to ¢ but at a fixed d,, and

Odl'c 4. for the derivate with respect to d. but at fixed c. In particular,
8C(Fc,dc) == 8crc,dc + 8cdc adrc,dg
From Lemma 2.2.9 and (2.3.26), we showed that

i

and from Lemma 2.2.3 with the definition of I'; 4, we show easily that

Finally, from subsection 2.3.6, we have 5‘Cd5:1+02—;°(1), therefore

1%
since 0 <o <o’ <1.

ach,dc

v <K(o,0")c7,

#*,0,dc

Oal'c.q.

% <K(o,0")c 7"

*,0,dc

#,0,de

This concludes the proof of Lemma 2.3.6, which itself concludes the proof of Theorem 1.3.1.

<K<a,o'><c“’+c2<1+oﬁo<1>)c1”’>OCHf’(%)

O



Chapter 3
Coercivity and applications

This chapter is devoted to the proofs of the results in section 1.4. Section 3.1 is devoted to the
proof of Proposition 1.4.1. We start by giving some estimates on the branch of travelling waves in
subsection 3.1.1, we then show the equivalents when ¢— 0 for the energy and momentum, as well
as the relations between them and some specific values of the quadratic form in subsection 3.1.2.
Finally, in subsection 3.1.3, we study the travelling wave near its zeros.

In section 3.2, we infer some properties of the space Hg, . First, we explain why we can not
have a coercivity result in the energy norm in subsection 3.2.1, and we show the well posedness of
several quantities in subsections 3.2.2 and 3.2.3. A density argument is given in subsection 3.2.4,
that will be needed for the proof of Proposition 1.4.3.

Section 3.3 is devoted to the proofs of Propositions 1.4.2 and 1.4.3. We start by writing the
quadratic form for test functions in a particular form (subsection 3.3.1), and we then show Propos-
ition 1.4.2 and 1.4.3 respectively in subsections 3.3.2 and 3.3.4. To show Proposition 1.4.3, we use
Proposition 1.4.2 and the fact that we know well the travelling wave near its zeros from subsection
3.1.3.

The next part, section 3.4, is devoted to the proof of Theorem 1.4.4 and its corollaries. We
show the coercivity under four orthogonality conditions by showing that we can modify the initial
function by a small amount to have the four orthogonality conditions of Proposition 1.4.3, and that
the error commited is small in the coercivity norm. We then focus on the corollaries of Theorem
1.4.4 in subsection 3.4.5. We show there composition of the kernel of Lg, (Corollary 1.4.5), and
the results in H'(IR?): Corollary 1.4.6, Proposition 1.4.7 and Corollary 1.4.9.

The penultimate section (3.5) is devoted to the proofs of Proposition 1.4.10, 1.4.11 and Theorem
1.4.12. In subsection 3.5.1, we study the space H, Eip, in particular we give a density argument, that
allows us to finish the proof of Proposition 1.4.10. Then, in subsection 3.5.2, we compute how the
additional orthogonality condition improves the coercivity norm, both in the symmetric and non
symmetric case, and we can then show Proposition 1.4.11 and Theorem 1.4.12.

Section 3.6 is devoted to the proof of Theorem 1.4.13. We use here classical methods for
the proof of local uniqueness, by modulating on the five parameters of the family, and using a
coercivity result. One of the main point is to write the problem additively near the zeros of Q. and
multiplicatively far from them. The reason for that is that we do not know the link between the
speed and the position of the zeros of a travelling wave in general, and we therefore cannot write a
perturbation multiplicatively in the whole space. Because of that, we require here an orthogonality
on the phase, and we cannot avoid it, as we did for instance the proof of Proposition 1.4.3 by
choosing correctly the position of the vortices.

We will use many cutoffs in the proofs. As a rule of thumb, a function written as 7, x or Y
will be smooth and have value 1 at infinity and 0 in some compact domain. The function 7 itself
is reserved for Bg, and BGP (see equations (1.4.3) and (1.4.4)).

3.1 Properties of the branch of travelling waves

This section is devoted to the proof of Proposition 1.4.1. In subsection 3.1.1, we recall some
estimates on Q. defined in Theorem 1.3.1 from previous works ([7], [19], [25] and Chapter 2). In
subsection 3.1.2, we compute some equalities and equivalents when ¢— 0 on the energy, momentum
and the four particular directions (9, Q, 0z,Qc, 0.Q. and 9,1Q.). Finally, the properties of the
zeros of Q. are studied in subsection 3.1.3.

147
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3.1.1 Decay estimates

3.1.1.1 Estimates on vortices
We recall that vortices are stationary solutions of (GP) of degrees n € Z* (see [7]):
Va(x) = pu(r)ei?,

where 2 =re", solving

{ —(Va? =1V, =0

Vi |—>1as|ac|—>oo
We regroup here estimates on quantities involving vortices. We also define, as in Chapter 2

V() =Vi(. = dee)Voi(. + deé?)
and
04V () =04(Vi(. —deéV)V_1(. +dé1)) da=d,-
We will also estimate
3V :=05(Vi(. —den)V_1(. + dé1)) | a=a..

The function V (z) =Vi(z — dc€1)V_1(z + dc€1) is close to Vi(z — dc€1) in B(d€1, 2d}/2), since, from
Lemma 1.2.1 and [7], we have, uniformly in B(dcel, Qdi 2),

V,l(.erCe"'l):lJrOcﬂo(cl/Q) (3.1.1)
and

N 05%0(61/2)
VV_1(.+deel)| < ————=
| 1( + 61)| (1 +7"1)

We recall that B(dcé'l, Qdiﬂ) is near the vortex of degree +1 of Q. and that 7 =min (r1,r_1), with
r+1= v Fdeeql.

3.1.1.2 Estimates on Q. from Chapter 2

We recall, for the function Q. defined in Theorem 1.3.1, that

V(z1,22) ER?, Qu(1, 22) = Qc(z1, —22) = Qo(—71, T2). (3.1.3)

In particular, 0.Q. enjoys the same symmetries, since (3.1.3) holds for any ¢ >0 small enough. We
recall that Q.€ C*(R?, C) by standard elliptic regularity arguments.

Finally, we recall some estimates on Q. and its derivatives, coming from Lemma 2.2.8 and
equations (2.2.10), (2.2.12). We denote 7 =min (ry,7_1), the minimum of the distances to d.é; and
—d.21, and we recall that V(xz) =Vi(x — d.e1)V_1(z + d.€1).

We write Q.=V +T.or Q.= (1—n)VVU,.+nVe¥e, where T'.= (1 —n)VU.+nV (e¥Yc—1) (see
equation (2.2.8)). There exists K >0 and, for any 0 <o < 1, there exists K (o) > 0 such that

(3.1.2)

ITe| < % (3.1.4)
[VT.| < 1+ Kl Z:) (3.1.5)
[1-1Qdl| < St (3.1.6)
Qe Vlélﬁi)i):, (3.1.7)
Qi - Vi < AT, (3.18)
Re(VQ.Q0)| < % (3.1.9)
|Tm(VQ.Qc K (3.1.10)
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and for 0 <o <o’ <1, there exists K(o,0’) >0 such that

K(o,0")c' =7

(DI ()| -+ [VRe(e)| + [V2e(0)| < 2o

(3.1.11)

From Lemmas 1.2.1, with Theorem 1.3.1, we deduce in particular that for ¢ small enough, there
exist universal constants K1, K2 > 0 such that on R?\ B(4d.€1,1) we have

K1 <|Qe| < K. (3.1.12)

To these estimates, we add two additional lemmas. We write

[¥llo,a. == IVellergr<an + 17 TRe(W) | Loz 2 + 172FVR(Y) || Lo (> 2)
+ 1F7Im(P) Loz + 17 FVIM(P) | oo 522,

where 7 =min (r1,7_1), with
re1= |z Fdeil, (3.1.13)
and with d. defined in Theorem 1.3.1. The first lemma is about . and the second one about 0.Q)..

Lemma 3.1.1. For any 0 <o <1, there exist co(0), K (o) >0 such that, for 0<c<co(o) and Q.
defined in Theorem 1.3.1, if

Fc = QC - Va
then

Proof. This estimate is a consequence of
Fe=(1—-n)VU,.+nV (e¥c—1)
and equation (2.2.14). O

Lemma 3.1.2. (Lemma 2.3.6) There exists 1> 9> 0 such that, for all 0< o < fg<o’'<1,There
exists co(o, 0’) >0 such that for any 0 < c < co(o,0’), Q. defined in Theorem 1.3.1, c+— Q. is a
C! function from ]0,co(o,0’)] to C1(R2,C), and
— Oo”o'l —Clia’/
g',dc_ c—0 C2 .

' 0cQec + <1 +0co(c! ™) )3dV| d=d,

v c? v
These results are technical, but quite precise. They give both a decay in position and the

size in ¢ of the error term. The statement of Lemma 2.3.6 has o._0(1) and OCHO(C—IQ) instead of
1—o’

respectively oc_>0(c1"’/) and ocﬁo(cT), but its proof gives this better estimate (given that o’ is

close enough to 1). We recall that ogf(;(l) is a quantity going to 0 when c¢— 0 at fixed o,0’. We
recall that 9.VQ.=V9.Q.. We conclude this subsection with a link between the ||.||, norms and

| Iz, We recall
lolfire, = [ 761+ 11~ |Qulllof +Re2(Qa).

Lemma 3.1.3. There exists a universal constant K >0 (independent of ¢) such that, for Q. defined
i Theorem 1.3.1,
h

|h||HQC<KHV

3/4,d.

The value 0 =3/4 is arbitrary here, this estimate holds for other values of o.

“(v)

Proof. We compute, using Lemma 1.2.1, that

2 2 2
/ |Vh|2<KHﬁ +/ v(ﬁx/) Ll
R? Visjaa, Josnl \V

2_
VP

2

h
< —
\KHV

2
12 /
3/4,d, 7>1)
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From Lemma 1.2.1 and the definition of ||.|[3/4,4,, we check that

h 2 1 h
7)) [y
1) 4 3/a,d.) =1 (1+7)3H1/2 Vv

Furthermore, from equation (3.1.6) with o0 =1/2, we have the estimate

a2 1 h
1—Qc2h2<KH—' /—gKH_
AJ s e O el

Finally, we compute

1R ?

2
+[VV] WES

SK|ly

’ h

3/4,d.

2

3/4,d,

Re(Toh) < KHE

Re*(Qch),
3/4,d. JIF=1

Re*(Qch) :/ 9‘{22<V@ﬁ ) < 2/ SR@(E )SReQ(V@ + 3m2<ﬁ >3m2(V@).
w21 tr=1 4 F21) Vv %

With the definition of ||.|[3/4,4,, Lemmas 1.2.1 and 3.1.1, we check that

h h 1 h
me2<_ )9%2 VOO <K me2<_> KH / —<KH—
/{f21) 4 Qo) [F21) 4 s/aatisn(1+7)3F12 T ||V

From Lemma 3.1.1 with 0 =1/2, we check that, since Im?(VQ.) = Im?(VV +T,) = Im?(VT,.), we

ha\/e
{r=1}

Combining, these estimates, we end the proof of this lemma. O

R2

2

3/4,d,

h 2

|4

1
<K
Vs 4,4, {r>1}(1+7")2+1/2 H

3/4,d,

3.1.1.3 Faraway estimates on Q.
Since F(Q.) < oo thanks to Theorem 1.3.1, from Theorem 7 of [19], we have the following result.

Theorem 3.1.4. ([19], Theorem 7) There exists a constant C(c) > 0 (depending on c) such
that, for Q. defined in Theorem 1.3.1,

|1_|Qc| |\ (1_£,r))

|1_QC|\15_Z

()
(1+7)?

Q

IVQ.| <
and
C(e)
\Y% <.
| |QC||\ (1+T’)3
Furthermore, such estimates hold for any travelling waves with finite energy (but then the constant
C(c) also depends on the travelling wave, and not only on its speed,).

This result is crucial to show that some terms are well defined, since it gives better decay
estimates in position than the estimates in subsection 3.1.1.2 (but with no smallness in ¢). Remark
that 1 — |Q.|? is not necessarily positive. In fact it is not at infinity (see [21]). In particular, the
estimate

c(e)
1= 101> %,

does not hold because of the possibility of |Q.|=1. This happens, but only for few directions and
it can be catched up. We show the following sufficient result, which is needed to show that some
quantities we will use are well defined. Furthermore, in these estimates, the constant depends on ¢,
and thus can not be used in error estimates (since the smallness of the errors there will depend on ¢).
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Lemma 3.1.5. There exists co > 0 such that, for 0 < ¢ < cq, there exists C(c) > 0 such that for
p € Hg, and the function Q. defined in Theorem 1.3.1,

|p]?
| ae<c [ ver+n-iaeior)

Proof. From Propositions 5 and 7 of [21] (where n=1—|Q.|?), we have in our case, for z =70 € R?
with r e RY, |o| =1, 0 = (01,02) € R?, that

P21 | Qef?)(r0) — cale) | ——s—er - 2

c2 c?oj c? 203 \2
=5+ (1*7+ 2 )

uniformly in o € S* when r — +o00, where a(c) >0 depends on ¢ and Q.. Remark that our travelling
wave is axisymmetric around axis z2 (and not x; for which the results of [21] are given), hence the
swap between o and o9 between the two papers. We have
c? c2 2
1 203 71—7—(2—?)02

c 203 2 | 202\2 2 202\2
=5+ (1*7+ 2 ) (1*7+ 2 )

this shows in particular that |Q.| =1 when r >>% is possible only in cones around sin(f) = g9 =
2
+4 /;:—22;;. Therefore, for ¢ small enough, for some >0 small and R >0 large (that may depend

on c¢), we have

2
/ |1*|QCIQII¢IQ>K(C,5,R)/ ]
R2 R

2\(B(0, RUD(v)) (L +7)?’
. /1—c2/2
Sln(@) j: ;_—02;2

|2 (/ > / o )
<C(c,v,R Vol|o+ .
/D('y)u(]RQ\B(O,R)) (1+7)2 ( ) ]R2| | R2\(B(0, R)UD(7)) (1 +7)?

1—c?/2
2—c2/2
function of the angle only. We compute, for 0 € [0y — 25, 6y + 2] (8 > 0 being a small constant
depending on v such that {x =re® € R% 0 € [0y + 383, 6o + B} N D() =0, and such that D(~) is
included in the union of the [#y— 3, 6o+ §] for the four possible values of 6y),

where D(v) = {rew eR?

< 7}. We want to show that for ¢ € Hg_,

For 6 any of the four angles such that sin(6) £ =0, we fix r >0 and look at ¢(f) as a

23+6
o(0) = p(26+0) A Do (©)d0,

hence,
0o+3

B8
10(0)| <|0(28+ )| + / 1000(©)|dO.

00—

This implies that )
|w(9)l2<2|w(2ﬁ+9)|2+K/ 00(©)[20
0

by Cauchy-Schwarz, and, integrating between 0y — 3 and 6y + 0 yields

0o+ 6o+33 27
/ o(0)2d0 <2 / |0(60)[2d6 + K / 100i0(6) 2.
60— 6o+ 0

Now multiplying by (1+—TT)2 and integrating in r on [R, 4o0c[, we infer

2 2
/ / el aran < 2/ / 27 ardo
0—60c[—8,8)reR,+ool (1 +T) 0—00c(8,38))reR, 400 (1 +7)

© K(c. 8 R) / Vo|2de
RZ

lp|*da

< 2 -+ K C,B,R/ Vol|’dz,
[RZ\(B(O,R)UD(W))(1+|:E|)2 ( ) ]R2| |
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using

000 _ 1000 _
(1+7)? S r2 <IVel.
Therefore,

s / el 2
/D(V)U(RQ\B(O,R)) (1+7)2 R2\(B(0. RyuD(y)) (L +7)2 R?

and thus

lp]? / , -
<K 656775R VQD + 1 — QC w]%
[R?\B(O,R)(Ur?")? ( ) RJ I+ 1= [Qcl] |

We are left with the proof of

lol? (/ 2 / lp]? )
19" <K 8. R Vol + . 3.1.14
~/B(O,R)(1 +7)? ( ) R2| 7| r2\B(0,r) (1 +7)? ( )

We argue by contradiction. We suppose that there exists a sequence ¢, € Hg, such that

fB(O R) (li”l)z =1 and fR2|V<pn + fRQ\B(O R) ATL)Q — 0. Since ¢, is bounded in H!(B(0,

R + 1)), by Rellich’s Theorem, up to a subsequence, we have the convergences ¢,, — ¢ strongly

in L? and weakly in H! to some function ¢ in B(0, R + 1). In particular fB(o R+1)|V‘P|2 =
0, hence ¢ is constant on B(0, R + 1), and with fB (0.R+1\B(O, R)(l‘i—‘j)Q = 0 we have ¢ =

Jon? ol?
fB(O RTI? fB(O R) (1::)2 by L?(B(0, R + 1)) strong

convergence. This concludes the proof of this lemma. O

0, which is in contradiction with 1 =

3.1.2 Construction and properties of the four particular directions

3.1.2.1 Definitions

The four directions we want to study here are 0,,Qc, 02,Q¢, 0.Q. and 0,.Q.. The first two are
derivatives of ). with respect to the position, the third one is the derivative of Q. with respect
of the speed, and we have its first order term in Theorem 1.3.1. The fourth direction is defined in
Lemma 3.1.6 below. The directions 0, Q. and 0,,Q. correspond to the translations of the travelling
wave, 0.Q. and 0.1.Q. to changes respectively in the modulus and direction of its speed. These
directions will also appear in the orthogonality conditions for some of the coercivity results.

Lemma 3.1.6. Take ¢ € R? such that |¢| <co for co defined in Theorem 1.5.1. Define a such that
¢=|¢|Ro(—€2), where Ry:R%2—R? is the rotation of angle 6. Then, Qz:= Qzjo R_q solves

(TWz)(v)=iéVv—Av—(1—|v[})v=0
|v] = las|z| — +oo,

where Qz| is the solution of (TWz|) in Theorem 1.3.1. In particular, Qz is a C' function of o and
0aQz(x) = —R_a(acl).VQ‘a(R_a(ac)).

Furthermore, at « =0, the quantity
9e1Qc = (0aQz)|a=0
satisfies
Do Qel) =~V Qula),
is in C*°(R2, C) and
LQ.(0c1Qc) = —ic0, Qe

Proof. Since the Laplacian operator is invariant by rotation, it is easy to check that Qg0 R_q
solves (TWz)(Q|zj© R—q) =0. The function 6 — Ry is C*, hence (a, z) — Qz(z) is a C' function,
and we compute

(0aQ2) () = 0a(Qpz| © B—a) (%) = Oa(R—a(2))-V Qjg|(R—a())-
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We remark that

where z1 = (

—9,21), hence
0aQz(z) = —R_o(21).VQz|(R—a(2)).
In particular, for =0,
0aQz(T) ja=0= -1V Q.(T).
We recall that Qz solves

i€VQz—AQz— (1—|Qz*)Qz=0,
and when we differentiate this equation with respect to o (with |é| =¢), we have
—10,6.(VQz) + L.(0.Qz) = 0.
At =0, Qz=Q., 0,¢=—c€ and 0,Qz|a=0= 0.LQ., therefore
L0.(0::Qc) = —icDy, Q.. 0
3.1.2.2 Estimates on the four directions

We shall now show that the functions 0z, Q¢, 02,Q¢; 0.Qc and 9.1, are in the energy space and
we will also compute their values through the linearized operator around @Q., namely

Lo () ==A¢—icOpe—(1—[Qc]?)¢+2Re(Qep) Q-

Lemma 3.1.7. There exists co> 0 such that, for 0<c<cgy, Q. defined in Theorem 1.5.1, we have
alec; a.’EQQCa 8cha 8cch € HQca

and
LQc(aﬂClQC) = LQc(aIQQC) = Oa

LQc(aCQC) = Z‘ainca
LQc(acch) = —1¢0z,Qc-

We could check that we also have d,,Q., 0.,Q. € H'(IR?) (see [21]), but we expect that 9.Q.,
9.1Q. ¢ L*(R?). For 9,.Q,, this can be shown with Lemma 3.1.6 and [21].

Proof. We have defined
llfg,= [ [Vl -+ 1= 1QuPllol? +Re2(Qep).

For any of the four functions, since they are in C°°(IR%, C), the only possible problem for the
integrability is at infinity.

Step 1. We have 0,,Q¢, 02,Q.€ Hg,.

From Lemma 1.2.1 and equation (3.1.11) (for 1 > ¢’ >0 =3/4), we have
K(c,o)
Vo, 62+/ V0, C?g/ =57 <40
Jvonaurs [ oo [ s,
From Theorem 3.1.4, we have

K(c)
2 (1 + T’)4

/ 1 1QPIVQe? + RV QL) < / < oo,
R?2 R
hence 0,,Qc, 0,,Q. € Hq.,.

Step 2. We have 0.Q. € Hg..
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From Lemmas 3.1.2 and 3.1.3, we have that for ¢ >0 small enough

1+ 02_(c”
ach + CC—QO()ad‘/\ d=d, € HQC)

therefore we just have to check that d4V|4=4, € Hg,, which is a direct consequence of Lemma 2.1.6.
Step 3. We have 0..Q.€ Hqg,.

From Lemma 3.1.6, we have 0,. Q.= —2+.V Q.. With Theorem 3.1.4, Lemma 1.2.1 and equation
(3.1.11), we check that

[0+ 10 =@l 10 Quf? < +oc.

Now, from Lemma 1.2.1 and equation (3.1.6) (with 0 =1/2), we have

. 1
[ %000 <K A (1 +r)RAVQF) <K(0) A T

thus 0..Q.€ Hg,.
Step 4. Computation of the linearized operator on 0y, Qc, 02,Q¢, 0cQc, Opt Q.

For the values in the linearized operator, since

—1005,Qc = AQe — (1= [Qc*) Qe = (TW,)(Qc) =0,
by differentiating it with respect to 1 and x2, we have
LQ.(02,Qc) = Lq.(02,Qc) =0
By differentiating it with respect to ¢, we have (we recall that 9.Q. € C*(R?, C))

—103,Qc+ Lo (0:.Q.) =0.
Finally, the quantity Lg,(0.0Q.) is given by Lemma 3.1.6. |

The next two lemmas are additional estimates on the four directions that will be useful later
on. They estimate in particular the dependence on ¢ of ||.||¢ on these four directions.

Lemma 3.1.8. There exists K >0 a universal constant, independent of ¢, such that, for Q. defined
in Theorem 1.5.1,

Haa:ch”C + Haa:ch”C + ||628chHC < K.
Furthermore, for any 1> (3>0,
lede+ Qelle = 02_o(c ).

Proof. We defined, for o = Q) € Hg,,
liollz= [ V0 PIQ +Re(w)| el
We recall that, since ¢ = Q1,
/ IWJIQIQCI“:/ IVsafVch|2|Qc|2<K/ IVol2Qc 2+ [VQe |2 02 (3.1.15)
R2 R2 R2
Step 1. We have ||0,,Qc|lc + |02, Qcllc < K.
From Lemmas 1.2.1 and 3.1.1 and equations (3.1.9) to (3.1.11), we have that, for 7 =min (71,

T—l)a
K

IVQel < and  |V2Q.| <

K
(1+7)
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Therefore,

[ 900QPIQ. + IV (0,00 PIQP < K.

and we also have

/ IVQIVQ[P <K,
2
thus, with equation (3.1.15), &

[T (22 e+ [ [o( %2 )<k

By equation (3.1.9) (for c=1/4), we have

/%e(vQc>|Qc|4<K/ ReA(VQ.O) <K [ —L <K,
]RZ

r2(1+7)%/2
We conclude that ||05,Qc|lc + |0z, Qcllc < K.

Step 2. We have [|c?0.Q.|lc < K.

From Lemma 3.1.2, we have, writing ¢?0.Q. = (1 + 0c—0(1))

0c—0(1). In particular if we show that ||04V|a=a.||c < K and ||h|lc < K, then ||c?0.Q.|lc < K. From
Lemma 2.1.6, we check directly that

A4V,
/|V3dV|d— L+ %+%92(V3d‘4d—dc)<ff

In particular, with (3.1.15), it implies that

/ v(ade de )’ |Qc|4<K
R2

o4V -
[ e ( iz, )IQCI4<K/ R(VOaV i) + |V — Qel20aVia—a P < K
R2 c R2

with the same arguments and equation (3.1.7). Similarly,

/‘ 5'de de

therefore ||0qV]4=d.|lc < K. We now have to estimate ||h||c. The computations are similar, since
we check easily that

and we estimate

|Qc|4 < 2/ IVOaV 4=a,?|Qc|* + |V QcOaV a=a,|* < K,
RQ

[ wnpsivar |h|2<KH

3/4,d,
and /

ReA(Quh) <K [ ReA(VR)+|V Q||h|2<KH
]RZ

R2

Step 3. We have [|cd,.Qcllc =0 o(c™P).

3/4,d,

By definition, ¢d,.Q. = —cz+.VQ.(z), and we check by triangular inequality that c|zt| <
K(1+7) since 7 =min (|z — d.€1], |z + dci]) and ¢d.— 1. Therefore,

[ eosp<e | vars [ (CIxLI)QIVQQcFSK(H / |V2Qc|2<1+f>2).
RZ RQ RQ RZ

We have |V2Q.|<|V?V |+ |V?T.|, and with equation (3.1.11), we check that fR2|V2FC|2(1 +7)?<
K. With computations similar to the ones of Lemmas 2.1.3 and 1.2.1, we can show that

K K
2 < 2 <
|V V|\(1_|_7:)2 and |V V|\c(1+f)3’
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therefore, for any 1> (>0,
Kc P

VIV <,
| < (1+7 )2+B

and thus, by (3.1.15),

I8

Furthermore, by equations (3.1.9) (for 0 =1/2) and (3.1.12), we have

v(ca&@c)\ IQC|4<K/ Veer Qel?|Qel* + 1V Qe [2lc0.1 Qc|* < K (B)e 2.

L
/ 9%8(%@(””))@6#@(/ (14 7)2Re( VchgK/ ——<K.
R?2 c
We conclude that [|cd,: Qclle =0 o(¢—7). O

3.1.2.3 Link with the energy and momentum and computations of equivalents
In this subsection, we compute the value of the four previous particular direction 0, Qc, 0z, Qc,

0:Qc, 0.1 Q. on the quadratic form. In particular, we shall show that one of them is negative.

Lemma 3.1.9. There exists co>0 such that for 0 <c<co, and for Q. defined in Theorem 1.5.1,
for Ae {6961@0, 01,Qec, 0.Q., OCLQC} , Re(Lg.(A)A) € LY(R?) and

(LQ.(02,Qc), 02,Qc) = (L (02,Qc), 02,Qc) =
(Lo.(0:Qc); 0:Qc) = =27+ 0c—o(1)

C2
<LQc(aC*QC)7 ac*Qc> =27+ Oc_>0(1).

Y

Proof. For Ae {alec, O0z,Q¢c, 0cQc, GCLQC}, we recall from Lemma 3.1.7 that A€ Hg_. To show
that Re(Lg,(A)A) € L(R?), we need to show that

—Re(AAA) —Re(icO,AA) — (1 —|Q.|?)|A|? +2Re2(Q.A) € LY (IR?).
For that, we check that, for some o >1/2,

(L +7)7All poora) + |(1+7) (| VA] + [Re(A)]) || Lo (2)
+ 11+ 7)?TIm(AA) | Lo me) + [[(1+ 7)1 Re(AA) | L (re)
< +o0. (3.1.16)

For 0,,Q. and 0,,Q., this follows from Theorem 3.1.4, and, since L (0r, ,Qc) =0, from

A(aﬂcl,ch) = *icaiza:l,ch —(1- |QC|2>8I1,2QC + 2%9(@‘%1,2@6)@67

which allows to estimate A(0, ,Qc) with Theorem 3.1.4, Lemma 1.2.1 and equation (3.1.11) for
any o>1/2.

Now, for 0.Q., the estimates not on its Laplacian are a consequence of Lemma 3.1.2, Theorem
3.1.4 and Lemma 2.1.6. Then, from Lemma 3.1.7, we have L (0:Q.) =103,Q., thus

A(acQC) = _iaaerc - ic@xzach - (1 - |Qc|2)ach + 29{6(@66@0) Qc-
By Theorem 3.1.4 and Lemma 3.1.2; we have, for any o >1/2,

K(c,0)

(1= 1Qel*)0cQel +12Re(Qe0:Qe) Qel < 7 Ty

K(c,o0)

< _2\&Y)
|02,Qc| +10:,0.Qc| < L+ 7)o

and
K(c,o0)

|Re(02,Qc)| + [Re(02,0.Qc)| < Wa
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which is enough to show the estimates for 9.Q)..
Finally, from Lemma 3.1.6 we recall that

0e1 Qo= -2V Q. ()
and

Lo (0:.1Qc) =—1c0z, Qe.

Similarly, the estimates not on its Laplacian follow from Theorem 3.1.4, Lemmas 1.2.1 and 3.1.1
and equation (3.1.11). We also have

A(acLQc) = icalec - icamgacLQc - (1 - |Qc|2)acLQc + Q%Q(EacLQc) Qca

and with the same previous estimates, we conclude that 0..Q). satisfies the required estimates.
With the definition |||, , we check that the last two terms are in L'(IR?), and for the first two,

the integrands are in L!(R% R) by estimates in subsections 3.1.1.1 and (3.1.16).

Step 1. We have (L (04, Qc), 05, Qc) = (L0 (02,Qc), 02,Qc) = 0.
From Lemma 3.1.7, we have Lg_(05,Q¢) = L, (02,Q.) =0, hence
<LQC(8I1QC), ax1Q6> = <LQC(8I2QC), ax2QC> =0.

Step 2. We have (L (0.Q¢), 0:.Qc) = —27 +0c—0(1)

c2

From Lemma 3.1.7, we have

LQc(ach) = iaﬂcz Qca

therefore
<LQc(aCQC)? ach> = <ia$2QCa ach>- (3.1.17)
From Lemma 3.1.2, we can write 0.Q. = —(HOZ—;U(D)Ode:dC + h with H% = Oc—>0(c_12)-
Similarly, from Lemma 3.1.1, we write Q.=V +T'. with ‘ F—VC =0.-0(1), and we compute
. 14+ 0c—0(1 .
<LQC(8CQC)’ ach> = <Zazzv; (OTO())ad‘/I d—dc> + <Zazzvﬂ h>
. 1 —o(1 .
+ <zazzrc,—<%0()>advd_dc>+<zax2rc,h>. (3.1.18)

By symmetry in x; of V', we compute
(102,V 04V d=d.) = —2(i02,V1V_1, 0, VAV_1) + 2(i05,V1V_1, 0, V_1V1).
In equation (2.1.43), we computed
(102, V1V_1, 05, VIV_1) = = 4+ 0c—0(1).
Furthermore,

|<i8z2V1V1,6‘I1V1V1)|‘ / Re(i0,, ViV ToV IV 1)| <
]RZ

9%(83;2‘/1\71 )Jm(ale_lV_l)

+ '/ 3m(ax2‘/1‘71 )%e(@le_ﬂ/_l)
R2

‘]R2

From Lemma 1.2.1, we have the estimates

N K — K
< _ <—
! |Re(0.,V_1V_1)| < e and  |Re(d,V1V1)| < FETNEL
as well as
I K —_— K
~ < < .
1Im (0, Vo1 Vo1)| < T and |Im(0,,V1V1)| < TTr
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We deduce, in the right half-plane, where r_1 > d,, that |Jm(VV_1V_1)| =0._0(1) and thus

1
gOCH 1 =3 — Oc—s 1 .
o) [ = el

and

/ Re(D,,ViV2 ) Im(ToV 1V 1)
{120}

1 K
<
147, S147r_;

In the left half-plane, we have =0.—0(1), therefore

1
1+7

1
< Oc—s 1 -5 — O¢—s 1 .
0( )/{31<0}(1+T1)3 0( )

/ Re(Du,ViV1 )Im(@o VTV 1)
{r1<0}

We therefore have

%e(@szlVl )Jm(axlv_lV_l)
R2

= Oc—>0(1)a

and by similar estimates,

' / I (0, ViV1 Y Re (@ VTV 1)
RZ

= Oc_,o(l).
We can thus conclude that (i0,,V1V_1,0.,V_1V1) = 0.—0(1). Therefore,

14 0c—o(1 . —27 1
<TO())<28I2V)_adVd—dC>:7—"0(?). (3119)

Now, we estimate

[(102,V,h)| = %e(i@szh)'

‘]R2

Oc_,o(l) +

N

%e(i@xQVh)‘

{F=1

=( h
Re i0,,W|( —
/{@1} ( <V)>‘

because ||h||r==0.0(1) and |8,,V| is bounded near d. by a universal constant. Furthermore,

/ %e<i8z2W<‘—h/>> / %e(az2W)3m<%)'+ / Jm(azQW)iRe<%)‘.
r=1} r=1} (r=1}

From Lemmas 1.2.1 and 3.1.2 (taking o =1/2), we have

N

Oc_,o(l) +

<

v h h 1 1
Re(d ijm(—)'gKH_ / o (_)
/{?21} (9=2VV) 1% Vv 1/2,d, {521}(1_‘_;)3“/2 =0\ 2
an
> h h 1 1
Im(0,,VW)Re| — || < K||— / —:Oﬁ<_>’
/{F>1} (0= V) (V)‘ HV oa sy (L47)2H2 0 0° o0\ 2
therefore

. 1
(19,7 1] =ocof 5 ) (31.20)

Now, by Lemmas 1.2.1 and 3.1.1 (taking 0 =1/2), we have

1+oﬁ0(1)) _ K / 1 <1)
2O N(i0p, Ly 0aVd—a.)| < = S — | = 3.1.21
( (i 0, aV)da=a.)| P 12w (1 7)2HL2 0\ =2 ( )

2
Finally, by Lemmas 3.1.1 and 3.1.2, we check easily that

I'e

%

r h 1 1
10,00, b)Y < K || =2 2 o[ =) 3.1.22
0, i H VilgjaallV 1/2,ch2(1+f)2+1/4 0<C2) ( )
Combining (3.1.19) to (3.1.22) in (3.1.18), we conclude that

727{_ + OC—>0(]~)
c? ’

<LQc(ach) y ach> =
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Step 3. We have (Lg (0, Q¢), 01 Qc) =21 + 0c—0o(1).

From Lemma 3.1.7, we have L, (0.1Q.) = —ic0z, Q. and from Lemma 3.1.6, we have 0,.Q.=
—21t.VQ,. Therefore,

<LQC(8C’LQC)7 acch> = C<ia$1QCa xl-vQc>-

We have
(10 Qe =220,,Q0) == | Me(i2]00,Qc) =0,
R2
hence
(L (0::Q¢), 0:1Q¢) = c(i0z,Qc, £105,Qc)- (3.1.23)
From Lemma 3.1.1, we write Q.= V + I'. with ’ F—‘; ., < K(o)ct = for any 0 < o < 1, and we

compute
(i@lec, .Z‘laszC> = (i@le, x18$2V> + <Z 83;1\/, :c183;21}> + <Z 83;11}, 16183;2v> + <Z 83;11}, ZE183;2F0>.
We write x1 =d.+ y1, therefore

(104, V, 210,V ) =dc(10:,V, 00, V) + (104, V, Y10,V ).
We have

<i 83;1\/, 8x2V> = <Z OlelV_l, @thV_l) + <Z'axlv_1‘/1, axQV_1V1>
+ (10:,V1V_1,0,V_1 V1) + (10, V_1V1, 0:,VAV 1),

and, from the previous step and by symmetry, we have

(10, VAV_1,05,V1V_1) = (102, V_1V1, 02, V_1V1) =7 + 0.—0(1)
and
(102, VIV 1, 02, VA V)| + [(1 02, V_1V1, 02,VIV 1) | = 0c—0(1),
thus
(102,V, 0.,V ) =27 4+ 0c—0(1).

With Vi; centered around +d.€1, we write V =V;V_; and we compute
(102, V, 110:,V) = A2ﬁe(i913xlv1m|v_1|2 +iy102,V_10,,V_1|V4|?)
+ [R Re(i910, ViV 100V 1 + 13100,V V 1 VikVh).
By decomposition in polar coordinates, with the notation of (3.1.13) and Lemma 1.2.1, we compute

+oo 27
Re(iy104,V102,V1|V_1|?) :/ / [V_1|%p1(r1) pi(r1)cos(61) ry dridf;.
R2 0 0

By integration in polar coordinates, we check that
+oo 27
| [ mrsitcoston <o
0 0

Re (100, ViTo ViV 1 [2) = / (1= [V [2)Re(i200, ViTLITS).
R?2 R?2

hence

In particular, since, from Lemma 1.2.1, we have

_ K
(1+7r_1)2

K
! g—
|p1(7"1)| (1+7"1)3’

(1—-|Vo4?) <

and
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we can deduce that
/ Re(iy10,, ViBsVi|V-1]2) = 00o(1)
RZ
and, similarly,

29{6(2':(]183;1V_183;2V_1|‘/1|2) = OC_,0(1).
R

Therefore, we conclude that

27 + 0c—>0(1)

(100, V, 2102,V ) = (27 + 00 —0(1))de = ;

Now, we want to show that

) ) . 1
[(i02,V , 2105,Ue)| + [(005, D¢, 2102,V ) | + [(i 02, e, 2105,0c) | = 0c—>0<;),
which is enough to end the proof of this step.

By triangular inequality, we have |z1] g@, and with Lemmas 1.2.1 and 3.1.1 (for 6 =1/2),
we estimate

10,V 10,8 = | / 21 Re(0, W) I3 +| / 21900, W) Re( 0,17 )|
]R2 ]RZ

K (1+7) A2 (147 2
s 7(%&2(1#)3 W e (1+f)5/2>

1
= Oc~>0<z>~

Similarly, we check with the same computations that [(i0,,[¢, 210,V )| = OC_,o(%).
Finally, using Lemma 3.1.1 (for 0 =1/4), we estimate

) .0
|<28I1F5,x18mfc>|ch3/2||:E1HLoo({;<1))+K / i)%e(le —2
21 4

K .
We have |21 o(iz<1p) < - Moreover, we infer

o R / <83: I, )/~ <83: Fc)
Rel to1——=-—2C < z1||Re L Jm 2
/{@1) < VOV )‘ {F21}| il 4 4
< T

and, with Lemma 3.1.1 (for 0 =1/4), we have

C

. r r
/{)5“(8787) SE s = el
since (‘E_‘;) < K by triangular inequality. We conclude that
(102, e, 2102, c) = 0c—0(1),
which, together with the previous estimates, shows that
(LQ.(0:+Qc), 0crQc) = 27 + 0c—0(1). 0

These quantities are connected to the energy and momentum. This is shown in this next lemma.
Lemma 3.1.10. There exists co> 0 such that for 0<c<cq, Q. defined in Theorem 1.53.1, we have
Pl(QC) = acPl(QC) =0,

2T + 05%0(1)

1
P2(QC):EBQC(66LQC): c
and
727{_ + OC—)O(l)

c2

85P2(Qc) = BQc(ach) -
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Furthermore,

8CE(QC) == CacPQ(Qc)a

and

B(Q.) (2ﬂ+ocﬁ0(1))1n<%).
Proof. We have
PUQu) = 50,0 Qe = 1),
by the symmetries (3.1.3), 9,,Q. is odd in 7 and Q. — 1 is even. Therefore,
Pi(Qc) =0.P1(Qc) =0.
We have
PAQu) = 5(i0,Q0 Qe = 1),

and from Lemma 3.1.9 and (3.1.23), we have

2w + 0c~>0(1) = BQc(acLQc) = C<Z‘az1Qca xlangc>~

By integration by parts (which can be done thanks to Theorem 3.1.4, Lemma 1.2.1 and equation
(3.1.11)), we compute

<Z‘az1Qca xlazQQc> = 7<Z‘(Qc - 1)7 8z2Qc> - <Z(Qc - 1); :L'lamlngc>;

and
<Z(Qc - 1)7 xlamlszc> = *<Z‘am2Qc; $18I1Q5> = <iaz1Qca xlangc>-
Therefore,
1, 1 2 e—o(1
PoQ0) = 5100, Qes 102,Qe) = B, (0,Q0) = 2 e=0l),

We have P(Q.) :%fwiﬁe(i@ch(@f 1)), and we check that, with Lemmas 3.1.1 and 3.1.2 that

K

acaxQ c_c_1 + 83:2 cac_c g—a
005, Qe(Qe = 1)|+10::Qe0Qe| < 77

and is therefore dominated by an integrable function independent of ¢ € ]cy, ¢o given that ¢1,c2>0
are small enough. We deduce that c+— P(Q.) € C1(]0, co[, R) for some small ¢g > 0 and that, by
integration by parts,

QacPQ(Qc> = <iaxzach; Qc - 1> + <iaz2Qca 8ch> = 2<iar2Qca 8@QC>7
and, from Lemma 3.1.9 and equation (3.1.17), we have

—2m+ Ocﬂo(l)
C2

<iaz2Qca 8CQC> = BQc(ach) =

?

therefore

-2 c—o(1
9:Ps(Q.) :”0—020()_

We recall that
1 1
BQ) =5 [ VP [ (1-1Q
R?2 R?2
We check with Lemmas 3.1.1, 3.1.2 that

0.V Qu V0] + 10:1Qe ) (1~ |Qu2) < —E

(1+7)%/2

and is therefore dominated by an integrable function independent of ¢ €]eq, ¢of given that ¢1,c0>0
are small enough. We deduce that c+— E(Q.) € C(]0, co[, R) for some small ¢y >0 and that,

aC@ A 2|VQC|2>:% A{ R(VQIG.) + Re(VO.QTQ0).
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We check, with Theorem 3.1.4 and (TW,)(Q.) =0, that we can do the integration by parts, which
yields

1
o5 [ 9@ )=t-80.0.0.),
We check similarly that R

o1 ] a-1a.?)=- [ a-lepmeo0),

hence
o1 1107 = (-(1- 1)@ 0.0
Now, since —icd;,Qc — AQ.— (1 —[Qc|*)Q.=0, we have
8CE(QC) = <7AQC - (1 - |Qc|2)Qc; ach> = C<*Z‘8m2Qca ach>'
Now, since P2(Q.) :%@'&CQQC, Q.— 1), we have

aCPQ(QC) = %(@lamzacha Qc - 1> + <iaz2Qca 8CQC>)

By integrations by parts, we compute

acP2(Qc) = <_iax2QCa ach>-
We deduce that 0.E(Q.) = cO.P2(Q.), and in particular, we deduce that

—27 + 0c—0(1
0.5(Q) =2+ 0e=oll),
By integration (from some fixed ¢y > ¢ >0), we check that E(Q.) = (2r + oc_,o(l))ln(%). O

We conclude this subsection with an estimate on Q. connected to the energy that will be useful
later on.

Lemma 3.1.11. There exists K >0, a universal constant independent of c, such that, if ¢ is small
enough, for Q. defined in Theorem 1.3.1,

(VY Q.02 1
@—@42 “1“(?)'

Proof. We recall that ry1 = |z F d.€1]. Sin~ce V Q. is bounded near the zeros of Q. (by Lemmas
1.2.1 and 3.1.1), and |Q.| > K on R?\B(=%d.€1,1) by (3.1.12), we have

~ 2
[ BRI k(1 [ pmvaanr )
]R2 C (T>1}

Now, by (3.1.12), Lemma 3.1.10 and the definition of the energy,

/ Iffm(VQc@IQé/ IVQ6|2|QC|2<K/ |VQC|2<KE(QC)<K1n<l). O
F>1) F>1) R? ¢
We could check that this estimate is optimal with respect to its growth in ¢ when ¢— 0.

3.1.3 Zeros of Q.

In this subsection, we show that ). has only two zeros and we compute estimates on ). around
them. In a bounded domain, a general result about the zeros of solutions to the Ginzburg-Landau
problem is already known, see [42].

Lemma 3.1.12. For ¢ > 0 small enough, the function Q. defined in Theorem 1.3.1 has exactly
two zeros. Their positions are td.e1, and, for any 0 <o <1,

|dc - CZC| = Ogao(cl_g)a
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where d. is defined in Theorem 1.5.1.

The notation oZ_, (1) denotes a quantity going to 0 when ¢— 0 at fixed 0. Combining Lemmas
3.1.9, 3.1.10 and 3.1.12, we end the proof of Proposition 1.4.1.

Proof. From (3.1.3), we know that Q. enjoys the symmetry Q.(z1, 2) = Q.(—x1, x2) for (x1,
x9) € R2, hence we look at zeros only in the right half-plane. From Theorem 1.3.1, we have
Q.= Vl( — dce”l)V,l(. + dce_i) + I'. with HFCHLOO(]RZ) + ||Vrc||L°°(]R2) = Oci,o(l). In the right half-
plane and outside of B(d.e1,A) for any A >0, by Lemma 1.2.1, we estimate

(@l = Vi = dedh) V(- + deéi) | — 0 o(1) = K (A) >0

if ¢ is small enough (depending on A). Now, we consider the smooth function F: R x R? — C
defined by

F(‘LL, Z) = (Vl( - dce_'l)V,l(. +dc€1) + ‘LLFC())(Z +d651)

We have F(0,0) = V1(0)V_1(2d.€1) =0 by Lemma 1.2.1 and F(1, z) = Q.(z + d.€1). For |u| <1
and |z] <1, since ||[VTc||Loo(mr2) = 07— o(c'~7) by equation (3.1.5), with Lemma 1.2.1 and equation
(3.1.1), we check that
|sz(,u,z)(§)*VV1(z)§|:Oc~>0(1)|£| (3124)
uniformly in € [0, 1].
Now, from Lemma 1.2.1, we estimate (for x =7e 0 € R?)

0, Vi(z) = <cos(9) p'(r) — %sin(@) p(r))ew
= k(cos() —isin(f))e’? + o, _o(1)
= k+or-0(1),
and thus, by continuity, 9,,V1(0) = > 0. Similarly, we check that 9,,V1(0) = —ik, and therefore,

Vi) = H< EZ ) + 02 mo(1).

Identifying C with R? canonically, we deduce that the Jacobian determinant of F in z, J(F),
satisfies

J(F) (1, 2) = J(V1)(2) + 0c0(1) = =K + 0c0(1) + 0]z —0(1) #0,

given that ¢ and |z| are small enough. By the implicit function theorem, there exists po >0 such
that, for |p| < po, there exists a unique value z(u) in a vicinity of 0 such that F(u, z(u)) =0, and
since 0, F(u, z) =Tc(de&1 + z) = 07_0(c' ~7) uniformly in 2 (by (3.1.4)), it satisfies additionally
2(1) =07 (e ).

Now, let us show that we can take po=1. Indeed, if we define p1g=sup {v >0, u— z(n) € C*([0,
v], R?)} > 0 and we have pp < 1, since p — 2z(p) € C*([0, pol, R?) with |d,z|(1) = 0Z_o(c' )
uniformly in [0, p], it can be continuously extended to o with F'(po, 2(po)) = 0 and z(uo) =
07_,0(c'=79). Then, by the implicit function theorem at (uq, z(o)) (since pp < 1 with equation
(3.1.24)), it can be extended above p, which is in contradiction with the definition of 1.

Since F(1,.) = Q.(. +d.&1), we have shown that there exists z € R? with |z|=07_¢(c!~7) such
that Q.(z+ d.61) =0. Now, for ¢ small enough and |£]| <1, we have

V(Qc(ererdcél))VV1(2)+OCH0(1)+0§|H0(1)n( 12. )+OCH0(1)+O|EH0(1).

We deduce, with Qu(¢ + 2 + &) = [, ‘VQC(%H +dcal).%dg, that

Q=+ o L ol =acialloh + ot

Therefore, Q. has no other zeros in B(z + d.€1, A) for some A > 0 independent of c. Therefore,
since for ¢ small enough, |Q.| > K (A) > 0 outside of B(z+ d.€1,A) in the right half-plane, Q. has
only one zero in the right half-plane.
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By the symmetry Qc(z1,z2) = Qc(z1, —z2) (see (3.1.3)), z must be colinear to €}, therefore we

define d. € R by d.€] := 2 + d.€1, and we conclude that, since |z| = 07_o(c!~?)

7

|de — de| = 0Z_o(ct 7). O

We define the vortices around the zeros of Q. by
Vii(z) = Vi (2 F de)),

and we will use the already defined polar coordinates around +d.€; of 2 € R?, namely

Fi1= |z F deéi|, 011 = arg(z F d.1).

One of the idea of the proof is to understand how Q. is close, multiplicatively, to vortices Vi
centered at its zeros, since by construction it is close to a vortex centered around +d.€}, which is

Q

2| is bounded
Vi

itself close to :|:d~ce_'1. In particular, Lemma 3.1.14 below will show that the ratio ‘
and close to 1 near d.e;.

In Lemma 3.1.13 to follow, we compute the additive perturbation between derivatives of Q.
and a vortex Vi centered around one of its zeros. In Lemma 3.1.14, we compute the multiplicative

perturbation. All along, we work in B(d~56_'1, &iﬂ), the size of the ball (2/2 being arbitrary (any

quantity that both goes to infinity when ¢ — 0 and is a o0.,0(d.) should work). We recall that
7rz:l:l - |:L' + dc€1|

Lemma 3.1.13. Uniformly in B((fcé'l,&iﬂ), for Q. defined in Theorem 1.3.1, one has

|Qc — Vl| =0c—0(1),

5 OCHO(l)
- <=0
IVQ.— V| < T+,
and
20 _ 2V | < 0c—0(1)
IV=Q. VV1|\—1+7:1 .

Proof. From equations (3.1.7) and (3.1.1), as well as Lemmas 2.1.6, 3.1.12 and the mean value
theorem, in B(d;é’l,diﬂ),

Qe=Vil < |Qe=VI+|V-Vi|
0c—0(1) + [Vi(. — deei) — VA
0c—0(1) + |de — de| |02,V || Lo (r2)

0e—o(1), (3.1.25)

INCIN NN

which is the first statement.

For the second statement, we write Q.= V(. —d.€1)V_1(. —d.€1) + T, and from equation (3.1.5)
(with some margin), we have
IVL.| < OH_O(}),
- - 1+7m
Furthermore, since V4 =Vi(. — d.€1),

V(Vi(. — dee)Voi(. 4+ deh)) — VVi =
VVi(. — de))Voi(. +deél) — VVI+Vi(. — de) VV_1 (. + de€l),

and from (3.1.2), in B(d;é’l,gliﬂ), we have
= OC_>0(1)
IVVoa( A+ dect)| < =7

We compute

VVA(. = de€1)Vor (- + defy) — VVI = VVA(. — de€1) (Voi(. 4 deél) — 1) = VVI 4+ VVi(. — deé?)
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1

and, from (3.1.1), in B(d.€1, dc/Q), we have |V_1(. + dc€1) — 1| = 0c—o(1). Finally, from Lemmas

1.2.1 and 3.1.12, we estimate (with the mean value theorem)

R ~ ' dcfd~c| OCHO(l)
VVi(.—d.e1) — VVi| <|d. — d, sup VVi(z —d <K| — = —~—,
Vvl 2 i<l |de[dc,&c}u[&c,dc}| i ) (I+71)%  (1+71)?
hence
- e—o(1
VQ. - V¥l < %=t (3.1.26)

Now, writing w = Q. — Vi, in B(dle'i, Q&im), we estimate (since TW.(Q.) = 0 and AV, —
(Vi =1)vi=0)

) 5 5 —o(l
|Aw|=|—ic0,Qc — (1 —|Qc|?) Qe+ (1 — |V1|*) V1] <00—0(~)
1+T’1
by equations (3.1.6) to (3.1.10) and (3.1.1). Furthermore, by equations (3.1.6) to (3.1.2), we have
0c—0(1)
V(Aw)| < 2=0)
V() < 2=

We check, as the proof of (3.1.25), that, in B(dcel, 2d1/2)
|w] = 0c—0(1),

and, similarly, with equations (3.1.2) and (3.1.26), that
[Vw|=0c-0(1)

in B(dcel,Qd /2) By Theorem 6.2 of [15] (taking a domain = B(:L' deé, o - d“ell ), and a=1/2,
but it also holds for any 0 <« < 1), we have, for x € B(dcel, 2d1/2)
(1+71)* V2w (z —dett)| K (|[wllerie) + (L +m)? [ Aw]era),

oc—o(1)

G therefore

and from the previous estimates, we have ||w||¢1(q) = 0c—0(1) and [[Aw||c1(q) <

0c—0(1)
VA(Q - V) = VPu] < 2= 0

Lemma 3.1.14. In B(dcel, . ) for Q. defined in Theorem 1.3.1, we have

& — ‘ = 0c_0(ct/1Y).

v
In particular, !

Qe

1

=1 JrOCHO( 1/10).

The power 1/10 is arbitrary, but enough here for the upcoming estimations.

Proof. We recall that both Q. and V; are C since they are solutions of elliptic equations. We
have that Q.(d.¢1) =0 by Lemma 3.1.12, thus, for # € R?, by Taylor expansion, for |z|<1,

Qe (x+dc€1>*x VQ.(d c€1)+0\z|ao(|$| )-

From Theorem 1.3.1, we have Q.=V; ( — dce"l)V,l(. +d.£1)+T, therefore, with Vi1 being centered
around +d.€] for the rest of the proof,

VQ.(d.6) =VVi(dee))V_1(de€)) + Vi(de)VV_1(d€1) + VT (de€).

We have Vi (d.€1)VV_1(de€1) + VI o(de€1) = 0. 0(c'/?) by Theorem 1.3.1, Lemma 1.2.1 and (3.1.2).
Furthermore, by (3.1.1), Lemmas 1.2.1 and 3.1.12,

VVi(dee1)Voi(de€l) = VVi(defl) + 0e—o(c/?)
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We deduce that
Qc(z+ dNCe_'l) =z.(VVi(d.e1) + ocﬂo(cl/‘l)) + Oz—o(|z |2) (3.1.27)

We also have Vi(z 4 de€1) = .VVi(de€1) + Ouo(|z[?) (since Vi(de€1) = 0) and VVi(d.€) =
VVi(d.e1), hence
Qe +de1) = Vi(x + deei) + 2.0c—0(c*) + Oy —o(|2]?).

Now, by Lemma 1.2.1, there exists K > 0 such that, in B(d.é1, ¢*/*) for ¢ small enough, |Vi(z +
d.e1)| = K|z|. We deduce that

Q| ¢ ocolc)  Oumalil)
Vi Vi(z +deer)|  [Vi(z +deer)|
< 06%0(01/4)+O|x\~>0(|x|)
< 0eo(c/P).

Outside of 3(505,01/4) and in B(Jca,Jcl/Q), we have |V1| > Kc'/* by Lemma 1.2.1, and
Q=W +Oc—>0(cl/2)
by Theorem 1.3.1, equations (3.1.7) and (3.1.1). We deduce

Vi)
Vl(az)

‘/1 + Oc—>0(cl/2) _

%1 + OC—’O(Cl/lO)-

1|(z) =

%_1‘(:5):

Vi

Furthermore, by Lemma 3.1.12 (for 0 =1/2), we have

Vi(x) Vi(2) + 04, .| ~ol|de— de]) Oa, —a.| ollde = de) 10
% T 7 1= 1/4 =0c—o(c ).
Vi(z) Vi(z) Y
We conclude that ?;f — 1‘ =0c—o(c/10) in B(d~ce"1, chl/Q)- O
1

By the symmetries of Q. (see (3.1.3)), the result of Lemma 3.1.14 holds if we change € by —é;
and V1 by V_;.

~ We conclude this section with the proof that in B(idcé'l, Eli/Q), we have, for ¢ € C’SO(IRQ\{i
d.é1},0), 2 2
/ |72 d0 11 < fil/ IV [2dfs1. (3.1.28)
0 0

We recall that the function 17° is defined by

F0(z) = (a) — 1 (F)
in the right half-plane, and
Y70(x) = v(w) — O (F )
in the left half-plane.
To show (3.1.28), it is enough to show that, for ¢ € CSO(JRQ\{O},C), we have, with z=re®,

/27r
0

This is a Poincaré inequality. By decomposition in harmonics and Parseval’s equality, we have

L= ool = [T 5 v

0 nez*

2
=[S iy

nezZ*

2w 2
1/)7/ z/;d’y‘2d9<r2/ |V )| 2d6.
0 0

2
do
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and

WV

27 271'1
[ ivvrds > [ Giowas

2w )
/O Z inw:(r)eznO

nez*

1 2
=X s

nez*

1 2w
> 5% s,

nezZ*

2
dé

WV

WV

This concludes the proof of (3.1.28). With |Q.(z idc€1)| =0, —0(7x1) and (3.1.28), we have,
for 741 < R,

27 _ 2 ~
/ |Qel29702df11 < K/ 7% |70 2d0 4
0 0
27 N
< K/ 744V Pdfy
0

2 ~
< K [ 10 Vo (3.1.20)

This result will be usefull to estimate the quantities in the orthogonality conditions.

3.2 Estimations in Hg,

We give several estimates for functions in Hg,. They will in particular allow us to use a density
argument to show Proposition 1.4.3 once it is shown for test function in section 3.3. We will also
explain why a coercivity result with the energy norm ||.| z,, is impossible with any number of
local orthogonality conditions, and show that the quadratic form and the coercivity norm are well
defined for functions in Hg..

3.2.1 Comparaison of the energy and coercivity norms

In the introduction, we have defined the quadratic form by
Bale) = [ Vel —(1-1Q)IeP +29e(@)
- o (= ns(idngp)—c [ oetio.QQ0l0
+ 20 [ aRewdm0,1Q e [ dnevIm Q.
+of nmeuamvo Q)

(see (1.4.3)). We will show in Lemma 3.2.3 below that this quantity is well defined for p € Hg,.
As we have seen, the natural energy space Hg, is given by the norm

lolfig,= [ [Vol?+11=1Qullol +Re2(Qep).

We could expect to remplace Theorem 1.4.4 by a result of the form: up to some local orthogonality
conditions, for ¢ € Hg_ we have

Ba.(¢) 2 K (9)|l¢ltq,-

However such a result can not hold. This is because of a formal zero of Lg_ which is not in the
space Hq,: iQ). (which comes from the phase invariance of the equation). We have L (iQ.) =0
and 1Q. ¢ Hg, because

(1= 1QciQc/?
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is not integrable at infinity (see [21], where it is shown that this quantity decays like 1/72). We
can then create functions in Hq, getting close to iQ)., for instance

frR=nriQ.,

where npg is a C* real function with value 1 if Ry < |z| <R and value 0 if |z| < Rg—lor|z|>2R. In
that case, when R— +o0, || fr|| o, — +00 and B, (fr) — C a constant independent of R, making

the inequality Bg,(¢) > K ||<p|ﬁ{Qc impossible (and the local orthogonality conditions are verified
for Ry large enough since fr=0 on B(0, Ry —1)). That is why we get the result in a weaker norm
in Proposition 1.4.11: we will only get for ¢ € Hg,_, up to some local orthogonality conditions,

Ba.(¢) 2 K(©)| ¢l

where |[|.[| g is defined in subsection 1.4.3.1. In particular, ||.|| gge is not equivalent to [|.||m,-

3.2.2 The coercivity norm and other quantities are well defined in Hg,

We have defined the energy space Hg, by the norm

llfrg,= [ [Vol?+ 11~ 1Qullol? +Re2(Qcp).

By Lemma 3.1.5, we have that, for ¢ € Hg,,

|‘P|2 < 2
/R2(1+|$|)2dx\C(C)H<PHHQC- (3.2.1)

The goal of this subsection is to show that for ¢ € Hg,, ||¢||c and Bg.(¢), as well as the quantities
in the orthogonality conditions of Proposition 1.4.3 and Theorem 1.4.4, are well defined. This is
done in Lemmas 3.2.1 to 3.2.3.

Lemma 3.2.1. There exists co>0 such that for 0<c< co, there exists C(c) >0 such that, for Q.
defined in Theorem 1.5.1 and for any o= Q) € Hg,,

Hsall?::/WIWJIQIQCI“+9%2(1/J)|Qc|4< C@)lleltre,-

Proof. We estimate for ¢ = Q. € Hg,, using equations (3.1.12), (3.2.1) and |VQ.| < e ))2 from
Theorem 3.1.4, that
[Ivoridt = [ [ve-vawpia.r
R2 R?
< K/ IV olIQul? + [V QI Qs
< / |V<,0|2 |‘P| )
< K(O)leltg,:
Similarly, for ¢ = Q.1,
[ mewial= [ ne@e) <ol
R2 R2
We conclude that
[ IV OPIQ -+ R(0)10cl < CO e g (322) O

We conclude this subsection with the proof that the quantities in the orthogonality conditions
are well defined for p € Hq,.
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Lemma 3.2.2. There exists K >0 and, for ¢ small enough, there exists K(c) >0 such that, for

Q. defined in Theorem 1.5.1 and p=Qap € Hg,, 0< R< ~i/2, we have

L(i&caﬁ)‘%e(azl‘?ﬂ@)) " A(ﬂ:&caﬂ))%e(am‘?iﬂmﬂ <K(9) ¢l

/B(&CET)LR)UB(glcg'hR)‘iRe(azl’ZQCW)‘ <K(@)lellag,

—

[smcelﬁ)UB(aca,R)\”e(ac@cW)} <K()l¢ o,

and

L(&Ca,R)UB(_~Ca,R)’me(_xl'vQcW)’ <K ()|l <P||HQC-

We recall that 17 %(z) =) (x) — 1% (71) in the right half-plane and ¢7°(z) = ¢ (z) — O~ (7_;)
in the left half-plane, with 721 = |z F d.¢1| and %% (71;) the 0-harmonic of 9 around =+d.€}.

Proof. From Lemma 3.1.14, we have, for p=Q € Hg,,

Vir

|V:|:1w|:|90|x Qc

< 2|

given that c is small enough. We deduce by Cauchy-Schwarz, Lemmas 1.2.1 and 3.1.5 that
/ ] )%e(amvﬂvﬂw)) < 2/ o Vel x|l K@l gy p+ae, ry)
B(#*dcé1,R) B(#*dcé1,R)
< K(C)”WHHQC?

and similarly fB(j:El &R ‘%e(@x2vi1‘7i11/))‘ <K (o)|ellHg,-

By Cauchy-Schwarz, equation (3.2.2) and Theorem 1.3.1 (for p=+00), we conclude that

/|  |we(00i@0®)| < K(c>\/ /| L TePIQ
B(d.&1,R)UB(—d.&1,R) B(d.&},R)UB(—d.&1,R)
< K()llellag,

We can estimate the other terms similarly. a

3.2.3 On the definition of Bg,
We start by explaining how to get B, (¢) from the “natural” quadratic form

I (= 1QeP ol + 2863 Qip) ~ Reticd. o).

For the first three terms of this quantity, it is obvious that they are well defined for ¢ € Hg_, but
the term —MRe(icd,,@) is not clearly integrable. B B

Take a smooth cutoff function 1 such that n(z) =0 on B(+d.€1,1), n(x) =1 on R?\ B(+d.£1,2).
Then, taking for now ¢ = Q. € C2°(R?),

Re(i0z,0P) = NRe(i02,509) + (1 — 1n)Re(i02,0P),
and writing ¢ = Qp,
NRe(i0z,09) = nRe(10:,QcQc) Y] + nRe(i0:,90)| Qe[

1Me(i02,QcQc) | [* — nRet) TmOa, | Qc?
+ 7Me0z, ¥ ImY|Qc [
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Furthermore,

NReDp, ) IMY|Qc)? = Opy(nRetp I |Qc[?)
— Op,nReYTIMYP|Qc[* — nRep IMy, ¥ | Q|
n%€¢3m¢3x2(|Qc|2),

thus we can write
[ etitner) = [ ontmesamvion)
[ = st + [ a0, Q0 vl
2 [ evImd,,v1Qc — [ 0nerImul Q.
- [ nmerImuon, Q..

The only difficulty here is that the first integral is not well defined for ¢ € Hg_, but it is the integral
of a derivative. Therefore, this is why we defined instead the quadratic form

Bale) = [ [VeP=(1-1QPIo +29e(@)
o[ (- mRetiongs)—c [ 0. QN0 F
R?2 R?2
+ 2 [ nmewdm0,wlQu e [ O ImilQuP
R?2 R2

+ o nmenamion, Q).

It is easy to check that this quantity is independent of the choice of 7. We will show in Lemma
3.2.3 that this quantity is well defined for ¢ € Hg,.. By adding some conditions on ¢, for instance
if ¢ € HY(R?), we can show that fR28x2(n9‘iew3m1/J|Qc|2) is well defined and is 0. In these cases,
we therefore have

Ba.(9)= [ V6P = (1=1Q:Pol+2Re(@ip) ~ RelicDrno).

This is a classical situation for Schrédinger equations with nonzero limit at infinity (see [8] or [32]):
the quadratic form is defined up to a term which is a derivative of some function in some LP space.

Lemma 3.2.3. There exists co >0 such that, for 0 <c<cg, Q. defined in Theorem 1.53.1, there
exists a constant C(c) >0 such that, for p = Q) € Hg, and n a smooth cutoff function such that
n(z)=0 on B(+d.¢1,1), n(x)=1 on R?\B(+d.€},2), we have

(1= n)Re(i0s,00)| + / 1R (102,Q.00) [0
R?2 R?2

+ / |19 T (D,,16)] Qe 2] + / 100anRe g Tmep| Qe
R?2 R2

+ / |1 Ret) I, Qe 2)|
R2
< 0Ol

Proof. Since |1 —|Q.|*| > K >0 on B(£d.€1,2) for ¢ small enough by Lemma 1.2.1 and Theorem
1.3.1, we estimate

[ Ja=mmeicoppl<ct [

. 11=1Qcll¢l0z,0] < Ce)l 1o,
B(dc€1,2)UB(—dc.€1,2)

Furthermore, by (3.1.12) and Lemma 3.1.5,

/ [1%Re (i 602,Q.T0) | 12| < C(c) / IV Qall¥[2< C(e) / DIV QelloP < COllellirg,
R2 R?2 R2
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since |VQ,| < (16;(6))2 from Theorem 3.1.4. By Cauchy-Schwarz, equations (3.1.12) and Lemma
3.2.1,
[ nevamo,,vlQ. |<K\// me(w) [ TR <COlel, (3.2.3)

Now, still by equations (3.1.12) and Lemma 3.2.1, since 9,7 is supported in B(+d.€1,2)\ B(£d.é},
1),
[ JocanewIm ol Qo < Kl i,

Finally, since |VQ.| < a _H))Q by Theorem 3.1.4, by Cauchy-Schwarz and Lemma 3.1.5,

~2
[ nmevamvanapicion [ mew) [ 2t <c@lele, 0

3.2.4 Density of test functions in Hg,

We shall prove the coercivity with test functions, that are 0 in a vicinity of the zeros of (.. This
will allow us to divide by Q. in several computations. We give here a density result to show that
it is not a problem to remove a vicinity of the zeros of Q. for test functions.

Lemma 3.2.4. C°(R?\{d.¢1, —d.¢1},C) is dense in Hq, for the norm |||,

This result uses similar arguments as [10] for the density in Hy,. For the sake of completeness,
we give a proof of it.

Proof. We recall that
Ilra, = | V0l +11=1QuPlle P+ Re(Qr).

and since, for all A >0,
K1<A>/ IVs0|2+|<P|2</ |Vso|2+|1—|Qc|2||¢|2+9%e2<®><K2<A>/ Vol + ol
B(0,)\) B(0,\) B(0,)\)

by standard density argument, we have that C2°(R?, C) is dense in Hg, for the norm ||| g, .

We are therefore left with the proof that C§°(R2\{d~c€1, —d.éy, C) is dense in C°(R2, C) for the
norm ||.||f,, . For that, it is enough to check that C2°(B(0, 2)\{0}, C) is dense in CZ°(B(0,2), C)
for the norm ||.|[g1(p(0,2))- This result is a consequence of the fact that the capacity of a point in
a ball in dimension 2 is 0. For the sake of completeness, we give here a proof of this result.

We define 7. € C°(B(0,2),R) the radial function with n.(z) =0 if |z| <e, n-(z) = ln(‘(x)l) +1if
|z| € [e,1] and n(z) =1if 2> |z| > 1. Then, we define 7. » € C°(B(0,2),R) a radial regularisation
of n. with n. \(z) =0 if |x| <e/2 such that 5. x— n. in H}(B(0,2)) when A — 0. Finally, we define
Ne, X6 =1, ,\( ) for a small § > 0.

Now, given ¢ € C°(B(0,2), C), ne x5 € C°(B(0,2)\{0}, C) for all e >0, A >0,6 >0, and by
dominated convergence, we check that

/ |77€,A,590|2H/ lol?
B(0,2) B(0,2)

when § — 0. Furthermore, we compute by integration by parts

/ V(ners0)? = / nz,A,5|W|2+2/ Ve n s R (Vo3)
(0,2) B(0,2) B(0,2)

[ wnasbier

B(0,2)

/ 773,A,6|V<P|2 —/ |0 12AN: X, 6Me 2,5
B(0,2) B(0,2)

+
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Now, extending ¢ to R? by ¢ =0 outside of B(0,2), we have by change of variables

/ |90|2A778.,/\,5775,/\,5:/ |50|2A776,/\,5776,/\,5:/ |0|2(28) Az Ane 2
B(0,2) R2 R2

When § — 0, we have by dominated convergence that fB(O 2 n2 x5 Vel?— fB(O 2 |Vp|? and

/ | |2(28) Arje. s r— |0 2(0) / Ao atiex = —|[2(0) / Ve A2
R?2 R?2 R?2

Now, taking A — 0, we deduce that

lim lim |V(775,A,6<P)|2:/

Vol|?— @20/ V|2
ot [ (9ett=loP) [ [vnd

)

L |
L ln(s)QTQTdr
1 11
- ln(s)Q/‘E ?dr

= lniﬁHO

From the definition of 7., we compute

/ V|2
RQ

when € — 0. We deduce that

lim lim lim |V(775,>\,690)|2:/ Vepl2
e—0A—05—0 B(0,2) B(0,2)

This concludes the proof of this lemma. O

3.3 Coercivity results in Hg,

This section is devoted to the proofs of Propositions 1.4.2 and 1.4.3. Here, we will do most of the
computations with test functions, that is functions in Cg° (IRQ\{dCé'l, fdcé'l}, (D). This will allow
to do many computations, including dividing by . in some quantities.

3.3.1 Expression of the quadratic forms

We recall that 7 if a smooth cutoff function such that n(z) = 0 on B(+d.é, 1), n(z) =1 on
R2\(B(d.€1,2) U B(—d.€1,2)), where +d.€; are the zeros of Q.. Furthermore, from [10], we recall
the quadratic form around a vortex Vi:

Bue)= [ [VeP = (1 =[ViPleP +2:e(Vig).

We want to write the quadratic form around V; and Q. in a special form. For the one around @,
it will be of the form B{P, defined in (1.4.4).

Lemma 3.3.1. For p=Qu) € Cé’o(IRQ\{d;é'l, fdle_'l}, C), we have

(L), 0) =By (),
where BoY (@) is defined in (1.4.4). Furthermore, for ¢ = Viy € C2°(R?\{0}, C), where V; is
centered at 0, and 7] a smooth radial cutoff function with value 0 in B(0,1), and value 1 outside
of B(0,2),
Bule) = [ (1= D(VeP— (1= iP)eP+ M)
— [ ViRV - 20m VAV Re(0)Im(v)
]RZ

[ VORIV 2R ) VA + 49 TAVE) I (V) Re ().
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Proof. We recall that Lg_(¢) = —icOp,0 — Ap — (1 —|Qc|?) ¢ + 2Re(Qep) Q.. Writing o= Q¢ €
C°(IR2\ { deey, —d.e1 } ,C), we decompose

LQC(‘P) = _icaa:szc - A"/’Qc - QVQc-V'(/) + 2%6(¢)|QC|QQC + TWC(Qc)w-
Since TW.(Q.) =0,
(

Lo(¢), )
= ((1=n)Lq.(¥), ©)+ (nLq.(¢), Q)

R2(1 —m)Re((—icOap — A — (1—|Qcl?) ¢ + 2Re(Qe0) Qc) #)

b [ Re((e00, Q0 — AUQ. ~ 27 Qe v+ 2e(1)|Q: QD).

By integration by parts,
[ = el = Mg = (1-1Q: )+ 26(Q)Q0)7)
= [ 0=Vl = Relicorpp) - (1= Q)P+ 20 To)

- / VnRe(Vep).
RQ

Similarly, we compute

[ e((=ic00Q. — AvQ: —2V QLT b +2Re(1) Q) Tet)
= [ nORe(ic0, D Qcl) = Re(AuT) Qul+ 2R63(0)] Qe ~ 2Re(V Q. VU TD)
= QP10 Re() = Rel00)Im() + 2R () Q. 2Re( QT VW)
[ avuPIQre2 [ (V@) Revii)+ [ Vame(voi)lQ.P

We continue, we have

— [ 21QuPRe(D,,0)3m(w)
- / 01QePRe()Im(Dy ) + / Dol Qe PPRe (1)) Im (1)) + 2 / 1R (02,Qu00) R () Tm (1),
R2 R2 R2

as well as
/ P Re(V Qo OT) = / Re(V Q) Re(V i) + / nIm(V Qo) Im(V i),
R?2 R?2 R?2

therefore

[ Rel(=i601,0 @~ AV Q.29 Qu T -+ 29e(1)| Q. QI Q)
= [ HIVOPIQU+ 26 (0) Qul -+ 26T, e()
[ 2eRe(0,,Q00Re(0)Im(w) — 2Im(V Q) Im(V )
+ef () Im(IQuP+ [ VaRe(ViD)IQP
R? R?
Since i¢0:,Qc = AQ. + (1 — |Qc]?)Qe, we have ¢Re(0,,Q.Q.) = Re(iAQ.Q.). By integration by

parts,

2 A Re(IAQQ)Re()Im(¥)
=2 A QVn.jm(VQc@%(w)ﬁm(w)
_ QAanm(vQc@,me(v@jm(w)—QA{ZnJ‘m(VQc@me(?/f)jm(V?/f),
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and
) A MV QD) Im(V )
~ o A I (Y Q) (Im(V)Re(1) — Im()Re(V ).

Combining these estimates, with
[ nse(Veop) = [ Vu0e(VQ@IWE +Re(Tii)|QcP).

we conclude the proof of
(La.(#), ¢y =Bgr ().

Now, for the proof for By, (), the computations are identical, simply replacing ¢ by 0, i by 7, and
Qc by V1. U

3.3.2 A coercivity result for the quadratic form around one vortex

This subsection is devoted to the proof of Proposition 1.4.2, and a localized version of it (see Lemma
3.3.2).

3.3.2.1 Coercivity for test functions

Proof. (of Proposition 1.4.2) We recall the result from [10], see Lemma 3.1 and equation (2.42)
there. If ¢ =Vi¢ € C°(R*\ {0}, C) with the two orthogonality conditions

/ Re(Da, Vi5) = / Re(0,,V19) =0,
B(0,R) B(0,R)

then, writing 1°(z) :% 02771#(|ac| cos(f), || sin(f)d@), the O-harmonic around 0 of ¢, and ¥7° =
W — 10, then
#0312 o2y 2 4 V™ 2 4
Bri(p) 2 K | IVTF+ VIV + g + M)A

We recall from Lemma 1.2.1 that there exists K7 > 0 such that K7 < l‘:l‘

radial function around 0. Therefore, by Hardy inequality in dimension 4,

/ |w°|2<f<( [ veeme | |w°|2).
B(0,1) B(0,2) B(0,2)\ B(0,1)

Jm(¢) =0 and |V;]?>> K outside of B(0,1), we have

S%, and that V4] is a

By Poincaré inéquality, using fB(O R\B(0.B/2)

/ |w0|2<K< / |vw0|2|v1|2+%e2<w0>|v1|4).
B(0,10)\B(0,1) B(0,R)

Here, the constant K >0 depends on R >0, but we consider R as a universal constant. We deduce

that
/ lol? </ Vig[?
B(0,10) B(0,10)

<K</ |v1w0|2+/ |v1w*0|2)
B(0,10) B(0,10)

02
< K( / 2|V<v1w0>|2+|w°|2|v1|2+%+%e2<w>|vl|4>.
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Similarly,

/ Vo2
B(0,10)

N

/ IV (VA(0 4 7)) 2
B(0,10)

(/ |V(v1w°)|2+/ |V(Vn/ﬂé0)|2>

B(0,10) B(0,10)

K( [ v ppvie s [ |V<v1w*°>|2)
B(0,10)

B(0,10)

N
=

N

+0
K( [ vivtor+ |vw0|2|v1|2+M+me2<w>|vﬂ4>.

N

(1+7r)2

Finally, outside of B(0,5), we have, by Lemma 1.2.1, that

L. [vup<x VYA,
R2\B(0,5) R2\ B(0,5)
Let us show that

[y 2 (/ 2 / 2)
Wk VyI? + o2 ).
sz\B(o,s)TQIHQ(T) R2\3(0,5)| | B(O,l())\B(0,5)| |

This is a Hardy type inequality, and it would conclude the proof of this proposition. Remark that
for the harmonics other than zeros, this is a direct consequence of

£0)2
Ay
R2\B(0,5) T R2\B(0,5)

We therefore suppose that 1) is a radial compactly supported function. We define x a smooth radial
cutoff function with x(r) =0 if <4 and x(r)=1 if » > 5. Then, by Cauchy-Schwarz,

' / 2\3@@% - \— / +°°x<r>|w|2<r>ar(ﬁ)dr

+oo dr

OV )i

5

o [T dr
K( / g O / x<r>|w|<r>ar|w|<r>1n(r))

B(0,10)\ B(0,5) R2\B(0,5) 72In?(r) R2\B(0,5)

The proof is complete. O

N

N

3.3.2.2 Localisation of the coercivity for one vortex

Now, we want to localize the coercivity result. We define, for D > 10, o= V19 € Hy,,

ByP(p) = / A =D)(IVel? = (1= [Vi*)|p|? +2%e* (Vi)
B(0,D)
- Vii.(Re(VVAVL) 4|2 — 23m(VViVI)Re (1) Tm(v)))
B(0,D)
[ VU EVE  2RE VA + 0m(TVaTR I ()R,
B(0,D
where 7 is a smooth radial cutoff function such that 7j(z) =0 on B(0,1), 7(z) =1 on R\ B(0,2).

Lemma 3.3.2. There exist K, R, Dy > 0 with Dy > R, such that, for D > Dy and ¢ = V¢ €
CEO(IRQ\{O}, ©C), if the following three orthogonality conditions

/ Re(D,,V10) = / Re(0,,V10) = / Im(1) =0
B(0,R) B(0,R) B(0,R)\B(0,R/2)
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are satisfied, then

2
sz k([ el el [ VPV RV + ),
B(0,10) B(0,D)\B(0,5) 72In?(r)

Proof. We decompose % in harmonics j € N, [ € {1, 2}, with the same decomposition as (2.5) of
[10]. This decomposition is adapted to the quadratic form B%ZCD , see equation (2.4) of [10], that
also holds if the integral is only on B(0, D).

For j =0, the proof is identical. For j >2, [ € {1,2} from equation (2.38) of [10] (that holds
on B(0, D) as the inequality is pointwise), the proof holds if it does for j=1, € {1, 2}.

We therefore focus on the case j =1=1. We write ¢ = ¢1(r)cos(f) + i1pa(r)sin(f), with ¢y,
1y € CF (R, R). The other possibility (I =2) is 1) = 11(r)i cos() + 12(r)sin(f), which is done
similarly. We will show a more general result, that is, for any ¢ =Vi9 € C2°(R?*\ {0}, C) satisfying
the orthogonality conditions,

Bper(Vig??)
|70
> K / IV (Vi )2 + (Vi #2 + / VRV + me2(pPo) it + ),
B(0,10) B(0,D)\B(0,5) r

With the previous remark, it is enough to conlcude the proof of this lemma. In the rest of the
proof, to simplify the notation, we write ¢ instead of ¥#°, but it still has no 0-harmonic.
We remark that, for D > Ry > 2,

/ |V |2|Vi]2 4 2Re2(¥)| Vi |4 + 4Tm(V Vi V1).Tm(Vy) Re ()
B(0,D)\B(0, Ro)

K|W)? -
> | v+ 2me2() Vil EE (v me )
B(0,D)\B(0, Ro) 0

1

2/3(0,13)\3(0,30)
if Ry is large enough. We therefore take Ry> R large enough such that (3.3.1) holds. For g >A> Ry,
we define x» a smooth cutoff function such that yA(r)=1if r <A, xa=0if 7> 2), and |x4| g%.

In particular, since R > 2, we have Supp(x4) C Supp(7) and Supp(1 — 7) C Supp(x). This implies
that

[V 2[Va[? + 208 (v) A * (3.3.1)

/ (1= D(Ve2— (1 - ViP)l o]+ 2Re2(Va))
B(0,D)

- / (1= D) (Vo) = (1= [Vi2) e 2+ 286 (Vi)
B(0,D)
and

/ Vi (Re(VVAVA) 462 — 23m(VVAVA)Re()Tm(15))
B(0,D)

_ L , D)Vﬁ.(%e(VV1V1)|XM/)|2,23m(VV1V1)9%(X>\1/;)jm(X>\¢)).

Now, we decompose

[3 oy TIVEEIVA SR TAI  83m(TVaVE) I () Re( 1)
0,

= e D)(l =XV Y P[Va]? + 29> ()| Vi|* + 4Tm(V Vi V1) I (V) Re(v)))

+/ (T BRIVAR + 208e2(4) Vil + ATm(VVAVA)Tm(Vap)Re (1)),
B(0,D)

and by equation (3.3.1),
/ (1= xRV PVA]? + 20e> () Vi |* + 4Tm(V V1 V1) Im(V ) Re (1))
B(0,D)

> K (1= X3V P[Va]? + 2Re2(¢) Vi ] %
B(0,D)
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Furthermore,

[B(O D)xiﬁ(lvwﬂw? +20Re?(¥) | VA|* + 40m(VV1V1) Im (V1)) Re ()
- /9(0 TGOV 2R GVl +-49m(TViT)Im(T (o) e

- /3(0 D)ﬁ((W(XW)—VXWP—|V(XM/))|2)|V1|2—43m(VVﬂ71).kajm(w)me(xw)),
and thus
ByeP(Vi)
> B0+ K[ - BITePI e
B(0,D)

_ /9(0 D)ﬁ((|V(X)‘1/))7VX)‘w|2*|V(X>\w)|2)|v1|2—43m(vvl‘71)-V)()\jm('lli)%e(x/\'l/))),

Since Vixay € C°(B(0, D)), we have BIOCD(le)\z/}) = By, (Vixat), and since xx=1in B(0, R) and
V14 satisfied the orthogonality conditions, so does Vixa¥. By Proposition 1.4.2, we deduce that

IOCD(VYIXX(/))
>K/ IV (Vb2 + Vo ?
B(0,10)

It 2
r2n?(r)’

+ K [V 00t PIVAIZ + Re2ag) Vil +
0,D)\B(0,5)
Now, remarking that
VOO VA = K Vo PR VAP = Kol VaxalPlv Pl
and since x,=1 in B(0,10), we deduce that

IOCD(‘/'l,(/))
> K( / Vol ol + |w|2|v1|2+%e2<w>|v1|4)
B(0,10) B(0,D)\B(0,5)
- K / (1Y Oth) = Vo2 — [V Qo) P Va2 + [3m(VVAVA). ¥ xadm () Re (o))
- K/ VoIV (3.32)
0,D)\ B(0,5)

Since Vx» is supported in B(0,2X)\B(0,\) with |V x| S%, we have

2
/ VPOV < K A 3:33)
B(0,D)\B(0,5) B(0,22\B(O,\) (1 +7)

and by Cauchy-Schwarz, we have that

_ 2
[ iam(VA). Y nam) o) <K | | s Re2(1))
B(0,D) BO,20\80,0) (1 +7)2 /B0, 0)\B(0,5)

and

/ (Y o) - Vot P — 19 o) DIIVAP)
B(0,D)

2 2
< K / el / VY2V 2+/ P ) 334
\/ B(0,22\B(0,\) (1 +7)? B(O,D)\B(0,5)| vl B0,22\B(0,\) (1 +7)?

Since 1) has no 0 harmonics, we have that

2
B(0,D)\B(0,5) (1 +7) B(0,D)\B(0,5)
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We infer that there exists Dy > Ry a large constant such that, for D > Dy, for all ¢ = V¢ €
C’SO(IRQ\{O}, C), there exists A € [RO,%} such that

I -
<e IV 5|V (3.3.5)
A(O,L\)\B(O,)\)(l +7)? B(0,D)\B(0,5) '

for some small fixed constant € > 0. Indeed, if this does not hold, then fB(O,D)\B(O,5) |V |2|Vi]2 40
and

/ [y
B(0,D\B(0,5) (1 +7)?

Do 2
> / %Tdr
R, (1+7)

rdr

WV

POgQ(i))J —2 /277'“30 |42

P A (= E

s (22 -

> 5/ V|2 Vi)?
Z B(O.D)\B(0,5)| Vil

> lo 1/ V|2 Va2
H(EE G LT

1
> %/ VR
B(0,D)\B(0,5)

for Dy large enough. Taking e > 0 small enough, with equation (3.3.2) to (3.3.5), we conclude the
proof of this lemma. O

A consequence of Lemma 3.3.2 is that, for a function ¢ ="Vi1) € CZ°(R*\ {0}, C) satisfying the
three orthogonality conditions in Lemma 3.3.2 and D > Dy, then

BYeP () = K(D) el (50,0 (3.3.6)

3.3.3 Coercivity for a travelling wave near its zeros
We recall from Lemma 3.3.1 that, for ¢ € C’SO(IRQ\{dcé’l, —Elcé'l}, (D), we have

(Lole)o) = [ (1= (Ve ~Reficdruop) — (1= QP +29e( Do)
— [ OV QDI P 29m(V Q) Re()Im()
[ coname(w)Im(u)| Q.

[ V0 PIQuP+ 2201 el

+ [ aIm(TQIIM(T)Re(1) + 2] Qe Im(0,, ) Re(1).
For D > Dy (Do >0 being defined in Lemma 3.3.2), we define, with ¢ = Q1,

BoP(p) = [B(i& . D)(l—77)(|V<P|2—9‘ie(icaz2w¢)—(1— |Qcl*)| 0 +29Re*(Qep))

+

Vn.(Re(VQQe) ¢ * — 20m(V QcQc) Re (1)) Im(v)))

[B(i&ca,D

b cte() ()] Qe
B(+d.&},D)

) VORI + R w)Qul
B(+d.&},D)

/!
B

)n(43m(VQc@)3m(V1/})%(1/}) +2¢|Qc[?Im(0z, 1) Re (1))
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We infer that this quantity is close enough to Bi;’icf’ (¢) for the coercivity to hold, with Vi1 being
centered at +d.€1, the zero of Q. in the right half plane.

Lemma 3.3.3. There exist R, Do > 0 with Do > R, such that, for D > Dy, 0 < ¢ < co(D) and
p=Q € CEO(IRQ\{dCéi}, (D) , if the following three orthogonality conditions

[ v = [ me(ouvie)= [ C Im()=0
(d.& B(d.&1 B(d.€1,R)\B(d.€1

B(d.&1,R) deél, R)

Ql
ES
~
>

are satisfied, then
locy,
Bo: D(Sﬁ)>K(D)||80||§11(B(aca,p))-

Proof. First, remark that we write ¢ = Q.1 and not ¢ = V31, as we did in the proof of Proposition
1.4.2. Hence, to apply Lemma 3.3.2, the third orthogonality condition becomes

/ 3m<w%> =0.
B(d.e1,R)\B(d.1,R/2) |4

With Lemma 3.1.14, we check that

J (%)
B(d.&,R)\B(d.},R/2) Vi

Jm(1))

N

Foc oWVl L2 B(d.er, r)\B (.60, r/2))

L(&CQ,R)\B(&Ca,R/2)

< Im(y)| +oloWlell e ((a.z.0))

[B(&ca,R)\B(&ca,R/Q)

therefore, by standard coercivity argument, we can change this orthogonality condition, given that
¢ is small enough (depending on D). With equation (3.3.6), it is therefore enough to show that

1 loc
|BS2(9) — B2 ()] < oo 112 (a0

to complete the proof of this lemma. Thus, for p=Q) € COO(IRQ\{dCel} (D) writing = Vl( 1/))
in BIOCD(cp) we have

1 1 ocC
Bo™P(9) — BeP ()

oy R0 00) + (1= Vi)l +2(9€( Qi) — e (Vi)

—
Qb
o

D)VTI-(E)%(VQc@)IwI2 20m(VQcQc)Re (1)) Im(v)))

J,
L(aca,
sy Qe 12 on = Qc c
M /B(&cei,D)vn(%e(v‘/lVl))% 1/)) 2m V SRQ(V} ) m( ))
s [ ) m()| Q.
B(de&,D)
[,y MTU IR+ 2RIl
B(d.et,
-/ n\( ) |Qc|2+2sm( Jialt)
B(dcel
iy ORI QRIMTIR() + 261 I (2t Re()
B(d.&,D
B sl of Qe Qe
(s m(V(vl Jp(e))
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With Theorem 1.3.1 (for p=+00) and Cauchy-Schwarz, we check easily that
I sy RG22 11 AR+ 2R Q) — e (Vi)
< o2 )HWHHl &.D))"

Since V7 is supported in B(dcel, )\B(dcé’l, 1), still with Theorem 1.3.1 (for p=+00), we check
that

/ - \Vn Re(VQ.20)| 6|2 — ViRe(VViTL) )&1#) |
< K/ . ‘Vn-iﬁe VQ.Q0)|p|? — ViRe(VIVL) ’T‘P‘ ’
.@.D) Vi

<

VnRe(VQ.Q.) - vnme(vﬂﬁ)‘% 2
1

L°°((&ca,D))”(pHHl(B(Elca,D))
< ol.o(1 )H<PHH1 i.51.0))

We check similarly that the same estimate hold for all the remaining error terms, using the fact
that 7 is supported in IRQ\B( €1, ) |

Remark that, by density argument (see the proof of Lemma 3.2.4), Lemma 3.3.3 holds for any
o€ HYB(0,D)). Now, we want to remove the orthogonality condition on the phase. For that, we
have to change the coercivity norm

Lemma 3.3.4. There exist R, Do > 0 with Do > R, such that, for D > Do, 0 < c < co(D) and
p=Q € CEO(IRQ\{dCéi}, (D) , if the following two orthogonality conditions

L(&c&R)me(%Vlm> - L(&ca,mme(a’“‘}lm) =0

are satisfied, then

BYS“2(p) > K(D) / CIVORIQ (1) Qu
B(d.é),D)

Proof. Take a function p € H(B(0, D)) that satisfies the orthogonality conditions

/ i %e(@xlﬂm)z/ ) me(axgvlm>:/ N ) Jm(v) =0,
B(deel,R) B(dee1,R) B(dceh,R)\B(dce1,R/2)

and lot 1s show that BloC1 2(p) 2K||90H§{1(B(& &1.p))- Take £1,22,e3€ R and we define

Q= —€10:,Qc — €20:,Qc — €31 Q.

We have, for ¢ = Q.1, by Theorem 1.3.1 (for p=+0o0) and Lemma 3.1.14,

/ o e( V) - / ] me(achM)‘
B(d.e1,R) B(d.é1,R)

< / 9‘{2(5}1‘/1 - aﬂlec@)
B(d.é1,R) Qc
> Vi
< K (93;1‘/16 0z, Qe H<P||H1(B(&C<?1.,D))
‘ L>(B(de?, R))

< OCHO( )”(p”Hl a,D))'
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Similar estimates hold for [ B4 R)s)%e(awvl%w). By standard arguments, we check that there
c€1,

exists £1,€9,e3 € R with |e1]| + |e2] + |e2| < 0c—0(1 )H(pHHl d.z,p)) Such that ¢ satisfies the three
orthogonality conditions of Lemma 3.3.3. We deduce that since (by Theorem 1.3.1 for p=+00)

Haw1Q6||H1(B(c~lct?1,D))+||8x2QCHH1(B( e +HZQCHH1 ))<K(D)
Blocl D((p) > 31001 D((p)—ocﬁo( )”(,DHHl (d.&1,D))
> KD)815 (52 ? oWlel sz )
> K(D)Hsonl(B(“D oo el s(az,p))
> K(D)| 23 pa.c0.0))
)-

given that ¢ is small enough (depending on D). For ¢ = Q.t, we infer that

CVBRIQe R Qe < K (D)€l nao)
B(d.&,D) (B(det1,D))
Indeed, we have

| wewedi<k [ we) <Kol )
B(d.&,D) B(d.&,,D)

and

/~ VORQ. = / Ve — VQu21QuP?
D) B(3.5.D)

B(dcel,D
K(/ |Vsa|2+/~ |vc2¢w|2|@c|2>
B(d.é,,D) B(d.&,,D)

K(/ |w|2+/~ w)
B(d.&1,D) B(d.&:,D)

We deduce that, under the three orthogonality conditions, for ¢ = Q,

/~ me(azlvlm)z/ ) me(amvlm):/ ) ) Im(1) =0,
B(deei,R) B(dee1,R) B(d.&1,R)\B(d.e1,R/2)

N

N

then
D)|V1/)|2|Qc|4 +Re*(1)] Qe[

Now, let us show that for any \ € R, cpEHl(B(&Ce_'l,D)),

BE (0~ 10Q0) =BG ().

For p€ C°(R?, C), we have Lo (¢ —iAQ.) = Lg.(¢) € C(R?,C), thus (Lo (¢ —iAQc), p —iAQ.)
is well defined, and

(Lap =iAQc), ¢ —iAQc) = (La.(9), ¢ = iAQe) = (¢, Lo.(¢ = iAQc)) = (Lq.(#); ¢)-
With computations similar to the one of the proof of Lemma 3.3.1 and by density, using V(¢ —
i\) =V and Re(y) —i\) =Re(¢)), we deduce that Blocl Plo—idQe) = BB:I’D(()D).
Now, for A€ R, @=¢ — iXQe, =1 — i\, §= Qub, we have B4 (0) = BE (),

/ CIVORIQu R4 Qul = / CIVORIQ () Qo
1 B(d.&),D) B(d.&),D)
an

L(aceif%)%(vvlm) - [e(&ca,m%(vvlm)'
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For this last equality, it comes from the fact that - Re iVVﬂZ =0, since Re Z'VVJZ
B(d

<&, R)

has no zero harmonic (see Lemma 1.2.1). We also check that

/~ ) Jm(w):/ ) - Jm(ep) + KA
B(d.&1,R)\B(d.e1,R/2) B(d.e1,R)\B(d.e1,R/2)

for a universal constant K > 0. Therefore, choosing A € R such that - - Jm () =0,
B(d.h,R)\B(d.e1,R/2)

we have, for a function ¢ = Q. that satisfies

[B(Zica»R)%(a“Vlm) - A(acam%(aﬁ”z‘}lm) =0,

that
Bg(¢) = Bg"(9)
> [ VIRQL R @) Q)
B(d.&1,D)
= [ VUPIQu ) Ql
B(d.&1,D)
This concludes the proof of this lemma. O

3.3.4 Proof of Proposition 1.4.3

Proof. (of Proposition 1.4.3) From Lemma 3.3.1, we have, for o= Q. € C?(RQ\{&céi, 7&56_'1},
C) that

Bale) = [ (=m(VeP~Relicdruep) = (1= QcPl o+ 26T
— [ VOV QDI P 29m(VQ)Re()Im()
[ coname(u)Im(u)| Q.
+ [ aVeRIQ R +2me )l
+ [ IV QZ)IM(T)Re() + 2] QclIm(2,,0)e().

We decompose the integral in three domains, B(iglcéi, D) (which yield Blé’:il‘D(gp)) and
R?\(B(d.€1, D) UB(—d€1,D)) for some D > Do >0, where Dy is defined in Lemma 3.3.3.
Then, with the four orthogonality conditions and Lemma 3.3.3, we check that

B2 () > K(D) / -

B(d.a,

D)IVwIQIch“+9‘i62(w)|ch4,

and, by symmetry of the problem around B(:l:&ce_'l, D), since Q.= fV,l(. + &Cé'l) + 0c—0(1) in
L°°(B( —d.eq, D) ), and checking that multiplying the vortex by —1 does not change the result, that

BS12() > K (D) / V02 Qult + Re2(1) | Qul .
B(~d.&,D)

deei,

Furthermore, there exist K7, K> 0, universal constants, such that, outside of B(d.€1,1)U B(—d.€1,
1) for ¢ small enough, we have

K1> |Qc|2>K2
by (3.1.12). We also have

[Im(VQLQe)| < K( a iﬁ) T +1f_1) )
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by (3.1.10). With these estimates and by Cauchy-Schwarz, for D > Dy,
Lo 2] QuPIm(De)Re(v)
R2\(B(d.&1, D)UB(—d,é1, D))

> —Ke / ~ CVORIQU (1) Q.
R?\(B(d.&},D)UB(—d.&1,D))
and

/ N ) 43m(VQ.Q.). Im(Vp)Re (1))
R2\(B(d.&1,D)UB(—d.&1,D))

_K /
>
(1+ D) Jr2\(B(d.6.D0)UB(~d.2.D))
Therefore, taking D > Dy large enough (independently of ¢ or ¢g, D > 10K + 1) and ¢ small enough
(e< l—lg), we have

VY 2| Q| + Re? ()| Qe| -

Lo VPR R Q.
R2\(B(dc&,D)UB(~d.e, D))

€1,

+ / ) 4OV QL) Im(V)Re() + 26| QuPIm(Du, ) Re (1)
R2\(B(4.61,D)UB(~4.61,D))

—d.e

>z K ] _ IV Qcl* +Re?(¥)]Qcl*.
R2\(B(d,&,D)UB(~d.&,D))

We deduce that, for ¢ = Qup € C°(R2\{d.€1, —d.¢1 }, C),
Ba.(p) = K|lpl2

L(&c” R)%e(azlvlm>L(&caﬂ)%e(&gz‘am)07

é1,

L (7&0673)9‘&(5&1‘7,1@): L (7&@&)%(0@17,1@):0.

We argue by density to show this result in Hg,. From Lemma 3.2.1, we know that ||.||c is continuous
with respect to ||.||r,, . Furthermore, we recall from Lemma 3.2.2, that

if

A(@,R)?”e(%m—w)} <K(©)¢]mq,.

and similar estimates hold for
/ _ 9{6(812‘71@)7/ ~ me(axlvflvflw)
B(d.ei,R) B(—d.é1,R)

/ o me(0.VaV0). (3.3.7)
B(-d.&,R)

and

In particular, we check that these quantities are continuous for the norm ||.||g,_, and that we can
pass to the limit by density in these quantities by Lemma 3.2.4.

We are left with the passage to the limit for the quadratic form. For ¢ € Hg_, we recall from
(1.4.3) that

Bale) = [ [VeP=(1-1QuPeP +25%(Ti)
+ o (= nReivnep)+e | ne(io,Q@IP
— 2 RevImd0IQ:P —c | dnReuImi|Quf
R2 R?
- o] nmevamio Q)
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Following the proof of Lemma 3.2.3, we check easily that, for 1 =Q)1, 2= Q2 € Hg,, we have

Vol + 100 - 1QuP) e+ [9e Q) R @)
+ [ A= nmevneel+ [ 00,000 i
[ nlRewImdnl| QP+ [ et minQ

[ nimevamiad, Q)
K (@)l o, le2l .

N

and thus we can pass at the limit in Bg, by Lemma 3.2.4. This concludes the proof of Proposition
1.4.3. g

3.4 Proof of Theorem 1.4.4 and its corollaries

3.4.1 Link between the sets of orthogononality conditions

The first goal of this subsection is to show that the four particular directions (9,, Qc¢, Or, Qe c20.Qe,
c0.1Q.) are almost orthogonal between them near the zeros of @Q., and that they can replace the
four orthogonality conditions of Proposition 1.4.3. This is computed in the following lemma.

Lemma 3.4.1. For R > 0 given by Proposition 1.4.3, there exist K1, Ko > 0, two constants
independent of ¢, such that, for Q. defined in Theorem 1.5.1,

K< /  0nQ.P+ / C 0mQu+ / CP0Q.+ / QP <Ko,
B(+d.&,R) B(+d.&},R) B(+d.&,R) B(+d.&),R)

Furthermore, for A, B € {OMQC, 02,Qe, 20:Q.., COCLQC}, A # B, we have that, for 1> >0 a
small constant,

/ Re(AB) = 0o o(c™).
B(d.e1,R)UB(—d.ei,R)

Proof. From Lemma 3.1.1, we have, in B(4d.¢}, R), that (for 0<o=1— Fy<1)
Qe(x) =Vi(x — de€1)Voi1(z + de€h) + 0c—o(c)

and
VQi(x)=V(Vi(z — dee1)V_1(z + dc€1)) + 0c—o(c™).
In this proof a o._o(c) may depend on R, but we consider R as a universal constant. From

Lemmas 1.2.1 and 3.1.12 and equation (3.1.7), we show that, by the mean value theorem, in
B(+d.€1, R),

Qe=ViV_1+ 0c—0(c%) = Viy + 0c—0(c?) = Vi1 + 0co(c™) (3.4.1)
and, similarly,
VQe=VVii+0co(c™). (3.4.2)
Thus, in B(id;é’b R), we have
Oz, Qe =02, V1 + 0c—0(c™) (3.4.3)
and
02y Qe =05, Vi1 + 0c (). (3.4.4)

Furthermore, by Lemma 3.1.2, we have in particular that in B(j:(fce_'l, R),
0:Qe= (1+ 0c—0(c™))0a(Vi(z — dér)V_i(z + dé1)) ja=a, + 0c—o(c™).
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Thus, in B(id;é’h R), with Lemmas 1.2.1 and 3.1.12, we estimate
Czach::Famlv:tl +0c~>0(cﬁo>~ (345)

Finally, from Lemma 3.1.6, we have
c0,1Qe=—cxt.VQ,
with 2t = (—29,2;). In B(id;é’h R), we have, since c¢d. =1+ 0c—0(c’) and Lemma 3.1.12,
cxt=Fér+ 0. o(c™).
Therefore, in B(+d.¢}, R), we have
0,1 Qo= £02, Vi1 + 0c0(c?). (3.4.6)

Now, from Lemma 1.2.1, we have
K1</ . |8z1‘7i1}2+/ |0V P <K (3.4.7)
(£d.&1,R) B(+d.&,R)

for universal constant K1, K2 >0 (depending only on R). By a change of variable, we have, writing
Vi1 = p(7Fi1)et?*1 (with the notations of Lemma 1.2.1),

8I1Vi1: (cos(é )P (Til) —ﬂsm( ))V:tl (348)
p(Fe1) a1
and
~ / ~
awgvj:lz (Sln( )p (Tj:l) + COS(H ))Vil (349)
. p(Fx1)
Since
7 5 p'(F41) 7. 2
%e(@leﬂ@mVﬂ) 2COS(9ﬂ)Sm(9ﬂ)rilp(rﬂ) |Vi1} ,
by integration in polar coordinates, we have
/ ) %e(azlvﬂamvﬂ) —0. (3.4.10)
B(+d.&,R)

Combining (3.4.3) to (3.4.6) with (3.4.7) and (3.4.10), we can do every estimate stated in the
lemma. g

With (3.4.3) to (3.4.6), we check that these four directions are close to the ones in the ortho-
gonality conditions of Proposition 1.4.3. This will appear in the proof of Lemma 3.4.5. Now, we
give a way to develop the quadratic form for some particular functions.

Lemma 3.4.2. For p€ Cg°(11{2\{d}€1, ﬂfce—i},(@) and A € Span{alec, 0z, Qecy Q0 GCLQC} , we

have

(Loe+A), o+ A)=(Lq.p), )+ (2Lq.(A), p) + (Lq.(A), A).
Furthermore, (Lg (¢+ A), o+ A)=Bg . (¢p+ A) and (Lg.(A),A)=DBg.(A4).
Proof. Since ¢ € C?(Rz\{dcéi, ﬂfce—i}, ©), it is enough to check that Re(Lg (A4)A) € LY(R? R)
for Ae Span{@lec, 0z, Qc, 0cQcs 6CLQC} to show that
<LQC(SD + A)a ©+ A> - <LQC(<P)7 90> + <2LQC(A)7 90> + <LQC(A)’ A>
From Lemma 3.1.7, we have, for A= 10, Q¢+ 11202,Qc + 14130:Qc+ 140, Q., that
LQC(A) = 1131 02,Qc — 141 0z, Q.

Now, with (3.1.16) (that holds also for A by linearity) and (3.1.9), (3.1.10), we check easily that
Re(Lg.(A)A) € LY(R?, R).

Now, from subsection 3.2.3, to show that for ® = Q.V € Hg_ N C?*(R?, C), we have (Lg (P),
®) =Bg, (), it is enough to show that fRzazz(nQ‘ie\PJm\MQCF) is well defined and is 0. For ®=A
or &=+ A, this is a consequence of (3.1.16), Lemma 3.1.16 and p € CSO(JRQ\{JCéi, —JC€1}, C). O
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3.4.2 Some useful elliptic estimates

We want to improve slightly the coercivity norm near the zeros of Q.. This is done in the following
lemma. The improvement is in the exponent of the weight in front of f2.

Lemma 3.4.3. There exists a universal constant K >0 such that, for any D >2, for Vi centered
at 0 and any function f € CEO(IRQ\{dCé'l, fdcé'l},IR), we have

| P < / VTPV P e
B(+dcé1,D dcé1,D
In particular, this implies that, for ¢ € C*(R*\{0},C),
| me@WPd<k [ wepmii sl de.
B(0,D) B(0,D)

This lemma, with Lemmas 3.1.14 and 3.2.4, implies that, for ¢ = Q) € Hqg,,

| mewiar <xlel. (3.4.11)

Proof. Since |Vi| > K >0 outside of B(0,1), we take x a radial smooth non negative cutoff with
value 0 in B(0,1) and value 1 outside B(0,3/2). We have

/ xf2|V1|3dx<K/ xf2|V1|4dl‘<K/ Vil d.
B(0,D) B(0,D) B(0,D)

In B(0,2), from Lemma 1.2.1, there exists Ki, K2 >0 such that K; > l _‘ > K>, and thus

/ (O?D)(lx)fQIVldeéK( [ [a=xinswrar Jas

For geCSO(IR\{O},IR), we have
[ a=xtngeyar - / 0,((1— )g?)rdr
— 5 1 ? / 2 5
= 2 [ 0= xmoamsriar+ 3 [ gy

0 0
and since x'(r) #£0 only for r € [1, 2], we have

/ IX'(r)| g%(r)rPdr < K/ Yridr,
and, by Cauchy-Schwarz,

/02(1 = x(r)10rg(r) g(r)|r>dr < \/AQ(@Q)QT"’drAQg?(r)rE’dr,
/02(1 X(T)>92(T)T4d7“<K(/OQ(&Q)QTE’dr+/O2g2(7")r5dr>,

and taking, for any 6 € [0,2x], g(r)= f(rcos(d),rsin(h)), and since r < K |V1] in B(0,2) (by Lemma
1.2.1), by integration with respect to 6, we conclude that

We deduce that

/ (1—x>f2|v1|3dx<f</ IV FRIVA[ 4 £V de,
B(0,D) B(0,D)

which ends the proof of this lemma. O

We estimate here some quantities with the coercivity norm. These computations will be useful
later on.
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Lemma 3.4.4. There exists K >0, a universal constant independent of c, such that, if ¢ is small
enough, for Q. defined in Theorem 1.3.1, for p = Qe € C°(R*\{dc€1, —dce1}, C), we have

[ etwamv o) < k(L)oo

| A IRV QT

and

<K|elle

Proof. By Cauchy-Schwarz, Lemmas 3.1.11 (with a slight modification near the zeros of Q). that

does not change the result) and 3.4.3,
p)
< \// Re( |Qc|3 |3m |VQQ|C3»T|

< xu(L) /] me2<w>|Qc|3
< & il

We now focus on the second estimate. We take x a smooth function with value 1 outside of {77 > 2}
and 0 inside {7 < 1}, and that is radial around +d.€] in B(:l:dce_'l, 2). We remark that

Re(VQG) =5V (1Qc?) =5 V(MIQe? = 1)+ (1= )|Quf?) + 5V x.

thus, by integration by parts, we have

[ am@mevQ) = 5[ m@TOQE -1+ (1= 01QP) +5 [ Tram()
RQ RQ

= S [ mEExQE -1 -5 [ m(Ve)1-viQ.P
+ %A{QVxﬁm(w).

[ etwmvoq

and, since Y is radial around +d.€} in B(iglcé’l, 2),

/ Im()Vy = / ~ C Im@*)Vx
R? B(d.&,2)UB(—d.&1,2)

Since V' is supported in (B(Elcéi, 2) U B(—Elcéi, 2))\(B(dcé'1, 1) U B(—Elcéi, 1)), by equations

(3.1.12), (3.1.28) and Cauchy-Schwarz,
<&\ [ [vuRIQiL
R2

/ (170
B(d.&1,2)UB(—d.é1,2)
Now, by Cauchy-Schwarz, we check that

<iy/ [ Iverial [ a-xrp<wy[ worad,

R? R? R?2
Furthermore, we check that (x being supported in {F > 1})
[amwonter-v] < /[ ver] gad -1y
<K/ |vw|2|czc|4.
RQ

Indeed, we have, from equation (3.1.6) (for 0 =1/2), that

_ K
(147)3%

[ amwoa-vier

||Qc|2 - 1| <
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which is enough to show that

/ (1Qe2— 1)< K.
RZ

Combining these estimates, we conclude the proof of

<w\[ [ [VUPIQI < K¢l 0

3.4.3 Coercivity result under four othogonality conditions

[ amtwmvoq:

The next result is the first part of Theorem 1.4.4, the second part (for the coercivity under
three orthogonalities) is done in Lemma 3.4.6 below. We recall that, in B(idcé'l, R), we have
V70(x) = ¢(x) — YO+ (F41) with »OF1(71;) the O-harmonic centered around +d.€} of 1.

Lemma 3.4.5. There exist R, K, co>0 such that, for 0<c<co and p=Qp € Hg,, Q. defined
in Theorem 1.53.1, if

Re / )  0,,0.047 =% / 9,,Q.079=0
B(a 4 R) )

€1, R)UB(—d.e1,R B(d.e1,R)UB(—d.&1,R

B(d.e1,R)UB(—d.e1,R)

Re / 0.Q.Qur = Re / 0,-QuQu70=0
B(d.e1,R)UB(—d.&1,R) (
then
Bo. () = K| ¢ll2

Proof. For p=Qu) € CSO(JRQ\{JCéi, —Jc€1}, C), we take 1, ¢e9,€3,24 four real parameters and we
define

lec C ach ngc CacLQc

Qe Qe © Q. Qe

Since, by Lemma 3.1.7, 0z, Qc, 02,Qc, 0cQc, 0.1 Qc € Hg., we deduce that Q" € Hg,. Furthermore,

we have

V=1 +e

A(&caﬂ)%(%ﬂm) - [9(&; R)me(a’“‘am)

€1,

+ 61/ %8((9“‘/1 lec )
B(d.é1, R)

aﬁcl‘/lc ach )

+ 53/ _ 9{3<ax xQQc )
B(d.&,R)
(azlvlcacLQcQ )

From (3.4.8), we compute

~ = ~ e ) ~ ~
0, VAV1 = <cos(91)pp((;11)) —Filsin(el))|V1|2,

and in particular, it has no O-harmonic (since |V;|? is radial). Therefore,

/9 (acamﬂ%(aﬁﬂm) B /y(aca,m%(awl‘am) -

/ Re
B(d.e1,R)

/

8x1Qch1/ﬂéO) Jr‘/ - i)%e( (awlvl‘jvl - 8961@6@) 1/)7(:0)'

B(d.&,R)
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By Cauchy-Schwarz and equation (3.1.28),

QU< K / ~ QY<K [[o]3. (3.4.12)
) B(d.é.R) ®)

L(&ca,R)uB(&ca,R

UB(—d.él,

Here, K depends on R, but we consider R as a universal constant. We remark, by equations (3.4.3),
(3.4.5) and (3.4.12) that

Lo (02, Qe — 20.Q0) Q)™

2 L(aca,R)uB(ﬁca,R)
- / (0,007 +ool MK g 2
B(d.&,R)
where By >0 is a small constant. We supposed that

e [ 0.,Q.Qu070 =%k [ 2.Q.Q7 =0,
B(d.&1,R)UB(—d.e1,R) B(d.&1,R)UB(—d.e1,R)

therefore

[ 9e(0,0Q0 ) = oae®)K o R
B(dcé1,R)

Furthermore, by equations (3.1.7), (3.1.28), (3.4.3), Lemma 3.1.14 and Cauchy-Schwarz,

< Oc~>0(cﬁo)\//B(‘2 . R)|1/)7&0|2|QC|2

< oemo(c™)K [ olle

L ( Re((9,,ViVi - 05, QQ:) )

Now, from Lemma 3.1.14 and equation (3.4.3), we estimate

/ e 0, Vi, Qi | = / 100, V12 + 0c(1).
B(d.&1,R) Qe B(d.é1,R)

With (3.4.4), we check

/ Re[ 0,,V10,,Q02E | = 00o(1).
B(d:81,R) Qe

Similarly, by (3.4.5) and Lemma 3.1.14, we have

/ SRe<((7‘z1‘7162((7‘cCQc£) = */ |8I1‘71|2 + 0c~>0(1)
B(d.e1,R) Qe B(d.é1,R)

and by (3.4.6), we have

/ w(axlvlcacicgcﬁ) — 00(1).
B(d.é1,R) c

Thus, with (3.4.7) we deduce that, writing

K(R)= / 100, Vi () 2dz,
B(0,R)

K(R)= / B0 Vh[2 = / ENA / 0, Vi[2 = / R
B(d.e1,R) B(—d.&1,R) B(d.e1,R) B(—d.&1,R)

we have

/ ) me(ah\?ﬂaw*)
B(d.7.R)
= (e1—e2)K(R) + 0co(1)(e1+e2+E3+£4) + 0cso(c™) K | 0|c
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Similarly we can do the same computation for every orthogonalities, and we have the system

oz R)m(a’“m}lw*)
s = 1 -10 0 €1
fB(_aC&R)%e(aleAVfﬂ/J) | xr) 1100 | o || e
~ = 0 0 1 -1 7 €3
fB(&cayR)%e(a“vlvlw) 00 1 1 €4
Re( 0,.VAV-10" )

fB(—&Ca,R)
+ 0co(c™)K]lp]le-

Therefore, since the matrix is invertible and K(R) > 0, for ¢ small enough, we can find &1, €9, €3,
4 € R such that

le1] + |eal + les| + lea] S oc—o(c™)K || ¢llc (3.4.13)

and

[5 (aca’R)me(amVlW)z /B Mﬂ)m(%ﬂ%):o,

L(&m)me(amvlvm*)L(&Cm)me(amvlm)o.

Therefore, by Proposition 1.4.3, since Q* € Hg,, we have
Bq.(Q*) = K[| Qev™||2-

From Lemma 3.1.8, we have,
102, Qelle + 102,Qclle + [|20:Qcllc + €7/ ?(|c0er Qclle < K (5o)
hence, since Q.(v* — ) =¢£104,Qc + £2¢20:Qc + €302, Qe + €40, Q.

Qe |2
< Q™ |IE + 1| Qe(v — v) |2
< Q™ (IZ + K (Bo) (1] + lea| + |es| + ¢/ % |e4))?,

therefore, for ¢ small enough, by (3.4.13), we have

Q™12 = K||Q |2

and
B Q™) = K ||Qa |12

Finally, we compute, since Q.(1) — 1*) =€10,, Q¢+ £2?0.Q ¢+ £30,,Q ¢ + €401 Q., by Lemma 3.4.2,
that

Bq.(¢) =Bq@. Q") + Bq.(Qc(v — ¥")) + 2(Qct)™, Lo (Qc(¥ — 7))
Furthermore, we compute, still by Lemma 3.4.2,

Q™ Lo (Qe(¢ = 7)) = =Ba.(Qc(¢) = ¥7)) + (Qet), Lo (Qe(¥ — 7)),

therefore
Bqa.(¢) = BQ.(Q)") = Bo.(Qe(¥ — 7)) + 2(Qct), L (Qc(v) — 1))
> K||Q |2 — Bo.(Qe(¥ — ¥%)) + 2(Qct), Lo (Qc(¥ — ¥7))).
We have
Qe — ") = (€102, Qc + £2¢°0:Qc + €301, Qc + £4¢0:1 Q)
and from Lemma 3.1.7, we have

LQc(QC(1/) - w*)) = 762622‘ 8I2QC + 6254i8I1Qc~
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We compute
Bq.(Qc(v —¥7))
= (—(£108, Qe+ £2¢%0:Q + €302, Qi+ 40001 Q) — €91 Dy Qe + P41, Qc),
and with (3.1.3), we check that
B (Qc(v = ¢7)) = 5¢H(Lq.(0:Qc), 0:Qe) — £5¢*(L@.(0:1Qc), Dot Q).
With Lemma 3.1.9 and equation (3.4.13), we estimate

1Ba(Qe(v — )| S K (e + e3) < 0e—o(1)]| Qe [I2-

Finally, we have

<cha LQL(QC(w - 1/)*)» = <ch7 *6252iax2Qc + 62547:8le5>~

We compute

2(Quib, iV Q) = /

R2

Jm(Y)Re(VQ.Q.) — c? RQSRe(z/J)Jm(VQC@),

and to finish the proof, we use
. 1
e1Qub 7o) < Ketn( 2 )1 Quv e (34.14)

for a constant K >0 independent of ¢ by Lemma 3.4.4, which is enough to show that

(Qct, LQ.(Qe(y — ¢7)))]
< oe—o(1)(Jea] +lea]) [ Qe lle
< OCHO(I)HQCQ/}H%a

since cln( 1) = 0._0(1). We have shown that, for ¢ € C°(R?\{d.€}, —d.€1}, C)

c

Q

Bo.(¢) = K|[Q|2 — B (Qe(¥ —v%) +2(Qct), Lo (Qe(¥) — )
> (K —oc—o(1)| Q|12
K
for ¢ small enough. Now, by Lemma 3.2.4, we conclude by density as in the proof of Proposition
1.4.3. O

3.4.4 Coercivity under three orthogonality conditions

Lemma 3.4.6. There exists R, K >0 such that, for 0 < < By, Bo a small constant, there exists
co(B), K(B) >0 with, for 0<c<co(B), Q. defined in Theorem 1.3.1, o= Qs € Hg,, if

SRQ/ - - achchﬂ&O = SRQ/ . . 8z2Qch'¢ﬁ£O =0,
B(d.&,R)UB(—d.&,R) B(d.&1,R)UB(— )

dcéi,R

Re / 0.Q.Q70 =0,
B(d.e1,R)UB(—d.e1,R)
then

Bq.(¢) 2 K(B)** 702

Proof. As for the proof of Lemma 3.4.5, we show the result for o = Q.1 € C’SO(IRQ\{JC&, fdle_'l},
C), and we conclude by density for ¢ € Hg,.

For p=Q. € CSO(IRQ\{Jce—'l, —d.é, },C), we take e1,e2,e3,£4 four real parameters and we define

2
a.’,leC +e C ach aa:ch +€4calec.

vi=vtaTy Q- Q- Q

+e3



192 COERCIVITY AND APPLICATIONS

With the same computation as in the proof of Lemma 3.4.5, we check that Q.¢* € Hg,, and using
similarly the estimates of Lemma 3.4.1, we can take €1, 9,€3,e4 € R such that

le1] + leal + les| = 0c—o(c™) ¢ |lc,

lea] < K||¢]lc and such that ¢* satisfies the four orthogonality conditions of Lemma 3.4.5. There-
fore,

Bo.(Qa") > K| Q2. (3.4.15)
We write

T =102, Qc+ £2¢*0:Qc + €302, Qe
and we develop, by Lemma 3.4.2,

BQC(ch)
= B.(Qa)*) +*1Bq. (0.1 Q) + Bo.(T)
— Q" sl (0.1 Qc)) — 2(Qc*, Lo (T)) + 2¢e4(Lq (0.1 Qc), T).

Using Lemmas 3.1.7 and 3.1.9, we compute
|BoT)| = [Lq.(T),T)|=|Lq.(e2c?0.Qc), e2¢*0:Qc)|

e3¢ (Lq.(0:Qc), 0:Qc)|
Ke3c? = 00_o(c>H2)| 0|2 (3.4.16)

N

Now, we compute, by Lemma 3.1.7, that
<Qc1/)*7 CE4LQc(a¢:LQC)> = 54C2<Qc'¢)*7 Za:ch)

From Lemma 3.4.4, we have

le(Qe*,10,, Q)| < OCHO(Cl_BO/Q) le*llcs
therefore

Q" cealq (91 Q)| < 0c—o(c 72| o lcl o llc- (3.4.17)
Similarly, we compute

(Q*, Lo (T)) =(Q*, £2¢*L@.(0:Qc)) = e2¢*( Q™ 101, Qc)-
Still from Lemma 3.4.4, we have

. 1
e1Qui.i0.,,Q0) < Ket( 1 )l

therefore
(@, La(T)] < Kleakin( £ )l <oc-sle™* )" el (34.18)
Finally, we compute similarly that
clea{Lo,(0.1Qe), T)| = clea(icds, Qc, T)| = 2|ea(i 02, Qc, £2¢%0:Qc + €302, Q)|
Using Lemma 3.4.4 for ¢ =c?0.Q. (with Lemma 3.2.4), we infer
(002, Qe 0eQc)| < K [|?0eQc e
and ||c20.Q.||c < K by Lemma 3.1.8. Furthermore, since Q.(—x1,72) = Q.(x1,z2), we have

<i aﬁleC) a962(2(:> =0.
We conclude that

|eea(LQ. (06 Qc), T)| K [ea|(le2] + les]) = 0c—o(FH/2) [0 2. (3.4.19)

Now, combining (3.4.15) to (3.4.19), and with Bg (90,1 Q) =27 + 0.—0(1) from Lemma 3.1.9, we
have

Bq.(¢) 2 Kl¢*[ + Kefe — 0c—o(®F /)| 02 = 0cmo(c' /%) [ 7 lc | o lle-
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Similarly as in the proof of Lemma 3.4.5, we have from Lemma 3.1.8 that, for any 8y/2> 5 >0,

el < Klle®|I2 + K (B)eie?,

hence
el = K(B)P([lollE — ll#*112),
therefore
Ba.(p) = Ki(B) (¢ 2 + T Pll¢li2) = Ka(B) P 0*[12 — 0c—ol(® 772|012
= oco(c ) ¢*llellelle
> K(B)t o2
for ¢ small enough (depending on ). O

Lemmas 3.1.12, 3.4.5 and 3.4.6 together end the proof of Theorem 1.4.4. Remark
that in both Lemmas 3.4.5 and 3.4.6, we could replace the orthogonality condition

Z0_
%QIB(EICQLR)UB(,&C&_’R)8:@:@&/’ =0 by
%8/ ad(Vl(x —dé’l)V,l(erdé'l))‘d:dCQCW&O(x)daz:O, (3420)
B(d.&t,R)UB(~d.&1,R)
since, by Theorem 1.3.1 (for p=+400),
[c20:Qc — Da(Vi(z — d&1)V_1(z + d&1)) | d=d.

CY(B(dce1,R)UB(—d.1,R)) — 0c—o(1),

and thus this replacement creates an error term that can be estimate as the other ones in the proof
of Lemma 3.4.5.

3.4.5 Proof of the corollaries of Theorem 1.4.4
3.4.5.1 Proof of Corollary 1.4.5
Proof. We start with the proof that (i) implies (i7). We start by showing that, for po€ C2°(R?,C),

Bq.(¢+ ¥o) = Bq.(#0)-
We take po= Q.40 € C°(R?%, C) and, by integration by parts, from (i), we check that

(Lq.(¢0), ) =0.

Furthermore, we check (for ¢ € CSO(IRQ\{Jcéi, ﬂfce—i}, C) and then by density for ¢ € Hp,) that
for o € C(R?, C),

Bq (¢ + ¢o) = Bq.(¢) + Bq.(¢o) +2(¢, Lq.(#0)),
hence

Bq.(¢+ ¢0) = Bq.(#) + Bq.(¢o)- (3.4.21)

Similarly as in the proof of Proposition 1.4.3, we argue by density that this result holds for ¢o€ Hq,.
Now, taking o= —¢, we infer from (3.4.21) that Bg (¢) =0, thus, for ¢ € Hg,,

Ba.(¢+ ¥0) = Ba.(¢o)- (3.4.22)
Now, similarly as the proof of Lemma 3.4.5, we decompose ¢ = Q) € Hg, in
=" +2102,Qc+€20,,Q. + £3¢%0.Q.
with
lex] + leal + lesl < Kl elle,
such that ¢* verifies the three orthogonality conditions of Lemma 3.4.6. We write

A= Elalec + 528962@6 + 530286625 € HQC



194 COERCIVITY AND APPLICATIONS

by Lemma 3.1.7, and using (3.4.22), we have
Ba.(¢") = Ba.(p—A)=Bq.(A).
From Lemma 3.4.6, we have Bg_(p*) = Kc¢*+50/2||*||2. Furthermore, from Lemmas 3.1.7 and 3.1.9,
Bo,(A) =£3¢®>Bg (0:Qc) = (=2 + 0c—0(1))e3 < 0.

We deduce that €3 =0 and ||¢*||¢c =0, hence ¢* =iuQ. for some p € R. Since p*=¢ — Re€ Hg,,

we deduce that ;=0 (or else ng*”%{QC}fRQ(li—fV:Jroo). Therefore,

0 =6€10z,Qc+€20,,Q € Span]R(alem angc)-

Finally, the fact that (¢¢) implies (i) is a consequence of Lemma 3.1.7. This concludes the proof
of this lemma. g

3.4.5.2 Spectral stability

We have H1(R?) C Hg,, therefore Bg, (¢) is well defined for ¢ € H'(IR?). Furthermore, the fact that
i0:,Q. € L*(IR?) is a consequence of Theorem 3.1.4, and in particular this justifies that ((,i0,,Q.)
is well defined for ¢ € H*(R?). For ¢ € H(IR?), there are no issue in the definition of the quadratic
form, as shown in the following lemma.

Lemma 3.4.7. There exists cg > 0 such that, for 0 < ¢ < ¢y, Q. defined in Theorem 1.3.1, if
o€ HY(IR?), then

Ba.(e) = [ [Vl = Relicnep) — (1= 1QuP)lo + 206 Qo).

Proof. We recall that H!(R?) C Hq, and, for p = Q. € H*(R?),
Bale) = [ [VeP=(1-1QP)eP +29%e()
— o (-nReivnep)—c [ nneio QTP
+ 2 [ et Imd 010 +e [ dunenIm|Quf
+ o nevImion Q..

Since p € H'(R?), the integral [1.,Re(icd, @) is well defined as the scalar product of two L*(IR?)
functions. Now, still because ¢ = Q) € H*(IR?), we can integrate by parts, and we check that

/ nRe Y ImO,, 0 |Qc|? = —/ NReDp,th Iy |Q.|?
R?2 R?2
- / Ot Re T Qo2 — / nPRe M| Ql?).
RQ RQ
We conclude by expanding
/ Re(iD0y07) = / WRe(i0,,Q.00) |2 + / 1R (100, 00)| Qo ?
R2 R2 R2
/ WRe(i0,,Q.00) |2 + / 1Re(D,,0) T )| Q2
RZ RZ
+ / nRe(V)IMI, 0 | Qc|.
RZ

O

The rest of this subsection is devoted to the proofs of Corollary 1.4.6, Proposition 1.4.7 and
Corollary 1.4.9.



3.4 PRroor oF THEOREM 1.4.4 AND ITS COROLLARIES 195

Proof. (of Corollary 1.4.6) For ¢ € H'(RR?) such that (¢p,i0,,Q.) =0, we decompose it in

="+ Elaa:ch + 528962@0 + C2ESach-

Similarly as in the proof of Lemma 3.4.5, we can find €1, 9,3 € R such that ¢* satisfies the three
orthogonality conditions of Lemma 3.4.6, and thus (since ¢ € H(R?) C Hg,, for 3= [3y/2)

Bq.(¢") = K02 0% 2.
Now, we compute, by Lemma 3.4.2 and with a density argument, that
Bq.(¢) = Bq.(¢*) +2(¢", LQ.(£102, Qe+ €202,Qc + *£30:Qc)) + €3¢ B, (0:Qe)-
We have from Lemma 3.1.7 that Lg_ (104, Qe+ £20.,Qc + c*€30.Q.) = c®€3i 0, Q., therefore
Ba.(¢) > K772 |2 + 2c%e3( ", 100,Qc) + €3¢ Bo.(0:Q) -
Since (¢, i0.,Q.) =0 and ¢ = ©* + €104, Qe + £20,,Qc + ¢*c30.Q., we have
(©*,102,Qc) = — (€102, Qe+ €202, Qe + P€30cQc, 10, Q) -

Since 0;,Q. is odd in x; and i9,,Q. is even in x1, we have (£10;,Q., 10,,Q.) = 0. Furthermore,

(€902, Qer 102, Q) = £ / Re (1100, Qe ]2) =0,
IRQ

and, from Lemma 3.1.9, we have

| 27 +0e (1
BQc(ach) = (0:Qc,102,Qc) = %0()’
thus
<90*a LQC(Elaa:ch + EanQQc + 025360620» = (27T + OC_’O(l))E?’BQC(GCQC)’
and

Bq.(¢) 2 K072 p*| — £3¢* Bo.(0:Qc) = K+ 72| 0¥ || + 2me3¢*(1 + 0c0(1)) 2 0

for ¢ small enough. This also shows that if ¢ € H'(R?), Bg.(p) =0 and (¢, i0,,Q.) = 0, then
pEe SpanR{alec; 8I2QC}' O

We can now finish the proof of Proposition 1.4.7.

Proof. (of Proposition 1.4.7) First, we have from Theorem 3.1.4 that i9,,Q. € L?*(R?). Now,
with Corollary 1.4.6, it is easy to check that n~(Lg,) < 1. Indeed, if it is false, we can find w,
v € H1(IR?) such that for all A\, p € R with (X, u) #(0,0), Au+ pv #0 and Bg,(AMu+ pv) < 0. Then,
we can take (A, u) # (0,0) such that

<)\’U, + KU, Za$2QC> = 07

which implies Bg, (Au+ pv) >0 and therefore a contradiction.
Let us show that L, has at least one negative eigenvalue (with eigenvector in H'(IR?)), which
implies that n~(Lg,) =1 and that it is the only negative eigenvalue. We consider

Qe i=

¢ PeH'(R?), el L2gr2)=1 ol

We recall, from Lemma 3.4.7, that (since ¢ € H'(IR?))
Bale)= [ Ve = Relicned) (1= Qo Pl + 206 Qo).
and if ¢ € H'(R?) with [|¢||2(r2) =1, we have, by Cauchy-Schwarz,
Ba.(9)> [ Vel = Keldnupllisms ~ K > ~K(o).

In particular, this implies that «.# —oco.
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Now, assume that there exists no ¢ € C°(R? C) such that Bg (@) < 0. Then, for any
¢ € CX(R?, ©), we have Bg, () = 0. Following the density argument at the end of the proof
of Proposition 1.4.3, we have Bg (¢) = 0 for all ¢ € Hg,, and in particular Bg,(0.Q.) = 0 (we
recall that 9.Q. € Hg, but is not a priori in H'(IR?)), which is in contradiction with Lemma
3.1.9. Therefore, there exists ¢ € C°(R?, C) C HY(IR?) such that Bg.(¢) <0, and in particular

=1, hence a.<0.

B Qc( I )
ellr2m2) L2(R?)

Remark that we did not show that 0.Q. € L*R?), and we believe this to be false. This
estimation on a. is the only time we need to work specifically with Q. from Theorem 1.3.1. From
now on, we can suppose that Q. is a travelling wave with finite energy such that a. <0.

To show that there exists at least one negative eigenvalue, it is enough to show that a. is
achieved for a function ¢ € H*(IR?). Let us take a minimizing sequence ¢, € H'(IR?) such that
llonllz2r2y =1 and Bq (¢n) — o We have

<0 and HL
||‘PHL2(1R2)

[ IVenP=Badlon+ [ Relictrspnn) + (1= 1Qcl) o0~ 28T,
therefore, by Cauchy-Schwarz,
[ I9enP <o+ Kel Voullisms + K.
R

We deduce that, for ¢ small enough,
IV onlZ2mz) — KellVonll 12me) < K (c),

hence HV(an%z(Rz) is bounded uniformly in n given that ¢ < cg for some constant ¢o small enough.
We deduce that ¢,, is bounded in H'(IR?), therefore, up to a subsequence, ¢, — ¢ weakly in
HY(R?).
Now, we remark that for any ¢ € H*(IR?), by integration by parts (see Lemma 3.4.7),
—Re(icOn,pp) = —c | Re(Orp)Tm(p)+c [ Re(p)Im(Ir,p)
R? R?2 R?

= 2¢ | Re(p)IM(Iu,p)-
RZ

For R > 0, since ¢, — ¢ weakly in H'(IR?), this implies that ¢,, — ¢ strongly in L?(B(0, R)) by
Rellich-Kondrakov theorem. In particular, we have

/ Re(i20) I (n, ) — Re(i2)Tm (s 0).
B(0,R) B(0,R)

since ¢, — ¢ strongly in L?(B(0, R)) and ,,p, — O,¢ weakly in L?(B(0, R)). We deduce that,

up to a subsequence,

/ [V |? + 2cRe(0)Im (e, 0) — (1= |Qcl?)| 0] + 2%e*(Qctp)
B(0,R)

< liminf/ IV on|? + 2cRe(0n)IM(0p,0n) — (1 — | Qc|?) | @n|? + 208e2(Qupn) + 0F o (1).
n— 00 B(0,R)
Furthermore, we have, by weak convergence
el m2) < liminf ol (re) < K(c)
therefore, we estimate
/ [V o]+ 2cRe(0) Tm (0, 0) — (1= Qe[| ]* + 2Re*(Qetp)
R2\B(0,R)

< K|ellinma po,r) =0r—oo(1).
We deduce that
Ba.(p) < 1iminf/( )IV%|2+2c%e(<pn)3m(3x2wn)—(1—IQcIQ)IsOnIQJr?%eQ(@pn)
B(O,R

n— oo

+ 0713*)00(1) + OR—>OO(1)'
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Now, we have

liminf / Vo |2 + 260 (o) T0(Dny0m) — (1 |Qul?) [ 0n 2 + 2ReX(Duion)
B(0,R)

n— oo

= liminfBg, (¢n),
n—oo

- liminf/ [Von|? + 2cRe(0n) T0(Dry0n) — (1= Qcl?) | @n|? + 2Re*(Q o)
R2\B(0,R)

n— 00

and Bq, (¢n) — o, therefore
Bo.(¢) < acton—oo(l) +0r—oo(1)
— timinf [ [T 2 Re(0) I Oraion) — (1= Qe P+ 2R Do)
R2\B(0,R)

n— o0

From Theorem 3.1.4, we have (1 —[Q.|?)(2) — 0 when |z| — oo, therefore, since ||¢n||L2r2) =1, we
have by dominated convergence that

/ (1|Qc|2)|¢n|2<\// (1f|ch2)2/ | onl? < 0r—col(1).
R2\B(0,R) R2\B(0,R) R2

Furthermore, we check easily that (since (A + B)? > %AQ — B?)

Lo we@pzy [ me@Ime) - [ Qo)
R\ B(0, R) 2 Jr2\B(0,R) R2\B(0,R)

and from Theorem 3.1.4, Jm(Q.)(x) — 0 and Re(Q.)(z) — 1 when |z| — oo, therefore, since
llnllz2(r2) =1, by dominated convergence,

/ 29{62(@9‘%) = / 9%2(9071) - 0R—>oo(1)'
R?\B(0,R) R?\B(0,R)

We deduce that, since ¢ < /2,
Bqo.(¢) < act0io(l) +0r-00(1)
— liminf (/ IV on|? + 2¢Re(n) IM(Dp0n) + 9%2(90,”))
n—0oo R2\B(0,R)
< ac+071§~>00(1)+0R—>00(1)
— liminf (/ (IVon| + cRe(pn))?+ (2 — 02)9‘{62(@”))
n—0oo R2\B(0,R)
Thus, by letting n— oo and then R — oo,
Bqo.(p) < a.

In particular, this implies that ||¢||z2(r2) # 0, or else Bg, (¢) =0 < a. and we know that a. < 0.
Furthermore, by weak convergence, we have | ¢||z2r2) <1, and if it is not 1, then, since a,. <0,

® Qe
Bg. < <ag
N <|<P|L2(R2)) lolZams

which is in contradiction with the definition of a.. Therefore ||¢||r2(r2)=1 and Bg (¢) = a.. This
concludes the proof of Proposition 1.4.7. O

Proof. (of Corollary 1.4.9) The hypothesis to have the spectral stability from Theorem 11.8 of
[30] are:

- The curve of travelling waves is C'* from ]0, ¢o[ to C1(IR?, C) with respect to the speed. This is
a consequence of Theorem 1.3.1. This is enough to legitimate the computations done in the proof
of Theorem 11.8 of [30].

- Re(Qc) — 1 € HY(R?), VQ. € L*(R?), |Qc| — 1 at infinity and ||Qc||c1(r2) < K. These are
consequences of Theorem 7 of [22].
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n~(Lg,) <1. This is a consequence of Proposition 1.4.7.
CP2( ¢) <0. This is a consequence of Proposition 1.4.1. O

3.5 Coercivity results with an orthogonality on the phase

This section is devoted to the proofs of Proposition 1.4.10, 1.4.11 and Theorem 1.4.12.

3.5.1 Properties of the space Hg"

In this subsection, we look at the space H, Qcp. We recall the norm

ol 2 () + UL
lolge =l + [ I90F+9R20) + i

The quadratic form we look at is
BE) = [ nIVol ~ Relicthupp) (1= Qoo+ 286 Q)
— [ VOV QDI P 29m(V Q) e()Im()
[ -0l Qe PRe(w)am(v)
+ [ A= n(VORIQ+ 2] QclY)
[ (1= ) (49 (T QI (V) Re(1) + 2l QeI (2,5) e (1)

We will show in Lemma 3.5.1 that B5P(y) is well defined for ¢ € H5P. The main difference
between Bg, and Bg‘cp is the space on which they are defined. In partlcular we can check easily for
instance that, for ¢ € C2°(IR?) with support far from the zeros of Q., we have BGP(¢) = Bq, (),
as the terms with the gradient of the cutoff are exactly the ones coming from the integrations by
parts. We start with a lemma about the space H,".

+

Lemma 3.5.1. The following properties of H" hold:
Hq, C H,Y,
1Q. € HeXlD
Furthermore, there exists K(c) >0 such that, for p € HeXlD
lelle <Kol mge, (3.5.1)
lellrge < K(c)|lellag,- (3.5.2)

and the integrands of B4 (), defined in (1.4.4), are in L'(R?) for p € HGP, and BGP does not
depend on the choice of n. Finally, if o € Ho, C HGP,

Ba.(v) =Byl ()
Proof. First, let us show (3.5.2). We have

lellagr<ioy < K@l g,

and, by equation (3.1.12) and Lemma 3.1.5, we check that

Re*(Y) <K ||p g,
#>5)

/ L@/ e k@l
F>572In(F) w5 (1+7) °

and also that
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Furthermore, we compute, by equations (3.1.12), (3.2.1) and Proposition 3.1.4,

[ wepsx |vw|2|Qc|4<K(/ vel+ [ |VQC|2|¢|2)<K<c>||¢|%IQC.
{r =5} {r =5} {r =5} {7 >5}

We deduce that (3.5.2) holds, and therefore Hg, C H¢P. Now, we check that

. . 2 .
ZQ 2eXp< ZQ, 21 = +K/ ,,|—,,+/ V12<+oo. 353
H CHHQC H CHH ({r<10}) {;25}7“2111(7“)2 {;25}' | ( )

With regards to the definition of ||.||c, we check easily that

lelle <[l mge-

exp

Finally, we recall the definition of B5(¢)from equation (1.4.4),
BoP(p) = /P{?(l =) (Vo> = Re(icde,0p) — (1 |Qc?)|¢]* +2Re*(Qep))
[ V(Y Q) [0~ 23m(T Q) Re(w)Im(v)
[ ctanlQuPRe(v)3m(v)
+ [ VU PIQuP+ 21 Qul)
]RZ
+ /Rzn(ZUm(VQC@jm(Vw)iﬁe(w) +2¢|Qc|*Im(0,,0)Re(V)).

+

For A>0, we have [[¢[|n1(5(0,7) < K(c, )| mge, therefore (since 1 — 7 is compactly supported)
we only have to check that the integrands in the last two lines are in L*(R?), and this is a
consequence of Cauchy-Schwarz, since

<K [ alVoP+Re0) <K ¢ g
]RZ

Furthermore, for two cutoffs 7, n’ such that they are both 0 near the zeros of . and 1 at infinity,
we have

Bgla(e) =BG, ()
= [0 = (TP~ Relicesop) — (1= Qe+ 296 @)
[ V=) eV Q VI~ 23m(V Q) Re(1)Im(1) = (= )| Qe PRe()Im()
+ [ 0= (VU@ + 2 w)IQuY

[0 = )9V Q) IV ) Re() +261Qu T D))

and, developping ¢ = Q. (see the proof of Lemma 3.3.1) and by integration by parts using that
n—mn'#0 only in a compact domain far from the zeros of Q., we check that it is 0.
Finally, for ¢ € Hg,, Bq.(¢) and BGP(y) are both well defined. We recall

Bale) = [ [VeP=(1-1QP)eP +29%e( )
Iy N ISR
of (= nelivnep)—c [ nmeionQivl
+ 20/ n%ewjmamwQCPJrc/ OrynReImY| Q|2
R? R?
+ o nRerInio. Q)
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With the same computation as in the proof of Lemma 3.3.1, we check that for ¢ € C’O"(]R \{dcel,
—dcel} (D) we have

Ba.(p) =By ().

With the same arguments as in the density proof at the end of the proof of Proposition 1.4.3, we
check that this equality holds for ¢ € Hg,. O

Now, we state some lemmas that where shown previously in Hq_, that we have to extend to
HGP to replace some arguments that were used in the proof of Propositions 1.4.3 for the proofs of
Propositions 1.4.10, 1.4.11 and Theorem 1.4.12. We start with the density argument.

Lemma 3.5.2. CEO(IRQ\{&Cé'l, Cel} C) is dense in HGP for -l reze.

Proof. The proof is identical to the one of Lemma 3.2.4, as we check easily that, for A > 1_50 large
enough,

2
Il e <10m + / [V 2+ Re?(¢) +% <K\ 9llel i son)

4 {F>=5/NB(0,\) 72In(7)
an

lelirgecion+ | V4 Re(0) = K0 el aon) 0
{7>5)NB(0,\) n(7)?

We also want to decompose the quadratic form, but with a fifth possible direction: iQ..

Lemma 3.5.3. For € C2°(R?\{d.€1, —d.¢1},C) and A€ Span{ds,Qc,02,Qc,0:Qc, 0pt Qeyi Qe }

we have

(Lap+A), o+ A) =(Lq.(¢), #) + (2Lq.(A), ¢) + (Lq.(A), A).

Furthermore, (Lg (p+A), ¢+ A)=Bg5 (¢ +A), Lq.(iQc) =0 and

102, Qell rgge + 102, Qell rgge + 1°0Qe | e + ™2 0er Qe megr + 11 Qe g < K (o).

Proof. As for the proof of Lemma 3.4.2, we only have to show that Re(Lg.(A)A) € LY(IR?) to
show the first equality.

By simple computation (or by invariance of the phase), we check that Lg (¢Q.) =0. Writing
A=T+eiQ forecR,T¢€ Span{@lec, 0z, Qcy 0.Qcs OCLQC}, we compute from Lemma 3.1.7 that

LQL(A) = LQc(T) E SpanR(iaﬁle67 iaLCQQC)a
thus

Re(Lg,(A)A)=Re(Lg (T)T +¢iQ.) =Re(Lq.(T)T) +eRe(Lg (T)iQ.).

From the proof of Lemma 3.4.2, we have Re(Lq (T)T) € L*(R?), and since L, (T) € Spang(i0x, Q.,
10,,Q¢), with Theorem 3.1.4, we have

[Re(Lq. (T m|\ ) € L'(R?).

Let us check that, for ¢ € H,?, BGP (¢ +€iQc) = B (@) for e € R.

We check, from (1.4.4), that, for ¢ € C2°( ]RQ\{dcel, d.é } ), this equality holds by integra-
tion by parts and because Re(1p +1) =Re(v), Im(V (¢ +1)) =Tm ( ). We then argue by density,
as in the proof of Proposition 1.4.3.

We deduce, from Lemmas 3.1.7 and 3.4.2, that for ¢ € CSO(IRQ\{JCéi, fd;e_'l}, C),

BgP(p+A) = BoP(¢+T)=Bq(p+T)
= (Lo p+T),¢+T)=(Lo(p+A),p+T)
= <LQC(<P+A)’SD+A>7<LQC(SD+A)7€7:QC>7
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and we check, with Lemma 3.1.7, that for some v € R? depending on A,

(Lo.lp+A),eiQc) = (Lq.(¢)ciQc) +(Lq.(P),ciQc)
= €<QD,LQC(iQC)>Jr&?U.AQSRQ(VQc@)
= 0.

From Lemma 3.1.8, we have,

102, Qelle + 102, Qclle + [[20:Qe e + ™| der Qelle < K (o),

and with Lemmas 1.2.1, 3.1.2 and equations (3.1.9), (3.1.10), (3.1.11), we check with the definition
of ”HH(BXP and ”HC that, for A€ {acha 8I2QC} 6286Q65 CI+BO/28¢:LQC}7

||A||%{gj’ S K HAH%Jl({?‘glO)) + |A|IE < K(Bo)-
Finally, we check that
|i]>
———5 < K. O
72In(7)?

i@l = 1iQelEngo<aon + |

r=

Vi |2+ Re2(4) +
5}

We can now end the proof of Proposition 1.4.10.

Proof. (of Proposition 1.4.10) From Theorem 1.4.4, for ¢ € C’E?O(IRQ\{JCé'l, ﬂfce—i}, C), under
the four orthogonality conditions of Proposition 1.4.10, we have, by lemma 3.5.1,

BGP(¢)=Bq.(¢)=(La.(¢), ¢) > K|l¢ll2-

We then conclude by density, as in the proof of Proposition 1.4.3, using Lemma 3.5.2. The proof for
the density in Bg‘cp is similar to the one for Bg, in the proof of Proposition 1.4.3. The coercivity
under three orthogonality conditions can be shown similarly.

Then, for the computation of the kernel, the proof is identical to the one of Corollary 1.4.5. With
Lemma 3.5.1, we check easily that we can do the same computation simply by replacing Bg, (¢) by
BGP (). The only difference is at the end, when we have ||¢*||c =0, it implies that ¢* = \iQ. for
some A € R, and we can not conclude that A =0, since we only have p* € H? instead of ¢*€ Hy,.
This implies that

pe Span]R(aleca acha ZQC)

Using Lemma 3.1.7 and 3.5.3, we check easily the implication from (i7) to (7). O

3.5.2 Change of the coercivity norm with an orthogonality on the phase

We now focus on the proofs of Proposition 1.4.11 and Theorem 1.4.12. In these results, we add an
orthogonality condition on the phase. We start with a lemma giving the coercivity result but with
the original orthogonality conditions on the vortices, adding the one on the phase.

Lemma 3.5.4. For p=Q) € chcp’ if the following four orthogonality conditions are satisfied:

L(&Caﬁ)me(axlﬂm)=/9(&Caﬂ)me(am‘71m)=o,

L(&Caﬁ)%e(azlvlv—ﬂ/}>/B(&CQI?R)%e(azQV1V11/1)07

then, if %efB(O )i =0, we have (with K(c)<1)

BE(9)> K(O)lege + K o2,
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or if Yz €R, ¢o(x1,x2) = p(—w1,12) and i)%efB(~ R)Z'chb:O, then

&, R)UB(—d.éi,

BE(0) > K | 350

Proof. Let us show these results for o = Q. € CSO(IRQ\{EZCé’l, —dcél}, (D). We then conclude by
density. We start with the nonsymmetric case. )
By Lemma 3.3.4, for p = Q) € C§°(1R2\{dcé'1, fdcé'l}, (D) such that

L(&ca»mme(%ﬂm) - A(&cam%e(%xzm) =0,

B2 () > K(D) / ~
B(d.é},D

we have

)IVQ/JIQIQCI“Jr%Q(w)IQcI“-

By Lemma 3.3.3, we infer, by a standard proof by contradiction (with the first two orthogonality
conditions),

B2 () > Ki(D) @21 m7 = vy — Ko(D /
QC ( ) 1( )H HH (B(dcehD)) 2( ) B(aca,R)\B(&ca,R/Q)

We deduce, with Lemma 3.3.3, that for any small € >0

B2 (o) > K(D)(1—¢) / ~

VY P1Qc|* + Re*(¢)] Qc|*
B(d.é1,D)
+ Kl(D)5|<P|§{1(B(“Ca,D))KQ(D)t?(/B(

By Poincaré inéquality, if %efB( 119 =0, then

0,R)
/ ~ O gm(y) < K<c>\/ / ~ ~ V2
B(de&1, R)\B(d.1,R/2) R2\(B(det, R/2)UB(—deel, R/2))

< Koy [ [Pl

Therefore, for any small p > 0, taking € >0 small enough (depending on ¢, D and u),

BSP(p) > K(D) /
B dcel,

+ Kl(DycaM)”‘PH?{I(B(&CghD))_M[RQ|V1/)|2|QC|4.

With similar arguments, we have a similar result for Bg:’l'D (). Now, as in the proof of Propos-

ition 1.4.3, we have, taking p >0 small enough and D >0 large enough,

Bo.(¢) = BS™P(9)+ BSS(p)
- K(/ ~ ~ IVwIQIch“M%Q(wIQCI“)
R?\(B(d.&},D)UB(—d.&},D))
> K [ [VOPIQ: + REDIQl + Kate, i) Bsogac o

- uf [Veril
> Klelg+E el pa.am0))

D)IV1/)|2|C2<;I4+9“62(1/))|Qc|4

Then, by the same Hardy type inequality as in the proof of Proposition 1.4.3, we show that

] 2 o
A@(l—i—f)QInQ(Q—i—F) <K('‘p|Hl(B(dca,lo))"’/RJVW |Qc ),
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therefore
Bo.(¢) 2 K[l + K)ol

In the symmetric case, the proof is identical, exept that, by symmetry,

Re / 1Qcp=0,
B(d.ei,R)
and we check by Poincaré inequality that for a function ¢ satisfying this orthogonality condition,

p=Qc,

Jn()| S Kllell g p(ae,r))

L(&Ca,R)\B(&ca,R/z)

for a universal constant K > 0. By a similar computation as previously, we conclude the proof of
this lemma. g

We now have all the elements necessary to conclude the proof of Proposition 1.4.11.

Proof. (of Proposition 1.4.11) This proof follows the proof of Lemma 3.4.5. For ¢ €
CSO(IRQ\{EZcé’l, —dcél}, (D) and five real-valued parameters 1, €9, €3, €4, €5 we define ¢* = Q™ by

2
lec c20.Q. szC caCLQC )
+e +e€ +e + €e51.
Q. Q. T °

v Q.

From Lemma 3.5.3, we check that ¢* e Hg‘cp. Now, similarly as the proof of Lemma 3.4.5, we check
that
/ 9%2((9951‘71‘711/)*) = / %e(azl‘;&m)
B(d.e1,R) B(d.&1,R)
+ 51/ - me axl‘/l lec
Qe
Qc)

+ 82 me axlvlc 0:Qc—=-

B(d.&1

(

+ 53 9%(5& V1<9z2Qc
+ 54 %e(@z VlcacLQc )
+ 55/ s me(axlvlzvl)
Furthermore, with Lemma 1.2.1, we check that

A(acaﬂ)%e(&h%ﬁ) =0

and the other terms are estimated as in the proof of Lemma 3.4.5. Similarly,

/~ me(amvlﬁ):/ ) me(amlv,lif/:):/  Re(0n,V iV ) =
B(d.€1,R) ,R)

B(—d.& B(—d.&i,R)

We also check that, from (3.1.9), (3.1.10), Lemmas 3.1.2 and 3.1.6 that

alec 83:2QC
/B(O,R)SRQ< Qe ) /B(O,R)%e< Qe )

ALl )
/B(O,R)i)‘{e<zc 0. [9(07}%)9% ci—<=== 0.

= Oc—>0(1)a

+

+ +
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and
/ Re(i x i) = —mR?<0.
B(0,R)
We deduce, as in the proof of Lemma 3.4.5, that
fB(aca,R)%(a””IVlVlW)
fB(&CayR)%e(azzvlvlw*)
%e(ang_lv_lw*)

K(R 0 0 0 €1

K(R) K(R) 0 0 0 €2

- 0 0  K(R) -K@R) 0 |+oeo) || &
0 0 K(R) K(R) 0 €4

0 0 0 0 —7wR? €5

+ 0co(e®) K [[¢]le-
Therefore, we can find €1, €2, €3, €4, €5 € R such that
le1] + le2] + les| + leal + les| < 0c—o(c™) [0 lc
and ¢* satisfies the five orthogonality conditions of Lemma 3.5.4. Therefore,
BoP(e*) 2 K(o)llo*|ige + K " [12.
We continue as in the proof of Lemma 3.4.5, and with the same arguments, we have
BGP () = K(e)llo*||frge + K ¢ l2-
Now, by Lemma 3.5.3, we have
le*lee = lellage — 16102, Qe +e26?0cQc + €302, Qe + €401 Qe + &5l mege
> |lellage — oc—o(c™?)[¢lle,
thus, since we can take K(c) <1, we have
BE(9) > K()|[ ¢l

We conclude by density as in the proof of Proposition 1.4.3, thanks to Lemma 3.5.2. We are left
with the proof of BGP(¢) < KHcpH%{gxg. With regards to (1.4.4), the local terms can be estimated

by K|\<p||;}{1((,:<10)) < KH‘PH%{E"F’ and the terms at infinity, by Cauchy Schwarz, can be estimated
2
by K fs g | VO + Re2(0) + ot — < K [l p - O

In2(F)

As for the remark above equation (3.4.20), we can replace the orthogonality condition
#0 _
SRQIB(Elcei,R)UB(fgzca,zse)86(’26(’261/’ 0 by

Re / )  0uVi(w — dE) V(24 d71)) e, Qe @) da = 0 (3.5.4)
B(d.2,R)UB(~d.&,R)

in Propositions 1.4.10 and 1.4.11.

Proof. (of Theorem 1.4.12) This proof follows closely the proof of Proposition 1.4.11,
First, From Lemma 3.1.3 and the definition of 0,.Q. in Lemma 3.1.6, we check that 0., Q.

and 9,.Q. are odd in z1, and for p = Q) € C?(RQ\{&cé'l, 7&561}, C) with V(z1, 22) € R?,
p(x1,2) = p(—x1,22), we check that in B(&Ce—i, R) UB(f&Ce—i, R), Q.70 is even in z1. Therefore,
these two orthogonality conditions are freely given.
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We decompose as previously for, €1, €2, €3 three real-valued parameters,

o= +te1 QC + EQaJQQc + 53C2ach-
We suppose that

0.Qcp = me/ 02,Qcp =0,

SRe/
B(d.e1,R)UB(—d.e,R) B(d.el,R)UB(—d.é1,R)

SRe/ 1Q:p =0,

B(d.&1,R)UB(—d.&i,R)

and we show, as in the proof of Lemma 3.4.5, that we can find €1, 9,3 € R such that
le1| + le2| + leal < oc—o(c®) ¢ || a5,

and ¢* satisfies the five orthogononality conditions of Lemma 3.5.4 (we recall that two of them are
given by symmetry). Here, since we did not remove the 0-harmonics, the error is only controlled
by ||| mge instead of [[¢l|c. For instance, we have

/3((2 B R)|9“e((3x2‘71‘71 = 02,QcQc) V)| < 00 Qe | 2 (2.2, 1)) = Oc—0 (D)l ]| rrzze-

Now, from Lemma 3.5.4, since ¢* € H;P, we have

BoP(¢") = K ||¢* || Hrege-
We continue, as in the proof of Lemma 3.4.5, with |e1| + |e2| + |e3] = 0c—0(1) ||| mg» and Lemma
3.5.3. We show that

BEP(¢) = K|l |Frge

We conclude the proof of Theorem 1.4.12 by density. O

3.6 Local uniqueness result

This section is devoted to the proof of Theorem 1.4.13. This proof will follow classical schemes for
local uniqueness using the coercivity. Here, we will use Propositions 1.4.10 and 1.4.11, with the
remark (3.5.4).

3.6.1 Construction of a perturbation
For a given & € R?, 0<|¢’| < ¢o (co defined in Theorem 1.3.1), X € R? and v € R, we define, thanks
to (1.4.1), the travelling wave

Q:=Qz(.— X)e". (3.6.1)
We define a smooth cutoff function 7, with value 0 in B(:l:&ce_'l, R+ 1) (R>10is defined in Theorem

1.4.4), and 1 outside of B(&Cé}, R+ 2) UB(f&Ce—i, R+ 2). The first step is to define a function ¢
such that

1=mQY+nQ(e? —1)=7Z - Q, (3.6.2)
with Qv satisfying the orthogonality conditions of Propositions 1.4.10 and 1.4.11. We start by
showing that there exists a function 1 solution of (3.6.2). We denote dl'l(cé, &) := |cé’2.% =7

=L
and 81 (céy, &) 1= |cé'2.|66—,| —'|. At fixed ¢, these two quantities characterize ¢’. We will use them

as variables instead of ¢, this decomposition being well adapted to the problem.
Since both Z and |@Q| go to 1 at infinity, we have that such a function 1) is bounded at infinity.
The perturbation here is chosen additively close to the zeros of the travelling wave, and multi-
plicatively at infinity. This seems to be a fit form for the perturbation, and we have already used
it in the construction of Q..
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Lemma 3.6.1. There exits c¢o > 0 such that, for 0 < c < cy and any A > 1—60, with Z a function

satisfying the hypothesis of Theorem 1.4.13 and Q defined by (3.6.1) with %g |¢'| < 2¢, there exist
K,K(A)>0 such that

oMl(ces, @) | ot (cér, @
||Z—@||CI<B<0,A>><K<A>|Z—QC|Hg;+K<|X|+ 52) L T®T) 11y ).

We will mainly use this result for A=X+1, A >0 defined in Theorem 1.4.13.

Proof. We recall that such a function Z is in C*°(IR?, C) by elliptic regularity.
We start with the estimation of w:=Q.— Z in B(0,A). Since both Z and Q. solve (TW.), we
have

—Aw=(1-Qc)Qc— (1~ |Z]P)Z +icOz,w.
From Theorem 8.8 of [15], we have that for x € R2, Q:= B(0,A), 2Q = B(0,2A),
[wllw220) < KA ([w] @) + licdew + (1= [Qcl*) Qe — (1 = | Z]*) Z| L2(202))-
We compute that
1=1Qc)Qc— (1 - 1212 =(Qc— 2)(1 = |Qc*) + Z(|Qcl = 1Z])(1Qc| + | Z]).

From [13], we have that any travelling wave of finite energy is bounded in L>°(IR2) by a universal
constant, i.e.

Q| + 12| < K, (3.63)
therefore
1=1QcPI+1Z](|1Qc| +1Z2]) < K
for a universal constant K. Thus,
11 =1Qc)Qc = (1= Z ") Z|L220) < K [lwl| £2200),
and we deduce, from Lemma 3.1.5, that
wllw220) < K(A)(lwlmr20) + [licOzwl L220) + [[w] L220)) < K(A)|w] g
By standard elliptic arguments, we have that for every k> 2,
l[w s 2(0) < K (A, B)lwl] g
By Sobolev embeddings, we estimate
wllere) < K(A)|wllws2@) < KA)|lw| mge. (3.6.4)
From (3.6.4), we have
1Z = Q=) <I1Q = Qell=() + W]l Lo(2) < Q = Qell Loo(mz) + K (A)||w]| grege.
We estimate
1Q = QcllL=mz = 1Qe(.— X)e" = QcllL~(m2)
< Qe (- —X)e" = Qe (. — X)||Le(re) + | Qe (- — X) — Qal| L (r2)
+ Qe — QjllLem2) + | Qerje, — Qell L= (w2).-

We check, with Theorem 1.3.1 and Lemma 3.1.6 that [|[VQ|L~m2) + CQH&QHLM(W) +
)01 Q|| Loo(r2) + [liQ||Lo(r2) < K, and that it also holds for any travelling wave of the form
Q. —Y)ePif 2¢> (3| >c/2,Y €R? and BE€R.

We check that ||Qz/(. — X)e? — Qa(. — X)||L=(r2) < | — 1|[|Qz(. — X)||L=(m2) < K ||, and
we estimate (by the mean value theorem)

1Qe(. — X) — Qerll ity < K X ||V Qe ow(res) < K| X |
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Similarly, we have
64 (08, ) + 81(c85, 7)
c

| (52 =0
and || Q|zrje, — Qell L= (r2) < K#. We deduce that (since ¢< 1)

[Qz — Qiznjg,ll Loz < K

8 (cen, @) 6t(céy, e
IIQQCILm<w><K<|X|+ (Cf )y (CQ )+|v|>, (3.6.5)

and thus

5|-\ 65,5' 6J_ 66—'781
IIZQnmm,mmmzQC|H5?+K<|X|+ (6.0) | 4ct2.2)

+|v|>. (3.6.6)

Finally, from Lemmas 1.2.1, 3.1.1 and 3.1.2, 9,1 Q.= —21.V Q. and equation (3.1.11), we have

IV02,Qll Lo (w2) + [ VOL || Lo (r2) + €l VO Q| Lo (m2) + 1V Qe Lo (r2) < K.
We deduce that

oll(cen, @) 6t (céy, @
|v<Q—Qc>||Lm<R2><K<|X|+ 5,0) 2 )+|v|>,
and, by (3.6.4),

Sll(cey, @) ot (cés, e
|V(ZQ>||Lw<B<O,A>><K<A>||ZQC||Hg;+K<|X|+ %,0) 0 1ees )+|v|).

O

Lemma 3.6.2. There exists €o(c) >0 small such that, for Z a function satisfying the hyptothesis
of Theorem 1.4.13 with

oll(cen, @) 6L(céy, &)

|X|+ P + v +|’Y|<€0(C>,

there exists a function Qi) € C*(R?,C) such that (5.6.2) holds. Furthermore, for any A >%, there
exists K, K(A)>0 such that

ol (cen, @) 6t(céy, e
||Qw||01<B<O,A>><K<A>|ZQC|HZ;;+K<|X|+ 7)o )+|vl>-

Proof. First, taking o(c) small enough (depending on ¢), we check that < < |’ <2c.
We recall equation (3.6.2):

1=nQv+nQ(e? —1)=27 - Q.

We write it in the form

7
vl —1-u) =258,
and in {nz 0}, we therefore define Z-0Q
== _= 3.6.7
v="0 (3.6.7)
Now, we define the set Q:=B(0, A4+ 1)\(B(d.1,R—1)UB(—d.1, R—1)). In this set, we have that
7
1259 | <Keod)+ KOIZ - Qullagy
cHQ)
by Lemma 3.6.1 and (3.1.12). Therefore, since e¥ — 1 — 1 is at least quadratic in ¢ € C1(Q, C),
by a fixed point argument (on H(v) := ZC;Q — n(e¥ — 1 — %), which is a contraction on

1% || oo (im0 < g for >0 small enough), we deduce that on €2, given that €9 and [|Z — Q|| mg»
are small enough (depending on A for ||Z — Qc|| grexe), there exists a unique function ¢ € Ccl(Q,0)

such that ¢ + n(e¥ — 1 — ) = Z(;Q in Q. By unicity, since we have a solution of the same

problem on {7 = 0} which intersect €2, we can construct Q¢ € C*(B(0, A + 1), C) such that
1QU+ (1-MQ(e’ ~ )= Z — Q in BOA+1).
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Furthermore, we use here the hypothesis that, outside of B(0,\), |Z — Q.| < po. We deduce
that (taking po < %) there exists 6 > 0 such that |Z| > § outside of B(0, ). In particular, since A
can be taken large, we have that outside of B(0,\), n=1. The equation on ¢ then becomes

e¥=—,

Q

and by equation (3.1.12) and |Z| > §, we deduce that there exists a unique solution to this problem

in CY(R?\B(0,\), C) that is equal on B(0,A\+1)\B(0, ) to the previously constructed function 1.
Therefore, there exists Q¢ € C1(R?, C) such that (1 — 7)Qvy + nQ(e¥ — 1) = Z — Q in R2

Furthermore, we check that (by the fixed point argument), since {n#1} C B(0, ),

Z-Q
Q

oMl(céy, @) | ot (céy, @
< K<A>|Z—QC|H35+K<|X|+ 22) L TL8T) 11y )

1l < KH
C1(in# 1)

From equation (3.1.12) and Lemma 3.6.1, we have

1QVllcvso.a) < 17 =Rllermo.ay + Kl¢llevmzn + KMIZ = Qcllugr

oll(cen, @) ot (cés, e
< K<A>||ZQC||H35+K<|X|+ o5,?) S 1 )+|v|).

This concludes the proof of the lemma. O

Lemma 3.6.3. The functions Q and v, defined respectively in (3.6.1) and Lemma 3.6.2, satisfy
p:=Qy e HGP.

Furthermore, ¢ € C?(R2, C) and there exists K(\,c,||Z — QCHHES‘FHEO: Z) >0 such that, in {77: 1}
(i.e. far from the vortices),

K()\,C, HZ - QC”HEXD,EO) Z)
V| + [Re(¥)| +|AY] < -

(1+7)2 ’
K(Aa ¢, HZ - QCHHGXF’agoa Z)
< Qc
VRe(1)] < -
and
K()\,C, HZ - QCHHexPagoa Z)
. < QC .
|jm(1/) +'VY)| X (1 —I—T)
Proof. From Lemma 3.6.2, for any A > 1—60,
ol (cen, @) 6t(céy, e
|Q¥llcr 0.y < K(A)Z - Qc|H2;§’+K<|X| P ) | T ledd) |v|>, (36.5)

exp

therefore, we only have to check the integrability at infinity of Q¢ to show that p=Qv¢ € H5".
In {77: 1}, we have

We have shown in the proof of Lemma 3.6.2 that K > ‘é‘ >4 /2 outside of B(0, ) for some § >0,
and together with (3.6.8), we check that

[ llcoqn=1n KA, 12 = Qell e, €0)- (3.6.9)

[ e i
{n

—1y7In(7)?

This implies that
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Similarly, we check that, in {77 = 1}, since e? zg,
e \Y _
Vio=ov(z- @) - R,
therefore
IV S K IZ = Qcllmge, €0)(IV(Z — Q)| + [VQ)). (3.6.10)
From Theorem 3.1.4, we have
K(c,2)
VZ|+ |V
VZ|+|VQI < Tt
therefore,
[ vQPP<te
n=1}
and

. K(e.2)
/(n_1}|V(Z QF < / (14r7")4<Jr .

We deduce that f(n:”|V1/1|2 < 400, and, furthermore, equation (3.6.10) shows that

K\, ¢,||1Z = Qcllag», €0, Z)
(1+7r)2

Vi<

in {n=1}.
Now, still in {77: 1}, we have
Qewzza

we deduce that Qe "(e¥™ — 1) = Z — Qe ™. Now, we recall that ||¢coqm=1) < K(\,
1Z = Qcllzgge, €0), thus [Re(e¥ ™™ — 1 — (¥ + i7))| < (>\ 1Z = Qcllmgg, e0)|Re(e” ™7 — 1)].
We deduce from this, with (3.6.8) that in {n = 1}, with —Hw + wHLoo(RQ) < [Re(e¥ 7 — 1)| <
K| +iy| Lo (r2),

[Re()| = [Re(¢+1iv)|
[Re(e”*7 —1)| + [Re(e?7 — 1= (¢ +i7))]
K\ N1Z = Qcll g, e0)|Re(e? T — 1)
Z-Qe)Qc"
K()H”Z_QCHHS‘C":EO) %e<( |‘22|2 ) € )‘
K\ N1Z = Qellmge,e0)(|Re(Z — Qe )| +[Im(Z — Qe™)Im(Qe™ —1)|).

From Theorem 3.1.4,

N IN

N

N

[Re(Z — Qe )| < |Re(Z —1)| + |Re(1 — Qe )| < ﬁ(i,TZ)g
and

K(A, e 12 = Qell rege. <0, Z)

We conclude that, in {n=1}, we have |Re(¢))| < fERsE

hence

Re?(1h) < +00.
{n=1}
This conclude the proof of ¢ = Q¢ € H5P. We are left with the proof of the following estim-

K(X, ¢, 1Z = Qcll gexp, €0, Z - . K(X, ¢, 1Z = Qcll gexp, €0, Z
ates, |Ay| < ( T ), [Jm(p + iy)| < ( T ) and [Re(V))| <

I(V()\,C7 “Z—Qc” ex?,E[),Z) .
(1+T):Q° in {77:1}.
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We recall that, in {77 = 1} Vi = V(Z-Q) - (1 — e~ %), from which we compute, by

differentiating a second time,

_ _VONZ=Q) oy _VQ oy gy RN
At Q e Qe V(Z-Q)+5MZ-Q)

AQ 4 ARV vaQ -
- —X(1l-e" 1—e %) - —2.Vie Y.
Using Theorem 3.1.4, AQ = —i@’.VQ — (1 - |Q|*)Q, AZ = —icd,,Z — (1 — |Z|*)Z and previous
estimates on v, we check that, in {77 = 1},
K()‘a C, ||Z - QC”HeQ'xf)EO) Z)

(1+7r)? '

We have Qe (e T —1)=Z — Qe~" in {n=1}, therefore

[AY] <

Z J—
Qe
We check, since [|9]|cogy= 1} K\ 7 - Qc”Hexr) €0), that we have by Theorem 3.1.4
|mww+wn< KM\ 1Z = Qellsge, o) [Fm(e? +i7 — 1)

eVt 1=

Z
< K\ Z = Qcllmge, €o) W_l'
g ()‘70’HZ_QCHHeQxfaE(hZ).
(1+7)
Finally, since Vi) = G;”V(Z -Q)— %Qa —e V) =TZev VQQ, we check with Theorem 3.1.4

that, in {77:1},

VRe(1)] < m{if {»ﬂm{%gﬂ
e[, [Re(VQQ)]
< e ez )|+
eV IV(1QP)
< prcvzzm( o7 )+ vz 7 )| + gk
< KA ¢, 1 Z = Qellmgr, 5072)'3 ( _w>'+ KA, ¢,[|1Z = Qcllug», €0, Z)
= d+7)2 ™0z A+r)3 :

We compute in {77 = 1}, still using Theorem 3.1.4,

e w) 1 o
= ———|Im(e ¥~"QZe"
(57)| = | L -
< K(|Im(e ¥~ — 1)Re(QZeM)| + [Re(e ¥ =) Im(QZe™)|)
K(\e, 12 = Qclluse, 20, Z) o
< 1+; + K\ ¢ 11Z = Qells, 0, 2)[Im(QZe™)|
K\ ¢, |Z = Qclluge, 0, Z) ,
< < =iy _ _
< =) + K\ ¢, [1Z = Qcllugr 0, Z2)(1Qe 1| +|Z-1)
< K()‘aca|‘Z_QC||HEXC})’EO)Z)-
(1+7r)
This concludes the proof of this lemma. O

We remark that here, since ¢ - 0 at infinity (if v #0), we do not have Qv € Hq. This is one
of the main reasons to introduce the space Hg™.

Lemma 3.6.4. The functions Q and v, defined respectively in (3.6.1) and Lemma 3.6.2, satisfy,
with ¢ = Q,
(LGP (), (0 +17Q)) = BT (),
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where LGP (¢) = (1—=n)Lo(p) +nQ Lo(), with

L) = —Ad ZVQQ Vi + i 8V + 2Re(0))| Q2.
Furthermore,

Lo(p)=QLg(¥).

The equality (L5 (), (¢ +i7Q)) = BoP () is not obvious for functions ¢ € C*(R?, C) N H,P
(because of some integration by parts to justify) and we need to check that, for the partlcular
function ¢ we have contructed, this result holds. We will use mainly the decay estimates of Lemma
3.6.3.

Morally, we are showing that, since Lg(iv@Q) =0, that we can do the following computation:

(Lo(e), p+ivQ) = (¢, Lo(p+ivQ)) = (v, Lo(v)) = Bo(y). The goal of this lemma is simply to
check that, with the estimates of Lemma 3.6.3, the integrands are integrable and the integration

by parts can be done to have (LGP (p), (¢ +i7Q)) = BGP ().

Proof. First, let us show that Lo (®)=Q.Lg (¥) if ®=Q.¥ € C*(R?,C). With equation (3.6.1),
it implies that Lg(p) = Q Lg(1)). We recall that

Lo (®)=—AP —ic0y,® — (1 —|Qc|H)P + 2Re(Q.P) Qe,
and we develop with ® =Q.¥,
L. (®) =TW(Qo)¥ = QA¥ —2VQe. V¥ — icQc, U + 2Re(V)|Qc[* Qe
thus, since (TW,)(Q.) =0, we have L (®) = Q.Lg, (V).

Now, for ¢ = Qv, we have

(1=mn)La(e) + nQLo(V), (¢ +11Q))
= [ B =nlo(e o Q)

+ [ alorme( (-0 25200 +ic e )TFR) ) +alQpme)

With Lemma 3.6.3, we check that all the terms are integrable independently (in particular since
o +1vQ = Q¥ +ivy) and (¢ + iv)(1 + 7)||Lec(y=1)) < +00 by Lemma 3.6.3). We recall that
Lo(p)=—Ap+icVe—(1-|Q]%) ¢ +2Re(Qyp)Q, and thus

Re((1 = Lol F Q) = [ (1= mOieTep)~ (1-1QP)¢ P+ 20 Q)
+ A%Q(l—n)%e(—AW)JrVA{z(l—n)%e(LQ(w)@-

R2

We recall that 1 — 7 is compactly supported and that ¢ € C?(R2, C). By integration by parts,

| a=mme-top)= [ a=niVel— [ Tnne(ep),

and we decompose

[ a=0melalo()i@ = [ (1-nme(-2¢i0+2740)
- [ 1= nme1- QPR

By integration by parts, that we have

/ (1 - )Re(EV Q) = 2. / —ViRe(pQ) + (1 - )Re(pV Q)
R?2 R?2
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and
/ (1— n)Re(—AiQ) = / V. (Re(ipV Q) — Re(iVpQ)) + / (1— )Re(ioAQ).
]R2 ]R2 ]RZ

Combining this computations, we infer

R;Re((l —n)Lo(p) (¢ +irQ))
= [ =Tl ReET ) — (1= QP+ 2e2(Q)
- / Vn-iﬁe(vsasb)va/ VnRe(¢Q)
R2 R2
- 7( [ Inoetiova) me(zwcg»)
R‘Z
+ [ (= mRelp(-2VQ+i(1- [QPIQ+iAQ)).
Since —AQ+i¢VQ — (1—|Q[*)Q =0, we have —&.VQ +i(1 —|Q|*)Q +iAQ =0, therefore

Rzi)‘ie((l —n)Lo(¢) (¢ +i1Q))
- A (L= )V +Re(i2V0p) — (1= Q)| [2 + 2ReX(Qp))
- [ vame(vep)
- fy(E.A{QVUS)%(@Q)+/]RQV7].(9%(Z'<PVQ)%e(iVSDQ)))

Until now, all the integrals were on bounded domain (since 1 — 7 is compactly supported).
Now, by integration by parts, (that can be done thanks to Lemma 3.6.3 and Theorem 3.1.4)

[ QPR-au@Fm) = [ TulQPR(iETM)
R? R2
+ [ av1QP RV u(F)
+ [ merver

Now, we decompose (and we check that each term is well defined at each step with Lemma 3.6.3
and Theorem 3.1.4)

A 2n|@|29%e(—2%@.vw)(wﬁ+m )
— / Re(VQQ.VYT) — 2 / 1Re(VQQ.VHTi)),
R?2 R?2
with
2 / R(VQQ.VYT) = —2 / Re(V QQ) Re(Vibi)
R?2 R?2

+ 2AQn3m(VQQ).3m(wa),

and since V(|Q|?) =2Re(VQQ), we have
[ riarse( (~av-2ve )T )
= [ merveR2 [ (- mm(veQ).am(vid)
R2 R2

+ / Vi QIPRe(V (T T ) +2 / Im(VQQ) In(VE())).
R?2 R?2
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We continue. We have
2/ nIM(VQQ).Im(Vyp) = 2/ nIm(VQQ) - Re(1)Im(V1)
R?2 R2
- 2 1Im(VQQ) Re(Vu)Im(v),
RQ
and by integration by parts (still using Lemma 3.6.3 and Theorem 3.1.4),
2 1Im(VQQ) Re(Vy)Im(v)
]RZ
= 2 iIm(VQQ)Re(v)Im(V)
RQ
+ 2 nIm(AQQ)R(w)Im(v)
RQ

+ 2 Vn.Im(VQQ)Re())Im(v).

R2

We have Im(AQQ) =Im(i &.VQ — (1—|Q|?Q)Q) =

(5058 3

VQQ), therefore

)

_ / QP |v¢|2+4/ Im ( ($)Im(Ve))
L2 A 7Im(VQQ).Im(VY (i)
L2 / Re(E.V QQ)Re(1)Im (1))
/ Vi(|QPRe(Ve( B+ 7)) + 23m(VQQ)Re (1) Im(1h)).

Now, we compute
3 / NQPR(VY(TFM) = & / D QPR(V ) Im (46 + i)
R2 R2
-z / n|QPIm(V ) Re (1),
RQ
and by integration by parts (still using Lemma 3.6.3 and Theorem 3.1.4),
e [ nQPR(VOImin) =~ [ VnIQPRe()Im(+ i)
R2 R2
-z / IV (1Q ) Re(1)Im(v) + i)
RQ
-z / n|Q PRe()Im(V ).
RQ
Since V(|Q|?) =2Re¢(VQQ), we infer
Azn|Q|2me<<A¢ - Q%Q.Vz/; - z'aw)>(w +_¢7))
A% (QPIVH [ +49m(VQQ). Re(¥)Im(V ) — 22 Im(V)Re())
+ 2 5Im(VQQ)Im(VuT))
~ 2y / PRe(2.V QQ)Re(1)
RZ
+ [ (QPR(VUEFT) +2m(TQQ)Re(0) (1)

+ E.A{ZVMQFS)%(MJ)Jm(eriv).
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Combining these computation yields
| BLFTIQ) = BE()
—~ 7(—5- Vn%e(wQH/
R2 R?
+ 2 A IM(VQQ).Im(Ve:(i7)))
_ QVAane(z.VQQ)me(w)

+ / Vi1 QPRe(V(i))
RZ

V. (BRe(ioV Q) meuw@)))

- A VilQPRe(v).

We compute, by integration by parts (still using Lemma 3.6.3 and Theorem 3.1.4), that

2 / PIN(VQQ) Im(V(i)) = —27 / IV QQ) Re(V)
R2 R2
e / V. 3m(V QQ)%Re(4))
IRZ
T+ o2y / Im(AQQ)Re(1),
RZ
and since Jm(AQQ) =NRe(2.VQQ) and Re(V(iy)) = yIm(V), we have
| R = B3
- 7<—E-A2Vn9‘ie(<p(2)+A2Vn-(9‘{e(i<pVQ)—me(ivso@)))
+ o2y / V. Im(VQQ)Re(1)
RZ
+ 5[ InlQPam(vy)

- A VilQPRe(v).
we check that Me(0Q) = |Q|*Re(v), Re(ipV Q) = —Re(VQQ)Im () + Im(VQQ)Re(¢) and that

“Re(iVpQ) = —Re(iVQ.QY) — Re(iVy)| Q|
= Im(VQQ)Re(v) +Re(VQQ)Im () + Im(V4)|Q %,
thus concluding the proof of

Rzme(L‘S‘p(w)(w +17Q)) = B5" (¢). O

3.6.2 Properties of the perturbation
We look for the equation satisfied by ¢ = Qv in the next lemma.

Lemma 3.6.5. The functions Q and v, defined respectively in (3.6.1) and Lemma 3.6.2, with
©=Q, satisfy the equation

Lo(Qv) —i(cer —¢).H(v) + NLjoc(¥) + F(30) =0,
with L¢ the linearized operator around Q: Lo(¢):=—Ap—icVep—(1— Q%)+ 2Re(Qyp) Q,
S(1p) :=e?Me W) 1 — 2%e(v)),
F(¢):=Qn(=V¢.Vy +]Q[*S(¢)),

o V(Q¥)(1— 1)+ QVyme”
H(4):=VQ+ =7 +ne?
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and NLjoc(¥) is a sum of terms at least quadratic in 1, localized in the area where n=+1. Further-
more,

[{(NLioc(%), Qv + i) S K (| Qv |1y + 17 DI QU 1 (11

Remark that here, the equation satisfied by ¢ has a “source” term, i(cé3 —¢'). H (¢), coming from
the fact that Z and Q. might not have the same speed at this point. We will estimate it later on.

Proof. The function Z solves (TW,), hence,
i(céy— )\ NZ=—id'NZ—-NZ—(1—|Z))Z.
From (3.6.2), we have
Z=Q+ 1 -nQY+nQ(e’ —1).
We define
Ci=1+19 —e.
We replace Z=Q + (1 —n)Qvy +nQ(e¥ — 1) in —i &.VZ — AZ — (1 — | Z|?)Z exactly as in the

proof of Lemma 2.1.7, by simply changing V', ¥, c€s, 1 respectively to Q, v, ¢, 1 —n. In particular,
E —ic0y,V becomes 0 (since TWz/(Q)=0). This computation yields

i(céy —2).VZ=((1-n) +ne?)(Lo(Qv) + NLie(1) + F(1)).

Furthermore, we have that ((1— 1)+ ne?¥) #0 by Lemma 3.6.2 and equation (3.6.9) (for the same
reason as in the proof of Lemma 2.1.7), and we compute (as in Lemma 2.1.7) that

e? e¥ -1
(1—:77)+ne¢T’H(ln)((l—n)wew) (3610

Furthermore, we have

VZ = VQ—-QVi{+VQ(L—nv+n(e¥—1))+QVy((1—n)+ne?)
= VQ(L—n+ne?)—QVn¢ +V(Q¥)(1—n) + QVymeY,

hence

4 v QVie  V(Qp)(A—n)+ Qvl/mew’

(1—n)+ne? (1—n)+ne? (1—n)+ne?

therefore, with NLjo.(¢)) = N\iloc(w) +i(cey — E’)_O:%—vﬁpr, we have

Lq(Qu) —i(céz — ). H (1)) + NLioe(¢) + F(¢) = 0.

Finally, we check, similarly as in the proof of Lemma 2.1.7, that

[Nio(5), Qi+ i) < K(IQ errsan +171) | INLuoc)],

hence

[(NLioc(¥), Qv +im))| < K(|Q¢ o1 1y + [V D I QU 1 F 1 1)- 0

Now, we want to choose the right parameters v, ¢’; X so that ¢ satisfies the orthogonality
conditions of Proposition 1.4.10 and 1.4.11 (with remark 3.5.4).

Lemma 3.6.6. For the functions @ and v, defined respectively in (3.6.1) and Lemma 3.6.2, there
exist X, € R% v € R such that

Sllcen. @) 61(cen, & A,
|X |+ (CQ’ ) o - )+|’Y|<0\|’ZC7QC||ng0(1)’
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and

e / 0., QQUTO = e / 5, QQUFI =0,
B(dar 1, R)UB(de 5, R) B(dar 1, R)UB(der 5, R)
Re / D1 QY70 =0,
B(dgryl,R)UB(darg,R)
e [ 0aVQLF 0
B(da/wl,R)UB(dalwz,R)

9%/ =0,
B((d5/71+d3/72)/2,R)

where dg.1 and dg o are the zeros of @), dz.1 being the closest one of dc(?l, and 04V is the first
order of Q by Theorem 1.3.1 and (1.4.1).

Here, the notations for the harmonics are done for (), and are therefore centered around dg ;
or dg 5. This means that 7%(z) = ¢(z) — ¥ (r1) with ry:= |z — dg 1|, © — dar,; = r1€'%1 € R?
and %! being the 0-harmonic of ¢ around dz ; in B(dz 1, R), and 97 °(z) = ¢ (x) — 1®2(r2) with
ro:=|x — dg 2| in B(dz 2, R) and ¥%! being the 0-harmonic of ¢ around dz 5. We will denote
¥%(z) the quantity equal to 1% *(r1) in the right half-plane and to ¥®?(rs) in the left half-plane.
Remark that dz ; € R?, whereas d. € R. We recall that, taking ||Z — Qc| e small enough, we
ol (ces, @)

C2

have < 1, and in particular, for ¢ small enough, it implies that %g |¢'| < 2¢. We recall

that oﬁ’ZC_QCHHS?_,O(l) is a quantity going to 0 when ||Z — Qc||HeQ"CP—>0 at fixed A and c.

Proof. For X = (X1, X3),? € R?, we define, as previously, the function
Q=Qz(.— X)e'.
We define, to simplify the notations,

Q:=B(d# 1, R)UB(dz 2, R)

and

Q= B(—(dzl’l ; de'.) ) R))

which is between the two vortices. We define

¥ Re [, 00, QQUT°
X, Re [, 02,QQv7°
Gl 01 |:'=| ™Ref,0aVQv7" |,
02 Re [,0..QQUT°
K Re [, it

where @ (used to defined Q= Qz/(. — X)e'?) is given by &; = 6l"(cé, @) and 6o =01 (cés, &).
Here, we use the notation 0.Q for 0.Q¢|c=c’. We remark from (3.6.7) and the definition of 7,
that in €, we have
Qv=7-Q.

First, we have

. ol(cen, @) 6t(céy, e
||Qw||cm><oT’Z_Qc”ngo<1>+K<|X|+ ,0) S lech )+|v|), (36.12)



3.6 LoOCAL UNIQUENESS RESULT 217

which is a consequence of Lemma 3.6.1. By Lemma 3.4.1, we compute that

A,
< O‘|ZC—QCI|H8(p—>O(1)

Q
coocoo

Let us compute Ox,G. We recall that Qv € C1(IR?, C). Since Q depends on X, we have
oxe [ 0.0007 = [ 9e(2.,0Q07)
Q 0
[ e(22.0.0007)
Q
+ [ e(0..00x.Q07).
Q

By estimate (3.6.12), we have

me(aszW)

+' A i)%e(ainW) <

[A( e 21 T
12 4 cea, C 1) cea, C
%% - Qelyggo—ol )+K<|X|+ (c2 ), 9 ( ‘ ))7

and since Qi) =Z — Q and 7%= — % in Q, we check that,

/ Re(,,Q0,(Qu7) ) / 10.,QP + / Re(0,,Q0x(QU0) ).

Now, using Qi = Z — Q, we check that, in B(dz 1, R), where z =71,
271'Z _
2W8X2(Q1/)0) = aXz(Q/ QdOl)

o @

27
- 0.0 2%

2m Q 2m Z Q Q

+Q/ Oz d0+Q/ —= /T2 R 0,

2
+ 0 /O am<—z QQ)cwl

Therefore, we estimate (since R is a universal constant)

[ (o005 @) | <
B(dsr 1,R)

27riaxQ )
o —2*d0
T e

Let us show that, in B(dez 1, R),

+K|[|Z - Qllcva)-

2
Q /0 =2y = o). (3.6.13)

We have in this domain that %: 14 0c—-0(1) and }VQC — VV1| =0.-0(1) by Lemmas 3.1.13 and
3.1.14, where V7 is the vortex centered at dz/ ;. We deduce that, in B(dg 1, R),

2w 27
Q= de, =, [V 1a0, o)
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Finally, by Lemma 1.2.1, we check that 6%—‘1/1 has no 0-harmonic around dg i, therefore
Vv / 2de0 =0
1 . 2 1=0.

By symmetry, the same proof holds in B(dz 2, R).
Adding up these estimates, we get

(3.6.14)

<

‘a&me /Q 0,000 4 /Q 10,02

6\.\ 5 2 §+t(cén. &
oﬁ’ZC_QC”HSXP_)O(l)+ocﬁ0(1)+K<|X|+ (cez,c)+ (cez,c)+| |
Qe

2
By a similar computation, we have

‘5‘)(29% / 9aVQu70 — / iﬁe(advamé?)' <
Q Q
A,c

sl cés, & ot céh, ¢
OlIZ—QCIIHgEHO(l)+0c—>0(1)+K<|X|-|- (02, @) | 07(cen@) | .

2 c
By Lemma 3.4.1 and Theorem 1.3.1 (for p=+00), we have

[eoavia)| <| [ necocma)|+| [ w0 - 0050 =0 )

Similarly, we check

Q Q
oll(cén, @) 0t (cés, e
oﬁ’;chHgfﬂouonou)+K<|X|+ )y ST 4 |>
Still by Lemma 3.4.1, we have

‘ /| %e(alem' —oeo(1).

With the same arguments, we check that

‘a;@ L 0,1 QQUP

<

c? c

Finally, with equations (3.1.6) to (3.1.10) and (3.6.12), we check easily that

H - =y
%(% / iw) <ONF o eolL) +0eo(1) +K<|X| (e ?)
Q7 Qc

N oMl (cén, @) 0t (cés, e
OHEchHgfﬂouonou)+K<|X|+ (@) 8 @) 4y

52 Al
2 +6 (Ci2’c)+|’7|>-
We deduce that
X1 0
Xo fQ|aﬂC2Q|2
8X2G 01 + 0 <
P 0
Y 0

. 5\.\ 5 A §L(cen. &
Oﬁ’z-chHgMo(l)+oHo(1>+K<|X|+ @) (662’C>+Iv|>.

c? c
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We can also check, with similar computations, that

Xl fQ|aI1Q|2
Xo 0
ale 01 + 0 <
2 0
v 0
(52 =1 Lz =t
OT;_QCHHEXCMu)+oﬁo<1>+K<|X|+5 )y (C?’C’an).

We infer that this also holds with a similar proof for the last two directions, namely

X, 0
Xo 0
205,G| 61 |+| [P0 || <
P 0
v 0
Lz = L =
OT7ZC—QCIIH35—>0(1)+0c—>0(1)+K<|X|+5 (66622’6)+6 (C?’C)Jrlvl)

219

(using the fact that 94V is differentiable with respect to d;, which is not obvious for ¢?9.Q and is

the reason we have to use this orthogonality) and

X, 0
X, 0
5,6l 6 |+ 0 <
P lecaCLC)'2
v 0
(it 21 SL( ot
OT’ZC—QC||H35~0(1)+0M0(1)+K<|X|+6 (cc?’c) it (Ci%c) +|7|>-

We will only show for these directions that, in B(dz 1, R)

™ 20,Q ‘ ‘ T e0,.Q
‘Q/o g |+ g,

the other computations are similar to the ones done for dx,F (using Lemma 3.4.1).
We recall from Lemma 3.1.2 that, in B(dg 1, R),

= OCHO(1)7

||C285Q - 8d‘/ ||Cl(B(d5/,1,R)) = 05%0(1)5
where |04V + 0z, Villc1(B(dyr 1, R)) = 0c—0(1), Vi being centered around a point dz € R2 such that

|dz: — dz' 1| = 0c—0(1)-
Therefore, we check that

2w 92 27
C 8@@ 895 V1
< 1
Q/O Q d01 S Vl/o V1 d01 +0c~>0(1)
= 05%0(1)
from (3.6.14). Finally, we have, from Lemma 3.1.6 that 0..Q = fxl*‘;L(C?Q’E’).VQ, where

20 (e@) s 1L rotated by an angle 6 (céb, @). We remark that, in B(d# 1, R),

27 1, 27 o,
'Q/ Cdc _’1.VQd01 < ‘Vl/ Cdc 71.VV1d01
0 Q 0 Vi

+ Oc_,o(l)
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and

2 .,
‘Vl/ Mdgl
0

V., =0

by (3.6.14) and the same result for d,, instead of d,,. Therefore, since |o19" (¢%:¢) _ dz 1| <K in
B(dz 1, R),

27 27 1,64 (ce,e) _ g4,
‘Q/ c@CLQdal < Q/ c(x dc71).VQd‘91 +oeo(1)
) 0 Q
< KC+OC_,0(1)
= Ocﬁo(l).
Finally, we infer that
X, 0
X 0
&YG 61 + 0 <
) 0
vy %QIQ,Q

Ac oll(cen, @) 6t (céy, e
o|'Z_chHgfﬁo<1>+oHo<1>+K<|X|+ (0)  2LRD) 41y )

The proof is similar of the previous computations, and we will only show that, in €,

A,
0,(QUP) <01 g e ol1):
We have

10,(Qu70)] = 10,(Q¥) — 2Q1/)° |
_ig— Q/ ZQde‘

Ouz QC||HSX£,_>0(1)

N

A,c
+ 0||Z—Qc”1~182p—>0(1)

N

From Theorem 1.3.1, Re [, Q = Re [,,—1 + 0.~0(1) < =K < 0. We conclude, by Lemma 3.4.1,
that, for ¢ and ||Z — QcHHg"f small enough, dG is invertible in a vicinity of (0, 0, 0, 0, 0) of size
independent of ||Z — Q.|| HE®. Therefore, by the implicit function theorem, taking ¢ small enough
and ¢(c, \) small enough, we can find X, ¢’ € R? v € R such that

oll(cen, @) 01 (céy, @)
X+ —F—+— +vI<o) q, ||HexP_>o(1)

and satisfying

e / 0, QQUP = Pe / 0,,QQUP =0,
B(dgzr,1,R)UB(dz/ 5, R) B(dzs 1, R)UB(dzs 5, R)

Re / AgVQU79 = Re / 0.1 QQUYT0 =0,
B(da/,l,R)UB(dE/,Q,R) B(da/,l,R)UB(dE/,Q,R)

i)%e/ ) =0. a
B((dzr,1+dzr 2)/2,R)

3.6.3 End of the proof of Theorem 1.4.13
From Lemmas 3.6.3 and 3.6.6, we can find ¢ = Qv € H;,™® such that

5“ 652,5' 6J_ 66_'2,5' e
XI+ (c2 Ly (C )+|’Y|<0\|27chH3?Ho(1)v (3.6.15)
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and

Re / 00, QQUT0 = Re / 02, QQUP =0,
B(dgzs 1,R)UB(dzr o, R) B(dgzs, 1, R)UB(dzr o, R)

Re / 0.QQU70 = Re / 0, QQUA =0,
B(dgr 1, R)UB(de 5, R) B(dzr 1, R)UB(dg/ 5, R)

SRe/ i) =0.
B((dzr,1+dzr 5)/2,R)

Now, from Lemma 3.6.5, 1 satisfies the equation

Lo(Qy) —i(¢" — céa).H(1) + NLioo(v) + F(¢) =0. (3.6.16)
We remark that

Lo(Qv) =(1—n)La(Qv) +nQ Lo(v),
and by Lemmas 3.6.3 and 3.6.4,
(1=n)Lo(Q¥) +nQLo(¥), Q¥ +iv)) =BG (¢).

We deduce that
BGP(¢) = (i(¢ —ce2). H(¥), Q(¥+i7)) + (NLioe(¥), Q¥ +17)) + (F(¥), Q(¥ +i7)) =0.  (3.6.17)
Since Qv € H,® by Lemma 3.6.3, with the orthogonality conditions satisfied (see Lemma 3.6.6),
we can apply Propositions 1.4.10 and 1.4.11 with remark (3.5.4). We have

BGP(9) = K [0l + K (c)ll ¢ |- (3.6.18)

3.6.3.1 Better estimates on ¢’ — cés

The term ¢(¢' — cé3).H () contains a “source” term, because Z and @ do not satisfy the same
equation (since the travelling waves Z and () may not have the same speed at this point). We want
to show the following estimates:

Lo 1 A, A,
oHees ) < (KCQID<E) +0|ZCQCIIH§;‘H°(1))|@||C 017l ygo—oDllellgr  (3.6.19)
and
Lo 1 A, A,
54 (e, ) < (Kcan(;) ol ;QC,H8§HO<1>)|¢||c+o“;QC,HEXEHO(1)|¢||H3?, (3.6.20)

=21 =L
where 6l'l(cé, @) = | — | and 6+ (céa, &) = |céarzy — .
This subsection is devoted to the proof of (3.6.19) and (3.6.20).
Step 1. We have the estimate (3.6.19).

We take the scalar product of (3.6.16) with ¢20.Q, which yields
<7’(61 - Ce_'Q)H('L/))a C28€Q> = <Q1/)7 CzLQ(acQ» + <NL10C(1/)) + F(d’), 0286Q>'

We check here, with the L estimates on 1 and its derivatives, as well as on 9.Q) (see Lemma 3.1.2
and 3.6.3), that (Lg(Qu),c?0.Q) is well defined and that all the integrations by parts can be done.

We recall that H(y)=VQ + V(szil:nf)?)jnffwnew’ and we check that, since 1 — 7 is compactly

supported (in a domain with size independent of ¢, é’), with equation (3.6.11)

(it caa (=TT L 20,Q)| < K@ - el (niQV . 0Q)

+ K& —callellage.
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We compute with Lemma 3.1.2 that

Qv @0.Q)| = | [ we(vioenm)

< / nme(vw)jm(cgc?@)'+‘ / nIm(Vy)Re(Qc*9.Q)
R?2 R?

< | [ metwivm@eaa)| + Ko lug:

+ lelley/ [ imeQea).

From Lemmas 3.1.1 and 3.1.2, we check that fR2 nRe?(Qc?0.Q) < K, and furthermore,

IV(Im(Qc*0:Q))| < ?0.QIV Q| + K[ Va.Q|

and with Lemma 3.1.2 (with 0 =1/2), we check that

K

IV(Im(Qc?0.Q))| gm,

thus, by Cauchy-Schwarz,
[ () v om(Qem@)| < Kl

Using [¢/ — ces| < K (e)(61(c6s, @) + 5 (ces, @) < o5 (1) and [glle < Kl mgzo, we
Qe

Qe

deduce that

L L (T=n)V(QY) +ne¥QVy A
‘<l(cl_062)' Ao ner ¢ Q)| Sz Quigp—oL):

Furthermore, we check that, by symmetry (see (3.1.3)),

(i(2' — ¢63). V2 Q, ?0.Q) = 61"I(cés, E’)<i%.VQ,cQ&;Q>.
Furthermore, from Lemma 3.1.7, we have Lg(0.Q) =iV#Q, therefore, from Proposition 1.4.1,
<i%.vcg, c28CQ> = 2Bo(0.Q) = —27 + 0o(1).
We deduce that
ol (ces, @) < K (Qv, *Lo(0:Q)) + (NLioe(t) + F (1), 20:Q) | + 0} Qellygr—o(D @ lag
Now, since Lg(0.Q) :i%.VQ, we check that

(Q, PLo(9:Q)) =c2<czw,i|§—ﬁ|.vcz>,

and

‘<Q¢,¢§.V@>‘<' %e(w)3m<—,.VQQ)‘+‘/ Jm(w)me<—,.vc2@)‘.
El | R? |

R2

From Lemma 3.4.4, we deduce that

(@0 Lo < K n( 1 e
Now, we check easily that, with Lemmas 3.6.1 and 3.6.5,
[(NLioc(¥), ¢?0:Q)| < K ()l mgell el ormo.0) < Oﬁ’zc—Qc||chp—>o(1)||<PHH§;P-
To conclude the proof of estimate (3.6.19), we shall estimate

¢ A,c
(), Q) 05— g el DI e+ (Ko +015 oD [l
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with F(1) = Qn(=V .V +|Q|?>S()). First, we estimate, for A > X >1—CO, with Lemma 3.6.2,
-Qivuve,@0Q) = | [ e(veTueaoe)
| nvirieeoq)

K|vw|m<3<0,w7&on\/ / n|vw|2\/ / nl2Q0.Q
B(0,)) B(0,))

12Q0Q L~ 50.0) / n V[

R2\B(0,))

/A

N

+

A,
< 07 Qullyggo oDl +or—oc(Dlile,

since, by Lemma 3.1.2, |c2Q0.Q| < ﬁ We deduce that
T

(=QnVY.V, O <07 g, oV ¢l

Now, in {77: 1}, since e¥ :é and 1 — K\ S%l‘ < 14+ Ko (by our assumptions on Z), we have

|Re(v))| < Kpo. We deduce, with Lemma 3.6.1, that in {n# 0},

With S(v) = e?R¢(¥) 1 — 2%e(v)), we check that, in 740, |S(1))| < K [Re(1))|? (given that o and
|Z = Qc|lmg» are small enough), and with similar computations as for [(—QnV¢.V, c0.Q)|, we

A,
[Re(Y)| < Kpo+ o)y g,

conclude that
[(F (1), ?0.Q)| < 0|T,ZC—QC||H8¢Cp—>O(1)H(p”C'

This concludes the proof of
Ao 2 < o 1 A,
CENDES 0017l gz — oDl e+ <K021n<5> + 0||ZC—QcIIHz;£’_>°(1))”<p|C'
Step 2. We have the estimate (3.6.20).

Now, we take the scalar product of (3.6.16) with ¢d,.Q:

<Z(El - C@)H(1/))? CacLQ> = <Q1/)? CLQ(aciQ» + <NL10C(1/)) + F(w)a CaciQ>'
We check that, since

_ P
(i@~ o YODA=DLGTI, o5 0} < KI(@ - cia)(1 - 0)iQVw,c0.1Q)
b Kle el

and

(i QV,cd. Q) = [Wni)‘{e(vwch@cLQ)‘

</ n%e(vwﬁm(czc—a&@H [ v meQaQ)
R?2 R2
< | [ )9 mQaT@)| + Kl g
+ lglle / PR(QDQ).
R2

We check, with Lemmas 3.1.1 and 3.1.2, that

/ PRA(QeT, Q) < K
RZ
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and
V(Im(Q9.-Q))| < |VQ0.- Q| + V0. Q] g%

therefore, as for the previous estimation,

‘ <’L(5/ — céy). (1 - H)V(Ql/)) + erva
(1=n)+ne?

A,
0eQ)| <01 -a DNl
We check that, by symmetry (see equation (3.1.3))

=/
(¢ — ¢63).V Q, 0, Q) = 6 (céb, z')<i|g_,|.v¢g, caCLQ>

oL
Furthermore, from Lemma 3.1.7, we have Lg(0,.Q) = —ic%.VQ, therefore, from Proposition
1.4.1,

L
c<i'|ca7|'-vQ, acLQ> =—B(9.1Q) = =21+ 0c—0(1).
We deduce that

61 (céy, @) <
K|(Q¥, ¢ La(0e-Q)) + (NLioe($) + F(9), e Q)| + 01— g, oDl #1157
As previously, we check that
[{Nioc() + F(9), et Q) 017 - 0,1y — oD 1157 + 017 1 yggp oD el

and from Lemma 3.1.7, we have

Pyan
Q) Lo(0.:Q))| = ‘<Qw,i|cz—,|-VQ>

< +

L B
me(w)3m< %.vcgcg)

[ amume “ vao).
R2 ||

cl(Qv. Lo@. Q)] < Ketn £ )l ple

R2

and with Lemma 3.4.4, we deduce that

We conclude that

JER. 1 A, ¢ A, ¢
1 / 2 ) s
- (ce2,@) < <KC h’(;) +OlzQc||H;5§Ho(1))||‘P|C“lzQC||H2;C;H0(1>||<P|Hf;ﬁ

3.6.3.2 Estimations on the remaining terms

Let us show in this subsection that

[(i(€¢" = c€2). H(¥), Q(¢ +i7))| + [(NLioc(¥), Q(¥ + 7)) | + [(F(¥), Q(¥ + 7))

X, A,
< (OCHO(l)+0\|szQc||H3cpHo(1)+K>\0>||<PH(23+0\|ZCfQC||H8pH0(1)||<PH%{8‘P~ (3.6.21)

Step 1. Proof of |(NLise(4), QU +17)| 0} 50D i
From Lemma 3.6.5, we have

[(NLioe(), Qv + i) S K (| Q¥ lcrn) + [ DIl gy

therefore, from Lemmas 3.6.2, 3.6.6 and equation (3.6.15), we deduce

A,c
[(NLioe(4). Q)| €5 oDl iz
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Step 2. Proof of
[(i(€" = cé2). H (), Q(¥ + 7))

A, A,
<(Oc—>0(1) + 0||ZC_QC||H8(§H0(1) ) el + 0||ZC—QC||HEX£H0(1)|| ® ||%{g‘f’-

We separate the estimation in two parts. First, we look at (i(¢" — cé3). H(v), Q). We recall
1—n)V(QY) + ne*QVy . S = X, .
that H(3) = VQ + n(lfn))Jrnsz , and, since [¢' — &3 < 0||ZC—QC||H8§’*°(1) and 1 - is
compactly supported, we check easily that

(7 ey, (L= MV(QY) + ne?QVY
(ite = e (=0T LICATY ) <

OﬁHZc—Qc”Hg‘PﬁO(l)(|<7’ZQV¢7 Q'l/)>| + K(C)H ® ||2HeQXP).

Furthermore, we check that

)

(0iQVs,Qu)l<| [ RewmmvalQPy

+' A Im()Re(V)|QPn

and by Cauchy-Scwharz, |fR29%e(1/J)§m(V1/1)|Q|277| < K||¢||2. Now, by integration by parts (using
Lemma 3.6.3), we have

[ amtwmviiary

< / Re (1) Im(Ve))| Q[
RZ

+ | [ amewmerviary]
RQ

o ;m(w)me(wnczﬁwy,

and by Cauchy-Schwarz, we check that

[ ammea)iQpy

<K@l
We deduce that

‘ <i(&” — ey, L= V(@) + e QVY
(1—n)+ne¥

A,
,Qw>‘ S0||ZC—QC||H8?%(1)H(pH%[gxp.

ot
ZT/'VQa Q,(/) .
@
With Lemma 3.4.4, we check that

- =L
’<if—,.VQ,Q¢>’+‘ iV Q, Qu ‘éKlnG)lwllc.
|&'| || ¢

With (3.6.19) and (3.6.20), we deduce that

Finally, we write

(i(¢" — ¢€2).VQ, Qib)| < 81 (céi, &) <z’%.m,@w>y + 6% (céh, @)

. - 1 A, A,
(@ — e63).VQ, Qu)]| < (ch(;)m,,;QC||H8HO<1>)|¢|%+0”;QC“Hgﬁounwzgp
A, A,
< (OC—>O(1)+OHZC—QC”HEKD*)O(l))H(ID”%+O“ZcfQC”ngpHO(]‘)”sp”%{eQXP'

Now, we look at (i(¢' — céb). H(v), Qivy). We check that

1vQ. Qi) = [ #e(ve@)=3 [ vier-n-o.
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thus

_ oV

In the area {n+#0}, since |v| —OHZ 0. (1) by Lemma 3.6.6, since

lrezp—0

1 A,c
or—ceil <& (et 1)+ 015 g1 gm0 e 5ol

by estimates (3.6.19) and (3.6.20), we check that

G Qv) +1e’QVY
/n#o}f)%e<z(c — C€h). (1- )( ( ))_H;Z QZ’Y)<0||Z Q. ||Hexpﬂo( )H‘P”%{g‘%

and therefore (with Lemma 3.6.3 that justifies the integrability)
(i€ = eéb). H(v), Qin)| < [7(@ = céb)- [ n|QPRe(VY)| + 0156 cpo(Dl @l Frge-
R2 Qe Q

K(X e 12 = Qellyggwr €0, Z)
(a+n?

By integration by parts (since |Re(y))| < and |Re(Vy)| <
K(X 112 = Qellyggwr <0, 2)

e by Lemma 3.6.3) and Cauchy-Schwarz,

'%RQWQF%@(V?/J)' < 'AZVTHQPE)%W)‘+'AQ7,V(|Q|2)9%(¢)'
< K©lelug

= — A,C
Since |y|= O”Z chlHexp—>0( ) by Lemma 3.6.6 and |¢' — céa| < (K(c) + OHZ_QC”HZ?_)O(l))||¢|\H8cp
by (3.6.19), (3.6.20) and Lemma 3.5.1, we conclude that

RN — . A,c
|(i(¢" — cé2). H (), Qiy)| < 0||Zch||Hepo0(1)H‘PH%{g‘p-

Step 3. Proof of [(F(), Q¥ +1)) | < (015 g, 00l) + Kol 2.

We recall
F(¢)=Qn(=V¥.Vy +|Q*S(v)),
S(1p) = e2ReW) 1 —2Re(v)).
First, we look at (F (), Q). We have

(F (), Q)| < QL= n) V.V, Q)|+ {Q(1 = n)|Q*S(v), Qy)|.
We check that [|¢||peo(r2) < K ||¢ || Lor2\B(0,7) + K@l L=(B(0,1) < K)\oJrOﬁ’Zc,Qc”ngﬂo(l)

(QuT .79, Q) < el [ alV0P< (KAt ol gD )R

Finally, since ||¢||fo(r2) < K a uniform constant for ¢ and ||[Z — Qe gg» small enough,

(QuIQES(). QuII < lplowquey [ 93e2(5) < (KXo +015 150 -olD) )21

Now, we compute

[(F(), Qiy)| < |’Y|‘/ —Re(niV.V)| QI+ 1| Q' Re(S(¥)i)],

and since S(v) is real-valued, we check that, since || —O”Z 0. ”Hexp_@( ) by Lemma 3.6.6,

(P QI I [ 1IVUPIQP < gDl IR
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3.6.3.3 Conclusion

Combining the steps 1 to 3 and (3.6.18) in (3.6.17), we deduce that, taking ¢ small enough, and
then [|Z — Qc|| e small enough (depending on ¢ and \), we have

0 > Kllplg+EK()lelhge
A, A,
- (Oceo(l)+KMO+0||'ZC_QC\|H3pﬁo(1))||<P||%—OH'ZC—QCIIng_m(l)”SDH%Z;P,

hence, if po is taken small enough (independently of any other parameters) then ¢ small enough
and [|Z — Qcl| gexe small enough (depending on A and c),

E(c)llelige+ K@l <.

We deduce that =0, thus Z = Q. Furthermore, from (3.6.19) and (3.6.20) we deduce that ¢’ = cé,
and since Z — 1 at infinity, we also have v =0 (or else ||Z — Q¢||srg» = +00). This concludes the
proof of Theorem 1.4.13.






Chapter 4

Inversion of the linearized operator and
applications

In section 4.1, we recall previous results (mainly from the previous chapters) on the branch of
travelling wave of Theorem 1.3.1, and show some corollaries that will be useful here. Section 4.2 is
devoted to the proof of Theorem 1.5.1, and section 4.3 to the proof of Theorem 1.5.2, which relies
mainly on Theorem 1.5.1.

We recall from subsection 1.5 that, with d. defined in Theorem 1.3.1 (+d.€; are the center of
the vortices from which Q. is constructed as a perturbation of), we defined
7 =min (|x — d.€1|, |z + d.e1]),

as well as the two norms, for 0,0’ € R, p = Q. € C%(R?,C), 1 = 11 +iths, and Q.h € CH(R?, C),
h=hy+ihs,
V0,0 = 1Qct|lc2arga
1717 || ooz ) + 12TV || oo ) + 172V 2001 oo 2 2)
+ 177 Yol Loz + IF1F OV | Lo i 2y + |72V 20a | oo 72 2

+

and

Ihlles,cr = 1Qchllcrm<an
+ [P b Loz + 17277 VR Loz
+ (17249 byl Loo sy + 17217 Vhal| Lo 7> 2)-

We defined the spaces, for 0,0’ € R,
E9.0={¢=Q € C}R2,C), ¢ |o,s < +00,Y(z1,22) € R?, (71, 22) = p(—1, 72) },

5§g>s,%m ={p=Q €Eg,¢,V(21,12) €R?, (w1, 2) = (a1, —x2) }
and

Eos,00={Qch € CY (R C), ||h| g0 < +00,V(21, 22) € R?, Qch(x1, 22) = Qch(—x1,22) },

Eadrer =1{Qeh € Egg,on, V(x1,72) € R?, Qeh(w1, 22) = Qchlwy, —2) }.

4.1 Previous results on the branch

This section contains mostly results previously known on the branch of Theorem 1.3.1. This allows
us to present them in a way adapted to the proofs to come, and to regroup the properties from
other chapters and articles.

From Proposition 1.4.1, Q. has exactly two zeros, and they are near +d.€;. In particular, with
F=min (|z — d.€1|, |z + d.€1]), we have shown (see equation (3.1.12)) that outside of {7 <2},

1
T S1Q <K

for a universal constant K > 0. This is why the norms ||.||g,- and ||.|ge,, are separated in an
estimate on {f < 3} and another outside this domain, to allow the division by Q..

229
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4.1.1 Symmetries of the travelling wave
We recall that for all = (r1, 22) € R?,

Qc(z1,22) = Qc(—x1, 22) = Qe(x1, —22).
This implies that

0cQc(1,72) = 0cQc(—71, ¥2) = 0:Qc(T1, —72),
aleC(xla $2) = _aa:ch(_xla $2) = aleC(xla —.1‘2),

and

angc(wla .Z'Q) - awzQC(_xla $2) — _angc(xla _ZCQ).

Remark that these three quantities all have different symmetries. We also check that

8CJ‘QC(:E15 1’2) = 785LQC(75L'1; 1’2) = - CJ‘QC(xlﬂ 7%2),

see Lemma 3.1.6. We will not need it, since functions even in x; satisfied the orthogonality on this
direction.

4.1.2 Decay estimates for the travelling wave

In this subsection, we recall some decay in position satisfied by the travelling wave. First, from
subsection 3.1.1.2, we recall that for all 0 <o <1,

K(o)

- ’2 S I I
|1 |QC| |\(1+7'1)1+a" (411)
K(o)
<—7
Im(VQT)| < (4.1.3)
c C ~X 1 +7»;
and from equations (2.2.13) and (2.2.15), with the fact that (TW,)(Q,) =0 (or see [6]),
1Qcllozr2,0) < K. (4.1.4)

We now give an estimate of Q. using the norm ||.||gg,o-

Lemma 4.1.1. For all 0< o <1, there exists co(c), K(c) >0 such that, for all 0<c<co(0o),

K(o)e™
-l <=
|QC | (1—}—7‘)0
and
NQell < k(o).
¢ RR,0

Proof. From equation (4.1.4), we check that
[Qcllc2rsan <11Qellc2m2,0) S K.

Now, from section 2.2.2, outside of {f < 3}, we can write Q.= Ve¥¢ 4 with 1V gl eem2) <1 for
¢> 0 small enough, and V=V;(. —d.€1)V_1(. + d.€1). Thus

Qc—1] < [V 1]+ [V][[e¥e ~1]
< |V =1+ K,
. K(o)cl—° Kct
From equation (2.2.13), we have |¥. 4. | < T and from Lemma 2.1.3, |[VV| < T

therefore, integrating from infinity (on axes where x; is constant), we check that

Ke™t
(1+7)

[V —-1|<
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Now, since |V |<1 by Lemma 1.2.1, |V — 1| <2, and by interpolation,

Kc°
[V —1|< =G
thus, for ¢ small enough,
K(o)c™°
|Qc_ 1| g—(1(+)7:)0 .
We recall that, with ||.||gg.o defined in (1.5.2),
AY :
SRl = iv@elosren
QC RR,0
+ f1+“9‘{e<vac) 4+ ||F2te V%e(lv@c>
Qe Leo (17 >2)) Qe Leo (17 >2))
+ f2+03m<NQC> + |72+ vm(’VQC)
c Loo({7>2)) Qe Loo((F>2))
= IVQcllcrgrgan
+ f1+ajm VQC) + 7’:2+cr ij( VQC)
Qe Leo(iF>2}) Qe Le=({F>2))
+ f2+09‘ie<—vQc) + || 72 te V%e(vQc) .
¢ /L= Qe /L2

We have [[iVQcllcrqr<ay < |Qcllc2r2,0) < K, and

VQ. _VQQ.
Qe 1Qcl*

Outside of {f < 3}, Q.= Ve¥ e and thus

VQ. VW + V\Ifc,dc|V|262me(\lfc,dc)
Qe |Qcl?

From equation (2.2.14), we have

[(1+7)* T Re(VWeq, )|+ [(1+7)H7IM(V e q,)| < K(0)c' 77,

and since, in {F > 3},

|‘/|2 eQmE(\IIc,dc)

<K,
|Qc|?
we have
2
f1+‘73m< V‘I/c,dc|2V| ezme(\lfc,dc)> < K(o)ct=°
| |Qc| Loo(i7>2)
an
T, 2
‘ 7~;2+a%e<v |Qdc||2V| 629%(‘1/c,dc)) < K(o)ct™e.
c Leo({7>2))

Now, from Lemma 1.2.1, we have, for a vortex Vi centered at 0, [2Re(VViiVi1)| = |V|Va|? <

T fr),o,, thus, by translation,
7 K
< .
K

, and from Lemma 2.1.3, we have |VV| <

Still from Lemma 1.2.1, we check that |[VV| <

. . 1+7)
therefore, by interpolation,

K
(1+7)2¢’?

Kc°
a+re

772““‘79%(22—%)

[Im(VW)| < K[VV]<

7:1+ojm< VQC)

c

We deduce

< K(o)c°.
Le=({F>2))

+
Lo ((F>2)
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We now focus on the derivatives of VQQf. We compute

vO. 2Re(¥.,4.) _
v( QQ ) _ V<G|Q—|2 (VW + V¥, 4|V ?)

V(VW) + |V PV a, ome(w
|Qc|? :
VU, q VIV |262me(\1'c,dc)
|Qc[? '

c,de)

+

+ (4.1.5)

2%e (Ve q,)

Remark that V<EQ—|2

) is real valued, and

. e2Re(¥e,a,) _ QV%Q(\I,QdC)eQme(‘PC,dC) B v(lQC|2) 2Re(Ve )
|Qc|? |Qc|? |Qc|* ’

and by equation (2.2.13), (4.1.2) and (4.1.3), we check that

o (2Re(Ve,a,) . K
|Qcl? S+

This is enough to show the estimates for the first term of (4.1.5). For the second term, from equation

. 14
(2.2.14) (with o' =—=>0),

1+o

(1+7)2FoV20, 4 |[<K(o)c' 2 <K(o)c™°.

Now, with Lemma 1.2.1,
K

<—

|[VRe(VVV)| = '%VQ(WF) a1+

and with Lemmas 1.2.1 and 2.1.2, we check easily that |V(VVV)| < (1+—KT~)2 To conclude the
estimation of this term, we are left with the proof of
> Kct
< .

We compute

VW = (VV1V1)(.fdc€1)|V,1(.+dc€1)|2+(VV,1V_4)(.+dC€1)|V1(.—dcél)|2
= (VVV)(. = de€i) + (VVAVo1) (- + dei)
+ (VW) (. = de1)(|[Voi(. 4 de€r) > = 1) 4+ (VV_1V_1) (- +deer) (VA (. — deér) > — 1).

We check easily, with Lemma 1.2.1, that

[V((VVAV)(. = de€1) (Vi (. + deé1)|? = 1) + (VV_A Vo) (4 deet) (VA (. = deet) P = 1)) <(1+—K7~;)3-

Furthermore, with Lemma 1.2.1, we have that Im(V(VV111))(z) = =Im(V(VV_1V_1))(x), there-
fore, with Theorem 1.3.1 (stating that d.< Kc¢™1),

Tm(V((VVIVI)(. = deér) + (VVL V) (- + deeh)))]|

|Tm(V(VVAIVI)(. = deel) + V(VV_1V_q)) (. +deél))|

0
= ‘ 0a(V(VViW))(. — de€1)
—2d.
Kd. Kct
(1+7)3 = (1+7)3
by Lemmas 2.1.2 and 2.1.6. Finally, for the third term, we recall that |V|V|?| < (1+—K5)3, which is

more than enough to do the required estimates. O
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We recall the definition of the energy space:
Ho.={ o€ HAE). [ (9ol +1L- QI+ R (@) < o0

Remark in particular that for all 0 <o <1, with (4.1.1) to (4.1.3) and the definition of ||.||g,o, that

g®,g C HQc'

4.2 Inversion of the linearized operator around Q.

This section is devoted to the proof of Theorem 1.5.1.

4.2.1 Inversion of the linearized operator at infinity

The (additive) linearized operator around @, is defined by

Lo () =—A¢ —icOpe—(1—[Qc|?) ¢+ 2Re(Qcp) Qe

and, for ¢ = Q., we define the multiplicative linearized operator

VQe
Qe
The first step of the proof of Theorem 1.5.1 is to invert these operators in suitable spaces.
Since (TWo)(Qc) = ~A Qe — 1¢95,Qc — (1 — |Qc[*)Qc = 0, we can check that, on R?\{d.,
—c~lcé'1},with ©0=Qc), Lo (¢)=Q:Lg. (1) (we recall that +d,& are the zeros of Q., see Proposition
1.4.1). Formally, at infinity in position, the equation Lq (¢) = Qc.Lg (¥) = Qch becomes

—icOp, ) — Ath+ 2Re()) = h.

Lo ()= =AY —icOp,1p —2 Vi) +20Re(¥)|Qc[*.

We have already inverted this operator, see Lemma 2.1.15 for the result. We will use this result
extensively in this subsection. A consequence of this lemma is an estimate on 9.Q)..

Corollary 4.2.1. For 0<o <1, there exists co(c) >0 such that, for all 0<c<co(o),

' 9:Qc

Qe
Proof. We recall from Lemma 3.1.7 that
LQC(ach) = ianQCa
and by elliptic estimates on this equation, as well as Lemmas 2.1.6 and 2.3.6, we check that
10cQcllcair<an < Ke™2. (4.2.1)

Now, take y a smooth cutoff function with value 1 outside of {f < 3} and 0 in {f < 2}. We have

< K(o)c™2
®,0

La.(x000) = @uLy (X52 ) =i0..0.+ By

where F, are error term supported in {2 <7 < 3}, and since

VQe.

0. N+ 2Re(¥)|Qc|?,

Lo (¢)=—icOp,h — A —2

we have

(_icam_AJere)(x%?c): z'am%chX HVQ%_V(%?C) _29%(%)(1_ 1Q.2).
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From Lemma 4.1.1, for 1 >0'> 0o,
102,Qc
Qe

1,0 c?

and with (4.2.1), we check easily that H B
Qellew,o’

well as equation (2.1.3), (2.2.14), Lemmas 2.1.6 and 2.3.6, that

< c—f Finally, we check with Lemma 4.1.1, as

c

VQ. (Xach) (Xach) 2 K
2— =V == ) —2Re| —= (1 —|Q. <.
H Qe Qe Qe (=1 o®.0 €
We deduce, with Lemma 2.1.15 (taking ¢’ = 1;” >0), that
H XOcQc < K(o)
AN 2 .
Qc ®,0 c

O

It will be useful to invert the equation —ic0,,9 — A +2Re(1)) =h in the case h € £y . There,
the function v will be in £’ _ for all € > 0.

Lemma 4.2.2. For he £Zy o and 1>¢>0, there exists a function ¢ € £ _., such that

—1cOp,t0 — Atp 4 2Re(y)) = h,
and this function satisfies

V|, —e,00 <K ()| ||0,0,00-

Furthermore, all solutions of this problem in £ _. differ by an element of Spang(i).

In particular, remark that such a solution does not necessarily go to 0 at infinity on its imaginary
part, but it does on its real part and for its derivatives. We believe that we could show that

[|(14+1In(1 4 7))ol Lo (r2) < K () || P ]| 00,0,005

but it is not necessary for the computations to come. Remark also that, for 0<e’<¢, g, —o/ CEg e,
and thus the function 1 does not depend on € > 0. Also, we do not require that f RQTJm(h) =0 here.
This proof is similar to the proof of Lemma 2.1.15, with some slightly different technical points.
Proof. For j € {1, 2}, we define the function

Wlmj = KO * 8zjh1 + CKj * hg.

From Lemma 2.1.13, we have (for a’=2—e¢<2 and a= QJ;D‘/) that ¥, ; € CHR?, C), with

K(@)|[h]lew,0,00

. | <
|\IILJ|+|V\IILJ|\ (1+7’1)2—€

As in the proof of Lemma 2.1.15, we define, if 25> 0,

T2
1/11(:131,332):/ Uy o(21, y2)dyo,
and if 25 <0, e

T2
1/11(IE1,9€2):/ Uy (21, y2)dye.

— 00

We have 0,,U1 9= 0,,¥2 1 and thus fj:: U1 o(21, y2)dy2 =0 as previously. We then check similarly
that

11+ )=l mz) + [(1+F)? 7Vt oeme) + |(1+7)* 7V 24| Lo (mz) < K () 12| 9,0,00-

Now, we define
‘IIQ,J"k = (C2Lj7k — RJ’Jg) * h2 — CKj *&Ukhl,
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and from Lemma 2.1.14, we have, for o'=2—-e<2, a= 2—;a/, Uy ;€ CO(R?, C), with

K(e)lIhlles.0.00
(14+7)2==

|W2,5,k] <

For 0 <e <1, the decay is still enough to construct U5 j€ C'(R?, C) as in the proof of Lemma 2.1.15.
We now diverge from the proof of Lemma 2.1.15, and we define )2 using 1s(x1, z2) = ta(—2x1, T2),

by to(+d.€1) =0, and
TS
Vl/&( 5 )

We then check that 1, € C°(IR2, C), and by integration from infinity for V¢, and integration from
+d.e] for 1, that

1(1+7) = *tal| oo(ma) + (1 +7) ' =5V o]| Lo (ra) + [|(1+7)2 75V oo (ma) < K (€)l| bl 99,0,00-
Finally, as in the proof of Lemma 2.1.15, we check that
—1¢cOp,10 — Atp 4+ 2Re(y)) = h,

since both sides of the equations are still temperated distribution, are bounded and goes to 0 at
infinity in position. Furthermore, if 1) € £ _. is another solution of this problem, then

(—ic0p, — A +2%e) (¥ — ) =0,
thus ¥ — ¥ € C[X1, X2, and using the decays of ¢ — e E e, we check that (with e <1)

m(y — )|
(147)e
at infinity, hence it is i\ for some \ € R. a

—0

[Re() — )| +

4.2.2 Inversion of the linearized operator around Q.
We recall
Lo.(p)=—A¢p —iclsp — (1-]Qc*) ¢+ 2Re(Qep) Qc

and, for p=Qctp,
VQ.

Qe
We also recall that, since (TW,)(Q.) =0, we have Lo (¢) = Q.Lg, (¢) (where Q.#0).

Vi +2%Re()|Qc|*.

L. (¥) = —icOpyth — Atp —2

4.2.2.1 Inversion of the linearized operator around a vortex

This subsection uses mainly arguments from [10]. We recall the linearized operator around a vortex:
Lyi(p)==Ap— (1= Vi) + 2Re(Vip) V3,

and with ¢ =V31,

L () 1=~ = 252V 1 2e() Vi

we have (where V1 #0)
Lyi(¢) =ViLv,(¥).

This operator also has a resonance: Ly, (iV;) =0. We give here a way to invert Ly, on this direction.
For R >0 a large constant, we define x € C°(R\[0, R], R") such that (with p(r) = |Vi(x)| where
x| =7)
+o0
/ sp?(s)x(s)ds=1. (4.2.2)
We recall 0

Hv1={weHILC<R2,®>,||w||%{VI=A2|w|2+<1—|v1|2>|w|2+me2<m><+oo}.
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Lemma 4.2.3. The problem
Lv,(p)=ix(|-NV1
i the distribution sense admits the solution

e1:=iVivi(l.])

o)== [ (g [ st Jau

which satisfies p1 € C*°(R?, C) and

with

9a(r) ~—In(r), ) ~ )~y

r
when r— 00.

Remark that ¢1 =0 in B(0, R) since x =0 in B(0, R). See [10] for more general results on the
inversion of the linearized operator around V.

Proof. We look for an ansatz of the form ¢; = iVit1(r) with ¢ € C°(R*™*, R). The equation
Ly, (p1) =1ix(|.])V1 then becomes

\AZ R
—Aptbr = 2 a () = X(7).
From Lemma 2.1.2, we have Vv‘l/l.e'; :%, and therefore

o ”7”7 l QP/(T) IT: r
ot~ (14228 Yot = ().

This equation can be factorized in

(rp*(r)pi(r))' = —rp*(r)x(r),

and therefore a solution is

) == [ (s [ st Jau

+oo
/0 sp2(s)x(s)ds =1,

Wi(r) ~ —[%N —[‘i—uw —~In(r)

when r — oco. Now, we compute

Furthermore, since

we have, by Lemma 1.2.1,

RN T AT
Ui = ey | s x (s
and
()= s [ 5026 0x(s)ds = 10u( s s o)x(s)ds
r2p*(r) Jo r I\ p(r) Jo ’
and with Lemma 1.2.1, we infer the equivalents of 1(r) and ¥{(r) when r — oco. O

We deduce the following small improvement of Theorem 1.2 of [10], since we removed an
orthogonality condition. It is also a good first step to understand some of the ideas of the proof
of Theorem 1.5.1.

Lemma 4.2.4. For h e L,.(R? C) such that fR2|h|2(1 +17)2T9 < +00 for some o >0, and with
(h, 05, V1) = (h,0,,V1) =0, there exists p € L,.(R%, C) such that

Ly,(¢) = h.
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)

Furthermore, ¢ = <p0+w’2+v1g01, where @1 is defined in Lemma 4.2.3, and @o € Hy,, with

ol < K(X)Aylh = (b, iVa)ix (|- DVAP (L +7r)**.

h ’LV1

Proof. we consider h':= ix(|.)Va . We have f]R2|h| (147)29 < 400,

/ - (hyiVa)
<h ) 8I1V1> - <h7 8I1V1> o

(ix(1-N)V1, 02, V1) =

since, from Lemma 2.1.2,

v 0avi) = ([0 )2 ar =0

Similarly, (h’,9,,V1) =0, and

(h, zV1>

(n',iVi) = (b, iV1) = =——=(ix(|.)V1,iV1) =0,

since
+o0
<iX(|'|)V1’iV1>:27T/ x(r)p?(r)rdr=2m
0

by (4.2.2). From Theorem 1.2 of [10], we deduce that there exists ¢ € Hy, such that

h, zV
L) =’ = h = ix(.) vt L
Now, from Lemma 4.2.3, since Lvl( <h"2i7rvl> <,01) = <h217rvl X(]-])V4, we have
h,iVi
m@w%wl) =h. O

We also infer the following result, that will be useful in the proof of Lemma 4.2.6.

Lemma 4.2.5. The problem
Ly,(¢)=ix(.N"1

has no solution in Hy,.

Proof. By standard elliptic estimates, we have that if such a function ¢ € Hy, exists, then
¢ € C>®(RR?, C). Following the proof of Lemma 4.2.3, writing ¢ = V19 and decomposing 1 in
harmonics, we check that (rp?(r)yi(r))’ = —rp?(r)x(r), with 1; € C®°(R**, R) being the 0
harmonic of .

We deduce that rp?(r)yi(r) = ffoup )x(u)du + K, for some K; € R, and since ¢ € Hys,

K;=0, or else ¥1(r) N% near r =0. Therefore,

bi(r) = /;(#(u)/ous;ﬁ(s)x(s)ds)du + Ko

for some K3 € R. By Lemma 4.2.3, this implies that ¢)(r) ~ —In(r) when r — oo, which leads to
the contradiction

00> ol >/ a-wpelzr [ 20 _ 0
' JRe s (1+7)

4.2.2.2 Inversion of the linearized operator around Q.

We recall that

7 =min (| —d.€1], |z + d.€1])
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is the minimum of the distances to d.€; and —d.€1, and that we have defined the norms, for o € R,
Y= ch € C2(IR27 (D)v 1/) = 1/)1 +Z"L/)2, and Qch € CI(R27 (D)v h= hl +ih2,
Yo, = 1Qc¥ e
||7“1+“1/)1|\L°°(r>2)+ |72V || Loz 2y + |72 TOV201 || Loo (721
+ 177 Yol ooz + 171V || Lo sy + 72TV 2a|| oo 7> 21

and

Ihllos.e = [Qchllcrw<sy
+ |\7“1+“h1|\L°°(f> D+ 17247 Vil oo > 2))
+ 17247 holl Loz + 172F7 Vol Lz 2)-
We want to invert the linearized operator around @, from £gg » to £g,—c for 1 >0 >0, € >0.
These spaces are close to . » and &, _. in Chapter 2. In fact, in Proposition 2.1.20, we inverted
the linearized operator around V = V;V_; in the *-spaces, and here we want to invert it around
Qc.=V +0.-0(1) for the ®-spaces. Furthermore, in Chapter 2, we supposed two symmetries in the
space &, and here we only have one. Therefore, we will need to add an orthogonality condition
on 0;,Q, but we will also have to deal with the phase. For that, we define

T:=(x(lz = de]) + x(|7 + de|) Qe

where  is the cutoff function from Lemma 4.2.3. As we have done for one vortex in Lemma 4.2.3, we
will look for a solution of Lg, (¢)=1T to deal with the phase. This solution will also grow at infinity.

We define 7 a cutoff function, whith n(z) =7(r1) + 7(r—1) and 7 is a C*° positive cutoff with
N(r)=0if r<R+1and 1if r>R+2 (R is considered as a universal constant). We then define,
for o=QY €0, RQch€Eg0,61, 1 >0">0>0,

STy = icOamie = Aty =2V T+ 27 SV )
fream('G)

Iy, W) < K(o, o) (1¥]le.0 + M| 0s.07)- (4.2.3)

First, since n = 1 on R2\(B(d.€1, R + 2) U B(—d.€1, R + 2)), An, Vn and 9,,n are compactly
supported in B(d.€1, R+ 2)U B(—d.€1, R+ 2). We deduce that

M(w’h) =

Let us show that

[ Jami=icorm - Ayw = 290.94)| < K (@) o,

With regards to the definition of ||| gg, ./, We check easily that

hlle,o
[ o< [ JEleses < onmtos..

Now, with (4.1.2) and (4.1.3), we check easily that

mf 27y Y Qe Kl¢le.o
/]R2J Q Vlﬂ)‘ [Rz(l-i- )QHT\K(U)”w”@,U-

[ (5= 23m(i(x(x—dc)+x(fc+dc))n)= / 277(x(fc—dc)+x(x+dc)),

c

Finally,

andsinceSuppx(l.l)c{nzl},fRQU(x( —de) +x(x+de)) = [Ra(X de)+ x(z+d.))>K>0.
This concludes the proof of (4.2.3).

The proof of the inversion will be done in Lemmas 4.2.6 to 4.2.8. They follow closely the proofs
of Proposition 2.1.17, Lemma 2.1.19 and Proposition 2.1.20. To show the existence of a solution,
we start with an a priori estimate, then we solve the equation on a large bounded domain (to have
compactness), then we extend it to the whole space. The next lemma is the a priori estimate. We
will use the notation ¢7°, defined in (1.5.3).
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Lemma 4.2.6. For 0 < ¢’/ < 0 < 1, there exists K(o, 0'), co(o, '), R > 0 such that, if for
0<c<co(o,0) and some Qch€€gg.0r, 0=QW €Eg, 0,

Lqo.(¢)=Qch — p(¢,h)iT

and

0:Qup = Re / 02,0 —0,

i)%e/
B(de&l, R)UB(—d.&), R) B(de&l, R)UB(—d.&), R)

then
[¥lle,0 <K(o,0)hlles,0

Proof. This proof follows closely the proof of Proposition 2.1.17. We argue by contradiction.
Suppose that it does not hold. Then there exists ¢, = 0, ¢n = Qc,¥n € Eg,0, Qe in € Egw, o’ such
that Lq, (¢n) = Qc,lin — 1(¥n, hyn)i Y (remark that T and 7 depend on n through d.,),

0eQu, = Re / D0,Qe.Pr=0

i)%e/
B(d,, &, R)UB(—d.,&},R) B(d,,,&,R)UB(—d.,&),R)

and
[¢nlle.o =1, [hnlloe,0r— 0.
with (4.2.3), we have |u(¥n, hy)| < K(o,0'), thus u(tn, h,) — 1 € R up to a subsequence.
We argue as in step 1 of the proof of Proposition 2.1.17. The functions ¢,(. — d.,€1) are
equicontiuous and bounded, as we check with the same arguments as in Chapter 2, that, up to a
subsequence, it converges to some limit ® € Hy,.

We check similarly that Q. (. —d.,é1) — Vi and Y(. —d.,é1) — x Vi in C%.(R?) by Theorem
1.3.1 (for p=+00), and therefore ® satisfies the equation

LVI((I)) = MiXVI-

By Lemma 4.2.5, this implies that ;=0 (since ® € Hy,). Furthermore, we have

9{6/ achnW = 07
B(de, &, R)UB(—d,, &, R)

and since p,(—x1, x2) = pn(z1,22), we deduce that

i)%e/ 0cQec,Pn=0.
B(d., &, R)

When n — oo, from Theorem 1.3.1 (for p=+400), we have c29.Q., (. — d., €1) — Oz, V1, thus

Re / 9, V1D =0.
B(0,R)

Similarly, since 0,,Q¢, (. — de, €1) — 02,V1, and decomposing V; in harmonics, we check

o \#0 -
Re / e ViVi[ =) =e / 8,,Vi® = 0.
B(0,R) Vi B(0,R)

Since ® € Hy, and Ly, (®) =0, by Theorem 1.1 of [10], we have ® =£10,,V1 +€20,,V1 for e1,e2 € R.
With the two previous orthogonality conditions on ®, we deduce that e; =5 =0, and thus & =0.
By symmetry, the same result holds if we shift by +d., €] instead of —d., €.

Now, since

when n— oo (since p=0), we check, as in the proof of Proposition 2.1.17, that this implies

lonllczar<ny = O,AHOO(l)
for any A > R.
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We now define 1, := m),. Since Lq., (¢n) = Qe hn — p(¥n, hy)i T, multiplying this equation
by n, we have
1Ty

nLl(wn) =hnn — M(wm hy) Q.

Now, we compute

W) = 0 —icOuu = A~ S T+ 2e00) Qe

= _icaxz/an_A'J)n"i_Qgie(an)
+ icazzm/fnJrAm/}nJr2V77-V1/1n+2779%(1/1n)(|an|2* 1)
— 2n—vQc”'.an.

Cn

We deduce that
iTn

,z‘camﬂin - Az/;n + Q%Q(JM) = hat — (Y, hn) Q
1O, n — Anthy, — 2V .V, — 2U9‘ie(¢n)(|an|2 - 1)
+ QW—VQC".V”(/}W

Cn

We denote

fln:hnn =10z, n — ANty — 2V .V 1hy, — 2779%(7/}71)(|an|2 —1)+2n Q.

We check, as in the proof of Proposition 2.1.17, that

H ﬁn” ®®,0/,00 0x—o0(1) + 0n—oo(1).

15”7 and since (¢, hy) = 0} oo(1), and

g" is compactly supported in B(d. €1, R+2)U B(—d., €1, R+ 2), we check easily that

The only additional term we have to check is p(wn, hy)

iTn
Qc,

®®,07,00

A Im(fin) =0,

(1/1 h ) fszm(hnn — 1O, NP0 — Anpn — 2V 0. Vb, + QU%-V%)

P Pny ) = iT =

1>Tow, from Lemma 2.1.15, since fic[)zzﬂjn — A, + 29%(12},1) = hy, fRZTJm(ﬂn) =0, hy, €€8g,0 and
Y, € €0, We deduce

H,(Z)nH(@,a,oo < K(U’ O-I)H];‘n”@@,a’,oo < 0;\1"00(1) +OA_’°°(1)

H ,U('L/)n; hn)

Furthermore, we have that

since

It implies, with H‘PnHCQ((ng\}) :Oé—wo(l) and (2.1.18), that

[¥nlle,0 <E(llenllc2gr<nm + || ¥l 9i000) = On—oo(1) + 0r—oo(1),

hence, taking A large enough and then n large enough, this is in contradiction with |9y ||g,.=1. O

We continue as in Chapter 2. We want to show existence of a solution by constructing one on
a large ball B(0,a) by Fredholm alternative, then pass at the limit a — oo to have a solution in R2.
We define, for a >10/c?, R>0 a large constant and ¢ = Q) € HL.(B(0,a)) the norm

ol 2 4 ey + 0P
= F<omy + V|2 + Re2(4h) + — L
ol = leleam + [ IVuP )+l
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as well as the space
Hy:={p € Hbo(B(0,a)), | ¢llm, <+oo}.

We define
o fB(O_’a)Jm(hn e, — A — 2V 0.V b+ 2 %.w})
HalW, = f jm(ﬂ)
B(0,a) Qe
Let us check that, for o/ >0,
|ta(¥, h)| < K (e, a”)([¢]l ., + [ les,o)- (4.2.4)

As for the proof of (4.2.3), for a > 10/ c?, we have fB(O a)ﬁm(ig—n) > K > 0. Since n =1 on

c

R2\(B(dee1, R+2) U B(—d.€1, R+2)), we check easily by Cauchy-Schwarz that
[3(0 )|3m(h77 —icOp,n — Anp =2Vn. V)| <K (o) (|¢ || g, + [P ]| 0®.0)-

Now, we estimate by Cauchy-Schwarz that

- VQ.
/B(O,a) Jm<2n 0. .Vw)

< \// (QuP-12[ %ew) +K\// Vo[ VP
B(0,a) R2\(F< R} B(0,a) R2\(F<R)
< K(E@QNDNY | #,-
We recall the notation, around j:&ce_'l, h*O=h—ho,

1 27 Ty
ho(x):%/o h(|z Fdeei]e?)do.
Finally, we define
1
M) =T B0.10/2\B0. 5/ /
(B(0,10/¢*)\B(0,5/¢c?)) B(0,10/¢2)\ B(0,5/c?)

where V(Q) is the volume of ©, the average of the imaginary part of ¢ in B(0,10/¢*)\B(0,5/c?).

Jm(4),

Lemma 4.2.7. For 0 < o’ <1 there exists co(c’) > 0 such that, for 0 < ¢ < co(0’), there exists
K(o',¢),R>0 such that there exists ag(c,a) >10/c? such that, for any Q.h € Egg.or, a>ao(c,0’),
the problem

La.(¢) = Qch — pa(¢, h)iT in B(0, a)
©»=00n0B(0,a)
= D= £0 _
P = Qe € Ha, gRe‘[B(dceﬂl-,R)UB(*dceﬂl.,R) 0Qep = %QIB(dca,R)UB(fdca,R) 02,QcQA7" =0
Q.h = 0 _
i)%efB(dceﬁlvR)UB(—dceﬁl,R) 9eQcQch = %efB(dca,R)UB(—dca,R) 0z, QcQch7" =0

admits a unique solution with

o — iAW) Qe a1, < K (0", )l 0,0

This proof follows closely the proof of Lemma 2.1.19. The orthogonality conditions on h are
required to apply the Fredholm alternative.

Proof. We argue by contradiction on the estimation, assuming the existence. Suppose that there
exists a sequence a, > %, an — oo, functions ¢, = Qcbn € H,,, ©n = 0 on 0B(0, a,) and
Qc,hn € Egz,o such that lon — i)\(,(/)n)QCHHan =1, ||h'n||®®,o/—> 0 and LQC(‘Pn) = Qchn — pra,(¥n,
hn)iY on B(0,a,). In particular, remark here that c¢ is independent of n, only the size of the ball
grows. Our goal is to show that ||pn —iA(¥n)Qc| H,, = 0n—oo(1), which leads to the contradiction.
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As in the proof of Lemma 2.1.19, we pass at the limit when n— 0o, and up to a subsequence,
in Clhe(R?), on — iM(¥n)Qc — ¢ = Qb € Hoo with Lg () = —pu(1,0)i T in R? (the convergence
ta,(Vn — i), hn) — p(10,0) up to a subsequence comes from the bilinearity of p and (4.2.4)),
and, since they are invariant by adding i A\Q. to ¢,

0.Qcp =NRe / D2,Q.Q:47° =0.

%e/
B(dce1, R)UB(—d.e1,R) B(dcei, R)UB(—d.&1,R)

Let us check that this implies that ¢ =iA@Q. for some A € R. }
As in the proof of Lemma 4.2.6, with the same cutoff function y, we define ) = x, that satisfies

(—icdy, — A+ 29e)(9)

= —icOz ¥ —Any —2Vn.Vip+2n VQ

Let us check that the right hand side is in Egg,,» with 0 < ¢’ < 1. Thanks to the equation
Lg.(p)=—u(1,0)iY, we have that ¢ € Cf(R?, C), thus

—iCput — Ant —2V.V 0 — u(1,0)i Y € Eg,or

for any 0 <o’ < 1, as these terms are compactly supported. For the two remainings term, the proof
is identical as the proof of Lemma 2.1.18.
From Lemma 2.1.15, we deduce that there exists ¢ € £g , for some 0 <o <o’ such that

SV —2nRe(9)(|Qc|* = 1) — (¢, 0)i Y.

(—icOpy — A+ 2%Re)(C)
VQ.

= —icOp,nY — Anth —2Vn.Vip +21) Tw —2nRe(¢n)(|Qc, |* — 1) — p(¢,0)i T.

Now, we have that
(—icOs, — A+2%e)(¢ — () =0,

and we check that, for 0 >0, £g o C Heo, thus 1L — ( € Hy. From the proof of Lemma 2.1.15, we
deduce that ¢ — ¢ € C[Xy, X3], and we check easily that Ho, N C[X;, X3] = Spang(i), thus there
exists A € R such that ¢ —iA=( € Eg,s- In particular, if we define ¢ = ¢ —iAQ., =1 — i)\, then
p€&g,o (since =1 —i\=(+ 1) — 1, where ¥ — 1) is compactly supported) with

Lo (@) =—p(¥,0)iT,
since L (1Q¢) = p(i,0) =0. By Lemma 4.2.6 (for h=0€ Egg ), since

0eQop =NRe / 9:Q.p=0

9%/
B(de&l,R)UB(—d.e}, R) B(de&l,R)UB(—d.e}, R)

by symmetry, and

00,Q.Qu™ — e / 02,Q.Qu 70 =0,

9%/
B(de&l,R)UB(—dce1, R) B(de&l,R)UB(—d.e1,R)

we have ¢ =0, and thus ¢, —i\(¥n)Q.— iAQ. in C*(B(0, A)) for all A > 0. Furthermore, since
A(Wn —iA(1,)) =0, taking A >10/c?, we deduce that A =0.

This implies that, for all A >0, [l¢n — iA(¥n) Qcllcr(B(o,a)) = o®_, o(1). Furthermore, since
1(Ai,0)=0 for any A € R, we have pq, (¢n —iA(¢¥n), hn) — 0 when n— oco.

Now, as in the proof of Lemma 4.2.6, multiplying the equation by Y, we write it, with ,, = ),
on the form

7ic(9z21/~}n — A'lZJn + 29%(1/;”) = i~ln,

where

hn = hnn—icaxgml)n—Anwn—W%V%—2n9‘ie(1/)n)(|anl2—1)
V Cn )
+ QWL-VT/)n_Nan(wnahn)lQ_n-
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Now, the proof varies a little from the one of Lemma 2.1.19. Taking the scalar product of the
imaginary part of the equation with jm(wn), we infer

A(O,an)camiﬁe(&n)jm(%)Jr/

B(0,an)

— ATm(d)Im( ) = / () Im( ).

B(0,an)

By integration by parts, since 1, =0 on 0B(0, a,), we have

| —amm(G)am(i) = [ vam(i,)p
nd B(0,a,,) B(0,an)

camiﬁe(ﬂzn)ﬁm(&n) <

Re () O, I (1)
B(O an)

© Y P g PR

Furthermore, since fB(O u )ij(fzn) =0, we have

B(Ovan)

/ (o) I () = / (o I (B — iAW),
B(0,an) B(0,an)
and we estimate, since ||, —iA(¥n) Qcllc1(B(0,4)) = On—oo(1), that

/ |9m () I — i A(1n) )| = 022 (1),
B(0,A)

and

/ |30 (o ) I, — I A () )|
B(0,a,)\B(0,A)
— / 3m<277 VQe, v@,L)Jm(@n —iA¥Yn))
B(0,a,)\B(0,A)
2
OA_MX) \// |V | VQQCTL
B(0,a,) B(0,a,)\B(0,A) cn

c 7 sz l/;n*M(l/fn)
0A—>oo(1) / |V¢”|2/ ( 5/2 )
B(0,a,) B(0,a,)\B(0,A) (147)

We deduce that

/ VI (¥ \/ / / VI B 2 4+ 06 oo (1) B — i A1) Qe ..
B(0,an) B(0,an) B(0,an)

Now, taking the scalar product of the real part of the equation with 9‘{6(12)”), the computation is
identical to the one in Lemma 2.1.19, and we have

Re (4, )[2 Re?( 1)
é(oyan)w e(n)] +[B(OM) e*(¢n)
B(0,an) B(0,ay)

N

(L4 7)1 /83m2 (4, — iA(¢n))

N

Now, since V'J)n = V('J)n - ZA(Q/Jn)), Sy‘{e(l/;n) :9‘{2(”(2}” - ZA('LZJH))’ and ”(P’ﬂ - ZA('LZJH) QCHC'l(B(O,A)) =
0%_,00(1), we compute, with the same Hardy type inequality as in the proof of Lemma 2.1.19, that

lon=iX) Qulls,, <oheV+K( [ 9O+ [ me(d,))
B(0,a,) B(0,a,)
Combining these estimates, we deduce that

H‘Pn_l)‘(wn) Qc”H OnHOO( )+05\H00(1)'
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We concluded the proof of the estimation, taking A and n large enough. Now, for the existence,
we argue by Fredholm’s alternative in

waﬁw@@mm/~ .
B(d.é1,R)UB(-d.&1,R)

0.Qup = Re /

- 5 aa:chQc'(/ﬁ&O =0,
B(d.&,R)UB(—d.&,R)

and we remark that the norms H - Z)\(Q_>QC

. and ||.||z are equivalent on H{(B(0, a)).

By Riesz’s representation theorem, the elliptic equation Lg, (¢) = Qch — pa(¥, h)i YT can be
rewritten in the operational form ® + KC(®) = S(h) where K is a compact operator in Hg(B(0,

a)), and it has no kernel in H, (i.e. in {gp € H§(B(0, a)), %efB(~ & R)UB(— 4.8 R)achga =

o0 _ . . .
%efB(&CayR)UB(ﬂ.lca_’R) 02,Q Qe O}) by the estimation we just showed and the boundary
condition. Therefore, there exists a unique solution ¢ = Q. € H,, and it then satisfies

[ = iA()Qella, < K (o', 0)|[h||ge,o 0
Lemma 4.2.8. There exists R>0 such that, for 0<o<o'<1, Q:h€Egg, o with

0.Q 0 = Re / 02,Q.Q70 =0,

%e/
B(d.el,R)UB(—d.e1,R) B(d.e1,R)UB(—d.e1,R)

the problem
Lo (p)=Qch — (4, h)iT
admits a unique solution ¢ = Q. € g, » such that

ach@ = SRQ/

B(d.él,R)UB(—d.él,

%e/ ~ ~ aszch'L/ﬂéO =0.
B(dcel,R)UB(—d.€1,R) R)

Furthermore, this solution satisfies

1¥lle,e<K(o,0)hloo,o

Proof. The proof is identical to the one of Proposition 2.1.20, using Lemma 4.2.7 instead of Lemma
2.1.19. The other difference is that, when we have a solution in the whole space which is in H,
we have ¢ —iAQ. € g, for some A € R (as in the proof of Lemma 4.2.7). The consider solution
is ¢ —iAQ., as we check that

Lo.(¢)=Lq.(¢ —iAQc),
M(1/)ﬂ h) = M(#’ - i>‘7 h)a

e / h Q07 Q) =% / ~ 0.0
B(d.&,R)UB(—d.&,R) B(d.&,R)UB(—d.&,R)

Re / ) 00, QQc(Y —iN) T =Re / )  05,Q.Q70. 0
B(dcel,R)UB(—d.€1,R) B(d.e1,R)UB(—d.€1,R)

and

To complete the inversion of Lg,, we need to inverse the problem Lg (¢)=147Y.

Lemma 4.2.9. For ¢ >0 small enough, there exists a function oy € C*(R?, C) such that
La.(¢r)=iT.
For all £ >0, this function oy = Qy is in Eg e and, for ¢>0 small enough (depending on ¢),

H Uy — 11/11(33 - dc) 7il/}71([L’+dc)
Qe

< K(e)et—e.
g®’75
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X
QC.

1/1:“/11@ - dc) +Z1/)71(x+dc) + XE+A5

Proof. The equation, on R?\{d.€1, —d.€1}, is Lo () =i We look for an ansatz of the form

where 111 are defined in Lemma 4.2.3, R>0 is given by Lemma 4.2.8, x is a smooth cutoff function
with value 0 in B(d.€1,2R)U B(—d.€1,2R) and 1 in B(d.1,2R+ 1)U B(—d.€1,2R+ 1), = will be
the solution of (using Lemma 4.2.2)
—1¢02,2 — A2+ 2Re(Z) = Lo (i1 +i1p_1) —iT,

and A is a remainder, that will solve

Lo (A) = —icdy,(xE) — A(XE) +2Re(xE) — Lo, (XE)

— — (A, =i, (XE) — A(XE) + 2Re(xE) — Lo, (xE)).

The idea of this ansatz is to compare (). with two vortices, where i1, are a solution of this
problem. The error terms are then small when ¢— 0, but still does not decay enough to use Lemma
4.2.8. This is why we introduce =, that solves this problem at infinity. The reminder is then small

when ¢— 0, and has now enough decay, i.e. is in £gg,» for some o >0, and A ties the reminders
up, and will be constructed using Lemma 4.2.8.

First, let us estimate
L (i +itp_q) — 7.

By Lemma 4.2.3, ¢Y = L, (it1) + Li,_,(it)_1), where Vi, are centered at +d.€1, and

Lin($) = =50 = 252V 4 2Re(0)| VAP,
We have
Lo (i1 +ip—1) —iY = L (ith1) — Ly, (1) + Lo (1) — Ly, (i —1).
We recall
I - 2 VQC
LG (V) =—Av —icOp,b +2Re(1)|Qc|* — QK-VM

thus, since 1 is real-valued,

Ll (ip1) — Lis(ith1) = cOuythr + 2z'< Vv‘f _ VQ% ).w}l.

We write Q.=V1V_1 4+ fc, where Vi, is centered at +d.e1. We compute

L (ith1) — Ly, (ih1) = cOa,h1 + 22'(— Vo VI ).Vl/h.

V_4 T,
We estimate, for all 0 < o <1, with Lemmas 2.2.8, 4.2.3 and (1+T1)(11+T71) < (llj_cf), that
. . Ke K K(o)ct=7
Re(Ly (i) — Ly (i < + + - )
| ( Qc( 1/}1) Vl( 1/11))| (1+7,1) (1+T,1)(1 +T’1) (1+T)1+0(1+T1)
K(o)ct=7
Kec K K
V(Re(Lp (ivp1) — Ly, (i <
|V (Re(Lg,(i11) v (711)))] (1+7“1)2+ 1+r_10)2(1+r1) + A+r_)(1+7)?
K(o)ct=7
(1+7)2F9/2(1 4-1y)
. K(o)ct=°

(I4+7)2 7
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as well as
PN T K K(o)ct—°
[Im(Lg, (i1) — Ly, (iv1))] < (1+7’1)(1+r,1)3+(1+r1)(1+f)2+0/2
K(o)ct=°
< e
and
~ ;. ;. K K(o)ct=°
IV @m(Lo, (i) - L) < o e
K(o)ct=°
< Tenre

We deduce that —Lg (i1 +i-1) + 1Y € Egg,o with, for all £ >0,
ILg. (1 +i—1) +iT[|ge,0 < K ()t *.
From Lemma 4.2.2, there exists = =Z; +iZ3 € C%(R2, C) such that

—1¢02,2 — AE+2Re(Z) = — Lo (i1 +ip_1) +iT,
and

—_
—
i

®,—2,00 < K (€) | LG, (i1 +ivh-1) +1T || o@,0 < K (€)' = (4.2.5)
Now, since L, (i1 +i—1) —iT =0 in B(dee1,2R +1) U B(—d€1,2R + 1), we have

X(Lg (i1 +iYp—1) —iY) = L (it +ith—1) — i,
and therefore
—1¢02,(XE) — A(XE) + 2Re(xE) = — Lo (i1 +ivp_1) + 1Y — icOr, xE — AXE— 2V x.VE.
We deduce that, writing 1 =i +i9_1+ x=+ A for some function A,

Lo () —iT
= Lo (ii(x —do) +ip_y(z+de) + xE+A) —iY
= Lo (ii(x —do) +ith—1(z +de)) —iY + Lo (XE) + L, (A)
= 1002, (XE) + A(XE) — 2Re(xE) + L (XE)
+ 10z, XE+AXE+2VX.VE+ L (A).

We therefore look at
h=—icd.,(xE) — A(XE) 4+ 2Re(xE) — L, (XE) — i ¢z xE — AXE -2V x.VE,

Since Lg (¢) = —Ath —icdy,1h + 2Re(1)| Qc|? — QVQ—%C.Vw, we deduce

- VQ. =
h=2xe(D)(1 - Qo) - 2V (1)
We check, with Lemma 2.2.8 and (4.2.5), that 2Re(xZ)(1 - |Q.|?) — QVQ—QC.V()(E) € gm0 for some
o >0, and ‘

e - 1) -2 w0 <K@

®®,0

Similarly, as it is compatcly supported, with the estimates on = we check easily that
licOr,XZE — AXE — 2V X.VE| ge.0 < K(g)ct 5.

We deduce, from Lemma 4.2.8, the orthogonality conditions being satisfied since the source is 0 in
B(dcé’l, R) UB(—dCé’l, R) (because of the cutoff x), that there exists A € Eg »/, 0 <0’ <o such that

VQQC-VE + (1= )L, (ith1 +ith—1) — p(A, ) Qi Y,

L (A)=2Re(E)(1 - |Qc[*) —2
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with

A, B)| < K ()et <.
®,0

o
Qe

Lo (ih1(x —de) +iy_1(z+de) + E+A) = (1 — u(A, b)) Qi Y,

We deduce that

thus

, ’ilﬁ(l‘—dc)—l—iw_l(l‘-i-dc)—i-E—i-A .
LQ( 1= (A, h) )‘“'

For ¢ > 0 small enough (depending on €), |u(A, k)| <1/2. We therefore define

— ip1(x—do)+ip_1(x+d) +E+A
‘PT-—QC( 1—M(A,h) )

Now, with
1—u(A h)=1405_0(1),

. < K (g)c' ¢, we check the estimates on
N

\I/T—’L"lbl(iﬁ—dc)—i’lb_l(l‘—f—dc). |

the estimates on = and HA < H
Qc ®,—e Qc

Now, we can invert the problem Lo, (Qc) = Q.h without requiring that p(,h)=0.

Proposition 4.2.10. Given 0<o <o’'<1 and Q.h € Egg, o’ with

9‘{6/ aszchh7éO =0,
B(d.€1,R)UB(—d.e1,R)

there exists p € R and o= Q) € £g,» such that

Lq. (¢ + per) = Qch.

Furthermore,
K(o,o’
lélle.0 < % hlos,0
and
K(o,o’
1l < B2 g

Proof. First, we suppose additionally that

Re / 0.Q.Qh =0.
B(de&t, R)UB(~doéh, R)

Then, from Lemma 4.2.6, there exists p € R, ¢ = Q) € £g,» such that
Lo(e)=h—piT,

with [[¢]|g,0 <K(0,0")||hl|lee,or and [p| < K(o,0")([[h]|ee,o +¢]le,0) < K(o,0")|[h] 0,0 From
Lemma 4.2.9, Lg (o) =17, therefore

Lq. (¢ + por) = Qch.

In that case, ||¢¥]|g, < K(0,0)||h||@,s, where K(o,0’) does not depend on ¢ > 0.

Now, in the general case, we decompose for some a € R, Q.h = Q:h'+ aid,,Q. with
Q' = Qch — @i0:,Q..
We have, by symmetry,

Re / 00, QuQch/° =0,
B(d.&, R)UB(—d.&, R)
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and

Re / 0.Q.0l
B(d.&,,R)UB(—d.&},R)

0.Q.Q.h — aiﬁe/ 0:Qci 0, Q..

SRe/
B(d.&1,R)UB(—d.&},R) B(de&l, R)UB(—d.&},R)

From and Theorem 1.3.1 (for p=+0o0), we have
cziﬁe/ 0:Q:10.,Q.< K.
B(d.&l,R)UB(—d.e, R)

For R > 0 large enough, using Lemma 4.1.1,

XRe / 0:Q.i0,,Q. = 2Me / B0, Vi ()70, Vi () + 0c—o(1)
B(de&l,R)UB(—d.&},R) B(0,R)

= 2Re 05, V1(2)i 05, Vi () + 0c—0(1)
B(0,R)
R

= dx [ o)+ o)
0

= 47(1— 0p—oe(1)) + 0emo(1),

and thus

e [ 0.QiT Q> L.
B(d.e1,R)UB(—d.él,R) K

We choose a € R such that

9{6/ 0.Q.Q:h" =0.
B(do&h, R)UB(—d.&,,R)
We check with Theorem 1.3.1 (for p=+00) that
|a| < Kczi)%e/ |86Qc||Qch|
B(d.&l,R)UB(—d.el, R)
< K|hlle.o

where K >0 does not depend on ¢. We deduce that there exists ¢'= Q' € £g o7, p € R such that

LQ (@' + mer) = Qch’,
with (using Lemma 4.1.1)

< K(o, o)W les.o
< K(o,0)([|hlles.o +|a[[i02,Qcl 90.0)
!
< K(o,0')
CO'
Now, we recall from Lemma 3.1.7 that Lo, (0.Q¢) =10:,Q., thus
Lo (¢ + por + adQc) = Qch.
Therefore, defining ¢ = Q) := ¢’ + ad.Q., we check that Lg (¢ + ppr) = Qh and
[Ylle.0c < K(o,0)([hlos.or+lal10:Qcllo.0)

K(o,o'
LG PO

I+ ll¢lle,or

12llee,o-

~X
<

which concludes the proof of this proposition. O

4.2.3 Inversion with two symmetries

We recall the spaces

ESSM ={p €Eg ¢, V(w1 w2) ER?, (w1, 2) = p(w1, —72) }
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and
gésérg’ - {Qch € g®®,0’av($17 IQ) € R27 Qch(l'l, IQ) = Qch($1, —.1'2)}-

Proposition 4.2.11. Given 0 <o <o’ <1 and Q.h € Sésgﬁ ., there exists a unique function
p=Q eé’zsyrf’ such that

LQC(QD) =Qch.
Furthermore,
K 0,0
PR GALATIN
and
(Ca Qch) —

is a continuous function from (]0,co(o,0’)], 5;%“; ) to SQSym for some small constant co(o,c’) > 0.

Proof. With this second symmetry, we can check that p(v, h) =0 and that the orthogonality
condition on 0;,@). is automatically satisfied in Proposition 4.2.10. This implies the existence of a
solution with the require estimate.

To show uniqueness, suppose that ¢’ € also satisfies this equatlon Then o — '€
Hg,, and Lo (¢ — ¢’) =0. From Corollary 1.4. 5, this implies that ¢ — ¢’ = a0y, Qc + ﬁ@szc for

some «, € R, and by the symmetries (see subsection 4.1.1), a = 3 =0.
We now focus on the continuity. One difficulty is that the spaces Séi};m, Séséfr;, and their

SQSym SQSym

associated norms depends on c¢. Similarly as in subsection 2.2.1, we recall that for ¢, ¢’ >0 small and
close enough, the norms between the associated spaces are equivalent, with a constant independent
of ¢,c’. Here, to show the continuity, we take ¢, — ¢ and Q. h,— Qch in Séséfr;,, using for all the
norms the limit value ¢ for the speed. Given that n is large enough, this choice does not change
the spaces.
Now, there exists ¢, = Q. ¥, € 5250// for all ¢’ >¢” > 0 such that
Lan(‘Pn) = Qc,hn.

We also define ¢ = Q) € Sg;,y:// such that Lg,(¢) = Qch. To show the continuity, it is enough to
show that ¢, — ¢ in 5250// First, we remark that

[¢nlle.on <K (o', 0")|hnlloe,0

and since ||hy|leg,0’ = [P ||ow,0, 18 bounded uniformly in n. We compute

LQC(‘Pn - ‘P) = Qe hn — Qch+ (LQc - Lan)(‘Pn)a

and therefore we simply have to show that

Hanh 7Qc +H (LQC_Lan)((pn)
Qc

—0
a+<7/
®®7T

®®,0’

" Qenhn — Qch

when n— oo. The fact tha H R — 0 comes from the hypothesis, and we are left with

o

the proof of HW ]®® +nr—0. Since c— Q. — 1€ C1(]0, co(s)[, EXY™) for all 0 < < 1,
we have that s
(Lo.— Lq.,)(¥n) _ 9cLg,.(¢n)
,<len—c ,
Qe ®®,7%L7 Qe 2®,2t

for some ¢* € [min (c, ¢,), max (¢, ¢,)]. Let us show that, more generally, for any 1 >0¢” > o’ > 0,
p=Q € 6'@2;3:5, we have

HM SK(o',o") Y]l g0 (4.2.6)
R®,0’

Qe
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Equality (4.2.6) is enough to conclude the proof of this proposition.
We recall that

LQC(QD) =—-Ap— (1 - |Qc|2)§0 + 29{3(@@)Qc - ica@@a
and thus

9:Lg (¢) =2Re(Q0.Qc) ¢ + 2Re(0.Qcp) Qe + 2Re(Qep) Q. — i O, p.

We check, with regards to the definition of the norms ||.||gg.0% ||-]|l@,0 that, for 1 > 6" > o’ > 0,
(with computations similar to the proof of Lemma 4.1.1)

100z, ¢llee,0r <l¢lle,0-

For the other terms, the estimates are clear in the area {F < 3}. With ¢ =@, since c— Q. — 1€
(0, co(9)], Séim) for all 0 <¢ <1, taking ¢=1+0'— 0" <1, outside of {F <3},

K(O-I, O.I/) < K(OJ’ 0_//)
(L4 7)ltsto” = (14 7)2+0"

|Re(Qe0Qc)| <
We check similarly that
o K(O’l, U”)
Now, 2Re(0.Q.y) is real valued, and still with ¢=1+4+0¢"—0¢"” <1, outside of {77 < 3},

K(o’,0") K(o' o)
(1+72')§+G//\ (1+f)1+0”’

[Re(0:Qep)| <[0:QcQct| <
and, with Lemma 4.1.1,

[VRe(0:Qep)l < K(IVOQc|[%]+ IV Qe|[9[10:Qc| + 1V 10:Qc])
K

< K(oo") 1 N 1 N 1
= ’ (1+7'«')1+<+<7” (1+7'«')1+<7//+< (1+7’«‘)1+0//+<
K(O’l, U”)
T(L4F)2ten
Finally, still with Lemma 4.1.1, we check that
|%e(@¢)ach| = |Qc|2|%e('¢))ach|
- K((T/, O_//)
X (1+F)1+a_//+§
K(O’I, U”)
B (1+’F)2+UH
K(a_/7a_//)

and we check similarly that |V (Re(Qcp)0.Q.)| < . This concludes the proof of (4.2.6). O

(1+7)2+e’

4.3 Smoothness of the branch of travelling wave

4.3.1 Second derivative with respect to the speed

4.3.1.1 Proof of the differentiability
We recall that
L. ()= —icOup — Ap — (1—|Qc|?)p + 2Re(Qep) Qe
and that
L (0cQc) =105,Qe.
We define the operator

8CLQC(<P) = 29%2(86@5@)90 + Q%Q(TQCQD) Qc+ 2%2(@5&)85625 — 10z,
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Take € >0 a small constant, and remark that Lg,_, (0.Qc+c) =102,Qc+e. We compute
LQC(ach—&-a - ch) = (LQC - LQC+E) (ach+a) - iax2QC+E + iaa:ch-
Let us show that for all e >0, (Lg. — Lg.,.)(0:Qcte) = 102,Qcqe +10,,Qc € 5;;%1; and that

(LQc - LQ0+5)(36Q0+8) —102,Qcte+105,Qc
9

- 8CLQC(8CQC) + iamzach

when € — 0 for the norm H C; . . Fort that, is is enough to show that 9.L¢,(0:Qc) +102,0.Qc €

Sésé”; From Corollary 4.2.1, we have 9.Q. € Sésx,m, thus we check that i0,,0.Q. € Sésé”; (as in the
proof of Lemma 4.1.1). Now, still using Corollary 4.2.1, we check that

acLQc(ach) = 49{6(66@5@85@5 + 2|ach|2Qc - iamgach gésén;a
using in particular that |0.Q.|? is real valued. We deduce that, with Proposition 4.2.11,
aCQC+€ - ach N
€

LoH0:Lo.(0:Qc) +102,0:Q.)

when € — 0. In particular c— L (9.L.(0:Qc) +0:2,0.Q.) is a continuous function (for the norm
|l.l.o) and thus c— Q. — 1€ C?(]0, co(0)], gész/rm) for ¢o(o) >0 small enough, depending only on o.

4.3.1.2 Differentiation of the energy and momentum

First, we check that, if A€Eg , and B€Egg o, then id,,A € Egg , and Re(AB) € L (R? R) since,
outside of {f < 1},

cami <[ g (@ )|+ o om( ) ) ettt iton.

for some o >0. From Proposition 1.4.1, we have
9cP(Qc) = (L. (0:Qc), 0cQc) = (i02,Qc, 0cQc)-
Now, we recall that 0.Qc, 92Qc € Eg,0, 102,Qc € Ep.0, a0d 104,0.Q. € Egg. o We deduce that
Re(10,,00:Q.0.Q), Re(0,,Q:02Q.) € L (R, R),
and therefore (i9;,Q., 0.Q.) € C1(]0,co[,R) (for co=co(c),o=1/2 for instance) with
Oe((i01,Qes eQe)) = (102,06Qc, 0cQe) + (192,Qec, DZQe).
We deduce that P(Q.) € C?(]0, co[, R) and

82P(QC> = <Z‘az2acha 8CQC> + <Z 8I2QC} aCQQc>

Now, we recall from Proposition 1.4.1 that .E(Q.) = cd.P(Q.). We deduce that E(Q.) € C?(]0, col,
R) and

agE(Qc):acP(Qc)+cagp(Qc)- (4'3'1)

4.3.2 Generalisation to higher order derivatives
We argue by induction on n > 1. We define the set of functions
Ay, i=Spang< k<5 (10:,05Q.) + Spank,l,m?O;Oék+l+m<n(%e(a§Qc@)ag’ch)~
We suppose the following results for n > 1: for all 0 <o < 1, there exists co(o) > 0 such that
— = Qc—1€C(]0,c0(0)], ST
= L@ (0¢Qc) = An(c) € An.
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In subsection 4.3.1.1, we have shown this results for n = 2. Let us show that these results then
holds for n+1 if they do for a given n > 1.

As in the previous subsection, we show that A, (c), d.An(c) € 3™ and 9L (08Q.) € E52™,
using O2Q. € Séi%m instead of 0.Q. € Séi};m. Now, as in the proof in subsection 4.3.1.1, we can show
similarly that

oy — o _
M - LQz(aCLQc(ach) + acAn(c))

C; [P We deduce that c— Q. — 1€ C"1(]0, co(0)[, E5™) and that,

defining A, 1(c) := 0L (00Q.) + 9.An(c), we have Lq (021 Q) = Ant1(c) € A1
Finally, we check that for all n,m >0, Re(i0,,00Q.00'Q.) € L*(R2, R) since 92 Q., 05" Q.. € Séiim.
Therefore, we check by induction that P>(Q.) € C°*°(]0, co[, R), with

aéP2(Qc) = Z an,m<iazzacha angc>

n+m=I

when € — 0 for the norm H

for some (an,m) € R. Using 0.E(Q.) = cO.Po(Q.), we deduce that E(Q.) € C*(]0, ¢o[, R). This
concludes the proof of Theorem 1.5.2.
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