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Sur l'existence et la non dégénérescence d'ondes progressives dans l'équation de
Gross-Pitaevskii en dimension deux

Dans cette thèse, nous nous intéressons aux ondes progressives dans l'équation de Gross-
Pitaevskii i@tu + �u = (juj2 ¡ 1)u en dimension 2, avec la condition à l'in�ni juj(x)! 1 quand
jxj ! 1. Cette équation a fait l'objet d'une étude intensive, que ce soit en physique ou en
mathématiques. Il s'agit d'un modèle pour les condensats de Bose-Einstein, et décrit entre autres
le comportement de super�uides.

Nous regardons des questions liées au programme de recherche de Jones-Roberts, notamment
sur l'existence et l'unicité d'une onde progressive qui est un minimiseur globale de l'énergie à
moment �xé. Ces questions ont été abordées dans des travaux précédents en utilisant des méthodes
variationnelles. On construit ici, par des méthodes perturbatives et pour des petites vitesses, une
branche d'onde progressive régulière par rapport à la vitesse, qui est constituée de deux vortex
éloignés l'un de l'autre. Grâce aux propriétés connues sur les vortex, on peut en déduire des
propriétés qualitatives satisfaisantes sur cette branche, qui sont meilleurs que ce que l'on peut
obtenir par des constructions variationnelles.

Ensuite, on s'intéresse à des propriétés de stabilité sur cette branche. On montre tout d'abord
des résultats de coercivité, en améliorant pour cela les résultats de coercivité connus sur les vortex.
On en déduit en particulier le noyau de l'opérateur linéarisé, un résultat de stabilité spectrale, ainsi
que des résultats d'unicités locales dans l'espace d'énergie. On inverse aussi l'opérateur linéarisé
près d'une onde progressive dans des espaces adaptés. Ces résultats sont une étape cruciale pour la
compréhension de la stabilité de la branche, et pour démontrer l'unicité du minimiseur de l'énergie.
Ces résultats peuvent aussi servir à comprendre l'interaction entre plusieurs ondes progressives
dans un même milieu.

Mots clefs: EDP, Gross-Pitaevskii, Ondes progressives, Coercivité, Stabilité

��������������������������������������

On existence and non degeneracy of travelling waves for the two dimensional Gross-
Pitaevskii equaation

In this thesis, we focus on the study of travelling waves in the Gross-Pitaevskii equation i@tu+
�u = (juj2 ¡ 1)u in dimension 2, with the condition at in�nity juj(x)! 1 when jxj ! 1. This
equation has been studied extensively, both in physical and mathematical works. It is a model for
Bose-Einstein condensates, and describes the behaviour of super�uids.

We are interested in problems related to the research program of Jones-Roberts, in particular
about the existence and unicity of a travelling wave, that minimise the energy at �xed momentum.
These questions have been studied, in previous works, using variationnal methods. We construct
here, using perturbative methods and for small speeds, a branch of travelling waves, smooth with
respect to the speed, which behaves like two vortices far from each other. Using known properties
of the vortices, we can deduce good qualitative properties on this branch, that are better than the
ones obtained using variationnal methods.

Then, we study stability properties of this branch. First, we show coercivity results, improving
for that the known coercivity results on the vortices. In particular, we deduce the kernel of the
linearized operator, a result about spectral stability, and a local uniqueness result in the energy
space. We also are able to invert the linearized operator near a travelling wave in adapted spaces.
These results are a key step for the understanding of the stability of the branch, and to show the
unicity of the minimiser of the energy. These results are also a �rst step in understanding the
interaction between several travelling waves.

Keywords: PDE, Gross-Pitaevskii, Travelling waves, Coercivity, Stability
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Chapter 1
General introduction and presentation of the
results
In this chapter, we summarize the known results on travelling waves in the Gross-Pitaevskii equa-
tion in dimension 2, including the results of this thesis. After an introduction on the Gross-
Pitaevskii equation, we present, in section 1.2, previous results on this problem and on vortices.
This gives an overview of the �eld, but also gives theorems that will be used in the proofs of the new
results. Then, we present the main new results in sections 1.3 to 1.5. We will also give a sketch of
the proofs, and provide some context and applications. The full proofs of these results compose the
remaining chapters. Some related open problems are given at the end of this chapter, in section 1.6.

1.1 Presentation of the Gross-Pitaevskii equation
We are interested in the Gross-Pitaevskii equation in dimension 2:�

i@tu+�u=(juj2¡ 1)u inR2

juj(x)! 1 as jxj!1:

It is a physical model for Bose-Einstein condensate (see [16], [39]). It also describes the behaviour
of super�uids, as for instance a thin liquid helium �lm. This equation is closely related to the
Ginzburg-Landau equation and superconductivity problems. It is associated with the Ginzburg-
Landau energy

E(v) := 1
2

Z
R2
jrv j2+ 1

4

Z
R2
(1¡jv j2)2:

We are interested in the qualitative description of solutions for the Gross-Pitaevskii equation (we
refer to [4], [14], [24] for the question of long time existence). It has some particular stationnary
solutions, named vortices, that play the role of solitons. They solve the equation

(S)
�
�u+(1¡ juj2)u=0 inR2

juj(x)! 1 as jxj!1:

The stationnary problem (S) is in itself an interesting one, as it is a particular case of (GP).
Stationnary vortices solutions with radial symmetry (of the form Vn(x) = �n(r)ein�) have been
constructed (see [7]), and the uniqueness of these solutions (up to a translation and a shift of phase)
with degree one at in�nity have been shown [38]. We are interested in several questions about (GP)
and the vortices. Can we �nd particular solutions of the Gross-Pitaevskii equation that behave
like multi vortices ? Are these solutions stable ? Can we understand the long time behaviour of
solutions that are close to a multi vortex solution ?

Here, we will focus on the study of travelling waves in (GP). They are, in a sense, the most
simple type of solutions after the stationnary ones. In particular, many conjectures exist on them in
the physical litterature. We refer mainly to the series of works from Jones, Putterman and Roberts
([17], [26], [27] and references therein). In this both physical and numerical study, it is conjectured
that travelling waves can only have speed between 0 and 2

p
(this limit being the speed of sound

in the model). Furthermore, they predicted the existence of a particular branch of travelling waves
on the full range of possible speeds, which is a global (or at least local) minimizer of the energy
(at �xed either speed or momentum). This branch behaves, in the limit c! 2

p
, up to a rescale,

to a solution of Kadomtsev-Petviashvili KP¡ I (see [5]), and in the limit c! 0, as two vortices, of
degree +1 and ¡1, at a distance of order 2/c from each other (see [4]). We also refer to [31] for
the construction of other travelling waves in (GP), and [29] for similar equations.
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Many mathematical results have been proven in this direction. Non existence for supersonic
speeds (c> 2

p
) has been rigorously justi�ed (see [18] and [20]), and this Jones-Roberts branch has

been constructed using energy methods. We refer for instance to the partial construction of the
branch by minimizing the energy at �xed small speed in [4], or at �xed momentum, in [6]. More
recently, a method construction has been given for almost all subsonic speeds, in [2]. A main open
problem is to show that all these constructions give in fact the same branch.

These methods of construction have been extended to other but similar problems. There are
existence results on the Gross-Pitaevskii equation, but in other dimensions (see [32]), or with
di�erent nonlinearities ([8]).

These constructions by energetic methods give solutions that locally minimize the energy, but
the conjectured structure in term of vortices in the limit c! 0 remains unclear. This structure is
visible in some sense in [4], but it is not clear for instance that the constructed travelling waves
form a branch (namely, that c! Qc, where Qc is the travelling wave of speed c, is continuous in
some sense for these constructions).

We can therefore look for another way of constructing these travelling waves, which will make
the branch structure clearer, rather than having properties on the energy of the solution. For that,
perturbative methods are more adapated than energy ones. With this method of construction,
and some known properties of vortices (in particular [10]), it allows a more precise study of this
branch, and its stabilty.

We give a few notations, that hold in all the chapters. We denote, for functions f ; g2Lloc
2 (R2;C)

such that Re(fg�)2L1(R2;C), the quantity

hf ; gi :=
Z
R2

Re(fg�);

even if f ; g2/ L2(R2;C). We also use the notation B(x; r) to de�ne the closed ball in R2 of center
x 2 R2 and radius r > 0 for the Euclidean norm. We de�ne, between two vectors X = (X1; X2);
Y =(Y1; Y2)2C2, the quantity

X:Y :=X1Y1+X2Y2:

1.2 Previous results
We recall the Gross-Pitaevskii equation in dimension 2 (for u:Rt�Rx

2!C)

(GP)(u) := i@tu+�u¡ (juj2¡ 1)u=0:

The condition at in�nity for (GP) will be

juj! 1 as jxj!+1;

and it is associated with the Ginzburg-Landau energy

E(v)= 1
2

Z
R2
jrv j2+ 1

4

Z
R2
(1¡ jv j2)2:

The Gross-Pitaevskii equation can be seen as a nonlinear Schrödinger equation, with a non trivial
condition at in�nity and a nonlinearity adapted to this condition. However, the condition juj !
1 as jxj ! +1 allows solutions to have a non trivial behaviour at in�nity (behaving like ei� for
instance), and thus the equation is not simply solved by the sum of a constant and a solution of a
nonlinear Schrödinger equation going to 0 at in�nity. An exemple such solutions are vortices.

1.2.1 Vortices in Gross-Pitaevskii
1.2.1.1 Existence and decay properties
Vortices are some particular stationnary solutions of the Gross-Pitaevskii equation. They solve

(S)
�
�u+(1¡ juj2)u=0 inR2

juj(x)! 1 as jxj!1;

12 General introduction and presentation of the results



and are of the form u(x)= �n(r)ein�, where n2Z�, (r; �) are the polar coordinates of x2R2, and
�n is a real-valued function. For n=�1, existence of such functions, and some of their properties,
are listed in the following result.

Lemma 1.2.1. ([7] and [25]) A vortex centered around 0, V1(x) = �1(r)ei�, veri�es V1(0) = 0,
E(V1)=+1 and there exist constants K;�> 0 such that

8r > 0; 0< �1(r)< 1; �1(r)�r!0�r; �1
0 (r)�r!0�

�1
0 (r)> 0; �10 (r)=Or!1

�
1
r3

�
; j�00(r)j+ j�000(r)j6K;

1¡ jV1(x)j=
1
2r2

+Or!1

�
1
r3

�
;

jrV1j6
K
1+ r

; jr2V1j6
K

(1+ r)2
and

rV1(x)= i V1(x)
x?

r2
+Or!1

�
1
r3

�
;

where x? := (¡x2; x1), x= rei� 2R2. Furthermore, similar properties holds for V¡1, since

V¡1(x)=V1(x):

Here is a graph of �1(r) for r 2 [0; 8].

We refer to [25] for the existence and similar properties for vortices of other degrees. Still from
[25], it is possible to compute asymptotics at all order of �n(r) for r! 0 and r!1. Furthermore,
by the invariances of (GP), we have that�

V�1(x¡X)ei
 ; X 2R2; 
 2R
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are solutions of the problem (S).
Since �1(r) = 0 if and only if r = 0, we de�ne the center of a vortex by being the only point

where the function is 0. Remark that, up to a shift of phase, a vortex in this manifold is completely
de�ned by its degree (�1) and its center.

It has been shown that these particular solutions of (S) are the only ones with degree �1:

Theorem 1.2.2. ([38]) If u is a solution of �u+(1¡juj2)u=0 in R2 withZ
R2
(1¡juj2)2<+1

and u¡ e�i�! 0 at in�nity, then there exists X 2R2 such that

u=V�1(:¡X):

This result will be not used in itself in the study of travelling waves in (GP). However, it shows
that the vortices have a special role in this problem.

From Lemma 1.2.1, the energy of vortices is in�nite. Despite that, they will play a role in the
construction of �nite energy travelling waves. Their energy is in�nite because of their behaviour
at in�nity (the degree is not zero), but a multi vortex solution with a sum of degrees equal to 0 is,
at least formally, of �nite energy.

About vortices of degrees n>2, few properties are known. We refer to [40] for some numerical
results.

1.2.1.2 Coercivity results on vortices of degree �1

For a vortex V�1 centered at 0, we de�ne the quadratic form, formally de�ned by the second
variation of the energy E around V�1:

BV�1(') :=
Z
R2
jr'j2¡ (1¡jV�1j2)j'j2+2Re2(V�1');

for functions '2HV1, the associated energy space:

HV�1 :=
�
'2Hloc

1 (R2;C);
Z
R2
jr'j2+(1¡ jV�1j2)j'j2+Re2(V�1')<+1

�
:

Remark by Lemma 1.2.1 that 1¡ jV�1j2> 0.

Theorem 1.2.3. (Theorem 1.1 of [10]) For '2HV�1,

BV�1(')> 0
and if BV�1(')= 0, then

'2SpanR(@x1V�1; @x2V�1):

We will use this result, but also elements of its proof (in [10]) in the proofs of the new results.
In summary, vortices of degree �1 are well understood, despite some di�culties. They have in�nite
energy, slow decays in position, and a weak coercivity result. This will make the construction by
perturbative method di�cult, but allow a rich dynamic. We refer to [41] (in particular, Corollary
3.3) and [37] for more related coercivity or stability results.

1.2.2 Travelling waves in Gross-Pitaevskii

Travelling wave solutions of (GP), i.e. solutions of the form

u(t; x)= v(x1; x2+ ct)
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with c 2R (the equation is invariant by rotation, we therefore choose, without loss of generality,
that the travelling wave moves in the direction ¡e~2), solve the equation

0= (TWc)(v) :=¡ic@x2v¡�v¡ (1¡ jv j2)v:

1.2.2.1 Momentum and range of possible speeds

As in similar physical problems, we want to de�ne the momentum of such a solution, but it is
not easy since a travelling wave does not go at 0 at in�nity. We refer to [32] for a de�nition in
dimension n> 3.

Theorem 1.2.4. ([8]) A travelling wave with �nite energy converges to a constant at in�nity in
position. Up to a shift of phase, we can therefore suppose that a travelling wave of �nite energy
solves the problem

(TWc
1)
�
¡ic@x2v¡�v¡ (1¡ jv j2)v=0 inR2

v(x)! 1 as jxj!1:

Then, the quantity

P~ (v) := hirv; v¡ 1i

is well de�ned, and is the momentum of the solution. Furthermore, for  2H1(R2;C),

hi@x2 ; v¡ 1i=¡hi ; @x2vi:

Remark that P~ (v) 2 R2, and we denote P1(v) and P2(v) its two components. We now focus
on the possible speeds of a travelling wave. It has been �rst conjectured in physics, then shown
rigorously, that there are no travelling waves at sonic or supersonic speed:

Theorem 1.2.5. ([18] and [20]) If jcj> 2
p

, the only solution with �nite energy of (TWc
1) is

the constant 1.

In (GP), up to the physical rescaling, 2
p

is the speed of sound. It is fully expected that all the
speeds in

�
0; 2
p �

are reached by a travelling wave. We now give some precise existence results.

1.2.2.2 Existence results for travelling waves

Travelling waves have been constructed using energy methods. The idea is to look for a minimizer of
the energy at �xed momentum and using a mountain pass argument. Such constructions have been
done in di�erent regimes. First, for small speeds, with the apparition of a two vortices structure.

Theorem 1.2.6. ([4]) There exists some constant c0> 0 such that, for 0< c< c0, there exists a
non constant solution v of (TWc

1) with �nite energy. Moreover, there exists �0;�1> 0 such that

2� jlog cj+�06E(v)6 2� jlog cj+�1:

This function v is smooth, and there exists 0 < "1 < "2 < 1, � 2 [c¡"1; c"2], exactly two points a1;
a22R2 such that

jv(x)j> 1/2 on R2n
[
i=1

2

B(ai; �);

deg(ai)= (¡1)i

and

cjja1¡ a2j ¡ 2j+ ja1;1¡ a2;1j= oc!0(1):

We see that the solution cancels only in two regions, separated by a distance of order 2/c, and
the degrees are �1. This is the only construction by energy method where this structure has been
shown.
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Another way to construct solutions of (TWc
1) is to �x the momentum, and minimize locally

the energy. This can be done for any momentum P2(v)> 0. Remark that large momentum yields
small speeds in dimension 2, and small momentum speeds close to 2

p
(still in dimension 2).

Theorem 1.2.7. ([6]) Let p> 0. There exists a non constant �nite energy solution vp to (TWc
1)

for a speed c= c(p), such that P1(vp)=0; P2(vp)= p. This function is solution to the minimization
problem

E(vp)= inf
�
E(v); v 2W (R

2
); P1(vp)= 0; P2(v)= p

	
;

where W (R2)=
�
1
	
+V (R2) and

V (R2)=
�
v:R2 7!C;rv;Re(v)2L2(R2);Im(v)2L4(R2);rRe(v)2L4/3(R2)

	
:

Here, the speed appears as a Lagrange multiplier. The method of construction used here has
also been improved and extended for other nonlinearities in [8]. There, they show in addition some
precompactness and orbital stability results. We state here the results in the case of the Gross-
Pitaevskii equation in dimension 2.

Theorem 1.2.8. ([8]) For q> 0, let

Emin(q)= inf
�
E( ); j j ¡ 12L2(R2);r 2L2(R2); P2( )= q

	
:

Then:
(i) The function Emin is concave, increasing on [0;1[, Emin(q)6 2

p
q for any q> 0, the right

derivative of Emin at 0 is 2
p

, Emin(q)!1 and Emin(q)

q
! 0 as q!1.

(ii) Let q0 = inf
�
q > 0; Emin(q) < 2

p
q
	
. For any q > q0, all sequences ( n)n>1 � { ;

j j¡12L2(R2);r 2L2(R2)} satisfying P2( n)! q and E( n)!Emin(q) are precompact for the
semi distance d0( 1;  2)= kr 1¡r 2kL2(R2)+ kj 1j ¡ j 2jkL2(R2) (modulo translations).

The set Sq= { ; j j¡ 12L2(R2);r 2L2(R2); P2( )= q;E( )=Emin(q)} is not empty and is
orbitally stable (for the semi distance d0 by the �ow associated to i@t�+��¡ (j�j2¡ 1)�=0)

(iii) Any  q 2 Sq is a travelling wave for the Gross-Pitaevskii equation, of speed c( q) 2
[d+Emin(q); d¡Emin(q)], where we denote by d¡ and d+ the left and right deriatives. We have
c( q)! 0 as q!1.

More recently, another construction has been done for almost all speeds in
�
0; 2
p �

.

Theorem 1.2.9. ([2]) There exists a subset S�
�
0; 2
p �

of full measure such that, for any c2S,
there exists a non constant �nite energy solution vc of (TWc

1).
Furthermore, for any c02

�
0; 2
p �

, there exists K(c0)> 0 such that

0< (E ¡ cP2)(vc)6K(c0)
for all c2S, c> c0.

It is still an open problem to show that all of these constructions yield the same solution.

1.2.2.3 Qualitative properties of travelling waves

We present here some qualitative properties of travelling waves, assuming the existence. In partic-
ular, their asymptotics development at in�nity in position have been computed.

Theorem 1.2.10. ([13]) For Qc a solution of (TWc
1) with �nite energy,

kQckL1(R2)6 1+ c2

4

r
:

Theorem 1.2.11. ([21], Theorems 1 and 2, Propositions 5 and 7) For Qc a solution of
(TWc

1) with �nite energy, writing Qc(x)= jQcj(x)ei�(x), for x2R2, x=R�, R>0, �=(�1;�2)2S1,
where S1 is the unit circle,
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R(Qc(R�)¡ 1)=
¡i�c�2�

1¡ c2

2
+ c2�2

2

2

�+ oR!1c (1);

R2(1¡ jQcj2)(R�)=�cc

0@ 1�
1¡ c2

2
+ c2�2

2

2

�¡ 2�22�
1¡ c2

2
+ c2�2

2

2

�
2

1A+ oR!1c (1)

in C1(S1), and

R�(R�)= ¡�c�2�
1¡ c2

2
+ c2�2

2

2

�+ oR!1c (1)

in C2(S1), with �c :=
cE(Qc)+

�
2¡ c2

2

�
P2(Qc)

2� 1¡ c2

2

q .

Here, oR!1c (1) denotes a quantity going to 0 when R!1 for a �xed c> 0.

This thesis aims to improve qualitative results on the branch in the limit c! 0. We want to
improve the smoothness of the branch with respect to the speed, and we want to study the structure
in term of vortices. In particular, in none of the three constructed branch is it proven that the
branch is even continuous with respect to the speed, and the vortices structure can be made clearer.

1.3 Smooth branch of travelling waves for small speed

The result presented in this section have been submitted for publication as a paper in collaboration
with David Chiron. We refer to Theorem 1.3.1 for the main result. A sketch of its proof is given
in subsection 1.3.2. Chapter 2 is devoted to the full proof of this theorem.

1.3.1 Construction of the branch
The main result of this subsection is the construction of a branch of solution by perturbation of
the product of two vortices for any small speed c > 0, and the fact that this branch of solution is
C1 with respect to the speed.

Theorem 1.3.1. There exists c0> 0 a small constant such that, for any 0<c6 c0, there exists a
solution of (TWc) of the form

Qc=V1
¡
:¡ dce1~

�
V¡1(:+ dce1~ )+¡c;dc;

where dc=
1+ oc!0(1)

c
is a continuous function of c. This solution has �nite energy (E(Qc)<+1)

and Qc! 1 when jxj!+1.
Furthermore, for all +1> p> 2, there exists c0(p)> 0 such that if c< c0(p), for the norm

khkXp := khkLp(R2)+ krhkLp¡1(R2)

and the space Xp :=
�
f 2Lp(R2);rf 2Lp¡1(R2)

	
, one has

k¡c;dckXp= oc!0(1):

In addition,

c 7!Qc¡ 12C1(]0; c0(p)[; Xp);

with the estimate (for �(c)= 1+ oc!0(1)

c2
)

k@cQc+ �(c)@d(V1(:¡ de1~ )V¡1(:+ de1~ ))|d=dckp= oc!0

�
1
c2

�
:
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In this representation of Qc, the lines around �dce~1 represent equivalues for jQcj.

Here, we use an implicit function argument to construct the solution, using technics developped
in [11] or [29] for instance, displaying a clear understanding of the shape of the solution (see Lemma
2.2.8 for instance). We show in addition that the constructed branch is C1, which is, to the best
of our knowledge, the �rst result of this kind in dimension larger than one.

The formal method for this kind of construction is well known. Namely, it is a Lyapunov-
Schmidt reduction in weighed L1 spaces. It has been done for instance rigorously in a bounded
domain for the Ginzburg Landau equation ([11]). One of the di�culties here is to �nd the right func-
tional setting to construct the C1 branch, in particular with regards to the transport term ic@x2v.
On the contrary of what is claimed in [29], the transport term can not be treated perturbatively.
This is why we use another functional setting than [29] or [31] (see Remark 2.1.11 for more details)

1.3.2 Sketch of the proof of Theorem 1.3.1
As mentioned above, we look for an ansatz which is a perturbation of two vortices. Take d =
Oc!0

¡ 1
c

�
a large free parameter, � a smooth cuto� function such that � = 1 in B(�de~1; 1) and 0

outside of B(�de~1; 2), and an ansatz of the form

Qc(x)= �(x)V (x)(1+	(x))+ (1¡ �(x))V (x)e	(x);

with V (x)= V1(x¡ de~1)V¡1(x+ de~1). Writing the perturbation as an exponential is well adapted
to the problem. This can not be done near �de~1, since there, the product of the vortices V has
zeros. This explains the shape of the ansatz, it is additive close to the center of the vortices, and
exponential far from them. A similar decomposition was used in [11] and [29]. We look for a
perturbation 	=	1+ i	22E�;�;d, small in the norm of this space, that is, for 0<� < 1,

k	k�;�;d = kV	kC2(�r~63	)+ kr~1+�	1kL1(�r~>2	)+ kr~2+�r	1kL1(�r~>2	)
+ kr~�	2kL1(�r~>2	)+ kr~1+�r	2kL1(�r~>2	)+ kr~2+�r2	kL1(�r~>2	);

where r~=min (jx¡ de~1j; jx+ de~1j) is the minimum to the distance to the two vortices. At the end
of the proof, we will have that k	k�;�;d6K(�; � 0)c1¡�

0
for any 0< � < � 0< 1. We also suppose

that the ansatz has two symmetries:

8x=(x1; x2)2R2;	(x1; x2)=	(x1;¡x2)=	(¡x1; x2):

For now, the parameter d is free, it will help to cancel a Lagrange multiplier later on.
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The equation on the perturbation is then written as (see Lemma 2.1.7)

�L(�)+ (1¡ �)VL0(	)+E ¡ ic@x2V +V (1¡ �)(¡r	:r	+ jV j2S(	))+R(	);

where �=V	,
L0(	)=¡�	¡ 2 rV

V
:r	+2jV j2Re(	)¡ ic@x2	;

L(�)=¡��¡ (1¡ jV j2)�+2Re(V��)V ¡ ic@x2�

are the linearized operator around V (with the exponential or additive perturbation respectively),
E ¡ ic@x2V =¡�V ¡ (1¡ jV j2) V ¡ ic@x2V =TWc(V ) is the small source term, and S(	); R(	)
are nonlinear terms. The goal is to do a Lyapunov-Schmidt reduction to construct the function 	,
and reduce the problem to a one dimensional one, on d2R.

For that, the �rst step, as for general method of construction by a perturbative method, is to
invert the linearized operator L (or equivalently L0) around V in the space E�;�;d (from another
weighed L1 space E��;� 0;d, see subsection 2.1.3). In the limit c! 0 (thus d!1), the function
V =V1(:¡de~1)V¡1(:+de~1) will behave like two decoupled vortices. The linearized operator around
a single vortex is well understood (see Theorem 1.2.3), and has two zeros. We therefore expect
four directions that might pose di�culties for the inversion (coming from the two translations for
each vortices). With the two symmetries, there is only one direction left, and thus we will invert
the operator with one orthogonality condition. This direction is @dV (x)=¡@x1V1(x¡de~1)V¡1(x+
de~1) + @x1V¡1(x ¡ de~1)V1(x + de~1), and will be dealt with by choosing the right value for the
parameter d later on.

For the inversion, we start with an a priori estimate on the problem

L(�)=Vh:

We want to show that if � = V	 and h satisfy this equation, with an orthogonality condition
on �, then for small speeds, k	k�;�;d 6 K(�; � 0)khk��;� 0;d (the norm k:k��;�0;d is a weighed L1

norm, as k:k�;�;d, see subsection 2.1.3, and 0<�<� 0<1). This is done by contradiction. Suppose
that it does not hold. Then, there exist cn! 0 (thus dn! 1), k	nk�;�;d = 1, �n = V	n and
khnk��;� 0;dn! 0 such that L(�n) = Vhn. Then, following the vortices (by a translation and up
to a subsequence, using standards compactness arguments), �n(:� dne~1)! � with LV�1(�) = 0,
thus �=0 by the orthogonality condition and the symmetries. This implies that locally near the
vortices, �n(:� de~1)! 0 when n!1. Then, to show that k	nk�;�;dn! 0 when n!1 (and thus
contradicting k	nk�;�;dn = 1), this becomes an elliptic estimate problem. We want to use the
equation L(�n) = Vhn, the fact that hn is small (khnk��;� 0;dn! 0 when n!1), and that �n is
small locally near the vortices to show that �n is small in the whole space. We use for that the
Gross-Pitaevskii kernels, that have been studied in [19]. Writing �=V	, the equation L(�)=Vh
becomes, at in�nity in position and at �rst order,

¡ic@x2	¡�	+2Re(	)=h:

The Gross-Pitaevskii kernels are used to invert this problem, writing 	 as a convolution using h,
and estimates on these convolution kernels (done in [19]) are enough to show the smallness of �
(through 	) given the smallnes of h in the right norms.

Now, to show the existence of a solution � to the problem L(�) = Vh, we use the Fredholm
alternative. To add the required compactness to apply it, we look at the same equation in a bounded
domain (large compared to the distance between the vortices) with a Dirichlet boundary condition.
Here, the existence is thus a consequence of another a priori estimate, that will be a consequence
of the previous one (see Lemma 2.1.19). Then, we let the size of the domain goes to in�nity, and
that provide the full inversion theorem for L (see Proposition 2.1.20), with one local orthogonality
condition on @dV .

The next di�culty for the existence of the solution are the nonlinear and source terms. We will
use a �xed point theorem, by looking at the operator

(�L(:)+ (1¡ �)VL0(:/V ))¡1(�d?(¡F (:/V ))): E�;�;d!E�;�;d;
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where F contains the source term and nonlinear terms, and �d? is a projector encoding the ortho-
gonality condition, as we have yet to deal with this other problem. This operator is a contraction
(for small perturbations, in order to kill the nonlinearity), and thus we can, at this point, construct
a solution �c;d=V	c;d to the problem

(TWc)(Qc)=�(c; d)Zd;

where Zd is a localized version of @dV , and �(c; d)2R is a Lagrange multiplier (coming from the
orthogonality condition). We thus look for a good choice of d2R to cancel it (with d=Oc!0

¡ 1
c

�
).

This is now only a one dimensional problem. For that, an estimate shows that

�(c; d)=�
�
1
d
¡ c
�
+Oc!0

� (c2¡�):

At this point, we do not know if the Oc!0
� (c2¡�) is continuous with respect to c and d. We want

to apply the intermediate value theorem to cancel �(c; d). For that, we need to show that the
functions c; d 7!�c;d, with �c;d the perturbation constructed by the Lyapunov-Schmidt reduction
described above, are continuous functions.

Since our goal is to show the di�erentiability of the branch, we will show a stronger result, that
is that �c;d is a C1 function of c and d in the weighed L1 spaces. Leaving some technical details
aside, the main ingredient is the implicit function theorem. We look at the functional

H(�; c; d) := (�L(:)+ (1¡ �)VL0(:/V ))¡1(¡�d?(F (�/V )))+�;

for which H(�c;d; c; d)= 0. We compute its di�erential with respect to its �rst variable

d�H(�; c; d)(')= (�L(:)+ (1¡ �)VL0(:/V ))¡1(�d?(¡d	F ('/V )))+ ';

and thus, if �c;d is small (which would make small the term d	F ('/V ), since it is the di�erential of
terms at least quadratic, and thus still containing �c;d), we can apply the implicit function theorem
(d�H(�; c; d) is then a perturbation of the identity). This will follow from smallness and decays
estimates on �c;d and its derivatives in position (for general values of c and d, without requiring
that �(c; d)= 0).

We can now �nally �nish the construction of the travelling wave. We �x dc a value such that
�(c; dc)=0 (several can exist at this point), and now (TWc)(Qc)=0. We check that Qc has �nite
energy, and from the smallness of 	c;d in E�;�;d, we give some estimates on Qc and its derivatives
in position (see Lemma 2.2.8).

The remaining di�culty to show that the branch c 7!Qc is C1 with respect to the speed, is to
show that c!dc is a C1 function. Unfortunately, this is quite convoluted. We will use the implicit
function theorem on the equation �(c; d) = 0 that de�ned dc, and for that, we have to show that
@d�(c; dc) =/ 0. We recall that �(c; d) = �

¡ 1
d
¡ c
�
+ Oc!0

� (c2¡�), and from the implicit function

theorem on 	c;d, we have that k@d	c;dk�;�;d=Oc!0
�;� 0(c1¡� 0) (since k	c;dk�;�;d=Oc!0

�;� 0(c1¡� 0)). In
particular, we check that @d�(c;d)=¡�c2+Oc!0

� (c2¡�) for any �>0, and thus we cannot conclude
that @d�=/ 0 for c> 0 small enough a priori.

There is a moral reason for this. When c moves, the vortices move, and thus the error term �c;dc
is, at least at �rst order and near the vortices, translated. Therefore, @d�c;dc will be of the same size
as �c;dc (that is Oc!0

� 0 (c1¡�
0
)), but, if we remove the translation, by looking at @d�c;dc¡ @x1�c;dc

near the vortex +1 for instance, we could expect a better estimate. For that term, we would only
see the change of in�uence of the second vortex, which is already far away. We can check that the
di�culty when computing @d� is indeed local, near the vortices, is coming from @d�c;dc, and that
the translation part cancels out exactly.

This is a simple idea, but it yields a fair amount of technical di�culties. We have to recast the
way to choose dc, change the norms and the spaces. In Proposition 2.3.5, we compute this gain, and
we show that k@d�c;d¡@x1�c;dk=Oc!0(c1+") in L1 near the vortex +1, for some ">0. We in fact
have a better but more technical estimate. Using this estimate in the equation on @d�, we �nd that
@d�(c; d)=¡�c2+Oc!0(c2+") for some "> 0. This ends the sketch of the proof of Theorem 1.3.1.
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1.4 Coercivity results on the branch and applications

The results presented in this section have been submitted for publication as a paper in collaboration
with David Chiron.

1.4.1 Some particular values for the branch
With the solution Qc constructed in Theorem 1.3.1, we can construct travelling waves of any small
speed, i.e. solutions of

(TWc~)(v) := i c~:rv¡�v¡ (1¡jv j2)v

for any c~ 2R2 of small modulus. For c~= jc~ jei(�c~¡�/2)2R2, jc~ j6 c0, we have that

Qc~ :=Qjc~ j �R¡�c~ (1.4.1)

is a solution of (TWc~), with R� being the rotation of angle � and Qjc~ j de�ned in Theorem 1.3.1.
Furthermore, the equation is invariant by translation and by changing the phase. Thus, we have
a family of solutions of (GP) depending on �ve real parameters, c~ 2R2, jc~ j6 c0, X 2R2 and 
 2R:

Qc~(:¡X ¡ c~ t)ei
:

We remark that, for a vortex of degree �1, the family of solutions has three parameters (the two
translations and the phase): V�1(: ¡ X)ei
 is solution of (GP) for X 2 R2; 
 2R. In particular,
between a travelling wave and the two vortices that compose it, we lose a parameter (since the phase
is global). This is one of the di�culty that will appear when we study the stability of this branch.

First, we give additional results on this branch of travelling waves: we will study the position of
its zeros, its energy and momentum, as well as some particular values appearing in the linearization.
The (additive) linearized operator around Qc is

LQc(') :=¡�'¡ ic@x2'¡ (1¡ jQcj2)'+2Re(Qc')Qc:

We want to de�ne and use four particular directions for the linearized operator around Qc, which
are

@x1Qc; @x2Qc;

related to the translations (i.e. related to the parameter X 2R2 in the family of travelling waves),
and

@cQc; @c?Qc;

related to the variation of speed (i.e. related to the parameter c~ 2R2), if we change respectively
its modulus or its direction. The functions @x1Qc; @x2Qc and @cQc are de�ned in Theorem 1.3.1,
and we will show that

@c?Qc(x) := @�(Qc�R¡�)|�=0=¡x?:rQc(x);

with x?=(¡x2; x1) (see Lemma 3.1.6). We infer the following properties.

Proposition 1.4.1. There exists c0>0 such that, for 0<c6 c0, the momentum P~ (Qc)= (P1(Qc);
P2(Qc)) of Qc from Theorem 1.3.1, de�ned by

P1(Qc) :=
1
2
hi@x1Qc; Qc¡ 1i;

P2(Qc) :=
1
2
hi@x2Qc; Qc¡ 1i;

veri�es c 7!P~ (Qc)2C1(]0; c0[;R2),

P1(Qc)=@cP1(Qc)=0;

P2(Qc)=
2�+ oc!0(1)

c
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and

@cP2(Qc)=
¡2�+ oc!0(1)

c2
:

Furthermore, the energy satis�es c 7!E(Qc)2C1(]0; c0[;R), and

E(Qc)= (2�+ oc!0(1))ln
�
1
c

�
:

Additionally, Re(LQc(A)A�)2L1(R2;R) for A2
�
@x1Qc; @x2Qc; @cQc; @c?Qc

	
, and

hLQc(@x1Qc); @x1Qci= hLQc(@x2Qc); @x2Qci=0;

hLQc(@cQc); @cQci= @cP2(Qc)=
¡2�+ oc!0(1)

c2
;

hLQc(@c?Qc); @c?Qci= cP2(Qc)=2�+ oc!0(1)

and

@cE(Qc)= c@cP2(Qc)=
¡2�+ oc!0(1)

c
:

Finally, the function Qc has exactly two zeros. Their positions are �dc~e1~ , with��dc¡ d~c��= oc!0(1);

where dc is de�ned in Theorem 1.3.1.

The momentum has a generalized de�nition for �nite energy functions (see [32] in 3d and [8]).
For travelling waves going to 1 at in�nity, it is equal to the quantity de�ned in Proposition 1.4.1.

The equality hLQc(@cQc); @cQci = @cP2(Qc) is a general property for Hamiltonian system, see
[23]. The equality @cE(Qc)= c@cP2(Qc) has been conjectured and formally shown in [26], provided
we have a smooth branch c 7! Qc, which is precisely shown in Theorem 1.3.1. We remark that
the energy E(Qc) is of same order as the energy of the travelling waves constructed in [4], which
also exhibit two vortices at distance of order 1

c
. We believe that both construction give the same

branch, and that this branch minimises globally the energy at �xed momentum. However, we were
not able to show even a local minimisation result of the energy for Qc de�ned in Theorem 1.3.1.

In the limit c! 0, the four directions (@x1Qc; @x2Qc; c
2@cQc; c@c?Qc) are going to zeros of the

quadratic form (while being of size of order one), and we see here the splitting of this kernel for
small values of c. In particular, two directions give zero (@x1Qc and @x2Qc), one becomes positive
(@c?Qc) and one negative (@cQc).

1.4.2 Coercivity results
One of the main ideas is to reduce the problem of the coercivity of a travelling wave to the coercivity
of vortices. We will �rst state such a result for vortices (Proposition 1.4.2) before the results on
the travelling waves (see in particular Theorem 1.4.4).

1.4.2.1 Coercivity in the case of one vortex

A coercivity result for one vortex of degree �1 is already known, see [10], and in particular equation
(2.42) there. We consider both vortices of degrees +1 and ¡1 here at the same time, since V1=V¡1.
Here, we present a slight variation of the results in [10] that will be useful for the coercivity of the
travelling waves. We recall from [10] the quadratic form around V1:

BV1(')=
Z
R2
jr'j2¡ (1¡jV1j2)j'j2+2Re2(V1� ');

for functions in the energy space

HV1=
�
'2Hloc

1 (R2;C); k'kHV1
2 :=

Z
R2
jr'j2+(1¡ jV1j2)j'j2+Re2(V1� ')<+1

�
:
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As the family of vortices has three parameters, we expect a coercivity result under three ortho-
gonality conditions. The three associated directions are @x1V1; @x2V1 (for the translations) and iV1
(for the phase).

Proposition 1.4.2. There exist K > 0, R > 5, such that, if the following three orthogonality
conditions are satis�ed for '=V1 2Cc1(R2n

�
0
	
;C),Z

B(0;R)

Re(@x1V1V1 )=
Z
B(0;R)

Re(@x2V1V1 )=
Z
B(0;R)nB(0;R/2)

Im( )=0;

then,

BV1(')>K
�Z

B(0;10)
jr'j2+ j'j2+

Z
R2nB(0;5)

jr j2jV1j2+Re2( )jV1j4+
j j2

r2ln2(r)

�
:

The same result holds if we replace V1 by V¡1. We remark that the coercivity norm is not
k:kHV1, but is weaker (the decay in position is stronger), and this is due to the fact that iV12/HV1.
That is why this result is stated for compactly supported function. The fact that the support of
' avoids 0 is technical and can be removed by density (see Lemma 3.2.4).

Proposition 1.4.2 is shown in subsection 3.3.2. The proofs there are mostly slight variations or
improvements of proofs given in [10].

1.4.2.2 Coercivity and kernel in the energy space

The main part of this section consists of coercivity results for the family of travelling waves
constructed in Theorem 1.3.1. We will show it on Qc de�ned in Theorem 1.3.1, and with (1.4.1),
it extends to all speed values c~ of small norm. We recall the linearized operator around Qc:

LQc(')=¡�'¡ ic@x2'¡ (1¡jQcj2)'+2Re(Qc')Qc:

The natural associated energy space is

HQc :=
�
'2Hloc

1 (R2); k'kHQc<+1
	
;

where

k'kHQc
2 :=

Z
R2
jr'j2+ j1¡ jQcj2jj'j2+Re2(Qc'):

First, there are di�culties in the de�nition of the quadratic form for ' 2 HQc, because of the
transport term. A natural de�nition for the associated quadratic form for '2HQc could beZ

R2
jr'j2¡ (1¡jQcj2)j'j2+2Re2(Qc')¡Re(ic@x2''�); (1.4.2)

unfortunately the last term is not well de�ned for '2HQc, because we lack a control on Im(Qc')
in L2(R2) in k:kHQc, see [32]. We can resolve this issue by decomposing this term and doing an
integration by parts, but the proof of the integration by parts can not be done if we only suppose
' 2 HQc (see section 3.2 for more details). We therefore de�ne the quadratic form with the
integration by parts already done. Take a smooth cuto� function � such that �(x)=0 on B(�dc~e1~ ;
1), �(x)= 1 on R2nB(�dc~e1~ ; 2), where �dc~e1~ are the zeros of Qc. We de�ne, for '=Qc 2HQc,

BQc(') :=
Z
R2
jr'j2¡ (1¡ jQcj2)j'j2+2Re2(Qc')

¡ c

Z
R2
(1¡ �)Re(i@x2''�)¡ c

Z
R2
�Re(i@x2QcQc)j j2

+ 2c
Z
R2
�Re Im(@x2 )jQcj2+ c

Z
R2
@x2�Re Im jQcj2

+ c

Z
R2
�Re Im @x2(jQcj2): (1.4.3)

See subsection 3.2.3 for the details of the computation. For functions ' 2 H1(R2) for instance,
both quadratic forms (1.4.2) and (1.4.3) are well de�ned and are equal (see Lemma 3.4.7). We
will show that BQc is well de�ned for '2HQc (see Lemma 3.2.3), and that for A2

�
@x1Qc; @x2Qc;

@cQc; @c?Qc
	
, BQc(A)= hLQc(A); Ai.
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From Proposition 1.4.1, we know that Qc has only two zeros. We will write the quadratic
form BQc around the zeros of Qc (for a function ' = Qc 2HQc) as the quadratic form for one
vortex (computed in Proposition 1.4.2), up to some small error. As we want to avoid to add an
orthogonality on the phase, we change the coercivity norm to a weaker semi-norm, that avoids iQc,
the direction connected to the shift of phase.

We will therefore infer a coercivity result under four orthogonality conditions near the zeros of
Qc (two for each zero). Then, we shall show that far from the zeros of Qc, the coercivity holds,
without any additional orthogonality conditions.

Proposition 1.4.3. There exists c0; R > 0 such that, for 0< c6 c0, if one de�nes V~�1 to be the
vortices centered around �dc~e1~ (dc~ is de�ned in Proposition 1.4.1), there exist K>0 such that for
'=Qc 2HQc, 0<c< c0, if the four orthogonality conditionsZ

B
¡
d~ce1;R

�Re
�
@x1V~1V1~  

�
=
Z
B
¡
d~ce1;R

�Re
�
@x2V1~ V1~  

�
=0;

Z
B
¡
¡d~ce1;R

�Re
�
@x1V

~¡1V~¡1 
�
=
Z
B
¡
¡d~ce1;R

�Re
�
@x2V

~¡1V~¡1 
�
=0

are satis�ed, then, for

k'kC2 :=
Z
R2
jr j2jQcj4+Re2( )jQcj4;

the following coercivity result holds:

BQc(')>Kk'kC2:

We will check that k'kC is well de�ned for '2HQc (see section 3.2). Proposition 1.4.3 is proven
in subsection 3.3.4.

We point out that ' = Qc 7! k'kC is not a norm but a seminorm since
R
R2 jr j2jQcj4 +

Re2( )jQcj4=0 implies only that '=�iQc for some �2R, and iQc is the direction connected to
the shift of phase.

Now, we want to change the orthogonality conditions in Proposition 1.4.3 to quantities linked
to the parameters c~ and X of the travelling waves, that is @x1Qc; @x2Qc; @cQc and @c?Qc. We can
show that for '=Qc 2HQc, for instance�����

Z
B
¡
d~ce1;R

�Re
�
@x1V

~
1V1~  

������6Kk'kC;
but such an estimate might not hold for Re

R
B
¡
d~ce1;R

�
[B

¡
¡d~ce1;R

�@x1QcQc (because of the lack of

control on Im( ) in L2(R2) in the coercivity norm k:kC). It is therefore di�cult to have a local
orthogonality condition directly on @x1Qc for instance.

To solve this issue, we shall use the harmonic decomposition around �d~ce1~ . For the constructed
travelling wave Qc, two distances play a particular role, they are dc (de�ned in Theorem 1.3.1) and
dc~ (de�ned in Proposition 1.4.1 and is connected to the position of the zeros of Qc). In particular,
we de�ne the following polar coordinates for x2R2:

rei� :=x2R2;

r�1e
i��1 :=x¡ (�dc)e1~ 2R2;

r~�1ei�
~�1 :=x¡ (�dc~)e1~ 2R2:

We will also use r~:=min (r1; r¡1) and r�:=min (r1~ ; r~¡1). For a function  such that Qc 2Hloc
1 (R2)

and j 2Z, we de�ne its j ¡ harmonic around �dc~e1~ by the radial function around �dc~e1~ :

 j;�1(r~�1) :=
1
2�

Z
0

2�

 
¡
r~�1ei�

~�1
�
e¡ij�

~�1d�~�1:
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Summing over the Fourier modes leads to

 (x)=
X
j2Z

 j;�1(r~�1)eij�
~�1:

and we de�ne, to simplify the notations later on, the function  =/0, by

 =/0(x) :=  (x)¡  0;1(r~1)
in the right half-plane, and

 =/0(x) :=  (x)¡  0;¡1(r~¡1)

in the left half-plane. This notation will only be used far from the line
�
x1=0

	
. We now state the

main coercivity result.

Theorem 1.4.4. There exist c0; K; �0> 0 such that, for R> 0 de�ned in Proposition 1.4.3, for
any 0< �< �0, there exists c0(�);K(�)> 0 such that, for c<c0(�), if '=Qc 2HQc satis�es the
following three orthogonality conditions:

Re

Z
B
¡
d~ce1;R

�
[B

¡
¡d~ce1;R

�@x1QcQc =/0=Re

Z
B
¡
d~ce1;R

�
[B

¡
¡d~ce1;R

�@x2QcQc =/0=0

and

Re

Z
B
¡
d~ce1;R

�
[B

¡
¡d~ce1;R

�@cQcQc =/0=0;
then,

BQc(')>K(�)c2+�k'kC2 ;
with

k'kC2 =
Z
R2
jr j2jQcj4+Re2( )jQcj4:

If '=Qc also satis�es the fourth orthogonality condition (with 0<c< c0)

Re

Z
B
¡
d~ce1;R

�
[B

¡
¡d~ce1;R

�@c?QcQc =/0=0;

then

BQc(')>Kk'kC2:

Theorem 1.4.4 shows that under four orthogonality conditions, we have a coercivity result
in a weaker norm k:kC, instead of k:kHQc with a constant independent of c, and with only three
orthogonality conditions, we have the coercivity but the constant is a Oc!0

� (c2+�). This is because,
of the four particular directions of the linearized operator, @x1Qc; @x2Qc are in its kernel, @cQc is
a small negative direction, and @c?Qc is a small positive direction (see Proposition 1.4.1). About
the orthogonality conditions, we remark that, for '=Qc 2HQc,

Re

Z
B
¡
d~ce1;R

�
[B

¡
¡d~ce1;R

�@x1QcQc =/0
is close to

Re

Z
B
¡
d~ce1;R

�
[B

¡
¡d~ce1;R

�@x1QcQc 
(we have Re

R
B
¡
d~ce1;R

�@x1QcQc 0;1 = oc!0(1)k'kHQc for instance), but the �rst quantity can be

controlled by k'kC, and the second can not be.
Theorem 1.4.4 is a consequence of Proposition 1.4.3, and is shown in section 3.4. From this

result, we can also deduce the kernel of the linearized operator in HQc.

Corollary 1.4.5. There exists c0> 0 such that, for 0< c< c0, Qc de�ned in Theorem 1.3.1, for
'2HQc, the following properties are equivalent:

i. LQc(')= 0 in H¡1(R2), that is, 8'�2H1(R2);Z
R2

Re(r':r'�)¡ (1¡ jQcj2)Re(''�)+2Re(Qc')Re(Qc'�)¡Re(ic@x2''�)=0:
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ii. '2 SpanR(@x1Qc; @x2Qc).

This corollary is proven in subsection 3.4.5. This nondegeneracy result is, to our knowledge,
the �rst one on this type of model. It is a building block in the analysis of the dynamical stability
of the travelling wave and the construction of multi-travelling wave. Here, the travelling wave is
not radial, nor has a simple pro�le, which means that we can not use classical technics for radial
ground states for instance (see [43]).

1.4.2.3 Spectral stability in H1(R2)

In this subsection, we give some result on the spectrum of LQc:H2(R2)!L2(R2). In particular, we
are interested in negative eigenvalues of the linearized operator. We can show that H1(R2)�HQc

and prove the following corollary of Theorem 1.4.4.

Corollary 1.4.6. There exists c0 > 0 such that, for 0 < c 6 c0, Qc de�ned in Theorem 1.3.1, if
'2H1(R2) satis�es

h'; i@x2Qci=0;

then

BQc(')> 0:

We can show that LQc(@cQc) = i@x2Qc 2 L2(R2), and thus 'i@x2Qc 2 L1(R2) for ' 2H1(R2).
This result shows that we expect only one negative direction for the linearized operator, and it
should also hold in HQc. For '2H1(R2), we have that BQc(') is equal to the expression (1.4.2).

Now, we de�ne G to be the collection of subspaces S �H1(R2) such that BQc(') < 0 for all
'=/ 0; '2S, and we de�ne

n¡(LQc) :=max
�
dimS; S 2G

	
:

Proposition 1.4.7. There exists c0>0 such that, for 0<c<c0, for Qc de�ned in Theorem 1.3.1,

n¡(LQc)= 1:

Furthermore, LQc: H2(R2) ! L2(R2) has exactly one negative eigenvalue with eigenvector in
L2(R2).

With this result, Theorem 1.3.1 and Proposition 1.4.1, we have met all the conditions to show
the spectral stability of the travelling wave:

Theorem 1.4.8. (Theorem 11.8 (i) of [30]) For 0<c1<c2 and c 7!Uc a C1 branch of solutions
of (TWc)(Uc)= 0 on ]c1; c2[ with �nite energy, for c�2 ]c1; c2[, under the following conditions:

i. for all c 2 ]c1; c2[, Re(Uc ¡ 1) 2 H1(R2), Im(rUc) 2 L2(R2), jUcj ! 1 at in�nity and
kUckC1(R2)<+1

ii. n¡(LQc�)6 1

iii. @cP2(Uc)|c=c�< 0,

then Uc� is spectrally stable. That is, it is not an exponentially unstable solution of the linearized
equation in H_ 1(R2;C).

Corollary 1.4.9. There exists c0 > 0 such that, for any 0 < c < c0, the function Qc de�ned in
Theorem 1.3.1 is spectrally stable in the sense of Theorem 1.4.8.

The notion of spectral stability of [30] is the following: for any u02H1(R2;C), the solution to
the problem �

i@tu=LQc(u)
u(t=0)=u0
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satis�es that, for all �> 0, �Z
R2
jruj2(t)dx

�
e¡�t! 0

when t!1. The result of [30] is a little stronger: the norm that does not grow exponentially in
time is better than the one onH_ 1(R2;C), but weaker than the one onH1(R2;C), and is not explicit.

1.4.3 Generalisation to a larger energy space and use of the phase
There are two main di�culties with the phase. The �rst one, as previously stated, is that we
lose a parameter when passing from two vortices to a travelling wave. The second one is that for
the direction linked to the phase shift, namely iQc, we have iQc2/ HQc (and even for one vortex,
iV12/HV1). This will be an obstacle when we modulate on the phase for the local uniqueness result.
Therefore, we de�ne here a space larger than HQc.

1.4.3.1 De�nition and properties of the space HQc

exp

We de�ne the space HQc
exp, the expanded energy space, by

HQc
exp :=

�
'2Hloc

1 (R2); k'kHQcexp<+1
	
;

with the norm, for '=Qc 2Hloc
1 (R2),

k'kHQcexp
2 := k'kH1(

�
r~610

	
)

2 +
Z
�
r~>5	jr j2+Re2( )+ j j2

r~2ln2(r~)
;

where r~=min (r1~ ; r~¡1), the minimum of the distance to the zeros of Qc. It is easy to check that
that there exists K> 0 independent of c such that, for '=Qc 2HQc

exp,

1
K
k'kH1(

�
56r~610

	
)

2 6
Z
�
56r~610	jr j2+Re2( )+ j j2

r~2ln(r~)2
6Kk'kH1(

�
56r~610

	
)

2 :

We will show that HQc�HQc
exp and iQc2HQc

exp, whereas iQc2/HQc. This space will appear in the
proof of the local uniqueness (Theorem 1.4.13 below). The main di�culty is that BQc(') is not
well de�ned for '2HQc

exp because for instance of the term (1¡ jQcj2)j'j2 integrated at in�nity. If
we write the linearized operator multiplicatively, for '=Qc (using (TWc)(Qc)=0),

QcLQc
0 ( ) :=LQc(')=Qc

�
¡ic@x2 ¡� ¡ 2

rQc
Qc

:r +2Re( )jQcj2
�
;

then there will be no problem at in�nity for '2HQc
exp for the associated quadratic form (in  ), but

there are instead some integrability issues near the zeros of Qc. We take as before a smooth cuto�
function � such that �(x) = 0 on B(�dc~e1~ ; 1), �(x) = 1 on R2nB(�dc~e1~ ; 2), where �dc~e1~ are the
zeros of Qc. The natural linear operator for which we want to consider the quadratic form is then

LQc
exp(') := (1¡ �)LQc(')+ �QcLQc

0 ( );

and we therefore de�ne, for '=Qc 2HQc
exp,

BQc
exp(') :=

Z
R2
(1¡ �)(jr'j2¡Re(ic@x2''�)¡ (1¡ jQcj2)j'j2+2Re2(Qc'))

¡
Z
R2
r�:(Re(rQcQc)j j2¡ 2Im(rQcQc)Re( )Im( ))

+
Z
R2
c@x2�Re( )Im( )jQcj2

+
Z
R2
�(jr j2jQcj2+2Re2( )jQcj4)

+
Z
R2
�(4Im(rQcQc)Im(r )Re( )+ 2cjQcj2Im(@x2 )Re( )): (1.4.4)
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This quantity is independent of the choice of �.
We will show that BQc

exp(') is well de�ned for ' 2 HQc
exp and that, if ' 2 HQc � HQc

exp, then
BQc

exp(') = BQc('). Writing the quadratic form BQc
exp is a way to enlarge the space of possible

perturbations to add in particular the remaining zero of the linearized operator. We infer the
following result.

Proposition 1.4.10. There exist c0;K;R; �0>0 such that, for any 0<�< �0, there exists c0(�);
K(�)> 0 such that, for 0<c<c0(�), if '=Qc 2HQc

exp satis�es the following three orthogonality
conditions:

Re

Z
B
¡
d~ce1;R

�
[B

¡
¡d~ce1;R

�@x1QcQc =/0=Re

Z
B
¡
d~ce1;R

�
[B

¡
¡d~ce1;R

�@x2QcQc =/0=0

and

Re

Z
B
¡
d~ce1;R

�
[B

¡
¡d~ce1;R

�@cQcQc =/0=0;
then,

BQc
exp(')>K(�)c2+�k'kC2 ;

with

k'kC2 =
Z
R2
jr j2jQcj4+Re2( )jQcj4:

If '=Qc also satis�es the fourth orthogonality condition (with 0<c< c0)

Re

Z
B
¡
d~ce1;R

�
[B

¡
¡d~ce1;R

�@c?QcQc =/0=0;

then

BQc
exp(')>Kk'kC2:

Furthermore, for '2HQc
exp, the following properties are equivalent:

i. LQc(')= 0 in H¡1(R2), that is, 8'�2H1(R2);Z
R2

Re(r':r'�)¡ (1¡ jQcj2)Re(''�)+2Re(Qc')Re(Qc'�)¡Re(ic@x2''�)=0:

ii. '2 SpanR(iQc; @x1Qc; @x2Qc)

Proposition 1.4.10 is proven in subsection 3.5.1. The additional direction in the kernel comes
from the invariance of phase (LQc(iQc) = 0). The main di�culties, compared to Theorem 1.4.4,
is to show that the considered quantities are well de�ned with only ' 2 HQc

exp, and that we can
conclude by density in this bigger space.

1.4.3.2 Coercivity results with an orthogonality on the phase

The main problem with adding a local orthogonality condition on iQc is to choose where to put it.
Indeed, we want this condition near both zeros of Qc, or else the coercivity constant will depend
on the distance between the vortices, which itself depends on c.

The �rst option is to let the coercivity constant depend on c. In that case, we can also remove
the orthogonality condition on @c?Qc, the small positive direction. We infer the following result.

Proposition 1.4.11. There exist universal constants K1; c0 > 0 such that, with R > 0 de�ned
in Proposition 1.4.3, for 0 < c < c0, for the function Qc de�ned in Theorem 1.3.1, there exists
K2(c) > 0 depending on c such that, if ' = Qc 2 HQc

exp satis�es the following four orthogonality
conditions:

Re

Z
B
¡
d~ce1;R

�
[B

¡
¡d~ce1;R

�@x1QcQc =/0=Re

Z
B
¡
d~ce1;R

�
[B

¡
¡d~ce1;R

�@x2QcQc =/0=0;

Re

Z
B
¡
d~ce1;R

�
[B

¡
¡d~ce1;R

�@cQcQc =/0=Re

Z
B(0;R)

i =0;
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then

K1k'kHQcexp
2 >BQc

exp(')>K2(c)k'kHQcexp
2 :

Here, the orthogonality condition on iQc is around 0, between the two vortices, but it can be
chosen near one of the vortices for instance, and the result still holds.

The second possibility is to work with symmetric perturbations, since the orthogonality condi-
tion can then be at both the zeros of Qc. We then study the space

HQc
exp;s :=

�
'2HQc

exp;8x=(x1; x2)2R2; '(x1; x2)= '(¡x1; x2)
	
:

We show that, under three orthogonality conditions, the quadratic form is equivalent to the norm
on HQc

exp.

Theorem 1.4.12. There exist R;K; c0>0 such that, for 0<c6 c0, Qc de�ned in Theorem 1.3.1,
if a function '2HQc

exp;s satis�es the three orthogonality conditions:

Re

Z
B
¡
d~ce1;R

�
[B

¡
¡d~ce1;R

�@cQc'� =Re

Z
B
¡
d~ce1;R

�
[B

¡
¡d~ce1;R

�@x2Qc'� =0;

Re

Z
B
¡
d~ce1;R

�
[B

¡
¡d~ce1;R

�iQc'� =0;

then
1
K
k'kHQcexp

2 >BQc
exp(')>Kk'kHQcexp

2 :

We remark that here, the orthogonality condition to @x1Qc and @c?Qc are freely given by the
symmetry. We also do not need to remove the 0-harmonic near the zeros of Qc.

Propositions 1.4.11 and Theorem 1.4.12 hold if we replace BQc
exp by BQc for '=Qc 2HQc with

the symmetry, but the coercivity norm will still be k:kHQcexp.

1.4.4 Local uniqueness result
With Propositions 1.4.10 and 1.4.11, we can modulate on the �ve parameters (c~ ; X ; 
) of the
travelling wave, and these coercivity results will be enough to show the following theorem.

Theorem 1.4.13. There exist constants K; c0; "0; �0 > 0 such that, for 0 < c < c0, Qc de�ned
in Theorem 1.3.1, there exists Rc > 0 depending on c such that, for any � > Rc, if a function
Z 2C2(R2;C) satis�es, for some small constant "(c; �)> 0, depending on c and �,

¡ (TWc)(Z)= 0

¡ E(Z)<+1

¡ kZ ¡QckC1(R2nB(0;�))6 �0
¡ kZ ¡QckHQcexp6 "(c; �),

then, there exists X 2R2 such that jX j6KkZ ¡QckHQcexp, and

Z=Qc(:¡X):

The conditions E(Z)<+1 and kZ ¡QckHQcexp6"(c; �) imply that the travelling wave Z!1 at
in�nity, and therefore Z =Qce

i
 with 
 2R; 
=/ 0 is excluded. The fact that "(c; �) depends on c
comes in part from the constant of coercivity in Proposition 1.4.11, which depends itself on c. The
condition that kZ ¡QckC1(R2nB(0;�))6 �0 outside of B(0; �) is mainly technical. We believe that
this condition is automatically satis�ed with the other ones (with � depending only on c), but we
were not able to show it.
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To the best of our knowledge, this is the �rst result of local uniqueness for travelling waves in
(GP). It does not suppose any symmetries on Z, and therefore shows that we can not bifurcate
from this branch, even to nonsymmetric travelling waves.

We believe that, at least in the symmetric case, Theorem 1.4.13 should hold for kZ¡QckHQcexp6"
with " > 0 independent of c and �. We also remark that the condition kZ ¡ QckHQcexp6 "(c; �) is
weaker than kZ ¡QckHQc6 "(c; �), and thus we can state a result in HQc.

1.4.5 Sketch of the proofs

1.4.5.1 Sketch of the proof of Proposition 1.4.1

In Theorem 1.3.1, we have shown that Qc=V1(x¡ dce~1)V¡1(x+ dce~1)+¡c and

@cQc=
1
c2
¡
@d(V1(x¡ de~1)V¡1(x+ de~1))|d=dc+¡~c

�
;

where ¡c and ¡~c are small perturbations when c! 0 (in some weighed L1 spaces). For all the
�rst order computations of this proposition when c! 0, it boils down to showing that the error
terms, ¡c and ¡~c, contribute less than the main terms. For the main terms, the computations are
(almost) explicit, and, for some of them, were done in formal computations in physical works.
For the di�erent equalities on the linearized operator, this is simply coming from straight forward
computations, with estimates from Theorem 1.2.11 to show that all the quantities are well de�ned,
and to justify some integrations by parts.

For the position of the zeros, this is a consequence of the fact that, for a vortex V�1 centered
at 0, V�1(0)= 0, and the Jacobian of rV�1(0) is not 0. Thus, the zero of vortices are simple, and
adding a small perturbation might change slightly its position, but not its order, nor its existence.

1.4.5.2 Sketch of the proofs of the coercivity results

We give here a sketch of the proofs of Propositions 1.4.2, 1.4.3, Theorem 1.4.4, Propositions 1.4.10,
1.4.11 and Theorem 1.4.12. We will not discuss here the proofs of the well posedness of the di�erent
terms. We take here functions smooth and compactly supported away from the zeros of Qc, that
will allow all the computations needed. We refer to Lemmas 3.2.4 for a density argument and
Lemmas 3.2.1 to 3.2.3 for the well posedness of the quantities.

We consider V1 a vortex centered at 0. We recall that

BV1(')=
Z
R2
jr'j2¡ (1¡jV1j2)j'j2+2Re2(V1� '):

The result of Proposition 1.4.2 is a simple variation of results in [10]. The linearized operator around
V1 has two elements in its kernel in the energy space, @x1V1 and @x2V1. The third orthogonality is
on the phase, iV1, which is not in the energy space, but can be approximated by functions in it,
and thus still require an orthogonality to avoid it. Once these three directions are removed, the
coercivity follows.

Now, we infer that, with '=V1 (compactly supported away from 0),

BV1(')=B~V1( ) :=
Z
R2
jr j2jV1j2+2Re2( )jV1j4+4Im(rV1V1� )Im(r )Re( ):

Remark that, with Lemma 1.2.1, jV1j ' 1 and jrV1j ' 0 far from zero, thus, by Cauchy-Scwharz,

B~V1( )>K
Z
R2
jr j2jV1j2+Re2( )jV1j4

for functions  supported outside of B(0; �) for some large (but independent of ') � > 0. Thus,
the coercivity hold without orthogonality conditions at in�nity. We can therefore localized the
coercivity result (see equation (3.3.6)). Writing

BV1
D(')=

Z
B(0;D)

jr'j2¡ (1¡ jV1j2)j'j2+2Re2(V1� ');
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we infer that, under the three orthogonality conditions of Proposition 1.4.2, for D> 0 a large but
universal constant,

BV1
D(')>K(D)k'kH1(B(0;D))

2 :

Here, the coercivity norm has been replaced by k:kH1(B(0;D)) since they are equivalent (usingR
B(0;R)nB(0;R/2)Im( )=0). We use a cuto� function to write the quadratic form in the formBV1(')

near zero, and in the form B~V1( ) far from it.
We then compare it to the quadratic form around Qc, written in the form (1.4.4). Locally, that

is near the zeros of the two vortices that composes it, it is close to BV~�1
D ('), where V~�1 is centered

around �d~ce~1. Indeed,

BQc(')=
Z
R2
jr'j2¡ (1¡jQcj2)j'j2+2Re2(Qc')¡ cRe(i@x2''�)

and

BV~1
D(')=

Z
B
¡
d~ce~1;D

�jr'j2¡¡1¡jV~1j2�j'j2+2Re2(V1� ');

with Qc=V~1+ oc!0(1) and c> 0 is small.
Thus, taking c> 0 small enough, the coercivity on BQc localized in B

¡
d~ce~1;D

�
holds. Now, we

infer that the same result holds with the coercivity norm (for '=Qc )Z
B
¡
d~ce~1;D

�jr j2jQcj4+Re2( )jQcj46K(D)k'kH1
¡
B
¡
d~ce~1;D

��2 :

This norm does not see the phase (for  = i, hence '= iQc, the direction connected to the shift of
phase, it is zero), and we check that the quadratic form and the two orthogonality conditions on
the translations does not see the phase either (their values for ' and '¡ i�Qc are identical for all
� 2R). Thus, we can modulate on � to remove the orthogonality condition on the phase around
both vortices. We have a local coercivity result for BQc near the vortices.

Now, at in�nity in position, as for B~V1( ), the coercivity for BQc(') (that can also be written
in term of  ) is obtained without orthogonality conditions, with the same coercivity norm.
Regrouping these two estimates, we conclude the proof of Proposition 1.4.3.

For the proof of Theorem 1.4.4, the idea is simply to change the orthogonality conditions
to ones that are close to a linear combinaison of the previous ones. The main di�erence is that
they are more adapted to the four particular directions computed in Proposition 1.4.1. This uses
classical arguments when changing the orthogonality conditions in a coercivity result. The main
point is, although the coercivity norm k:kC is not Hloc

1 and was reduce to a semi norm to remove
the orthogonality condition on the phase, it still control the four previous orthogonality conditions,
and the four new ones. In fact, the error between them is small in this coercivity semi norm.

Now, one of the direction is a positive one, on @c?Qc, by Proposition 1.4.1. We can therefore
remove it, but the coercivity constant will then depend on c (as this is a small positive direction
when c is small). It uses the fact that the four orthgonality are orthogonal between themselves.
This completes the proof of Theorem 1.4.4.

Now, we focus on the proof of the coercivity results with an additional orthogonality on the
phase. For the symmetric case, we simply keep the coercivity norm k'kH1(B(0;D)) locally, with
the three orthogonality condition around each vortices. Then, by symmetry, the two orthogonality
conditions on the phase (one for each vortex) are in fact the same. To complete the coercivity norm
to have k:kHQcexp, this is simply a Hardy type inequality.

In the non symmetric case, in the proof of the coercivity for one vortex, we move the ortho-
gonality on the phase far from the vortex, so that it is the same orthogonality condition for both
vortices. Since the distance we use depends on c, so will the coercivity norm. This gives Proposition
1.4.11.
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1.4.5.3 On the Proofs of the corollaries of the coercivity and of the local uniqueness

With Theorem 1.4.4, and the fact that only one of the direction is negative, we can use classical
methods to show results on the linearized operator, for instance the computation of its kernel.
The only di�culty is that the coercivity norm is only a semi norm, but if k'kC=0, it implies that
'= i�Qc for some �2R, but if we know that '2HQc, since iQc2/HQc, then �=0. The semi norm
k:kC is in fact a norm on the energy space HQc. Since H

1(R2;C)�HQc, with this same argument,
we check that the operator has only one negative eigenvalue, thanks to Theorem 1.4.4. Then, the
spectral stability follows from [30], a general work on Hamiltonian problems.

Now, we focus on the local uniqueness result, Theorem 1.4.13. By Proposition 1.4.11, using the
fact that iQc2HQc

exp, we now have all the tools to do a classical proof of local uniqueness, using a
coercivity result in HQc

exp by modulating on the parameters. There are two di�culties. First, the
coercivity norm in that case depends on c, and thus, the error term has to be small with respect
to c. Secondly, we need to show that, with the notations of Theorem 1.4.13, kZ ¡ QckC1(R2) is
small (see Lemma 3.6.1). This require a technical condition, and is used to write the perturbation
exponentially far from the zeros of Qc, and to estimate some nonlinear terms.

With this technical result, we can modulate on the �ve parameters of the travelling wave (two
parameters for the translation, two for the speed, and one for the phase) so that the error term
between Z and the travelling wave has the orthogonality conditions of Propositions 1.4.10 and
1.4.11 (both coercivity are required). A few computations are required to show that, when taking
the scalar product of the equation with the perturbation, all the terms are well de�ned, and the
quadratic form appears (see Lemma 3.6.3). Furthermore, since we modulate on the speed, a source
term appears, but by taking the scalar product of the equation with the two small directions of
the linearized operator (@cQc and @c?Qc), we can estimate them with respect to the perturbation.
We then conclude as in classical proofs of local uniqueness using a coercivity result.

1.5 Inversion of the linearized operator around Qc

Our goal in this section is to improve some results on the branch c 7!Qc constructed in Theorem
1.3.1, by giving two new properties. The �rst one is about the inversion of the linearized operator
around Qc, and the second one is about the smoothness of the branch with respect to the speed.
In the rest of this section, Qc refers to the solution of (TWc) from Theorem 1.3.1.

1.5.1 Inversion result for the linearized operator around Qc

We want to invert the (additive) linearized operator around Qc in some weighed L1 spaces:

LQc(')=¡�'¡ (1¡jQcj2)'+2Re(Qc')Qc¡ ic@x2':

We have computed its kernel in Corollary 1.4.5. It is SpanR(@x1Qc; @x2Qc) in the energy space

HQc=
�
'2Hloc

1 (R2;C);
Z
jr'j2+ j1¡ jQcj2jj'j2+Re2(Qc')<+1

�
:

It has also a resonance, LQc(iQc)=0, due to the invariance by shifting the phase, with iQc2/HQc.
That poses an issue when trying to invert LQc. In the proof of Theorem 1.3.1 (see Proposition
2.1.20), the operator

LV (') :=¡�'¡ (1¡ jV j2)'+2Re(V�')V ¡ ic@x2'

with V = V1(: ¡ dce1~ )V¡1(: + dce1~ ) (which is close to Qc) was inverted in a space with two
symmetries, where the problem of the resonance disappears. Here, we invert LQc in a space with
only one symmetry (even in x1), that do not avoid the resonance. By adding the second symmetry,
the space is also orthogonal to the kernel of LQc, and in that case we can invert the operator
without any orthogonality condition.
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With dc de�ned in Theorem 1.3.1 (�dce~1 are the center of the vortices from which Qc is
constructed as a perturbation of), we de�ne

r~:=min (jx¡ dce1~ j; jx+ dce1~ j);

as well as the two norms, for � 2R, '= Qc 2 C2(R2;C),  =  1+ i 2, and Qch 2 C1(R2;C),
h=h1+ ih2,

k k
;� := kQc kC2({r~63})

+ kr~1+� 1kL1({r~>2})+ kr~2+�r 1kL1({r~>2})+ kr~2+�r2 1kL1({r~>2})

+ kr~� 2kL1({r~>2})+ kr~1+�r 2kL1({r~>2})+ kr~2+�r2 2kL1({r~>2}) (1.5.1)

and

khk

;� := kQchkC1({r~63})

+ kr~1+�h1kL1({r~>2})+ kr~2+�rh1kL1({r~>2})

+ kr~2+�h2kL1({r~>2})+ kr~2+�rh2kL1({r~>2}): (1.5.2)

We de�ne the spaces, for � 2R,

E
;� :=
�
'=Qc 2C2(R2;C); k k
;�<+1;8(x1; x2)2R2; '(x1; x2)= '(¡x1; x2)

	
;

E
;�
2sym :=

�
'=Qc 2E
;�;8(x1; x2)2R2; '(x1; x2)= '(x1;¡x2)

	
and

E

;� :=
�
Qch2C1(R2;C); khk

;�<+1;8(x1; x2)2R2; (Qch)(x1; x2)= (Qch)(¡x1; x2)

	
;

E

;�
2sym :=

�
Qch2E

;�;8(x1; x2)2R2; Qch(x1; x2)=Qch(x1;¡x2)

	
:

These spaces are close to the spaces E�;�;E��;� introduced the proof of Theorem 1.3.1 (see subsec-
tion 2.1.3). The decays in position are related, but we change the symmetries, added estimates
on the second derivatives, and locally we look at Qc instead of V1(:¡ dce1~ )V¡1(:+ dce1~ ) (and
similarly for h). Remark in particular that E
;��HQc for � > 0. Also, for "> 0, '2E
;¡" is not
necessarly bounded, and not a priori in the energy space (nor in the extended energy space, HQc

exp).
Furthermore, 1

Qc
2 C1(

�
r~> 2

	
;C), and is uniformly bounded in this space. It explains why

the norm is di�erent on
�
r~6 2

	
and outside of this domain (Qc has zeros there, see Proposition

1.4.1). Finally, with the �rst symmetry (being even in x1), functions in E
;� are orthogonal to
@x1Qc, one of the elements of the kernel of LQc.

To infer the inversion result, we need to deal with a di�culty coming from a resonance in LQc
by removing some harmonics around �d~ce~1, the two zeros of Qc (see Proposition 1.4.1). This is
reminiscent of the requirement on the orthogonality condition in Theorem 1.4.4. For R > 0 and
h2Lloc

1 (R2), r�<R and �� the polar coordinates around �d~ce~1, we de�ne

h0(r�) := 1
2�

Z
0

2�

h(r�ei ��)d ��;

and

h=/0(x) :=h¡h0(r�): (1.5.3)

Theorem 1.5.1. There exists R; c0> 0 such that, for any � > 0, " > 0, there exists K(�; ")> 0
such that, for Qch2E

;�, 0<c<c0 with

Re

Z
B(dce1;R)[B(¡dce1;R)

@x2QcQch
=/0=0;

there exists '=Qc 2E
;¡" such that

LQc(')=Qch;

with k k
;¡"6 K("; �)

c2
khk

;�.
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Furthermore, for any 0 < � < � 0 < 1 and Qch 2 E

;� 0
2sym , without any orthogonality condition,

there exists a unique function '2E
;�
2sym such that

LQc(')=Qch;

and it satis�es k k
;�6 K(�; �0)

c2
khk

;� 0. There,

(c; Qch)! '2C0((]0; c0[; E

;� 0
2sym )!E
;�

2sym):

A few remarks on this result. First, if � <� 0, E
;��E
;� 0 and E

;��E

;� 0. In particular,
the solutions ' constructed does not depend on the choice of ">0 in the non 2-symmetry case, and
� 0<� in the 2-symmetry case. In the estimates of the norm, the constant being in 1

c2
comes from

the fact that the smallest nonzero eigenvalue of LQc is of order ¡c2 when c! 0 (see Proposition
1.4.1). This constant can be made independant of c, provided that we add a local orthogonality
condition (on @cQc, see the proof of Proposition 4.2.10).

In the case with one symmetry, we can be more precise on the part of the function ' that
grows at in�nity. There, the function ' will be the sum of two functions, one in E
;� 0 for some
0<� 0<�, that decays well at in�nity, and �(h; c)'�, where �(h; c)2R and '�2E
;¡" (8">0) is
a particular function, connected to the resonance. See Proposition 4.2.10 for more details. In the
case with two symmetries, the orthogonality condition on @x2Qc is automatically satis�ed.

Let us consider a model to understand the di�culties from the resonance LQc(iQc)=0, iQc2/
E
;�, with � > 0. Consider the equation �u= f in R2, with f 2Cc1(R2;R). The Green function

for the Laplacian in R2 is ln(r)
2�

, and thus the fundamental solution is u0=
ln(r)
2�
� f . We can check

that this function is well de�ned, C1 and at in�nity, u0s
ln(r)
2�

R
R2f . If we want this solution to be

bounded, we must impose that
R
R2f =0. In that case, we can check that ju0j6 K(f)

(1+ r)
. But if we

instead looked at the equation �u¡V (x)u= f , where V > 0; V 2Cc1(R2;R) and f 2Cc1(R2;R),
the condition

R
R2f =0 has no reason to be enough to show that a typical solution u0 is bounded.

In fact, we then must show that
R
R2f +Vu=0, which is more complicated to understand what it

means on the source f . We remark that if we impose f to be odd, and the potential V to be even,
this problem disappears.

The situation is very similar here, on the equation of the imaginary part of  , with '=Qc .
The element '= iQc is an element of the kernel, that can not be dealt with a local orthogonality
condition, similarly as 1 for the operator �, if we want to stay in function spaces where functions
are bounded.

In the case with one symmetry, we believe that the growth of ' at in�nity is of order ln(r)
instead of smaller than r¡" for all "> 0, as it is shown here.

This result could be interesting for the construction of a multi travelling wave solution of (GP).
One of the step there is to construct an approximate solution, and to compute the error terms,
it is necessary to invert the linearized operator around Qc. We can also use it to improve the
di�erentiability of the branch with respect to the speed.

1.5.2 In�nite di�erentiability of the branch of travelling waves
We will show that, for all 0<�< 1, there exists c0(�)> 0 such that

c! @cQc2C0(]0; c0(�)[; E
;�
2sym)

(see Lemma 4.1.1). Furthermore, from Lemma 3.1.6, we have

LQc(@cQc)= i@x2Qc:

We want to di�erentiate this equation with respect to c. Formally, this would yield

LQc(@c
2Qc)=2j@cQcj2Qc+4Re(Qc@cQc)@cQc¡ 2i@x2@cQc2E

;�

2sym
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for all 0 < � < 1. This gives us a way to de�ne @c2Qc with Theorem 1.5.1. We use similar
computations to show that the branch is in�nitely di�erentiable.

Theorem 1.5.2. For all 0<�< 1, there exists c0; c0(�)> 0 such that

c! @cQc2C1(]0; c0(�)[; E
;�
2sym):

Furthermore,

c!E(Qc)2C1(]0; c0[;R);

and the momentum P2(Qc)=
1

2
hi@x2Qc; Qc¡ 1i satis�es

c!P2(Qc)2C1(]0; c0[;R):

This result implies in particular that c!Qc¡ 12C1(]0; c0(p)[; Xp) for all 2< p6+1, with
Xp de�ned in Theorem 1.3.1. The fact that the branch, as well as the energy and momentum, are
C2 with respect to the speed could be useful for the proof of the orbital stability of this branch of
travelling wave. Remark that we do not give an equivalent of @c2Qc when c! 0. This seems to be
a rather complicated computation, but we fully expect that @c2Qcs

1

c4
@d
2V when c! 0.

1.5.3 Sketch of the proofs of Theorems 1.5.1 and 1.5.2

We want to invert the problem LQc(')=Qch in the weighed L1 spaces E
;� and E

;�. Writing
'= Qc , at �rst order at in�nity in position, the problem become ¡ic@x2 ¡� + 2Re( ) = h,
as it was the case for the proof of Theorem 1.3.1. But here, we suppose only one symmetry, and
we can invert this problem in the required space under the condition that

R
R2Im(h)= 0. That is

why we show the inversion in a large settingn in Lemma 2.1.15. This condition was freely given
when we inverted this problem with two symmetries, for the proof of Theorem 1.3.1.

Therefore, we look at the problem LQc(') = Qch ¡ �(h;  )i�, where � is a particular
smooth and compactly supported function, and �(h;  ) is linear in h;  , with values in C,
and they are choosen such that, when writing the problem at in�nity in position on the form
¡ic@x2 ¡ � + 2Re( ) = h~, where h~ depends on both h,  and �(h;  ), then

R
R2Im(h~) = 0.

This allows us to invert the problem at in�nity. Since the kernel of LQc is known (see Corollary
1.4.5), to invert locally the operator (with the additional term ¡�(h;  )i�), we also require a local
orthogonality condition (one of the two elements of the kernel is avoided by symmetry). Here, the
constant of inversion depends on c, since LQc has some small directions (see Proposition 1.4.1).
The construction still requires a Fredholm alternative argument, that has to be modi�ed because
of the di�culties on the phase. This changes only slightly the proofs compared to Chapter 2, since
the change is only on a one dimensional direction, thus the compactness arguments are identical.

To complete the inversion of LQc, we need to invert the particular direction i�. This is done
explicitely for one vortex (see [10]), since there, the problem is an ODE. With an ansatz using this
solution for each vortices, by constructing an inverse as a perturbation of it, we can invert this
direction for LQc (see Lemma 4.2.9). This particular solution does not decay as well at in�nity
compare to the function ' in LQc(') =Qch¡ �(h;  )i�, but this is expected, since it is also the
case for a single vortex (where it grows like ln(r)).

Now, in the case with two symmetries, �(h;  )=0 and thus the solution has a better decay, and
both elements of the kernel of LQc are avoided. We can thus invert it, without any orthogonality
condition.

For the proof of Theorem 1.5.2, we use the inversion in the case with two symmetries, and the
equality LQc(@cQc)= i@x2Qc (both @cQc and i@x2Qc have the two required symmetries). We thus
write @cQc=LQc

¡1(i@x2Qc), and we check that the operator LQc
¡1 is di�erentiable with respect to the

speed. This shows that @cQc is C1 with respect to the speed, thus c 7!Qc is C2. By induction, we
show that c 7!Qc is C1 with respect to the speed.
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1.6 Some open problems and conjectures

We present here some questions that are only partially answered by the results of this thesis, or
that are natural follow up problems.

� Construction of a travelling wave behaving like two vortices of degree �n for
n> 2.

From [25], there exists vortices of any degree n 2Z�. We constructed a travelling wave (of speed
c>0) behaving like two vortices of degree �1 at distance of order 2/c in Theorem 1.3.1. It used the
fact that the kernel of the linearized operator around V�1 is known, and contains, in the associated
energy space, only the translations (see [10]). Such a property (KerHV�n=SpanR(@x1V�n; @x2V�n))
is not known on vortices of degree n > 2. However, if it is shown that it holds for such vortices,
then the construction done in Chapter 2 should work similarly (the distance between the vortices
will be of order 2n/c in that case). Such branches have been seen numerically in [9]:

This graph represents di�erent branches of travelling waves constructed numerically. We recall
that large momentum yield speeds close to 0, and small momentum speeds close to 2

p
. The JR

(for Jones-Roberts) branch is the one constructed in Theorem 1.3.1. The �2 and �3 vortex branch
are the ones descibed above. The W2 and W3 branches are constructed from the limit c! 2

p
.

Furthermore, if it is also possible to show a coercivity result on BVn, the quadratic form
associated to the vortex Vn, then the coercivity results (such as Theorems 1.4.4 and 1.4.12) should
also hold. It has been shown numerically that BVn can take negative values ([40]). But, if a
coercivity result is shown, with several local orthogonality conditions, for BVn (to kill the �nitely
many negative directions), we should have a coercivity result for the branch VnV¡n, with twice as
many orthogonality conditions. This would show that this branch is likely unstable, but has no
additional unstability directions than those of the vortices that compose it.

� The constructions of Theorems 1.2.6, 1.2.7 and 1.3.1 yield the same branch

The constructions of Theorems 1.2.7 and 1.2.6 respectively minimize locally the energy at �xed
momentum, or is a critical point of a well chosen Lagrangian. This is not shown for the one from
Theorem 1.3.1. However, in this last construction, the branch is C1 with respect to the speed,
and the structure in term of vortices is well understood, and these properties are not shown in
Theorems 1.2.6 and 1.2.7.
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Showing that these branches are identical would combine these properties. Furthermore,
the proof of such a result would most likely give the fact that the branch is isolated in the
Energy/Momentum graph above (for large momentum), which would be a major step in the
completion of the Jones-Roberts program.

To show such a result, it might be possible to improve the local uniqueness result of Theorem
1.3.1, to show for instance that any travelling wave behaving like two vortices (with a small error
in L1 for instance) is an element of the branch of Theorem 1.3.1. With such a result, it would
only require an improvement on the structure of the branches in Theorems 1.2.6 and 1.2.7 (namely,
showing that they behave like two vortices in L1).

� Extension of the branch of Theorem 1.3.1 for large speeds

The construction of Theorem 1.3.1 is done for small speeds, less than some small c0 > 0. It is
conjectured that this branch extend in all speeds in

�
0; 2
p �

. Adapting some proof in Chapter 4,
using that LQc(@cQc)= i@x2Qc, it is possible to show that, as long as i@x2Qc remains orthogonal to
the kernel (which is true only shown for small speeds), then, for any for 0<c< 2

p
, if the branch

is still de�ned, @cQc is bounded in some weighed L1 space. This could give a way to continue the
branch, even when the speed is no longer small, by integrating @cQc with respect to the speed.

� Construction of smooth branches of solutions in other problems

The method of the construction of travelling waves of Theorem 1.3.1 has been used in other
cases, for instance [11] or [29]. In these other cases, only the construction was done, not the
di�erentiability with respect to the parameter. By adapting elements of section 2.3, it might be
possible to show the di�erentiability with respect to the parameter in these other cases.

� Orbital stability and multi travelling wave solutions

With a coercivity result such as Theorem 1.4.12, we could expect (at least in the symmetric case)
to have an orbital stability result. However, there are some technical di�culties, connected to the
weakness of the coercivity norm compared to the norm of the energy space. Furthermore, another
di�culty is that we need to modulate on the speed, which makes the functional E(u)¡ cP2(u) not
independent of time.

Theorem 1.5.1 is a �rst step in the construction of a multi travelling wave solutions, at least
with a symmetry (for instance, one travelling wave moving in the direction e~2 and the other in
the direction ¡e~2), using methods developed in [28], [33] or [34]. With the equivalents of Theorem
1.2.11, it is possible to compute the �rst order of the interaction between them. There are some
technical di�culties left to complete such a construction, in particular with respect to the phase.

If such multi travelling wave solutions exists, their stability would be an interesting question,
as for other multi soliton solutions, see for instance [35] or [36].
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Chapter 2

Smooth branch of travelling waves

This chapter is devoted to the proof of Theorem 1.3.1. We start by reducing the problem to a one
dimensional one in section 2.1. The construction of the travelling wave Qc is completed in section
2.2. Furthermore, in subsection 2.2.2, we show that Qc has �nite energy and we compute some
estimates particular to the branch of solutions. Finally section 2.3 is devoted to the proof of the
di�erentiability of the branch.

2.1 Lyapunov-Schmidt reduction

The proof of Theorem 1.3.1 follows closely the construction done in [11] or [29]. The main idea is
to use perturbation methods on an approximate solution.

In subsection 2.1.1 we de�ne this approximate solution V which consists in two vortices at
distance 2d from each other. We then look for a solution of (TWc) as a perturbation of V , with
an additive perturbation close to the vortices and a multiplicative one far from them. This is
computed in subsection 2.1.2. We de�ne suitable spaces in subsection 2.1.3 that we will use to invert
the linear part and use a contraction argument. We ask for an orthogonality on the perturbation,
and the norms are a little better but more technical than the ones in Theorem 1.3.1. In particular
¡c;dc in Theorem 1.3.1 veri�es better estimates which are discussed for instance in Corollary 2.1.25
and in Lemma 2.2.8. We invert the linearized operator in Proposition 2.1.17 and show that the
perturbation is a �xed point of a contracting functional in Proposition 2.1.21. The orthogonality
condition create a Lagragian multiplier (see subsection 2.1.6), which left us with a problem in one
dimension. This multiplier will be cancelled for a good choice of the parameter d in section 2.2.

2.1.1 Estimates on vortices
From [25], we can �nd stationary solution of (GP):

Vn(x)= �n(r)ein�

where x= rei�; n2Z�, solving �
�Vn¡ (jVnj2¡ 1)Vn=0
jVnj! 1 as jxj!1:

These solutions are well understood and, in particular, we have some estimates (see [25] for
instance) that we will use. We also know the kernel of the linearized operator around V�1 ([10]),
which we will need for inverting the linearized operator around the approximate solution V de�ned
using these vortices

V (x) :=V1(x¡ de~1)V¡1(x+ de1~ )

where d > 0, x= (x1; x2). The function V is the product of two vortices with opposite degrees at
a distance 2d from each other. One vortex alone in R2 is a stationary solution, and it is expected
that two vortices interact and translate at a constant speed of order c' 1

d
, see [3]. Hence for the

two parameters of this problem c;d>0, we let them be free from each other, but with the condition
c is of order 1/d by imposing that 1

2c
<d<

2

c
.
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We will study in particular areas near the center of each vortices. We will use coordinates
adapted to this problem:

x = (x1; x2)= rei�;
y = (y1; y2) :=x¡ de1~ = r1ei�1;
z = (z1; z2) := y+2 de1~ =x+ de1~ = r¡1ei�¡1;
r~ := min (r1; r¡1): (2.1.1)

Using y coordinate mean that we are centered around V1, and z coordinate for around V¡1. Note
that we have

V (x)=V1(y)V¡1(z)

using these notations. If it is not precised, V will be taken in x, V1 in y and V¡1 in z. If we compute
(TWc) for V , i.e. ¡ic@x2V ¡�V ¡ (1¡ jV j2)V , we get

(TWc)(V )=E ¡ ic@x2V ;

where we de�ned

E :=¡�V ¡ (1¡ jV j2)V :

We have V =V1V¡1 and, by using ¡�V"=(1¡ jV"j2)V" for "=�1, we compute

E=¡2rV1:rV¡1+V1V¡1(1¡ jV1j2+1¡ jV¡1j2¡ 1+ jV1V¡1j2):

Hence

E =¡2rV1:rV¡1+(1¡ jV1j2)(1¡ jV¡1j2)V1V¡1: (2.1.2)

The rest of this subsection is devoted to the computation of estimates on V ; E; @dV and ic@x2V
using estimates on V1 and V¡1. Let us start with the properties on V�1 we need.

Lemma 2.1.1. ([25]) V1(x)= �1(r)ei� veri�es V1(0)= 0, and there exists a constant �> 0 such
that, for all r > 0, 0< �1(r)< 1, �10 (r)> 0, and

�1(r)�r!0�r;

�1
0 (r)=Or!1

�
1
r3

�
;

�1
00(r)= or!1

�
1
r3

�
;

1¡ jV1(x)j=
1
2r2

+Or!1

�
1
r3

�
;

rV1(x)= iV1(x)
x?

r2
+Or!1

�
1
r3

�
where x?=(¡x2; x1), x= rei�. Furthermore we have similar properties for V¡1 since

V¡1(x)=V1(x):

We will use the O notation for convergence independent of any other quantity. Now let us write
all the derivatives of a vortex in polar coordinate, which will be useful all along the proof of the
results.
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Lemma 2.1.2. We de�ne u := �1
0(r1)

�1(r1)
. Then,

@x1V1(y)=
�
cos(�1)u¡

i
r1
sin(�1)

�
V1;

@x2V1(y)=
�
sin(�1)u+

i
r1
cos(�1)

�
V1;

@x1x1V1(y)=
�
cos2(�1)(u2+u0)+ sin2(�1)

�
u
r1
¡ 1
r1
2

�
+2i sin(�1)cos(�1)

�
1
r1
2 ¡

u
r1

��
V1;

@x1x2V1(y)=
�
sin(�1)cos(�1)

�
u2+u0+ 1

r1
2 ¡

u
r1

�
¡ i cos(2�1)

�
1
r1
2 ¡

u
r1

��
V1:

We obtain the derivatives of V¡1 by changing i!¡i,y! z, �1! �¡1, r1! r¡1 and V1! V¡1.
We remark in particular that the �rst derivatives are of �rst order 1

r1
and the second derivatives

are of �rst order 1

r1
2 for large values of r1. From [25], we can check that, more generally, we have

jD(n)V1(y)j6
K(n)

(1+ r1)n
: (2.1.3)

Proof. With the notation of (2.1.1) in radial coordinate around de1~ , the center of V1:

@x1= cos(�1)@r1¡
sin(�1)
r1

@�1

@x2= sin(�1)@r1+
cos(�1)
r1

@�1;

we compute directly the �rst two equalities of the lemma. Now, we compute

@x1x1V1= cos(�1)@r1(@x1V1)¡
sin(�1)
r1

@�1(@x1V1)

with

@r1(@x1V1)=
�
u

�
cos(�1)u¡

i
r1

sin(�1)
�
+ cos(�1)u0+

i

r1
2
sin(�)

�
V1

and

@�1(@x1V1)=
�
i cos(�1)u+

1
r1

sin(�1)¡ sin(�1)u¡
i
r1

cos(�1)
�
V1

for the third inequality. We use them also in

@x1x2V1= sin(�1)@r1(@x1V1)+
cos(�1)
r1

@�1(@x1V1)

for the fourth relation, with cos2(�1)¡ sin2(�1)= cos(2�1). �

Now, we compute some basic estimates on V .

Lemma 2.1.3. There exists a universal constant K > 0 and a constant K(d)> 0 depending only
on d> 1 such that

j1¡V j26 K(d)
(1+ r)2

;

06 1¡ jV j26 K

(1+ r~)2
;

jr(jV j)j6 K
(1+ r~)3

;

and we have

jrV j6 K
(1+ r~)

;
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as well as

jrV j6 Kd
(1+ r~)2

;

where r~=min (r1; r¡1). Furthermore,

jr2V j6 K
(1+ r~)2

and

jr2V j6 Kd
(1+ r~)3

:

Proof. For the �rst inequality, we are at �xed d. Since V = jV1V¡1jei(�1¡�¡1) and �1; �¡1 are angles
from points separated by 2d, we infer

ei(�1¡�¡1)=1+Or!1d

�
1
r

�
;

and jV1V¡1j=1+Or!1d
�
1

r2

�
from Lemma 2.1.1 where Or!1d

¡ 1
r

�
is a quantity that decay in 1

r
is

at �xed d. Therefore,

j1¡V j2= j1¡jV1V¡1jei(�1¡�¡1)j2=
����K(d)Or!1� 1r

�����26 K(d)
(1+ r)2

:

From Lemma 2.1.1, we compute

1¡jV j2=1¡ jV1j2+ jV1j2(1¡ jV¡1j2)6K
�

1
(1+ r1)2

+ 1
(1+ r¡1)2

�
6 K
(1+ r~)2

;

and

jr(jV j)j6 jr(jV1j)jV¡1jj+ jr(jV¡1j)jV1jj6K
�

1
(1+ r1)3

+ 1
(1+ r¡1)3

�
6 K
(1+ r~)3

:

We check that rV =rV1V¡1+rV¡1V1, and therefore, with Lemma 2.1.2, we have

jrV j6 K
(1+ r1)

+ K
(1+ r¡1)

6 K
(1+ r~)

:

Furthermore, by Lemma 2.1.1,

rV�1=
�i
r�1

e~
��1

+Or�1!1

 
1
r�1
3

!
:

For r~> 1 (the last estimate on jrV j for r~6 1 is a consequence of jrV j6 K

(1+ r~)
), since r�1ei��1=

x� de~1,
cos(�1)
r1

¡ cos(�¡1)
r¡1

= x1¡ d
(x1¡ d)2+x22

¡ x1+ d
(x1+ d)2+x22

= x1
r1
2r¡1
2 ((x1+ d)2+x22¡ ((x1¡ d)2+x22))¡ d

 
1
r1
2 +

1
r¡1
2

!
= d

r1
2r¡1
2 (2x12¡ r12¡ r¡12 ); (2.1.4)

therefore ���� cos(�1)r1
¡ cos(�¡1)

r¡1

����6 Kd
(1+ r~)2

since x1
r1r¡1

6 1

r~
if r~> 1. With a similar estimation for sin(�1)

r1
¡ sin(�¡1)

r¡1
, we infer

jrV j 6
����e~�1r1 ¡ e~�¡1

r¡1

����+ K
(1+ r~)3

6 Kd
(1+ r~)2

+ K
(1+ r~)3

6 Kd
(1+ r~)2

:
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Finally, for the second derivatives, we have for j ; k 2
�
1; 2
	

@xjxkV =@xjxkV1V¡1+@xjV1@xkV¡1+@xkV1@xjV¡1+ @xjxkV¡1V1;

therefore, with (2.1.3),

jr2V j6 K
(1+ r1)2

+ K
(1+ r¡1)(1+ r1)

+ K
(1+ r¡1)2

6 K
(1+ r~)2

:

We check with (2.1.4), x1
r1r¡1

6 1

r~
if r~> 1 and

���r� 1

r�1

����6 K

r�1
2 that, for r~> 1,����r� cos(�1)

r1
¡ cos(�¡1)

r¡1

�����6 Kd

(1+ r~)3
:

With a similar estimation for r
�
sin(�1)
r1

¡ sin(�¡1)
r¡1

�
and Lemma 2.1.1, we conclude with

jr2V j6
����r� e~�1r1 ¡ e~�¡1

r¡1

�����+ K

(1+ r~)3
6 Kd

(1+ r~)3
: �

Now we look at the convergence of some quantities when we are near the center of V1 and
d!1. When we are close to the center of V1 and d goes to in�nity, we expect that the second
vortex as no in�uence.

Lemma 2.1.4. As d!1, we have, locally uniformly in R2,

V (:+ de~1)=V1(:)V¡1(:+2de~1)!V1(:);

E(:+ de~1)! 0
and

@dV (:+ de1~ )!¡@x1V1(:):

Proof. In the limit d!1, for y 2R2,

V (y+ de~1)=V1(y)e¡i�¡1
 
1+O

 
1
r¡1
2

!!
by Lemma 2.1.1, hence

V (:)!V1(:)

locally uniformly since �¡1!0; r¡1!+1 when d!1 locally uniformly. On the other hand, since
V (x)=V1(y)V¡1(y+2 de~1), we have

(@dV )(y+ de~1)=¡@x1V1(y)V¡1(y+2 de~1)+V1(y)@x1V¡1(y+2 de~1):

Since @x1V¡1(y+2 de~1)=rV¡1(y+2 de~1):e~1! 0 locally uniformly as d!1, we have

@dV (:)!¡@x1V1(:)

locally uniformly. Finally, from (2.1.2), we have that

E(x)=¡2rV1(y):rV¡1(z)+ (1¡jV1(y)j2)(1¡jV¡1(z)j2)V1(y)V¡1(z)

with the notations from (2.1.1), therefore, locally uniformly,

E(:+ de~1)! 0

as rV¡1! 0 and jV¡1j! 1 locally uniformly when d!1. �

We now do a precise computation on the term ic@x2V , which appears in (TWc)(V ).

Lemma 2.1.5. There exists a universal constant C>0 (independent of d) such that if r1; r¡1>1,�����i@x2VV ¡ 2dx1
2¡ d2¡x22

r1
2 r¡1

2

�����6C
 
1
r1
3 +

1
r¡1
3

!
:
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Remark that this shows that the �rst order term of i@x2V
V

is real-valued and the dependence on
d of this term is explicit.

Proof. Recall from Lemma 2.1.2 that for "=�1,

@x2V"=
i"
r"

cos(�")V"+Or1!1

�
1
r1
3

�
:

We have
@x2V
V

= @x2V1
V1

+ @x2V¡1
V¡1

and

cos(�")=
x1¡ "d
r"

;

yielding

@x2V
V

= i

 
x1¡ d
r1
2 ¡ x1+ d

r¡1
2

!

= i

 
x1

 
1
r1
2 ¡

1
r¡1
2

!
¡ d
 
1
r1
2 +

1
r¡1
2

!!
+Or1!1

�
1
r1
3

�
+Or¡1!1

 
1
r¡1
3

!
:

We compute with (2.1.1) that

1
r1
2 ¡

1
r¡1
2 = (x1+ d)2+x22¡ (x1¡ d)2¡x22

r1
2 r¡1

2 = 4dx1
r1
2 r¡1

2

and
1
r1
2 +

1
r¡1
2 = (x1+ d)2+x22+(x1¡ d)2+x22

r1
2 r¡1

2 =2 x1
2+ d2+x22

r1
2 r¡1

2 ;

yielding the estimate. �

Finally, we show an estimate on @dV = @d(V1(x¡ de1~ )V¡1(x+ de1~ ))=¡@x1V1V¡1+ @x1V¡1V1.

Lemma 2.1.6. There exists a constant K > 0 such that

j@dV j6
K

(1+ r~)
;

jr@dV j6
K

(1+ r~)2
and

jRe(V�@dV )j6
K

(1+ r~)3
:

Furthermore,

j@d2V j6
K

(1+ r~)2
and

j@d2rV j6
K

(1+ r~)3
:

Proof. We have that @dV =¡@x1V1V¡1+ @x1V¡1V1 and from Lemma 2.1.2,

j@x1V1j6
K

(1+ r1)
6 K
(1+ r~)

:

Similarly, j@x1V¡1j6
K

(1+ r~)
and this proves the �rst inequality. Furthemore, for r@dV , every terms

has two derivatives, each one bringing a 1

(1+ r~)
by (2.1.3), this shows the second inequality. Finally,

we compute

Re(V�@dV )=¡jV¡1j2Re(V1� @x1V1)+ jV1j2Re(V¡1@x1V¡1):
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From Lemma 2.1.1, jRe(V1� @x1V1)j6
K

(1+ r1)3
6 K

(1+ r~)3
and jV¡1j26 1. Similarly we have

jjV1j2Re(V¡1@x1V¡1)j6
K

(1+ r~)3
:

Furthermore, since @d2V = @x1
2 V1V¡1 ¡ 2@x1V1@x1V¡1 + @x1

2 V¡1V1, with equation (2.1.3), we check
easily the estimations on @d2V and @d2rV . �

2.1.2 Setup of the proof
In the same way as in [11] (see also [29]), we will look at a solution of (TWc) as a perturbation of
V of the form

v := �V (1+	)+ (1¡ �)Ve	

where �(x)= �~(r1)+ �~(r¡1) and �~ is a C1 positive cuto� with �~(r)=1 if r61 and 0 if r>2. The
perturbation is 	 and we will also use

� :=V	:

We use such a perturbation because we want it to be additive (in �) near the center of the vortices
(where v = V +�), and multiplicative (in 	) far from them (where v = Ve	). We shall require �
to be bounded (and small) near the vortices. The problem becomes an equation on 	, with the
following Lemma 2.1.7, we shall write

�L(�)+ (1¡ �)VL0(	)+F (	)= 0

where L and L0 are linear. The main part of the proof of the construction consists of inverting the
linearized operator �L(�)+(1¡ �)VL0(	) in suitable spaces, and then use a contraction argument
by showing that F is small and conclude on the existence of a solution 	 by a �xed point theorem.

Lemma 2.1.7. The function v= �V (1+	)+ (1¡ �)Ve	 is solution of (TWc) if and only if

�L(�)+ (1¡ �)VL0(	)+F (	)= 0;

where �=V	,

L0(	) :=¡�	¡ 2 rV
V
:r	+2jV j2Re(	)¡ ic@x2	;

L(�) :=¡��¡ (1¡ jV j2)�+2Re(V��)V ¡ ic@x2�;

F (	) :=E ¡ ic@x2V +V (1¡ �)(¡r	:r	+ jV j2S(	))+R(	);
with

E=¡�V ¡ (1¡ jV j2)V ;

S(	) := e2Re(	)¡ 1¡ 2Re(	)

and R(	) is a sum of terms at least quadratic in 	 or � localized in the area where � =/ 0.
Furthermore, there exists C;C0> 0 such that the estimate

jR(	)j+ jrR(	)j6Ck�kC2({r~62})
2

holds if k�kC2(R2)6C0 (a constant independent of c), where r~=min (jx¡de~1j; jx+de1~ j) for x2R2.
Additionally, L(�) and L0(	) are related by

L(�)= (E ¡ ic@x2V )	+VL0(	):

The main reason for such a perturbation ansatz is because V (de1~ ) = V (¡de1~ ) = 0, so we can
not divide by V as done in L0 for instance when we look near the vortices, therefore an additive
perturbation is more suitable. But far from the vortices, the perturbation is easier to compute
when written multiplicatively with a factorisation by V . Remark also that this allows us to take
	 to explode at de~1 and ¡de~1 as long as �=V	 does not. This is needed for the norm we use in
subsection 2.1.3.
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As we look for � small (it is a perturbation), the conditions k�kC2(R2)6C0 will always be true.
We need them because some of the error terms have an exponential contribution in 	, and not
only quadratic. We recall that, with our notations, r	:r	 is complex-valued.

Remark that the quantity F contains only nonlinear terms and the source term, which is
E¡ ic@x2V . Furthermore, contrary to the work [29], the transport term is in the linearized operator,
and not considered as an error term in F .

The rest of this subsection is devoted to the proof of Lemma 2.1.7.

Proof. First we show that L(�)= (E ¡ ic@x2V )	+L0(	)V . We use �=V	 in L(�) to compute

L(�)=¡�V 	¡�	V ¡ 2r	:rV ¡ (1¡jV j2) V	+2jV j2V Re(	)¡ icV@x2	¡ ic@x2V	:

We have that E =¡�V ¡ (1¡ jV j2)V hence (E¡ic@x2V )	=¡�V	¡ (1¡ jV j2)V	¡ ic@x2V	
and the remaining terms are exactly equal to VL0(	).

We denote � :=1+	¡ e	. Remark that � is at least quadratic in 	. We compute the di�erent
terms in (TWc):

¡ic@x2v¡�v¡ (1¡jv j2)v=0

with

v= �V (1+	)+ (1¡ �)Ve	:

We have v = V + �¡ (1¡ �)�. In general, our goal in this computation is to factorize any term
when possible by V (� + (1¡ �)e	) and compute the other terms, which will be supported in the
area �(1¡ �)=/ 0. First compute

@x2v=

�(@x2V (1+	)+ @x2	V )+@x2�V (1+	)+ (1¡ �) e	(@x2V + @x2	V )¡ @x2�Ve	;

therefore

¡ic@x2v=V (�+(1¡ �)e	)
�
¡ic @x2V

V
¡ ic@x2	

�
¡ ic�@x2V 	¡ ic@x2�V�: (2.1.5)

For the second term, we compute

�v = ��V (1+	¡ e	)+2r�:r(V (1+	¡ e	))
+ �(�V (1+	)+2rV :r	+V�	)
+ (1¡ �)(�Ve	+2rV :r	e	+V (�	+r	:r	)e	);

hence

¡�v = V (�+(1¡ �)e	)
�
¡�V
V
¡ 2 rV

V
:r	¡�	

�
¡ ��V	¡ (1¡ �)Vr	:r	 e	¡V ��� ¡ 2r�:r(V�): (2.1.6)

Finally, let us write A := V (1 + 	) and B := Ve	, so that v = �A + (1 ¡ �)B, and remark that
V� =A¡B. We then have

(1¡ jv j2)v=(1¡ �2jAj2¡ (1¡ �)2jB j2¡ 2�(1¡ �)Re(AB�))(�A+(1¡ �)B):

We want to bring out the terms not related to the interaction between A and B, namely �(1 ¡
jAj2)A+(1¡ �)(1¡ jB j2)B. We have

(1¡ jv j2)v = �(1¡ jAj2)A+ �A[(1¡ �2)jAj2¡ (1¡ �)2jB j2¡ 2�(1¡ �)Re(AB�)]
+ (1¡ �)(1¡ jB j2)B+(1¡ �)B[(1¡ (1¡ �)2)jB j2¡ �2jAj2¡ 2�(1¡ �)Re(AB�)]:

Now, factorizing �(1¡ �) we get

(1¡ jv j2)v = �(1¡jAj2)A+(1¡ �)(1¡ jB j2)B
+ �(1¡ �)[(1+ �)AjAj2¡ (1¡ �)AjB j2¡ 2�ARe(AB�)]
+ �(1¡ �)[(2¡ �)B jB j2¡ �B jAj2¡ 2(1¡ �)BRe(AB�)]:
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Remark that the last two lines yield 0 if we take A=B, since V� =A¡B, we can write

(1¡ jv j2)v= �(1¡jAj2)A+(1¡ �)(1¡ jB j2)B+ �(1¡ �)(V�G(	)+V�H(	))

where G;H are functions satisfying jH(	)j; jG(	)j; jrH(	)j; jrG(	)j6C(1+ j	j+ jr	j+ je	j+
jr	e	j) for some universal constant C > 0. We recall that A=V (1+	) hence

(1¡ jAj2)A=(1¡jV j2j1+	j2)V (1+	);

therefore we get a constant (in �), a linear and a nonlinear part in 	:

(1¡jAj2)A = (1¡ jV j2)V +(1¡ jV j2)V	¡ 2jV j2V Re(	)
¡2jV j2V Re(	)	¡ jV	j2V (1+	):

We have B=Ve	, hence

(1¡ jB j2)B= e	((1¡jV j2)V ¡ 2Re(	)jV j2V ¡ jV j2VS(	));

where S(	)= e2Re(	)¡ 1¡ 2Re(	) is nonlinear in 	. We add these relations and obtain

�(1¡ jAj2)A+(1¡ �)(1¡jB j2)B = V (�+(1¡ �)e	)((1¡jV j2)¡ 2Re(	)jV j2)
+ �(1¡ �)(V�G(	)+V�H(	))
+ �((1¡jV j2)V	¡ 2jV j2VRe(	)	¡jV	j2V (1+	))
¡ (1¡ �)e	jV j2VS(	): (2.1.7)

Now adding the computations (2.1.5), (2.1.6) and (2.1.7) in ¡ic@x2v¡�v¡ (1¡jv j2)v=0 yields

V (�+(1¡ �) e	)
�
E ¡ ic@x2V

V
+L0(	)

�
+�((E ¡ ic@x2V )	+2jV j2V Re(	)	+ jV	j2V (1+	))

+V (1¡ �) e	(jV j2S(	)¡r	:r	)
¡ic@x2�V� ¡V ��� ¡ 2r�:r(V�)¡ �(1¡ �)(V�G(Z)+V�H(	)) = 0: (2.1.8)

We divide by �+(1¡ �)e	, which is allowed since �+(1¡ �)e	=1+(1¡ �)(e	¡1) and in
�
�=/ 1

	
,

j	j6 j�j
jV j 6Kk�kL1(R2)6KC0 by our assumption k�kL1(R2)6C0, therefore, choosing C0 small

enough, in
�
�=/ 1

	
, we have je	¡ 1j6 1/2. We also remark that

(1¡ �)e	
(�+(1¡ �)e	) = (1¡ �)+ �(1¡ �)

�
e	¡ 1

�+(1¡ �) e	

�
;

therefore (2.1.8) become

E ¡ ic@x2V +VL0(	)
+V (1¡ �)(¡r	:r	+ jV j2S(	))

+ �

(�+(1¡ �) e	)((E ¡ ic@x2V )	+2jV j2V Re(	)	+ jV	j2V (1+	))

+R1(	) = 0;

where

R1(	) := 1
(�+(1¡ �) e	)(¡ic@x2�V� ¡V��� ¡ 2r�:r(V�)¡ �(1¡ �)(V�G(	)+V�H(	)))

+ V�(1¡ �)
�

e	¡ 1
�+(1¡ �) e	

�
(¡r	:r	+ jV j2S(	)):

Remark that R1(	) is nonzero only in the rings where �(1¡ �)=/ 0, i.e. 16 r~6 2, since every term
has either @x2�;�� or �(1¡ �) as a factor. Furthermore they all have as an additional factor � ;r� ;
S orr	:r	. Hence, if we suppose that j	j; jr	j; jr2	j6KC0 in the rings (which is a consequence
of �=V	 and k�kC2(R2)6C0), then those terms can be bounded by Ck	kC1({16r~62})

2 . Therefore
if j	j; jr	j; jr2	j6KC0 in the rings, then

jR1(	)j+ jrR1(	)j6Kk	kC2({16r~62})
2 6Kk�kC2({r~62})

2
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for some universal constant K > 0, since in the rings, V is bounded from below by a nonzero
constant. Now, we use

�

(�+(1¡ �) e	) = �+ �(1¡ �) 1¡ e	
�+(1¡ �) e	

to compute
�

(�+(1¡ �) e	)(E ¡ ic@x2V )	= �(E ¡ ic@x2V )	+R2(	);

where

R2(	) := �(1¡ �) (1¡ e
	)(E ¡ ic@x2V )

�+(1¡ �) e	 	:

We show easily that R2(	) satis�es the same estimates as R1(	). Remark that, using �=V	,���� �

(�+(1¡ �) e	)(2jV j
2V Re(	)	+ jV	j2V (1+	))

���� =���� �

(�+(1¡ �) e	)(2Re(�V�)�+ j�j2(V +�))
���� 6 Kk�kC1({r~62})

2

and ����r� �

(�+(1¡ �) e	)(2Re(�V�)�+ j�j2(V +�))
�����6Kk�kC1({r~62})

2

if k�kL1(R2)6C0 (so that the term in e	 is bounded) since �=/ 0 only if r~6 2. We de�ne

R(	) :=R1(	)+R2(	)+
�

(�+(1¡ �) e	)(2jV j
2V Re(	)	+ jV	j2V (1+	));

which satis�es

jR(	)j; jr(R(	))j6Kk�kC2({r~62})
2

for some universal constant K > 0, provided that k�kC2(R2) 6 C0. The equation (2.1.8) then
becomes

E ¡ ic@x2V +VL0(	)+V (1¡ �)(¡r	:r	+ jV j2S(	))
+�(E ¡ ic@x2V )	+R(	) = 0:

Now we �nish by using ¡icV@x2	=¡�icV@x2	¡ (1¡ �)icV@x2	 and

@x2V	+ @x2	V =@x2�

to obtain

VL0(	)+ � (E ¡ ic@x2V )	¡ ic�@x2�+V (1¡ �)(¡r	:r	+ jV j2S(	))+R(	)= 0:

Finally, since we have shown that L(�)= (E ¡ ic@x2V )	+L0(	)V , we infer

VL0(	)+ �(E ¡ ic@x2V )	= �L(�)+ (1¡ �)VL0(	):
The proof is complete. �

2.1.3 Setup of the norms
For a given � 2R, we de�ne, similarly as in [11] and [29], for 	=	1+ i	2 and h= h1+ ih2, the
norms

k	k�;�;d := kV	kC2({r~63})

+ kr~1+�	1kL1({r~>2})+ kr~2+�r	1kL1({r~>2})+ kr~2+�r2	1kL1({r~>2})

+ kr~�	2kL1({r~>2})+ kr~1+�r	2kL1({r~>2})+ kr~2+�r2	2kL1({r~>2});

khk��;�;d := kVhkC1({r~63})

+ kr~1+�h1kL1({r~>2})+ kr~2+�rh1kL1({r~>2})

+ kr~2+�h2kL1({r~>2})+ kr~2+�rh2kL1({r~>2});
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where r~=min (r1; r¡1) (which depends on d). These are the spaces we shall use for the inversion
of the linear operator for suitable values of �.

This norm is not the �natural� energy norm that we could expect, for instance:

k�kHV
2 :=

Z
R2
jr�j2+(1¡ jV j2)j�j2+Re(V��)2:

In particular, we require di�erent conditions on the decay at in�nity (with, in a way, less decay).
As a consequence, the decay we have in Theorem 1.3.1 is not optimal (see [22]). This decay will be
recovered later on by showing that the solution has �nite energy. The main advantage of the norms
k:k�;�;d and k:k��;�;d is that they will allow us to have uniform estimates on the error, without
constants depending on c or d.

We are looking for a solution 	 on a space of symmetric functions: we suppose that

8x=(x1; x2)2R2;	(x1; x2)=	(x1;¡x2)=	(¡x1; x2)

because V and the equation has the same symmetries. With only those symmetries we will not be
able to invert the linearized operator because it has a kernel, we also need an orthogonal condition.
We de�ne

Zd(x) :=@dV (x)(�~(4r1)+ �~(4r¡1));

where �~ is the same function as the one used for v: it is a C1 non negative smooth cuto� with
�~(r)=1 if r61 and 0 if r>2. In particular Zd(x)=0 if r~>1/2, which will make some computations
easier. The other interest of the cuto� function is that without it

@dV (x)=¡@x1V1V¡1+ @x1V¡1V1
is not integrable in all R2. We de�ne the Banach spaces we shall use for inverting the linear part:

E�;�;d :=�
�=V	2C2(R2;C); k	k�;�;d<+1; h�; Zdi=0;8x2R2;	(x1; x2)=	(x1;¡x2)=	(¡x1; x2)

	
;

E��;� 0;d :=
�
Vh2C1(R2;C); khk��;� 0;d<+1

	
for �; � 02R. We shall omit the subscript d in the construction and use only E�;�, E��;� 0. Remark
that E�;� contains an orthogonality condition as well as the symmetries.

Our �rst goal is to invert the linearized operator. This is a di�cult part, which requires a lot
of computations and critical elliptic estimates. The next subsection is devoted to the proof of the
elliptic tools use in the proof of the inversion. In particular, our paper diverges here from [29] (see
Remark 2.1.11 thereafter).

2.1.4 Some elliptic estimates
In this subsection, we provide some tools for elliptic estimate adapted to L1 norms.

2.1.4.1 Weighted L1 estimates on a Laplacian problem

Lemma 2.1.8. For d>5, 0<�<1, there exists a constant K(�)>0 such that, for f 2C0(R2;C)
such that

8(x1; x2)2R2; f(x1; x2)=¡f(x1;¡x2)
and with

"f ;� := kf(x)(1+ r~)2+�kL1(R2)<+1;

there exists a unique C1(R2) function � such that

�� = f

in the distribution sense,

8(x1; x2)2R2; �(x1; x2)=¡�(x1;¡x2)
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and � satis�es the following two estimates:

8x2R2; j�(x)j6 K(�)"f ;�
(1+ r~)�

and

8x2R2; jr�(x)j6 K(�)"f ;�
(1+ r~)1+�

:

Remark here that for a given function f , if it satis�es two inequalities with di�erent values
of ("f ;�; �), then the associated function � satis�es the estimates with both sets of values by
uniqueness. Furthermore, with only the hypothesis f 2C0(R2), we do not have �2Cloc

2 (R2) a priori.

Proof. The uniqueness of such a function � is a consequence of the fact that � is bounded (by
8x2R2; j�(x)j6 K"f;�

(1+ r~)�
), the linearity of the Laplacian, and that the only weak solution to ��=0

that tends to 0 at in�nity is 0. We de�ne

� :=G � f ;

where G is the fundamental solution of the Laplacian in dimension 2, namely G(x) := 1

2�
ln(jxj).

Since kf(x)(1+ r~)2+�kL1(R2)<+1, we check that � is well de�ned. Let us show that � 2C1(R2;

C). If f 2Cc1(R2), then, for j 2
�
1; 2
	
,

�(x+he~ j)¡ �(x)
jhj = 1

2�

Z
R2
ln(jx¡Y j))f(Y +he~ j)¡ f(Y )

jhj dY

! 1
2�

Z
R2
ln(jx¡Y j))@Yjf(Y ) dY

when jhj! 0. Then, for "> 0,���� 12�
Z
B(x;")

ln(jx¡Y j))@Yjf(Y ) dY
����6K"2jln(")jkrf kL1(R2)

and by integration by parts,

1
2�

Z
R2nB(x;")

ln(jx¡Y j))@Yjf(Y ) dY = 1
2�

Z
R2nB(x;")

xj¡Yj
jx¡Y j2f(Y )dY

¡ 1
2�

Z
@B(x;")

ln(jx¡Y j))f(Y )e~ j:�~ d�

and since
��� 1
2�

R
@B(x;")

ln(jx¡Y j))f(Y )e~ j:�~ d�
���6Kkf kL1(R2)"jln(")j, taking "! 0 we deduce that

�(x+he~ j)¡ �(x)
jhj ! 1

2�

Z
R2
ln(jx¡Y j))@Yjf(Y ) dY = 1

2�

Z
R2

xj¡Yj
jx¡Y j2 f(Y )dY

when jhj! 0. This implies that, for f 2Cc1(R2),

r�(x)= 1
2�

Z
R2

x¡Y
jx¡Y j2 f(Y )dY :

Now, for f 2 C0(R2;C) such that kf(x)(1 + r~)2+�kL1(R2)<+1, we take fn 2 Cc1(R2;C) such
that fn! f in L3(R2) and (1+ r~)�/2fn! (1+ r~)�/2f in L1(R2) (we check easily that f 2L3(R2)
and (1 + r~)�/2f 2L1(R2)). In particular, fn! f in L1(R2). Then, for �n such that ��n= fn, we
check that, by Hölder inequality,����r�n(x)¡ 1

2�

Z
R2

x¡Y
jx¡Y j2 f(Y )dY

����6 1
2�

Z
R2

jfn(Y )¡ f(Y )j
jx¡Y j dY ;

Z
�
jx¡Y j61	

jfn(Y )¡ f(Y )j
jx¡Y j dY 6 kfn¡ f kL3(R2)

 Z
�
jx¡Y j61	

dY

jx¡Y j3/2

!
2/3

6Kkfn¡ f kL3(R2)
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and Z
�
jx¡Y j>1	

jfn(Y )¡ f(Y )j
jx¡Y j dY 6 kfn¡ f kL1(R2);

therefore r�n! 1

2�

R
R2

x¡Y
jx¡ Y j2f(Y )dY uniformly in R2.

Similarly, we estimate�����n(x)¡ 1
2�

Z
R2
ln(jx¡Y j)f(Y )dY

����6 1
2�

Z
R2
jfn(Y )¡ f(Y )j jln(jx¡Y j)jdY ;

Z
�
jx¡Y j61	jfn(Y )¡ f(Y )j jln(jx¡Y j)jdY 6 kfn¡ f kL3(R2)

 Z
�
jx¡Y j61	 jln(jx¡Y j)j3/2dY

!
2/3

6 Kkfn¡ f kL3(R2)

and Z
�
jx¡Y j>1	jfn(Y )¡ f(Y )jjln(jx¡Y j)jdY 6Kk(1+ r~)�/2fn¡ (1+ r~)�/2f kL1(R2);

thus �n!G � f = � uniformly in R2, which implies by di�erentiation of a sequence of functions,
that � 2C1(R2;C) and

r�(x)= 1
2�

Z
R2

x¡Y
jx¡Y j2 f(Y )dY :

We check that � satis�es

�� = f

in the distribution sense. Indeed, for '2Cc1(R2), (see [12], chapter 2, Theorem 1)Z
R2
(G � f)�'=

Z
R2
f(G ��')=

Z
R2
f':

It is also easy to check that

8(x1; x2)2R2; �(x1; x2)=¡�(x1;¡x2):

Now, if jx¡ de~1j6 1, we check that

jr�(x)j6K
Z
R2

1
jY j jf(x¡Y )jdY 6K"f ;�

Z
R2

dY
jY j(1+ r~(Y ¡x))2+� 6K"f ;�;

and, similarly,

j�(x)j6K"f ;�;

which is enough to show the required estimate of this lemma for these values of x. We can make
the same estimate if jx+ de1~ j6 1, we therefore suppose from now on that jx¡ de1~ j; jx+ de1~ j> 1.

First, let us show thatZ
�
Y1>0

	f(Y )dY =
Z
�
Y160

	f(Y )dY =0: (2.1.9)

The integrals are well de�ned because jf(x)j6 "f;�

(1+ r~)2+�
and therefore f is integrable. Since f is

odd with respect to x2, (2.1.9) holds. We deduce that

jr�(x)j 6 1
2�

�����
Z
�
Y1>0

	
�

x¡Y
jx¡Y j2 ¡

x¡ de1~
jx¡ de1~ j2

�
f(Y )dY

�����
+ 1

2�

�����
Z
�
Y160

	
�

x¡Y
jx¡Y j2 ¡

x+ de1~
jx+ de1~ j2

�
f(Y )dY

�����:
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Now, using jf(x)j6 "f ;�

(1+ r~)2+�
, we estimate

2� jr�(x)j 6 "f ;�

Z
�
Y1>0

	
���� x¡Y
jx¡Y j2 ¡

x¡ de1~
jx¡ de1~ j2

���� dY
(1+ r1(Y ))2+�

+ "f ;�

Z
�
Y160

	
���� x¡Y
jx¡Y j2 ¡

x+ de1~
jx+ de1~ j2

���� dY
(1+ r¡1(Y ))2+�

:

By the change of variable Y =Z+ de1~ , we haveZ
�
Y1>0

	
���� x¡Y
jx¡Y j2 ¡

x¡ de1~
jx¡ de1~ j2

���� dY
(1+ r1(Y ))2+�

=
Z
�
Z1>¡d

	
���� (x¡ de1~ )¡Z
j(x¡ de1~ )¡Z j2

¡ x¡ de1~
jx¡ de1~ j2

���� dZ
(1+ jZ j)2+� ;

6
Z
R2

���� (x¡ de1~ )¡Z
j(x¡ de1~ )¡Z j2

¡ x¡ de1~
jx¡ de1~ j2

���� dZ
(1+ jZ j)2+� :

Now, if jZ j> 2jx¡ de1~ j, by triangular inequality, we check that���� (x¡ de1~ )¡Z
j(x¡ de1~ )¡Z j2

¡ x¡ de1~
jx¡ de1~ j2

����6 K
jx¡ de~1j

;

hence Z
�
jZ j>2jx¡de1j

	
���� (x¡ de1~ )¡Z
j(x¡ de1~ )¡Z j2

¡ x¡ de1~
jx¡ de1~ j2

���� dZ
(1+ jZ j)2+�

6 K
jx¡ de1~ j

Z
�
jZ j>2jx¡de1j

	 dZ
(1+ jZ j)2+� 6

K(�)
jx¡ de1~ j1+�

: (2.1.10)

We now work for jZ j6 2jx¡ de1~ j. We remark that���� (x¡ de1~ )¡Z
j(x¡ de1~ )¡Z j2

¡ x¡ de1~
jx¡ de1~ j2

����jx¡ de1~ j2j(x¡ de1~ )¡Z j2
= j(x¡ de1~ )(jx¡ de1~ j2¡j(x¡ de1~ )¡Z j2)¡Z jx¡ de1~ j2j
= j(x¡ de1~ )(2(x¡ de1~ ):Z�¡ jZ j2)¡Z jx¡ de1~ j2j
= j((x¡ de1~ )¡Z)(2(x¡ de1~ ):Z�¡jZ j2)¡Z j(x¡ de1~ )¡Z j2j

= j(x¡ de1~ )¡Z jjZ j
���� (x¡ de1~ )¡Zj(x¡ de1~ )¡Z j

�
2(x¡ de1~ ):

Z�
jZ j ¡ jZ j

�
¡ Z
jZ j j(x¡ de1~ )¡Z j

����;
and we estimate ���� (x¡ de1~ )¡Zj(x¡ de1~ )¡Z j

�
2(x¡ de1~ ):

Z�
jZ j ¡ jZ j

�
¡ Z
jZ j j(x¡ de1~ )¡Z j

����
6 2jx¡ de1~ j+

���� (x¡ de1~ )¡Zj(x¡ de1~ )¡Z j
(¡jZ j)¡ Z

jZ j j(x¡ de1~ )¡Z j
����:

Furthermore,���� (x¡ de1~ )¡Zj(x¡ de1~ )¡Z j
(¡jZ j)¡ Z

jZ j j(x¡ de1~ )¡Z j
����2jZ j2j(x¡ de1~ )¡Z j2

= |((x¡ de1~ )¡Z)jZ j2+Z j(x¡ de1~ )¡Z j2|2

= j(x¡ de1~ )¡Z j2jZ j4+ jZ j2j(x¡ de1~ )¡Z j4+2(x¡ de1~ ¡Z):Z� jZ j2j(x¡ de1~ )¡Z j2

= j(x¡ de1~ )¡Z j2jZ j2(¡jZ j2+ j(x¡ de1~ )¡Z j2+2(x¡ de1~ ):Z�)
= j(x¡ de1~ )¡Z j2jZ j2jx¡ de1~ j2;

therefore ���� (x¡ de1~ )¡Z
j(x¡ de1~ )¡Z j2

¡ x¡ de1~
jx¡ de1~ j2

����6 3jZ j
jx¡ de1~ j � j(x¡ de1~ )¡Z j

:

We deduce that Z
�
jZ j62jx¡de1j

	
���� (x¡ de1~ )¡Z
j(x¡ de1~ )¡Z j2

¡ x¡ de1~
jx¡ de1~ j2

���� dZ
(1+ jZ j)2+�

6 3
jx¡ de1~ j

Z
�
jZ j62jx¡de1j

	 jZ jdZ
j(x¡ de1~ )¡Z j(1+ jZ j)2+�

:
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We remark that, either j(x¡ de1~ )¡Z j> jx¡ de1j
2

, and thenZ
�
jZ j62jx¡de1j

	
\
n
j(x¡de1)¡Z j> |x¡de1|

2

o jZ jdZ
j(x¡ de1~ )¡Z j(1+ jZ j)2+�

6 2
jx¡ de1~ j

Z
�
jZ j62jx¡de1j

	
\
n
j(x¡de1)¡Z j> jx¡de1j2

o jZ jdZ
(1+ jZ j)2+�

6 K(�)
jx¡ de1~ j�

since �< 1, or j(x¡ de1~ )¡Z j6 jx¡ de1j
2

, and then jZ j> |x¡ de1|
2

, thereforeZ
�
jZ j62jx¡de1j

	
\
n
j(x¡de1)¡Z j6 jx¡de1j2

o jZ jdZ
j(x¡ de1~ )¡Z j(1+ jZ j)2+�

6
Z
n
jx¡de1j

2
6jZ j62jx¡de1j

o jZ jdZ
j(x¡ de1~ )¡Z j(1+ jZ j)2+�

6 K
jx¡ de1~ j2+�

Z
�
jZ¡(x¡de1)j63jx¡de1j

	 jZ jdZ
j(x¡ de1~ )¡Z j

6 K
jx¡ de1~ j�

:

We conclude thatZ
�
jZ j62jx¡de1j

	
���� (x¡ de1~ )¡Z
j(x¡ de1~ )¡Z j2

¡ x¡ de1~
jx¡ de1~ j2

���� dZ

(1+ jZ j)2+� 6
K(�)

jx¡ de1~ j1+�
: (2.1.11)

Combining (2.1.9) and (2.1.11), and by symmetry, we deduce thatZ
�
Y1>0

	
���� x¡Y
jx¡Y j2 ¡

x¡ de1~
jx¡ de1~ j2

���� dY
(1+ r1(Y ))2+�

+
Z
�
Y160

	
���� x¡Y
jx¡Y j2 ¡

x+ de1~
jx+ de1~ j2

���� dY
(1+ r¡1(Y ))2+�

6 K(�)
jx¡ de1~ j1+�

+ K(�)
jx+ de1~ j1+�

6 K(�)
r~(x)1+�

;

and therefore (recall that jx¡ de1~ j; jx+ de1~ j> 1),

jr�(x)j6 K"f ;�
(1+ r~(x))1+�

:

Now, let us show that �(x)! 0 when jxj!1. We recall that

�(x)= 1
2�

Z
R2
ln(jx¡Y j)f(Y )dY ;

and since
R
R2f(Y )dY =0, for large values of x (in particular jxj� d),

�(x)= 1
2�

Z
R2
ln
�
jx¡Y j
jxj

�
f(Y )dY :

If jx¡Y j6 1, then jf(Y )j6 K"f ;�

(1+ jxj)2+� , henceZ
�
jx¡Y j61	

����ln� jx¡Y jjxj

�
f(Y )

���� 6 K"f ;�
(1+ jxj)2+�

Z
{jx¡Y j61}

jln(jx¡Y j)¡ ln(jxj)j

6 K"f ;�(1+ ln(jxj))
(1+ jxj)2+� ! 0
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when x!1. If jx¡ Y j> 1, then ln
�
jx¡Y j
jxj

�
! 0 when jxj!1 and we recall that f is bounded

in L1. We have, for jxj > 2 that jx ¡ Y j 6 jxj(jy j + 2) and therefore, for jx ¡ Y j > 1; jxj > 2,���ln� jx¡Y jjxj

����6K ln(jy j+2), hence����1�jx¡Y j>1	ln� jx¡Y jjxj

�
f(Y )

����6K ln(jY j+2)f(Y )2L1(R2;C):

By dominated convergence theorem, we deduce that �(x)! 0 when jxj!1. Now, to estimate �,
we integrate from in�nity. For instance, in the case x1> 0; x2> 0, we estimate

j�(x)j6
����Z
x2

+1
@x2�(x1; t)dt

����6K"f ;�Z
x2

+1 dt
(1+ jx1¡ de1~ j+ t)1+�

6 K"f ;�
�(1+ r~(x))�

: �

2.1.4.2 Fundamental solution for ¡�+2

We will use the fundamental solution of ¡�+1 and its following properties.

Lemma 2.1.9. ([1]) The fundamental solution of ¡� + 1 in R2 is 1

2�
K0(j:j), where K0 is the

modi�ed Bessel function of second kind. It sati�es K02C1(R+�) and

K0(r)�r!1
�
2r

q
e¡r;

K0(r)�r!0¡ln(r);

K0
0(r)�r!1¡

�
2r

q
e¡r;

K0
0(r)�r!0

¡1
r
;

8r > 0;K0(r)> 0;K0
0(r)< 0 and K0

00(r)> 0:

Proof. The �rst three equivalents are respectively equations 9.7.2, 9.6.8 and 9.7.4 of [1]. The
fourth one can be deduced from equations 9.6.27 and 9.6.9 of [1]. For � 2N, K� is C1(R;R) since
it solves 9.6.1 of [1] and from the end of 9.6 of [1], we have that K� has no zeros. In particular
with the asymptotics of 9.6.8, this implies that K�(r)>0. Furthermore, from 9.6.27 of [1], we have
K0
0=¡K1< 0 and K0

00=¡K1
0= K0+K2

2
> 0. �

We end this subsection by the proof an elliptic estimate that will be used in the proof of
Proposition 2.1.17.

Lemma 2.1.10. For any �> 0, there exists a constant C(�)> 0 such that, for any d> 1, if two
real-valued functions 	2H1(R2); h2C0(R2) satisfy in the distribution sense

(¡�+2)	=h;

and

k(1+ r~)�hkL1(R2)<+1;

then 	2C1(R2) with

j	j+ jr	j6 C(�)k(1+ r~)�hkL1(R2)

(1+ r~)�
:

Proof. The fundamental solution of ¡�+2 in R2 is 1

2�
K0

¡
2

p
j:j
�
where K0 is the modi�ed Bessel

function of the second kind with the properties described in Lemma 2.1.9. Since 	2H1(R2) and
the equation ¡�+2 is strictly elliptic, we have

	= 1
2�
K0

¡
2

p
j:j
�
�h;
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therefore (using K0> 0), for x2R2,

j	(x)j6Kk(1+ r~)�hkL1(R2)

Z
R2
K0

¡
2

p
jx¡Y j

� dY

(1+ r~(Y ))�
:

If jx¡ de1~ j6 1 or jx+ de1~ j6 1, we haveZ
R2
K0

¡
2

p
jx¡Y j

� 1
(1+ r~(Y ))�

dY 6
Z
R2
K0

¡
2

p
jx¡Y j

�
dY 6

Z
R2
K0

¡
2

p
jY j
�
dY 6K;

therefore the estimate holds. We now suppose that jx¡ de1~ j; jx+ de1~ j> 1. We decomposeZ
R2
K0

¡
2

p
jx¡Y j

� 1
(1+ r~(Y ))�

dY =
Z
�
Y1>0

	K0

¡
2

p
jx¡Y j

� dY
(1+ jY ¡ de1~ j)�

+
Z
�
Y160

	K0

¡
2

p
jx¡Y j

� dY
(1+ jY + dne1~ j)�

;

and we estimate, by a change of variable,Z
�
Y1>0

	K0

¡
2

p
jx¡Y j

� dY
(1+ jY ¡ de1~ j)�

6
Z
R2
K0

¡
2

p
jY j
� dY
(1+ jx¡ de1~ ¡Y j)�

:

Now, if jY j6 jx¡ de1j
2

, by Lemma 2.1.9 we haveZ
n
jY j6 |x¡de1|

2

oK0

¡
2

p
jY j
� dY
(1+ jx¡ de1~ ¡Y j)�

6 K

(1+ jx¡ de1~ j)�
Z
n
jY j6 jx¡de1j

2

oK0

¡
2

p
jY j
�
dY

6 K

(1+ jx¡ de1~ j)�
:

If jY j> jx¡ dne1j
2

, by Lemma 2.1.9 we haveZ
n
jY j> |x¡de1|

2

oK0

¡
2

p
jY j
� dY
(1+ jx¡ de1~ ¡Y j)�

6 Ke¡jx¡de1j/4
Z
n
jY j> jx¡de1j

2

oe¡jY j/4dY
6 K(�)

(1+ jx¡ de1~ j)�
:

By symmetry, we haveZ
�
Y160

	K0

¡
2

p
jx¡Y j

� dY
(1+ jY + de1~ j)�

6 K
(1+ jx+ de1~ j)�

;

and this shows that

j	(x)j6 K(�)k(1+ r~)�hkL1(R2)

(1+ r~(x))�
: (2.1.12)

For r	, we have the similar integral form

r	= 1
2�
r
¡
K0

¡
2

p
j:j
��
�h:

Once again, we can show the estimate if jx¡ de1~ j6 1 or jx+ de1~ j6 1, and otherwise, we estimate
as previously

jr	(x)j 6 Kk(1+ r~)�hkL1(R2)

Z
R2

��rK0

¡
2

p
jx¡Y j

��� 1
(1+ r~(Y ))�

dY

6 Kk(1+ r~)�hkL1(R2)

Z
R2
¡K0

0¡ 2
p
jx¡Y j

��� 1
(1+ r~(Y ))�

dY
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since K0
0< 0 (from Lemma 2.1.9). Now, we can do the same computation as for the estimation of

j	j, using the properties of K0
0 instead of K0 in Lemma 2.1.9. The same proof works, since the

two main ingredients were the integrability near 0 and an exponential decay at in�nity of K0, and
¡K0

0 veri�es this too. We deduce

jr	(x)j6 C(�)k(1+ r~)�hkL1(R2)

(1+ r~(x))�
: (2.1.13) �

Remark 2.1.11. Lemma 2.1.10 is di�erent from the equivalent one of [29] for the gradient, which
is equation (5.21) there. They claim that:

for any 0 < � < 1, there exists C > 0 such that, if two real-valued functions 	 2 C1(R2);
h2C0(R2) satisfy

(¡�+2)	=h

in the distribution sense, and

k	(1+ r~)1+�kL1(R2)+ kr	(1+ r~)2+�kL1(R2)+ k(1+ r~)1+�hkL1(R2)<+1;
then

j	j6 Ck(1+ r~)1+�hkL1(R2)

(1+ r~)1+�
and

jr	j6 Ck(1+ r~)1+�hkL1(R2)

(1+ r~)2+�
:

The main di�erence they claim would be a stronger decay for the gradient. However, such a result
can not hold, because of the following counterexample:

	"(x)=

8<: 0 if jxj6 1/"
sin2(r)

(1+ r)2+�
if jxj> 1/":

For "> 0 small enough (in particular such that 1

"
� 1

c
, and such that 1

"
is an integer multiple of �,

so that 	" is C2), we have

k(1+ r~)1+�h(x)kL1(R2)= k(1+ r~)1+�((¡�+2)	)(x)kL1(R2)6K"
and

k(1+ r~)2+� jr	(x)jkL1(R2)> 1/2:

Therefore, taking "! 0, we see that the estimate jr	(x)j6 Ck(1+ r~)1+�hkL1(R2)

(1+ r~)2+�
can not hold.

For our proof of the inversion of the linearized operator (Proposition 2.1.17 below), we did not
choose the same norms k:k�;�;d and k:k��;�0;d as in [29] (at the beginning of subsection 2.1.3). In
particular, we require decays on the second derivatives for k:k��;�0;d. Our proof of the inversion of
the linearized operator (the equivalent of Lemma 5.1 of [29]) will be di�erent, and will follow more
closely the proof of [11].

2.1.4.3 Estimates for the Gross-Pitaevskii kernels

We are interested here in solving the following equation on  , given a source term h and c2
�
0; 2
p �

:

¡ic@x2 ¡� +2Re( )=h:

It will appear in the inversion of the linearized operator around V . See Lemma 2.1.15 for the exact
result. We give here a way to construct a solution formally. We will highlight all the important
quantities, as well as all the di�culties that arise when trying to solve this equation rigorously.

In this subsection, we want to check that a solution of this equation, with  =  1 + i 2 and
h=h1+ ih2 (where  1;  2; h1; h2 are real valued) can be written

 1=K0 �h1+ cH; (2.1.14)
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with H a function that satis�es

@xjH :=Kj �h2;
and

@xj 2=Gj¡ cKj �h1; (2.1.15)

where similarly Gj satis�es

@xkGj := (c2Lj;k¡Rj;k) �h2;

where, for j ; k 2
�
1; 2
	
, �=(�1; �2)2R2,

K0(�) :=
j� j2

j� j4+2j� j2¡ c2�22
;

Kj(�) :=
�2�j

j� j4+2j� j2¡ c2�22
;

Lj;k(�) :=
�2
2�j�k

j� j2(j� j4+2j� j2¡ c2�22)
;

and

Rj;k(�) :=
�j�k
j� j2 :

We will check later on that, for continuous and su�ciently decaying functions h, these quantities
are well de�ned, and that H; Gj ;  2 can be de�ned from there derivatives. The Gross-Pitaevskii
kernels, K0;Kj ;Lj;k, and the Riesz kernels Rj;k have been studied in [19], and we will recall some
of the results obtained there.

We write the system in real and imaginary part:�
c@x2 2¡� 1+2 1=h1
¡c@x2 1¡� 2=h2:

Now, taking the Fourier transform of the system, we have(
i�2c 2+(j� j2+2) 1=h1̂
¡i�2c 1+ j� j2 2=h2̂;

and we write it  
j� j2+2 ic�2
¡ic�2 j� j2

! 
 1

 2

!
=

 
h1̂

h2̂

!
:

Here, we suppose that  is a tempered distributions and h2Lp(R2;C) for some p> 1.
Now, we want to invert the matrix, and for that, we have to divide by its determinant, j� j4+

2j� j2¡ c2�22. For 0<c< 2
p

, this quantity is zero only for �=0. Thus, for �=/ 0, 
 1
 2

!
= 1
j� j4+2j� j2¡ c2�22

 
j� j2h1̂¡ ic�2h2̂

(j� j2+2)h2̂+ ic�2h1̂

!
;

which implies that

 1=
j� j2h1̂

j� j4+2j� j2¡ c2�22
+ ¡ic�2h2̂
j� j4+2j� j2¡ c2�22

:

With the de�nition of K0, we have j�j2

j�j4+2j�j2¡ c2�22
h1̂=K0h1̂ and, de�ning the distribution H by

Ĥ = ¡i�2
j�j4+2j�j2¡ c2�22

h2̂, we have, for �=/ 0,

@xjH = �j �2h2̂
j� j4+2j� j2¡ c2�22

=Kjh2̂:

Remark that ¡i�2
j�j4+2j�j2¡ c2�22

2L3/2(R2;C) and thus is a tempered distribution.
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Now, we have

@xj 2=
i�j(j� j2+2)h2̂
j� j4+2j� j2¡ c2�22

+
¡c�j �2h1̂

j� j4+2j� j2¡ c2�22
:

We check that ¡c�j �2
j�j4+2j�j2¡ c2�22

h1̂=¡cKjh1̂, and we compute

j� j2+2
j� j4+2j� j2¡ c2�22

= 1
j� j2

�
1¡ c2�2

2

j� j4+2j� j2¡ c2�22

�
= 1
j� j2 ¡ c

2 �2
2

j� j2(j� j4+2j� j2¡ c2�22)
;

thus, denoting Gj=
i�j(j�j2+2)

j�j4+2j�j2¡ c2�22
h2̂, we have

@xkGj :=
�
c2Lj;k¡Rj;k

�
h2̂:

We therefore have that, at least formally, for �=/ 0, ¡ic@x2 ¡� +2Re( )¡h(�)=0. We deduce
that there exists P 2C[X1; X2] such that ¡ic@x2 ¡� +2Re( )¡h=P Now, if the function  
and h are such that the left hand side is bounded and goes to 0 at in�nity, this implies that P =0.
This will hold under a condition on h (which will be

R
R2h2=0 and some decay estimates, that  

will inherit). Another remark is that  is here in part de�ned through its derivatives, and we need
an argument to construct a primitive. See Lemma 2.1.15 for a rigorous proof of this construction.
Remark that ¡ic@x2 ¡� + 2Re( ) = 0 has some nonzero or unbounded polynomial solutions,
for instance  = i or  = ix2¡ c

2
.

The kernels K0; Kj and Lj;k have been studied in details in [19], [21] and [22]. In particular,
we recall the following result.

Theorem 2.1.12. ([19], Theorems 5 and 6) For K2
�
K0;Kj ;Lj;k

	
and any 0<c0< 2

p
, there

exist a constant K(c0)> 0 such that, for all 0<c<c0,

jK(x)j6 K(c0)
jxj1/2(1+ jxj)3/2

and

jrK(x)j6 K(c0)
jxj3/2(1+ jxj)3/2

:

Proof. This is the main result of Theorems 5 and 6 of [19]. We added the fact that the constant K
is uniform in c, given that c is small. This can be easily shown by following the proof of Theorem
5 and 6 of [19], and verifying that the constants depends only on weighed L1 norms on K̂ and its
�rst derivatives, which are uniforms in c if c > 0 is small. The condition c < c0 is taken in ordrer
to avoid c! 2

p
, where this does not hold (the singularity near �=0 of K̂ changes of order at the

limit). We will take often c0=1. Furthermore, the factor 1/2 for the growth near x=0 is not at
all optimal, but we will not require more here.

Remark that the speed in [19] is in the direction e~1, whereas it is in the direction e~2 in our case,
which explains the swap between �2 and �1 in the two papers. �

We recall that r~ =min (r1; r¡1) with r�1 = jx � de1~ j, 1

2c
< d <

2

c
. We give some estimates of

convolution with these kernels.

Lemma 2.1.13. Take K 2
�
K0; Kj ; Lj;k

	
and h2C0(R2;R), and suppose that, for some �> 0,

kh(1+r~)�kL1(R2)<+1. Then, for any 0<�0<�, there exists C(�;�0)>0 such that, for 0<c<1,
if either

¡ �< 2

¡ 2<�< 3, 8(x1; x2)2R2; h(¡x1; x2)=h(x1; x2) and
R
R2h=0,

then

jK �hj6 C(�; �0)kh(1+ r~)�kL1(R2)

(1+ r~)�0
:
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Furthermore, if �< 3 (without any other conditions), then

jrK �hj6 C(�; �0)kh(1+ r~)�kL1(R2)

(1+ r~)�0
:

The symmetry and
R
R2h=0 in the case 2<�<3 could be removed, if we suppose instead thatR

{x1>0}h=
R

{x160}h= 0. In particular, if we suppose that 8(x1; x2) 2R2; h(x1; x2) =¡h(x1;¡x2),
then the condition

R
R2h=0 is automatically satis�ed.

Proof. First, since � > 0, h 2 Lp(R2; C) for some large p > 1 (depdending on �), and rK;
K 2Lq(R2;C) for any 4

3
> q > 1 by Theorem 2.1.12, thus K � h and rK � h are well de�ned. We

only look at the estimates for x 2R2 with x1> 0. The case x16 0 can be done similarly. In this
case, we have r~(x)= jx¡ dce1~ j.

We �rst look at the case 0<�< 2. By Theorem 2.1.12 and the change of variables z= x¡ y,
we have

jK �hj(x)

6 Ckh(1+ r~)�kL1(R2)

Z
R2

dy

jx¡ y j1/2(1+ jx¡ y j)3/2(1+ r~(y))�

6 C(�)kh(1+ r~)�kL1(R2)

Z
{y1>0}

dy

jx¡ y j1/2(1+ jx¡ y j)3/2(1+ jy¡ de1~ j)�

+ C(�)kh(1+ r~)�kL1(R2)

Z
{y160}

dy

jx¡ y j1/2(1+ jx¡ y j)3/2(1+ jy+ de1~ j)�

6 C(�)kh(1+ r~)�kL1(R2)

Z
R2

dz

jz j1/2(1+ jz j)3/2(1+ jz¡ (x¡ de1~ )j)�

+ C(�)kh(1+ r~)�kL1(R2)

Z
R2

dz

jz j1/2(1+ jz j)3/2(1+ jz¡ (x+ de1~ )j)�
: (2.1.16)

We focus on the estimation of
R
R2

dz

jzj1/2(1+ jz j)3/2(1+ jz¡ (x¡ de1)j)�
. If jx¡ de1~ j6 1, since �> 0,Z

R2

dz

jz j1/2(1+ jz j)3/2(1+ jz¡ (x¡ de1~ )j)�
6C(�)

Z
R2

dz

jz j1/2(1+ jz j)3/2(1+ jz j)�
6C(�):

Now, for jx¡ de1~ j> 1, we decomposeZ
R2

dz

jz j1/2(1+ jz j)3/2(1+ jz¡ (x¡ de1~ )j)�

=
Z
n
jz j6 jx¡de1j

2

o dz

jz j1/2(1+ jz j)3/2(1+ jz¡ (x¡ de1~ )j)�

+
Z
n
jz j> jx¡de1j

2

o dz

jz j1/2(1+ jz j)3/2(1+ jz¡ (x¡ de1~ )j)�
:

In
n
jz j6 jx¡ de1j

2

o
, we have jz¡ (x¡de1~ )j> jx¡ de1j

2
and jz¡ (x¡de1~ )j> jz j, thus, since �¡�0>0

and jx¡ de1~ j> 1, Z
n
jz j6 jx¡de1j

2

o dz

jz j1/2(1+ jz j)3/2(1+ jz¡ (x¡ de1~ )j)�

6 C

jx¡ de1~ j�
0

Z
R2

dz

jz j1/2(1+ jz j)3/2(1+ jz j)�¡�0

6 C(�¡�0)
jx¡ de1~ j�

0

6 C(�¡�0; �0)
(1+ jx¡ de1~ j)�0

:

In
n
jz j> jx¡ de1j

2

o
, we have jz j> jz¡ (x¡ de1)j

3
since

jz¡ (x¡ de1~ )j6 jz j+ jx¡ de1~ j6 jz j+2jz j6 3jz j;
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and jz j>K(1+ jz j) since jz j> jx¡ de1j
2

> 1

2
. We then estimate, with 0<�0<�< 2,Z

n
jz j> jx¡de1j

2

o dz

jz j1/2(1+ jz j)3/2(1+ jz¡ (x¡ de1~ )j)�

6 C

(1+ jx¡ de1~ j)�
0

Z
n
jz j> jx¡de1j

2

o dz

(1+ jz j)2¡�0(1+ jz¡ (x¡ de1~ )j)�

6 C(�; �0)
(1+ jx¡ de1~ j)�

0

Z
R2

dz

(1+ jz¡ (x¡ de1~ )j)2+�¡�
0

6 C(�; �0)
(1+ jx¡ de1~ j)�0

:

With similar computations, we check that, since x1> 0,Z
R2

dz

jz j1/2(1+ jz j)3/2(1+ jz¡ (x+ de1~ )j)�
6 C(�¡�0; �0)
(1+ jx+ de1~ j)�

0 6
C(�¡�0; �0)
(1+ jx¡ de1~ j)�

0 :

Therefore, for 0<�< 2, we have

jK �hj6 C(�¡�0; �0)kh(1+ r~)�kL1(R2)

(1+ r~)�0
:

Now, if we consider rK instead of K and �< 3, a similar proof gives the result. The only change

is that we now use 3¡ �0> 0 since �0< � < 3 in the estimate of the integral in
n
jz j> jx¡ de1j

2

o
,

with the extra decay coming from rK instead of K.

We now look at the case 2 < � < 3 and
R
R2h = 0. In particular, since � > 2, we indeed have

h2L1(R2). For r~(x)= jx¡ de1~ j6 1, the proof is the same as in the case �< 2.
We now suppose that r~(x)= jx¡ de1~ j> 1. Since

R
R2h=0 and 8x2R2; h(¡x1; x2)= h(x1; x2),

we have Z
{y160}

h(y)dy=
Z

{y1>0}
h(y)dy=0;

hence Z
{y160}

K(x+ de1~ )h(y)dy=
Z

{y1>0}
K(x¡ de1~ )h(y)dy=0:

Therefore, we decompose

j(K �h)(x)j

=
����Z

R2
K(x¡ y)h(y)dy

����
=
����Z

{y1>0}
(K(x¡ y)¡K(x¡ de1~ ))h(y)dy

����+ ����Z
{y160}

(K(x¡ y)¡K(x+ de1~ ))h(y)dy
����

6
Z

{y1>0}\{jy¡de1j6jx¡de1j/2}
jK(x¡ y)¡K(x¡ de1~ )jjh(y)jdy

+
Z

{y1>0}\{jx¡yj6jx¡de1j/2}
jK(x¡ y)¡K(x¡ de1~ )jjh(y)jdy

+
Z

{y1>0}\{jx¡yj>jx¡de1j/2}\{jy¡de1j>jx¡de1j/2}
jK(x¡ y)¡K(x¡ de1~ )jjh(y)jdy:

+
Z

{y160}
jK(x¡ y)¡K(x+ de1~ )jjh(y)jdy:

In
�
y1> 0

	
\
�
jy¡ de1~ j6 jx¡ de1~ j/2

	
, by Theorem 2.1.12,

jK(x¡ y)¡K(x¡ de1~ )j
6 jK((x¡ de1~ )¡ (y¡ de1~ ))¡K(x¡ de1~ )j
6 jy¡ de1~ j

�
sup

B(x¡de1;jx¡de1j/2)
jrK j

�
6 C jy¡ de1~ j

(1+ jx¡ de1~ j)3
:
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With jx¡ de1~ j>1, �< 3 and the fact that in
�
y1>0

	
\
�
jy¡ de1~ j6 jx¡de1~ j/2

	
, r~(y)= jy¡ de1~ j,

we estimate Z
{y1>0}\{jy¡de1j6jx¡de1j/2}

jK(x¡ y)¡K(x¡ de1~ )jjh(y)jdy

6
Z

{jy¡de1j6jx¡de1j/2}

Ckh(1+ r~)�kL1(R2)jy¡ de1~ j
(1+ jx¡ de1~ j)3(1+ jy¡ de1~ j)�

dy

6 Ckh(1+ r~)�kL1(R2)

(1+ jx¡ de1~ j)3
Z

{jy¡de1j6jx¡de1j/2}

jy¡ de1~ j
(1+ jy¡ de1~ j)�

dy

6 Ckh(1+ r~)�kL1(R2)

(1+ jx¡ de1~ j)3
Z

{jz j6jx¡de1j/2}

jz j
(1+ jz j)�dz

6 C(�)kh(1+ r~)�kL1(R2)

(1+ jx¡ de1~ j)3
� 1
(1+ jx¡ de1~ j)�¡3

6 C(�)kh(1+ r~)�kL1(R2)

(1+ jx¡ de1~ j)�
:

Now, in
�
y1> 0

	
\
�
jx¡ y j6 jx¡ de1~ j/2

	
, we have jy¡ de1~ j> jx¡ de1~ j/2, and thus

jh(y)j6 C(�)kh(1+ r~)�kL1(R2)

(1+ jx¡ de1~ j)�
:

We deduce thatZ
{y1>0}\{jx¡y j6jx¡de1j/2}

jK(x¡ y)¡K(x¡ de1~ )jjh(y)jdy

6 Ckh(1+ r~)�kL1(R2)

(1+ jx¡ de1~ j)�
Z

{y1>0}\{jx¡yj6jx¡de1j/2}
jK(x¡ y)¡K(x¡ de1~ )jdy

6 Ckh(1+ r~)�kL1(R2)

(1+ jx¡ de1~ j)�

�Z
{jx¡y j6jx¡de1j/2}

jK(x¡ y)jdy+ jK(x¡ de1~ )j
Z

{jx¡yj6jx¡de1j/2}
dy

�
6 Ckh(1+ r~)�kL1(R2)

(1+ jx¡ de1~ j)�

�Z
{jz j6jx¡de1j/2}

jK(z)jdz+ jK(x¡ de1~ )jjx¡ de1~ j2
�

6 Ckh(1+ r~)�kL1(R2)

(1+ jx¡ de1~ j)�
(ln(1+ jx¡ de1~ j)+ 1)

6 C(�¡�0)kh(1+ r~)�kL1(R2)

(1+ jx¡ de1~ j)�
0

since jx¡ de1~ j> 1.
Now, in

�
y1> 0

	
\
�
jx¡ y j> jx¡ de1~ j/2

	
\
�
jy¡ de1~ j> jx¡ de1~ j/2

	
, we have

jK(x¡ y)¡K(x¡ de1~ )j6 jK(x¡ y)j+ jK(x¡ de1~ )j6
C

(1+ jx¡ de1~ j)2
and

jh(y)j6 kh(1+ r~)
�kL1(R2)

(1+ jx¡ de1~ j)�
;

as well as

jh(y)j6 kh(1+ r~)
�kL1(R2)

(1+ jy¡ de1~ j)�
:

We deduce, since �¡�0> 0, thatZ
{y1>0}\{jx¡yj>jx¡de1j/2}\{jy¡de1j>jx¡de1j/2}

jK(x¡ y)¡K(x¡ de1~ )jjh(y)jdy:

6 Ckh(1+ r~)�kL1(R2)

(1+ jx¡ de1~ j)2+(�
0¡2)

Z
R2

dy

(1+ jy¡ de1~ j)�¡�
0+2

6 C(�¡�0)kh(1+ r~)�kL1(R2)

(1+ jx¡ de1~ j)�
0 :
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We are left with the estimation of
R

{y160} jK(x¡ y)¡K(x+ de1~ )jjh(y)jdy. We decompose it,Z
{y160}

jK(x¡ y)¡K(x+ de1~ )jjh(y)jdy

=
Z

{y160}\
n
jy+de1j6 jx+de1j2

ojK(x¡ y)¡K(x+ de1~ )jjh(y)jdy
+
Z

{y160}\
n
jy+de1j> jx+de1j2

ojK(x¡ y)¡K(x+ de1~ )jjh(y)jdy:

In
�
y16 0

	
\
n
jy+ de1~ j6 jx+ de1j

2

o
, we have

jh(y)j6 kh(1+ r~)
�kL1(R2)

(1+ jy+ de1~ j)�
;

and

jK(x¡ y)¡K(x+ de1~ )j
= jK((x+ de1~ )¡ (y+ de1~ ))¡K(x+ de1~ )j
6 jy+ de1~ j sup

B(x+de1;jx+de1j/2)
jrK j

6 C jy+ de1~ j
(1+ jx+ de1~ j)3

;

thus Z
{y160}\

n
jy+de1j6 jx+de1j2

ojK(x¡ y)¡K(x+ de1~ )jjh(y)jdy
6 Ckh(1+ r~)�kL1(R2)

(1+ jx+ de1~ j)3
Z
n
jy+de1j6 jx+de1j2

o jy+ de1~ j
(1+ jy+ de1~ j)�

dy

6 Ckh(1+ r~)�kL1(R2)

(1+ jx+ de1~ j)3
� C(�)
(1+ jx+ de1~ j)�¡3

6 C(�)kh(1+ r~)�kL1(R2)

(1+ jx+ de1~ j)�

6 C(�)kh(1+ r~)�kL1(R2)

(1+ jx¡ de1~ j)�

since x1> 0 (which implies that jx+ de1~ j> jx¡ de1~ j).
Finally, in

�
y16 0

	
\
n
jy+ de1~ j> jx+ de1j

2

o
, we �rst suppose that jx¡ y j> jx+ de1j

2
, thus

jK(x¡ y)¡K(x+ de1~ )j6 jK(x¡ y)j+ jK(x+ de1~ )j6
C

(1+ jx+ de1~ j)2
;

and we have

jh(y)j6 K(�)kh(1+ r~)�kL1(R2)

(1+ jx+ de1~ j)�
;

as well as

jh(y)j6 K(�)kh(1+ r~)�kL1(R2)

(1+ jy+ de1~ j)�
:

We therefore estimate, since �¡�0> 0, jx+ de1~ j> jx¡ de1~ j,Z
{y160}\

n
jy+de1j> jx+de1j2

o
\
n
jx¡y j> jx+de1j

2

ojK(x¡ y)¡K(x+ de1~ )jjh(y)jdy
6 Ckh(1+ r~)�kL1(R2)

(1+ jx+ de1~ j)2+(�
0¡2)

Z
R2

1
(1+ jy+ de1~ j)�¡�

0+2

6 C(�¡�0)kh(1+ r~)�kL1(R2)

(1+ jx+ de1~ j)�
0

6 C(�¡�0)kh(1+ r~)�kL1(R2)

(1+ jx¡ de1~ j)�
0 :
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The other case is when jx ¡ y j 6 jx+ de1j
2

, where we still have jh(y)j 6 kh(1+ r~)�kL1(R2)

(1+ jx+ de1j)�
and we

estimateZ
{y160}\{jx¡yj6jx+de1j/2}

jK(x¡ y)¡K(x+ de1~ )jjh(y)jdy

6 Ckh(1+ r~)�kL1(R2)

(1+ jx+ de1~ j)�
Z

{y160}\{jx¡y j6jx+de1j/2}
jK(x¡ y)¡K(x+ de1~ )jdy

6 Ckh(1+ r~)�kL1(R2)

(1+ jx+ de1~ j)�

�Z
{jx¡yj6jx+de1j/2}

jK(x¡ y)jdy+ jK(x+ de1~ )j
Z

{jx¡yj6jx+de1j/2}
dy

�
6 Ckh(1+ r~)�kL1(R2)

(1+ jx+ de1~ j)�

�Z
{jz j6jx+de1j/2}

jK(z)jdz+ jK(x+ de1~ )jjx+ de1~ j2
�

6 Ckh(1+ r~)�kL1(R2)

(1+ jx+ de1~ j)�
(ln(1+ jx+ de1~ j)+ 1)

6 C(�¡�0)kh(1+ r~)�kL1(R2)

(1+ jx+ de1~ j)�
0

6 C(�¡�0)kh(1+ r~)�kL1(R2)

(1+ jx¡ de1~ j)�
0 ;

which concludes the estimates of this lemma. �
We complete these estimates with some for Rj;k.

Lemma 2.1.14. Take h2C1(R2;R) with 8x=(x1; x2)2R2; h(¡x1; x2)=h(x1; x2), and suppose
that for some � > 0, kh(1 + r~)�kL1(R2)+ krh(1 + r~)�kL1(R2)<+1. Then, for any 0< �0< �,
for 0<c< 1, if either
¡ �< 2
¡ 2<�< 3 and

R
R2h=0,

then, there exists C(�; �0)> 0 such that

jRj;k �hj6
C(�; �0)(kh(1+ r~)�kL1(R2)+ krh(1+ r~)�kL1(R2))

(1+ r~)�0
:

Proof. We recall from [19] (or see equation (30) of [21]) that

(Rj;k �h)(x) = 1
2�

Z
jx¡y j>1

�j;kjx¡ y j2¡ 2(x¡ y)j(x¡ y)k
jx¡ y j4 h(y)dy

+ 1
2�

Z
jx¡y j61

�j;kjx¡ y j2¡ 2(x¡ y)j(x¡ y)k
jx¡ y j4 (h(y)¡h(x))dy: (2.1.17)

As in the proof of Lemma 2.1.13, we suppose x1 > 0. It implies that r~(x) = jx ¡ de1~ j. The proof
can be done similarly if x16 0.

First, we look at the case 0<�< 2. We check that����Z
jx¡y j>1

�j;kjx¡ y j2¡ 2(x¡ y)j(x¡ y)k
jx¡ y j4 h(y)dy

����
6 K

Z
jx¡y j>1

jh(y)jdy
(1+ jx¡ y j)2

6 Kkh(1+ r~)�kL1(R2)

Z
R2

dy

(1+ jx¡ y j)2(1+ r~(y))� :

The estimate of
R
R2

dy

(1+ jx¡ y j)2(1+ r~(y))� can be done exactly as the estimate ofZ
R2

dy

jx¡ y j1/2(1+ jx¡ y j)3/2(1+ r~(y))�

in the proof of Lemma 2.1.13 (see equation (2.1.16) and the proof below). We deduce that����Z
jx¡y j>1

�j;kjx¡ y j2¡ 2(x¡ y)j(x¡ y)k
jx¡ y j4 h(y)dy

����6 K(�; �0)kh(1+ r~)�kL1(R2)

(1+ jx¡ de1~ j)�
0 :
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Now, if jx¡ y j6 1, for 0<�< 3, we have

jh(y)¡h(x)j6 jy¡xj sup
B(x;1)

jrhj6 jy¡xjkrh(1+ r~)
�kL1(R2)

(1+ r~(x))�
;

thus ����Z
jx¡y j61

�j;kjx¡ y j2¡ 2(x¡ y)j(x¡ y)k
jx¡ y j4 (h(y)¡h(x))dy

����
6 Kkrh(1+ r~)�kL1(R2)

(1+ r~(x))�

Z
jx¡yj61

1
jx¡ y j2 jy¡xj dy

6 Kkrh(1+ r~)�kL1(R2)

(1+ r~(x))�
:

This concludes the proof of the estimate in the case � < 2. We now suppose that 2< � < 3 andR
R2h= 0. We already have estimate the second integral in (2.1.17) (since the computations were

done for 0<�< 3), and for the �rst integral, the case jx¡ de1~ j6 1 is done as previously.
We now suppose that jx¡ de1~ j> 1. We are left with the estimation ofZ

jx¡yj>1

�j;kjx¡ y j2¡ 2(x¡ y)j(x¡ y)k
jx¡ y j4 h(y)dy:

We de�ne Fj;k(z) :=
�j;kjz j2¡ 2zjzk

jz j4 and we check easily that, for jz j> 1,

jFj;k(z)j6
K
jz j2 :

Since 8x2R2; h(¡x1; x2)=h(x1; x2) and
R
R2h=0, we haveZ

{y1>0}
Fj;k(x¡ de1~ )h(y)dy+

Z
{y160}

Fj;k(x+ de1~ )h(y)dy=0:

Furthermore, we estimate (since jx¡ de1~ j> 1)Z
{y1>0}\{jx¡yj61}

jFj;k(x¡ de1~ )h(y)jdy

6 jFj;k(x¡ de1~ )j
Z

{y1>0}\{jx¡yj61}
jh(y)jdy

6 K
(1+ jx¡ de1~ j)2

Z
{y1>0}\{jx¡y j61}

jh(y)jdy:

Now, in
�
y1> 0

	
\
�
jx¡ y j6 1

	
, we check that jh(y)j6 K(�)kh(1+ r~)�kL1(R2)

(1+ jx¡ de1j)�
and thusZ

{y1>0}\{jx¡yj61}
jFj;k(x¡ de1~ )h(y)jdy6

K(�)kh(1+ r~)�kL1(R2)

(1+ jx¡ de1~ j)2+�
:

Similarly, since jx+ de1~ j6 jx¡ de1~ j since x1> 0,Z
{y160}\{jx¡yj61}

jFj;k(x+ de1~ )h(y)jdy6
K(�)kh(1+ r~)�kC0(R2)

(1+ jx¡ de1~ j)2+�
:

Therefore, we estimate ����Z
jx¡yj>1

�j;kjx¡ y j2¡ 2(x¡ y)j(x¡ y)k
jx¡ y j4 h(y)dy

����
6
Z

{y1>0}\{jx¡yj>1}
jFj;k(x¡ y)¡Fj;k(x¡ de1~ )jjh(y)jdy

+
Z

{y160}\{jx¡yj>1}
jFj;k(x¡ y)¡Fj;k(x+ de1~ )jjh(y)jdy

+
K(�)kh(1+ r~)�kC0(R2)

(1+ jx¡ de1~ j)2+�
:
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Now, we conclude as in the proof of Lemma 2.1.13 for the estimation of the two remaining integrals,
replacing the function K by Fj;k, and having the domain of all integrals restricted to

�
jx¡ y j>1

	
.

We check that, in
�
jz j> 1

	
,

jFj;k(z)j6
K
jz j2 6

K
(1+ jz j)2 ;

and, in
�
jx¡ y j> 1

	
,

jFj;k(x¡ y)¡Fj;k(x)j6
K jy j

(1+ jxj)3 :

With these estimates replacing Theorem 2.1.12, we can do the proof of the estimates as in Lemma
2.1.13, in the case 2<�< 3 and

R
R2h=0. �

We can now solve the problem

¡ic@x2 ¡� +2Re( )=h;Z
R2

Im(h)=0

in some suitable spaces. We de�ne the norms, for �; � 02R,

k k
;�;1 := k(1+ r~)1+� 1kL1(R2)+ k(1+ r~)2+�r 1kL1(R2)

+ k(1+ r~)2+�r2 1kL1(R2)+ k(1+ r~)� 2kL1(R2)

+ k(1+ r~)1+�r 2kL1(R2)+ k(1+ r~)2+�r2 2kL1(R2)

and

khk

;� 0;1 := k(1+ r~)1+� 0h1kL1(R2)+ k(1+ r~)2+�
0rh1kL1(R2)

+ k(1+ r~)2+� 0h2kL1(R2)+ k(1+ r~)2+�
0rh2kL1(R2);

as well as the spaces

E
;�1 :=
�
 2C2(R2;C); k k
;�;1<+1;8(x1; x2)2R2;  (x1; x2)=  (¡x1; x2)

	
;

and
E

;� 01 :=

�
h2C1(R2;C); khk

;� 0;1<+1;8(x1; x2)2R2; h(x1; x2)=h(¡x1; x2)

	
:

The norms k:k
;�;1 and k:k�;� di�er only on
�
r~6 3

	
, and E
;�1 has one less symmetry than E�;�.

Same remarks hold for k:k

;�0;1 and k:k��;� 0 and their associated spaces. Remark that if �> 0
is a smooth cuto� function with value 0 on

�
r~6R/2

	
and 1 on

�
r~>R

	
, then for any � 2R,

k k�;�6K(R; �)kV kC2({r~6R})+Kk� k
;�;1: (2.1.18)

Lemma 2.1.15. Given 1>� 0>�> 0, there exists K(�; � 0)> 0 such that, for any h2E

;� 01 withR
R2Im(h)= 0 and 0<c< 1, there exists a unique solution to the problem

¡ic@x2 ¡� +2Re( )=h;

in E
;�1 . This solution  2E
;�1 satis�es

k k
;�;16K(�; � 0)khk

;� 0;1:

Furthermore, if instead �2 ]¡1; 0[ and 1>� 0>�, there exists then K(�; � 0)> 0 such that, for any
h2E

;� 01 with 8(x1; x2)2R2; h(x1; x2)=h(x1;¡x2), there exists a unique solution to the problem

¡ic@x2 ¡� +2Re( )=h

in
�
	2E
;�1 ;8(x1; x2)2R2;	(x1; x2)=	(x1;¡x2)

	
. This solution  2E
;�1 satis�es

k k
;�;16K(�; � 0)khk

;� 0;1:

The case �2 ]¡1;0[ is particular and such a norm will be used only in the proof of Lemma 2.1.18
(if k k
;�;1<+1 for �<0, the function  is not necessarily bounded for instance). Remark that
the condition

R
R2Im(h)= 0 is automatically satis�ed if 8(x1; x2)2R2; h(x1; x2)=h(x1;¡x2).
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Proof. For 1 > � 0 > � > ¡1, we write in real and imaginary parts h = h1 + ih2. We de�ne, for
j 2
�
1; 2
	
,

	1;j :=K0 � @xjh1+ cKj �h2:

If 1>� 0>�>0, since @xjh1; h22L1(R2) (because � 0>0 and h2E

;� 01 ), and
R
R2h2=

R
R2@x2h1=0,

by Lemma 2.1.13 (applied with 0< � = 2 + � 0< 3, 0< �0= 2 + � < �), the function 	1;2 is well
de�ned and satis�es

jr	1;2j+ j	1;2j6
K(�; � 0)khk

;� 0;1

(1+ r~)2+�
:

This result still holds if � 2 ]¡1; 0[ and 1>� 0>�, since 0<�=2+� 0< 3; 0<�0=2+ � <�. We
check, still with Lemma 2.1.13 (applied with 0<�=2+� 0< 3, 0<�0=2+� <�), that

jr	1;1j6
K(�; � 0)khk

;� 0;1

(1+ r~)2+�
:

If �2 ]¡1;0[, we have j	1;1j6
K(�; � 0)khk

;�0;1

(1+ r~)2+�
by Lemma 2.1.13 (2+�<2). But since @x1h1 is not

even in x1, we can not apply Lemma 2.1.13 to estimate 	1;1 with the same decay in the case �>0.
However, following the proof of Lemma 2.1.13, we check that the estimate holds if jx+ de~1j6 1 or
jx¡ de~1j6 1, and that otherwise

j	1;1j6
K(�; � 0)khk

;�0;1

(1+ r~)2+�
+
����K(x+ de~1)Z

{y160}
@x1h(y)dy+K(x¡ de~1)

Z
{y1>0}

@x1h(y)dy
����:

Since Z
{y160}

@x1h(y)dy=¡
Z

{y1>0}
@x1h(y)dy=

Z
R

h(0; y2)dy2;

and����Z
R

h(0; y2)dy2

����6 Z
R

khk

;� 0;1
(1+ r~)1+� 0

dy26 c�khk

;� 0;1
Z
R

dy2
(1+ jy2j)1+�

0¡� 6K(�; �
0)c�khk

;� 0;1;

we have ����K(x+ de~1)Z
{y160}

@x1h(y)dy+K(x¡ de~1)
Z

{y1>0}
@x1h(y)dy

����
6 K(�; � 0)jK(x+ de~1)¡K(x¡ de~1)jc�khk

;� 0;1:

By Theorem 2.1.12, if jx+ de~1j; jx¡ de~1j> 1,

jK(x+ de~1)¡K(x¡ de~1)j6
K

(1+ jx+ de~1j)2
+ K
(1+ jx¡ de~1j)2

6 K
(1+ r~)2

;

and, if r~6 3d,
jK(x+ de~1)¡K(x¡ de~1)j6

K
(1+ r~)2

6 Kd
(1+ r~)3

;

or if r~> 3d,
jK(x+ de~1)¡K(x¡ de~1)j6Kd sup

�2[¡d;d]
jrK(x+ �e~1)j6

Kd
(1+ r~)3

;

therefore, by interpolation,

jK(x+ de~1)¡K(x¡ de~1)j6
�

K
(1+ r~)2

�
1¡�

�
�

Kd
(1+ r~)3

��
6 Kd�

(1+ r~)2+�
:

We deduce ����K(x+ de~1)Z
{y160}

@x1h(y)dy+K(x¡ de~1)
Z

{y1>0}
@x1h(y)dy

����
6 K(�; � 0)jK(x+ de~1)¡K(x¡ de~1)jc�khk

;� 0;1
6 K(�; � 0) (dc)�

(1+ r~)2+�
khk

;� 0;1

6 K(�; � 0)
(1+ r~)2+�

khk

;� 0;1:
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Combining the previous estimates, we conclude that, for j 2
�
1; 2
	
,

jr	1;j j+ j	1;j j6
K(�; � 0)khk

;�0;1

(1+ r~)2+�
: (2.1.19)

Let us show that 	1;j 2C1(R2;C) by dominated convergence theorem. For x; "2R2,

r	1;j(x+ ")¡r	1;j(x) =
Z
R2
rK0(y)(@xjh1(x+ "¡ y)¡ @xjh1(x¡ y))dy;

+ c

Z
R2
rKj(y)(h2(x+ "¡ y)¡h2(x¡ y))dy:

We check that for any y 2R2, @xjh1(x+ "¡ y)¡ @xjh1(x¡ y)! 0; h2(x+ "¡ y)¡ h2(x¡ y)! 0
pointwise when j"j! 0 (by continuity of @xjh1 and h2), and

jrK0(y)(@xjh1(x+ "¡ y)¡ @xjh1(x¡ y))j
+ cjrKj(y)(h2(x+ "¡ y)¡h2(x¡ y))j

6 K(�) jrK0(y)j
(1+ r~(x¡ y))2+� 0

k@xjh1(1+ r~)2+�
0kL1(R2)

+ K(�) cjrKj(y)j
(1+ r~(x¡ y))2+� 0

kh2(1+ r~)2+�
0kL1(R2)

6 K(�; x) jrK0(y)j
(1+ r~(y))2+� 0

k@xjh1(1+ r~)2+�
0kL1(R2)

+ K(�; x) cjrKj(y)j
(1+ r~(y))2+� 0

kh2(1+ r~)2+�
0kL1(R2)2L1(R2)

for j"j6 1 and a constant K(�; x)> 0, giving the domination.

Now, we check, by taking their Fourier transforms, that @x1	1;2 = @x2	1;1 2 L2(R2; C) (see
the computations at the beginning of subsection 2.1.4.3), and thus the integral of the vector �eld 
	1;1
	1;2

!
on any closed curve of R2 is 0. For a large constant D> 0, taking, for x12R, the path�

(x1; y); y 2 [¡D;D]
	
[
�
Y =(y1; y2)2R2; j(x1; 0)¡Y j=D; y1> 0

	
;

since j	1;2j6
K(�; � 0)khk

;�0;1

(1+ r~)2+�
andZ

{Y =(y1;y2)2R2;j(x1;0)¡Y j=D;y1>0}
j	1;2j6

K(c; �; � 0; h)
D1+� ! 0

when D!1 (since 1+� > 0), we deduce thatZ
¡1

+1
	1;2(x1; y2)dy2=0: (2.1.20)

We then de�ne for (x1; x2)2R2,

 1(x1; x2)=
Z
+1

x2

	1;2(x1; y2)dy2;
and thus, if x2< 0,

 1(x1; x2)=
Z
¡1

x2

	1;2(x1; y2)dy2:

With (2.1.19), we check that  1 2 C1(R2; C), and by simple integration from in�nity using the
equations above (with r~=min (jx¡ dce1~ j; jx+ dce1~ j), and since 1+� > 0), that

j 1j6
K(�; � 0)khk

;� 0;1

(1+ r~)1+�
:

Furthermore, we check that
@x2 1=	1;22C1(R2;C);

and (by taking their Fourier transforms)

@x1 1=	1;12C1(R2;C);
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therefore  12C2(R2;C), and by (2.1.19),

jr 1j6 j	1;1j+ j	1;2j6
K(�; � 0)khk

;� 0;1

(1+ r~)2+�
:

For j ; k 2
�
1; 2
	
, we have @xjxk

2  1=@xj	1;k, thus, by (2.1.19),

jr2 1j6
K(�; � 0)khk

;� 0;1

(1+ r~)2+�
:

Now, we de�ne
	2;j;k := (c2Lj;k¡Rj;k) �h2¡ cKj � @xkh1:

In the case 1> � 0>� > 0, @xkh1; h2 2 L1(R2) and since
R
R2h2=

R
R2@xkh1= 0, by Lemmas 2.1.13

and 2.1.14 (for �=2+ � 0< 3, �0=2+ � <�, and the same variant for Kj � @x1h1 as in the proof
of (2.1.19)), this function is well de�ned in L1(R2;C), and satis�es,

j	2;j;kj6
K(�; � 0)khk

;� 0;1

(1+ r~)2+�
: (2.1.21)

We check, as for the proof of (2.1.19), that this result holds if � 2 ]¡1; 0[ and 1>� 0>�.
Remark here that we do not have 	2;j;k 2C1(R2;C), since in Lemma 2.1.14, the estimate on

Rj;k�h2 uses rh2 in the norm (showing that 	2;j;k2C1(R2;C) would require estimates on r2h2).
However, we have that 	2;j;k 2 C0(R2; C) by dominated convergence and continuity of h2 and
@xkh1 (as for r	1;j). Furthermore, we check (by taking their Fourier transforms) that @x1	2;j;2=
@x2	2;j;1 in the distribution sense. We infer that the integral of

 
	2;j;1
	2;j;2

!
on any bounded closed

curve of R2 is 0. Indeed, taking �n a molli�er sequence, then �n �	2;j;1; �n �	2;j;22C1(R2;C),

@x1(�n �	2;j;2)¡ @x2(�n �	2;j;1)= �n � (@x1	2;j;2¡@x2	2;j;1)= 0;

therefore, for any closed curve C, the integral of the �eld
 
�n �	2;j;1
�n �	2;j;2

!
is 0. Using �n�	2;j;k!	2;j;k

pointwise (by continuity of 	2;j;k) and the domination

k�n �	2;j;1kL1(R2)6 k	2;j;1kL1(R2)<+1;

we infer that this result holds for
 
	2;j;1
	2;j;2

!
. We deduce, as for the proof of (2.1.20), thatZ

¡1

+1
	2;j;2(x1; y2)dy2=0: (2.1.22)

We then de�ne for (x1; x2)2R2; j 2
�
1; 2
	
,

	2;j(x1; x2)=
Z
+1

x2

	2;j;2(x1; y2)dy2;
and if x2< 0, by (2.1.22),

	2;j(x1; x2)=
Z
¡1

x2

	2;j;2(x1; y2)dy2:

With arguments similar to the proof for  1, we check that 	2;j 2C1(R2;C) with @xk	2;j=	2;j;k,

j	2;j j6
K(�; � 0)khk

;�0;1

(1+ r~)1+�
;

as well as

jr	2;j j6
K(�; � 0)khk

;� 0;1

(1+ r~)2+�
:

Finally, since @x1	2;2=	2;2;1=	2;1;2= @x2	2;1 2L2(R2;C) (by taking their Fourier transforms,
it follows from Rj;k=Rk;j, Lj;k=Lk;j and K̂j�k= K̂k�j), we have, as before, thatZ

¡1

+1
	2;2(x1; y2)dy2=0:

We de�ne
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 2(x1; x2)=
Z
+1

x2

	2;2(x1; y2)dy2;
and thus, if x2< 0,

 2(x1; x2)=
Z
¡1

x2

	2;2(x1; y2)dy2:

We check, as previously, by integration from in�nity, that  22C2(R2;C), @xjxk
2  2=	2;j;k, and

jr2 2j6
K(�; � 0)khk

;� 0;1

(1+ r~)2+�
;

jr 2j6
K(�; � 0)khk

;� 0;1

(1+ r~)1+�
;

as well as (if � > 0)

j 2j6
K(�; � 0)khk

;� 0;1

(1+ r~)�
:

Remark that if h satis�es 8(x1; x2)2R2; h(x1; x2)=h(x1;¡x2), then by the de�nition of  1 and  2
above, for  = 1+ i 2, we have that 8(x1; x2)2R2;  (x1; x2)= (x1;¡x2). Therefore, in the case
� 2 ]¡1; 0[, since 8(x1; x2)2R2;  2(x1; x2)=¡ 2(x1;¡x2), we have  2(x1; 0)=0, and we integrate

r 2 from the line
�
x2=0

	
instead of in�nity to show that j 2j6

K(�; � 0)khk

;� 0;1
(1+ r~)�

.

We deduce that, in either cases,  =  1+ i 22E
;�1 , and it satis�es

k k
;�;16K(�; � 0)khk

;� 0;1:
Now, let us show that ¡ic@x2 ¡� + 2Re( ) = h. From the computations at the beginning of
subsection 2.1.4.3, we check that the Fourier transform (in the distribution sense) of both side of
the equation are equals on

�
� 2R2; �=/ 0

	
(remark that they are both in Lp(R2;C) for some p>2

large enough). This implies that

Supp

�
¡ic@x2 ¡� +2Re( )¡h

�
�
�
0
	
;

and thus ¡ic@x2 ¡� +2Re( )¡h=P 2C[X1;X2]. With the decay estimates on  and h, we
check that P is bounded and goes to 0 at in�nity (since �; � 0>¡1), thus P =0.

Finally, if  ~ 2E
;�1 satis�es ¡ic@x2 ~¡� ~+2Re( ~)=h, then  ¡  ~ 2C2(R2;C) and

(¡ic@x2¡�+2Re)( ¡  ~)=0:

With the computations at the beginning of subsection 2.1.4.3, since  ¡  ~ is a tempered distri-

bution, we check that Supp  ¡  ~�
�
0
	
, therefore  ¡  ~ = P 2C[X1; X2]. If � > 0, since  ¡  ~

goes to 0 at in�nity, P =0. If � 2 ]¡1; 0[, then P = i� for some �2R (Re( ¡  ~)! 0 at in�nity
and r¡�Im( ¡  ~) is bounded), and by the symmetry on  ;  ~ we have in that case, �= 0. This
shows the uniqueness of a solution in E
;�1 (with the symmetry if � 2 ]¡1; 0[), and thus concludes
the proof of this lemma. �

2.1.5 Reduction of the problem
2.1.5.1 Inversion of the linearized operator
One of the key element in the inversion of the linearized operator is the computation of the kernel
for only one vortex. The kernel of the linearized operator around one vortex has been studied in
[10], with the following result.

Theorem 2.1.16. (Theorem 1.2 of [10]) Consider the linearized operator around one vortex
of degree "=�1,

LV"(�) :=¡��¡ (1¡jV"j2)�+2Re(V"� �)V"� :
Suppose that

k�kHV"
2 :=

Z
R2
jr�j2+(1¡jV"j2)j�j2+Re2(V"� �)<+1
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and

LV"(�)=0:

Then, there exist two constants c1; c22R such that

�= c1@x1V"+ c2@x2V":

This result describes the kernel of LV" that will appear in the proof of Proposition 2.1.17. It
shows that the kernel in HV" :=

�
�2Hloc

1 (R2); k�kHV"<+1
	
contains only the two elements we

expect: @x1V"; @x2V", which are due to the invariance by translation of (GP). One of the directions
will be killed by the symmetry and the other one by the orthogonality.

Now, we shall invert the linear part �L(�)+ (1¡ �)VL0(	). We recall that �= V	. We �rst
state an a priori estimate result. We recall the de�nitions, for �; � 02 ]0; 1[,

E�;�;d=�
�=V	2C2(R2;C); k	k�;�;d<+1; h�; Zdi=0;8x2R2;	(x1; x2)=	(x1;¡x2)=	(¡x1; x2)

	
and

E��;� 0;d=
�
Vh2C1(R2;C); khk��;� 0;d<+1

	
;

with

k	k�;�;d = kV	kC2({r~63})

+ kr~1+�	1kL1({r~>2})+ kr~2+�r	1kL1({r~>2})+ kr~2+�r2	1kL1({r~>2})

+ kr~�	2kL1({r~>2})+ kr~1+�r	2kL1({r~>2})+ kr~2+�r2	2kL1({r~>2});

khk��;� 0;d = kVhkC1({r~63})

+ kr~1+� 0h1kL1({r~>2})+ kr~2+�
0rh1kL1({r~>2})

+ kr~2+� 0h2kL1({r~>2})+ kr~2+�
0rh2kL1({r~>2}):

Proposition 2.1.17. For 1>� 0>� > 0, consider the problem, in the distribution sense�
�L(�)+ (1¡ �)VL0(	)=Vh
�=V	2E�;�; Vh2E��;� 0:

Then, there exist constants c0(�; � 0)> 0 small and C(�; � 0)> 0 depending only on � and � 0, such
that, for any solution of this problem with 0<c6 c0(�; � 0), 1

2
<cd< 2, it holds

k	k�;�;d6C(�; � 0)khk��;� 0;d:

Proof. This proof is similar to the ones done in [11] for the inversion of their linearized operator.
The main di�erence is that we have a transport term. Fix 1>� 0>�>0. We argue by contradiction.
Suppose that for given 1>� 0>�>0, there is no threshold c0(�;� 0)>0 such that, if 0<c6 c0(�;� 0)
we have k	k�;�;d6 C(�; � 0)khk��;�0;d. We can then �nd a sequence of cn! 0 (and so dn!1),
functions �n=V	n2E�;� and Vhn2E��;� 0 solutions of the problem and such that

k	nk�;�;dn=1
and

khnk��;� 0;dn! 0:

We look in the region � :=
�
x1 > 0

	
thanks to the symetry 	(x1; x2) = 	(¡x1; x2). The

orthogonality condition of E�;� becomes 2Re
R
�
�nZdn=0.

Step 1. Inner estimates.

The problem can be written (using VL0(	n)=¡(E¡ icn@x2V )	n+L(�n) from Lemma 2.1.7)
as

Vhn=L(�n)¡ (1¡ �)(E ¡ icn @x2V )	n:
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First, we recall that V and E are depending on n. The sequence (�n(:+dne1~ ))n2N is equicontinuous
and bounded (1= k	nk�;�;d controls �n and its derivatives in L1(R2) uniformly in n).

Such a function �n, as a solution of

��n=¡(1¡jV j2)�n+2Re(V��n)V ¡ ic@x2�n¡ (1¡ �)(E ¡ icn@x2V )	n¡Vhn (2.1.23)

in the distribution sense, by Theorem 8.8 of [15] is Hloc
2 (R2) (since the right hand side is C0(R2)).

Furthermore, still by Theorem 8.8 of [15], we have, for x2R2,

k�nkH2(B(x;1))6K(k�nkH1(B(x;2))+ k��nkL2(B(x;2))):

By k	nk�;�;d = 1, the quantities k�nkL1(B(x;2)), kr�nkL1(B(x;2)) and k��nkL1(B(x;2)) are
bounded by a constant independent of n. Therefore, (�n)n2N is bounded in Hloc

2 (R2).
We deduce, by compact embedding, that there exists a function � such that �n(:+ dne1~ )!�

in Hloc
1 (R2) (up to a subsequence).

Now, since L(�n)=¡��n¡ (1¡jV j2)�n+2Re(V��n)V ¡ ic@x2�n, we have, in the weak sense,

��n+Vhn=¡(1¡ jV j2)�n+2Re(V��n)V ¡ icn @x2�n¡ (1¡ �)(E ¡ icn @x2V )	n;

therefore ��n(: + dne1~ ) + Vhn(: + dne1~ ) is equicontinuous and bounded uniformly and then, by
Ascoli's Theorem, up to a subsequence converges to a limit l in Cloc0 (R2). Since Vhn(:+ dne1~ )! 0
in Cloc0 (R2) by khnk��;� 0;d! 0 and ��n(:+ dne1~ )!�� in the distribution sense, this limit must
be �� (in the Hloc

¡1(R2) sense).

We have locally uniformly that Vhn(: + dne1~ )! 0 because khnk��;� 0;d! 0 and jV j 6 1, and
we have, from Lemma 2.1.4, that E(y + dne1~ )! 0 and V (y + dne1~ )! V1(y) when n!1 locally
uniformly. Lastly, @x2�n and (1 ¡ �)@x2V	n are uniformly bounded in R2 independently of n.
Therefore when we take the locally uniform limit when dn!1 in

(Vhn)(y+ dne1~ )= (L(�n))(y+ dne1~ )¡ ((1¡ �)(E ¡ icn@x2V )	n)(y+ dne1~ );

we have (in the distribution sense)

LV1(�)=0:

Using @dV (:+ de1~ )!¡@x1V1(:) locally uniformly from Lemma 2.1.4, we show that

0=2Re

Z
�

�nZd! 2h�|�~(: /4)@x1V1i

since Zd is compactly supported around 0 when we take the equation in y+dne1~ . The problem at
the limit n!1 becomes (in the Hloc

¡1(R2) sense)(
LV1(�)= 0
h�
���~¡ :

4

�
@x1V1i=0;

with �=V1	 (since V (y+ de1~ )!V1(y) from Lemma 2.1.4).
Let us show that k�kHV1<+1. For that, we will show thatZ

B
¡
dne1;dn

1/2�jr�nj2+ j�nj2
(1+ r1)2

+Re2(V1� (:¡ dne1~ )�n)6K(�);

where K(�)> 0 is independent of n, which shall imply (by Lemma 2.1.3)

k�kHV1
2 6 limsup

n!1

Z
B
¡
dne1;dn

1/2�jr�nj2+ j�nj2
(1+ r1)2

+Re(V1� (:¡ dne1~ )�n)26K(�)<+1:

First, �n2C2(R2) hence �n2Hloc
1 (R2). We have

jr�nj26 2jrV1j2j	nj2+2jr	nj2jV1j2;
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with jrV1j2 = Or1!1
�
1

r1
2

�
by Lemma 2:1:2; and; in B

¡
dne1~ ; dn

1/2�; j	nj2 6 C

(1+ r1)2�
k	nk�;�;d2 ;

jr	nj26 C

(1+ r1)2+2�
k	nk�;�;d2 . Therefore since k	nk�;�;d6 1,Z

B
¡
dne1;dn

1/2�jr�nj26
Z
B
¡
dne1;dn

1/2� K
(1+ r1)2+2�

6K(�):

In addition, in B
¡
dne1~ ; dn

1/2�, j�nj2= jV1j2j	nj26 K

(1+ r1)2�
k	nk�;�;dn

2 hence j�nj2

(1+ r1)2
6 K

(1+ r1)2+2�

and Z
B
¡
dne1;dn

1/2� j�nj
2

(1+ r1)2
6
Z
B
¡
dne1;dn

1/2� K
(1+ r1)2+2�

6K(�):

Lastly, still in B
¡
dne1~ ; dn

1/2�, by Lemma 2.1.3,

Re(V1� �n)2= jV1j4Re(V¡1	n)26 jV1j4(Re(	n)2+(1¡ jV¡1j2)j	nj2)6
K

(1+ r1)2+2�
;

giving the same result. We then have k�kHV1<+1, therefore, we can apply Theorem 2.1.16. We
deduce that

�= c1@x1V1+ c2@x2V1
for some constants c1; c22R.

Since 8x2R2;	n(x1; x2)=	n(x1;¡x2), we have 8y 2R2;�(y1; y2)=�(y1;¡y2). The function
@x1V1 enjoys also this symmetry, therefore so does c2@x2V1. It is possible only if c2 = 0. The
orthogonality condition then imposes

c1

Z
�

j@x1V1(y)j2�~
�
y

4

�
dy=0;

implying that c1=0. Hence
�n(:+ dne1~ )! 0

in Cloc1 (R2). By equation (2.1.23) and standard elliptic estimates, this convergence also hold in
Cloc2 (R2). The same proof works for the z coordinate (around the center of the ¡1 vortex). As a
consequence, for any R> 0, we have

k�nkL1({r~6R})+ kr�nkL1({r~6R})+ kr2�nkL1({r~6R})! 0 (2.1.24)

as n!1. With this result, to obtain a contradiction (which will be k	nk�;�;d! 0) we still need
to have estimates near the in�nity in space.

Step 2. Outer computations.

Thanks to the previous step, we can take a cuto� to look only at the in�nity in space. For
R>4, we de�ne �R a smooth cuto� function with value �R(x)=1 if r~>R and �R(x)=0 if r~6 R

2
,

with jr�Rj6 4

R
. We then de�ne

	~n := �R	n;

h~n := �Rhn

and we choose �R such that 	~n and h~n enjoy the same symmetries than 	n and hn respectively.
We compute on R2n(B(dne1~ ;R)[B(¡dne1~ ;R)):

r	~n=r�R	n+ �Rr	n=r	n;

�	~n=��R	n+2r�Rr	n+ �R�	n=�	n:

We deduce that 	~n2E
;�1 and h~n2E

;� 01 by (2.1.18), since 	~n2C2(B(dne1~ ;R)[B(¡dne1~ ;R);C),
h~n 2 C1(B(dne1~ ; R) [ B(¡dne1~ ; R);C) and, outside of B(dne1~ ; R) [ B(¡dne1~ ; R), 	~n = 	n with
k	nk�;�;dn=1, as well as h~n=hn, with khnk��;� 0;dn! 0 when n!1. In particular,

h~n



;� 0;1= on!1R (1);
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where on!1R (1) is a sequence that, for �xed R> 4, goes to 0 when n!1 (it also depends on �
and � 0).

Since �R=1 on R2n(B(dne1~ ;R)[B(¡dne1~ ;R)), we have there L0
¡
	~n
�
=h~n. Therefore, we can

write that in R2 that L0
¡
	~n
�
=h~n+Loc(	n), with

Loc(	n) :=¡
�R�
V
L(V	n)+ (1¡ �)(L0(�R	n)¡ �RL0(	n));

a term that is supported in R2n(B(dne1~ ;R)[B(¡dne1~ ;R)). By (2.1.24) and khnk��;� 0;dn!0 when
n!1, it satis�es

kLoc(	n)k

;�0;1
6 K(R)kLoc(	n)kC1(R2n(B(dne1;R)[B(¡dne1;R)))

6 K(R)k�nkC2(R2n(B(dne1;R)[B(¡dne1;R)))

= on!1
R (1):

We recall that L0(	)=¡�	¡ 2rV
V
:r	+2jV j2Re(	)¡ ic@x2	, therefore

¡�	~n¡ ic@x2	~n+2Re
¡
	~n
�
=h~n+Loc(	n)+ 2 rV

V
:r	~n+2(1¡ jV j2)Re

¡
	~n
�
: (2.1.25)

We de�ne

h~n
0 :=h~n+Loc(	n)+ 2 rV

V
:r	~n+2(1¡ jV j2)Re

¡
	~n
�
:

Let us show that h~n
0 2E

;� 01 with

h~n0 



;� 0;16 on!1R (1)+ oR!1(1);

where oR!1(1) is a quantity that goes to 0 when R!1 (in particular, independently of n). By
Lemma 2.1.15, (the condition

R
R2Im

¡
h~n
0 �=0 is a consequence of the symmetries on h~n and 	~n),

this would imply, with equation (2.1.25) (and since 	~n2E
;�1 ), that

k	~k
;�;16 on!1R (1)+ oR!1(1): (2.1.26)

This estimate has already been done for the terms Loc(	n) and h~n. Therefore, we only have to
check that 



2 rVV :r	~n+2(1¡ jV j2)Re

¡
	~n
�






;� 0;1

6 on!1R (1)+ oR!1(1):

First, remark that the term (1¡jV j2)Re
¡
	~n
�
is real-valued. By Lemma 2.1.3,

j1¡jV j2j+r(jV j2)6 K

(1+ r~)2
;

and with (2.1.24), 	~n=	n in
�
r~>R

	
, k	nk�;�=1, 0<�<� 0< 1,

(1+ r~)1+� 0(1¡ jV j2)Re

¡
	~n
�


L1(R2)

6 on!1
R (1)+K





 (1+ r~)1+� 0(1+ r~)3+�






L1({r~>R})

6 on!1
R (1)+ oR!1(1)

and

k(1+ r~)2+� 0r((1¡ jV j2)Re(	~ ))kL1(R2)

6 k(1+ r~)2+� 0r(jV j2)Re(	~)kL1(R2)+ k(1+ r~)2+�
0
(1¡jV j2)Re(r	~)kL1(R2)

6 on!1
R (1)+K

 



 (1+ r~)2+� 0(1+ r~)3+�






L1({r~>R})

!
6 on!1

R (1)+ oR!1(1):
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This concludes the proof of

2(1¡ jV j2)Re
¡
	~n
�




;� 0;16 on!1

R (1)+ oR!1(1):
Now, we compute

rV
V
(x)= rV1

V1
(y)+ rV¡1

V¡1
(z);

and recall, by Lemma 2.1.1, that rV"(x) = i"V"(x)
x?

jxj2 + O
¡ 1
r3

�
for "=�1. We deduce that, far

from the vortices (for instance on R2n(B(de1~ ; 4)[B(¡de1~ ; 4))), we have

rV
V
(x)= i

 
y?

r1
2 ¡

z?

r¡1
2

!
+Or1!1

�
1
r1
3

�
+Or¡1!1

 
1
r¡1
3

!
: (2.1.27)

In particular, the �rst order of rV
V

is purely imaginary, and the next term is of order 1

r1
3 +

1

r¡1
3 . We

check in particular, using (2.1.27) and Lemma 2.1.3, that on R2n(B(de1~ ; 4)[B(¡de1~ ; 4)),����(1+ r~)Im�rVV
�����+ ����(1+ r~)3Re

�
rV
V

�����
+
����(1+ r~)2rIm

�
rV
V

�����+ ����(1+ r~)3rRe

�
rV
V

�����
6 K: (2.1.28)

Therefore, with R> 4, equation (2.1.24), 	~n=	n in
�
r~>R

	
, k	nk�;�=1 and 0<�<� 0< 1,



(1+ r~)1+� 0Re

�
rV
V
:r	~

�




L1(R2)

6 on!1
R (1)+K





 (1+ r~)1+� 0(1+ r~)2+�






L1({r~>R})

6 on!1
R (1)+ oR!1(1);



(1+ r~)2+� 0rRe

�
rV
V
:r	~

�




L1(R2)

6 on!1
R (1)+K





 (1+ r~)2+� 0(1+ r~)3+�






L1({r~>R})

6 on!1
R (1)+ oR!1(1);



(1+ r~)2+� 0Im�rVV :r	~
�





L1(R2)

6




(1+ r~)2+� 0Im�rVV

�
:Re(r	~)






L1(R2)

+




(1+ r~)2+� 0Re

�
rV
V

�
:Im(r	~)






L1(R2)

6 on!1
R (1)+K





 (1+ r~)2+� 0(1+ r~)3+�






L1({r~>R})

+K




 (1+ r~)2+� 0(1+ r~)3+�






L1({r~>R})

6 on!1
R (1)+ oR!1(1);

and, with a similar decomposition,



(1+ r~)2+� 0rIm

�
rV
V
:r	~

�




L1(R2)

6 on!1R (1)+ oR!1(1):

This conclude the proof of



2 rV

V
:r	~







;� 0;1

6 on!1R (1)+ oR!1(1); and thus of (2.1.26).

Step 3. Conclusion.

We have k	nk�;�;dn6K(R)k�nkC2({r~6R})+K


	~n

�;�;dn by (2.1.18), therefore, with equations

(2.1.24) and (2.1.26),

k	nk�;�;dn6 on!1R (1)+ oR!1(1):
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If we take R large enough (depending on �; � 0) so that oR!1(1)6 1/10 and then n large enough
(depending on R;� and � 0) so that on!1R (1)61/10, we have, for n large, k	nk�;�;dn61/5, which
is in contradiction with

k	nk�;�;dn=1: �

2.1.5.2 Existence of a solution

At this point, we do not have existence of a solution to the linear problem�
�L(�)+ (1¡ �)VL0(	)=Vh
�2E�;�; Vh2E��;�0;

only an a priori estimate. The existence of a solution is done in Proposition 2.1.20, its proof being
the purpose of this subsection. In [11], the existence proof is done using mainly the fact that the
domain is bounded. We provide here a proof of existence by approximation on balls of large radii
for a particular Hilbertian norm. Given c> 0 and a> 10/c2, we de�ne

Ha :=(
�=Qc	2Hloc

1 (B(0; a)); k�kHa2 := k�kH1({r~63})
2 +

Z
�
r~>2	\�r6a	jr	j2+Re2(	)+ Im2(	)

(1+ r)5/2

)
;

and we also allow a=+1. We �rst state a result on functions in H1.

Lemma 2.1.18. There exists c0 > 0 such that, for 0 < c < c0, 0 < � < � 0 < 1, Vh 2 E��;� 0, if a
function �2H1\C1(R2) satis�es, in the weak sense,

�L(�)+ (1¡ �) VL0(	)=Vh;

and �=V	, hV	; Zdi=0;8x2R2;	(x1; x2)=	(x1;¡x2)=	(¡x1; x2), then

�2E�;�:

Proof. First, we check that, as a solution of �L(�)+ (1¡ �)VL0(	)=Vh, �2C2(R2;C) and

k�kL1({r<10/c2})+ kr�kL1({r<10/c2})+ kr2�kL1({r<10/c2})6K(c; k�kH1; khk��;� 0)<+1:

Since � 2 C2(R2; C) and it satis�es the symmetries and the orthogonality condition, to show
that �= V	2 E�;�, we only have to show that k	k�;�;d<+1. Now, similarly as in the proof of
Proposition 2.1.17, we add a cuto� function �R, writing 	~ =	~ 1+ i	~ 2= �R	; h~= h~1+ ih~2= �Rh
but this time its value is 1 if r>10/c2 and 0 if r65/c2. In particular, its support is far from both
vortices. We check similarly that, with the same notations, we obtain the equation (2.1.25) that
we write in real and imaginary parts:8><>:

�	~ 1¡ 2jV j2	~ 1=¡h~1¡ 2Re
�
rV
V
:r	~

�
+ c@x2	~ 2+Loc1(	)

�	~ 2+ c@x2	~ 1=¡h~2¡ 2Im
�
rV
V
:r	~

�
+Loc2(	);

(2.1.29)

where Loc(	)=Loc1(	)+ iLoc2(	), and this time the local terms is in
�
5/c26r610/c2

	
. Recall

that 	~ = 0 on
�
r6 5/c2

	
. In particular, we look only at values of x such that jxj> 5/c2. Now,

we de�ne a function �, solution of ��=¡h~2¡2Im
�
rV
V
:r	~

�
+Loc2(	) as in Lemma 2.1.8. With

Lemma 2.1.3 and r	~ 2L2(R2) (since �2H1), we have Y 7! (lnjx¡Y j)
(1+ r~)1/10

Im
�
rV
V
:r	~

�
(Y )2L1(R2)

and thus � is well de�ned. By Hölder inequality, we can check that Im
�
rV
V
:r	~

�
2 L3(R2) .

We check, with the same computations as in the proof of Lemma 2.1.8 (with � = 1/ 10 in the
computations), that � 2C1(R2) and that we have

jr�(x)j6 1
2�

Z
R2

1
jx¡Y j

����¡h~2¡ 2Im�rVV :r	~
�
+Loc2(	)

����(Y )dY ;
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under the condition that r	~ 2 L2(R2) \ L3(R2). With the upcoming estimates, we will check in
particular that this condition is satis�ed. From the proof of Lemma 2.1.8, we check that, since
Vh2E��;� 0 and 1+�

2
< 1,

sup
x2R2

(1+ jxj)
1+�
2

Z
R2

1
jx¡Y j

��¡h~2+Loc2(	)
��(Y )dY ����<+1

(here, its size may depend on �; � 0; c;R; k�kH1 and khk��;� 0). Now, from Lemma 2.1.3, we have,

outside of
�
�R=0

	
that jrV j6 K(c)

(1+ r)2
. We deduceZ

R2

1
jx¡Y j

����Im�rVV :r	~
�����(Y )dY 6K(c;R)Z

R2

jr	~ j(Y )
jx¡Y j(1+ jY j)2dY :

We focus now on the estimation of
R
R2

jr	~ j(Y )
jx¡Y j(1+ jY j)2dY . From [15], Theorem 8.8, we check that

kr	~kH1(R2)6K(c;R; k�kH1;khk��;� 0). In particular, by Sobolev embedding, kr	~kL3(R2)6K(c;
R; k�kH1; khk��;� 0). In the area

�
jx¡Y j6 1

	
, we have (1+ jY j)2>K(1+ jxj)2 and therefore, by

Hölder inequality,Z
�
jx¡Y j61	

jr	~ j(Y )
jx¡Y j(1+ jY j)2dY 6 K

(1+ jxj)2
Z
�
jx¡yj61	

jr	~ j(Y )
jx¡Y j dY

6 K kr	~kL3(R2)

(1+ jxj)2

 Z
�
jx¡Y j61	

dY

jx¡Y j3/2

!
2/3

6 K(c;R; k�kH1; khk��;�)
(1+ jxj)2 :

In the area
�
16 jx¡Y j6 jxj/2

	
, we have jY j> jx¡Y j

2
and jY j> jxj

2
, therefore, by Cauchy-Schwarz

(since 1+ �

2
< 1),Z

�
16jx¡Y j6jxj/2	

jr	~ j(Y ) dY
jx¡Y j(1+ jY j)2

6 K(�; c; R)

(1+ jxj)
1+�
2

Z
�
16jx¡Y j6jxj/2	

jr	~ j(Y ) dY

jx¡Y j(1+ jx¡Y j)2¡
�
1+�
2

�

6 K(�; c; R)

(1+ jxj)
1+�
2

Z
�
16jx¡Y j6jxj/2	jr	~ j2(Y ) dY

Z
{16jx¡Y j6jxj/2}

dY

jx¡Y j3¡
�
1+�
2

�
vuut

6 K(c;R; �; k�kH1)

(1+ jxj)
1+�
2

:

Finally, in the area
�
jx¡Y j> jxj/2

	
, we estimate by Cauchy-Schwarz thatZ

�
jx¡Y j>jxj/2	

jr	~ j(Y )
jx¡Y j(1+ jY j)2dY

6 K
1+ jxj

Z
�
jx¡Y j>jxj/2	jr	~ j2

Z
�
jx¡Y j>jxj/2	

dY
(1+ jY j)4

s
6 K(k�kH1)

1+ jxj :

Combining these estimates, we conclude that

jr� j(x)6 K(c;R; �; � 0; k�kH1; khk��;�)

(1+ jxj)
1+�
2

:

Now, we write 	~ 2
0 =	~ 2¡ �, and the system becomes8<: �	~ 1¡ 2	~ 1¡ c@x2	~ 2

0 =¡h~1¡ 2Re
�
rV
V
:r	~

�
+Loc1(	)¡ c@x2� ¡ 2(1¡ jV j2)	~ 1

�	~ 2
0 + c@x2	~ 1=0:
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We deduce, as for equation (2.1.15), that for j 2
�
1; 2
	
,

@xj	~ 2
0 = cKj �

�
¡h~1¡ 2Re

�
rV
V
:r	~

�
+Loc1(	)¡ c@x2� ¡ 2(1¡ jV j2)	~ 1

�
:

We check that, with Lemma 2.1.13 (for 1>�= 1+�

2
> 0, �0=� <�),

jKj �
¡
¡h~1+Loc1(	)¡ c@x2�

�
j6 K(c;R; �; k�kH1; khk��;� 0)

(1+ jxj)� ;

since ��¡h~1+Loc1(	)¡ c@x2�
��6 K(c;R; �; k�kH1; khk��;� 0)

(1+ jxj)
1+�
2

:

Furthermore, from Lemma 2.1.3, outside of
�
�R = 0

	
, jrV j 6 K(c)

(1+ r)2
. We check, with Theorem

2.1.12, that on
n
jx¡Y j6 jxj

2

o
, we have jY j> jxj

2
andZ

�
jx¡Y j6jxj/2	

����Kj(x¡Y )Re

�
rV
V
:r	~

�
(Y )
����dY

6 K(c;R)
(1+ jxj)2

Z
�
jx¡Y j6jxj/2	

jr	~ j(Y ) dY
jx¡Y j1/2(1+ jx¡Y j)3/2

:

By Cauchy-Schwarz, we estimateZ
�
jx¡Y j6jxj/2	

jr	~ j(Y ) dY
jx¡Y j1/2(1+ jx¡Y j)3/2

6 kr	~kL2(R2)

Z
�
jx¡Y j6jxj/2	

dY
jx¡Y j(1+ jx¡Y j)3

s
< +1;

and in
n
jx¡Y j> jxj

2

o
, we estimateZ

�
jx¡Y j>jxj/2	

����Kj(x¡Y )Re

�
rV
V
:r	~

�
(Y )
����6 K(c; R)

(1+ jxj)2
Z
�
jx¡Y j6jxj/2	

jr	~ j(Y ) dY
(1+ jY j)2 ;

and we conclude by Cauchy-Schwarz thatZ
�
jx¡Y j>jxj/2	

����Kj(x¡Y )Re

�
rV
V
:r	~

�
(Y )
����dY 6 K(c;R; k�kH1)

(1+ jxj)2 :

Since


	~ 1

L2(R2)6K(c;R; k�kH1), we estimate similarlyZ

R2

��Kj(x¡Y )(1¡ jV j2)	~ 1(Y )
��dY 6 K(c;R; k�kH1)

(1+ jxj)2 ;

and we conclude that
��@xj	~ 20��6 K(c;R; k�kH1)

(1+ jxj)2 . Therefore, since 	~ 2= � +	~ 2
0 ,

��r	~ 2��6 K(c;R; �; � 0; k�kH1; khk��;� 0)
(1+ jxj)� :

By integration from the origin (using


	~ 2

L1({r<10/c2})6K(c;k�kH1;khk��)), we deduce also that

��	~ 2��6 K(c;R; �; � 0; k�kH1; khk��;� 0)
(1+ jxj)¡1+� : (2.1.30)

With these estimates and the equation

�	~ 1¡ 2	~ 1=¡h~1+ c@x2	~ 2+Loc1(	)¡ 2Re

�
rV
V
:r	~

�
¡ 2(1¡ jV j2)	~ 1;
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we check that
��¡h~1+ c@x2	~ 2+ Loc1(	)

�� 6 K(c;R; �; � 0; k�kH1; khk��;� 0)
(1+ jxj)� , and by Lemma 2.1.10 (for

�=� > 0),

j	~ 1j+ jr	~ 1j6
K(c;R; �; � 0; k�kH1; khk��;� 0)

(1+ jxj)�

(where the estimation for the termsRe
�
rV
V
:r	~

�
and 2(1¡jV j2)	1 are similar to what has already

been done since we only have r	~ ;	12L2(R2) at this point).

With this �rst set of estimates, looking at equation (2.1.29), we have enough to show that���	~ 1¡ 2	~ 1¡ c@x2	~ 2��6 K(c;R; �; k�kH1; khk��;� 0)
(1+ jxj)1+�

and ���	~ 2+ c@x2	~ 1��6 K(c;R; �; k�kH1; khk��;� 0)
(1+ jxj)2+� :

From the computations at the beginning of subsection 2.1.4.3, we have that, for j 2
�
1; 2
	
,

@xj	~ 1= @xjK0 �
¡
�	~ 1¡ 2	~ 1¡ c@x2	~ 2

�
+ cKj �

¡
�	~ 2+ c@x2	~ 1

�
;

therefore, by Lemma 2.1.13, taking �=1+� < 2 and �0=1+� 0<�,��r	~ 1��6 K(c;R; �; � 0; k�kH1; khk��;� 0)
(1+ jxj)1+�0

:

Furthermore, by Lemma 2.1.13,
��Kj�

¡
�	~ 2+c@x2	~ 1

���6 K(c;R; �; � 0; k�kH1)
(1+ jxj)2+�/2

, hence, since for xj>0,

	~ 1=K0 �
¡
�	~ 1¡ 2	~ 1¡ c@x2	~ 2

�
+ c
Z
xj

+1
Kj �

¡
�	~ 2+ c@x2	~ 1

�
dyj

by integration from in�nity, we also have (with a similar computation if xj< 0)��	~ 1��6 K(c;R; �; � 0; k�kH1; khk��;� 0)
(1+ jxj)1+�/2

:

Now, using Theorem 8.10 from [15], we have for any x2R2 that

jr2	~ j(x)6K(k�	~kL1(B(x;1))+ k	~kL1(B(x;1))+ kr	~kL1(B(x;1)));

therefore (the limiting decay coming from (2.1.30))

jr2	~ j6 K(c;R; �; � 0; k�kH1; khk��;� 0)
(1+ jxj)¡1+� :

With these estimates, we have that 	~ 2E
;¡3+�;1. Now, we de�ne

h� :=h~+2 rV
V
:r	~ +2(1¡ jV j2)Re(	~)+Loc(	);

and we infer that, for any �6� 0

kh�k

;� ;16K(�; c;R; �; � 0; � ; k�kH1; khk��;� 0)(1+ k	~k
;�;1) (2.1.31)

given that �>¡2+�. Indeed, we have that, for �6� 0, kh~k

;�;16K(�; � 0)khk��;� 0, and

kLoc(	)k

;� ;16K(c; �)k�kC2({r610/c2})6K(c; �; k�kH1; khk��;� 0):

We recall that (1¡ jV j2)Re(	~) is a real-valued term, and with Lemma 2.1.3, 0< � < � 0 < 1, we
estimate

k(1+ r~)1+�(1¡ jV j2)Re(	~)kL1(R2)6K




 (1+ r~)1+�(1+ r~)3+�






L1(R2)

k	~k
;�;16K(�; �)k	~k
;�;1
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if 1+�> 3+ � (which is a consequence of �>¡2+�), and

k(1+ r~)2+�r((1¡ jV j2)Re(	~ ))kL1(R2)6K




 (1+ r~)2+�(1+ r~)4+�






L1(R2)

k	~k
;�;16K(�; �)k	~k
;�;1:

Now, we estimate similarly (still using Lemma 2.1.3)



(1+ r~)1+�Re

�
rV
V
:r	~

�




L1(R2)

6K(c)




 (1+ r~)1+�(1+ r~)3+�






L1(R2)

k	~k
;�;16K(c; �; �)k	~k
;�;1;



(1+ r~)2+�rRe

�
rV
V
:r	~

�




L1(R2)

6K(c)




 (1+ r~)2+�(1+ r~)4+�






L1(R2)

k	~k
;�;16K(c; �; �)k	~k
;�;1;

and since

Im

�
rV
V
:r	~

�
=Im

�
rV
V

�
:Re(r	~)+Re

�
rV
V

�
:Im(r	~);

with Lemma 2.1.3 and estimate (2.1.28), we infer that



(1+ r~)2+�Im�rVV :r	~
�





L1(R2)

6




(1+ r~)2+�Im�rVV

�
:Re(r	~)






L1(R2)

+




(1+ r~)2+�Re

�
rV
V

�
:Im(r	~)






L1(R2)

6 K(c)




 (1+ r~)2+�(1+ r~)4+�






L1(R2)

k	~k
;�;1+K




 (1+ r~)2+�(1+ r~)4+�






L1(R2)

k	~k
;�;1

6 K(c; �; �)k	~k
;�;1;

and with similar estimates,



(1+ r~)2+�rIm

�
rV
V
:r	~

�




L1(R2)

6K(c; �; �)k	~k
;�;1:

This concludes the proof of (2.1.31). With 	~ 2 E
;¡3+�;1, we therefore deduce that for " > 0 a
small constant, kh�k

;¡1+�¡" ;1<+1, hence h�2 E

;¡1+�¡". With estimate (2.1.31), Lemma
2.1.15 and

¡�	~ ¡ ic@x2	~ +2Re(	~)=h�;

and with the symmetries on 	~ and h�, we can bootstrap our estimates on 	~ and then on h�, and
we conclude that 	~ 2E
;� (since � <� 0). �

The next step is to construct a solution on a large ball in the space Ha.

Lemma 2.1.19. For 0< � 0< 1, there exists c0(� 0)> 0 such that, for 0< c < c0(� 0), there exists
a0(c; � 0)>

10
c2

such that, for Vh2E��;� 0, a>a0(c; � 0), the problem8>>><>>>:
�L(�)+ (1¡ �)VL0(	)=Vh inB(0; a)
�2Ha;�=V	; hV	; Zdi=0;8x2B(0; a);	(x1; x2)=	(x1;¡x2)=	(¡x1; x2)
�=0 on @B(0; a)
hVh; Zdi=0

admits a unique solution, and furthermore, there exists K(� 0; c)> 0 independent of a such that

k�kHa6K(� 0; c)khk��;� 0:

Here, a > 10 / c2 is not necessary, the condition a > 10 / c should be enough. However, this
simpli�es some estimates in the proof, and it will be enough for us here. Here, we require hVh;
Zdi=0 in order to apply the Fredholm alternative in

�
'2H0

1(B(0; a)); h'; Zdi=0
	
to show the

existence of a solution.
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Proof. We argue by contradiction on the estimation. Assuming the existence, take any 0<� 0<1,
and choose c0(� 0)>0 smaller than the one from Proposition 2.1.17, and 0<c<c0(� 0). Suppose that
there exists a sequence an>

10
c2
, an!1, functions �n2Han, �n=0 on @B(0; an) and Vhn2E��;� 0

such that k�nkHan=1, khnk��;� 0!0 and �L(�n)+(1¡ �)VL0(	n)=Vhn onB(0;an). In particular,
remark here that c is independent of n, only the size of the ball grows. Our goal is to show that
k�nkHan= on!1

c (1), where on!1c (1) is a quantity going to 0 when n!1 at �xed c, which leads
to the contradiction.

Following the same arguments as in step 1 of the proof of Proposition 2.1.17, we check that
�n!� in Cloc

2 (R2) and �L(�)+ (1¡ �) VL0(	)= 0 in R2. Furthermore, it is easy to check that,
since k�nkHan = 1, we have k�kH1 6 1. Then, by Lemma 2.1.18, since the orthogonality and
the symmetries pass at the limit, this implies that � 2 E�;� for any 0< � < � 0, and therefore, by
Proposition 2.1.17, �=0.

We deduce that k�nkC2(B(0;10/c2))= on!1c (1). Now, we use the same cuto� as in the proof of
Lemma 2.1.18, and we have the system on 	~n=	~ 1+ i	~ 2 (see equation (2.1.29)):8><>:

�	~ 1¡ 2	~ 1¡ c@x2	~ 2=¡h~1¡ 2Re
�
rV
V
:r	~n

�
+Loc1(	n)¡ 2(1¡ jV j2)	~ 1

�	~ 2+ c@x2	~ 1=¡h~2¡ 2Im
�
rV
V
:r	~n

�
+Loc2(	n):

Now, multiplying the �rst equation by 	~ 1 and integrating on 
=B(0; a)nB(0; 5/c2), we haveZ



¡
�	~ 1¡ 2	~ 1

�
	~ 1=

Z



�
c@x2	~ 2¡h~1¡ 2Re

�
rV
V
:r	~n

�
+Loc1(	n)¡ 2(1¡ jV j2)	~ 1

�
	~ 1: (2.1.32)

We integrate by parts. Recall that k�nkC2(B(0;10/c2))= on!1c (1) and �n=V	n=0 on @B(0; an),
thus Z




�	~ 1	~ 1=¡
Z


jr	~ 1j2+ on!1c (1):

Furthermore, since Vhn 2 E��;� 0, we check easily that


h~1

L2(
)6 oc!0

� 0 (1), and we compute with
Lemma 2.1.3 and k�nkC2(B(0;10/c2))= on!1c (1) that, since for x2
; r> 5/c2,



rVV






L1(
)

+ kLoc1(	n)kL1(
)+ kLoc2(	n)kL1(
)+ k(1¡ jV j2)kL1(
)6 oc!0(1)+ on!1c (1):

This allows us to estimate the right hand side of (2.1.32): by Cauchy-Schwarz,

r	~ 1

L2(
)2 +2


	~ 1

L2(
)2 6

c


r	~ 2

L2(
)

	~ 1

L2(
)+(oc!0(1)+ on!1c (1))

¡

r	~n

L2(
)+

	~ 1

L2(
)�+ on!1c (1):

Now, we multiply the second equation by 	~ 2, and we integrate on 
. By integration by parts, we
check 

r	~ 2

L2(
)2 6

c

����Z



@x2	~ 1	~ 2

����+ ����Z



h~2	~ 2

����+2
Z



����Im�rVV :r	~n
�
	~ 2

����+ Z



��Loc2(	n)	~ 2��+ on!1c (1):

By integration by parts, since k�nkC2(B(0;10/c2))= on!1c (1) and �n=0 on @B(0; an), we have

c

����Z



@x2	~ 1	~ 2

����6 on!1c (1)+ c
����Z



	~ 1@x2	~ 2

����6 on!1c (1)+ c


	~ 1

L2(
)

r	~ 2

L2(
):
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We recall that
��	~ 2��= on!1c (1) on @B(0; 5/c2), thereforeZ

r=5/c2

a j	~ 2j2
r2+�

0rdr = ¡1
� 0

Z
r=5/c2

a

@r

�
1
r�
0

���	~ 2��2dr
6 K(c)

� 0
��	~ 2��2(5/c2)+ 2

� 0

Z
r=5/c2

a 1
r�
0

��r	~ 2����	~ 2��dr
6 on!1

c;� 0 (1)+ 2
� 0

Z
r=5/c2

a ��r	~ 2��2rdrZ
r=5/c2

a j	~ 2j2
r2+�

0rdr

s
:

We deduce that Z
r=5/c2

a j	~ 2j2
r2+�

0rdr6 on!1c;� 0 (1)+ K
� 0

Z
r=5/c2

a ��r	~ 2��2rdr;
and therefore �����

Z



j	~ 2j2
(1+ jxj)2+� 0

�����6 on!1c;�0 (1)+ K
� 0


r	~ 2

L2(
)2 :

Since Vhn2E��;� 0, we estimate, by Cauchy-Schwarz, that����Z



h~2	~ 2

����6 oc!0(1)
Z



j	~ 2j2
(1+ jxj)2+�0

s
6 oc!0

� 0 (1)


r	~ 2

L2(
)+ on!1c;� (1):

Furthermore, since Loc2(	n) is supported in B(0; 10/ c2) and k�nkC1(B(0;10/c2)) = on!1
c (1), we

check that Z



��Loc2(	n)	~ 2��6 on!1c (1):

Finally, from Lemma 2.1.2, we check that, in R2,����rVV
����6K����i� y?

jy j2 ¡
z?

jz j2

�����+ K
c(1+ jxj)2 6

K
c(1+ jxj)2 ;

and thus, by Cauchy-Schwarz,Z



����Im�rVV :r	~n
�
	~ 2

���� 6 

r	~n

L2(
) Z



����rVV
����2��	~ 2��2

s

6
K kr	~nkL2(
)

c

Z



j	~ 2j2
(1+ jxj)4

s
:

In 
, jxj> 5/c2, thusZ



j	~ 2j2
(1+ jxj)4 6 c

2(2¡� 0)
Z



j	~ 2j2
(1+ jxj)2+� 0

6 c2(2¡� 0)K(� 0)


r	~ 2

L2(
)2 + on!1c (1);

hence Z



����Im�rVV :r	~n
�
	~ 2

����6 oc!0
� 0 (1)



r	~ 2

L2(
)+ on!1c (1):
We conclude that

r	~ 1

L2(
)2 +2



	~ 1

L2(
)2

6 c


r	~ 2

L2(
)

	~ 1

L2(
)+(oc!0(1)+ on!1c (1))

¡

r	~n

L2(
)+

	~ 1

L2(
)�+ on!1c (1);

and 

r	~ 2

L2(
)2 6 on!1c (1)+ c


	~ 1

L2(
)

r	~ 2

L2(
)+ oc!0

� 0 (1)


r	~ 2

L2(
);

therefore 

r	~ 1

L2(
)+

	~ 1

L2(
)+

r	~ 2

L2(
)6 on!1c (1)+ oc!0
� 0 (1):

We have shown that for any � 0> 0,�����
Z



j	~ 2j2
(1+ jxj)2+�

�����6
�
on!1
c;� 0 (1)+ K

� 0


r	~ 2

L2(
)2

�
;

2.1 Lyapunov-Schmidt reduction 81



thus �����
Z



j	~ 2j2

(1+ jxj)5/2

�����6 on!1c (1)+ oc!0(1):

Together with k�nkC2(B(0;10/c2))= on!1c (1), this is in contradiction with k�nkHan=1.
This concludes the proof of the estimation. Now, for the existence, we argue by Fredholm's

alternative in
�
' 2 H0

1(B(0; a)); h'; Zdi = 0
	
, and we remark that the norms k:kHa and k:kH1

are equivalent on B(0; a). By Riesz's representation theorem, the elliptic equation �L(�) +
(1¡ �) VL0(	)=Vh can be rewritten in the operational form �+K(�)=S(h) where K is a compact
operator in H0

1(B(0; a)), and it has no kernel in Ha (i.e. in
�
'2H0

1(B(0; a)); h';Zdi=0
	
) by the

estimation we just showed. Therefore, there exists a unique solution �2Ha, and it then satis�es

k�kHa6K(� 0; c)khk��;� 0: �

Proposition 2.1.20. Consider the problem, for 0<�<� 0< 1,�
�L(�)+ (1¡ �)VL0(	)=Vh
Vh2E��;� 0; hVh;Zdi=0:

Then, there exist constants c0(�; � 0)> 0 small and C(�; � 0)>0 depending only on �; � 0, such that,
for 0< c6 c0(�; � 0) and Vh 2 E��;�0 with hVh; Zdi= 0, there exists � 2 E�;�, �= V	 solution of
this problem, with

k	k�;�;d6C(�; � 0)khk��;� 0;d:

Proof. By Lemma 2.1.19, For a>a0(c; � 0), there exists a solution to the problem8>>><>>>:
�L(�a)+ (1¡ �) VL0(	a)=Vh onB(0; a)
�a2Ha;�a=V	a; hV	a; Zdi=0;8x2B(0; a);	a(x1; x2)=	a(x1;¡x2)=	a(¡x1; x2)
�a=0 on @B(0; a)
hh;Zdi=0

with k�akHa 6 K(� 0; c)khk��;� 0. Taking a sequence of values an > a0 going to in�nity, we can
construct by a diagonal argument a function �2Hloc

1 (R2) which satis�es in the distribution sense

�L(�)+ (1¡ �)VL0(�)=Vh

(hence �2C2(R2) by standard elliptic arguments), such that

k�kH16 limsup
n!1

k�nkHan6K(� 0; c)khk��;� 0;

thus �2H1, and �=V	, hV	;Zdi=0;8x2R2;	(x1;x2)=	(x1;¡x2)=	(¡x1;x2). From Lemma
2.1.18, we deduce that �2E�;�, and is thus a solution to the problem. Furthermore, by Proposition
2.1.17, k	k�;�;d6C(�; � 0)khk��;� 0;d: Still by Proposition 2.1.17, this solution is unique in E�;� 0. �

2.1.5.3 Estimates for the contraction in the orthogonal space

We showed in Proposition 2.1.20 that the operator �L(:) + (1 ¡ �)VL0(: /V ) is invertible from
E��;�0;d\

�
h:; Zdi= 0

	
to E�;�;d. The operator (�L(:) + (1¡ �)VL0(:/V ))¡1 is the one that, for a

given Vh 2 E��;� 0;d such that hVh; Zdi= 0, returns the unique function �= V	2 E�;�;d such that
�L(�) + (1 ¡ �) VL0(	) = Vh in the distribution sense, and this function satis�es the estimate
k	k�;�;d6C(�; � 0)khk��;� 0;d.

Now, we de�ne (for �2C0(R2;C))

�d?(�) :=�¡h�; Zdi
Zd

kZdkL2(R2)
2 ;

the projection on the orthogonal of Zd. We want to apply a �xed-point theorem on the functional

(�L(:)+ (1¡ �)VL0(:/V ))¡1(�d?(¡F (:/V ))): E�;�!E�;�;
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and for that we need some estimates on the function �d?oF (:/V ):E�;�!
�
Vh2E��;� 0; hVh;Zdi=0

	
.

The function F contains the source term E¡ ic@x2V and nonlinear terms. The source term requires
a precise computation (see Lemma 2.1.22) to show its smallness in the spaces of invertibility. The
nonlinear terms will be small if we do the contraction in an area with small 	 (which is the case
since we will do it in the space of function �= V	2 E�;� such that k	k�;�;d6K0(�; � 0)c1¡�

0
for

a well chosen constantK0(�;� 0)>0). This subsection is devoted to the proof of the following result.

Proposition 2.1.21. For 0< � < � 0< 1, there exist constants K0(�; � 0); c0(�; � 0)>0 depending
only on �; � 0 such that for 0<c<c0(�; � 0), the function (from E�;�;d to E�;�;d)

� 7! (�L(:)+ (1¡ �)VL0(:/V ))¡1(�d?(¡F (�/V )))

is a contraction in the space of functions �=V	2E�;�;d such that k	k�;�;d6K0(�; � 0)c1¡�
0
. As

such, by the contraction mapping theorem, it admits a unique �xed point �2E�;�;d in
�
�2E�;�;d;

k	k�;�;d6K0(�; � 0)c1¡�
0	
, and there exists �(c; d)2R such that

�L(�)+ (1¡ �)VL0(	)+F (	)=�(c; d)Zd
in the distribution sense.

We recall that, from the de�nition of E�;�;d in subsection 2:1:3, � 2 E�;�;d implies that h�;
Zdi= 0, which is the origin of the fact that �L(�) + (1¡ �) VL0(	)+ F (	) is not zero, but only
proportional to Zd.

We start with some estimates on the terms contained in F (	). These are done in the following
three lemmas.

Lemma 2.1.22. For any 0<� 0<1, there exists a constant C1(� 0)>0 depending only on � 0 such
that 



 ic@x2VV






��;�0;d

+




EV





��;� 0;d

6C1(� 0)c1¡�
0
:

Proof. We have de�ned the norm

khk��;� 0;d= kVhkC1({r~63})+ kr~1+�
0
h1kL1({r~>2})+ kr~2+�

0
h2kL1({r~>2})+ kr~2+�

0rhkL1({r~>2});

thus we separate two areas for the computation: the �rst one is where r~63 which will be easy and
then far from the vortices, i.e. in

�
r~> 2

	
, where the division by V is not a problem.

Step 1. Estimates for E.

In (2.1.2), we showed that

E=(1¡jV1j2)(1¡ jV¡1j2)V1V¡1¡ 2rV1:rV¡1:

Near V1, i.e. in B(de1~ ; 3), we have from Lemma 2.1.1,

k(1¡ jV¡1j2)kC1({r163})6Kc2 and krV¡1kC1({r163})6Kc;
hence 



EV V






C1({r163})

6Kc6 oc!0
� 0 (1)c1¡�

0
; (2.1.33)

where oc!0
�0 (1) is a quantity that for a �xed � 0> 0, goes to 0 when c! 0. By symmetry, the result

holds in the area where r~6 3.

We now turn to the estimates for r~ > 2. The �rst term (1 ¡ jV1j2)(1 ¡ jV¡1j2) of E

V
is real

valued. Using the de�nition of r1 and r¡1 from (2.1.1), in the right half-plane, where r16 r¡1 and
r¡1> d> K

c
, we have from Lemma 2.1.1

kr11+�
0
(1¡ jV1j2)(1¡ jV¡1j2)kL1({26r16r¡1})6K






 1
r1
1¡�0 r¡1

2







L1({26r16r¡1})
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and

kr12(1¡ jV1j2)(1¡jV¡1j2)kL1({26r16r¡1})6K:

In this area, 1

r¡1
2 6Kc2 and 1

r1
1¡� 0

6 1

21¡�
0 , thus

kr11+�
0
(1¡ jV1j2)(1¡ jV¡1j2)kL1({26r16r¡1})6K(� 0)c26 oc!0

� 0 (1) c1¡� 0:

By symmetry, the same result holds for the other half-plane, hence

kr~1+� 0(1¡ jV1j2)(1¡ jV¡1j2)kL1({r~>2})6 oc!0
� 0 (1) c1¡�

0
: (2.1.34)

From Lemma 2.1.1, we have

rV"(x)= i"V"(x)
x?

r2
+O

�
1
r3

�
;

hence
rV1:rV¡1
V1V¡1

= y?: z?

r1
2 r¡1

2
+O

�
1

r1
3 r¡1

�
+O

 
1

r¡1
3 r1

!
:

Remark that the �rst term is real-valued. We compute �rst in the right half-plane, where r16 r¡1
and r¡1> d> K

c
, 




r11+� 0y?: z?r1

2 r¡1
2







L1({26r16r¡1})

6





 r11+�

0

r1 r¡1







L1({26r16r¡1})

:

Since
r1
1+� 0

r1 r¡1
=
�
r1
r¡1

�
� 0 1
r¡1
1¡� 0 6K(�

0) c1¡� 0;

we deduce 




r11+� 0y?: z?r1
2 r¡1

2







L1({26r16r¡1})

6K(� 0)c1¡� 0

and by symmetry, 




r~1+� 0y?: z?r1
2 r¡1

2







L1({r~>2})

6K(� 0)c1¡� 0: (2.1.35)

For the last two terms O
�

1

r1
3 r¡1

�
+O

�
1

r¡1
3 r1

�
,we will show that in the right half-plane





r12+� 0 1
r1
3 r¡1






L1({26r16r¡1})

+






r12+� 0 1
r¡1
3 r1







L1({26r16r¡1})

6 oc!0
� 0 (1)c1¡�

0
: (2.1.36)

This immediately implies



r11+� 0 1
r1
3 r¡1






L1({26r16r¡1})

+






r11+� 0 1
r¡1
3 r1







L1({26r16r¡1})

6 oc!0
� 0 (1) c1¡�

0
: (2.1.37)

We compute in the right half-plane where r16 r¡1 and r¡1> d> K

c
, 1

r¡1
6Kc and 1

r1
1¡�0

6K(� 0),
thus

r1
2+� 0 1

r1
3 r¡1

= 1
r1
1¡� 0 r¡1

6Kc6 oc!0
�0 (1) c1¡�

0
:

Furthermore, still in the right half-plane,

r1
2+�0 1

r¡1
3 r1

=
�
r1
r¡1

�
1+� 0 1

r¡1
2¡� 0 6K(�

0) c2¡�
06 oc!0

� 0 (1) c1¡�
0
:

Gathering (2.1.36) to (2.1.37) and using the symmetry for the left half-plane, we deduce with the
previous esimates (2.1.33), (2.1.34), (2.1.35) that



V�EV

�




C1({r~63})

+




r~1+� 0Re

�
E
V

�




L1({r~>2})

+




r~2+� 0Im�EV

�




L1({r~>2})

6K(� 0)c1¡� 0:
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Now, for the estimate on r
�
E

V

�
, we have from Lemma 2.1.1, for r~> 2,

jr((1¡ jV1j2)(1¡ jV¡1j2))j6 jrjV1j2(1¡ jV¡1j2)j+ j(1¡jV1j2)rjV¡1j2j6
K

r1
3r¡1
2 + K

r1
2r¡1
3 ;

and ����r�rV1:rV¡1V1V¡1

�����6 ����r�rV1V1

�
:
rV¡1
V¡1

����+ ����rV1V1
:r
�
rV¡1
V¡1

�����6 K

r1
2r¡1

+ K

r1r¡1
2 ;

thus, with similar estimates as previously, we deduce



r~2+� 0r�EV
�





L1({r~>2})
6K(� 0)c1¡� 0: (2.1.38)

This concludes the proof of 



EV





��;�0;d

6C10(� 0)c1¡�
0

for some constant C10(� 0)> 0 depending only on � 0.

Step 2. Estimates for ic@x2V
V

.

First, near the vortices, we have j@x2V j+ jr@x2V j6K a universal constant, therefore



ic @x2VV V






C1({r~63})

6Kc6 oc!0
� 0 (1)c1¡� 0:

We now turn to the estimate for r~> 2. Recall Lemma 2.1.5, stating that for a universal constant
C > 0, since r1; r¡1> 2, �����ic@x2VV ¡ 2 cd x1

2¡ d2¡x22

r1
2 r¡1

2

�����6C
�
c

r1
3 +

c

r¡1
3

�
:

Remark that 2 cd x1
2¡ d2¡x22

r1
2 r¡1

2 is real-valued. Using that cd6 2, that

jx12¡ d2j= j(x1¡ d)(x1+ d)j6 r1 r¡1
and also that x226 r1 r¡1, we deduce that in the right half-plane, where r16 r¡1 and r¡1> d> K

c
,




r11+� 0 2 cd x12¡ d2¡x22r1

2 r¡1
2







L1({26r16r¡1})

6K





 r11+�

0

r1 r¡1







L1({26r16r¡1})

;

and since we have
r1
1+� 0

r1 r¡1
=
�
r1
r¡1

�
� 0 1
r¡1
1¡� 0 6K(�

0)c1¡� 0;

we infer 




2r11+� 0cd x12¡ d2¡x22r1
2 r¡1

2







L1({26r16r¡1})

6K(� 0)c1¡�0:

It is easy to check that in the right half-plane

r1
2+� 0

�
c

r1
3 +

c

r¡1
3

�
6Kc6 oc!0

� 0 (1)c1¡�;

and therefore by symmetry for the left half-plane,



V�ic@x2VV
�





C1({r~63})
+




r~1+�0Re

�
ic
@x2V

V

�




L1({r~>2})

+




r~2+� 0Im�ic@x2VV

�




L1({r~>2})

6 K(� 0)c1¡�
0
:
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From the proof of Lemma 2.1.5, we check (using Lemma 2.1.3) that, if r~> 1�����r
 
ic
@x2V
V

¡ 2 cd x1
2¡ d2¡x22

r1
2 r¡1

2

!�����6K
�
c

r1
3 +

c

r¡1
3

�
:

With
���r� 1

r�1

����6 K

r�1
2 if r~> 1 and similar computations as previously, we check that�����r

 
2 cd x1

2¡ d2¡x22

r1
2 r¡1

2

!�����6K(� 0)c1¡� 0:
Therefore, there exists C100(� 0)> 0 such that



ic@x2VV






��;� 0;d

6C10(� 0)c1¡�
0
:

We conclude by taking C1(� 0)=max (C10(� 0); C100(� 0)). �

Lemma 2.1.23. For 0 < � < � 0 < 1, for � = V	; �0 = V	0 2 E�;�;d such that k	k�;�;d;
k	0k�;�;d 6 C0 with C0 de�ned in Lemma 2.1.7, if there exists K(�; � 0) > 0 such that k	k�;�;d;
k	0k�;�;d6K(�; � 0)c1¡�

0
, then 



R(	)V






��;� 0;d

6 oc!0
� 0 (1)c1¡�

0

and 



R(	0)¡R(	)V






��;� 0;d

6 oc!0
� 0 (1)k	0¡	k�;�;d;

where the oc!0
�;� 0(1) is a quantity that, for �xed � and � 0, goes to 0 when c! 0.

Proof. Since �=/ 0 only in the domain where k:k��;�0;d=kV :kC1({r~63}) and k:k�;�;d=kV :kC2({r~63}),
we will work only with these two norms. Recall from Lemma 2.1.7 that R(	) is supported in�
�=/ 0

	
and

jR(	)j+ jrR(	)j6Ck�kC2({r~62})
2

since k	k�;�;d6C0. We deduce



R(	)V






��;� 0;d

= kR(	)kC1({r~63})6K(� 0)c2¡2�
06 oc!0

� 0 (1)c1¡�
0
:

Furthermore, using the de�nition of R(	) in the proof of Lemma 2.1.7 we check that every term
is at least quadratic in 	 (or its real or imaginary part), therefore, with k	k�;�;d; k	0k�;�;d6C0,
R(	0)¡R(	) can be estimated by



R(	0)¡R(	)V






��;� 0;d

= kR(	0)¡R(	)kC1({r~63})

6 K(k	k�;�;d+ k	0k�;�;d)k	0¡	k�;�;d
6 oc!0(1)k	0¡	k�;�;d:

�

Lemma 2.1.24. For 0 < � < � 0 < 1, for � = V	; �0 = V	0 2 E�;�;d such that k	k�;�;d;
k	0k�;�;d 6 C0 with C0 de�ned in Lemma 2.1.7, if there exists K(�; � 0) > 0 such that k	k�;�;d;
k	0k�;�;d6K(�; � 0)c1¡�

0
, then

k(1¡ �)(¡r	:r	+ jV j2S(	))k��;� 0;d6 oc!0
�;�0(1)c1¡� 0;

k(1¡ �)(¡r	0:r	0+r	:r	+ jV j2(S(	0)¡S(	)))k��;� 0;d6 oc!0
�;� 0(1)k	0¡	k�;�;d:

Proof. As done in Lemma 2.1.23, we check easily that

k(1¡ �)(r	:r	+ jV j2S(	))V kC1({r~63})6K(�; � 0)c1¡�
0k�kC2({r~63});
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since in the area where (1¡ �)=/ 0, C16 jV j6 1 for a universal constant C1>0, �=V	 and using
kV	kC1({r~63})6K(�; � 0)c1¡�

0
.

We then estimate (with �=0 in
�
r~> 2

	
)

kr~1+� 0Re(r	:r	)kL1({r~>2})

6 Kk	k�;�;d2





 r~1+� 0r~2+2�






L1({r~>2})

6 K(�; � 0)c2¡2�
0

6 oc!0
�;� 0(1)c1¡�

0
;

and

kr~2+� 0Im(r	:r	)kL1({r~>2})

6 2kr~2+� 0Im(r	):Re(r	)kL1({r~>2})

6 Kk	k�;�;d2





 r~2+�0r~3+2�






L1({r~>2})

6 oc!0
�;� 0(1)c1¡�

0
;

and we check that with similar computations, that

kr~2+� 0r(r	:r	)kL1({r~>2})6 oc!0
�;� 0(1)c1¡� 0;

thus

k(1¡ �)(¡r	:r	)k��;� 0;d6 oc!0
�;�0(1)c1¡�

0
:

Now, since (1 ¡ �)(¡r	0:r	0 + r	:r	) = ¡(1 ¡ �)(r(	0 ¡ 	):r(	0 + 	)), with similar
computations (and k	0+	k�;�;d6 2K(�; � 0)c1¡�

0
), we have

k(1¡ �)(¡r	0:r	0+r	:r	)k��;� 0;d6 oc!0
�;� 0(1)k	0¡	k�;�;d:

Finally, recall that

S(	)= e2Re(	)¡ 1¡ 2Re(	):

Moreover, e2Re(	)¡ 1¡ 2Re(	) is real-valued and for r~> 2, if k	k�;�;d6C0,

jr~1+� 0jV j2(e2Re(	)¡ 1¡ 2Re(	))j6K jr~1+�0Re2(	)j6K(�; � 0)k	k�;�;d2 6 oc!0
�;� 0(1)c1¡�

0
;

and with Lemma 2.1.3,

jr~2+� 0r(jV j2(e2Re(	)¡ 1¡ 2Re(	)))j
6 2jr~2+� 0rRe(	)(e2Re(	)¡ 1)j+2jr~2+� 0r(jV j2)(e2Re(	)¡ 1¡ 2Re(	))j

6 K

�
jr~2+� 0rRe(	)Re(	)j+

��� r~2+� 0r~3
Re2(	)

����
6 K(�; � 0)k	k�;�;d2





 r~2+� 0r~3+2�






L1({r~>2})

6 oc!0
�;�0(1)c1¡�

0
;

hence

k(1¡ �)jV j2S(	)k��;� 0;d6 oc!0
�;�0(1)c1¡� 0:

With similar comutations on

jV j2(S(	0)¡S(	))=2jV j2(Re(	0)¡Re(	))
X
n=2

+1

2n¡1
X
k=0

n¡1
Re(	)n¡1¡kRe(	0)k

n!
;

we conclude with

k(1¡ �)(jV j2(S(	0)¡S(	)))k��;� 0;d6 oc!0
�;� 0(1)k	0¡	k�;�;d: �
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Now, we end the proof of Proposition 2.1.21

Proof. (of Proposition 2.1.21) We take the constants C(�; � 0) de�ned in Proposition 2.1.17
and C1(� 0) from Lemma 2.1.22. We then de�ne K0(�; � 0) :=C(�; � 0)(C1(� 0)+1).

To apply the contraction mapping theorem, we need to show that for �=V	;�0=V	02E�;�;d
with

k	k�;�;d; k	0k�;�;d6K0(�; � 0)c1¡�
0
;

we have for small c> 0, 



F (	)V






��;� 0;d

6 K0(�; � 0)
C(�; � 0)

c1¡�
0

(2.1.39)

and 



F (	0)¡F (	)V






��;� 0;d

6 oc!0
�;� 0(1)k	0¡	k�;�;d: (2.1.40)

If these estimates hold, using Proposition 2.1.17, we have that the closed ball Bk:k�;�;d(0; K0(�;
� 0)c1¡�

0
) is stable by � 7! V (�L(V :) + (1 ¡ �) VL0(:))¡1(�d?(¡F (�/V ))) and this operator is a

contraction in the ball (for c small enough, depending on �;� 0), hence we can apply the contraction
mapping theorem.

From Lemma 2.1.7, we have

F (	)=E ¡ ic@x2V +V (1¡ �)(¡r	:r	+ jV j2S(	))+R(	):

By Lemmas 2.1.22 to 2.1.24, we have, given that c is small enough (depending only on �; � 0), that
both (2:1:39) and (2:1:40) hold. Therefore, de�ning c0(�; � 0) > 0 small enough such that all the
required conditions on c are satis�ed if c< c0(�; � 0), we end the proof of Proposition 2.1.21.

We have therefore constructed a function �=V	2E�;�;d such that

�=(�L(:)+ (1¡ �) VL0(:/V ))¡1(�d?(¡F (�/V ))):

Therefore, by de�nition of the operator (�L(:)+ (1¡ �) VL0(:/V ))¡1, we have, in the distribution
sense,

�L(�)+ (1¡ �)VL0(	)=�d?(¡F (�/V ));

and thus, there exists �(c; d)2R such that

�L(�)+ (1¡ �)VL0(	)+F (	)=�(c; d)Zd: �

At this point, we have the existence of a function �=V	2E�;�;d depending on c; d and a priori
�; � 0, such that k	k�;�;d6K(�; � 0)c1¡�

0
and

�L(�)+ (1¡ �)VL0(	)+F (	)=�(c; d)Zd (2.1.41)

in the distribution sense for some �(c; d) 2 R. By using elliptic regularity, we show easily that
� 2 C1(R2; C) and that (2.1.41) is veri�ed in the strong sense. The goal is now to show that
we can take �(c; d) = 0 for a good choice of d, but �rst we need a better estimate on � using the
parameters � and � 0. We denote by ��;� 0 = V	�;� 0 the solution obtained by Proposition 2.1.21
for the values � <� 0.

Corollary 2.1.25. For 0<�1<�10 < 1, 0<�2<�20 < 1, there exists c0(�1; �10; �2; �20)> 0 such that
for 0< c< c0(�1; �10; �2; �20), ��1;�10= V	�1;�10 = V	�2;�20 =��2;�20. We can thus take any values of
�; � 0 with � <� 0 and the estimate

k	k�;�;d6K(�; � 0)c1¡�
0

holds for 0<c< c0(�; � 0). In particular, for c small enough,

k�kC2({r~63})6Kc3/4:

Proof. This is because for �1<�2, E�;�2�E�;�1 hence the �xed point for �2 (for any �20>�2) yields
the same value of 	 as the �xed point for �1 for c small enough (for any �10 > �1). In particular,
this implies also that �(c; d) is independent of �; � 0 (for c small enough). �
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2.1.6 Estimation on the Lagrange multiplier �(c; d)
To �nish the construction of a solution of (TWc), we need to �nd a link between d and c such that
�(c; d)= 0 in (2.1.41). Here, we give an estimate of �(c; d) for small values of c.

Proposition 2.1.26. For �(c; d);�=V	 de�ned in the equation of Proposition 2.1.21, namely

�L(�)+ (1¡ �)VL0(	)+F (	)=�(c; d)Zd;
we have, for any 0<�< 1,

�(c; d)
Z
R2
j@dV j2�=�

�
1
d
¡ c
�
+Oc!0

� (c2¡�):

We will take the scalar product of �L(�) + (1 ¡ �) VL0(	) + F (	) ¡ �(c; d)Zd with @dV .
We will show in the proof that in the term h�L(�) + (1 ¡ �)VL0(	) + F (	); @dV i, the largest
contribution come from the source term E ¡ ic@x2V in F (	). We will show that hE;@dV i' �

d
and

h¡ic@x2V ; @dV i '¡�c, so that, at the leading order, �(c; d)sK
¡ 1
d
¡ c
�
. In the proof, steps 1, 2

and 7 show that the terms other than E¡ ic@x2V are of lower order, and steps 3-6 compute exactly
the contribution of these leading order terms.

Proof. Recall from Lemma 2.1.7 that L(�)=(E¡ ic@x2V )	+VL0(	), hence we write the equation
under the form

L(�)¡ (1¡ �) (E ¡ ic@x2V )	+F (	)=�(c; d)Zd:

We want to take the scalar product with @dV . We will compute the terms (1¡ �)E	 (step 1), F (	)
(steps 2 to 6) and in step 7 we will show that we can do an integration by parts for hL(�); Zdi and
compute its contribution.

We have by de�nition Zd= �@dV , hence

hZd; @dV i=
Z
R2
j@dV j2�

which is �nite and independent of d since �=0 outside
�
r~62

	
. Recall that k	k�;�6K(�;� 0)c1¡�

0

where

k	k�;� = kV	kC2({r~63})+ kr~1+�	1kL1({r~>2})+ kr~2+�r	1kL1({r~>2})

+ kr~�	2kL1({r~>2})+ kr~1+�r	2kL1({r~>2})+ kr~2+�r2	kL1({r~>2});

which we will heavily use with several values of �; � 0 in the following computations, in particular
for � 2 ]0; 1[, the estimate

k	k�;�/2;d6K(�)c1¡�:

Step 1. We have h(1¡ �)(E ¡ ic@x2V )	; @dV i=Oc!0
� (c2¡�).

From Lemma 2.1.6, we have

j@dV j6
K
1+ r~

: (2.1.42)
In (2.1.2), we showed that

E=¡2rV1:rV¡1+(1¡ jV1j2)(1¡ jV¡1j2)V1V¡1;

hence, with Lemmas 2.1.1 and 2.1.5 (estimating ic@x2V as in step 2 of the proof of Lemma 2.1.22),
we have

jE ¡ ic@x2V j6
Kc
1+ r~

by using jrV1j 6 K

1+ r~
, jrV¡1j 6 K

d
6 Kc and j1 ¡ jV¡1j2j 6 Kc2 in the right half-plane and the

symmetric estimate in the other one. We also have, in
�
1¡ �=/ 0

	
,

j	j6K k	k�;�/2;d
(1+ r~)�/2

6 K(�)c1¡�

(1+ r~)�/2
;
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hence ��h(1¡ �)(E ¡ ic@x2V )	; @dV i��6K(�)Z
R2

c2¡�

(1+ r~)2+�/2
=Oc!0

� (c2¡�):

Step 2. We have hF (	); @dV i= hE ¡ ic@x2V ; @dV i+Oc!0
� (c2¡�).

In this step, we want to show that the nonlinear terms in F (	) are negligible. Recall that

F (	)=E ¡ ic@x2V +R(	)+V (1¡ �)(¡r	:r	+ jV j2S(	)):

We �rst show that

hR(	); @dV i=Oc!0
� (c2¡�):

Indeed, R(	) is localized in
�
r~6 2

	
and jR(	)j6Ck�kC1({r~63})

2 (since k	k�;�;d6C0, see Lemma

2.1.7), and using that in
�
r~6 3

	
, j�j+ jr�j6K(�)c1¡�/2 yields

jR(	)j6 ck@x2�kC0({r~63})+Ck�kC1({r~63})
2 =Oc!0

� (c2¡�):

Now, we use k	k�;�/2;d6K(�)c1¡� to estimate, in
�
1¡ �=/ 0

	
,

jr	:r	j6 Kk	k�;�;d2

(1+ r~)2+�
6 K(�)c2¡�

(1+ r~)2+�
;

therefore ��h¡r	:r	V (1¡ �); @dV i��6Kc2¡�Z
R2

1
(1+ r~)3+�

=Oc!0
� (c2¡�):

The same argument can be made for��h¡jV j2S(	)V (1¡ �); @dV i��=Oc!0
� (c2¡�)

by using S(	)= e2Re(	)¡ 1¡ 2Re(	) and the fact that it is real-valued.

Step 3. We have hE¡ ic@x2V ;@dV i=¡2
R�
x1>0

	Re((E¡ ic@x2V )@x1V1V¡1)+Oc!0
� (c2¡�).

The goal of this step is to simplify the computation by using the symmetry. By symmetry, we
can only look in the right half-plane:

hE ¡ ic@x2V ; @dV i=2
Z
�
x1>0

	Re((E ¡ ic@x2V )@dV ):

Recall that @dV =¡@x1V1V¡1+ @x1V¡1V1, hence we need to show thatZ
{x1>0}

Re((E ¡ ic@x2V )@x1V¡1V1)=Oc!0
� (c2¡�):

We computeZ
�
x1>0

	Re((E ¡ ic@x2V )@x1V¡1V1) =
Z
�
x1>0

	Re

��
E ¡ ic@x2V

V
jV j2

�
@x1V¡1
V¡1

�
=
Z
�
x1>0

	Re

�
E ¡ ic@x2V

V
jV j2

�
Re

�
@x1V¡1
V¡1

�
+
Z
�
x1>0

	Im
�
E ¡ ic@x2V

V
jV j2

�
Im

�
@x1V¡1
V¡1

�
:

In the right half-plane, we have d6 r¡1 and r~6 r1, hence����Re

�
@x1V¡1
V¡1

�����6 K

r¡1
3 6 Kc1¡�/2

(1+ r~)2+�/2
;

����Im� @x1V¡1V¡1

�����6 K
r¡1

6 Kc1¡�/2

(1+ r~)�/2
;
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from Lemma 2.1.1. Moreover,����Re

�
E ¡ ic@x2V

V
jV j2

�����6 Kc1¡�/2

(1+ r~)1+�/2
;

����Im�E ¡ ic@x2VV
jV j2

�����6 Kc1¡�/2

(1+ r~)2+�/2
;

from Lemma 2.1.22. We thus deduce that�����
Z
�
x1>0

	Re((E ¡ ic@x2V )@x1V¡1V1)

�����6Kc1¡�/2
Z
R2

c1¡�/2

(1+ r~)2+�
=Oc!0

� (c2¡�):

Step 4. We haveZ
�
x1>0

	Re(E@x1V1V¡1)=¡2
Z
�
x1>0

	Re(@x2V1@x1V1@x2V¡1V¡1)+Oc!0
� (c2¡�):

The goal of this step is to compute the part of E that produces the higher order term. Recall
from (2.1.2) that

E=¡2rV1:rV¡1+(1¡ jV1j2)(1¡ jV¡1j2)V1V¡1
and since

j(1¡jV1j2)(1¡ jV¡1j2)j6
Kc2

(1+ r~)2
by Lemma 2.1.1, we deduceZ

�
x1>0

	Re((1¡ jV1j2)(1¡ jV¡1j2)V1V¡1@x1V1V¡1)=Oc!0
� (c2¡�):

Now we compute the �rst contribution from ¡2rV1:rV¡1=¡2@x1V1@x1V¡1¡ 2@x2V1@x2V¡1,Z
�
x1>0

	Re((¡2@x1V1@x1V¡1)@x1V1V¡1)=¡2
Z
�
x1>0

	j@x1V1j2Re(@x1V¡1V¡1):

From Lemma 2.1.1 we have

Re(@x1V¡1V¡1)=O

 
1
r¡1
3

!

since the main part in @x1V¡1V¡1 is purely imaginary. Using r16 r¡1 and r¡1> d> K

c
in the right

half-plane, we have 1

r¡1
3 6 Kc2¡�

(1+ r~)1+�
and, noting that j@x1V1j26

K

(1+ r~)2
, we obtainZ

�
x1>0

	j@x1V1j2 jRe(@x1V¡1V¡1)j6Kc2¡�
Z
�
x1>0

	 1
(1+ r~)3+�

=Oc!0(c5/4):

Finally, the second contribution from ¡2rV1:rV¡1 isZ
�
x1>0

	Re((¡2@x2V1@x2V¡1)@x1V1V¡1)=¡2
Z
�
x1>0

	Re(@x2V1@x1V1@x2V¡1V¡1)

which concludes the proof of this step.

Step 5. We have
R�
x1>0

	Re(E@x1V1V¡1)=
�

d
+Oc!0

� (c2¡�).

By Lemma 2.1.1, we have

@x2V¡1V¡1=¡ijV¡1j2
y1+2d
r¡1
2 +O

 
1
r¡1
3

!
:
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The O
�

1

r¡1
3

�
yielding a term which is a Oc!0

� (c2¡�) as in step 4, thereforeZ
�
x1>0

	Re((¡2@x2V1@x2V¡1)@x1V1V¡1)= 2
Z
�
x1>0

	Re(i@x2V1@x1V1)jV¡1j2
y1+2d
r¡1
2 +Oc!0

� (c2¡�):

Now we compute in polar coordinate around de1~ , writing V1= �1(r1)ei�1. From Lemma 2.1.2, we
have

@x1V1=
�
cos(�1)

�1
0 (r1)
�1(r1)

¡ i
r1

sin(�1)
�
V1;

@x2V1=
�
sin(�1)

�1
0 (r1)
�1(r1)

+ i

r1
cos(�1)

�
V1:

We then compute

Re(i@x2V1@x1V1)=¡jV1j2
�
cos2(�1)

�1
0

r1�1
+ sin2(�1)

�1
0

r1�1

�
=¡jV1j2

�1
0

r1�1
:

From Lemma 2.1.1, we have �10 (r1)=Or1!1
�
1

r1
3

�
. As a consequence�����

Z
�
x1>0

	jV1j2 �1
0

r1�1
jV¡1j2

y1+2d
r¡1
2 ¡

Z
�
r16d1/2

	jV1j2 �1
0

r1�1
jV¡1j2

y1+2d
r¡1
2

�����
6 Kc2¡�

Z
�
r1>d1/2

	 1
(1+ r~)2+2�

because when x1> 0 and r1> d1/2, we have
���jV1j2 �1

0

r1�1
jV¡1j2y1+2d

r¡1
2

���6 Kc2¡�

(1+ r~)2+2�
. We deduce thatZ

�
x1>0

	jV1j2 �1
0

r1�1
jV¡1j2

y1+2d
r¡1
2 =

Z
�
r16d1/2

	jV1j2 �1
0

r1�1
jV¡1j2

y1+2d
r¡1
2 +Oc!0

� (c2¡�):

In the ball
�
r16 d1/2

	
, we have

r¡1
2 =4 d2

�
1+Od!1

�
1
d

��
and jV¡1j2=1+O

�
1
d2

�
thereforeZ

�
x1>0

	jV1j2 �1
0

r1�1
jV¡1j2

y1+2d
r¡1
2 = 1

4 d2

Z
�
r16d1/2

	jV1j2 �1
0

r1 �1
(y1+2d)+Oc!0

� (c2¡�):

Since y1= r1 cos(�1), by integration in polar coordinates we haveZ
fr16d1/2g

jV1j2
�1
0

r1�1
y1=0

hence Z
�
x1>0

	Re(E@x1V1 V¡1)=
1
d

Z
�
r16d1/2

	jV1j2 �1
0

r1�1
+Oc!0

� (c2¡�):

Remark that jV1j2= �1
2 henceZ

�
r16d1/2

	jV1j2 �1
0

r1�1
=2�

Z
0

d1/2

�1�1
0 dr1=�[�12]0d

1/2
=�+Od!1

�
1
d

�
Since �1=1+O

�
1

r1
2

�
when r1!1 and �1(0)=0 by Lemma 2.1.1. Therefore, as claimed,Z

�
x1>0

	Re(E@x1V1V¡1)=
�
d
+Oc!0

� (c2¡�):

Notice that we have shown in particular thatZ
R2

Re(i@x2V1@x1V1)jV¡1j2=¡�+Oc!0
� (c1¡�): (2.1.43)
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Step 6. We have
R�
x1>0

	Re(¡ic@x2V@x1V1V¡1)=¡�c+Oc!0
� (c2¡�).

We are left with the computation ofZ
�
x1>0

	Re(¡ic@x2V@x1V1 V¡1)=Z
�
x1>0

	Re(¡ic@x2V1@x1V1)jV¡1j2+
Z
�
x1>0

	Re(¡ic@x2V¡1V1@x1V1V¡1) (2.1.44)

since @x2V =@x2V1V¡1+ @x2V¡1V1. For the second term in (2.1.44), we compute

¡c
Z
�
x1>0

	Re(i@x2V¡1V1@x1V1V¡1)= c
Z
�
x1>0

	Re(@x1V1V1)jV¡1j2
y1+2d
r¡1
2 +Oc!0

� (c2¡s)

in view of the relation

i@x2V¡1V¡1=¡jV¡1j2
y1+2d
r¡1
2

+O

 
1
r¡1
3

!

from Lemma 2.1.1 and the fact that
R�
x1>0

	c O� 1

r¡1
3

�
= Oc!0

� (c2¡�) (as in step 4). Now recall
from Lemma 2.1.2 that

@x1V1=
�
cos(�1)

�1
0 (r1)
�1(r1)

¡ i
r1

sin(�1)
�
V1

therefore

Re(@x1V1V1)= cos(�1)
�1
0

�1
jV1j2:

In particular, jRe(@x1V1V1)j6
K

1+ r1
3 is integrable. Furthermore,

���jV¡1j2y1+2d

r¡1
2

���=Oc!0(c) in the right
half-plane, therefore

¡c
Z
�
x1>0

	Re(i@x2V¡1V1@x1V1V¡1)=Oc!0(c2)=Oc!0
� (c2¡�):

The �rst contribution in (2.1.44) is

c

Z
�
x1>0

	Re(i@x2V1@x1V1)jV¡1j2= c
Z
�
x1>0

	Re(i@x2V1@x1V1)+Oc!0
� (c2¡�)

using that jV¡1j2=1+O
�

1

r¡1
2

�
. From (2.1.43), we haveZ

�
x1>0

	Re(i@x2V1@x1V1)=¡�+Oc!0
� (c1¡�):

This conclude the proof of step 6, and combining step 4, 5 and 6 we deduceZ
�
x1>0

	Re((E ¡ ic@x2V )@x1V1V¡1)=�
�
1
d
¡ c
�
+Oc!0

� (c2¡�):

Step 7. We have hL(�); @dV i=Oc!0
� (c2¡�).

We want to compute, by integration by parts, that

hL(�); @dV i= h�; L(@dV )i:

First, we recall that the left hand side is well de�ned, because we showed in the previous steps that
all the other terms are bounded, therefore this one is also bounded. We haveZ

B(0;R)

Re(��@dV )=
Z
@B(0;R)

Re(r�@dV ):n~ ¡Re(�r@dV ):n~ +
Z
B(0;R)

Re(��@dV );

and

jRe(r�@dV )j+ jRe(�r@dV )j6
K

(1+ r~)2+1/2
;
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therefore Z
@B(0;R)

Re(r�@dV ):n~ ¡Re(�r@dV ):n~ = oR!1(1)

and the integration by parts holds.

Recall that

L(h)=¡�h¡ (1¡jV j2)h+2Re(V�h)V ¡ ic@x2h
and

LV1(h)=¡�h¡ (1¡jV1j2)h+2Re(V1� h)V1:

From Lemma 2.1.6 and k	k�;�/26K(�)c1¡�, we check easily that

jh�;¡ic@x2@dV ij6
Z
R2

K(�)c2¡�

(1+ r~)2+�/2
=Oc!0

� (c2¡�):

We therefore focus on the remaining part, with the operator

L~(h) :=¡�h¡ (1¡ jV j2)h+2Re(V�h)V ¡ ic@x2h:

We remark that we have LV1(@x1V1) = 0, since @x1(¡�V1 ¡ (1 ¡ jV1j2)V1) = 0. Recall that
@dV =¡@x1V1V¡1+ @x1V¡1V1 and let us compute

L~(V¡1h)=LV1(h)V¡1¡�(V¡1h)+�hV¡1+(jV j2¡jV1j2)hV¡1+2Re(V1� h)(1¡ jV¡1j2)V ;

therefore, using the equation or V¡1,

L~(V¡1h)=LV1(h)V¡1¡ 2rV¡1:rh+(1¡ jV¡1j2)(1¡jV1j2)V¡1h+2Re(V1� h)(1¡jV¡1j2)V :

Taking h= @x1V1 then yields

L~(V¡1@x1V1)=¡2rV¡1:r@x1V1+(1¡ jV¡1j2)(1¡ jV1j2)V¡1@x1V1+2Re(V1� @x1V1)(1¡ jV¡1j2)V :

Remark that jrV¡1:r@x1V1j6
K

(1+ r1)(1+ r¡1)2
, j(1¡ jV¡1j2)(1¡ jV1j2)V¡1@x1V1j6

K

(1+ r1)3(1+ r¡1)2

and j2Re(V1� @x1V1)(1¡jV¡1j2)V j6
K

(1+ r1)3(1+ r¡1)2
for a universal constant K>0 by Lemma 2.1.1,

therefore

h�; L~(@x1V1V¡1)i=Oc!0
� (c2¡�):

Exchanging the roles of V1 and V¡1, we have similarly

L~(V1@x1V¡1)=¡2rV1:r@x1V¡1+(1¡ jV¡1j2)(1¡jV1j2)V1@x1V¡1:

We then conclude that

hL~(�); @dV i=Oc!0
� (c2¡�);

which end the proof of this step. Notice that we have shown

jL(@dV )j6
Kc

(1+ r~)2
(2.1.45)

because 1

(1+ r1)(1+ r¡1)
6 Kc

(1+ r~)
in the whole space.

Step 8. Conclusion.

Adding all the results obtained in steps 1 to 7, we deduce

�(c; d)
Z
R2
j@dV j2�=�

�
1
d
¡ c
�
+Oc!0

� (c2¡�): �

At this point, we cannot conclude that there exists d such that �(c; d) = 0. For that, we need
to show that theOc!0

� (c2¡�) is continuous with respect to c and d. This will be shown in section 2.2.
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2.2 Construction and properties of the travelling wave
Given 0<� <� 0< 1, d; c > 0 satisfying 1

2c
<d<

2

c
and c < c0(�; � 0) de�ned in Proposition 2.1.21,

we de�ne �c;d = V	c;d 2 E�;�;d the fonction constructed by the contraction mapping theorem
in Proposition 2.1.21. From Corollary 2.1.25, for any 0 < �1 < �1

0 < 1, this function satis�es, for
c< c0(�1; �10), that

k	c;dk�;�1;d6K(�1; �10)c1¡�1
0
:

With equation (2.1.41) and Proposition 2.1.26, if we show that �c;d is a continuous function of
c and d, then there exists c0> 0 such that, for any 0< c< c0, by the intermediate value theorem,
there exists dc > 0 such that �(c; dc) = 0. This would conclude the construction of the travelling
wave, and is done in subsection 2.2.1. In subsection 2.2.2, we compute some estimates on Qc which
will be usefull for understanding the linearized operator around Qc. We also show there that Qc
is a travelling wave solution with �nite energy.

2.2.1 Proof that �c;d is a C1 function of c and d

To end the construction of the travelling wave, we only need the continuity of �c;d with respect
to c and d. But for the construction of the C1 branch of travelling wave in section 2.3, we need its
di�erentiability.

2.2.1.1 Setup of the problem
From Proposition 2.1.21, the function �c;d is de�ned by the implicit equation on E�;�;d

(�L(:)+ (1¡ �)VL0(:/V ))¡1(�d?(¡F (�c;d/V )))+�c;d=0;

where (�L(:)+(1¡ �) VL0(:/V ))¡1 is the linear operator from E��;� 0;d\
�
h:;Zdi=0

	
to E�;�;d, that,

for a function Vh2E��;�0;d with hVh;Zdi=0, yields the unique function �=V	2E�;�;d such that

�L(�)+ (1¡ �)VL0(	)=Vh

in the distribution sense. We recall the quantity Zd(x) = @dV (x)(�~(4r1) + �~(4r¡1)) de�ned in
subsection 2.1.3 and we have de�ned the projection

�d?(�)=�¡h�; Zdi
Zd

kZdkL2(R2)
2 :

We want to show that (c; d) 7!�c;d is of class C1 from values of c; d such that 0< c < c0(�) and
1

2d
<c<

2

d
to E�;�;d. The �rst obstacle is that E�;�;d depends on d (through r~), both in the weights

in k:k�;�;d and in the orthogonality required: h�; Zdi= 0. To be able to use the implicit function
theorem, we �rst need to write an equation on � in a space that does not depend on d. The norm
k:k�;�;d depends on d (through r~):

k	k�;�;d = kV	kC2({r~63})+ kr~1+�	1kL1({r~>2})+ kr~2+�r	1kL1({r~>2})

+ kr~�	2kL1({r~>2})+ kr~1+�r	2kL1({r~>2})+ kr~2+�r2	kL1({r~>2}):

For d~ 2R; d~> 10 and d 2R such that jd ¡ d~j< � for some small � > 0 (that we will �x later
on), we de�ne

k�k~;�;d~ := k�kC2({r~~63})+






r~~1+�Re

 
�
V~

!





L1({r~~>2})

+






r~~2+�rRe

 
�
V~

!





L1({r~~>2})

+






r~~� Im

 
�
V~

!





L1({r~~>2})

+






r~~1+�rIm

 
�
V~

!





L1({r~~>2})

+






r~~2+�r2

 
�
V~

!





L1({r~~>2})

;

where V~ = V1(x ¡ d~e1~ )V¡1(x + d~e1~ ) and r~~ = min (r1;~; r¡1;~) with r1;~ = jx ¡ d~e1~ j;
r¡1;~= jx+ d~e1~ j. Then, for �=V	2E�;�;d (V taken in d),

K1k	k�;�;d6 k�k~;�;d~6K2k	k�;�;d (2.2.1)
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where K1;2> 0 are absolute when jd¡ d~j<�. Indeed, we check with simple geometric arguments
that if r~~> 1, V taken in d, then r~> 1/2 and we have���� VV~ ¡ 1

����6 K
(1+ r~)

and
����r� V

V~

�����6 K
(1+ r~)2

(2.2.2)

for a universal constant K> 0. Moreover, we have, for instance, if r~~> 2 (hence r~~6 2r~),�����r~~1+�Re

 
�
V~

!����� 6
����r~~1+�Re

�
�
V

�����+ ����r~~1+�Re

�
�
V

�
V
V~
¡ 1
������

6 Kk	k�;�;d+K
����r~� �V

����6Kk	k�;�;d:
Using (2.2.2), we can estimate similarly all the terms in (2.2.1).

We de�ne similarly, for g=V~(g1+ ig2)2C1(R2), � 0> 0

kgk~~;� 0;d~ := kgkC1({r~~63})+ kr~~1+�
0
g1kL1({r~~>2})+ kr~~2+�

0
g2kL1({r~~>2})+ kr~~2+�

0rgkL1({r~~>2}):

We have that there exist C1; C2>0 universal constants such that, for 0<� 0< 1 and any d; d~>10
with jd¡ d~j<�, for any Vh2E��;� 0;d, g=Vh,

C1khk��;� 0;d6 kgk~~;� 0;d~6C2khk��;� 0;d:

We de�ne the spaces, for �; � 0> 0,

E~;�;d~ :=�
�2C2(R2;C); k�k~;�;d~<+1; h�; Zd~i=0;8x2R2;�(x1; x2)=�(x1;¡x2)=�(¡x1; x2)

	
and

E~~;� 0;d~ :=
�
g 2C1(R2;C); kgk~~;� 0;d~<+1

	
:

We infer that, from Proposition 2.1.17, that the operator

(�L(:)+ (1¡ �) VL0(:/V ))¡1o�d?

goes from E~~;� 0;d~ to E~;�;d~, and that (for 0<�<� 0< 1)

9(�L(:)+ (1¡ �)VL0(:/V ))¡1o�d?9E~~;� 0;d~!E~;�;d~
is bounded independently of c; d and d~ if jd¡ d~j< �. Indeed, the norms k:k�;�;d and k:k~;�;d~
are equivalent, as well as the norms k:k��;� 0;d and k:k~~;� 0;d~ for any �; � 0 > 0. About the
orthogonality, we replaced h�; Zdi = 0 by h�; Zd~i = 0. This does not change the proof of
Proposition 2.1.17, since when we argue by contradiction, if for a universal constant j�j 6 � we
took the orthogonality h�; Zd+�i=0 instead of h�; Zdi=0, the proof does not change, given that
� is small enough (independently of d). To be speci�c, we have to take � small enough such that
h@x1V1; @x1V1(:+�)i> 0 for all �2 ]¡�; �[.

Therefore, we take a sequence D(n)> 0 going to in�nity such that jD(n+1)¡D(n)j< �/2, and
for any given d large enough, there exists k(d) such that d 2 ]D(k(d)) ¡ � /2; D(k(d)) + � /2[, and
the proof of Proposition 2.1.17 holds with the orthogonality h�; ZD(k(d))i=0 for any value of d in
]D(k(d))¡�/2;D(k(d))+�/2[. We denote D(k(d))=d~. The inversion of the linearized operator then
holds for d2 ]D(n)¡ �/2; D(n)+ �/2[ with D(n)= d~, for all n2N large enough.

Furthermore, the contraction arguments given in the proof of Proposition 2.1.21 still hold
(because the norms are equivalent), hence we can de�ne �c;d by a �xed point argument if 1

2d
6c6 2

d
and jd¡ d~j<� in the space E~;�;d~ that does not depend on d.

We want to emphasize the fact that we change a little the de�nition of the spaces compared
to section 2.1. In particular, for �=V	, the norm k:k~;�;d~ is on the function �, and before, for
k:k�;�;d, it was on 	. This is because V depends on d, and we want to remove any dependence on
d. The same remark holds for k:k~~;� 0;d~ and k:k~~;� 0;d (with g=Vh).
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We continue, and we de�ne

H(�; c; d) := (�L(:)+ (1¡ �)VL0(:/V ))¡1(¡�d?(F (�/V )))+�:

The function �c;d2E~;�;d~ is de�ned, for 1

2d
<c<

2

d
and jd¡d~j<�, by being the only solution in

a ball of E~;�;d~ (with a radius depending on �;� 0 and c but not d) to the implicit equation on �:
H(�; c; d)=0. This means that we shall be able to use the implicit function theorem in the space
E~;�;d~ on the equation H(�; c; d)=0 to show that �c;d is a C1 function of d in E~;�;d~ (for values
of d such that 1

2d
<c<

2

d
and jd¡ d~j<�). We want to di�erentiate this equation with respect to

� at a �xed c and d, and show that we can invert the operator obtained when we take � close to
�c;d. Since (�L(:)+ (1¡ �)VL0(:/V ))¡1 and �d? are linear operators that do not depend on �, it
is easy to check that H(�; c; d) is di�erentiable with respect to �, and we compute

d�H(�; c; d)(')= (�L(:)+ (1¡ �)VL0(:/V ))¡1(�d?(¡d	F ('/V )))+ ':

To show that d�H(�; c; d): E~;�;d~!E~;�;d~ and that it is invertible, it is enough to check that

9(�L(:)+ (1¡ �) VL0(:/V ))¡1(�d?(d	F (:/V )))9E~;�;d~!E~;�;d~= oc!0
� (1); (2.2.3)

which implies that d�H(�; c; d) is a small perturbation of Id for small values of c (at �xed �). From
Proposition 2.1.17, we have that 9(�L(:)+ (1¡ �)VL0(:/V ))¡1o�d?9E~~;� 0;d~!E~;�;d~ is bounded

independently of d and d~ if jd¡ d~j<�, thus it is enough to check that, for some � 0>� (we will
take � 0= 1+�

2
>�),

9d	F (:)9E~;�;d~!E~~;� 0;d~= oc!0
�;� 0(1):

This is a consequence of the following lemma (for functions �=V	 such that k	k�;�;d= oc!0
� (1),

which is the case if � is near �c;d since k	c;dk�;�;d6K(�;� 0)c1¡�
0
), where we do the computations

with the �¡norms since they are equivalent, with uniform constants, to the ~-norms. We de�ne


(�) := 1+�
2

>�:

Lemma 2.2.1. There exists C >0 such that, for 0<�<1 and functions �=V	; '=V 2E�;�;d,
if 1

2d
<c<

2

d
and k	k�;�;d6 1, then

kd	F ( )k��;
(�);d6Ck	k�;�;dk k�;�;d:

Proof. Recall from Lemma 2.1.7 that

F (	)=E ¡ ic@x2V +V (1¡ �)(¡r	:r	+ jV j2S(	))+R(	)

with S(	)= e2Re(	)¡1¡2Re(	) and R(	) at least quadratic in � and supported in
�
r~62

	
. We

compute

d	F ( )=V (1¡ �)(¡2r	:r + jV j2 dS( ))+ d	R( ):

We recall the condition 1

2d
<c<

2

d
. For the term d	R( ), since R is a sum of terms at least quadratic

in � and is supported in
�
r~62

	
(see the proof of Lemma 2.1.7), when we di�erentiate, every term

has 	 or r	 as a factor. Therefore,

kd	R( )k��;
(�);d 6 Kk�kC2({r~62})kV kC2({r~62})

6 Kk	k�;�;dk k�;�;d:

Now, for Re(r	:r ), since � > 0; 
(�)< 1, we estimate

kr~1+
(�)Re(r	:r )kL1({r~>2}) 6 kr~1+
(�)jr	j � jr jkL1({r~>2})

6 Kk	k�;�;dk k�;�;d






 r~1+
(�)r~2+2�







L1({r~>2})

6 Kk	k�;�;dk k�;�;d:
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Similarly,

kr~2+
(�)Im(r	:r )kL1({r~>2}) 6 kr~2+
(�)rRe	:rIm kL1({r~>2})

+ kr~2+
(�)rIm	:rRe kL1({r~>2})

6 Kk	k�;�;dk k�;�;d






 r~2+
(�)r~3+2�







L1({r~>2})

6 Kk	k�;�;dk k�;�;d:

With similar computation, we check that

kr~2+
(�)r(r	:r )kL1({r~>2})6Kk	k�;�;dk k�;�;d:
Finally, we have

d	S( )= 2Re( )(e2Re(	)¡ 1);

a real-valued term, and since k	k�;�;d6 1, we estimate

kr~1+
(�)Re( )(e2Re(	)¡ 1)kL1({r~>2}) 6 Kkr~1+
(�)Re( )Re(	)kL1({r~>2})

6 Kk k�;�;dk	k�;�;d






 r~1+
(�)r~2+2�







L1({r~>2})

6 Kk	c;dk�;�;dk k�;�;d;

as well as

kr~2+
(�)r(Re( )(e2Re(	)¡ 1))kL1({r~>2}) 6 Kkr~2+
(�)Re(r )Re(	)kL1({r~>2})

+ Kkr~2+
(�)Re( )Re(r	)kL1({r~>2})

6 Kk	c;dk�;�;dk k�;�;d






 r~2+
(�)r~3+2�







L1({r~>2})

6 Kk	c;dk�;�;dk k�;�;d:

These estimates imply

kd	F ( )k��;
(�);d6Ck	c;dk�;�;dk k�;�;d: �

2.2.1.2 Proof of the di�erentiabilities of �c;d with respect of c and d

We shall now show that c 7!�c;d is C1 and compute estimates on @c	c;d at �xed d, and then show
that d 7! �c;d is C1 at �xed c and estimate @d�c;d. These estimates will be usefull in subsection
2.3.6. For d 7!�c;d, we will use the implicit function theorem (see Lemma 2.2.3), but we start here
with the derivation with respect to c.

Lemma 2.2.2. For 0<�< 1, there exists c0(�)> 0 such that, at �xed d> 1

2c0(�)
,

c 7!�c;d2C1

� �
1
2d
;
2
d

�
\ ]0; c0(�)[; E�;�;d

�
:

Remark that, at �xed d, @c�c;d=V@c	c;d.

Proof. In this proof, we consider a �xed d> 1

2c0(�)
. We de�ne, for c2R such that 1

2d
<c<

2

d
and

0<c< c0(�), the operator

Hc: � 7! (�L(:)+ (1¡ �) VL0(:/V ))¡1(�d?(F (�/V )))

from E~;�;d~ to E~;�;d~. The dependency on c is coming from both F and (�L(:)+ (1¡ �) VL0(:/
V ))¡1, and in this proof, we will add a subscript on these functions giving the value of c where it
is taken. Take c02R such that 1

2d
<c0<

2

d
and 0<c0<c0(�), and let us show that

kHc+"(�c0;d)¡Hc(�c0;d)k~;�;d~= o"!0
�;c (1):

98 Smooth branch of travelling waves



In particular, remark that we look for a convergence uniform in c0. By de�nition of the operator
(�L(:)+(1¡ �) VL0(:/V ))¡1, the function Hc+"(�c0;d) (in E~;�;d~) is such that, in the distribution
sense, �

�L(:)+ (1¡ �)VL0
� :
V

��
c+"

(Hc+"(�c0;d))=�d?(Fc+"(�c0;d/V )):

Since �c0;d 2 C1(R2), we have that Hc+"(�c0;d) 2 C1(R2) and the equation is satis�ed in the
strong sense. Furtheremore, since �d?(Fc+"(�c0;d/V )) 2 E~~; 2+�

3
;d~ by Lemmas 2.1.22 to 2.1.24

with k�d?(Fc+"(�c0;d/V ))k~~; 2+�
3
;d~6K(�) (since �c0;d2E~;2+�3 ;d~ with k�c0;dk~; 2+�

3
;d~6K(�)),

we have, by Lemma 2.1.18, that Hc+"(�c0;d)2E~;
(�);d~ (since 
(�)< 2+�

3
) with, fom Proposition

2.1.17, kHc+"(�c0;d)k~;
(�);d~6K(�). We check similarly that�
�L(:)+ (1¡ �)VL0

� :
V

��
c
(Hc(�c0;d))=�d?(Fc(�c0;d/V )):

Now, from the de�nitions of L and L0 from Lemma 2.1.7, we have�
�L(:)+ (1¡ �)VL0

� :
V

��
c+"

(Hc+"(�c0;d)) =
�
�L(:)+ (1¡ �) VL0

� :
V

��
c
(Hc+"(�c0;d))

¡ i"�@x2Hc+"(�c0;d)

¡ i"(1¡ �)V@x2
�
Hc+"(�c0;d)

V

�
;

and therefore �
�L(:)+ (1¡ �)VL0

� :
V

��
c
(Hc+"(�c0;d)¡Hc(�c0;d))

= ¡(�d?(Fc+"(�c0;d/V )¡Fc(�c0;d/V )))

¡ i"

�
�@x2Hc+"(�c0;d)+ (1¡ �)V@x2

�
Hc+"(�c0;d)

V

��
:

We check, using Hc+"(�c0;d)2E~;
(�);d~, kHc+"(�c0;d)k~;
(�);d~6K(�) that

i"

�
�@x2Hc+"(�c0;d)+ (1¡ �)V@x2

�
Hc+"(�c0;d)

V

��
2E~~;
(�);d~;

with 



i"��@x2Hc+"(�c0;d)+ (1¡ �)V@x2
�
Hc+"(�c0;d)

V

��




~~;
(�);d~

6K(�)":

In particular, by Proposition 2.1.17 (from E~~;
(�);d~ to E~;�;d~), we have

kHc+"(�c0;d)¡Hc(�c0;d)k~;�;d~
6 K(�)k�d?(Fc+"(�c0;d/V )¡Fc(�c0;d/V ))k~~;
(�);d~
+ K(�)":

We recall that

Fc(	)=E ¡ ic@x2V +V (1¡ �)(¡r	:r	+ jV j2S(	))+Rc(	);
therefore

Fc+"(�c0;d/V )¡Fc(�c0;d/V )=¡i"@x2V +Rc+"(�c0;d/V )¡Rc(�c0;d/V ):

By Lemma 2.1.5 (for i@x2V ) and the de�nition of Rc (in the proof of Lemma 2.1.7), we check that,
for any 0<� < 1, since k	c0;dk�;�;d6K(�)c0(�)1¡
(�)6K(�),

k�d?(Fc+"(�c0;d/V )¡Fc(�c0;d/V ))k~~;�;d~6K(�)
"
c
:

We conclude that

kHc+"(�c0;d)¡Hc(�c0;d)k~;�;d~= o"!0
�;c (1);

thus Hc+"(�c0;d) ! Hc(�c0;d) when "! 0 in E~;�;d~ uniformly in c0. We remark that it is also
uniform in d in any compact set of ]0; c0(�)[.
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The next step is to show that c 7!�c;d is a continuous function in E�;�;d. Take "n a sequence such
that "n! 0 when n!1, then k�c+"n;dk�;�;d6K0(�; � 0)(c+ "n)1¡�

0
(for K0(�; � 0) the constant

in Proposition 2.1.21), and (in the strong sense)�
�L(:)+ (1¡ �) VL0

� :
V

��
c+"n

(�c+"n;d)+�d?(Fc+"n(�c+"n;d/V ))= 0:

With the same arguments as in step 1 of the proof of Proposition 2.1.17, we check that, up
to a subsequence, �c+"n ! � locally uniformly in R2 for some function � 2 E�;�;d such that
k�k�;�;d6K0(�; � 0)c1¡�

0
. Then, since

Hc+"n(�c+"n;d)+�c+"n;d=0;

by taking the limit when n!1, up to a subsequence, since Hc+"(�c0;d)!Hc(�c0;d) when "! 0
in E�;�;d (the norm is equivalent to the one of E~;�;d~) uniformly in c0, we have

Hc(�)+�=0:

But then, � 2 E�;�;d, k�k�;�;d6K0(�; � 0)c1¡�
0
and Hc(�) + � =H(�; c; d) = 0. By Proposition

2.1.21, this implies that � = �c;d, therefore �c;d is an accumulation point of �c+"n;d. It is the
only accumulation point, since any other will also satisfy �2E�;�;d, k�k�;�;d6K0(�; � 0)c1¡�

0
and

H(�; c; d)=0. Therefore, �c+"n;d!�c;d in E�;�;d, hence c 7!�c;d is a continuous function in E�;�;d.
Now, let us show that it is a C1 function in E�;�;d. Since Hc(�c;d)+�c;d=0, we have�

�L(:)+ (1¡ �)VL0
� :
V

��
c
(�c+";d¡�c;d)

= ¡(�d?(Fc+"(�c+";d/V )¡Fc(�c;d/V )))

¡ i"

�
�@x2�c+";d+(1¡ �)V@x2

�
�c+";d
V

��
:

Furthermore, from k�d?(Fc+"(�c0;d/V )¡Fc(�c0;d/V ))k~~;�;d~6K(�; c)" and



i"��@x2�c+";d+(1¡ �)V@x2��c+";dV

��




~~;�;d~

6K(�; c)";

we deduce that k�c+";d¡�c;dk~;�;d~6K(�; c)".
From the de�nition of F , we infer that

Fc+"(�c+";d/V )¡Fc(�c;d/V ) = ¡i"@x2V
+ V (1¡ �)(¡r	c+";d:r	c+";d+r	c;d:r	c;d)
+ V (1¡ �)jV j2(S(	c+";d)¡S(	c;d))
+ Rc+"(	c+";d)¡Rc(	c;d):

Now, regrouping the terms of �d?(d	Fc((�c+";d ¡ �c;d)/V )) and using k�c+";d ¡ �c;dk~;�;d~ 6
K(�; c)" for the remaining nonlinear terms (which will be at least quadratic in �c+";d¡�c;d, since
F is C1 with respect to	), as well as the fact that c 7!Rc2C1(]0;c0(�)[;C1(R2)), for any 0<�<1,

�d?(Fc+"(�c+";d/V )¡Fc(�c;d/V )) = �d?(d	Fc((�c+";d¡�c;d)/V ))
+ "�d?(¡i@x2V )
+ Ok:k��;�;d

�;c ("2);

where Ok:k��;�;d
�;c ("2) is a quantity going to 0 as "2 when "! 0 in the norm k:k��;�;d at �xed �; c.

We deduce that�
Id+

�
�L(:)+ (1¡ �)VL0

� :
V

��
c

¡1
(�d?(d	Fc(:/V )))

�
((�c+";d¡�c;d))

=
�
�L(:)+ (1¡ �)VL0

� :
V

��
c

¡1
�
¡"�d?(¡i@x2V )¡ i"

�
�@x2�c+";d+(1¡ �)V@x2

�
�c+";d
V

���
+
�
�L(:)+ (1¡ �)VL0

� :
V

��
c

¡1
(Ok:k��;�;d

�;c ("2));
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and we have shown that
¡
Id+

¡
�L(:)+ (1¡ �)VL0

¡ :
V

��
c
¡1¡�d?¡ 1V d�Fc(:/V )��� is invertible from

E~;�;d~ to E~;�;d~ (with an operator norm equal to 1 + oc!0
� (1) if taken in �=�c;d, see Lemma

2.2.1). Furthermore, �c;d is continuous with respect to c in E~;
(�);d~ (with the same computations
as previously, replacing � by 
(�)), therefore

�@x2�c+";d+(1¡ �)V@x2
�
�c+";d
V

�
! �@x2�c;d+(1¡ �)V@x2

�
�c;d
V

�
in E~~;
(�);d~ when "! 0. We deduce that c 7!�c;d is C1 in E~;�;d~ (and therefore in E�;�;d). �

Now, we show the di�erentiablity of �c;d with respect to d.

Lemma 2.2.3. For 0<�< 1, there exists c0(�)> 0 such that, for 0<c<c0(�),

d 7!�c;d2C1
� �

1
2c
;
2
c

�
\
�
d~¡

�
2
; d~+

�
2

�
; E~;�;d~

�
:

We recall that � > 0 is de�ned at the beginning of this subsection.

Proof. We �x 0<c<c0(�). We de�ne, for d2
� 1
2c
;
2

c

�
\
i
d~¡ �

2
; d~+

�

2

h
, the function

Hd: � 7! (�L(:)+ (1¡ �) VL0(:/V ))d¡1(�d?(Fd(�/V )))

from E~;�;d~ to E~;�;d~, so that

H(�; c; d)=Hd(�)+�:

We took the same convention as in the proof of Lemma 2.2.2: we added a subscript in d in the
operators to describe at which values of d this operator is taken.

Step 1. Di�erentiability of Hd with respect to d.

To apply the implicit function theorem, we have to check that H(�; c; d) (or, equivalently
Hd(�)) is di�erentiable with respect to d, and that @dH(�; c; d) 2 E~;�;d~. By de�nition of the
operator (�L(:)+ (1¡ �) VL0(:/V ))¡1, we have, in the distribution sense,�

�L(Hd+"(�))+ (1¡ �) VL0
�
Hd+"(�)

V

��
d+"

+�d+"? (Fd+"(�/Vd+"))= 0

and �
�L(Hd(�))+ (1¡ �)VL0

�
Hd(�)
V

��
d

+�d?(Fd(�/Vd))=0:

From Lemma 2.1.7, we have, for any �=Vd	2E~;�;d~ that�
�L(:)+ (1¡ �)VL0

� :
V

��
d
(�)=Ld(�)¡ (1¡ �d)(E ¡ ic@x2V )d	;

and with the de�nition of Ld (in Lemma 2.1.7), we check that, for any � 2 E~;�;d~, in the
distribution sense,��

�L(:)+ (1¡ �)VL0
� :
V

��
d+"

¡
�
�L(:)+ (1¡ �)VL0

� :
V

��
d

�
(�)

= (jVd+"j2¡ jVdj2)�+2Re(Vd+"�)Vd+"¡ 2Re(Vd� �)Vd
¡ (1¡ �d+")(E ¡ ic@x2V )d+"+(1¡ �d)(E ¡ ic@x2V )d:

We therefore compute that, in the distribution sense,�
�L(:)+ (1¡ �)VL0

� :
V

��
d
(Hd+"(�)¡Hd(�))

= ¡((jVd+"j2¡ jVdj2)Hd+"(�)+ 2Re(Vd+"Hd+"(�))Vd+"¡ 2Re(Vd�Hd+"(�))Vd)
+ ((1¡ �d+")(E ¡ ic@x2V )d+"¡ (1¡ �d)(E ¡ ic@x2V )d)Hd+"(�)
¡ (�d+"? (Fd+"(�/Vd+"))¡�d?(Fd(�/Vd))):
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Since
@d
2V = @x1

2 V1V¡1+@x1
2 V¡1V1¡ 2@x1V1@x1V¡1;

with Lemmas 2.1.1, 2.1.6 and equation (2.1.3), we check easily that

jVd+"j2¡ jVdj2= "@d(jV j2)+
O"!0
c;d ("2)
(1+ r~)3

and

r(jVd+"j2)¡r(jVdj2)= "@d(rjV j2)+
O"!0
c;d ("2)
(1+ r~)3

:

It implies in particular that (jVd+"j2¡ jVdj2)Hd+"(�)2E~~;
(�);d~, with

k(jVd+"j2¡ jVdj2)Hd+"(�)k~~;
(�);d~! 0

when "! 0. We check similarly

2Re(Vd+"Hd+"(�))Vd+"¡ 2Re(Vd�Hd+"(�))Vd
= "(2Re(@dVHd+"(�))Vd+2Re(Vd�Hd+"(�))@dVd)+Ok:k~~;
(�);d~

c;d ("2);

and that 2Re(@dVHd+"(�))Vd + 2Re(Vd�Hd+"(�))@Vd 2 E~~;
(�);d~. We continue, still with
Lemmas 2.1.1, 2.1.6 and equation (2.1.3), we infer

((1¡ �d+")(E ¡ ic@x2V )d+"¡ (1¡ �d)(E ¡ ic@x2V )d)Hd+"(�)
= "@d((1¡ �d)(E ¡ ic@x2V )d)Hd+"(�)+Ok:k~~;
(�);d~

c;d ("2)

and @d((1¡ �d)(E ¡ ic@x2V )d)Hd+"(�)2E~~;
(�);d~. Finally, we recall that

Fd(	)= (E ¡ ic@x2V )d+Vd(1¡ �)(¡r	:r	+ jV j2S(	))+Rd(	);

and we check similarly that

�d+"? (Fd+"(�/Vd+"))¡�d?(Fd(�/Vd))= "@d(�d?(Fd(�/Vd)))+Ok:k~~;
(�);d~
c;d ("2):

We have
@d(�d?(Fd(�/Vd)))= (@d�d?)(Fd(�/Vd))+�d?(@d(Fd(�/Vd)));

and since (@d�d?)(Fd(� /V )) is compactly supported, (@d�d?)(Fd(� /V )) 2 E~~;
(�);d~. We will
check in the next step that @d(Fd(�/Vd)) 2 E~~;
(�);d~. Let us suppose this result for now and
�nish the proof of the di�erentiability.

Combining the di�erent estimates, we have in particular that�
�L(:)+ (1¡ �)VL0

� :
V

��
d
(Hd+"(�)¡Hd(�))! 0

in E~~;
(�);d~ when "! 0. By Proposition 2.1.17 (from E~~;
(�);d~ to E~;�;d~), this implies that

Hd+"(�)!Hd(�)

in E~;�;d~ when "! 0. Now, taking the equation�
�L(:)+ (1¡ �)VL0

� :
V

��
d
(Hd+"(�)¡Hd(�))

= ¡((jVd+"j2¡ jVdj2)Hd+"(�)+ 2Re(Vd+"Hd+"(�))Vd+"¡ 2Re(Vd�Hd+"(�))Vd)
+ ((1¡ �d+")(E ¡ ic@x2V )d+"¡ (1¡ �d)(E ¡ ic@x2V )d)Hd+"(�)
¡ (�d+"? (Fd+"(�/Vd+"))¡�d?(Fd(�/Vd)))

and dividing it by ", and then taking "! 0, we check that d 7!Hd(�) is a C1 function in E~;�;d~,
with

@dH(�; c; d)=@dHd(�)=
�
�L(:)+ (1¡ �)VL0

� :
V

��¡1
(G(d;�));

with

G(d;�) := @d(jV j2)Hd(�)+ 2Re(@dVHd(�))Vd+2Re(Vd�Hd(�))@dVd
+ @d((1¡ �d)(E ¡ ic@x2V )d)Hd(�)¡@d(�d?(Fd(�/Vd))):
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By the implicit function theorem, with Lemma 2.2.1, since k	c;dk�;�;d6K(�;� 0)c1¡�
0
this implies

that, for c small enough, d 7!�c;d is a C1 function, and

@d�c;d=¡d�H¡1(@dH(�c;d; d; c)):

Now, let us check that indeed @d(Fd(�/Vd))2E~~;
(�);d~ for �2E~;�;d~.

Step 2. Proof of



 @d(Fd(�/Vd))

V





��;
(�);d

6K(�)c1¡
(�)+Kk	k�;�;d.

By the equivalence of the � and ~ norms, these estimates imply that @d(Fd(� / Vd)) 2
E~~;
(�);d~. We suppose from now on that k	k�;�;d6 1. From Lemma 2.1.7, we have

Fd

�
�
Vd

�
=(E ¡ ic@x2V )d+Rd

�
�
Vd

�
+Vd(1¡ �d)

�
¡r
�
�
Vd

�
:r
�
�
Vd

�
+ jVdj2S

�
�
Vd

��
:

It is easy to check that at �xed �; c,





@d
�
Rd
�
�

Vd

��
V








��;
(�);d

6K(�)c1¡
(�)+Kk	k�;�;d;

since it is localized near the vortices. For the nonlinear part, we have

@d
�
V (1¡ �)

�
¡r
�
�

V

�
:r
�
�

V

�
+ jV j2S

�
�

V

���
V

= @dV
V

(1¡ �)(¡r	:r	+ jV j2S(	))
¡ @d�(¡r	:r	+ jV j2S(	))

+ (1¡ �)
�
¡2r	:@d

�
r
�
�
Vd

���
+ (1¡ �)2Re(V�@dV )S(	)

+ (1¡ �)jV j2@d
�
S

�
�
Vd

��
:

For the �rst line, from Lemma 2.1.6, k	k�;�;d6 1 and the de�nition of k:k�;�;d, we have����@dVV (1¡ �)(¡r	:r	+ jV j2S(	))
���� 6 Kk	k�;�;d2

(1+ r~)3
6 Kk	k�;�;d

(1+ r~)3

and ����r� @dVV (1¡ �)(¡r	:r	+ jV j2S(	))
����� 6 Kk	k�;�;d2

(1+ r~)3
6 Kk	k�;�;d

(1+ r~)3
;

which is enough the estimate. Similarly, since @d� is compactly supported, we have

j@d�(¡r	:r	+ jV j2S(	))j+ jr(@d�(¡r	:r	+ jV j2S(	)))j6 Kk	k�;�;d2

(1+ r~)3
6 Kk	k�;�;d

(1+ r~)3
:

Now, we develop

@d

�
r
�
�
V

��
=¡@dVr�

V 2
¡ r@dV �

V 2
+ @dV �rV

V 3
;

and we check, with Lemma 2.1.6, that����(1¡ �)�¡2r	:@d�r� �
Vd

�������6 Kk	k�;�;d2

(1+ r~)3
6 Kk	k�;�;d

(1+ r~)3
;

as well as ����r�(1¡ �)�¡2r	:@d�r� �
Vd

��������6 Kk	k�;�;d2

(1+ r~)3
6 Kk	k�;�;d

(1+ r~)3
:

Since jRe(V�@dV )j6 K

(1+ r~)3
from Lemma 2.1.6 and jS(	)j6K jRe(	)j (since k	k�;�;d61), we have

similarly

j(1¡ �)2Re(V�@dV )S(	)j6
Kk	k�;�;d
(1+ r~)3

;
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and �nally, since

@d

�
S

�
�
Vd

��
=¡2Re

�
�@dV
V 2

�
(e2Re(	)¡ 1)

is real-valued, we check that����@d�S� �
Vd

������6 Kk	k�;�;d2

(1+ r~)2+2�
6 Kk	k�;�;d
(1+ r~)1+
(�)

and ����r@d�S� �
Vd

������6 Kk	k�;�;d2

(1+ r~)3+2�
6 Kk	k�;�;d
(1+ r~)2+
(�)

:

and this is enough for the estimate. Finally, we will show that for any 0<�< 1,



@d(E ¡ ic@x2V )V






��;�;d

6K(�)c1¡�;

which would conclude the proof of this step (taking 
(�) instead of �).
Let us show �rst that

j@dE j6
Kc1¡�

(1+ r~)2+�
: (2.2.4)

We have from (2.1.2) that

E=¡2rV1:rV¡1+(1¡ jV1j2)(1¡ jV¡1j2) V1V¡1;
hence

@dE =2r@x1V1:rV¡1¡ 2rV1:r@x1V¡1+@d((1¡jV1j2)(1¡ jV¡1j2)V1V¡1):

With Lemmas 2.1.1 and 2.1.2, we easily check that

jr@x1V1:rV¡1j6
K

(1+ r1)2(1+ r¡1)
;

jrV1:r@x1V¡1j6
K

(1+ r1)(1+ r¡1)2
and

j@d((1¡ jV1j2)(1¡jV¡1j2)V1V¡1)j6
K

(1+ r1)3(1+ r¡1)2
+ K
(1+ r1)2(1+ r¡1)3

:

In the right half-plane, where r16 r¡1 and r¡1> d, we use

1
(1+ r¡1)1¡�

6Kc1¡�

and
1

(1+ r1)�
+ 1
(1+ r¡1)�

6 2
(1+ r~)�

for �> 0 on the three previous estimates to show that

j@dE j6
Kc1¡�

(1+ r~)2+�

in the right half-plane. Similarly, the result holds in the left half-plane, and this proves (2.2.4).
With similar computations, we can estimate r

�
@dE

V

�
and show that



@dEV






��;�;d

6K(�)c1¡�:
Let us now prove that 



@d(ic@x2V )V






��;�;d

6K(�)c1¡�: (2.2.5)

We show easily that

kic@x2@dV kC1({r~63})6Kc6Kc1¡�;
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and since @x2@dV = ¡@x1x2V1V¡1 + @x1x2V¡1V1 ¡ @x1V1@x2V¡1+ @x1V¡1@x2V1, by Lemma 2.1.2 we
have

j@x2@dV j6
K

(1+ r~)2
; jr@x2@dV j6

K
(1+ r~)3

therefore



r~1+�Re

�
ic@x2@dV

V

�




L1({r~>2})

+




r~2+�r� ic@x2@dVV

�




L1({r~>2})

6Kc6Kc1¡�:

This proves that (2.2.5) is true for the real part contribution. We are left with the proof of



c r~2+�Im� i@x2@dVV

�




L1({r~>2})

6K(�)c1¡�;

which is more delicate and relies on some cancelations. We compute

Im

�
i @x2@dV

V

�
=¡Re

�
¡@x1x2V1

V1
+ @x1x2V¡1

V¡1

�
¡Re

�
¡@x1V1

V1

@x2V¡1
V¡1

+ @x1V¡1
V¡1

@x2V1
V¡1

�
:

From Lemma 2.1.2, we have
@x1V1
V1

=¡ i
r1

sin(�1)+Or1!1

�
1
r1
3

�
and the part in Or1!1

�
1

r1
3

�
can be estimated as in the proof of Lemma 2.1.22 for




 ic@x2V
V





��;�;d

.

In particular, we will just compute the terms of order less than 1

r1
3 or 1

r¡1
3 . From Lemma 2.1.2, we

have also
@x2V1
V1

=¡ i
r1

cos(�1)+Or1!1

�
1
r1
3

�
and

Re

�
@x1x2V1
V1

�
= cos(�1)sin(�1)

r1
2 +Or1!1

�
1
r1
3

�
:

These two estimates hold by changing i!¡i, �1!�¡1, r1!r¡1 and V1!V¡1. We then deduce that

Im

�
i @x2@dV

V

�
= ¡

 
¡cos(�1)sin(�1)

r1
2 + cos(�¡1)sin(�¡1)

r¡1
2

!
¡
�
¡sin(�1)

r1

cos(�¡1)
r¡1

+ sin(�¡1)
r¡1

cos(�1)
r1

�
+ Or1!1

�
1
r1
3

�
+Or¡1!1

 
1
r¡1
3

!
: (2.2.6)

We start with the second term of (2.2.6) which is the easiest one. We use for �=�1 that

cos(��)=
x1¡ d�
r�

and sin(��)=
x2
r�

to compute

sin(�1)cos(�¡1)=
(x1+ d)x2
r1r¡1

and

sin(�¡1)cos(�1)=
(x1¡ d)x2
r1r¡1

;

therefore

¡sin(�1)
r1

cos(�¡1)
r¡1

+ sin(�¡1)
r¡1

cos(�1)
r1

= 2dx2
(r1r¡1)2

:

We have, in the right half-plane, where r16 r¡1 and r¡1> d> K

c
,����c r~2+� 2dx2

(r1r¡1)2

����=2

�����cd r~2+�r1
2r¡1
�

x2
r¡1

1
r¡1
1¡�

�����6Kc1¡�
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since r~2+�

r1
2r¡1
� 6 1, jx2j

r¡1
6 1 and cd6K. Similarly, we have the same estimate in the left half-plane.

Now for the �rst term of (2.2.6), we have, for �=�1,

sin(��)cos(��)=
(x1¡ �d)x2

r�
2 :

Therefore,

¡cos(�1)sin(�1)
r1
2 + cos(�¡1)sin(�¡1)

r¡1
2 = x2

(r1r¡1)4
(r14(x1+ d)¡ r¡14 (x1¡ d)):

We compute, for �=�1,

r�
4=((x1¡ �d)2+x22)2=(x1¡ �d)4+2(x1¡ �d)2x22+x24;

hence

¡cos(�1)sin(�1)
r1
2 + cos(�¡1)sin(�¡1)

r¡1
2

= x2
(r1r¡1)4

(x1¡ d)(x1+ d)((x1¡ d)3¡ (x1+ d)3+2x22((x1¡ d)¡ (x1+ d)))

+ x2
(r1r¡1)4

x2
4(x1+ d¡ (x1¡ d)):

We simplify this equation to

¡cos(�1)sin(�1)
r1
2 + cos(�¡1)sin(�¡1)

r¡1
2 =¡x2(x1¡ d)(x1+ d)

(r1r¡1)4
(2d3+6x12d¡4x22d)+

2x25d
(r1r¡1)4

: (2.2.7)

We now estimate separately each contribution of (2.2.7). We have, in the right half-plane, where
r16 r¡1 and r¡1> d> K

c
,����c r~2+� 2x25d

(r1r¡1)4

����=2

�����cd x2
5

r1
2r¡1
3

r~2+�

r1
2r¡1
�

1
r¡1
1¡�

�����6Kc1¡�
since jx2j6 r1; jx2j6 r¡1 and r~2+�

r1
2r¡1
� 6 1. Still in the right half-plane,����c r~2+�x2(x1¡ d)(x1+ d)(r1r¡1)4
2d3
����=2

�����cd d2r¡12 (x1¡ d)
r1

(x1+ d)
r¡1

x2
r1

r~2+�

r1
2r¡1
�

1
r¡1
1¡�

�����6Kc1¡�
since d6Kr¡1, jx1¡ dj6 r1 and jx1+ dj6 r¡1. For the next term, we write x12=x12¡ d2+ d2 in

x2(x1¡ d)(x1+ d)
(r1r¡1)4

6x12d=
x2(x1¡ d)(x1+ d)

(r1r¡1)4
6(x12¡ d2)d+

x2(x1¡ d)(x1+ d)
(r1r¡1)4

6d3:

In the right half-plane, using x12¡ d2=(x1¡ d)(x1+ d),����c r~2+�x2(x1¡ d)(x1+ d)(r1r¡1)4
6(x12¡ d2)d

����=6
�����cd(x1¡ d)2r1

2

(x1+ d)2

r¡1
2

x2
r¡1

r~2+�

r1
2r¡1
�

1
r¡1
1¡�

�����6Kc1¡�
using previous estimates. We continue in the right half-plane with����c r~2+�x2(x1¡ d)(x1+ d)(r1r¡1)4

6d3
����=6

�����cd(x1¡ d)r1

(x1+ d)
r¡1

d2

r¡1
2

x2
r1

r~2+�

r1
2r¡1
�

1
r¡1
1¡�

�����6Kc1¡�
and ����c r~2+�x2(x1¡ d)(x1+ d)(r1r¡1)4

4x22d
����=4

�����cd(x1¡ d)r1

(x1+ d)
r¡1

x2
3

r1r¡1
2

r~2+�

r1
2r¡1
�

1
r¡1
1¡�

�����6Kc1¡�
using previous estimates. Similarly, all these estimates hold in the left half-plane, which ends the
proof of 



@d(ic@x2V )V






��;�;dc

6Kc1¡�: �
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We check easily by standard elliptic regularity arguments that @c�c;d 2 C1(R2;C). Further-
more, c 7!�c;d is C1 with values in E�;�;d, therefore @cr�c;d is well de�ned (in C0(R2;C)). Let us
show that it is equal to r@c�c;d. For '2Cc1(R2;C), we have, by derivation under an integral, thatZ

R2
@cr�c;d' = @c

Z
R2
r�c;d'

= ¡@c
Z
R2
�c;dr'

= ¡
Z
R2
@c�c;dr'

=
Z
R2
r@c�c;d':

Therefore @cr�c;d=r@c�c;d in the distribution sense, and thus in the strong sense. Furthermore,
thanks to the equation �L(�c;d) + (1¡ �) VL0(	c;d) + F (	c;d) = �(c; d)Zd, we can isolate ��c;d
as in (2.1.23), and show in particular that it is a C1 function of c. By similar arguments as for
the gradient, we can show that @c��c;d = �@c�c;d. Furthermore, the same proof holds if we
di�erentiate �c;d with respect to d. We can therefore inverse derivatives in position and derivatives
with respect to c or d on �c;d.

Let us also show that (c;d) 7!@c�c;d is a continuous function from 
:=
�
(c;d)2R2;0<c<c0(�);

1

2c
<d<

2

c

	
to E�;�;d. With the same compactness argument used in the proof of the continuity of

c 7!�c;d, we can show that (c; d) 7!�c;d is continuous from 
 to E�;�;d. From the proof of Lemma
2.2.2, we have that �

Id+
�
�L(:)+ (1¡ �)VL0

� :
V

��¡1
(�d?(d	F (:/V )))

�
(@c�c)

= �d?(@cF (�c;d/V ))¡ i�@x2�c;d+(1¡ �)V@x2
�
�c;d
V

�
:

Since (c; d) 7! �c;d is continuous from 
 to E�;�;d, and that the dependence on (c; d) of the
other terms of the right-hand side is explicit, we check that �d?(@cF (�c;d / V )) ¡ i�@x2�c;d +

(1¡ �)V@x2
�
�c;d

V

�
is continuous from 
 to E��;
(�);d. We check also that (c;d) 7!

¡
Id+

¡
�L(:)+(1¡

�) VL0
¡ :
V

��¡1(�d?(d	F (:/V )))� is continuous from 
 to E��;
(�);d!E�;�;d, and thus (c;d) 7!@c�c;d
is a continuous function from 
 to E�;�;d. The same proof holds for (c; d) 7! @d�c;d.

We end this subsection with the symmetries of @d�c;d.

Lemma 2.2.4. The function @d�c;d satis�es the symmetries: for x=(x1; x2)2R2,

@d�c;d(x1; x2)= @d�c;dc(¡x1; x2)= @d�c;d(x1;¡x2):

Proof. From subsection 2.1.3,

8x=(x1; x2)2R2;	c;d(x1; x2)=	c;d(x1;¡x2)=	c;d(¡x1; x2)

and V enjoys the same symmetries, therefore for all d2R such that 1

2c
<d<

2

c
,

�c;d(x1; x2)=�c;d(¡x1; x2)=�c;d(x1;¡x2):
Since

@d�c;d= lim
"!0

�c;d+"¡�c;d
"

;

these symmetries also hold for @d�c;d. �

2.2.2 End of the construction and properties of Qc

A consequence of equation (2.1.41) and Proposition 2.1.26 is that, for 0<�<1, there exists c0(�)>0
such that, for 0<c< c0(�),

�L(�c;d)+ (1¡ �)VL0(	c;d)+F (	c;d)=�(c; d)Zd
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with

�(c; d)
Z
R2
j@dV j2�=�

�
1
d
¡ c
�
+Oc!0

� (c2¡�):

Following the proof of Proposition 2.1.26, with Lemmas 2.2.2 and 2.2.3, we can check that the
Oc!0
� (c2¡�) is continuous with respect of c and d. Therefore, by the intermediate value theorem,

there exists dc> 0 such that �(c; dc)= 0, with

dc=
1
c
+Oc!0

� (c¡�);

for c > 0 small enough. Then, for the function �c;dc= V	c;dc with k	c;dck�;�;dc6K(�,� 0)c1¡�
0
,

we have

�L(�c;dc)+ (1¡ �)VL0(	c;dc)+F (	c;dc)= 0;

meaning that if we de�ne

Qc := �V (1+	c;dc)+ (1¡ �)Ve	c;dc;
then Qc solves (TWc).

2.2.2.1 Behaviour at in�nity and energy estimation

Lemma 2.2.5. The function Qc satis�es Qc(x)! 1 when jxj!1.

Proof. From k	c;dck�;�;dc 6 K(�; � 0)c1¡�
0
we have 	c;dc(x) ! 0 when jxj ! 1. Furthermore

j1¡ V j26 C(dc)

1+ r2
by Lemma 2.1.3 and Qc= Ve	c;dc for large values of jxj, hence Qc(x)! 1 when

jxj!1. �

In the statement of Theorem 1.3.1, we have set Qc=V +¡c;dc, we therefore de�ne

¡c;dc := �V 	c;dc+(1¡ �)V (e	c;dc¡ 1): (2.2.8)

We compute that



¡c;dcV






�;�;dc

6Kk	c;dck�;�;dc+ k(1¡ �)(e	c;dc¡ 1¡	c;dc)k�;�;dc;

and since k	c;dck�;�;dc6 1 for c small enough (depending on �), we have

k(1¡ �)(e	c;dc¡ 1¡	c;dc)k�;�;dc6K





(1¡ �)	c;dc2

X
n=2

+1 	c;dc
n¡2

n!







�;�;dc

:

Now, for 0<�<� 0< 1, we have 1+ � 0

2
>

1+�

2
, hence

j	c;dcj6K(�; � 0)
c
1¡ 1+� 0

2

(1+ r~)
1+�
2

and jr	c;dcj6K(�; � 0)
c
1¡ 1+�0

2

(1+ r~)1+
1+�
2

;

therefore

j	c;dcj26K(�; � 0)
c1¡�

0

(1+ r~)1+�
and jr	c;dcj26K(�; � 0)

c1¡�
0

(1+ r~)2+�
:

Thus, with jr2	c;dcj6K(�; � 0)
c1¡�

0

(1+ r~)1+�
, we check that, for any 0<�<� 0< 1,




(1¡ �)	c;dc2

X
n=2

+1 	c;dc
n¡2

n!







�;�;dc

6K(�; � 0)c1¡� 0:

Combining this result with k	c;dck�;�;dc6K(�; � 0)c1¡�
0
, we deduce that



¡c;dcV






�;�;dc

6K(�; � 0)c1¡� 0: (2.2.9)
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In particular, we have, for any 0<�<� 0< 1, 0<c< c0(�; � 0), that

j¡c;dcj6
K(�; � 0)c1¡�

0

(1+ r~)�
; (2.2.10)����Re

�
¡c;dc
V

�����6 K(�; � 0)c1¡�
0

(1+ r~)1+�
; (2.2.11)

and, if r~> 2,
jr¡c;dcj6

����r�¡c;dcV

�����+ ����rVV
����� ����¡c;dcV

����;
therefore, using jrV j6 K

(1+ r~)
from Lemma 2.1.1, we have

jr¡c;dcj6
K(�; � 0)c1¡�

0

(1+ r~)1+�
: (2.2.12)

Estimate (2.2.12) remains true in
�
r~6 2

	
since k¡c;dckC1({r~62})6




¡
V





�;�;dc

6K(�; � 0)c1¡� 0. We
now show the estimates on ¡c;dc of Theorem 1.3.1.

Lemma 2.2.6. For +1 > p > 2, there exists c0(p) > 0 such that if 0 < c < c0(p), we have
¡c;dc2Lp(R2);r¡c;dc2Lp¡1(R2) and

k¡c;dckLp(R2)+ kr¡c;dckLp¡1(R2)= oc!0(1):

Proof. If p=+1, using (2.2.10) and (2.2.12), we infer

k¡c;dckL1(R2)6K(�)c1¡�;

kr¡c;dckL1(R2)6K(�)c1¡�;

hence the result holds. If 2< p<+1 then, by (2.2.10),Z
R2
j¡c;dcj

p6
Z
R2

k¡c;dck�;�;dc
p

(1+ r~)p�
dx6

Z
R2

K(�; � 0) c(1¡�
0)p

(1+ r~)p�
dx:

Taking 0<�<� 0< 1 such that p� > 2 then gives the result. Furthermore, by (2.2.12),Z
R2
jr¡c;dcj

p6
Z
R2

K(�; � 0)c(1¡�
0)p

(1+ r~)p( �+1)
dx;

so for p> 1 we can take 0<�<� 0< 1 such that p(�+1)> 2 and we have the result. �

Remark that we can have better estimates on ¡c;dc, in particular if we look at real and imaginary
parts of ¡c;dc

V
. For instance it is possible to show that



Re

�
¡c;dc
V

�




Lp({r~>1})

= oc!0(1)

for p> 1 instead of p> 2. This estimate does not hold for r~ small since it is not clear that 	c;dc is
bounded there (but �c;dc is). This is due to the fact that the zeros of Qc are not exactly those of V .

Lemma 2.2.7. The travelling wave Qc has �nite energy, that is:

E(Qc)=
1
2

Z
R2
jrQcj2+

1
4

Z
R2
(1¡ jQcj2)2<+1:

Proof. Far from the vortices, rQc = r(V1 V¡1) e	c;dc + r	c;dcV1V¡1 e	c;dc. We know that, for
r~> 1,

jr	c;dcj6
K(�)
r~1+�

and (by Lemma 2.1.3)

jr(V1V¡1)j6
K(c)
r~2

;
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hence

jrQcj26
K(c; �)
r~2+2�

and is therefore integrable. On the other hand,

j1¡jQcj2j= |1¡jV1V¡1j2 e2Re(	c;dc)|6K(1¡jV1V¡1j2+ jV1V¡1j2 jRe(	c;dc)j);

and we have

1¡jV1V¡1j2=O
�
1
r~2

�
and Re(	c;dc)=O

�

�
1

r~1+�

�
;

therefore

(1¡ jQcj2)2=O
�

1
r~2+2�

�
and is integrable. �

At this point, we have �nish the proof of the construction of Qc. In the next two subsection,
we add some estimates on Qc that will be usefull for the di�erentiability of the branch, and others
that are interesting in themselves.

2.2.2.2 A set of estimations on Qc

The next Lemma gives additional estimates on Qc which are more precise but more technical than
the ones in Theorem 1.3.1.

Lemma 2.2.8. For any 0 < � < � 0 < 1, there exists c0(�; � 0); K(�; � 0) > 0 such that for
0<c< c0(�; � 0) we have

k	c;dck�;�;dc6K(�; � 0)c1¡�
0
: (2.2.13)

Furthermore, for any 0<� < 1, there exist c0(�);K(�)> 0 such that for 0<c<c0(�) we have

kV	c;dckC1(r~63)+ kr~�Im(	c;dc)kL1(r~>2)+ kr~1+�Re(	c;dc)kL1(r~>2)
+ kr~1+�Im(r	c;dc)kL1(r~>2)+ kr~2+�Re(r	c;dc)kL1(r~>2)
6 K(�)c1¡�; (2.2.14)

j1¡ jQcjj6
K(�)

(1+ r~)1+�
; (2.2.15)

jQc¡V j6
K(�)c1¡�

(1+ r~)�
; (2.2.16)

jjQcj2¡ jV j2j6 K(�)c1¡�

(1+ r~)1+�
; (2.2.17)

jRe(rQcQc)j6
K(�)

(1+ r~)1+�
; (2.2.18)

jIm(rQcQc)j6
K
1+ r~

(2.2.19)

Equation (2.2.14) is a slight improvements of (2.2.13). It is, except for the second derivatives,
the estimate in the case � 0=�.

Proof. The �rst estimate comes from the construction of the solution.
We now take � a cuto� function with value 1 in

�
r~>2

	
and 0 in

�
r~61

	
, we write 	~ = �	c;dc

and h~ = �h, where h contains the nonlinear and source terms. We recall from (2.1.29) that
	~ =	~ 1+ i	~ 2 and h~=h~1+ ih~2 satisfy the system8><>:

�	~ 1¡ 2	~ 1=¡h~1¡ 2Re
�
rV
V
:r	~

�
¡ 2(1¡jV j2)	~ 1+ c@x2	~ 2+Loc1(	)

�	~ 2=¡h~2¡ 2Im
�
rV
V
:r	~

�
+Loc2(	)¡ c@x2	~ 1;
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where Loc1(	);Loc2(	) are localized terms. From Lemmas 2.1.22 to 2.1.24, we check that for any
0<� < 1,

kh~k��;�;d6K(�)c1¡�:

Furthermore, as in the proof of Proposition 2.1.17, we check that (using k	~k�;�/2;d6K(�)c1¡�)



rVV :r	~ ¡ 2(1¡ jV j2)Re(	~)+Loc(	)





��;�;d

6K(�)c1¡�:

Finally, with (2.2.13), for � 0= 1+�

2
>�,

kc@x2	~k��;�;d6K(�) c k	~k�;�;d6K(�)c
1+1¡ 1+�

2 6K(�)c1¡�:

With Lemma 2.1.10 for �=1+� > 0, we deduce from the �rst equation of the system that

(1+ r~)1+�	~ 1

L1(R2)

6 K(�)




(1+ r~)1+��¡h~1¡ 2Re

�
rV
V
:r	~

�
¡ 2(1¡ jV j2)	~ 1+ c@x2	~ 2+Loc1(	)

�




L1(R2)

6 K(�)c1¡�;

and, by di�erentiating the equation, by Lemma 2.1.10 for �=2+� > 0

(1+ r~)2+�r	~ 1

L1(R2)

6 K(�)




(1+ r~)2+�r�¡h~1¡ 2Re

�
rV
V
:r	~

�
¡ 2(1¡jV j2)	~ 1+ c@x2	~ 2+Loc1(	)

�




L1(R2)

6 K(�)c1¡�:

Now, using Lemma 2.1.8 and


(1+ r~)2+�r	~ 1

L1(R2)6K(�)c1¡�, we infer that

(1+ r~)�	~ 2

L1(R2)+



(1+ r~)1+�r	~ 2

L1(R2)

6 K(�)




(1+ r~)2+��¡h~2¡ 2Im�rVV :r	~

�
+Loc2(	)¡ c@x2	~ 1

�




L1(R2)

6 K(�)c1¡�;

which concludes the proof of (2.2.14).

The estimate (2.2.15) is clear if r~ 6 3. If r~ > 3, then Qc = Ve	c;dc and, for c small enough
(depending on �), jRe(	c;dc)j6 1, thus

j1¡jQcjj = j1¡ jV j ¡ jV j(eRe(	c;dc)¡ 1)j
6 j1¡ jV jj+K jRe(	c;dc)j

6 K
(1+ r~)2

+ K(�)c1¡�

(1+ r~)1+�

6 K(�)
(1+ r~)1+�

by Lemma 2.1.3 and (2.2.14). For (2.2.16), if r~> 3, we compute

jQc¡V j= jV j � je	c;dc¡ 1j6C j	c;dcj6
K(�)c1¡�

(1+ r~)�

and if r~6 3, jQc¡V j6Ck	c;dck�;�;dc and the estimate (2.2.16) holds. Similarly, for r~> 3,

jjQcj2¡jV j2j6 jV j2je2Re(	c;dc)¡ 1j6 K(�)c1¡�

(1+ r~)1+�

and for the same reason if r~6 3 the estimate (2.2.17) holds. Inequalities (2.2.18) and (2.2.19) are
clear if r~6 3 and we compute, for r~> 3,

rQcQc=r(Ve	c;dc)V�e	
�
c;dc=rVV�e2Re(	c;dc)+ jV j2r	c;dce2Re(	c;dc):
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We have je2Re(	c;dc)j6 1 for c small enough and by Lemma 2.1.1 we have jIm(rVV�)j6 K

1+ r~
and

jRe(rVV�)j6 K

(1+ r~)3
: Combining it with jr	c;dcj6

K(�)c1¡�

(1+ r~)1+�
from (2.2.14), estimates (2.2.18) and

(2.2.19) hold. �

2.2.2.3 Estimations on derivatives of �c;d with respect to c and d at d= dc.

We cannot easily compute @d	c;d|d=dc because of issues locally around the vortices (due to the
fact that 	c;d is unbounded near r~= 0, and changing d change the position of the vortices). We
shall prove here instead an estimate on @d�c;d|d=dc, as well as an estimate on @c	c;d|d=dc.

Lemma 2.2.9. For any 0<�<� 0< 1; c2R such that 1

2d
<c<

2

d
and 0<c<c0(�; � 0), we have

k@c	c;d|d=dck�;�;d6K(�; � 0)c¡�
0

and 



@d�c;dV |d=dc






�;�;dc

6K(�; � 0)c1¡�0;

with K(�; � 0)> 0 depending only on �; � 0.

Proof. From the proof (and with the notations) of Lemma 2.2.2,�
Id+

�
�L(:)+ (1¡ �)VL0

� :
V

��
c

¡1
(�d?(d	Fc(:/V )))

�
((�c+";d¡�c;d))

=
�
�L(:)+ (1¡ �)VL0

� :
V

��
c

¡1
�
¡"�d?(¡i@x2V )¡ i"

�
�@x2�c+";d+(1¡ �)V@x2

�
�c+";d
V

���
+
�
�L(:)+ (1¡ �)VL0

� :
V

��
c

¡1
(Ok:k��;�;d

�;c ("2));

thus, taking "! 0, we deduce that (with Lemma 2.2.2)�
Id+

�
�L(:)+ (1¡ �) VL0

� :
V

��¡1
(�d?(d	Fc(:/V )))

�
(@c�c;d)

=
�
�L(:)+ (1¡ �)VL0

� :
V

��¡1�
�d?(@cF (�c;d/V ))¡ i�@x2�c;d+(1¡ �)V@x2

�
�c;d
V

��
:

Since at d= dc, �(c; dc)= 0, we have

�d?(@cF (�c;d/V ))¡ i�@x2�c;d+(1¡ �)V@x2
�
�c;d
V

�
|d=dc

=¡i@x2Qc;

hence, with Proposition 2.1.17,

k@c	c;d|d=dck�;�;d 6 Kk@c	c;d|d=dck~;�;d~

6 K(�; � 0)




 i@x2QcV






~~;� 0;d~

:

We will conclude by showing that for any 0<� <� 0< 1,



 i@x2QcV






~~;�;d~

6K(�; � 0)c¡� 0:
By Lemma 2.1.22, we have 



 i@x2VV






~~;�;d~

6K(�)c¡�;

and using k	c;dck�;�;dc6K(�;� 0)c1¡�
0
with Lemma 2.1.3, we check easily that, for c small enough,



 i@x2QcV






~~;�;d~

6K(�; � 0)c¡� 0:

We now focus on the estimation of @d�c;d|d=dc. At the end of step 1 of the proof of Lemma
2.2.3, we have shown that

@d�c;d|d=dc=¡d�H¡1(@dH(�c;dc; c; dc)):
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From Lemma 2.2.1, we have that, at d=dc;�=�c;dc, the operator d�H¡1 is invertible from E~;�;d~
to E~;�;d~, with an operator norm with size 1+ oc!0

� (1). We therefore only have to check that

k@dH(�c;dc; c; dc)k�;�;dc6K(�; � 0)c1¡�
0
:

Since @dH(�c;dc; c; dc) =
¡
�L(:) + (1¡ �) VL0

¡ :
V

��¡1(G(dc; �c;dc)), By Proposition 2.1.17 (from
E~~;� 0;d~ to E~;�;d~), it will be a consequence of



G(dc;�c;dc)V






��;� 0;d

6K(�; � 0)c1¡� 0

for any 0<� <� 0< 1.
We have, since Hdc(�c;dc)=�c;dc, that

G(dc;�c;dc)
V

= @d(jV j2)
�c;dc
V

+2Re(@dV �c;dc)+ 2Re(V��c;dc)
@dV

V

+ @d((1¡ �)(E ¡ ic@x2V ))|d=dc
�c;dc
V

¡ 1
V
@d(�d?(Fd(�/V )))|d=dc:

Since @d(jV j2)= 2Re(@dVV�), we check, with Lemma 2.1.6 that����@d(jV j2)�c;dcV

����+ ����2Re(V��c;dc)
@dV
V

����6 K(�; � 0)c1¡�
0

(1+ r~)2+�
;

and

jRe(@dV �c;dc)j6
K(�; � 0)c1¡�

0

(1+ r~)1+�
;

as well as ����r�@d(jV j2)�c;dcV
+2Re(V��c;dc)

@dV
V

+Re(@dV �c;dc)
�����6 K(�; � 0)c1¡�

0

(1+ r~)2+�
;

and this estimate a real valued quantity. From step 2 of the proof of Lemma 2.2.3, we have



 1V @d((1¡ �)(E ¡ ic@x2V ))





��;�;d

6K(�)c1¡�;

which is enough to show that



@d((1¡ �)(E ¡ ic@x2V ))|d=dc
�c;dc
V






��;�;d

6K(�; � 0)c1¡�0:

Finally, in step 2 of the proof of Lemma 2.2.3, we have shown that (taking the estimate for
�=�c;dc) 



 1V @d(�d?(Fd(�/V )))|d=dc






��;�;d

6K(�; � 0)c1¡�0;

which conclude the proof of this lemma. �

2.3 Di�erentiability of the branch c 7!Qc

The goal of this section is to prove that the constructed branch is C1, and to give the leading order
term of @cQc as c! 0. The result is the following one.

Proposition 2.3.1. For any +1> p> 2, there exists c0(p)> 0 such that

c 7!Qc¡ 12C1(]0; c0(p)[; Xp);
with the estimate



@cQc+� 1+ oc!0(1)

c2

�
@d(V1(:¡ de1~ )V¡1(:+ de1~ ))|d=dc






Xp

= oc!0

�
1
c2

�
:

Proposition 2.3.1, together with subsection 2.2.2, ends the proof of Theorem 1.3.1. Subsections
2.3.1 to 2.3.7 are devoted to the proof of Proposition 2.3.1.
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In this section, to make the dependances on c and d clear, we use the following notations. We
denote �c;d;	c;d and ¡c;d in order to emphasize the dependence of �;	 and ¡ in Proposition 2.1.21
on c and d. A value of d that makes �(c; d)= 0 in Proposition 2.1.26 is written dc. We will show
later on that there exist one and only one value of dc satisfying this in

� c
2
;2c
�
. With these notations,

Qc=V1(:¡ dce1~ )V¡1(:+ dce1~ )+¡c;dc is the solution of (TWc) we constructed in section 2.2.
In subsection 2.2.1 we showed that �c;d is a C1 function of both c and d. We also have computed

estimates for the derivatives of �c;d with respect to c and d in Lemma 2.2.9, that will be usefull here.
The goal is to show that dc is a C1 function of c. We will do this by the implicit function theorem,

but this requires a lot of computations. In particular, in Proposition 2.1.26, dc was choosen so that

hL(�c;d)¡ (1¡ �)(E ¡ ic@x2V )	c;d+F (	c;d); @dV i=0;

but we may equivalently de�ne it by the implicit equationZ
B(de1;d"

0
)[B(¡de1;d"

0
)

Re((L(�c;d)¡ (1¡ �)E	c;d+F (	c;d))@dV )= 0:

This is the same equation but the scalar product is not taken on the whole space but only on
B(de1~ ; d"

0
) [ B(¡de1~ ; d"

0
) for some 0 < "0 < 1 (we will take "0 = 13/24 but this value is purely

technical, other values are possible). The only reason why we take it in the whole space in Lemma
2.1.26 was because of the boundary terms that will appear in the integration by parts when we write

hL(�); @dV i= h�; L(@dV )i:

With the boundary terms on the boundary of B(�de1~ ; d"
0
), "0 > 0, we are far enough from the

vortices to make them small enough for our estimations. Thanks to this we can separate what
happens near the vortex V1 from what happens near the vortex V¡1 because now the integrals are
in two well separated domain, one around each vortex. We use this in subsection 2.3.1. We need to
di�erentiate the equation with respect to d. If we write Qc;d=V +¡c;d, then @dQc=@dV +@d(¡c;d).
The term @dV is easy to compute and to understand: we just move both vortices in opposite
direction. But @d¡c;d is very di�cult to understand, and our estimations on ¡c;dc are not enough
to compute easily what happens with su�cient precision to control its contribution. We would
rather write Qc;d under the form

Qc;d(x)=
¡
V1(x¡ de1~ )+¡~1(x¡ de1~ )

�
+
¡
V¡1(x+ de1~ )+¡~¡1(x+ de1~ )

�
+Err

where ¡~1(x¡de1~ ) is centered near V1, is small and is here because of the existence of V¡1 far away.
Then the term we understand is

@x1+d
¡
V1(x¡ de1~ )+¡~1(x¡ de1~ )

�
which is what changes near the center of V1 when we move only the other vortex. This can be
computed more easily and that is what we do in subsection 2.3.3. This term is easy to compute
only near the vortex V1, and that is one of the reasons we work only on B(de1~ ; d"

0
). The main

contribution to the variation of the position of V¡1 is as expected from the source term E¡ ic@x2V .
This is the computation of subsection 2.3.4.

Furthermore, most estimations boils down to what happen near each vortex, see for instance the
contribution of E in step 5 of the proof of Proposition 2.1.26, where we separate the contribution
far from both vortices and close to them. By integrating only on B(de1~ ; d"

0
) we reduce the number

of estimations we need to do. Moreover, in such a ball the contribution of the vortex V¡1 and its
derivatives are easy to compute, see subsection 2.3.2.

Subsection 2.3.5 gathers all the estimations needed to show that only the contribution from the
source term is of leading order. Subsection 2.3.6 and 2.3.7 are easy computations using previous
subsections to compute the �rst order term of @cQc.

The main and most di�cult part is subsection 2.3.3. We want to show that @x1+d
¡
¡~1(x¡de1~ )

�
is much smaller than ¡~1(x¡de1~ ), i.e. that the derivative with respect to x1+d gives us additional
smallness in c. For this we do a proof by contradiction which follows closely what was done in the
proof of Proposition 2.1.17.
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We de�ne the following di�erential operators:

@y1 := @x1¡ @d;

@z1 :=@x1+@d:

These notations follow the de�nitions of y1= x1¡ d and z1= x1+ d from (2.1.1). The derivative
in d is taken at �xed c. The function @d�c;d is the derivative of � with respect to d at �xed c and
we shall use the notation

@d�c;dc := @d�c;d|d=dc;

and similarly for @d¡c;dc and @d	c;dc. The derivatives @y1 and @z1 behave naturally on function
depending on x and d only through y or z, as shown in the following lemma.

Lemma 2.3.2. For any F2C1(R2;C); we have

@y1(F(z))= @z1(F(y))= 0

and

@y1(F(y))= 2@x1F(y);

@z1(F(z))= 2@x1F(z):

Proof. We compute

@y1(F(z))= @x1(F(x1+ d; x2))¡@d(F(x1+ d; x2))= @x1F(z)¡@x1F(z)=0:

Similarly we have @z1(F(y))= 0: Moreover,

@y1(F(y))= @x1(F(x1¡ d; x2))¡@d(F(x1¡ d; x2))= @x1F(y)+ @x1F(y)= 2@x1F(y)

and similarly, @z1(F(z))= 2@x1F(z). �

We have an estimate on @d�c;d|d=dc, but it is not enough to show that dc is a C1 function
of c. The main idea of the proof is to compute an estimate on @z1�c;dc= @x1�c;dc+ @d�c;dc near
the vortex V1 which is better than the ones on @x1�c;dc and @d�c;dc. In particular we will have
@z1�c;dc = oc!0(c1+�) for some � > 0 instead of oc!0(c1¡�) for � > 0. This estimate is done in
Proposition 2.3.5. First, we compute a �rst rough estimate on @z1	c;d which is a corollary of Lemma
2.2.3.

Corollary 2.3.3. For � a smooth cuto� function with value 1 in
�
r¡1> 3

	
and 0 in

�
r¡16 2

	
,

for 0<� <� 0< 1, there exist c0(�; � 0)> 0 such that, for 0<c<c0(�; � 0), we have

V�@z1	c;d|d=dc




C1({r~63})

+


r~1+�Re

¡
@z1	c;d|d=dc

�


L1({r~>2})+



r~2+�rRe
¡
@z1	c;d|d=dc

�


L1({r~>2})

+


r~� Im¡@z1	c;d|d=dc

�


L1({r~>2})+



r~1+�rIm
¡
@z1	c;d|d=dc

�


L1({r~>2})

6 K(�; � 0)c1¡�
0
:

Proof. Remark that V1@d	c;d might not be bounded near de1~ , but V1@z1	c;d is, since, by Lemma
2.3.2, @z1V1=0 hence

V1@z1	c;d=@z1�c;d= @d�c;d+ @x1�c;d;

with @d�c;d bounded by Lemma 2.2.3. We take a cuto� � to avoid the fact that V¡1@z1	c;d is not
necessary bounded near ¡de1~ . In particular, with these remarks, we easily check, with Lemma
2.2.3, that 

V�@z1	c;d|d=dc




C1({r~63})6K(�; � 0)c1¡�

0
:

We now focus on the region
�
r~> 2

	
. From the de�nition of @z1, we have that

@z1	c;d|d=dc
= @d	c;dc+@x1	c;dc:
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We compute

@d	c;dc=
@d�c;dc
V

+ @dV
V

	c;dc;

and from Lemma 2.2.3, we have 



@d�c;dcV






�;�;dc

6K(�; � 0)c1¡� 0:
From Lemma 2.1.6, we have

j@dV j6
K

(1+ r~)
and

jr@dV j6
K

(1+ r~)2
;

and together with k	c;dck�;�;dc6K(�; � 0)c1¡�
0
, we check that



r~1+�Re

�
@dV

V
	c;dc

�




L1({r~>2})

+




r~2+�rRe

�
@dV

V
	c;dc

�




L1({r~>2})

+




r~� Im� @dVV 	c;dc

�




L1({r~>2})

+




r~1+�rIm

�
@dV
V

	c;dc

�




L1({r~>2})

6 K(�; � 0)c1¡�
0
:

Finally, for the contribution of @x1	c;dc, using k	c;dck�;�;dc6K(�; � 0)c1¡�
0
, we show that, with

some margin,
kr~1+�Re(@x1	c;dc)kL1({r~>2})+ kr~2+�rRe(@x1	c;dc)kL1({r~>2})

+ kr~� Im(@x1	c;dc)kL1({r~>2})+ kr~1+�rIm(@x1	c;dc)kL1({r~>2})

6 K(�; � 0)c1¡�
0
;

which ends the proof of this corollary. �

2.3.1 Recasting the implicit equation de�ning dc
At this point, we do not know if dc is uniquely de�ned for c> 0. We denote by dc a value de�ned
by the implicit equation on d:

hTWc(Qc;d); @dV i=0;
where

Qc;d :=V +¡c;d;

with ¡c;d= �V 	c;d+ (1¡ �) V (e	c;d ¡ 1), which is a C1 function of d and c in E�;�;d thanks to
subsection 2.2.1. Remark that dc is also de�ned by the implicit equation for 0<"0< 1:Z

B(de1;d"
0
)[B(¡de1;d"

0
)

Re(@dV TWc(Qc;d))= 0;

that we will use instead because of the reasons explained at the begining of section 2.3. We
can check easily that @dQc;d; @cQc;d 2 C1(R2) (by looking at the equations they satisfy in the
distribution sense and using standard elliptic regularity arguments), and furthermore, that d 7!
@dQc;d and c 7! @cQc are continuous functions (on their domain of de�nition in Cloc

1 (R2) for
instance). From now on, we take any 0 < "0 < 1, but we will �x its value later on. We want to
di�erentiate this quantity with respect to d and take the result at a value dc such that TWc(Qc;dc)=
0 in R2. In particular, we have

@d

Z
B(de1;d"

0
)[B(¡de1;d"

0
)

Re(@dV TWc(Qc;d))|d=dc=Z
B(de1;d"

0
)[B(¡de1;d"

0
)

Re(@dV@d(TWc(Qc;d)))|d=dc:
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Now, by symmetry, we remark thatZ
B(de1;d"

0
)[B(¡de1;d"

0
)

Re(@dV@d(TWc(Qc;d)))= 2
Z
B(de1;d"

0
)

Re(@dV@d(TWc(Qc;d))):

We will use the two operators we have already de�ned:

@y1=@x1¡@d and @z1= @x1+ @d:

Since TWc(Qc;dc)= 0 everywhere in R2, we therefore have @x1(TWc(Qc;dc))= 0, hence, at d= dc,

@d(TWc(Qc;d))= @z1(TWc(Qc;d)):

We write

TWc(Qc;d)=TWc(V )+L(¡c;d)+NLV (¡c;d);

with

L(¡c;d)=¡�¡c;d¡ ic@x2¡c;d¡ (1¡ jV j2) ¡c;d+2Re(V�¡c;d)V

and

NLV (¡c;d) := 2Re(V�¡c;d) ¡c;d+ j¡c;dj2(V +¡c;d):

We compute

@z1(TWc(Qc;d))= @z1(TWc(V ))+L(@z1¡c;d)+ (@z1L)(¡c;d)+ @z1(NLV (¡c;d));

therefore, at d= dc,

@d

Z
B(de1;d"

0
)

Re(@dV TWc(Qc;d))=
Z
B(de1;d"

0
)

Re(@dV@z1(TWc(V )))

+
Z
B(de1;d"

0
)

Re(@dVL(@z1¡c;d))+
Z
B(de1;d"

0
)

Re(@dV (@z1L)(¡c;d))

+
Z
B(de1;d"

0
)

Re(@dV@z1(NLV (¡c;d))) (2.3.1)

since the boundary term is 0 (when the di�erentiation is on the d in B(de1~ ; d"
0
)) because

TWc(Qc;dc) = 0. We need to estimate those four terms at d = dc, and that is the goal of the
next subsections. Subsections 2.3.2 and 2.3.3 yield estimates on the derivatives of V¡1 and @z1	c;d
respectively in Bd0 :=B(de1~ ; d"

0
). Subsection 2.3.4 is about the estimation ofZ

B(de1;d"
0
)

Re(@dV@z1(TWc(V )))

which will be the leading order term, and subsection 2.3.5 shows that all the other terms are smaller
for dc large enough.

2.3.2 Estimates on the derivatives of V¡1 in B(de1~ ; d
")

Lemma 2.3.4. For 0<"< 1, in B(de1~ ; d"), with the O(:) being always real valued, we have

@x1V¡1=
�
Od!1

�
1
d3

�
+ iOd!1

�
1

d2¡"

��
V¡1;

@x2V¡1=
�
Od!1

�
1

d4¡"

�
+ iOd!1

�
1
d

��
V¡1;

@x1x1V¡1=
�
Od!1

�
1

d4¡2"

�
+ iOd!1

�
1

d3¡"

��
V¡1;

@x1x2V¡1=
�
Od!1

�
1

d3¡"

�
+ i
4d2

�
1+Od!1

�
1

d1¡"

���
V¡1:

2.3 Differentiability of the branch c 7!Qc 117



Proof. Recall from Lemma 2.1.2 that, with u= �¡1
0 (r¡1)

�¡1(r¡1)
,

@x1V¡1=
�
cos(�¡1)u+

i
r¡1

sin(�¡1)
�
V¡1;

@x2V¡1=
�
sin(�¡1)u¡

i
r¡1

cos(�¡1)
�
V¡1;

@x1x1V¡1=

 
cos2(�¡1)(u2+u0)+ sin2(�¡1)

 
u
r¡1

¡ 1
r¡1
2

!
¡ 2 i sin(�¡1)cos(�¡1)

 
1
r¡1
2 ¡ u

r¡1

!!
V¡1

and

@x1x2V¡1=

 
sin(�¡1)cos(�¡1)

 
u2+u0+ 1

r¡1
2 ¡ u

r¡1

!
+ i cos(2�¡1)

 
1
r¡1
2 ¡ u

r¡1

!!
V¡1:

In the ball B(de1~ ; d"), we have, by Lemma 2.1.1, that 1

r¡1
6 K

d
,

u=Od!1

�
1
d3

�
and sin(�¡1)=Od!1

�
1

d1¡"

�
;

the last one is because for (y1; y2)2B(de1~ ; d"), we have |y2|6 d" hence

jsin(�¡1)j=
jy2j
r¡1

6 K
d1¡"

:

We also compute in the same way that

cos(�¡1)= 1¡ sin2(�¡1)
p

=1+Od!1

�
1

d2¡2"

�
:

With the equation on �¡1 coming fom ¡�V¡1¡ (1¡ jV¡1j2)V¡1=0, we check easily that

u0=Od!1

�
1
d4

�
as well (or see [25]). Finally, we estimate

cos(2�¡1)= 1¡ 2sin2(�¡1)= 1+Od!1

�
1

d2¡2"

�
and

1
r¡1
2

=(2d+Od!1(d"))¡2=
1
4d2

+Od!1

�
1

d3¡"

�
:

With this estimations, we end the proof of the lemma. �

2.3.3 Estimate on @z1	c;d in B(de1~ ; d
"0)

We de�ne the following norms for 	=	1+ i	2 and h=h1+ ih2, 0<�< 1; 0<"0<"< 1:

k	k�;Bd0 := kV	kC1({r162})

+ kr11¡�	1kL1({d"0>r1>2})+ kr1
1¡�r	1kL1({d"0>r1>2})

+ kr1¡�	2kL1({d"0>r1>2})+ kr1
1¡�r	2kL1({d"0>r1>2})

and

khk��;Bd := kVhkC0({r163})

+ kr11¡�h1kL1({d">r1>2})+ kr12¡�h2kL1({d">r1>2}):
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They are the norms k:k�;¡�;d and k:k��;¡�;d of subsection 2.1.3, but without the second derivatives,
less decay on the gradient of the real part for k:k�;Bd0, and only on Bd0 =B(de1~ ; d"

0
) for k:k�;Bd0 and

on Bd := B(de1~ ; d") for k:k��;Bd. The other main di�erence with the previous norms is that we
require less decay (we take ¡� < 0 instead of � > 0 in the decay) in space, which here, since the
norms are only in

�
r16 d"

	
, can be compensated by some smallness in c.

From Corollary 2.3.3, we have that k@z1	c;dck�;Bdc0 < +1. We want to show the following
proposition.

Proposition 2.3.5. For 0<�< 1; 0<"0<"< 1; 0<�< 1, if

�< (1+�)"0;

�+(1¡�)"0< 2"¡ "0

and

�< 2¡ "(2¡�);
we have 

@z1	c;d|d=dc




�;Bdc

0 = oc!0(c1+�):

Such a choice of parameters (�; �; "; "0) exists, we can take for instance � = 1/2; � = 3/4;
"= 19/24 and "0= 13/24. Furthermore, with this particular choice of parameters, we also have

�+(1¡�)"0> 1; (2.3.2)

which will be usefull later on. These conditions are bounds on how much additional smallness we
can have on @z1	c;d near dce1~ .

The main goal of this proposition is to have a decay in c better than Oc!0(c), which is not
obvious from the estimates we have done until now. The estimate on @z1	c;d|d=dc

from Corollary
2.3.3 will not be enough in the computation of @cdc for the nonlinear terms. The proof of Propos-
ition 2.3.5 follows closely the proof of the inversibility of the linearized operator in Proposition
2.1.17. We want to invert the same linearized operator, but with a di�erent norm, which is better
locally around the vortex V1.

The reason why we take Bd a little bigger than Bd0 is to make the elliptic estimates of step 2 in
Proposition 2.1.17 work here too. The main idea of this proposition is to show that if we move V¡1
a little, then locally around V1 the change is very small. We now start the proof of Proposition 2.3.5.

Proof. First, we remark that in Bd, since "< 1, r~= r1.

Step 1. Computation of the equation on @z1	c;d.

Recall that �c;d solves the equation (with �c;d=V	c;d)

�L(�c;d)+ (1¡ �)VL0(	c;d)+F (	c;d)=�(c; d)Zd;

and we recall that �(c; d) = hF (	c;d); Zdi
kZdkL2(R2)

2 , and we check easily, with Lemma 2.2.3, that it is a C1

function of d. The equation on �c;d holds for any x2R2 and any d2R;
1

2d
<c<

2

d
, hence

@z1(�L(�c;d)+ (1¡ �)VL0(	c;d)+�d?(F (	c;d))¡�(c; d)Zd)=0:
We compute

@z1(�(c; d)Zd) = (@x1+@d)(�(c; d)Zd)
= @d�(c; d)Zd+�(c; d)@z1Zd;

and we recall, from the proof of Proposition 2.1.26 that

�(c; d)
Z
R2
j@dV j2�2=�

�
1
d
¡ c
�
+Oc!0

� (c2¡�):
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With Lemma 2.2.3 and Corollary 2.3.3, as well as Lemma 2.1.6, we infer that the terms contributing
to the Oc!0

� (c2¡�) are such that, when di�erentiated with respect to d, their contributions are
still a Oc!0

� (c2¡�). Indeed, if the derivative with respect to d fall on a 	c;d, then by Lemma 2.2.3
and Corollary 2.3.3, the same estimates used in the proof of Proposition 2.1.26 still hold. If the
derivative fall on a term depending on V , by Lemma 2.1.6, we gain some decay in the integrals.
We deduce that, since �(c; dc)=0,

@d�(c; d)|d=dc=
¡�
dc
2
+Oc!0

� (c2¡�)=Oc!0
� (c2¡�):

Here, we see why the fact that d is di�erentiable with respect to c is not obvious. The main
contribution is at this point not enough to beat the error terms. Therefore, showing that @d�(c;
d)=/ 0 is not simple here. This is why we need improved estimations on @z1	c;dc, that will give us
the fact that the error terms are a Oc!0

" (c2+") for some "> 0.

Now, writing

TWc(Qc;d)= �L(�c;d)+ (1¡ �)VL0(	c;d)+F (	c;d);

(with the notations of Lemma 2.1.7), we have (since �(c; dc)= 0)

(@z1(TWc(Qc;d))¡@d�(c; d)Zd)|d=dc=0:
We recall that

F (	c;d)=E ¡ ic@x2V +V (1¡ �)(¡r	c;d:r	c;d+ jV j2S(	c;d))+R(	c;d);

where R(	c;d) is a sum of terms at least quadratic in 	c;d or �c;d localized in the area where �=/ 0.
We compute

@z1(TWc(Qc;d)) = �L(V@z1	c;d)+ (1¡ �)VL0(@z1	c;d)
+ �@z1L(�c;d)+ (1¡ �)V@z1L0(	c;d)+ @z1(E ¡ ic@x2V )
+ �L(@z1V	c;d)+ (1¡ �)@z1VL0(	c;d)
+ @z1�(L(�c;d)¡VL0(	c;d)¡ ic@x2�c;d)
¡ @z1�V (¡ic@x2	c;d¡r	c;d:r	c;d+ jV j2S(	c;d))
+ @z1(R(	c;d))
+ @z1V (1¡ �)(¡ic@x2	c;d¡r	c;d:r	c;d+ jV j2S(	c;d))
+ V (1¡ �)@z1(¡ic@x2	c;d¡r	c;d:r	c;d+ jV j2S(	c;d)):

We regroup the terms in the following way. We de�ne

L(@z1	c;d) := �L(V@z1	c;d)+ (1¡ �)VL0(@z1	c;d);

which is the same linearized operator we have inverted in Proposition 2.1.17 (taken in @z1	c;d),
and we de�ne the operator

L@z1(	c;d) := �@z1L(�c;d)+ (1¡ �)V@z1L0(	c;d)+ �L(@z1V	c;d)+ (1¡ �)@z1VL0(	c;d):

We already have TWc(V )=E ¡ ic@x2V , therefore

@z1(TWc(V ))= @z1(E ¡ ic@x2V ):
We de�ne the local error

Errloc := @z1(R(	c;d))¡ @d�(c; d)Zd;
the far away error

Errfar := @z1V (1¡ �)(¡r	c;d:r	c;d+ jV j2S(	))
and the nonlinear terms

NL@z1(	c;d) :=V (1¡ �)@z1(¡r	c;d:r	c;d+ jV j
2S(	c;d)):

Finally, we write the cuto� error

Errcut :=@z1�(L(�c;d)¡VL0(	c;d)+ ic@x2	c;d+r	c;d:r	c;d¡ jV j2S(	c;d))
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which is supported in the area
�
26 r¡16 3

	
, and in particular is zero in B(dce1~ ; dc"). With these

de�nitions, we have, at d= dc,

(@z1(�L(�c;d)+ (1¡ �) VL0(	c;d)+F (	c;d))¡ @d�(c; d)Zd)|d=dc

= L(@z1	c;d)|d=dc

+ (@z1(TWc(V ))+L@z1(	c;d)+NL@z1(	c;d))|d=dc

+ (Errloc+Errfar+Errcut)|d=dc:

The equation satis�ed by @z1	c;d at d= dc is therefore

(L(@z1	c;d)+ @z1(TWc(V ))+L@z1(	c;d)+NL@z1(	c;d)+Errloc+Errfar+Errcut)|d=dc=0:

Step 2. Beginning of the contradiction argument.

Now, suppose that the result of Proposition 2.3.5 is false. The scheme of this proof is the same
as in Proposition 2.1.17. Then, there exist an absolute constant � >0 and sequences @z1	n, cn! 0,
dn!1 such that

dn
1+�k@z1	n|d=dn

k�;Bdn0 > �;

where we write dn=dcn (a value such that �(cn; dn)=0 in Proposition 2.1.26). We have just shown
that 	n (where we omit the subscripts in dn; cn) satis�es

L(@z1	n)+ @z1(TWcn(V ))+L@z1(	n)+NL@z1(	n)+Errloc+Errfar+Errcut = 0:

The function
(V@z1	n)(:¡ dne1~ )
k@z1	nk�;Bdn0

converges locally uniformly up to a subsequence to a limit G, since it is bounded in k:k�;B�0 for
any � > 0 (for the same reasons that 	n! 	 locally uniformly in the beginning of the proof of
Proposition 2.1.17).

The equation on @z1	n is

L(@z1	n)+Vhn=0; (2.3.3)

with

Vhn := @z1(TWcn(V ))+L@z1(	n)+NL@z1(	n)+Errloc+Errfar+Errcut:

The goal of Proposition 2.1.17 was to estimate k	k�;�;d with khk��;� 0;d for the equation L(	)=h
if d is large enough (given an orthogonality condition on 	). Here we do the same thing, but
localized in space, and with a very particular hn that we will estimate. To continue as in the proof
of Proposition 2.1.17, we want to show that

hn(:¡ dne1~ )
k@z1	nk�;Bdn0

! 0

in Cloc0 so that we get at the limit (following the +1 vortex) in (2.3.3)

LV1(G)= 0;

using the sames techniques as in the proof of Proposition 2.1.17. It will be enough for that to show
that 




 hn

k@z1	nk�;Bdn0







��;Bdn

! 0 (2.3.4)

and we will also use this estimate later on. Remark that here, the problem is no longer symmetric
in x1, in particular, we cannot use the same argument near the ¡1 vortex, but it is not needed.
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Step 3. Proof of (2.3.4).

Recall the de�nition of k:k��;Bdn:

khk��;Bdn = kVhkC0({r163})

+ kr11¡� h1kL1({dn">r1>2})+ kr12¡�h2kL1({dn">r1>2}):

Since

dn
1+�k@z1	n|d=dn

k�;Bdn0 > �;
we have

1
k@z1	nk�;Bdn0

6 1
�cn
1+�

;

therefore it is enough to show that

khnk��;Bdn= ocn!0(cn
1+�) (2.3.5)

to have (2.3.4). We recall that

Vhn = @z1(TWcn(V ))+L@z1(	n)+NL@z1(	n)+Errloc+Errfar+Errcut:

The contribution of @z1(TWcn(V )) will be established in step 3.1, L@z1(	n) in step 3.2, NL@z1(	n)
in step 3.3, and �nally, Errloc+Errfar+Errcut in step 3.4.

Step 3.1. Proof of



 @z1TWcn(V )

V





��;Bdn

= ocn!0(cn
1+�).

Recall from (2.1.2) that

TWc(V )=E ¡ ic@x2V =¡2rV1:rV¡1+(1¡ jV1j2)(1¡ jV¡1j2)V1V¡1¡ ic@x2V ;

therefore, with Lemma 2.3.2, we have

@z1(TWc(V ))=¡4rV1:r@x1V¡1+2(1¡jV1j2)V1@x1((1¡jV¡1j2) V¡1)¡ 2 ic@x2(V1@x1V¡1):

We now estimate this quantity at d= dn. We have

j(1¡jV1j2)V1@x1((1¡ jV¡1j2) V¡1)j6
K

1+ r12
� 1
dn
3 ;

and using �< 1, �> 0, we deduce



 (1¡jV1j2)V1@x1((1¡jV¡1j2) V¡1)V






��;Bdn

= ocn!0(cn
1+�):

We compute with Lemmas 2.1.2 and 2.3.4 that

Re

�
4rV1:r@x1V¡1

V

�
=4Re

�
rV1
V1

�
:Re

�
r@x1V¡1
V¡1

�
¡ 4Im

�
rV1
V1

�
:Im

�
r@x1V¡1
V¡1

�
;

leading to ����Re

�
4rV1:r@x1V¡1

V

�����6 K

(1+ r13)dn
3¡" +

K

(1+ r1)dn2

for a universal constant K. Since �< 1 and �> 0, we have



Re

�
4rV1:r@x1V¡1

V

�




��;Bdn

= ocn!0(cn
1+�):

Similarly, we have ����Im� 4rV1:r@x1V¡1V

�����6 K

(1+ r13)dn2
+ K

(1+ r1)dn
3¡" :

Therefore, using
1
dn
6 K

(1+ r1)1/"
;
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since we are in Bdn=B(dne1~ ; dn
"), and

�< 2¡ "(2¡�);

which is one of the hypothesis of the lemma, we have



iIm� 4rV1:r@x1V¡1V

�




��;Bdn

= ocn!0(cn
1+�):

Now, for 2i c n@x2(V1@x1V¡1) = 2i cn@x2V1@x1V¡1 + 2icn@x1x2V¡1V1, we estimate (still using
Lemma 2.1.2 and 2.3.4)����Re

�
icn @x2V1@x1V¡1

V

�����6 K

(1+ r13)dn
3¡" +

K

(1+ r1)dn4
;

����Im� icn @x2V1@x1V¡1V

�����6 K

(1+ r13)dn4
+ K

(1+ r1)dn
3¡" ;

therefore, using 1

dn
6 K

(1+ r1)
1/" , we have, under the condition

�< 2¡ "(2¡�)

for the imaginary part (as for the previous term) and with no condition for the real part (since
�> 0; �< 1), that 



2 icn @x2V1@x1V¡1V






��;Bdn

= ocn!0(cn
1+�):

We then compute (still using Lemma 2.1.2 and 2.3.4)����Re

�
ic n@x1x2V¡1V1

V

�����6 K

dn
3
;

����Im� ic n@x1x2V¡1V1V

�����6 K

dn
4¡" ;

therefore, using 1

dn
6 K

(1+ r1)
1/" ; we have, under the conditions

�< 2¡ "(1¡�) and �< 3¡ "(3¡�);
which are met since

�< 2¡ "(2¡�)=2¡ "(1¡�)¡ "< 2¡ "(1¡�);

and �< 2¡ "(2¡�)=3¡ "(3¡�)¡ 1+ "< 3¡ "(3¡�), that



 ic@x2(V1@x1x2V¡1)V






��;Bdn

= ocn!0(cn
1+�):

This concludes the proof of step 3.1.

Step 3.2. Proof of



L@z1(	n)

V





��;Bdn

= ocn!0(cn
1+�).

We have de�ned

L@z1(	n)= � (@z1L)(�n)+ (1¡ �)V (@z1L0)(	n)+ �L((@z1V )	n)+ (1¡ �)@z1VL0(	n):

We recall from Lemma 2.1.7 that

L0(	n)=¡�	n¡ 2
rV
V
:r	n+2jV j2Re(	n)¡ icn @x2	n;

L(�n)=¡��n¡ (1¡ jV j2)�n+2Re(V��n)V ¡ icn @x2�n;
hence

(@z1L)(�n)= 4Re(V¡1@x1V¡1)�n+4Re(@x1V¡1V1�n)V +4Re(V��n)V1@x1V¡1:
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We shall now estimate all these terms one by one.
Since �@z1L(�n) is compactly supported in

�
r~6 2

	
and k:k��;Bdn looks at the function only on�

r16 d"
	
, using Lemma 2.3.4 (rV¡1=Oc!0(c)) and k	nk�;1¡�

4
;dn
6K(�) c

1+�
2 , we check that



�@z1L(�n)V






��;Bdn

= ocn!0(cn
1+�):

With the same arguments, we also check that



�L(@z1V	n)V






��;Bdn

= ocn!0(cn
1+�):

Now, with k	nk�;�;dn6K(�; � 0)cn1¡�
0
, we check that for any 0<� <� 0< 1,

jL0(	n)j6
K(�; � 0)

(1+ r1)1+�dn
1¡� 0 ;

therefore, with Lemma 2.3.4, we have

j(1¡ �)@z1VL0(	n)j6
K(�; � 0)

(1+ r1)1+�dn
3¡"¡� 0 :

In particular, we check that if

�< 2¡ "(2¡�);

we can take �; � 0 such that 0<�<� 0< 2¡ "(2¡�)¡�
1¡ " , hence



 (1¡ �)@z1VL0(	n)V






��;Bdn

= ocn!0(cn
1+�):

Finally, we estimate

j@z1L0(	n)j6K
����@x1rV¡1V¡1

:r	n
����+K jRe(@x1V¡1V¡1)Re(	n)j:

With Lemma 2.3.4 and k	nk�;�;dn6K(�; � 0) cn1¡�
0 (from (2.2.13)), we check that

j(1¡ �)V@z1L0(	n)j6
K(�; � 0)(1¡ �)
r1
1+�dn

4¡"¡� 0 ;

therefore, with the same condition as for the previous term, namely

�< 2¡ (2¡�)";
we infer, taking � <� 0 small enough,



 (1¡ �)V@z1L0(	n)V






��;Bdn

= ocn!0(cn
1+�):

This concludes the proof of step 3.2.

Step 3.3. Proof of



NL@z1(	n)

V





��;Bdn

= ocn!0(cn
1+�).

We recall

NL@z1(	n)=V (1¡ �)@z1(¡r	n:r	n+ jV j
2S(	n));

with S(	n)= e2Re(	n)¡ 1¡ 2Re(	n). We compute

@z1(¡r	n:r	n+ jV j2S(	n)) = ¡2r@z1	n:r	n
+ 4Re(@x1V¡1V¡1)S(	n)
+ jV j2@z1S(	n):
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Now, with Corollary 2.3.3 and (2.2.13), we check that, for any 0<�<� 0< 1, r1> 2,

jr@z1	n:r	nj6
K(�; � 0)

r1
2+2�dn

2¡2�0 ;

j4Re(@x1V¡1V¡1)S(	n)+ jV j2@z1S(	n)j6
K(�; � 0)

r1
2+2�dn

2¡2� 0 ;

therefore, taking � <� 0< 1¡�
2

, we check that

k(1¡ �)(¡2r@z1	n:r	n+4Re(@x1V¡1V¡1)S(	n)+ jV j2@z1S(	n))k��;Bdn= ocn!0(cn
1+�):

The proof of step 3.3 is complete.

Step 3.4. Proof of



Errloc+Errfar+Errcut

V





��;Bdn

= ocn!0(cn
1+�).

We recall

Errcut= @z1�(L(�n)¡VL0(	n)+ ic@x2	n+r	n:r	n¡ jV j2S(	n));

Errloc=@z1(R(	n))¡ @d�(cn; dn)Zdn;

Errfar= @z1V (1¡ �)(¡r	n:r	n+ jV j2S(	n)):

Errcut is compactly supported in
�
r¡16 2

	
, therefore Errcut=0 in Bdn, hence



ErrcutV






��;Bdn

=0:

Now, Errloc is supported in
�
r1 6 2

	
, and from Lemma 2.1.7, we know that R(	n) is a sum of

terms at least quadratic in 	n or �n localized in the area where �=/ 0. Therefore, from Corollary
2.3.3 and (2.2.14), we check that

j@z1(R(	n))j6
K(�)
dn
2¡2� ;

and we have check in step 1 that j@d�(cn; dn)j=Ocn!0
� (cn

2¡�). Thus, taking � < 1¡�
2

,



ErrlocV






��;Bdn

= ocn!0(cn
1+�):

From (2.2.13), we check that, for any 1>� 0>�> 0,

j¡r	n:r	n+ jV j2S(	n)j6
K(�; � 0)

(1+ r1)2+2�dn
2¡2� 0 ;

and from Lemma 2.3.4, we have

j@z1V j6
K

dn
2¡" ;

therefore, choosing � <� 0 small enough, we have



@z1VV (1¡ �)(¡r	n:r	n+ jV j2S(	n))





��;Bdn

= ocn!0(cn
1+�):

This ends the proof of step 3.4 and hence of (2.3.4).

Step 4. Three additional estimates on hn.

This step is devoted to the proof of the following three estimates:

kVhnkL1({r~63})+ kr~1+�Re(hn)kL1({r~>2})+ kr~2+�Im(hn)kL1({r~>2})6K(�; � 0)cn1¡�
0
: (2.3.6)
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In the right half-plane, we want to show that

jhnj6
K(�)cn

1+�

(1+ r1)
; (2.3.7)

and, in the left half-plane,

jhnj6
K(�)cn

1¡�

(1+ r¡1)2
: (2.3.8)

Observe that hn is not symmetrical with respect to x1 because of the cuto�. Recall that

Vhn= @z1(TWcn(V ))+L@z1(	n)+NL@z1(	n)+Errloc+Errfar+Errcut:

We complete estimates done in the previous step to show that (2.3.6), (2.3.7) and (2.3.8) hold.

Step 4.1. Estimates for @z1(TWcn(V )).

From Step 3.1, we have

@z1(TWc(V ))=¡4rV1:r@x1V¡1+2(1¡jV1j2)V1@x1((1¡jV¡1j2) V¡1)¡ 2ic@x2(V1@x1V¡1):

In view of Lemma 2.1.1, equation (2.1.3) and the estimate (1+ r1)(1+ r¡1)> dn(1+ r~), we have

k@z1(TWc(V ))/V k��;�;dn6K(�)cn1¡�:

Furthermore, in the left half-plane, with Lemma 2.1.1 and equation (2.1.3), we check easily that

j@z1(TWc(V ))j6
Kcn

(1+ r1)2
:

Furthermore, in the right half-plane, we have 1

(1+ r¡1)
6 Kcn, therefore, still using Lemma 2.1.1

and equation (2.1.3), we check that

j@z1(TWc(V ))j6
Kcn

2

(1+ r1)
:

Step 4.2. Estimates for L@z1(	n).

We have, from Step 3.2, that

L@z1(	n)= �@z1L(�n)+ (1¡ �)V@z1L0(	n)+ �L(@z1V	n)+ (1¡ �)@z1VL0(	n);
with

(@z1L)(�n)= 4Re(V¡1@x1V¡1)�n+4Re(@x1V¡1V1�n)V +4Re(V��n)V1@x1V¡1;

L0(	n)=¡�	n¡ 2
rV
V
:r	n+2jV j2Re(	n)¡ icn @x2	n

and

j@z1L0(	n)j6K
����@x1rV¡1V¡1

:r	n
����+K jRe(@x1V¡1V¡1)Re(	n)j: (2.3.9)

Similarly as in Step 4.1, every local term (in the area
�
� =/ 0

	
) satis�es the two estimates, using

k	nk�;1¡�
2
;dn
6K(�)cn�. The two nonlocal terms are (1¡ �)V@z1L0(	n) and (1¡ �)@z1VL0(	n). For

the �rst term, in view of Lemma 2.1.1, equations (2.1.3), (2.2.14) and (2.3.9), we check that

kV (1¡ �)@z1L0(	n)kL1({r~63})

+ kr~1+�Re((1¡ �)@z1L0(	n))kL1({r~>2})+ kr~2+�Im((1¡ �)@z1L0(	n))kL1({r~>2})

6 K(�; � 0)cn
1¡� 0

and, in the left-half plane,

j(1¡ �)V@z1L0(	n)j6
K(�)cn

1¡�

(1+ r¡1)2
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Furthermore, using now k	nk�;1¡�
2
;dn
6K(�)cn�, we check that, in the right half-plane,

j(1¡ �)V@z1L0(	n)j6
K(�)cn

1+�

(1+ r1)
:

Finally, for the term (1¡ �)@z1VL0(	n), we use k	nk�;�;dn6K(�; � 0)cn1¡�
0
and (2.2.14) to check

that

jL0(	n)j6
K(�)cn

1¡� 0

(1+ r~)1+�
:

Combining this estimate with j@z1V j6
K

(1+ r~)
, we show that



(1+ r~)2+��(1¡ �)@z1VV L0(	n)

�




L1(R2)

6K(�; � 0)cn1¡�
0
;

and, in the left half-plane,

j(1¡ �)@z1VL0(	n)j6
K(�)cn

1¡�

(1+ r¡1)2
:

Furtherore, using k	nk�;1¡�
2
;dn
6K(�)cn� and (2.2.14), we also have the estimate

jL0(	n)j6
K(�)cn�

(1+ r~)
;

and using j@z1V j6Kcn in the right half-plane, we estimate in this same area that

j(1¡ �)@z1VL0(	n)j6
K(�)cn

1+�

(1+ r~)
:

Step 4.3. Estimates for NL@z1(	n).

From Step 3.3,

NL@z1(	n)=V (1¡ �)@z1(¡r	n:r	n+ jV j
2S(	n)):

Using equation (2.2.14) for 1+�

2
and Corollary 2.3.3 (also for 1+ �

2
), we check without di�culties

that

kNL@z1(	n)kL1({r~63})

+ kr~1+�Re(NL@z1(	n)/V )kL1({r~>2})+ kr~2+�Im(NL@z1(	n)/V )kL1({r~>2})

6 K(�)cn
1¡�;

and, with, some margin, that in the left half-plane,

jNL@z1(	n)j6
K(�)cn

1¡�

(1+ r¡1)2
:

Now, using k	nk�;1¡�
4
;dn
6K(�)cn

1+�
2 and Corollary 2.3.3 (for 1¡ �

2
), we have, in the right half-plane,

jNL@z1(	n)j6
K(�)cn

1+�

(1+ r~)
:

Step 4.4. Estimates for Errloc+Errfar+Errcut.

For Errloc = @z1(R(	n)) ¡ @d�(cn; dn)Zdn, the same computations as in Step 4.3 yield the
estimates (because this term is compactly supported in the area

�
� =/ 0

	
) needed for (2.3.6) to

(2.3.8).
For Errcut = @z1�(L(�n) ¡ VL0(	n) + i c@x2	n + r	n:r	n ¡ jV j2S(	n)), this term is

compactly supported near the vortex ¡1, hence is 0 in the right half-plane. Furthermore, using
k	nk�;�/2;dn6K(�)cn1¡�, we check easily that

kErrcut/V k��;�;dn6K(�)cn1¡�
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and, since it is compactly supported, in the left half-plane,

jErrcutj6
K(�)cn

1¡�

(1+ r¡1)2

Finally, for Errfar= @z1V (1¡ �)(¡r	n:r	n+ jV j2S(	n)), from (2.2.14) we have

j(1¡ �)(¡r	n:r	n+ jV j2S(	n))j6
K(�)cn

1¡�

(1+ r~)2+�
;

and we conclude as in Step 4.2.

This concludes the proof of estimates (2.3.6), (2.3.7) and (2.3.8).

Step 5. Inner estimates.

By the estimation we have just proved, we have in particular

hn(:¡ dne1~ )
k@z1	nk�;Bdn0

! 0

in Cloc0 (which corresponds to follow the+1 vortex). Therefore, at the limit, in the distribution sense,

LV1(G)= 0

in all R2. If we show that hG; �@x1V1i= 0 for � a cuto� near 0, we can then use Theorem 2.1.16
to show, similarly as in the proof of Proposition 2.1.17, that G=0 since




 (V@z1	n)(:¡ dne1~ )k@z1	nk�;Bdn0







�;Bdn

=1;

hence kGkHV1<+1. We recall that, by construction, we have h�c;d; Zdi=0. By symmetry, this
implies that h�c;d; �(y)@dV i=0. Both �c;d and �(y)@dV are C1 with respect to d, and therefore

0=@dh�c;d; �(y)@dV i= h@d�c;d; �(y)@dV i+ h�c;d; @d(�(y)@dV )i:

Furthermore, h@x1�c;d; �(y)@dV i=¡h�c;d; @x1�(y)@dV i, thus

h@z1�c;d; �(y)@dV i=¡h�c;d; �(y)@z1@dV i;

and we check easily that j�(y)@z1@dV j6Kc�(y), therefore, since k	c;dk�;�;d6K(�; � 0)c1¡�
0
, we

have jh@z1�c;d; �(y)@dV ij6K(�; � 0)c2¡�
0
, and thus, taking 0<� 0< 1¡ �, for cn and dn, n!1,

we infer that hG; �@x1V1i=0.
We continue as in the proof of Proposition 2.1.17. The fact that G = 0 gives us that for any

R> 0, we have
kV@z1	nkL1({r16R})+ kr(V@z1	n)kL1({r16R})

k@z1	nk�;Bdn0
! 0:

Step 6. Outer computations.

We have the same outer computations as in step 2 of the proof of Proposition 2.1.17, but with
Yn=

@z1	n

k@z1	nk�;Bdn
playing the role of 	n and Hn= hn

k@z1	nk�;Bdn
playing the role of hn, since they

satisfy the same equation. We showed in (2.3.4) that

kHnk��;Bdn= on!1(1);

and the system of equation is, with Yn=Y1+ iY2 and Hn=H1+ iH2,8><>:
�Y1¡ 2jV j2Y1=¡H1¡ 2Re

�
rV
V
:rYn

�
+ c@x2Y2

�Y2+ c@x2Y1=¡H2¡ 2Im
�
rV
V
:rYn

�
:
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Recall the two balls Bdn = B(dne1~ ; dn") and Bdn
0 = B(dne1~ ; dn"

0
). We have, as in the proof of

Proposition 2.1.17, outside
�
r16R

	
but in Bdn

0 , that kYnk�;Bdn0 = 1 and kHnk��;Bdn= on!1(1),
therefore

j�Y1¡ 2Y1j6
oR!1(1)+ on!1R (1)

(1+ r1)1¡�
(2.3.10)

and

j�Y2+ c@x2Y1j6
oR!1(1)+ on!1R (1)

(1+ r1)2¡�
: (2.3.11)

We want to extend these estimates in Bdn=B(dne1~ ; dn") and not only on Bdn
0 = (dne1~ ; dn"

0
). Since

kHnk��;Bdn=on!1(1) from (2.3.4), the estimates onH1 andH2 are already on Bdn, leaving c@x2Y2
and the real and imaginary parts of rV

V
:rYn to estimate.

First, we check that, in BdnnBdn
0 ,

jcn@x2Y2j6
dn
1+�cn

2¡�

(1+ r1)1+�
= on!1(1)
(1+ r1)1¡�

taking �> 0 small enough. We use Yn=
@z1	n

k@z1	nk�;Bdn
0
, 1

k@z1	nk�;Bdn
0
6Kdn1+� and Corollary 2.3.3 to

compute, for any 1>� > 0,����Re

�
rV
V
:rYn

�����6 ����rVV
����� |rYn|6 K(�)dn

1+�

r1
2+�dn

1¡� 6
K(�)

r1
2+�dn

¡�¡� :

In BdnnBdn
0 , we have r1> dn"

0
, therefore����Re

�
rV
V
:rYn

�����6 K(�)

r1
1¡�dn

¡�¡�+(1+�+�)"0 :

Since we assume

�< (1+�)"0;

then we can choose �> 0 small such that ¡�¡�+(1+�+�)"0> 0 and deduce, in BdnnBdn
0 , that����Re

�
rV
V
:rYn

�����6 on!1(1)
r1
1¡� :

This result shows that (2.3.10) holds on Bdn. Now, we compute���� Im�rVV :rYn
�����6 ����Re

�
rV
V

�
:Im(rYn)

����+ ����Re(rYn):Im
�
rV
V

�����;
and with Corollary 2.3.3, Lemma 2.1.2 and 2.3.4, we estimate����Re

�
rV
V

�
:Im(rYn)

����6K(�)� 1
dn
3 +

1
r1
3

�
dn
1+�

r1
1+�dn

1¡�

and ����Re(rYn):Im
�
rV
V

�����6K(�) dn
1+�

r1
2+�dn

1¡�

 
1

dn
2¡" +

1
r1

!
:

In BdnnBdn
0 , we have dn" > r1> dn"

0
, and with similar estimates as for the previous term, we check

that, since �< (1+�)"0, we have

�< (2+�)"0;

for the �rst term, and

�< (1+�)"0

for the second one. We can �nd � > 0 such that���� Im�rVV :rYn
�����6 on!1(1)

(1+ r1)2¡�
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in BdnnBdn
0 . We deduce that (2.3.11) holds on Bdn. Additionally, we will use (from Lemma 2.2.3)

for 0<�<� 0< 1,

kV�YnkC1({r~63})

+ kr~1+�Re(Yn)kL1({r~>2})+ kr~1+�rRe(Yn)kL1({r~>2})

+ kr~� Im(Yn)kL1({r~>2})+ kr~1+�rIm(Yn)kL1({r~>2})

6 K(�; � 0)cn
1¡� 0dn

1+�

6 K(�; � 0)dn
�+� 00 (2.3.12)

and from (2.3.6),

kVHnkL1({r~63})+ kr~1+�Re(Hn)kL1({r~>2})+ kr~2+�Im(Hn)kL1({r~>2})6K(�; � 0)dn�+�
00

(2.3.13)

to do estimates outside of Bdn. These estimates are not optimal (in particular in the smallness in
cn) but we will only use them on parts far away from the center of V1. Thanks to (2.3.7), we have
a slightly better estimate in the right half-plane, that is, for 0<�< 1,

jHnj6K jhnjdn1+�6
K(�)dn

�¡�

(1+ r1)
: (2.3.14)

Step 7. Elliptic estimates.

We follow the proof of Proposition 2.1.17. At this point, we have on Yn that kYnk�;Bdn0 = 1,
kVYnkL1({r16R})+ kr(VYn)kL1({r16R})! 0 as n!1 for any R> 1, and with Yn=Y1+ iY2,

j�Y2+ c@x2Y1j6
oR!1(1)+ on!1R (1)

(1+ r1)2¡�
;

j�Y1¡ 2jV j2Y1j6
oR!1(1)+ on!1R (1)

(1+ r1)1¡�
:

We want to show that kYnk�;Bdn0 = oR!1(1)+ on!1
R (1). We want to use similar elliptic estimates

as in the proof of Proposition 2.1.17, but we have to show that they still work if we only have the
estimate in Bdn=B(dne1~ ; dn

") and we want the �nal estimates in Bdn
0 =B(dne1~ ; dn"

0
), with "0<".

Step 7.1. Elliptic estimate for Y2.

We start by solving the following problem in R2:

�� = f ;

with

f :=¡H2¡ 2Im
�
rV
V
:rYn

�
;

which is odd in x2 (the derivation with respect to z1 breaks the symmetry on x1, but not on x2)
and satis�es

jf j6 oR!1(1)+ on!1R (1)
(1+ r1)2¡�

in Bdn=B(dne1~ ; dn
"), and, from (2.3.11) and (2.3.13),

jf j6 K(�; � 0)dn
�+� 0

(1+ r~)2+�
(2.3.15)

in R2, for any 1>� 0>�>0. Similarly as in the proof of Lemma 2.1.8, we write, for x2B(dne1~ ;dn"
0
),

r�(x) = 1
2�

Z
R2

x¡Y
jx¡Y j2 f(Y )dY : (2.3.16)
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Furthermore, we have the same local result, that is, if jx¡ de1~ j6 1,

jr�(x)j6 oR!1(1)+ on!1R (1):

By symmetry (see in particular Lemma 2.2.4), we haveZ
B(dne1;2jx¡dne1j)

f(Y )dY =0;

hence Z
B(dne1;dn

" )

x¡Y
jx¡Y j2 f(Y )dY

=
Z
B(dne1;dn

" )

f(Y )
�

x¡Y
jx¡Y j2 ¡1

�
jY ¡dne1j62jx¡dne1j

	 x¡ dne1~
jx¡ dne1~ j2

�
dY ;

and then, we infer���� 12�
Z
B(dne1;dn

" )

f(Y )
�

x¡Y
jx¡Y j2 ¡1

�
jY ¡dne1j62jx¡dne1j

	 x¡ dne1~
jx¡ dne1~ j2

�
dY

����
6
Z
B(dne1;dn

" )

(oR!1(1)+ on!1R (1))
(1+ jY j)2¡�

���� x¡Y
jx¡Y j2 ¡1

�
jY ¡dne1j62jx¡dne1j

	 x¡ dne1~
jx¡ dne1~ j2

����dY :
We do the same change of variable Z=Y ¡dne1~ as in the proof of lemma 2.1.8, and we are now at���� 12�

Z
B(dne1;dn

" )

f(Y )
�

x¡Y
jx¡Y j2 ¡1

�
jY ¡dne1j62jx¡dne1j

	 x¡ dne1~
jx¡ dne1~ j2

�
dY

����
6
Z
B(0;dn

" )

(oR!1(1)+ on!1R (1))
(1+ jZ j)2¡�

���� x¡ dne1~ ¡Zjx¡ dne1~ ¡Z j2
¡1�jZ j62jx¡dne1j	 x¡ dne1~

jx¡ dne1~ j2

����dZ:
We want to follow the same computations as in the proof of Lemma 2.1.8, but now 1

(1+ jZ j)2¡� is

no longer integrable, and this is why we added the function 1�jZ j62jx¡dne1j	. If jZ j> 2jx¡ dne1~ j,
then jx¡ dne1~ ¡Z j> jZ j/2 andZ

B(0;dn
" )\

�
jZ j>2jx¡dne1j

	(oR!1(1)+ on!1
R (1))

(1+ jZ j)2¡�

���� x¡ dne1~ ¡Zjx¡ dne1~ ¡Z j2

����dZ
6
Z
B(0;dn

" )\
�
jZ j>2jx¡dne1j

	(oR!1(1)+ on!1
R (1))

(1+ jZ j)2¡�jZ j dZ

6 oR!1(1)+ on!1R (1)
(1+ jx¡ dne1~ j)1¡�

:

Then, in
�
jZ j6 2jx¡ dne1~ j

	
, we follow exactly the same computation as in the proof of the proof

of Lemma 2.1.8 for the remaining part of the integral, and we conclude that���� 12�
Z
B(dne1;dn

" )

f(Y )
�

x¡Y
jx¡Y j2 ¡1

�
jY ¡dne1j62jx¡dne1j

	 x¡ dne1~
jx¡ dne1~ j2

�
dY

����
6 oR!1(1)+ on!1R (1)

(1+ jx¡ dne1~ j)1¡�
:

We are left with the estimation of (after a translation)Z
R2nB(0;dn" )

jf(Z + dne1~ )j
jZ ¡ (x¡ dne1~ )j

dZ:

By symmetry (see Lemma 2.2.4), we haveZ
R2nB(0;dn" )

f(Z + dne1~ )
jZ j dZ =0;

therefore����Z
R2nB(0;dn" )

f(Z+ dne1~ )
jZ ¡ (x¡ dne1~ )j

dZ

���� =
����Z

R2nB(0;dn" )
f(Z + dne1~ )

�
1

jZ ¡ (x¡ dne1~ )j
¡ 1
jZ j

�
dZ

����:
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Since jx¡ dne1~ j6 dn"
0� dn

" 6 jZ j, we have, for Z 2R2nB(0; dn"),���� 1
jZ ¡ (x¡ dne1~ )j

¡ 1
jZ j

����6 K jx¡ dne1~ j
jZ j2 6 Kdn

"0

dn
2" ;

thus, with (2.3.15), ����Z
R2nB(0;dn" )

f(Z + dne1~ )
�

1
jZ ¡ (x¡ dne1~ )j

¡ 1
jZ j

�
dZ

����
6 K(�; � 0)dn

"0+�+� 0

dn
2"

����Z
R2nB(dne1;dn" )

1
(1+ r~)2+�

����
6 K(�; � 0)dn

"0+�¡2"+� 0:

In particular, we have����Z
R2nB(0;dn" )

f(Y + dne1~ )
�

1
jY ¡ (x¡ dne1~ )j

¡ 1
jY j

�
dY

����6 on!1(1)
(1+ jx¡ dne1~ j)1¡�

if, since jx¡ dne1~ j6 dn"
0
,

K(�; � 0)dn
"0+�¡2"+�06 on!1(1)

dn
"0(1¡�) ;

hence, since we make the assumption

�+ "0(1¡�)< 2"¡ "0;

we can �nd � 0> 0 such that, for x2B(dne1~ ; dn"),

jr�(x)j6 oR!1(1)+ on!1R (1)
(1+ jx¡ dne1~ j)1¡�

: (2.3.17)

Using Lemma 2.1.8 and (2.3.15), we also have, in all R2 this time, that

jr�(x)j6 K(�; � 0)dn
�+� 0

(1+ r~)1+�
: (2.3.18)

Here, we cannot integrate from in�nity (since the estimate is only on a ball) to get an estimation
on �, but this will be dealt with later on.

Now, following the proof of Proposition 2.1.17, we de�ne Y20 := Y2 ¡ �, and we have, for
j 2
�
1; 2
	
,

@xjY20=Kj � f 0;
where

f 0 :=¡H1¡ 2Re

�
rV
V
:rYn

�
¡ (1¡ jV j2)Y1¡ c@x2�:

We �rst estimate the convolution in B(dne1~ ; dn" ). With kYnk�;Bdn0 = 1, we check that, with some
margin in B(dne1~ ; dn"

0
), ����2Re

�
rV
V
:rYn

�
¡ (1¡jV j2)Y1

����6 oR!1(1)
(1+ r1)3/2¡�

:

Now, we have shown in step 6 that����Re

�
rV
V
:rYn

�����6 on!1(1)
r1
1¡�+�00

for some � 00> 0. In B(dne1~ ; dn")nB(dne1~ ; dn"
0
), we have

j(1¡jV j2)Y1j6
dn
�+� 0

r1
3+� 6

dn
�+� 0¡(2+�¡� 00)"0

r1
1¡�+� 00 = on!1(1)

r1
1¡�+� 00
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given that � 0 and � 00 are small enough since � ¡ (2 + �)"0 < 0. Therefore, following the proof
of Lemma 2.1.13 (only changing the integral from R2 to B(dne1~ ; dn")), we check with the same
computations (since we have some margin � 00> 0 on the decay) that����Z

B(dne1;dn
" )

Kj(x¡Y )
�
2Re

�
rV
V
:rYn

�
¡ (1¡ jV j2)Y1

�
(Y )dY

����6 oR!1(1)
(1+ r1)1¡�

:

Now, using (2.3.17), we check that, following the proof of Lemma 2.1.13 (using Hölder inequality
instead of Cauchy-Schwarz in the last estimate to make sur that the two integrals are well de�ned,
this does not change the �nal estimate),����Z

B(dne1;dn
" )

Kj(x¡Y )(c@x2�)(Y )dY
����6 c(oR!1(1)+ on!1R (1))

(1+ r1)1¡�¡1/10
:

And, since x2B(dne1~ ; dn"
0
), c(1+ r1)1/106K, therefore����Z

B(dne1;dn
" )

Kj(x¡Y )(c@x2�)(Y )dY
����6 oR!1(1)+ on!1R (1)

(1+ r1)1¡�
:

For the last remaining term, we use (2.3.7) with �= �+1

2
to estimate

jH1j6
on!0
R (1)
(1+ r1)

;

and then, from Lemma 2.1.13 (only changing the integral from R2 to B(dne1~ ; dn") in the proof), we
infer ����Z

B(dne1;dn
" )

Kj(x¡Y )H1(Y )dY
����6 oR!1(1)+ on!1R (1)

(1+ r1)1¡�
:

Combining these estimates, we have shown that����Z
B(dne1;dn

" )

Kj(x¡Y )f 0(Y )dY
����6 oR!1(1)+ on!1R (1)

(1+ r1)1¡�
:

Now, we focus on the left half-plane. From (2.3.8), we have

jH1j6
K(�)cn

1¡�dn
1+�

(1+ r¡1)2
:

Furthermore, we check, using (2.3.11) and (2.3.18) that, in the left half-plane,����¡2Re

�
rV
V
:rYn

�
¡ (1¡ jV j2)Y1

����6 K(�; � 0)dn
1+�cn

1¡� 0

(1+ r¡1)2+�
and

jcn@x2� j6
K(�; � 0)dn

�+�0cn
(1+ r¡1)1+�

:

We have by Theorem 2.1.12 (since x2B(dne1~ ; dn"
0
)) that jKj(x¡Y )j6 K

dn
�(1+ r~(Y ))2¡�

for Y in

the left half-plane, for any 06 �6 2. Therefore, taking �=2¡�, we have�����
Z
�
y160

	Kj(x¡Y )H1(Y )dY

�����6
Z
R2

K(�; � 0)dn
�+�+� 0¡2

(1+ r~)2+�
6 K(�; � 0)dn

�+�+�0¡2+(1¡�)"0

(1+ jx¡ dne1~ j)1¡�
:

Taking �=2, we have�����
Z
�
Y160

	Kj(x¡Y )
�
¡2Re

�
rV
V
:rYn

�
¡ (1¡jV j2)Y1

�
(Y )dY

�����
6
Z
R2

K(�; � 0)dn
�+� 0¡2

(1+ r~)2+�

6 K(�; � 0)dn
�+� 0¡2+(1¡�)"0

(1+ jx¡ dne1~ j)1¡�
;

2.3 Differentiability of the branch c 7!Qc 133



and �nally, taking �=1, we estimate�����
Z
�
Y160

	Kj(x¡Y )cn @x2�(Y )dY

�����6
Z
R2

K(�; � 0)dn
�+� 0¡2

(1+ r~)2+�
6 K(�; � 0)dn

�+�0¡2+(1¡�)"0

(1+ jx¡ dne1~ j)1¡�
:

Thus, taking � 0>�> 0 small enough, since �¡ 2+ (1¡�)"0< 0, we have�����
Z
�
Y160

	Kj(x¡Y )f 0(Y )dY

�����6 on!0(1)
(1+ jx¡ dne1~ j)1¡�

:

We are left with the estimation in 
 :=
�
Y1> 0

	
nB(dne1~ ; dn"). We infer that, in 
, we have, for

0<� <� 0< 1

jf 0j6 K(� 0)dn
�¡� 0

(1+ r1)
+ K(�)dn

�+�

(1+ r1)2+�
:

Indeed, from equation (2.3.14) and (2.3.18), we have jH1¡ c@x2� j6
K(�)dn

�+�

(1+ r1)
, and using (2.3.11),

we check that ����2Re

�
rV
V
:rYn

�
¡ (1¡ jV j2)Y1

����6 K(�)dn
�+�

(1+ r~)2+�
:

Now, for y 2
, x2B(dne1~ ; dn"
0
), we have from Theorem 2.1.12 that

jKj(x¡Y )j6
K

dn
2"

and

jKj(x¡Y )j6
K

(1+ r~(Y ))3/2dn
"/2

:

We deduce that, for x2B(dne1~ ; dn"
0
),Z




jKj(x¡Y )j
K(� 0)dn

�¡� 0

(1+ r1(Y ))
dY 6 K(� 0)dn

�¡� 0¡"/2
Z
R2

K

(1+ r~(Y ))5/2
dY

6 K(� 0)dn
�¡� 0+(1¡�)"0¡"/2

(1+ jx¡ dne1~ j)1¡�
= on!0(1)
(1+ jx¡ dne1~ j)1¡�

taking � 0< 1 large enough (since �+(1¡�)"0¡ 1¡ "/2< 0), andZ



jKj(x¡Y )j
K(�)dn

�+�

(1+ r~(Y ))2+�
dY 6 K(�)dn

�+�¡2"
Z
R2

1
(1+ r~(Y ))2+�

dY

6 K(�)dn
�+�+(1¡�)"0¡2"

(1+ jx¡ dne1~ j)1¡�
= on!0(1)
(1+ jx¡ dne1~ j)1¡�

taking � > 0 small enough (since �+(1¡�)"0¡ 2"< 0). We deduce that, for x2B(dne1~ ; dn"
0
),

j@xjY20j= jKj � f 0j6
on!0(1)+ oR!1(1)
(1+ jx¡ dne1~ j)1¡�

:

With (2.3.17), we have shown that

j@xjY2j6
on!0(1)+ oR!1(1)
(1+ jx¡ dne1~ j)1¡�

:

Now, since jY2j+ jrY2j= oR!1(1) in B(dne1~ ; 10), by integration from dne1~ , we check that, since
�> 0,

jY2j6
on!0(1)+ oR!1(1)
(1+ jx¡ dne1~ j)¡�

:

Step 7.2. Elliptic estimate for Y1.

For Y1 we also use the function K0 and we have

Y1=
1
2�
K0

¡
2

p
j:j
�
� (¡�Y1+2Y1);
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therefore

jY1j(x) 6
Z
B~dn(x)

1
2�
K0

¡
2

p
jx¡Y j

�
j(¡�Y1+2Y1)(Y )jdY

+
Z
RnB~dn(x)

1
2�
K0

¡
2

p
jx¡Y j

�
j(¡�Y1+2Y1)(Y )jdY ;

where Bdn(x)=B(x¡ dne1~ ; dn"). The �rst term can be computed as in the proof of Lemma 2.1.10,
and for the second term, in RnBdn, we have

K0

¡
2

p
jxj
�
6Ke¡dn

"/2
e¡jxj

1/2

from Lemma 2.1.9, which, with (2.3.11) and (2.3.13), make the term integrable and a
odn!1

¡
e¡dn

"/4�
, which is enough to show that

jrY1j+ jY1j6
on!1(1)+ oR!1(1)

(1+ r1)1¡�
:

Step 8. Conclusion.

We conclude that there is a contradiction, as in the end of the proof of Proposition 2.1.17. This
ends the proof of Proposition 2.3.5. �

In the rest of this chapter, we take �;"; "0; � such that they satisfy the conditions of Proposition
2.3.5, and

�+(1¡�)"0> 1:

2.3.4 Proof of
R
B(de1;d"

0
)
Re(@dV@z1(TWc(V )))jd=dc=

¡�
dc
2 + odc!1

�
1

dc
2

�
From (2.1.2), the equation on V is

TWc(V )=E ¡ ic@x2V =¡2rV1:rV¡1+(1¡ jV1j2)(1¡jV¡1j2)V1V¡1¡ ic@x2(V1V¡1):

We use Lemma 2.3.2 to compute

@z1V = @x1V1V¡1+@x1V¡1V1¡ (¡@x1V1V¡1+@x1V¡1V1)=2@x1V1V¡1:
Therefore

@z1TWc(V )=¡4rV1:r@x1V¡1+2(1¡ jV1j2)V1@x1((1¡ jV¡1j2)V¡1)¡ 2 ic@x2(V1@x1V¡1);

and thenZ
B(de1;d"

0
)

Re(@dV@z1(TWc(V ))) = ¡4
Z
B(de1;d"

0
)

Re(@dVrV1:r@x1V¡1)

+ 2
Z
B(de1;d"

0
)

Re(@dV (1¡ jV1j2) V1@x1((1¡ jV¡1j2)V¡1))

¡ 2
Z
B(de1;d"

0
)

Re(@dV i c@x2(V1@x1V¡1)):

We want to compute this quantity at d= dc. We omit the subscript and use only d in this proof.
In fact, it works for any d such that 1

2d
6 c6 2

d
.

Step 1. Proof of
R
B(de1;d"

0
)
Re(@dV (1¡ jV1j2) V1@x1((1¡ jV¡1j2)V¡1))= od!1

¡ 1

d2

�
.

First remark that @x1((1¡jV¡1j2)V¡1)=Od!1
¡ 1

d3

�
in B(de1~ ; d"

0
) by Lemma 2.3.4 and

(1¡ jV1j2)V1@dV =Or1!1

�
1
r1
3

�
therefore Z

B(de1;d"
0
)

Re(@dV (1¡ jV1j2) V1@x1((1¡ jV¡1j2)V¡1))= od!1
�
1
d2

�
:
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Step 2. Proof of
R
B(de1;d"

0
)
Re(@dVic@x2(V1@x1V¡1))= od!1

¡ 1

d2

�
.

Now we compute

ic@x2(V1@x1V¡1)= ic@x2V1@x1V¡1+ ic@x1x2V¡1V1;

henceZ
B(de1;d"

0
)

Re(@dVic@x2(V1@x1V¡1)) = ¡c
Z
B(de1;d"

0
)

Re(@x1V1V¡1i@x2V1@x1V¡1)

¡ c

Z
B(de1;d"

0
)

Re(@x1V1V¡1i@x1x2V¡1V1)

+ c

Z
B(de1;d"

0
)

Re(@x1V¡1V1i@x2V1@x1V¡1)

+ c

Z
B(de1;d"

0
)

Re(@x1V¡1V1i@x1x2V¡1V1): (2.3.19)

Now, using Lemma 2.3.4, we estimate the �rst term of (2.3.19),

c

����Z
B(de1;d"

0
)

Re(@x1V1V¡1i@x2V1@x1V¡1)
����6

c

Z
B(de1;d"

0
)

j@x1V1@x2V1j � jV¡1@x1V¡1j6K
Z
B(de1;d"

0
)

1
(1+ r12)

1
d3¡"

0 6
K ln(d"0)
d3¡"

0 :

Since "0> 0, we have

c

Z
B(de1;d"

0
)

Re(@x1V1V¡1i@x2V1@x1V¡1)= od!1

�
1
d2

�
: (2.3.20)

Using Lemma 2.3.4, for the second term of (2.3.19), we have����c Z
B(de1;d"

0
)

Re(@x1V1V¡1i@x1x2V¡1V1)
���� 6 ����c Z

B(de1;d"
0
)

Im(@x1V1V1)Re(@x1x2V¡1V¡1)
����

+
����c Z

B(de1;d"
0
)

Re(@x1V1V1)Im(@x1x2V¡1V¡1)
����

6
Z
B(de1;d"

0
)

K

(1+ r1)d4¡"
0 6

K

d4¡2"
0 = od!1

�
1
d2

�
since c6 2

d
and "0< 1. For the third term of (2.3.19), we obtain similarly����c Z

B(de1;d"
0
)

Re(@x1V¡1V1i@x2V1@x1V¡1)
���� 6 ����c Z

B(de1;d"
0
)

Im(V1� @x2V1)Re(@x1V¡1@x1V¡1)
����

+
����c Z

B(de1;d"
0
)

Re(V1� @x2V1)Im(@x1V¡1@x1V¡1)
����

6
Z
B(de1;d"

0
)

K

(1+ r1)d5¡2"
0 = od!1

�
1
d2

�
:

Finally, for the last term of (2.3.19),����c Z
B(de1;d"

0
)

Re(@x1V¡1V1i@x1x2V¡1V1)
���� 6 ����c Z

B(de1;d"
0
)

Im(V1� V1)Re(@x1x2V¡1@x1V¡1)
����

+
����c Z

B(de1;d"
0
)

Re(V1� V1)Im(@x1x2V¡1@x1V¡1)
����

6
Z
B(de1;d"

0
)

K

d5¡"
0 6

K

d5¡3"
0 = od!1

�
1
d2

�
:

This conclude the proof of step 2.
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Step 3. Proof of
R
B(de1;d"

0
)
Re(@dV (¡4rV1:r@x1V¡1))=¡

�

d2
+ od!1

¡ 1

d2

�
.

We have

¡4rV1:r@x1V¡1=¡4@x1V1@x1x1V¡1¡ 4@x2V1@x1x2V¡1:

Remark that using j@dV j6 K

(1+ r1)
and Lemma 2.3.4 once again,����Z

B(de1;d"
0
)

Re(@dV@x1V1@x1x1V¡1)
����6 Z

B(de1;d"
0
)

K

(1+ r12)d3¡"
0 = od!1

�
1
d2

�
as for (2.3.20). Moreover,

¡4
Z
B(de1;d"

0
)

Re(@dV@x2V1@x1x2V¡1)=

4
Z
B(de1;d"

0
)

Re(@x1V1 V¡1@x2V1@x1x2V¡1)¡ 4
Z
B(de1;d"

0
)

Re
¡
@x1V¡1V1@x2V1@x1x2V¡1

�
: (2.3.21)

For the �rst integral in (2.3.21), we write

4
Z
B(de1;d"

0
)

Re(@x1V1V¡1@x2V1@x1x2V¡1)=

4
Z
B(de1;d"

0
)

Re(@x1V1@x2V1)Re(V¡1@x1x2V¡1)¡ Im(@x1V1@x2V1)Im(V¡1@x1x2V¡1):

For the �rst contribution, we have����Z
B(de1;d"

0
)

Re(@x1V1@x2V1)Re(V¡1@x1x2V¡1)
����6Z

B(de1;d"
0
)

K

(1+ r12)d3¡"
0 = od!1

�
1
d2

�
by the same computations as (2.3.20). For the second contribution, recall from Lemma 2.1.2 that

@x1V1=
�
cos(�1) u¡

i

r1
sin(�1)

�
V1 and @x2V1=

�
sin(�1)u+

i

r1
cos(�1)

�
V1;

therefore

Im(@x1V1@x2V1)=
u

r1
jV1j2;

and then, by Lemma 2.3.4,

¡4
Z
B(de1;d"

0
)

Im(@x1V1@x2V1)Im(V¡1@x1x2V¡1)=¡4
Z
B(de1;d"

0
)

u
r1

1
4 d2

jV1j2 dr1+ od!1
�
1
d2

�
since Z

B(de1;d"
0
)

u
r1

1
4 d2+1/4

jV1j2 dr1= od!1
�
1
d2

�
:

We compute, using jV1j2= �1
2, u= �1

0

�1
and Lemma 2.1.1,

¡4
Z
B(de1;d"

0
)

u
r1

jV1j2
4 d2

dr1=
¡2�
d2

Z
0

d"
0

�1
0 (r1)�(r1) dr1=

¡�
d2
[�12]0d

"0
= ¡�
d2

+ od!1

�
1
d2

�
:

We obtain the estimate for the �rst integral in (2.3.21):

4
Z
B(de1;d"

0
)

Re(@x1V1V¡1@x2V1@x1x2V¡1)=
¡�
d2

+ od!1

�
1
d2

�
:

For the second integral in (2.3.21), we estimate����Z
B(de1;d"

0
)

Re
¡
@x1V¡1V1@x2V1@x1x2V¡1

�����6 Z
B(de1;d"

0
)

K

(1+ r1)d4¡"
0 = od!1

�
1
d2

�
:

This ends the proof of this subsection.
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2.3.5 Proof of @d
R
B(de1;d"

0
)[B(¡de1;d"

0
)
Re(@dV TWc(Qc;d))jd=dc =

¡2�
dc
2 +

odc!1

�
1

dc
2

�
In order to prove the result of this subsection, by using (2.3.1) and the result of subsection 2.3.4
we just have to show that at d= dc,Z

B(de1;"0)

Re(@dVL(@z1¡c;dc))+
Z
B(de1;d"

0
)

Re(@dV (@z1L)(¡c;dc))

+
Z
B(de1;d"

0
)

Re(@dV@z1(NLV (¡c;dc)))= odc!1

�
1
dc
2

�
:

Similarly to subsection 2.3.4, we omit the subscript on dc in the proof.

Step 1. Proof of
R
B(de1;d

3/4)
Re(@dVL(@z1¡c;d))= od!1

¡ 1

d2

�
.

For this term, we want to do integration by parts and use that L(@dV ) is very small, but since
the integral is not on the whole space, there are the two boundary terms:����Z

B(de1;d"
0
)

Re(@dVL(@z1¡c;d))
����6 ����Z

B(de1;d"
0
)

Re(L(@dV )@z1¡c;d)
����

+
����Z
@B(de1;d"

0
)

Re(@dVr@z1¡c;d)
����+ ����Z

@B(de1;d"
0
)

Re(r@dV@z1¡c;d)
����;

where @B(de1~ ; d"
0
) is the boundary of B(de1~ ; d"

0
). On @B(de1~ ; d"

0
), we have

¡c;d=V (e	c;d¡ 1);
hence

@z1¡c;d=2V1@x1V¡1(e
	c;d¡ 1)+V@z1	c;de	c;d (2.3.22)

and

r@z1¡c;d = 2rV1@x1V¡1(e	c;d¡ 1)+ 2V1r@x1V¡1(e	c;d¡ 1)+ 2V1@x1V¡1r	c;de	c;d

+ rV@z1	c;de	c;d+Vr@z1	c;de	c;d+V@z1	c;dr	c;de	c;d: (2.3.23)

By Lemmas 2.1.2 and 2.3.4, Proposition 2.3.5 and (2.2.14), we infer on @B(de1~ ; d"
0
) that, for any

1>� > 0,

j@z1¡c;dj6
K(�)

d2¡"
0
d1¡�

+ K

d1+�¡�"
0 : (2.3.24)

Thus, still on @B(de1~ ; d"
0
), from Lemma 2.1.6 we compute����Z

@B(de1;d"
0
)

Re(r@dV@z1¡c;d)
����6 K

d"
0

�
K(�)

d2¡"
0
d1¡�

+ K

d1+�¡�"
0

�
6 K(�)
d3¡�

+ K

d1+�+(1¡�)"
0 :

Since 3¡� > 2 and �+(1¡�)"0> 1 by (2.3.2), we have����Z
@B(de1;d"

0
)

Re(r@dV@z1¡c;d)
����= od!1� 1

d2

�
:

For (2.3.23), we estimate on @B(de1~ ; d"
0
), still using Lemmas 2.1.2 and 2.3.4, Proposition 2.3.5 and

(2.2.14), for any 1>�> 0,

j2rV1@x1V¡1(e	c;d¡ 1)+2V1r@x1V¡1(e	c;d¡ 1)+ 2V1@x1V¡1r	c;de	c;dj6
K(�)
d3¡�

;

and

jrV@z1	c;de	c;d+Vr@z1	c;de	c;d+V@z1	c;dr	c;de	c;dj6
K

d1+�+(1¡�)"
0 +

K(�)
e2+�+(1¡�)"

0¡� :
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In particular, from (2.3.23), we can �nd 1>�> 0 such that, on @B(de1~ ; d"
0),

jr@z1¡c;dj= od!1
�
1
d2

�
;

thus ����Z
@B(de1;d"

0
)

Re(@dVr@z1¡c;d)
����= od!1� 1

d2

�
:

From (2.1.45), we know that

jL(@dV )j6
K

(1+ r~2)d
:

Moreover, by Proposition 2.3.5, we have j@z1¡c;dj6
K

d1+�¡�"
0 in B(de1~ ;d"

0
), which is enough to show

that Z
B(de1;d"

0
)

Re(L(@dV )@z1¡c;d)= od!1

�
1
d2

�
:

Step 2. Proof of
R
B(de1;d"

0
)
Re(@dV (@z1L)(¡c;d))= od!1

¡ 1

d2

�
.

We have

(@z1L)(¡c;d)= 4Re(V¡1@x1V¡1) ¡c;d+4Re(@x1V¡1V1¡c;d)V +4Re(V�¡c;d)V1@x1V¡1;

thus Z
B(de1;d"

0
)

Re(@dV (@z1L)(¡c;d)) = 4
Z
B(de1;d"

0
)

Re(@dV ¡c;d)Re(V¡1@x1V¡1)

+ 4
Z
B(de1;d"

0
)

Re(@x1V¡1V1¡c;d)Re(@dVV )

+ 4
Z
B(de1;d"

0
)

Re(@dVV1@x1V¡1)Re(V�¡c;d): (2.3.25)

Using j@dV j6 K

1+ r1
,

Re(V¡1@x1V¡1)=Od!1

�
1
d3

�
and j¡c;dj6

K

(1+ r1)1/2 d1/2

from Lemma 2.1.6, Lemma 2.1.2 and (2.2.9) respectively, we may bound����Z
B(de1;d"

0
)

Re(@dV ¡c;d)Re(V¡1@x1V¡1)
����6Z

B(de1;d"
0
)

K

(1+ r1)
1+1/2 d3+1/2

= od!1

�
1
d2

�
:

The second term of (2.3.25) is

4
Z
B(de1;d"

0
)

Re(@x1V¡1V1¡c;d)Re(@dVV ):

We compute that

jRe(@x1V¡1V1¡c;d)j6
K

(1+ r1)1/8 d17/8
and jRe(@dVV )j6

K
(1+ r1)3

in B(de1~ ; d"
0
) using

j¡c;dj6
K

(1+ r1)1/8 d7/8

by (2.2.14) and the de�nition of ¡c;d. Therefore, since 17/8> 2,Z
B(de1;d"

0
)

4Re(@x1V¡1V1¡c;d)Re(@dVV )= od!1

�
1
d2

�
:

The last term of (2.3.25) is Z
B(de1;d"

0
)

4Re(V�¡c;d)Re(V1@x1V¡1@dV ):
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Recalling that

jRe(V�¡c;d)j6K jRe(	)j6 K

(1+ r1)1+1/8 d7/8
and

jRe(V1@x1V¡1@dV )j6
K

d5/4(1+ r1)
;

we deduce Z
B(de1;d"

0
)

4Re(V�¡c;d)Re(V1@x1V¡1@dV )= od!1

�
1
d2

�
:

Step 3. Proof of
R
B(de1;d"

0
)
Re(@dV@z1(NLV (¡c;d)))= od!1

¡ 1

d2

�
.

Recall that

@z1NLV
¡
¡c;d

�
= 4Re(@x1V¡1V1¡c;d)¡c;d+2Re(V�@z1¡c;d)¡c;d+2Re(V�¡c;d)@z1¡c;d

+2Re
¡
¡c;d@z1¡c;d

�
(V +¡c;d)+ j¡c;dj2(2@x1V¡1V1+ @z1¡c;d):

We write Z
B(de1;d"

0
)

Re(@dV@z1(NLV (¡c;d)))= I1+ I2+ I3+ I4+ I5;

with

I1=
Z
B(de1;d"

0
)

4Re(@dV ¡c;d)Re(@x1V¡1V1¡c;d);

I2=
Z
B(de1;d"

0
)

2Re(@dV ¡c;d)Re(V�@z1¡c;d);

I3=
Z
B(de1;d"

0
)

2Re(V�¡c;d)Re(@dV@z1¡c;d);

I4=
Z
B(de1;d"

0
)

2Re
¡
¡c;d@z1¡c;d

�
Re(@dVV )+2Re

¡
¡c;d@z1¡c;d

�
Re(@dV ¡c;d);

I5=
Z
B(de1;d"

0
)

j¡c;dj2Re(@dV (2@x1V¡1V1+ @z1¡c;d)):

Estimate for I1.

We estimate, by using j¡c;dj6 K

(1+ r1)
9/16 d7/16

that

jRe(@dV ¡c;d)Re(@x1V¡1V1¡c;d)j6 j¡c;dj2
K

(1+ r1) d5/4
6 K

(1+ r1)2+1/8 d17/8

Then, since 17/8> 2,Z
B(de1;d"

0
)

4Re(@dV ¡c;d)Re(@x1V¡1V1¡c;d)= od!1

�
1
d2

�
:

Estimate for I2.

From (2.3.22), we have

@z1¡c;d=2V1@x1V¡1(e
	c;d¡ 1)+V@z1	c;de	c;d;

therefore, on B(de1~ ; d"
0
), by Lemma 2.3.4, Proposition 2.3.5 and (2.2.13), for any 1>�> 0,

jRe(V�@z1¡c;d)j6
K(�)
d3¡"

0¡� +
K

(1+ r1)1¡�d1+�
+ K(�)
d2+�¡�(1+ r1)¡�

:

Combining this with

jRe(@dV ¡c;d)j6
K(�)

(1+ r1) d1¡�
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since j¡c;dj6 K(�)

d1¡�
, we infer����Z

B(de1;d"
0
)

2Re(@dV ¡c;d)Re(V�@z1¡c;d)
���� 6 ����Z

B(de1;d"
0
)

K(�)
(1+ r1) d4¡"

0¡2�

����
+
����Z
B(de1;d"

0
)

K(�)
(1+ r1)2¡�d2+�¡�

����
+
����Z
B(de1;d"

0
)

K(�)
(1+ r1)1¡�d3+�¡2�

����;
and since �+(1¡�)"0> 1, we conclude, taking � > 0 small enough,Z

B(de1;d"
0
)

2Re(@dV ¡c;d)Re(V�@z1¡c;d)= od!1

�
1
d2

�
:

Estimate for I3.

We have from (2.3.22) that

@z1¡c;d=2V1@x1V¡1(e
	c;d¡ 1)+V@z1	c;de	c;d;

therefore

jRe(@dV@z1¡c;d)j6K
�

1
(1+ r1)d3¡2"

0 +
1

(1+ r1)1¡�d1+�

�
;

and jRe(V�¡c;d)j6K jRe(	c;d)j, hence

jRe(V�¡c;d)j6
K(�)

(1+ r1)1+� d1¡�
;

then ����Z
B(de1;d"

0
)

2Re(@dV@z1¡c;d)Re(V�¡c;d)
���� 6 Z

B(de1;d"
0
)

K(�)
(1+ r1)2+� d4¡2"

0¡�

+
Z
B(de1;d"

0
)

K(�)
(1+ r1)2+�¡� d2+�¡�

= od!1

�
1
d2

�
by taking � > 0 small enough and using �+(1¡�)"0> 1.

Estimate for I4.

Recall that

jRe(@dVV )j6
K

(1+ r1)3
;

and we have

jRe(@dV ¡c;d)j6
K

(1+ r1)1+6/8 d2/8

since j¡c;dj6 K

(1+ r1)
1+6/8 d2/8

. Therefore, with 1

d
6 K

(1+ r1)
,

jRe(@dVV )+Re(@dV ¡c;d)j6
K

(1+ r1)2

Now, we use j¡c;dj6 K(�)

(1+ r1)� d1¡�
and Proposition 2.3.5 to get

jRe
¡
¡c;d@z1¡c;d

�
j6 K

(1+ r1)�¡� d2+�¡�
0 :

We conclude as for the previous estimates,Z
B(de1;d"

0
)

2(Re(@dVV )+Re(@dV ¡c;d))Re
¡
¡c;d@z1¡c;d

�
= od!1

�
1
d2

�
:
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Estimate for I5.

We have, by Proposition 2.3.5,

jRe(@dV (@x1V¡1V1+ @z1¡c;d))j6
K

(1+ r1)

�
1

d2¡"
0 +

1
(1+ r1)1¡�d2+�¡�

�
and using j¡c;dj6 K(�)

d1¡�
, we have

j¡c;dj26
K(�)
d2¡2�

:

Therefore, for � > 0 small enough, since �+(1¡�)"0> 1,Z
B(de1;d"

0
)

j¡c;dj2Re(@dV (2@x1V¡1V1+ @z1¡c;d))= od!1

�
1
d2

�
which concludes the estimates.

2.3.6 Proof of @cdc=¡ 1

c2
+ oc!0

¡ 1
c2

�
Recall that dc is de�ned by the implicit equationZ

B(de1;d"
0
)[B(¡de1;d"

0
)

Re(@dV TWc(Qc;d))= 0:

We showed in subsection 2.3.5 that

@d

Z
B(de1;d"

0
)[B(¡de1;d"

0
)

Re(@dV TWc(Qc;d))|d=dc=
¡2 �
dc
2 + odc!1

�
1
dc
2

�
:

Therefore, by the implicit function theorem,

@cdc=
@c
R
B(de1;d"

0
)[B(¡de1;d"

0
)
Re(@dV TWc(Qc;d))|d=dc

¡2 �
dc
2 + odc!1

�
1

dc
2

� :

We compute for

TWc(Qc;d)=¡ic@x2Qc;d¡�Qc;d¡ (1¡jQc;dj2)Qc;d

that, with @cQc;d= @c(V +¡c;d)= @c¡c;d at �xed d, we have (still at �xed d)

@c(TWc(Qc;d))=¡i@x2Qc;d¡LQc;d(@c¡c;d);
where

LQc;d(h) :=¡�h¡ ic@x2h¡ (1¡jQc;dj2)h+2Re(Qc;dh)Qc;d:

We are left with the computation of

@c

Z
B(de1;d"

0
)[B(¡de1;d"

0
)

Re(@dV TWc(Qc;d))|d=dc=

¡
Z
B(de1;d"

0
)[B(¡de1;d"

0
)

Re(@dV (i@x2Qc;d))|d=dc

¡
Z
B(de1;d"

0
)[B(¡de1;d"

0
)

Re(@dVLQc(@c¡c;d))|d=dc:

As above, we omit the subscript in dc for the computations.

Step 1. Proof of
R
B(de1;d"

0
)[B(¡de1;d"

0
)
Re(@dV (¡i@x2Qc))|d=dc=2�+ oc!0(1).
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We have @x2Qc=@x2V +@x2¡c;d, hence

¡
Z
B(de1;d"

0
)[B(¡de1;d"

0
)

Re(@dV (i@x2Qc))=

¡
Z
B(de1;d"

0
)[B(¡de1;d"

0
)

Re(i@dV @x2V ))¡
Z
B(de1;d"

0
)[B(¡de1;d"

0
)

Re(i @dV@x2¡c;d):

Since

j@dV j6 K
(1+ r1)

and

j@x2¡c;dj6
K

(1+ r1)1+1/2 d1/2
;

we have Z
B(de1;d"

0
)

Re(i@dV@x2¡c;d)= oc!0(1):

Furthermore,

¡
Z
B(de1;d"

0
)

Re(i@dV@x2V )=
Z
B(de1;d"

0
)

Re
¡
i @x1V1@x2V1

�
+ oc!0(1);

and we already computed in (2.1.43) thatZ
R2

Re(i@x2V1@x1V1)=¡�+ oc!0(c1/4)

hence Z
B(de1;d"

0
)[B(¡de1;d"

0
)

Re(@dV (¡i@x2Qc))|d=dc=2�+ oc!0(1):

Step 2. Proof of
R
B(de1;d"

0
)[B(¡de1;d"

0
)
Re(@dVLQc(@c¡c;d))|d=dc= oc!0(1).

From the de�nition of ¡c;d, at �xed d, we have

@c¡c;d= �V@c	c;d+(1¡ �)V@c	c;de	c;d: (2.3.26)

We have, by de�nition,

LQc(@c¡c;d)=¡ic@x2@c¡c;d¡�@c¡c;d¡ (1¡ jQcj2)@c¡c;d+2Re(Qc@c¡c;d)Qc;

and using j@dV j6 K

(1+ r1)
with j@x2@c¡c;dj6

Kc¡1/2

(1+ r1)
1+1/2 since




@c¡c;d
V





�;1/2;d

6Kc¡3/4 from Lemma

2.2.9 and (2.3.26), we have����Z
B(de1;d"

0
)

Re(@dV (¡ic@x2@c¡c;d))
����6KZ

B(de1;d"
0
)

c1/4

(1+ r1)2+1/2
= oc!0(1):

The estimate on B(¡de1~ ; d"
0
) is similar.

We de�ne

L~Qc(h) :=¡�h¡ (1¡jQcj2)h+2Re(Qch)Qc

and we are then left with the computation ofZ
B(de1;d"

0
)

Re
¡
@dVL~Qc(@c¡c;d)

�
;

the part on B(¡de1~ ; d"
0
) being symmetrical. We want to put the linear operator onto @dV since

L~Qc(@dV ) is close to LV (@dV ) which is itself small. We then integrate by parts:����Z
B(de1;d"

0
)

Re
¡
@dVL~Qc(@c¡c;d)

�����6 ����Z
B(de1;d"

0
)

Re
¡
L~Qc(@dV ) @c¡c;d

�����
+
����Z
@B(de1;d"

0
)

Re(@dVr@c¡c;d)
����+ ����Z

@B(de1;d"
0
)

Re(r@dV @c¡c;d)
����:
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We have on @B(de1~ ; d"
0
), that j@dV j 6 K

d3/4
; jr@dV j 6 K

d3/2
from Lemma 2.1.6. Moreover, by


 @c¡c;d

V





�;1/2;d

6K(�)c¡1/2¡� from Lemma 2.2.9 and (2.3.26), we deduce jr@c¡c;dj6 K(�) d1/2+�

d(3/4)(3/2)
6

K(�)

d5/8¡�
and j@c¡c;dj6 K(�)d1/2¡�

d(3/4)(1/2)
6K(�)d1/8¡�. We then obtain, for � > 0 small enough,����Z

@B(de1;d"
0
)

Re(@dVr@c¡c;d)
����6 Z

@B(de1;d"
0
)

j@dV jjr@c¡c;dj6 d3/4
K(�)d2�

d3/4d5/8
= oc!0(1);����Z

@B(de1;d"
0
)

Re(r@dV @c¡c;d)
����6 Z

@B(de1;d"
0
)

jr@dV jj@c¡c;dj6 d3/4
K(�) d1/8+�

d3/2
= oc!0(1):

Therefore, Z
B(de1;d"

0
)

Re
¡
@dVL~Qc(@c¡c;d)

�
=
Z
B(de1;d"

0
)

Re
¡
L~Qc(@dV ) @c¡c;d

�
+ oc!0(1):

Now, from (2.1.45), we have that that

jLV (@dV )j6
K

(1+ r~2)d

and by Lemma 2.2.9 and (2.3.26), we have j@c¡c;dj6 Kd1/4

(1+ r1)
1/2 , hence����Z

B(de1;d"
0
)

Re(LV (@dV ) @c¡c;d)
����6KZ

B(de1;d"
0
)

1
(1+ r1)2+1/2d1/4

= oc!0(1):

We deduce from this thatZ
B(de1;d"

0
)

Re
¡
@dVL~Qc(@c¡c;d)

�
=
Z
B(de1;d"

0
)

Re
¡¡
L~Qc¡LV

�
(@dV ) @c¡c;d

�
+ oc!0(1):

We have L~Qc(h)=¡�h¡ (1¡jQcj2)h+2Re(Qch)Qc and LV (h)=¡�h¡ (1¡jV j2)h+2Re(V�h)V ,
therefore¡

L~Qc¡LV
�
(@dV )= (jQcj2¡jV j2)@dV +2Re(V�@dV )(Qc¡V )+ 2Re(Qc¡V@dV )Qc:

We have by (2.2.17) that jjQcj2¡ jV j2j6 Kc3/4

(1+ r~)1+1/4
, hence����Z

B(de1;d"
0
)

Re( (jQcj2¡ jV j2)@dV@c¡c;d)
����6KZ

B(de1;d"
0
)

c1/4

(1+ r1)2+3/4
= oc!0(1):

We have from (2.2.16) that jQc¡V j6 c3/4

(1+ r~)1/4
, and, in B(de1~ ; d"

0
), we have (by Lemmas 2.1.1 and

2.1.2) that jRe(V�@dV )j6 K

(1+ r1)3
, therefore����Z

B(de1;d"
0
)

Re( 2Re(V�@dV )(Qc¡V )@c¡c;d)
����6KZ

B(de1;d"
0
)

c1/4

(1+ r1)3+3/4
= oc!0(1):

Finally, by using the same estimates, we have����Z
B(de1;d"

0
)

Re( 2Re(Qc¡V@dV )Qc@c¡c;d)
����6KZ

B(de1;d"
0
)

c3/4

(1+ r1)1+1/4
jRe(Qc@c¡c;d)j:

We compute
Re(Qc@c¡c;d)=Re(V@c¡c;d)+Re(¡c;d@c¡c;d):

By using



 @c¡c;d

V





�;1/2;d

6K(�)c¡1/2¡� from Lemma 2.2.2 and (2.3.26), we have jRe(V@c¡c;dc)j6
K(�) c¡1/2¡�

(1+ r1)
3/2 . Furthermore, with j¡c;dj6 Kc1/2

(1+ r1)
1/2 , we have jRe(¡c;d@c¡c;d)j6 K(�)c¡�

(1+ r1)
: With these

estimates, we infer, taking � > 0 small enough,����Z
B(de1;d"

0
)

Re( 2Re(Qc¡V@dV )Qc@c¡c;d)
����= oc!0(1)
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which ends the proof ofZ
B(de1;d"

0
)

Re
¡¡
L~Qc¡LV

�
(@dV ) @c¡c;d

�
= oc!0(1):

Step 3. Conclusion.

We showed that

@cdc=
2�+ oc!0(1)

¡2 �
dc
2 + odc!1

�
1

dc
2

�;
therefore, with dc=

1+ oc!0(1)

c
from Proposition 2.1.26 we have

@cdc=¡
1+ oc!0(1)

c2
:

As a result of subsection 2.3.5, at �xed c,

@d

Z
B(de1;d"

0
)[B(¡de1;d"

0
)

Re(@dV TWc(Qc;d))|d=dc=/ 0

for c small enough. By the implicit function theorem, taking some 0<c�<c0(�), we can construct
a C1 branch c 7!dc in a vicinity of c�. We de�ne C as the set of c�>c~> 0 such that there exists
a C1 branch c 7! dc on ]c~; c�[. We have just shown that C is not empty. Let us suppose that
c~ := infC=/ 0. Then, c 7! dc is uniformly bounded on ]c~; c�[ in C1 by subsection 2.3.6, and can
therefore be extended by continuity to c~, and we denote d~ its value there. We can construct
the perturbation �c~;d~ by continuity since c; d 7! �c;d are C1 functions in the Banach space�
� 2C1(R2;C); k�k�;�;d~<+1

	
for its canonical norm (which is equivalent to k:k�;�;d for any

d2 [d~; dc�]). By passing to the limit, we have k�c~;d~k�;�;d~6K0(�;� 0)c~
1¡� 0 for K0(�;� 0) de�ned

in Proposition 2.1.21. By continuity of �, we check that we have �(c~; d~)=0 (for the perturbation
�c~;d~). Therefore, by the implicit function theorem, there exists a unique branch c 7! dc in a
vicinity of (c~; d~) such that �(c; dc)= 0. This branch, by uniqueness, corresponds to the branch
we had on ]c~; c�[, and is also C1 by the implicit function theorem. Therefore infC<c~, which is
in contradiction with c~= infC, and thus infC=0.

In particular, the travelling wave Qc on this branch is uniquely de�ned by this construction
and is a C1 function of c. Indeed, we shall now show that there is only one choice of dc such that
�(c; dc)=0 in

� 1
2c
;
2

c

�
. If there exist d1=/ d2 in

� 1
2c
;
2

c

�
such that �(c;d1)=�(c;d2)=0, by Subsection

2.3.5, we have
@d(�(c; d))|d=d1< 0 and @d(�(c; d))|d=d2< 0;

therefore, there exists d0 such that �(c; d0)=0 and @d(�(c; d0))|d=d0>0, but then, since �(c; d0)=0,
we have @d(�(c; d))|d=d0<0, which is in contradiction with @d(�(c; d0))|d=d0>0. Now that we have
uniqueness in the choice of dc (in

� 1
2c
;
2

c

�
), we have uniqueness of �c;d in the set�

�2C1(R2;C); k�k�;�;dc6K0(�; � 0)c1¡�
0	

for K0(�; � 0)> 0 de�ned in Proposition 2.1.21.

2.3.7 Proof of the estimate on @cQc

We conclude the proof of Theorem 1.3.1 with the following lemma.

Lemma 2.3.6. For any 0<�< 1, there exist c0(�)> 0 such that for any c< c0(�),



@cQcV
+
�
1+ oc!0(1)

c2

�
@dV|d=dc

V






�;�;dc

= oc!0

�
1
c2

�
:

With this estimate and by using the same computations as in the proof of Lemma 2.2.6, we
show that 



@cQc+� 1+ oc!0(1)

c2

�
@d(V1(:¡ de1~ )V¡1(:+ de1~ ))|d=dc






p

= oc!0

�
1
c2

�
:
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for all +1> p> 2 if c is small enough, which ends the proof of Theorem 1.3.1.

Proof. From subsection 2:3:5, we know that Qc is a C1 function of c. We have Qc=V +¡c;dc, hence

@cQc= @cV + @c(¡c;dc)=
¡1+ oc!0(1)

c2
@dV + @c(¡c;dc);

where we used @cV =
¡
¡ 1

c2
+ oc!0

¡ 1
c2

��
@dV thanks to subsection 2.3.6. ¡c;dc depends on c directly

and through dc. We will write @c¡c;dc for the derivatives with respect to c but at a �xed dc, and
@d¡c;dc for the derivate with respect to dc but at �xed c. In particular,

@c(¡c;dc)= @c¡c;dc+ @cdc @d¡c;dc:

From Lemma 2.2.9 and (2.3.26), we showed that



@c¡c;dcV






�;�;dc

6K(�; � 0)c¡� 0;

and from Lemma 2.2.3 with the de�nition of ¡c;d, we show easily that



@d¡c;dcV






�;�;dc

6K(�; � 0)c1¡� 0:

Finally, from subsection 2.3.6, we have @cdc=
1+ oc!0(1)

c2
, therefore



@c(¡c;dc)V






�;�;dc

6K(�; � 0)(c¡� 0+ c¡2(1+ oc!0(1))c1¡�
0
)= oc!0

�
1
c2

�
since 0<�<� 0< 1. �

This concludes the proof of Lemma 2.3.6, which itself concludes the proof of Theorem 1.3.1.
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Chapter 3
Coercivity and applications

This chapter is devoted to the proofs of the results in section 1.4. Section 3.1 is devoted to the
proof of Proposition 1.4.1. We start by giving some estimates on the branch of travelling waves in
subsection 3.1.1, we then show the equivalents when c! 0 for the energy and momentum, as well
as the relations between them and some speci�c values of the quadratic form in subsection 3.1.2.
Finally, in subsection 3.1.3, we study the travelling wave near its zeros.

In section 3.2, we infer some properties of the space HQc. First, we explain why we can not
have a coercivity result in the energy norm in subsection 3.2.1, and we show the well posedness of
several quantities in subsections 3.2.2 and 3.2.3. A density argument is given in subsection 3.2.4,
that will be needed for the proof of Proposition 1.4.3.

Section 3.3 is devoted to the proofs of Propositions 1.4.2 and 1.4.3. We start by writing the
quadratic form for test functions in a particular form (subsection 3.3.1), and we then show Propos-
ition 1.4.2 and 1.4.3 respectively in subsections 3.3.2 and 3.3.4. To show Proposition 1.4.3, we use
Proposition 1.4.2 and the fact that we know well the travelling wave near its zeros from subsection
3.1.3.

The next part, section 3.4, is devoted to the proof of Theorem 1.4.4 and its corollaries. We
show the coercivity under four orthogonality conditions by showing that we can modify the initial
function by a small amount to have the four orthogonality conditions of Proposition 1.4.3, and that
the error commited is small in the coercivity norm. We then focus on the corollaries of Theorem
1.4.4 in subsection 3.4.5. We show there composition of the kernel of LQc (Corollary 1.4.5), and
the results in H1(R2): Corollary 1.4.6, Proposition 1.4.7 and Corollary 1.4.9.

The penultimate section (3.5) is devoted to the proofs of Proposition 1.4.10, 1.4.11 and Theorem
1.4.12. In subsection 3.5.1, we study the space HQc

exp, in particular we give a density argument, that
allows us to �nish the proof of Proposition 1.4.10. Then, in subsection 3.5.2, we compute how the
additional orthogonality condition improves the coercivity norm, both in the symmetric and non
symmetric case, and we can then show Proposition 1.4.11 and Theorem 1.4.12.

Section 3.6 is devoted to the proof of Theorem 1.4.13. We use here classical methods for
the proof of local uniqueness, by modulating on the �ve parameters of the family, and using a
coercivity result. One of the main point is to write the problem additively near the zeros of Qc and
multiplicatively far from them. The reason for that is that we do not know the link between the
speed and the position of the zeros of a travelling wave in general, and we therefore cannot write a
perturbation multiplicatively in the whole space. Because of that, we require here an orthogonality
on the phase, and we cannot avoid it, as we did for instance the proof of Proposition 1.4.3 by
choosing correctly the position of the vortices.

We will use many cuto�s in the proofs. As a rule of thumb, a function written as �; � or �~
will be smooth and have value 1 at in�nity and 0 in some compact domain. The function � itself
is reserved for BQc and BQc

exp (see equations (1.4.3) and (1.4.4)).

3.1 Properties of the branch of travelling waves
This section is devoted to the proof of Proposition 1.4.1. In subsection 3.1.1, we recall some
estimates on Qc de�ned in Theorem 1.3.1 from previous works ([7], [19], [25] and Chapter 2). In
subsection 3.1.2, we compute some equalities and equivalents when c!0 on the energy, momentum
and the four particular directions (@x1Qc; @x2Qc; @cQc and @c?Qc). Finally, the properties of the
zeros of Qc are studied in subsection 3.1.3.
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3.1.1 Decay estimates
3.1.1.1 Estimates on vortices
We recall that vortices are stationary solutions of (GP) of degrees n2Z� (see [7]):

Vn(x)= �n(r)ein�;
where x= rei�, solving �

�Vn¡ (jVnj2¡ 1)Vn=0
jVnj! 1 as jxj!1:

We regroup here estimates on quantities involving vortices. We also de�ne, as in Chapter 2

V (:)=V1(:¡ dce1~ )V¡1(:+ dce1~ )
and

@dV (:)=@d(V1(:¡ de1~ )V¡1(:+ de1~ ))|d=dc:

We will also estimate
@d
2V := @d2(V1(:¡ de1~ )V¡1(:+ de1~ ))|d=dc:

The function V (x)=V1(x¡dce1~ )V¡1(x+dce1~ ) is close to V1(x¡dce1~ ) in B
¡
dce1~ ;2dc

1/2�, since, from
Lemma 1.2.1 and [7], we have, uniformly in B

¡
dce1~ ; 2dc

1/2�,
V¡1(:+ dce1~ )=1+Oc!0(c1/2) (3.1.1)

and

jrV¡1(:+ dce1~ )j6
oc!0(c1/2)
(1+ r1~ )

: (3.1.2)

We recall that B
¡
dce1~ ;2dc

1/2� is near the vortex of degree +1 of Qc and that r~=min (r1; r¡1), with
r�1= jx� dce1~ j.

3.1.1.2 Estimates on Qc from Chapter 2
We recall, for the function Qc de�ned in Theorem 1.3.1, that

8(x1; x2)2R2; Qc(x1; x2)=Qc(x1;¡x2)=Qc(¡x1; x2): (3.1.3)

In particular, @cQc enjoys the same symmetries, since (3.1.3) holds for any c>0 small enough. We
recall that Qc2C1(R2;C) by standard elliptic regularity arguments.

Finally, we recall some estimates on Qc and its derivatives, coming from Lemma 2.2.8 and
equations (2.2.10), (2.2.12). We denote r~=min (r1; r¡1), the minimum of the distances to dce~1 and
¡dce~1, and we recall that V (x)=V1(x¡ dce1~ )V¡1(x+ dce1~ ).

We write Qc=V +¡c or Qc=(1¡ �)V	c+ �Ve	c, where ¡c=(1¡ �)V	c+ �V (e	c¡ 1) (see
equation (2.2.8)). There exists K> 0 and, for any 0<�< 1, there exists K(�)> 0 such that

j¡cj6
K(�)c1¡�

(1+ r~)�
(3.1.4)

jr¡cj6
K(�)c1¡�

(1+ r~)1+�
: (3.1.5)

j1¡jQcjj6
K(�)

(1+ r~)1+�
; (3.1.6)

jQc¡V j6
K(�)c1¡�

(1+ r~)�
; (3.1.7)

jjQcj2¡jV j2j6
K(�)c1¡�

(1+ r~)1+�
; (3.1.8)

jRe(rQcQc)j6
K(�)

(1+ r~)2+�
; (3.1.9)

jIm(rQcQc)j6
K
1+ r~

(3.1.10)
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and for 0<�<� 0< 1, there exists K(�; � 0)> 0 such that

jD2Im(	c)j+ jrRe(	c)j+ jr2Re(	c)j6
K(�; � 0)c1¡�

0

(1+ r~)2+�
: (3.1.11)

From Lemmas 1.2.1, with Theorem 1.3.1, we deduce in particular that for c small enough, there
exist universal constants K1;K2> 0 such that on R2nB(�dce1~ ; 1) we have

K16 jQcj6K2: (3.1.12)

To these estimates, we add two additional lemmas. We write

k k�;dc := kV kC1({r~63})+ kr~1+�Re( )kL1({r~>2})+ kr~2+�rRe( )kL1({r~>2})

+ kr~�Im( )kL1({r~>2})+ kr~1+�rIm( )kL1({r~>2});

where r~=min (r1; r¡1), with
r�1= jx� dce1~ j; (3.1.13)

and with dc de�ned in Theorem 1.3.1. The �rst lemma is about Qc and the second one about @cQc.

Lemma 3.1.1. For any 0<�< 1, there exist c0(�);K(�)> 0 such that, for 0<c<c0(�) and Qc
de�ned in Theorem 1.3.1, if

¡c=Qc¡V ;
then 



¡cV






�;dc

6K(�)c1¡�:

Proof. This estimate is a consequence of

¡c=(1¡ �)V	c+ �V (e	c¡ 1)
and equation (2.2.14). �

Lemma 3.1.2. (Lemma 2.3.6) There exists 1>�0>0 such that, for all 0<�<�0<� 0<1,There
exists c0(�; � 0)> 0 such that for any 0< c < c0(�; � 0), Qc de�ned in Theorem 1.3.1, c 7! Qc is a
C1 function from ]0; c0(�; � 0)[ to C1(R2;C), and



@cQcV

+
�
1+ oc!0(c1¡�

0)
c2

�
@dV|d=dc

V






�;dc

= oc!0
�;� 0
�
c1¡�

0

c2

�
:

These results are technical, but quite precise. They give both a decay in position and the
size in c of the error term. The statement of Lemma 2.3.6 has oc!0(1) and oc!0

¡ 1
c2

�
instead of

respectively oc!0(c1¡�
0
) and oc!0

�
c1¡�

0

c2

�
, but its proof gives this better estimate (given that � 0 is

close enough to 1). We recall that oc!0
�;� 0(1) is a quantity going to 0 when c! 0 at �xed �; � 0. We

recall that @crQc=r@cQc. We conclude this subsection with a link between the k:k� norms and
k:kHQc. We recall

k'kHQc
2 =

Z
R2
jr'j2+ j1¡jQcj2jj'j2+Re2(Qc'):

Lemma 3.1.3. There exists a universal constant K>0 (independent of c) such that, for Qc de�ned
in Theorem 1.3.1,

khkHQc6K




hV





3/4;dc

:

The value �=3/4 is arbitrary here, this estimate holds for other values of �.

Proof. We compute, using Lemma 1.2.1, thatZ
R2
jrhj26K





hV





3/4;dc

2

+
Z

{r~>1}

����r� hV V
�����26K



hV






3/4;dc

2

+2
Z

{r~>1}

����r� hV
�����2+ jrV j2 jhj2jV j2 :
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From Lemma 1.2.1 and the de�nition of k:k3/4;dc, we check that

2
Z

{r~>1}

����r� hV
�����2+ jrV j2 jhj2jV j2 6K





hV





3/4;dc

2 Z
{r~>1}

1
(1+ r~)3+1/2

6K




hV





3/4;dc

2

:

Furthermore, from equation (3.1.6) with �=1/2, we have the estimateZ
R2
j1¡ jQcj2jjhj26K





hV





3/4;dc

2 Z
R2

1
(1+ r~)9/4

6K




hV





3/4;dc

2

:

Finally, we compute Z
R2
Re2(Qch)6K





hV





3/4;dc

2

+
Z

{r~>1}
Re2(Qch);

and Z
{r~>1}

Re2(Qch)=
Z

{r~>1}
Re2
�
VQc

h
V

�
6 2
Z

{r~>1}
Re2
�
h
V

�
Re2(VQc)+Im2

�
h
V

�
Im2(VQc):

With the de�nition of k:k3/4;dc, Lemmas 1.2.1 and 3.1.1, we check thatZ
{r~>1}

Re2
�
h
V

�
Re2(VQc)6K

Z
{r~>1}

Re2
�
h
V

�
6K





hV





3/4;dc

2 Z
{r~>1}

1
(1+ r~)3+1/2

6K




hV





3/4;dc

2

:

From Lemma 3.1.1 with �=1/2, we check that, since Im2(VQc) = Im2(VV +¡c)= Im2(V ¡�c), we
have Z

{r~>1}
Im2

�
h
V

�
Im2(VQc)6K





hV





3/4;dc

2 Z
{r~>1}

1
(1+ r~)2+1/2

6K




hV





3/4;dc

2

:

Combining, these estimates, we end the proof of this lemma. �

3.1.1.3 Faraway estimates on Qc

Since E(Qc)<+1 thanks to Theorem 1.3.1, from Theorem 7 of [19], we have the following result.

Theorem 3.1.4. ([19], Theorem 7) There exists a constant C(c) > 0 (depending on c) such
that, for Qc de�ned in Theorem 1.3.1,

j1¡ jQcj2j6
C(c)

(1+ r)2
;

j1¡Qcj6
C(c)
1+ r

;

jrQcj6
C(c)

(1+ r)2
and

jrjQcjj6
C(c)

(1+ r)3
:

Furthermore, such estimates hold for any travelling waves with �nite energy (but then the constant
C(c) also depends on the travelling wave, and not only on its speed).

This result is crucial to show that some terms are well de�ned, since it gives better decay
estimates in position than the estimates in subsection 3.1.1.2 (but with no smallness in c). Remark
that 1¡ jQcj2 is not necessarily positive. In fact it is not at in�nity (see [21]). In particular, the
estimate

j1¡jQcj2j>
C(c)
1+ r2

does not hold because of the possibility of jQcj=1. This happens, but only for few directions and
it can be catched up. We show the following su�cient result, which is needed to show that some
quantities we will use are well de�ned. Furthermore, in these estimates, the constant depends on c,
and thus can not be used in error estimates (since the smallness of the errors there will depend on c).
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Lemma 3.1.5. There exists c0 > 0 such that, for 0< c < c0, there exists C(c) > 0 such that for
'2HQc and the function Qc de�ned in Theorem 1.3.1,Z

R2

j'j2
(1+ jxj)2dx6C(c)

�Z
R2
jr'j2+ j1¡ jQcj2jj'j2

�
:

Proof. From Propositions 5 and 7 of [21] (where �=1¡jQcj2), we have in our case, for x=r�2R2

with r 2R+; j� j=1, �=(�1; �2)2R2, that

r2(1¡ jQcj2)(r�)! c�(c)

0@ 1

1¡ c2

2
+ c2�2

2

2

¡ 2�22�
1¡ c2

2
+ c2�2

2

2

�
2

1A
uniformly in �2S1 when r!+1, where �(c)>0 depends on c and Qc. Remark that our travelling
wave is axisymmetric around axis x2 (and not x1 for which the results of [21] are given), hence the
swap between �1 and �2 between the two papers. We have

1

1¡ c2

2
+ c2�2

2

2

¡ 2�22�
1¡ c2

2
+ c2�2

2

2

�
2
=
1¡ c2

2
¡
�
2¡ c2

2

�
�2
2�

1¡ c2

2
+ c2�2

2

2

�
2
;

this shows in particular that jQcj= 1 when r� 1

c
is possible only in cones around sin(�) = �2 =

� 1¡ c2/2
2¡ c2/2

q
. Therefore, for c small enough, for some 
 >0 small and R>0 large (that may depend

on c), we have Z
R2
j1¡jQcj2jj'j2>K(c; �;R)

Z
R2n(B(0;R)[D(
))

j'j2
(1+ r)2

;

where D(
)=
�
rei�2R2;

����sin(�)� 1¡ c2/2
2¡ c2/2

q ����6 
�. We want to show that for '2HQc,Z
D(
)[(R2nB(0;R))

j'j2
(1+ r)2

6C(c; 
;R)
�Z

R2
jr'j2+

Z
R2n(B(0;R)[D(
))

j'j2
(1+ r)2

�
:

For �0 any of the four angles such that sin(�)� 1¡ c2/2
2¡ c2/2

q
= 0, we �x r > 0 and look at '(�) as a

function of the angle only. We compute, for � 2 [�0¡ 2�; �0+ 2�] (� > 0 being a small constant
depending on 
 such that {x= rei� 2R2; � 2 [�0+ 3�; �0+ �]} \D(
) = ;, and such that D(
) is
included in the union of the [�0¡ �; �0+ �] for the four possible values of �0),

'(�)= '(2�+ �)¡
Z
�

2�+�

@�'(�)d�;
hence,

j'(�)j6 j'(2�+ �)j+
Z
�0¡�

�0+3�

j@�'(�)jd�:
This implies that

j'(�)j26 2j'(2�+ �)j2+K
Z
0

2�

j@�'(�)j2d�

by Cauchy-Schwarz, and, integrating between �0¡ � and �0+ � yieldsZ
�0¡�

�0+�

j'(�)j2d�6 2
Z
�0+�

�0+3�

j'(�)j2d�+K
Z
0

2�

j@�'(�)j2d�:

Now multiplying by r

(1+ r)2
and integrating in r on [R;+1[, we inferZ

�¡�02[¡�;�]

Z
r2[R;+1[

j'j2
(1+ r)2

rdrd� 6 2
Z
�¡�02[�;3�]

Z
r2[R;+1[

j'j2
(1+ r)2

rdrd�

+ K(c; �;R)
Z
R2
jr'j2dx

6 2
Z
R2n(B(0;R)[D(
))

j'j2dx
(1+ jxj)2 +K(c; �;R)

Z
R2
jr'j2dx;
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using
j@�'j2
(1+ r)2

6 j@�'j
2

r2
6 jr'j2:

Therefore,Z
D(
)[(R2nB(0;R))

j'j2
(1+ r)2

6K
Z
R2n(B(0;R)[D(
))

j'j2
(1+ r)2

dx+K(c; �; 
;R)
Z
R2
jr'j2dx;

and thus Z
R2nB(0;R)

j'j2
(1+ r)2

6K(c; �; 
;R)
Z
R2
jr'j2+ j1¡ jQcj2jj'j2:

We are left with the proof ofZ
B(0;R)

j'j2
(1+ r)2

6K(c; �;R)
�Z

R2
jr'j2+

Z
R2nB(0;R)

j'j2
(1+ r)2

�
: (3.1.14)

We argue by contradiction. We suppose that there exists a sequence 'n 2 HQc such thatR
B(0;R)

j'nj2

(1+ r)2
= 1 and

R
R2 jr'nj2 +

R
R2nB(0;R)

j'nj2

(1+ r)2
! 0. Since 'n is bounded in H1(B(0;

R + 1)), by Rellich's Theorem, up to a subsequence, we have the convergences 'n! ' strongly
in L2 and weakly in H1 to some function ' in B(0; R + 1). In particular

R
B(0;R+1)

jr'j2 =

0, hence ' is constant on B(0; R + 1), and with
R
B(0;R+1)nB(0;R)

j'j2

(1+ r)2
= 0 we have ' =

0, which is in contradiction with 1 =
R
B(0;R)

j'nj2

(1+ r)2
!
R
B(0;R)

j'j2

(1+ r)2
by L2(B(0; R + 1)) strong

convergence. This concludes the proof of this lemma. �

3.1.2 Construction and properties of the four particular directions

3.1.2.1 De�nitions

The four directions we want to study here are @x1Qc; @x2Qc; @cQc and @c?Qc. The �rst two are
derivatives of Qc with respect to the position, the third one is the derivative of Qc with respect
of the speed, and we have its �rst order term in Theorem 1.3.1. The fourth direction is de�ned in
Lemma 3.1.6 below. The directions @x1Qc and @x2Qc correspond to the translations of the travelling
wave, @cQc and @c?Qc to changes respectively in the modulus and direction of its speed. These
directions will also appear in the orthogonality conditions for some of the coercivity results.

Lemma 3.1.6. Take c~ 2R2 such that jc~ j<c0 for c0 de�ned in Theorem 1.3.1. De�ne � such that
c~= jc~ jR�(¡e~2), where R�:R2!R2 is the rotation of angle �. Then, Qc~ :=Qjc~ j �R¡� solves�

(TWc~)(v)= i c~:rv¡�v¡ (1¡ jv j2)v=0
jv j! 1 as jxj!+1;

where Qjc~ j is the solution of (TWjc~ j) in Theorem 1:3:1. In particular, Qc~ is a C1 function of � and

@�Qc~(x)=¡R¡�(x?):rQjc~ j(R¡�(x)):

Furthermore, at �=0, the quantity

@c?Qc := (@�Qc~)|�=0

satis�es

@c?Qc(x)=¡x?:rQc(x);
is in C1(R2;C) and

LQc(@c?Qc)=¡ic@x1Qc:

Proof. Since the Laplacian operator is invariant by rotation, it is easy to check that Qjc~ j �R¡�
solves (TWc~)(Qjc~ j �R¡�) = 0. The function � 7!R� is C1, hence (�; x) 7! Qc~(x) is a C1 function,
and we compute

(@�Qc~)(x)=@�(Qjc~ j �R¡�)(x)= @�(R¡�(x)):rQjc~ j(R¡�(x)):
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We remark that

@�(R¡�(x))=¡R¡�(x?);
where x?=(¡x2; x1), hence

@�Qc~(x)=¡R¡�(x?):rQjc~ j(R¡�(x)):
In particular, for �=0,

@�Qc~(x)|�=0=¡x?:rQc(x):
We recall that Qc~ solves

i c~:rQc~¡�Qc~¡ (1¡ jQc~ j2)Qc~=0;

and when we di�erentiate this equation with respect to � (with jc~ j= c), we have

¡i@�c~:(rQc~)+LQc~(@�Qc~)= 0:

At �=0, Qc~=Qc, @�c~=¡c e~1 and @�Qc~|�=0= @c?Qc, therefore

LQc(@c?Qc)=¡ic@x1Qc: �

3.1.2.2 Estimates on the four directions

We shall now show that the functions @x1Qc; @x2Qc; @cQc and @c?Qc are in the energy space and
we will also compute their values through the linearized operator around Qc, namely

LQc(')=¡�'¡ ic@x2'¡ (1¡jQcj2)'+2Re(Qc')Qc:

Lemma 3.1.7. There exists c0>0 such that, for 0<c<c0, Qc de�ned in Theorem 1.3.1, we have

@x1Qc; @x2Qc; @cQc; @c?Qc2HQc;

and

LQc(@x1Qc)=LQc(@x2Qc)= 0;

LQc(@cQc)= i@x2Qc;

LQc(@c?Qc)=¡ic@x1Qc:

We could check that we also have @x1Qc; @x2Qc2H1(R2) (see [21]), but we expect that @cQc;
@c?Qc2/ L2(R2). For @c?Qc, this can be shown with Lemma 3.1.6 and [21].

Proof. We have de�ned

k'kHQc
2 =

Z
R2
jr'j2+ j1¡jQcj2jj'j2+Re2(Qc'):

For any of the four functions, since they are in C1(R2; C), the only possible problem for the
integrability is at in�nity.

Step 1. We have @x1Qc; @x2Qc2HQc.

From Lemma 1.2.1 and equation (3.1.11) (for 1>� 0>�=3/4), we haveZ
R2
jr@x1Qcj2+

Z
R2
jr@x2Qcj26

Z
R2

K(c; � 0)
(1+ r)7/2

<+1:

From Theorem 3.1.4, we haveZ
R2
j1¡jQcj2jjrQcj2+Re2(QcrQc)6

Z
R2

K(c)
(1+ r)4

<+1;

hence @x1Qc; @x2Qc2HQc.

Step 2. We have @cQc2HQc.
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From Lemmas 3.1.2 and 3.1.3, we have that for � > 0 small enough

@cQc+
1+ oc!0

� (c�)
c2

@dV|d=dc2HQc;

therefore we just have to check that @dV|d=dc2HQc, which is a direct consequence of Lemma 2.1.6.

Step 3. We have @c?Qc2HQc.

From Lemma 3.1.6, we have @c?Qc=¡x?:rQc. With Theorem 3.1.4, Lemma 1.2.1 and equation
(3.1.11), we check that Z

R2
jr@c?Qcj2+ j(1¡jQcj2)jj@c?Qcj2<+1:

Now, from Lemma 1.2.1 and equation (3.1.6) (with �=1/2), we haveZ
R2

Re2(Qc@c?Qc)6K
Z
R2
(1+ r2)Re2(rQcQc)6K(c)

Z
R2

1
(1+ r)3

<+1;

thus @c?Qc2HQc.

Step 4. Computation of the linearized operator on @x1Qc; @x2Qc; @cQc; @c?Qc.

For the values in the linearized operator, since

¡ic@x2Qc¡�Qc¡ (1¡ jQcj2)Qc=(TWc)(Qc)=0;

by di�erentiating it with respect to x1 and x2, we have

LQc(@x1Qc)=LQc(@x2Qc)= 0:

By di�erentiating it with respect to c, we have (we recall that @cQc2C1(R2;C))

¡i@x2Qc+LQc(@cQc)= 0:

Finally, the quantity LQc(@c?Qc) is given by Lemma 3.1.6. �

The next two lemmas are additional estimates on the four directions that will be useful later
on. They estimate in particular the dependence on c of k:kC on these four directions.

Lemma 3.1.8. There exists K>0 a universal constant, independent of c, such that, for Qc de�ned
in Theorem 1.3.1,

k@x1QckC+ k@x2QckC+ kc2@cQckC6K:

Furthermore, for any 1> � > 0,
kc@c?QckC= oc!0

� (c¡�):

Proof. We de�ned, for '=Qc 2HQc,

k'kC2 =
Z
R2
jr j2jQcj4+Re2( )jQcj4:

We recall that, since '=Qc ,Z
R2
jr j2jQcj4=

Z
R2
jr'¡rQc j2jQcj26K

Z
R2
jr'j2jQcj2+ jrQcj2j'j2 (3.1.15)

Step 1. We have k@x1QckC+ k@x2QckC6K.

From Lemmas 1.2.1 and 3.1.1 and equations (3.1.9) to (3.1.11), we have that, for r~=min (r1;
r¡1),

jrQcj6
K

(1+ r~)
and jr2Qcj6

K
(1+ r~)2

:
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Therefore, Z
R2
jr(@x1Qc)j2jQcj2+ jr(@x2Qc)j2jQcj26K;

and we also have Z
R2
jrQcj2jrQcj26K;

thus, with equation (3.1.15),Z
R2

���r� @x1QcQc

����2jQcj4+ Z
R2

���r� @x2QcQc

����2jQcj46K:
By equation (3.1.9) (for �=1/4), we haveZ

R2
Re2
�
rQc
Qc

�
jQcj46K

Z
R2

Re2(rQcQc)6K
Z
R2

1
(1+ r~)5/2

6K:

We conclude that k@x1QckC+ k@x2QckC6K.

Step 2. We have kc2@cQckC6K.

From Lemma 3.1.2, we have, writing c2@cQc = (1 + oc!0(1))@dV|d=dc + h, that



h
V





�;dc

=

oc!0(1). In particular if we show that k@dV|d=dckC6K and khkC6K, then kc2@cQckC6K. From
Lemma 2.1.6, we check directly thatZ

R2
jr@dV|d=dcj2+

j@dV|d=dcj2

(1+ r~)3/2
+Re2(V@dV|d=dc)6K:

In particular, with (3.1.15), it implies thatZ
R2

���r� @dV|d=dc
Qc

����2jQcj46K
and we estimateZ

R2
Re2
�
@dV|d=dc

Qc

�
jQcj46K

Z
R2

Re2(V�@dV|d=dc)+ jV ¡Qcj2j@dV|d=dcj26K

with the same arguments and equation (3.1.7). Similarly,Z
R2

����r@dV|d=dc
Qc

����2jQcj46 2Z
R2
jr@dV|d=dcj2jQcj2+ jrQc@dV|d=dcj26K;

therefore k@dV|d=dckC 6K. We now have to estimate khkC. The computations are similar, since
we check easily that Z

R2
jrhj2+ jrQcj2jhj26K





hV





3/4;dc

2

and Z
R2

Re2(Q�ch)6K
Z
R2
Re2(V�h)+ jV ¡Qcj2jhj26K





hV





3/4;dc

2

:

Step 3. We have kc@c?QckC= oc!0
� (c¡�).

By de�nition, c@c?Qc = ¡cx?:rQc(x), and we check by triangular inequality that cjx?j 6
K(1+ r~) since r~=min (jx¡ dc~e1~ j; jx+ dc~e1~ j) and c d~c! 1. Therefore,Z

R2
jr(c@c?Qc)j26 c2

Z
R2
jrQcj2+

Z
R2
(cjx?j)2jr2Qcj26K

�
1+

Z
R2
jr2Qcj2(1+ r~)2

�
:

We have jr2Qcj6 jr2V j+ jr2¡cj, and with equation (3.1.11), we check that
R
R2jr2¡cj2(1+ r~)26

K. With computations similar to the ones of Lemmas 2.1.3 and 1.2.1, we can show that

jr2V j6 K
(1+ r~)2

and jr2V j6 K
c (1+ r~)3

;
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therefore, for any 1> � > 0,

jr2V j6 Kc¡�

(1+ r~)2+�
;

and thus, by (3.1.15),Z
R2

���r� c@c?QcQc

����2jQcj46KZ
R2
jrc@c?Qcj2jQcj2+ jrQcj2jc@c?Qcj26K(�)c¡2�:

Furthermore, by equations (3.1.9) (for �=1/2) and (3.1.12), we haveZ
R2

Re2
�
cx?:rQc(x)

Qc

�
jQcj46K

Z
R2
(1+ r~)2Re2(rQcQc)6K

Z
R2

1
(1+ r~)3

6K:

We conclude that kc@c?QckC= oc!0
� (c¡�). �

3.1.2.3 Link with the energy and momentum and computations of equivalents

In this subsection, we compute the value of the four previous particular direction @x1Qc; @x2Qc;
@cQc; @c?Qc on the quadratic form. In particular, we shall show that one of them is negative.

Lemma 3.1.9. There exists c0> 0 such that for 0<c<c0, and for Qc de�ned in Theorem 1.3.1,
for A2

�
@x1Qc; @x2Qc; @cQc; @c?Qc

	
, Re(LQc(A)A�)2L1(R2) and

hLQc(@x1Qc); @x1Qci= hLQc(@x2Qc); @x2Qci=0;

hLQc(@cQc); @cQci=
¡2�+ oc!0(1)

c2
;

hLQc(@c?Qc); @c?Qci=2�+ oc!0(1):

Proof. For A2
�
@x1Qc; @x2Qc; @cQc; @c?Qc

	
, we recall from Lemma 3.1.7 that A2HQc. To show

that Re(LQc(A)A�)2L1(R2), we need to show that

¡Re(�AA�)¡Re(ic@x2AA�)¡ (1¡jQcj2)jAj2+2Re2(QcA)2L1(R2):

For that, we check that, for some � > 1/2,

k(1+ r)�AkL1(R2)+ k(1+ r)1+�(jrAj+ jRe(A)j)kL1(R2)

+ k(1+ r)2+�Im(�A)kL1(R2)+ k(1+ r)1+�Re(�A)kL1(R2)

< +1: (3.1.16)

For @x1Qc and @x2Qc, this follows from Theorem 3.1.4, and, since LQc(@x1;2Qc)= 0, from

�(@x1;2Qc)=¡ic@x2x1;2
2 Qc¡ (1¡ jQcj2)@x1;2Qc+2Re(Qc@x1;2Qc)Qc;

which allows to estimate �(@x1;2Qc) with Theorem 3.1.4, Lemma 1.2.1 and equation (3.1.11) for
any � > 1/2.

Now, for @cQc, the estimates not on its Laplacian are a consequence of Lemma 3.1.2, Theorem
3.1.4 and Lemma 2.1.6. Then, from Lemma 3.1.7, we have LQc(@cQc)= i@x2Qc, thus

�(@cQc)=¡i@x2Qc¡ ic@x2@cQc¡ (1¡jQcj2)@cQc+2Re(Qc@cQc)Qc:

By Theorem 3.1.4 and Lemma 3.1.2, we have, for any � > 1/2,

j(1¡jQcj2)@cQcj+ j2Re(Qc@cQc)Qcj6
K(c; �)
(1+ r)2+�

;

j@x2Qcj+ j@x2@cQcj6
K(c; �)
(1+ r)1+�

and

jRe(@x2Qc)j+ jRe(@x2@cQc)j6
K(c; �)
(1+ r)2+�

;
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which is enough to show the estimates for @cQc.
Finally, from Lemma 3.1.6 we recall that

@c?Qc=¡x?:rQc(x)
and

LQc(@c?Qc)=¡ic@x1Qc:

Similarly, the estimates not on its Laplacian follow from Theorem 3.1.4, Lemmas 1.2.1 and 3.1.1
and equation (3.1.11). We also have

�(@c?Qc)= ic@x1Qc¡ ic@x2@c?Qc¡ (1¡jQcj2)@c?Qc+2Re(Qc@c?Qc)Qc;

and with the same previous estimates, we conclude that @c?Qc satis�es the required estimates.
With the de�nition k:kHQc, we check that the last two terms are in L1(R2), and for the �rst two,
the integrands are in L1(R2;R) by estimates in subsections 3.1.1.1 and (3.1.16).

Step 1. We have hLQc(@x1Qc); @x1Qci= hLQc(@x2Qc); @x2Qci=0.

From Lemma 3.1.7, we have LQc(@x1Qc)=LQc(@x2Qc)=0, hence

hLQc(@x1Qc); @x1Qci= hLQc(@x2Qc); @x2Qci=0:

Step 2. We have hLQc(@cQc); @cQci=
¡2�+ oc!0(1)

c2
.

From Lemma 3.1.7, we have

LQc(@cQc)= i@x2Qc;

therefore

hLQc(@cQc); @cQci= hi@x2Qc; @cQci: (3.1.17)

From Lemma 3.1.2, we can write @cQc = ¡
�
1+ oc!0(1)

c2

�
@dV|d=dc + h with




h
V





�;dc

= oc!0

¡ 1
c2

�
:

Similarly, from Lemma 3.1.1, we write Qc=V +¡c with



¡c
V





�;dc

= oc!0(1), and we compute

hLQc(@cQc); @cQci =
�
i@x2V ;¡

�
1+ oc!0(1)

c2

�
@dV|d=dc

�
+ hi@x2V ; hi

+
�
i@x2¡c;¡

�
1+ oc!0(1)

c2

�
@dV|d=dc

�
+ hi@x2¡c; hi: (3.1.18)

By symmetry in x1 of V , we compute

hi@x2V ; @dV|d=dci=¡2hi@x2V1V¡1; @x1V1V¡1i+2hi@x2V1V¡1; @x1V¡1V1i:

In equation (2.1.43), we computed

hi@x2V1V¡1; @x1V1V¡1i=¡�+ oc!0(1):

Furthermore,

jhi@x2V1V¡1; @x1V¡1V1ij=
����Z

R2
Re(i@x2V1V1� @x1V¡1V¡1)

����6����Z
R2
Re(@x2V1V1� )Im(@x1V¡1V¡1)

����+ ����Z
R2

Im(@x2V1V1� )Re(@x1V¡1V¡1)
����:

From Lemma 1.2.1, we have the estimates

jRe(@x2V¡1V¡1 )j6
K

(1+ r¡1)3
and jRe(@x1V1V1)j6

K
(1+ r1)3

;

as well as

jIm(@x2V¡1V¡1 )j6
K

1+ r¡1
and jIm(@x1V1V1)j6

K
1+ r1

:
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We deduce, in the right half-plane, where r¡1> dc, that jIm(rV¡1V¡1 )j= oc!0(1) and thus����Z
{x1>0}

Re(@x2V1V1� )Im(@x1V¡1V¡1)
����6 oc!0(1)

Z
{x1>0}

1
(1+ r1)3

= oc!0(1):

In the left half-plane, we have 1

1+ r1
6 K

1+ r¡1
and 1

1+ r1
= oc!0(1), therefore����Z

{x160}
Re(@x2V1V1� )Im(@x1V¡1V¡1)

����6 oc!0(1)
Z

{x160}

1
(1+ r¡1)3

= oc!0(1):

We therefore have ����Z
R2

Re(@x2V1V1� )Im(@x1V¡1V¡1)
����= oc!0(1);

and by similar estimates, ����Z
R2

Im(@x2V1V1� )Re(@x1V¡1V¡1)
����= oc!0(1):

We can thus conclude that hi@x2V1V¡1; @x1V¡1V1i= oc!0(1): Therefore,�
1+ oc!0(1)

c2

�
hi@x2V ;¡@dV|d=dci=

¡2�
c2

+ o
�
1
c2

�
: (3.1.19)

Now, we estimate

jhi@x2V ; hij =
����Z

R2
Re(i@x2Vh�)

����
6 oc!0(1)+

����Z
{r~>1}

Re(i@x2Vh�)
����

6 oc!0(1)+

�����
Z

{r~>1}
Re

 
i@x2VV�

�
h
V

�!�����
because khkL1= oc!0(1) and j@x2V j is bounded near d~c by a universal constant. Furthermore,�����

Z
{r~>1}

Re

 
i@x2VV�

�
h
V

�!�����6
����Z

{r~>1}
Re(@x2VV�)Im

�
h
V

�����+ ����Z
{r~>1}

Im(@x2VV�)Re

�
h
V

�����:
From Lemmas 1.2.1 and 3.1.2 (taking �=1/2), we have����Z

{r~>1}
Re(@x2VV�)Im

�
h
V

�����6K



hV





1/2;dc

Z
{r~>1}

1
(1+ r~)3+1/2

= oc!0

�
1
c2

�
and ����Z

{r~>1}
Im(@x2VV�)Re

�
h

V

�����6K



hV





1/2;dc

Z
{r~>1}

1
(1+ r~)2+1/2

= oc!0

�
1
c2

�
;

therefore

jhi@x2V ; hij= oc!0

�
1
c2

�
: (3.1.20)

Now, by Lemmas 1.2.1 and 3.1.1 (taking �=1/2), we have�
1+ oc!0(1)

c2

�
jhi@x2¡c; @dV|d=dcij6

K
c2





¡cV





1/2;dc

Z
R2

1
(1+ r~)2+1/2

= oc!0

�
1
c2

�
: (3.1.21)

Finally, by Lemmas 3.1.1 and 3.1.2, we check easily that

jhi@x2¡c; hij6K




¡cV






3/4;dc





hV





1/2;dc

Z
R2

1
(1+ r~)2+1/4

= oc!0

�
1
c2

�
: (3.1.22)

Combining (3.1.19) to (3.1.22) in (3.1.18), we conclude that

hLQc(@cQc); @cQci=
¡2�+ oc!0(1)

c2
:
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Step 3. We have hLQc(@c?Qc); @c?Qci=2�+ oc!0(1).

From Lemma 3.1.7, we have LQc(@c?Qc)=¡ic@x1Qc and from Lemma 3.1.6, we have @c?Qc=
¡x?:rQc. Therefore,

hLQc(@c?Qc); @c?Qci= chi@x1Qc; x?:rQci:
We have

hi@x1Qc;¡x2 @x1Qci=¡
Z
R2
Re(ix2j@x1Qcj2)=0;

hence

hLQc(@c?Qc); @c?Qci= chi@x1Qc; x1@x2Qci: (3.1.23)

From Lemma 3.1.1, we write Qc = V + ¡c with



¡c
V





�;dc

6K(�)c1¡� for any 0 < � < 1, and we
compute

hi@x1Qc; x1@x2Qci= hi@x1V ; x1@x2V i+ hi@x1V ; x1@x2¡ci+ hi@x1¡c; x1@x2V i+ hi@x1¡c; x1@x2¡ci:

We write x1= dc+ y1, therefore

hi@x1V ; x1@x2V i= dchi@x1V ; @x2V i+ hi@x1V ; y1@x2V i:
We have

hi@x1V ; @x2V i = hi@x1V1V¡1; @x2V1V¡1i+ hi@x1V¡1V1; @x2V¡1V1i
+ hi@x1V1V¡1; @x2V¡1V1i+ hi@x1V¡1V1; @x2V1V¡1i;

and, from the previous step and by symmetry, we have

hi@x1V1V¡1; @x2V1V¡1i= hi@x1V¡1V1; @x2V¡1V1i=�+ oc!0(1)

and

jhi@x1V1V¡1; @x2V¡1V1ij+ jhi@x1V¡1V1; @x2V1V¡1ij= oc!0(1);

thus

hi@x1V ; @x2V i=2�+ oc!0(1):

With V�1 centered around �dce1~ , we write V =V1V¡1 and we compute

hi@x1V ; y1@x2V i =
Z
R2

Re(iy1@x1V1@x2V1jV¡1j2+ iy1@x1V¡1@x2V¡1jV1j2)

+
Z
R2

Re
¡
iy1@x1V1V1� V¡1@x2V¡1+ iy1@x1V¡1V¡1V1� @x2V1

�
:

By decomposition in polar coordinates, with the notation of (3.1.13) and Lemma 1.2.1, we computeZ
R2
Re(iy1@x1V1@x2V1jV¡1j2)=

Z
0

+1Z
0

2�

jV¡1j2�1(r1)�10 (r1)cos(�1) r1 dr1d�1:

By integration in polar coordinates, we check thatZ
0

+1Z
0

2�

�1(r1)�10 (r1)cos(�1)= 0;

hence Z
R2

Re(iy1@x1V1@x2V1jV¡1j2)=
Z
R2
(1¡ jV¡1j2)Re(iy1@x1V1@x2V1):

In particular, since, from Lemma 1.2.1, we have

(1¡jV¡1j2)6
K

(1+ r¡1)2
and

j�10 (r1)j6
K

(1+ r1)3
;
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we can deduce that Z
R2

Re(iy1@x1V1@x2V1jV¡1j2)= oc!0(1)

and, similarly, Z
R2
Re(iy1@x1V¡1@x2V¡1jV1j2)= oc!0(1):

Therefore, we conclude that

hi@x1V ; x1@x2V i=(2�+ oc!0(1))d~c=
2�+ oc!0(1)

c
:

Now, we want to show that

jhi@x1V ; x1@x2¡cij+ jhi@x1¡c; x1@x2V ij+ jhi@x1¡c; x1@x2¡cij= oc!0

�
1
c

�
;

which is enough to end the proof of this step.
By triangular inequality, we have jx1j6 K(1+ r~)

c
, and with Lemmas 1.2.1 and 3.1.1 (for �=1/2),

we estimate

jhi@x1V ; x1@x2¡cij =
���Z

R2
x1Re(@x1VV�)Im

¡
@x2¡cV�

����+ ���Z
R2
x1Im(@x1VV�)Re

¡
@x2¡cV�

����
6 K

c

 Z
R2

(1+ r~)
(1+ r~)3

� c1/2

(1+ r~)3/2
+ (1+ r~)
(1+ r~)

� c1/2

(1+ r~)5/2

!
= oc!0

�
1
c

�
:

Similarly, we check with the same computations that jhi@x1¡c; x1@x2V ij= oc!0

¡ 1
c

�
.

Finally, using Lemma 3.1.1 (for �=1/4), we estimate

jhi@x1¡c; x1@x2¡cij6Kc3/2kx1kL1({r~61})+K
����Z

{r~>1}
Re

�
ix1

@x1¡c
V

@x2¡c
V

�����:
We have kx1kL1({r~61})6 K

c
. Moreover, we infer����Z

{r~>1}
Re

�
ix1

@x1¡c
V

@x2¡c
V

����� 6 Z
{r~>1}

jx1j
����Re

�
@x1¡c
V

�
Im

�
@x2¡c
V

�����
+
Z

{r~>1}
jx1j
����Im� @x1¡cV

�
Re

�
@x2¡c
V

�����;
and, with Lemma 3.1.1 (for �=1/4), we have����Z

{r~>1}
Re

�
ix1

@x1¡c
V

@x2¡c
V

�����6KZ
{r~>1}

jx1j
c3/2

(1+ r~)3+1/2
= oc!0(1);

since jx1jc
(1+ r~)

6K by triangular inequality. We conclude that

hi@x1¡c; x1@x2¡ci= oc!0(1);

which, together with the previous estimates, shows that

hLQc(@c?Qc); @c?Qci=2�+ oc!0(1): �

These quantities are connected to the energy and momentum. This is shown in this next lemma.

Lemma 3.1.10. There exists c0>0 such that for 0<c<c0, Qc de�ned in Theorem 1.3.1, we have

P1(Qc)=@cP1(Qc)=0;

P2(Qc)=
1
c
BQc(@c?Qc)=

2�+ oc!0(1)
c

and

@cP2(Qc)=BQc(@cQc)=
¡2�+ oc!0(1)

c2
:
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Furthermore,

@cE(Qc)= c@cP2(Qc);
and

E(Qc)= (2�+ oc!0(1))ln
�
1
c

�
:

Proof. We have

P1(Qc)=
1
2
hi@x1Qc; Qc¡ 1i;

by the symmetries (3.1.3), @x1Qc is odd in x1 and Qc¡ 1 is even. Therefore,

P1(Qc)=@cP1(Qc)=0:
We have

P2(Qc)=
1
2
hi@x2Qc; Qc¡ 1i;

and from Lemma 3.1.9 and (3.1.23), we have

2�+ oc!0(1)=BQc(@c?Qc)= chi@x1Qc; x1@x2Qci:

By integration by parts (which can be done thanks to Theorem 3.1.4, Lemma 1.2.1 and equation
(3.1.11)), we compute

hi@x1Qc; x1@x2Qci=¡hi(Qc¡ 1); @x2Qci¡ hi(Qc¡ 1); x1@x1x2Qci;
and

hi(Qc¡ 1); x1@x1x2Qci=¡hi@x2Qc; x1@x1Qci= hi@x1Qc; x1@x2Qci:
Therefore,

P2(Qc)=
1
2
hi@x1Qc; x1@x2Qci=

1
c
BQc(@c?Qc)=

2�+ oc!0(1)
c

:

We have P2(Qc)=
1

2

R
R2Re(i@x2Qc(Qc¡ 1)), and we check that, with Lemmas 3.1.1 and 3.1.2 that

j@c@x2Qc(Qc¡ 1)j+ j@x2Qc@cQcj6
K

(1+ r~)5/2
;

and is therefore dominated by an integrable function independent of c2 ]c1; c2[ given that c1; c2>0
are small enough. We deduce that c 7! P2(Qc) 2C1(]0; c0[;R) for some small c0> 0 and that, by
integration by parts,

2@cP2(Qc)= hi@x2@cQc; Qc¡ 1i+ hi@x2Qc; @cQci=2hi@x2Qc; @cQci;

and, from Lemma 3.1.9 and equation (3.1.17), we have

hi@x2Qc; @cQci=BQc(@cQc)=
¡2�+ oc!0(1)

c2
;

therefore

@cP2(Qc)=
¡2�+ oc!0(1)

c2
:

We recall that

E(Qc)=
1
2

Z
R2
jrQcj2+

1
4

Z
R2
(1¡ jQcj2)2:

We check with Lemmas 3.1.1, 3.1.2 that

j@crQc:rQcj+ j@c(jQcj2)(1¡ jQcj2)j6
K

(1+ r~)5/2

and is therefore dominated by an integrable function independent of c2 ]c1; c2[ given that c1; c2>0
are small enough. We deduce that c 7!E(Qc)2C1(]0; c0[;R) for some small c0> 0 and that,

@c

�
1
2

Z
R2
jrQcj2

�
= 1
2

Z
R2

Re(rQcr@cQc)+Re(r@cQcrQc):
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We check, with Theorem 3.1.4 and (TWc)(Qc)=0, that we can do the integration by parts, which
yields

@c

�
1
2

Z
R2
jrQcj2

�
= h¡�Qc; @cQci:

We check similarly that

@c

�
1
4

Z
R2
(1¡ jQcj2)2

�
=¡

Z
R2
(1¡ jQcj2)Re(@cQcQc);

hence

@c

�
1
4

Z
R2
(1¡ jQcj2)2

�
= h¡(1¡ jQcj2)Qc; @cQci:

Now, since ¡ic@x2Qc¡�Qc¡ (1¡ jQcj2)Qc=0, we have

@cE(Qc)= h¡�Qc¡ (1¡ jQcj2)Qc; @cQci= ch¡i@x2Qc; @cQci:

Now, since P2(Qc)=
1

2
hi@x2Qc; Qc¡ 1i, we have

@cP2(Qc)=
1
2
(hi@x2@cQc; Qc¡ 1i+ hi@x2Qc; @cQci):

By integrations by parts, we compute

@cP2(Qc)= h¡i@x2Qc; @cQci:

We deduce that @cE(Qc)= c@cP2(Qc), and in particular, we deduce that

@cE(Qc)=
¡2�+ oc!0(1)

c
:

By integration (from some �xed c0>c> 0), we check that E(Qc)= (2�+ oc!0(1))ln
¡ 1
c

�
. �

We conclude this subsection with an estimate on Qc connected to the energy that will be useful
later on.

Lemma 3.1.11. There exists K>0, a universal constant independent of c, such that, if c is small
enough, for Qc de�ned in Theorem 1.3.1,Z

R2

jIm(rQcQc)j2
jQcj2

6K ln
�
1
c

�
:

Proof. We recall that r�1= jx� dce1~ j. Since rQc is bounded near the zeros of Qc (by Lemmas
1.2.1 and 3.1.1), and jQcj>K on R2nB(�dc~e1~ ; 1) by (3.1.12), we haveZ

R2

jIm(rQcQc)j2
jQcj2

6K
�
1+

Z
{r~>1}

jIm(rQcQc)j2
�
:

Now, by (3.1.12), Lemma 3.1.10 and the de�nition of the energy,Z
{r~>1}

jIm(rQcQc)j26
Z

{r~>1}
jrQcj2jQcj26K

Z
R2
jrQcj26KE(Qc)6K ln

�
1
c

�
: �

We could check that this estimate is optimal with respect to its growth in c when c! 0.

3.1.3 Zeros of Qc

In this subsection, we show that Qc has only two zeros and we compute estimates on Qc around
them. In a bounded domain, a general result about the zeros of solutions to the Ginzburg-Landau
problem is already known, see [42].

Lemma 3.1.12. For c > 0 small enough, the function Qc de�ned in Theorem 1.3.1 has exactly
two zeros. Their positions are �dc~e1~ , and, for any 0<�< 1,

jdc¡ dc~ j= oc!0
� (c1¡�);
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where dc is de�ned in Theorem 1.3.1.

The notation oc!0
� (1) denotes a quantity going to 0 when c!0 at �xed �. Combining Lemmas

3.1.9, 3.1.10 and 3.1.12, we end the proof of Proposition 1.4.1.

Proof. From (3.1.3), we know that Qc enjoys the symmetry Qc(x1; x2) = Qc(¡x1; x2) for (x1;
x2) 2 R2, hence we look at zeros only in the right half-plane. From Theorem 1.3.1, we have
Qc= V1

¡
:¡ dce1~

�
V¡1(:+ dce1~ ) + ¡c with k¡ckL1(R2)+ kr¡ckL1(R2)= oc!0(1). In the right half-

plane and outside of B(dce1~ ;�) for any �> 0, by Lemma 1.2.1, we estimate

jQcj> jV1
¡
:¡ dce1~

�
V¡1(:+ dce1~ )j ¡ oc!0(1)>K(�)> 0

if c is small enough (depending on �). Now, we consider the smooth function F : R � R2! C
de�ned by

F (�; z) :=
¡
V1
¡
:¡ dce1~

�
V¡1(:+ dce1~ )+ �¡c(:)

�
(z+ dce~1):

We have F (0; 0) = V1(0)V¡1(2dce1~ ) = 0 by Lemma 1.2.1 and F (1; z) = Qc(z + dce~1). For j�j 6 1
and jz j6 1, since kr¡ckL1(R2)= oc!0

� (c1¡�) by equation (3.1.5), with Lemma 1.2.1 and equation
(3.1.1), we check that

jdzF(�;z)(�)¡rV1(z):� j= oc!0(1)j� j (3.1.24)
uniformly in �2 [0; 1].

Now, from Lemma 1.2.1, we estimate (for x= rei�=/ 02R2)

@x1V1(x) =
�
cos(�)�0(r)¡ i

r
sin(�)�(r)

�
ei�

= �(cos(�)¡ i sin(�))ei�+ or!0(1)
= �+ or!0(1);

and thus, by continuity, @x1V1(0)=�> 0. Similarly, we check that @x2V1(0)=¡i�, and therefore,

rV1(z)=�
�

1
¡i

�
+ ojz j!0(1):

Identifying C with R2 canonically, we deduce that the Jacobian determinant of F in z, J(F ),
satis�es

J(F )(�; z)= J(V1)(z)+ oc!0(1)=¡�2+ oc!0(1)+ ojz j!0(1)=/ 0;

given that c and jz j are small enough. By the implicit function theorem, there exists �0> 0 such
that, for j�j6 �0, there exists a unique value z(�) in a vicinity of 0 such that F (�; z(�))= 0, and
since @�F (�; z) = ¡c(dce~1 + z) = oc!0

� (c1¡�) uniformly in z (by (3.1.4)), it satis�es additionally
z(�)= oc!0

� (c1¡�).
Now, let us show that we can take �0=1. Indeed, if we de�ne �0= sup

�
� >0; �!z(�)2C1([0;

�]; R2)
	
> 0 and we have �0 < 1, since �! z(�) 2 C1([0; �0]; R2) with jd�z j(�) = oc!0

� (c1¡�)
uniformly in [0; �0], it can be continuously extended to �0 with F (�0; z(�0)) = 0 and z(�0) =
oc!0
� (c1¡�). Then, by the implicit function theorem at (�0; z(�0)) (since �0 < 1 with equation
(3.1.24)), it can be extended above �0, which is in contradiction with the de�nition of �0.

Since F (1; :)=Qc(:+ dce~1), we have shown that there exists z 2R2 with jz j= oc!0
� (c1¡�) such

that Qc(z+ dce~1)= 0. Now, for c small enough and j� j6 1, we have

r(Qc(�+ z+ dce~1))=rV1(z)+ oc!0(1)+ oj�j!0(1)=�
�

1
¡i

�
+ oc!0(1)+ oj�j!0(1):

We deduce, with Qc(� + z+ dce~1)=
R
0

j� jrQc
�
�
�

j� j + z+ dce~1
�
:
�

j� jd�, that����Qc(� + z+ dce~1)¡ �:� 1
¡i

�
�

����= oj� j!0(j� j)+ oc!0(1)j� j:

Therefore, Qc has no other zeros in B(z + dce~1; �) for some � > 0 independent of c. Therefore,
since for c small enough, jQcj>K(�)> 0 outside of B(z+ dce~1;�) in the right half-plane, Qc has
only one zero in the right half-plane.
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By the symmetry Qc(x1; x2)=Qc(x1;¡x2) (see (3.1.3)), z must be colinear to e1~ , therefore we
de�ne dc~ 2R by dc~e1~ := z+ dce~1, and we conclude that, since jz j= oc!0

� (c1¡�),

jdc¡ dc~ j= oc!0
� (c1¡�): �

We de�ne the vortices around the zeros of Qc by

V~�1(x) :=V�1(x� dc~e1~ );

and we will use the already de�ned polar coordinates around �dc~e1~ of x2R2, namely

r~�1= jx� dc~e1~ j; �~�1= arg(x� dc~e1~ ):

One of the idea of the proof is to understand how Qc is close, multiplicatively, to vortices V~�1
centered at its zeros, since by construction it is close to a vortex centered around �dce1~ , which is

itself close to �dc~e1~ . In particular, Lemma 3.1.14 below will show that the ratio
���Qc
V~1

��� is bounded
and close to 1 near dc~e1~ .

In Lemma 3.1.13 to follow, we compute the additive perturbation between derivatives of Qc
and a vortex V~�1 centered around one of its zeros. In Lemma 3.1.14, we compute the multiplicative
perturbation. All along, we work in B

¡
dc~e1~ ; d~c

1/2�, the size of the ball d~c
1/2 being arbitrary (any

quantity that both goes to in�nity when c! 0 and is a oc!0(dc~ ) should work). We recall that
r~�1= jx� dc~e1~ j.

Lemma 3.1.13. Uniformly in B
¡
dc~e1~ ; d~c

1/2�, for Qc de�ned in Theorem 1.3.1, one has

jQc¡V1~ j= oc!0(1);

jrQc¡rV1~ j6
oc!0(1)
1+ r~1

and

jr2Qc¡r2V1~ j6
oc!0(1)
1+ r~1

:

Proof. From equations (3.1.7) and (3.1.1), as well as Lemmas 2.1.6, 3.1.12 and the mean value

theorem, in B
¡
dc~e1~ ; d~c

1/2�,
jQc¡V1~ j 6 jQc¡V j+ jV ¡V1~ j

6 oc!0(1)+ jV1(:¡ dc~e1~ )¡V1~ j
6 oc!0(1)+ jdc¡ dc~ j k@x1V kL1(R2)

6 oc!0(1); (3.1.25)

which is the �rst statement.

For the second statement, we write Qc=V1(:¡dce1~ )V¡1(:¡dce1~ )+¡c, and from equation (3.1.5)
(with some margin), we have

jr¡cj6
oc!0(1)
1+ r~1

:

Furthermore, since V~1=V1(:¡ dc~e1~ ),

r(V1(:¡ dce1~ )V¡1(:+ dce1~ ))¡rV1~ =

rV1(:¡ dce1~ )V¡1(:+ dce1~ )¡rV1~ +V1(:¡ dce1~ )rV¡1(:+ dce1~ );

and from (3.1.2), in B
¡
dc~e1~ ; d~c

1/2�, we have

jrV¡1(:+ dce1~ )j6
oc!0(1)
1+ r~1

:

We compute

rV1(:¡ dce1~ )V¡1(:+ dce1~ )¡rV1~ =rV1(:¡ dce1~ )(V¡1(:+ dce1~ )¡ 1)¡rV1~ +rV1(:¡ dce1~ )
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and, from (3.1.1), in B
¡
dc~e1~ ; d~c

1/2�, we have jV¡1(:+ dce1~ )¡ 1j= oc!0(1). Finally, from Lemmas
1.2.1 and 3.1.12, we estimate (with the mean value theorem)

jrV1(:¡ dce1~ )¡rV1~ j6 jdc¡ dc~ j sup
d2
�
dc;d~c

�
[
�
d~c;dc

� jr2V1(x¡ d)j6K
jdc¡ dc~ j
(1+ r~1)2

= oc!0(1)
(1+ r~1)2

;

hence

jrQc¡rV1~ j6
oc!0(1)
1+ r~1

: (3.1.26)

Now, writing w = Qc ¡ V1~ , in B
¡
dc~e1~ ; 2d~c

1/2�, we estimate (since TWc(Qc) = 0 and �V1~ ¡
(jV1~ j2¡ 1)V1~ =0)

j�w j= j¡ic@x2Qc¡ (1¡ jQcj2)Qc+(1¡ jV1~ j2)V1~ j6
oc!0(1)
1+ r1~

by equations (3.1.6) to (3.1.10) and (3.1.1). Furthermore, by equations (3.1.6) to (3.1.2), we have

jr(�w)j6 oc!0(1)
(1+ r~1)

:

We check, as the proof of (3.1.25), that, in B
¡
dc~e1~ ; 2d~c

1/2�,
jw j= oc!0(1);

and, similarly, with equations (3.1.2) and (3.1.26), that

jrw j= oc!0(1)

in B
¡
dc~e1~ ;2d~c

1/2�. By Theorem 6.2 of [15] (taking a domain 
=B
�
x¡dc~e1~ ; j

x¡ d~ce1j
2

�
, and �=1/2,

but it also holds for any 0<�< 1), we have, for x2B
¡
dc~e1~ ; 2d~c

1/2�,
(1+ r~1)2jr2w(x¡ dc~e1~ )j6K(kwkC1(
)+(1+ r1~ )2k�wkC1(
));

and from the previous estimates, we have kwkC1(
)= oc!0(1) and k�wkC1(
)6 oc!0(1)

(1+ r~1)
, therefore

jr2(Qc¡V1~ )j= jr2w j6 oc!0(1)
(1+ r1~ )

: �

Lemma 3.1.14. In B
¡
dc~e1~ ; d~c

1/2�, for Qc de�ned in Theorem 1.3.1, we have����QcV1~ ¡ 1
����= oc!0(c1/10):

In particular, ����QcV1~
����=1+ oc!0(c1/10):

The power 1/10 is arbitrary, but enough here for the upcoming estimations.

Proof. We recall that both Qc and V~1 are C1 since they are solutions of elliptic equations. We
have that Qc(dc~e1~ )= 0 by Lemma 3.1.12, thus, for x2R2, by Taylor expansion, for jxj6 1,

Qc(x+ dc~e1~ )=x:rQc(dc~e1~ )+Ojxj!0(jxj2):

From Theorem 1.3.1, we have Qc=V1
¡
:¡dce1~

�
V¡1(:+dce1~ )+¡c, therefore, with V�1 being centered

around �dce1~ for the rest of the proof,

rQc(dc~e1~ )=rV1(dc~e1~ )V¡1(dc~e1~ )+V1(dc~e1~ )rV¡1(dc~e1~ )+r¡c(dc~e1~ ):

We have V1(dc~e1~ )rV¡1(dc~e1~ )+r¡c(dc~e1~ )=oc!0(c1/2) by Theorem 1.3.1, Lemma 1.2.1 and (3.1.2).
Furthermore, by (3.1.1), Lemmas 1.2.1 and 3.1.12,

rV1(dc~e1~ )V¡1(dc~e1~ ) = rV1(dc~e1~ )+ oc!0(c1/4)
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We deduce that

Qc(x+ dc~e1~ )=x:(rV1(dce1~ )+ oc!0(c1/4))+Ox!0(jxj2): (3.1.27)

We also have V1~ (x + dc~e1~ ) = x:rV1~ (dc~e1~ ) + Ox!0(jxj2) (since V1~ (dc~e1~ ) = 0) and rV1(dce1~ ) =
rV1~ (dc~e1~ ), hence

Qc(x+ dc~e1~ )=V1~ (x+ dc~e1~ )+x:oc!0(c1/4)+Ojxj!0(jxj2):

Now, by Lemma 1.2.1, there exists K > 0 such that, in B(dc~e1~ ; c1/4) for c small enough, jV1~ (x+
dc~e1~ )j>K jxj. We deduce that����QcV1~ ¡ 1

���� 6 jxjoc!0(c1/4)
jV1~ (x+ dc~e1~ )j

+
Ojxj!0(jxj2)
jV1~ (x+ dc~e1~ )j

6 oc!0(c1/4)+Ojxj!0(jxj)
6 oc!0(c1/5):

Outside of B(dc~e1~ ; c1/4) and in B
¡
dc~e1~ ; dc~ 1/2

�
, we have jV1~ j>Kc1/4 by Lemma 1.2.1, and

Qc=V1+Oc!0(c1/2)

by Theorem 1.3.1, equations (3.1.7) and (3.1.1). We deduce����QcV1~ ¡ 1
����(x)=

�����V1+Oc!0(c1/2)
V1~

¡ 1

�����(x)=
�����V1(x)V1~ (x)

¡ 1

�����+ oc!0(c1/10):

Furthermore, by Lemma 3.1.12 (for �=1/2), we have�����V1(x)V1~ (x)
¡ 1

�����=
������V1
~ (x)+O��dc¡d~c��!0(jdc¡ dc~ j)

V1~ (x)
¡ 1

������= O��dc¡d~c��!0(jdc¡ dc~ j)
c1/4

= oc!0(c1/10):

We conclude that
���Qc
V~1
¡ 1
���= oc!0(c1/10) in B

¡
dc~e1~ ; dc~ 1/2

�
. �

By the symmetries of Qc (see (3.1.3)), the result of Lemma 3.1.14 holds if we change e1~ by ¡e1~
and V1~ by V~¡1.

We conclude this section with the proof that in B
¡
�d~ce1~ ; d~c

1/2�, we have, for  2Cc1
¡
R2n

�
�

d~ce1~
	
;C
�
, Z

0

2�

j =/0j2d�~�16 r~�12
Z
0

2�

jr j2d�~�1: (3.1.28)

We recall that the function  =/0 is de�ned by

 =/0(x)=  (x)¡  0;1(r~1)
in the right half-plane, and

 =/0(x)=  (x)¡  0;¡1(r~¡1)
in the left half-plane.

To show (3.1.28), it is enough to show that, for  2Cc1(R2n
�
0
	
;C), we have, with x= rei�,Z

0

2���� ¡Z
0

2�

 d

���2d�6 r2Z

0

2�

jr j2d�:

This is a Poincaré inequality. By decomposition in harmonics and Parseval's equality, we haveZ
0

2���� ¡ Z
0

2�

 (
)d

���2d� =

Z
0

2�
����� Xn2Z�  n(r)ein�

�����
2

d�

=
Z
0

2�X
n2Z�

j n(r)j2d�;
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and Z
0

2�

jr j2d� >
Z
0

2� 1
r2
j@� j2d�

>
Z
0

2����� X
n2Z�

i
n n(r)

r
ein�

����2d�
> 1

r2

Z
0

2�X
n2Z�

n2j n(r)j2d�

> 1
r2

Z
0

2�X
n2Z�

j n(r)j2d�:

This concludes the proof of (3.1.28). With jQc
¡
x�d~ce1~

�
j=Or~�1!0(r~�1) and (3.1.28), we have,

for r~�16R, Z
0

2�

jQcj2j =/0j2d�~�1 6 K

Z
0

2�

r~�12 j =/0j2d�~�1

6 K

Z
0

2�

r~�14 jr j2d�~�1

6 K(R)
Z
0

2�

jQcj4jr j2d�~�1: (3.1.29)

This result will be usefull to estimate the quantities in the orthogonality conditions.

3.2 Estimations in HQc

We give several estimates for functions in HQc. They will in particular allow us to use a density
argument to show Proposition 1.4.3 once it is shown for test function in section 3.3. We will also
explain why a coercivity result with the energy norm k:kHQc is impossible with any number of
local orthogonality conditions, and show that the quadratic form and the coercivity norm are well
de�ned for functions in HQc.

3.2.1 Comparaison of the energy and coercivity norms
In the introduction, we have de�ned the quadratic form by

BQc(') =
Z
R2
jr'j2¡ (1¡ jQcj2)j'j2+2Re2(Qc')

¡ c

Z
R2
(1¡ �)Re(i@x2''�)¡ c

Z
R2
�Re(i@x2QcQc)j j2

+ 2c
Z
R2
�Re Im@x2 jQcj2+ c

Z
R2
@x2�Re Im jQcj2

+ c

Z
R2
�Re Im @x2(jQcj2)

(see (1.4.3)). We will show in Lemma 3.2.3 below that this quantity is well de�ned for ' 2HQc.
As we have seen, the natural energy space HQc is given by the norm

k'kHQc
2 =

Z
R2
jr'j2+ j1¡jQcj2jj'j2+Re2(Qc'):

We could expect to remplace Theorem 1.4.4 by a result of the form: up to some local orthogonality
conditions, for '2HQc we have

BQc(')>K(c)k'kHQc
2 :

However such a result can not hold. This is because of a formal zero of LQc which is not in the
space HQc: iQc (which comes from the phase invariance of the equation). We have LQc(iQc) = 0
and iQc2/ HQc because

(1¡ jQcj2)jiQcj2
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is not integrable at in�nity (see [21], where it is shown that this quantity decays like 1/r2). We
can then create functions in HQc getting close to iQc, for instance

fR= �RiQc;

where �R is a C1 real function with value 1 if R0< jxj<R and value 0 if jxj<R0¡1or jxj>2R. In
that case, when R!+1, kfRkHQc!+1 and BQc(fR)!C a constant independent of R, making
the inequality BQc(')>Kk'kHQc

2 impossible (and the local orthogonality conditions are veri�ed
for R0 large enough since fR=0 on B(0;R0¡ 1)). That is why we get the result in a weaker norm
in Proposition 1.4.11: we will only get for '2HQc, up to some local orthogonality conditions,

BQc(')>K(c)k'kHQcexp
2 ;

where k:kHQcexp is de�ned in subsection 1.4.3.1. In particular, k:kHQcexp is not equivalent to k:kHQc.

3.2.2 The coercivity norm and other quantities are well de�ned in HQc

We have de�ned the energy space HQc by the norm

k'kHQc
2 =

Z
R2
jr'j2+ j1¡jQcj2jj'j2+Re2(Qc'):

By Lemma 3.1.5, we have that, for '2HQc,Z
R2

j'j2
(1+ jxj)2dx6C(c)k'kHQc

2 : (3.2.1)

The goal of this subsection is to show that for '2HQc, k'kC and BQc('), as well as the quantities
in the orthogonality conditions of Proposition 1.4.3 and Theorem 1.4.4, are well de�ned. This is
done in Lemmas 3.2.1 to 3.2.3.

Lemma 3.2.1. There exists c0>0 such that for 0<c6 c0, there exists C(c)>0 such that, for Qc
de�ned in Theorem 1.3.1 and for any '=Qc 2HQc,

k'kC2 =
Z
R2
jr j2jQcj4+Re2( )jQcj46C(c)k'kHQc

2 :

Proof. We estimate for '=Qc 2HQc, using equations (3.1.12), (3.2.1) and jrQcj6 C(c)

(1+ r)2
from

Theorem 3.1.4, that Z
R2
jr j2jQcj4 =

Z
R2
jr'¡rQc j2jQcj2

6 K

Z
R2
jr'j2jQcj2+ jrQcj2jQc j2

6 K(c)
Z
R2
jr'j2+ j'j2

(1+ r)4

6 K(c)k'kHQc
2 :

Similarly, for '=Qc , Z
R2
Re2( )jQcj4=

Z
R2
Re2(Qc')6 k'kHQc

2 :

We conclude that Z
R2
jr j2jQcj4+Re2( )jQcj46C(c)k'kHQc

2 : (3.2.2) �

We conclude this subsection with the proof that the quantities in the orthogonality conditions
are well de�ned for '2HQc.
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Lemma 3.2.2. There exists K > 0 and, for c small enough, there exists K(c)> 0 such that, for
Qc de�ned in Theorem 1.3.1 and '=Qc 2HQc, 0<R<d~c

1/2, we haveZ
B
¡
�d~ce1;R

�
���Re
�
@x1V~�1V~�1 

����+ Z
B
¡
�d~ce1;R

�
���Re
�
@x2V~�1V~�1 

����6K(c)k'kHQc;Z
B
¡
d~ce1;R

�
[B

¡
¡d~ce1;R

�
���Re
�
@x1;2QcQc 

=/0
����6K(c)k'kHQc;Z

B
¡
d~ce1;R

�
[B

¡
¡d~ce1;R

�
���Re
�
@cQcQc 

=/0
����6K(c)k'kHQc

and Z
B
¡
d~ce1;R

�
[B

¡
¡d~ce1;R

�
���Re
�
¡x?:rQcQc =/0

����6K(c)k'kHQc:
We recall that  =/0(x)= (x)¡ 0;1(r~1) in the right half-plane and  =/0(x)= (x)¡ 0;¡1(r~¡1)

in the left half-plane, with r~�1= jx� dc~e1~ j and  0;�1(r~�1) the 0-harmonic of  around �dc~e1~ .

Proof. From Lemma 3.1.14, we have, for '=Qc 2HQc,

jV~�1 j= j'j �

�����V~�1Qc

�����6 2j'j
given that c is small enough. We deduce by Cauchy-Schwarz, Lemmas 1.2.1 and 3.1.5 thatZ

B
¡
�d~ce1;R

�
���Re
�
@x1V~�1V~�1 

���� 6 2
Z
B
¡
�d~ce1;R

�j@x1V~�1j � j'j6K(c)k'kH1
¡
B
¡
�d~ce1;R

��
6 K(c)k'kHQc;

and similarly
R
B
¡
�d~ce1;R

����Re
�
@x2V

~�1V~�1 
����6K(c)k'kHQc.

By Cauchy-Schwarz, equation (3.2.2) and Theorem 1.3.1 (for p=+1), we conclude thatZ
B
¡
d~ce1;R

�
[B

¡
¡d~ce1;R

�
���Re
�
@cQcQc 

=/0
���� 6 K(c)

Z
B
¡
d~ce1;R

�
[B

¡
¡d~ce1;R

�jr j2jQcj4
s

6 K(c)k'kHQc:

We can estimate the other terms similarly. �

3.2.3 On the de�nition of BQc

We start by explaining how to get BQc(') from the �natural� quadratic formZ
R2
jr'j2¡ (1¡ jQcj2)j'j2+2Re2(Qc')¡Re(ic@x2''�):

For the �rst three terms of this quantity, it is obvious that they are well de�ned for '2HQc, but
the term ¡Re(ic@x2''�) is not clearly integrable.

Take a smooth cuto� function � such that �(x)=0 on B(�dc~e1~ ;1), �(x)=1 on R2nB(�dc~e1~ ;2).
Then, taking for now '=Qc 2Cc1(R2),

Re(i@x2''�)= �Re(i@x2''�)+ (1¡ �)Re(i@x2''�);

and writing '=Qc ,

�Re(i@x2''�) = �Re(i@x2QcQc)j j2+ �Re(i@x2  �)jQcj2

= �Re(i@x2QcQc)j j2¡ �Re Im@x2 jQcj2

+ �Re@x2 Im jQcj2:
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Furthermore,

�Re@x2 Im jQcj2 = @x2(�Re Im jQcj2)
¡ @x2�Re Im jQcj2¡ �Re Im@x2 jQcj2

¡ �Re Im @x2(jQcj2);

thus we can writeZ
R2

Re(i@x2''�) =
Z
R2
@x2(�Re Im jQcj2)

+
Z
R2
(1¡ �)Re(i@x2''�)+

Z
R2
�Re(i@x2QcQc)j j2

¡ 2
Z
R2
�Re Im@x2 jQcj2¡

Z
R2
@x2�Re Im jQcj2

¡
Z
R2
�Re Im @x2(jQcj2):

The only di�culty here is that the �rst integral is not well de�ned for '2HQc, but it is the integral
of a derivative. Therefore, this is why we de�ned instead the quadratic form

BQc(') =
Z
R2
jr'j2¡ (1¡ jQcj2)j'j2+2Re2(Qc')

¡ c

Z
R2
(1¡ �)Re(i@x2''�)¡ c

Z
R2
�Re(i@x2QcQc)j j2

+ 2c
Z
R2
�Re Im@x2 jQcj2+ c

Z
R2
@x2�Re Im jQcj2

+ c

Z
R2
�Re Im @x2(jQcj2):

It is easy to check that this quantity is independent of the choice of �. We will show in Lemma
3.2.3 that this quantity is well de�ned for '2HQc. By adding some conditions on ', for instance
if '2H1(R2), we can show that

R
R2@x2(�Re Im jQcj2) is well de�ned and is 0. In these cases,

we therefore have

BQc(')=
Z
R2
jr'j2¡ (1¡ jQcj2)j'j2+2Re2(Qc')¡Re(ic@x2''�):

This is a classical situation for Schrödinger equations with nonzero limit at in�nity (see [8] or [32]):
the quadratic form is de�ned up to a term which is a derivative of some function in some Lp space.

Lemma 3.2.3. There exists c0> 0 such that, for 0<c6 c0, Qc de�ned in Theorem 1.3.1, there
exists a constant C(c)> 0 such that, for '=Qc 2HQc and � a smooth cuto� function such that
�(x)= 0 on B(�dc~e1~ ; 1), �(x)= 1 on R2nB(�dc~e1~ ; 2), we haveZ

R2
j(1¡ �)Re(i@x2''�)j+

Z
R2
j�Re (i@x2QcQc)j j2j

+
Z
R2
j�Re Im(@x2 )jQcj2j+

Z
R2
j@x2�Re Im jQcj2j

+
Z
R2
j�Re Im @x2(jQcj2)j

6 C(c)k'kHQc
2 :

Proof. Since j1¡jQcj2j>K> 0 on B(�dc~e1~ ; 2) for c small enough by Lemma 1.2.1 and Theorem
1.3.1, we estimateZ

R2
j(1¡ �)Re(ic@x2''�)j6C(c)

Z
B
¡
d~ce1;2

�
[B

¡
¡d~ce1;2

�j1¡ jQcj2jj'jj@x2'j6C(c)k'kHQc2 :

Furthermore, by (3.1.12) and Lemma 3.1.5,Z
R2
j�Re(ic@x2QcQc)j j2j6C(c)

Z
R2
� jrQcjj j26C(c)

Z
R2
� jrQcjj'j26C(c)k'kHQc

2
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since jrQcj 6 C(c)

(1+ r)2
from Theorem 3.1.4. By Cauchy-Schwarz, equations (3.1.12) and Lemma

3.2.1, Z
R2
j�Re Im@x2 jQcj2j6K

Z
R2
�Re2( )

Z
R2
� jr j2

r
6C(c)k'kHQc

2 : (3.2.3)

Now, still by equations (3.1.12) and Lemma 3.2.1, since @x2� is supported in B(�dc~e1~ ;2)nB(�dc~e1~ ;
1), Z

R2
j@x2�Re Im jQcj2j6Kk'kHQc

2 :

Finally, since jrQcj6 C(c)

(1+ r)2
by Theorem 3.1.4, by Cauchy-Schwarz and Lemma 3.1.5,Z

R2
j�Re Im @x2(jQcj2)j6C(c)

Z
R2
�Re2( )

Z
R2
�

Im2 
(1+ r)4

r
6C(c)k'kHQc

2 : �

3.2.4 Density of test functions in HQc

We shall prove the coercivity with test functions, that are 0 in a vicinity of the zeros of Qc. This
will allow us to divide by Qc in several computations. We give here a density result to show that
it is not a problem to remove a vicinity of the zeros of Qc for test functions.

Lemma 3.2.4. Cc1(R2n
�
dc~e1~ ;¡dc~e1~

	
;C) is dense in HQc for the norm k:kHQc.

This result uses similar arguments as [10] for the density in HV1. For the sake of completeness,
we give a proof of it.

Proof. We recall that

k'kHQc
2 =

Z
R2
jr'j2+ j1¡jQcj2jj'j2+Re2(Qc');

and since, for all �> 0,

K1(�)
Z
B(0;�)

jr'j2+ j'j26
Z
B(0;�)

jr'j2+ j1¡jQcj2jj'j2+Re2(Qc')6K2(�)
Z
B(0;�)

jr'j2+ j'j2;

by standard density argument, we have that Cc1(R2;C) is dense in HQc for the norm k:kHQc.
We are therefore left with the proof that Cc1(R2n{dc~e1~ ;¡dc~e1~ };C) is dense in Cc1(R2;C) for the

norm k:kHQc. For that, it is enough to check that Cc1(B(0; 2)n{0};C) is dense in Cc1(B(0; 2);C)
for the norm k:kH1(B(0;2)). This result is a consequence of the fact that the capacity of a point in
a ball in dimension 2 is 0. For the sake of completeness, we give here a proof of this result.

We de�ne �"2C0(B(0; 2);R) the radial function with �"(x)=0 if jxj6 ", �"(x)=¡ ln(jxj)
ln(") +1 if

jxj 2 [";1] and �"(x)=1 if 2> jxj>1. Then, we de�ne �";�2C1(B(0;2);R) a radial regularisation
of �" with �";�(x)=0 if jxj6 "/2 such that �";�! �" in H1(B(0;2)) when �!0. Finally, we de�ne
�";�;�= �";�

¡ x
�

�
for a small � > 0.

Now, given '2Cc1(B(0; 2);C), �";�;�' 2Cc1(B(0; 2)n{0};C) for all " > 0; � > 0; � > 0, and by
dominated convergence, we check thatZ

B(0;2)

j�";�;�'j2!
Z
B(0;2)

j'j2

when �! 0. Furthermore, we compute by integration by partsZ
B(0;2)

jr(�";�;�')j2 =
Z
B(0;2)

�";�;�
2 jr'j2+2

Z
B(0;2)

r�";�;��";�;�Re(r''�)

+
Z
B(0;2)

jr�";�;�j2j'j2

=
Z
B(0;2)

�";�;�
2 jr'j2¡

Z
B(0;2)

j'j2��";�;��";�;�:
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Now, extending ' to R2 by '=0 outside of B(0; 2), we have by change of variablesZ
B(0;2)

j'j2��";�;��";�;�=
Z
R2
j'j2��";�;��";�;�=

Z
R2
j'j2(x�)��";��";�:

When �! 0, we have by dominated convergence that
R
B(0;2)

�";�;�
2 jr'j2!

R
B(0;2)

jr'j2 andZ
R2
j'j2(x�)��";��";�!j'j2(0)

Z
R2
��";��";�=¡j'j2(0)

Z
R2
jr�";�j2:

Now, taking �! 0, we deduce that

lim
�!0

lim
�!0

Z
B(0;2)

jr(�";�;�')j2=
Z
B(0;2)

jr'j2¡j'j2(0)
Z
R2
jr�"j2:

From the de�nition of �", we computeZ
R2
jr�"j2 =

Z
"

1 1
ln(")2r2

rdr

= 1
ln(")2

Z
"

11
r
dr

= ¡1
ln(")

! 0

when "! 0. We deduce that

lim
"!0

lim
�!0

lim
�!0

Z
B(0;2)

jr(�";�;�')j2=
Z
B(0;2)

jr'j2:

This concludes the proof of this lemma. �

3.3 Coercivity results in HQc

This section is devoted to the proofs of Propositions 1.4.2 and 1.4.3. Here, we will do most of the
computations with test functions, that is functions in Cc1

¡
R2n

�
d~ce~1;¡d~ce~1

	
;C
�
. This will allow

to do many computations, including dividing by Qc in some quantities.

3.3.1 Expression of the quadratic forms
We recall that � if a smooth cuto� function such that �(x) = 0 on B(�dc~e1~ ; 1), �(x) = 1 on
R2n(B(dc~e1~ ; 2)[B(¡dc~e1~ ; 2)), where �dc~e1~ are the zeros of Qc. Furthermore, from [10], we recall
the quadratic form around a vortex V1:

BV1(')=
Z
R2
jr'j2¡ (1¡jV1j2)j'j2+2Re2(V1� '):

We want to write the quadratic form around V1 and Qc in a special form. For the one around Qc,
it will be of the form BQc

exp, de�ned in (1.4.4).

Lemma 3.3.1. For '=Qc 2Cc1(R2n
�
dc~e1~ ;¡dc~e1~

	
;C), we have

hLQc('); 'i=BQc
exp(');

where BQc
exp(') is de�ned in ( 1.4.4). Furthermore, for ' = V1 2 Cc1(R2n

�
0
	
; C), where V1 is

centered at 0, and �~ a smooth radial cuto� function with value 0 in B(0; 1), and value 1 outside
of B(0; 2),

BV1(') =
Z
R2
(1¡ �~)(jr'j2¡ (1¡ jV1j2)j'j2+2Re2(V1� '))

¡
Z
R2
r�~:(Re(rV1V1� )j j2¡ 2Im(rV1V1� )Re( )Im( ))

+
Z
R2
�~(jr j2jV1j2+2Re2( )jV1j4+4Im(rV1V1� )Im(r )Re( )):
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Proof. We recall that LQc(')=¡ic@x2'¡�'¡ (1¡jQcj2)'+2Re(Qc')Qc. Writing '=Qc 2
Cc
1(R2n

�
dc~e1~ ;¡dc~e1~

	
;C), we decompose

LQc(')=¡ic@x2 Qc¡� Qc¡ 2rQc:r +2Re( )jQcj2Qc+TWc(Qc) :

Since TWc(Qc)=0,

hLQc('); 'i
= h(1¡ �)LQc('); 'i+ h�LQc('); Qc i

=
Z
R2
(1¡ �)Re((¡ic@x2'¡�'¡ (1¡ jQcj2)'+2Re(Qc')Qc)'�)

+
Z
R2
�Re((¡ic@x2 Qc¡� Qc¡ 2rQc:r +2Re( )jQcj2Qc)Qc ):

By integration by parts,Z
R2
(1¡ �)Re((¡ic@x2'¡�'¡ (1¡ jQcj2)'+2Re(Qc')Qc)'�)

=
Z
R2
(1¡ �)(jr'j2¡Re(ic@x2''�)¡ (1¡ jQcj2)j'j2+2Re2(Qc'))

¡
Z
R2
r�:Re(r''�):

Similarly, we computeZ
R2
�Re((¡ic@x2 Qc¡� Qc¡ 2rQc:r +2Re( )jQcj2Qc)Qc )

=
Z
R2
�(Re(¡ic@x2  � jQcj2)¡Re(�  �)jQcj2+2Re2( )jQcj4¡ 2Re(rQc:r Qc ))

=
Z
R2
�(cjQcj2(Im(@x2 )Re( )¡Re(@x2 )Im( ))+2Re2( )jQcj4¡ 2Re(rQc:r Qc ))

+
Z
R2
� jr j2jQcj2+2

Z
R2
�Re(rQcQc):Re(r  �)+

Z
R2
r�:Re(r  �)jQcj2:

We continue, we have

¡
Z
R2
� jQcj2Re(@x2 )Im( )

=
Z
R2
� jQcj2Re( )Im(@x2 )+

Z
R2
@x2� jQcj2Re( )Im( )+ 2

Z
R2
�Re(@x2QcQc)Re( )Im( );

as well asZ
R2
�Re(rQc:r Qc )=

Z
R2
�Re(rQcQc):Re(r  �)+

Z
R2
�Im(rQcQc)Im(r  �);

therefore Z
R2
�Re((¡ic@x2 Qc¡� Qc¡ 2rQc:r +2Re( )jQcj2Qc)Qc )

=
Z
R2
�(jr j2jQcj2+2Re2( )jQcj4+2cIm(@x2 )Re( ))

+
Z
R2
�(2cRe(@x2QcQc)Re( )Im( )¡ 2Im(rQcQc)Im(r  �))

+ c

Z
R2
@x2�Re( )Im( )jQcj2+

Z
R2
r�:Re(r  �)jQcj2:

Since ic@x2Qc =�Qc+ (1¡ jQcj2)Qc, we have cRe(@x2QcQc) =Re(i�QcQc). By integration by
parts,

2
Z
R2
�Re(i�QcQc)Re( )Im( )

= 2
Z
R2
r�:Im(rQcQc)Re( )Im( )

¡ 2
Z
R2
�Im(rQcQc):Re(r )Im( )¡ 2

Z
R2
�Im(rQcQc):Re( )Im(r );
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and

¡2
Z
R2
�Im(rQcQc)Im(r  �)

= ¡2
Z
R2
�Im(rQcQc)(Im(r )Re( )¡Im( )Re(r )):

Combining these estimates, withZ
R2
r�:Re(r''�)=

Z
R2
r�:(Re(rQcQc)j j2+Re(r  �)jQcj2);

we conclude the proof of

hLQc('); 'i=BQc
exp('):

Now, for the proof for BV1('), the computations are identical, simply replacing c by 0, � by �~, and
Qc by V1. �

3.3.2 A coercivity result for the quadratic form around one vortex

This subsection is devoted to the proof of Proposition 1.4.2, and a localized version of it (see Lemma
3.3.2).

3.3.2.1 Coercivity for test functions

Proof. (of Proposition 1.4.2) We recall the result from [10], see Lemma 3.1 and equation (2.42)
there. If '=V1 2Cc1(R2n

�
0
	
;C) with the two orthogonality conditionsZ

B(0;R)

Re(@x1V1'�)=
Z
B(0;R)

Re(@x1V1'�)= 0;

then, writing  0(x) = 1

2�

R
0

2�
 (jxj cos(�); jxj sin(�)d�), the 0-harmonic around 0 of  , and  =/0=

 ¡  0, then

BV1(')>K
Z
R2
jr(V1 =/0)j2+ jr 0j2jV1j2+

jV1 =/0j2
(1+ r)2

+Re2( )jV1j4:

We recall from Lemma 1.2.1 that there exists K1> 0 such that K16 jV1j
r
6 1

K1
, and that jV1j is a

radial function around 0. Therefore, by Hardy inequality in dimension 4,Z
B(0;1)

j 0j26K
�Z

B(0;2)

jr 0j2jV1j2+
Z
B(0;2)nB(0;1)

j 0j2
�
:

By Poincaré inéquality, using
R
B(0;R)nB(0;R/2)Im( )=0 and jV1j2>K outside of B(0; 1), we haveZ

B(0;10)nB(0;1)
j 0j26K

�Z
B(0;R)

jr 0j2jV1j2+Re2( 0)jV1j4
�
:

Here, the constant K>0 depends on R>0, but we consider R as a universal constant. We deduce
that Z

B(0;10)
j'j2 6

Z
B(0;10)

jV1 j2

6 K

�Z
B(0;10)

jV1 0j2+
Z
B(0;10)

jV1 =/0j2
�

6 K

 Z
R2
jr(V1 =/0)j2+ jr 0j2jV1j2+

jV1 =/0j2
(1+ r)2

+Re2( )jV1j4
!
:
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Similarly,Z
B(0;10)

jr'j2 6
Z
B(0;10)

jr(V1( 0+  =/0))j2

6 K

�Z
B(0;10)

jr(V1 0)j2+
Z
B(0;10)

jr(V1 =/0)j2
�

6 K

�Z
B(0;10)

jr 0j2jV1j2+ j 0j2jrV1j2+
Z
B(0;10)

jr(V1 =/0)j2
�

6 K

 Z
R2
jr(V1 =/0)j2+ jr 0j2jV1j2+

jV1 =/0j2
(1+ r)2

+Re2( )jV1j4
!
:

Finally, outside of B(0; 5), we have, by Lemma 1.2.1, thatZ
R2nB(0;5)

jr j26K
Z
R2nB(0;5)

jr j2jV1j2:
Let us show thatZ

R2nB(0;5)

j j2
r2ln2(r)

6K
�Z

R2nB(0;5)
jr j2+

Z
B(0;10)nB(0;5)

j j2
�
:

This is a Hardy type inequality, and it would conclude the proof of this proposition. Remark that
for the harmonics other than zeros, this is a direct consequence ofZ

R2nB(0;5)

j =/0j2
r2

6
Z
R2nB(0;5)

jr j2:

We therefore suppose that  is a radial compactly supported function. We de�ne � a smooth radial
cuto� function with �(r)=0 if r6 4 and �(r)= 1 if r> 5. Then, by Cauchy-Schwarz,����Z

R2nB(0;5)

�(r)j j2
r2ln2(r)

���� =
����¡Z

5

+1
�(r)j j2(r)@r

�
1

ln(r)

�
dr

����
=
����Z
5

+1
@r(�j j2)(r)

dr

ln(r)

����
6 K

�Z
B(0;10)nB(0;5)

j j2+
Z
5

+1
�(r)j j(r)@r j j(r)

dr
ln(r)

�

6 K

0@Z
B(0;10)nB(0;5)

j j2+
Z
R2nB(0;5)

�(r)j j2
r2ln2(r)

Z
R2nB(0;5)

jr j2
s 1A:

The proof is complete. �

3.3.2.2 Localisation of the coercivity for one vortex

Now, we want to localize the coercivity result. We de�ne, for D> 10, '=V1 2HV1,

BV1
locD(') :=

Z
B(0;D)

(1¡ �~)(jr'j2¡ (1¡ jV1j2)j'j2+2Re2(V1� '))

¡
Z
B(0;D)

r�~:(Re(rV1V1� )j j2¡ 2Im(rV1V1� )Re( )Im( ))

+
Z
B(0;D)

�~(jr j2jV1j2+2Re2( )jV1j4+4Im(rV1V1� )Im(r )Re( ));

where �~ is a smooth radial cuto� function such that �~(x)= 0 on B(0; 1), �~(x)=1 on R2nB(0; 2).

Lemma 3.3.2. There exist K; R; D0 > 0 with D0 > R, such that, for D > D0 and ' = V1 2
Cc
1(R2n

�
0
	
;C), if the following three orthogonality conditionsZ

B(0;R)

Re(@x1V1'�)=
Z
B(0;R)

Re(@x2V1'�)=
Z
B(0;R)nB(0;R/2)

Im( )=0
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are satis�ed, then

BV1
locD(')>K

�Z
B(0;10)

jr'j2+ j'j2+
Z
B(0;D)nB(0;5)

jr j2jV1j2+Re2( )jV1j4+
j j2

r2ln2(r)

�
:

Proof. We decompose  in harmonics j 2N; l 2
�
1; 2
	
, with the same decomposition as (2.5) of

[10]. This decomposition is adapted to the quadratic form BV1
locD, see equation (2.4) of [10], that

also holds if the integral is only on B(0; D).
For j = 0, the proof is identical. For j > 2, l 2

�
1; 2
	
from equation (2.38) of [10] (that holds

on B(0; D) as the inequality is pointwise), the proof holds if it does for j=1, l2
�
1; 2
	
.

We therefore focus on the case j = l = 1. We write  =  1(r)cos(�) + i 2(r)sin(�), with  1;
 2 2 Cc1(R+�;R). The other possibility (l = 2) is  =  1(r)i cos(�) +  2(r)sin(�), which is done
similarly. We will show a more general result, that is, for any '=V1 2Cc1(R2n

�
0
	
;C) satisfying

the orthogonality conditions,

BV1
locD(V1 =/0)

> K

 Z
B(0;10)

jr(V1 =/0)j2+ jV1 =/0j2+
Z
B(0;D)nB(0;5)

jr =/0j2jV1j2+Re2( =/0)jV1j4+
j =/0j2
r2

!
:

With the previous remark, it is enough to conlcude the proof of this lemma. In the rest of the
proof, to simplify the notation, we write  instead of  =/0, but it still has no 0-harmonic.

We remark that, for D>R0> 2,Z
B(0;D)nB(0;R0)

jr j2jV1j2+2Re2( )jV1j4+4Im(rV1V1� ):Im(r )Re( )

>
Z
B(0;D)nB(0;R0)

jr j2jV1j2+2Re2( )jV1j4¡
K jV1j2
R0

jIm(r )Re( )j

> 1
2

Z
B(0;D)nB(0;R0)

jr j2jV1j2+2Re2( )jV1j4 (3.3.1)

if R0 is large enough. We therefore take R0>R large enough such that (3.3.1) holds. For D
2
>�>R0,

we de�ne �� a smooth cuto� function such that ��(r)=1 if r6�, ��=0 if r> 2�, and j��0 j6 K

�
.

In particular, since R0>2, we have Supp(��0 )�Supp(�~) and Supp(1¡ �~)�Supp(��). This implies
that Z

B(0;D)

(1¡ �~)(jr'j2¡ (1¡ jV1j2)j'j2+2Re2(V1� '))

=
Z
B(0;D)

(1¡ �~)(jr(��')j2¡ (1¡jV1j2)j��'j2+2Re2(V1� ��'))

and Z
B(0;D)

r�~:(Re(rV1V1� )j j2¡ 2Im(rV1V1� )Re( )Im( ))

=
Z
B(0;D)

r�~:(Re(rV1V1� )j�� j2¡ 2Im(rV1V1� )Re(�� )Im(�� )):

Now, we decomposeZ
B(0;D)

�~(jr j2jV1j2+2Re2( )jV1j4+4Im(rV1V1� )Im(r )Re( ))

=
Z
B(0;D)

(1¡ ��2)�~(jr j2jV1j2+2Re2( )jV1j4+4Im(rV1V1� )Im(r )Re( ))

+
Z
B(0;D)

��
2�~(jr j2jV1j2+2Re2( )jV1j4+4Im(rV1V1� )Im(r )Re( ));

and by equation (3.3.1),Z
B(0;D)

(1¡ ��2)�~(jr j2jV1j2+2Re2( )jV1j4+4Im(rV1V1� )Im(r )Re( ))

> K

Z
B(0;D)

(1¡ ��2)jr j2jV1j2+2Re2( )jV1j4:
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Furthermore,Z
B(0;D)

��
2�~(jr j2jV1j2+2Re2( )jV1j4+4Im(rV1V1� )Im(r )Re( ))

=
Z
B(0;D)

�~(jr(�� )j2jV1j2+2Re2(�� )jV1j4+4Im(rV1V1� )Im(r(�� ))Re(�� ))

¡
Z
B(0;D)

�~((jr(�� )¡r�� j2¡ jr(�� )j2)jV1j2¡ 4Im(rV1V1� ):r��Im( )Re(�� ));

and thus

BV1
locD(V1 )

> BV1
locD(V1�� )+K

Z
B(0;D)

(1¡ ��2)jr j2jV1j2+2Re2( )jV1j4

¡
Z
B(0;D)

�~((jr(�� )¡r�� j2¡ jr(�� )j2)jV1j2¡ 4Im(rV1V1� ):r��Im( )Re(�� )):

Since V1�� 2Cc1(B(0;D)), we have BV1
locD(V1�� )=BV1(V1�� ), and since ��=1 in B(0;R) and

V1 satis�ed the orthogonality conditions, so does V1�� . By Proposition 1.4.2, we deduce that

BV1
locD(V1�� )

> K

Z
B(0;10)

jr(V1�� )j2+ jV1�� j2

+ K

Z
B(0;D)nB(0;5)

jr(�� )j2jV1j2+Re2(�� )jV1j4+
j�� j2
r2ln2(r)

:

Now, remarking that

jr(�� )j2jV1j2>K1jr j2��2 jV1j2¡K2jr��j2j j2jV1j2;

and since ��=1 in B(0; 10), we deduce that

BV1
locD(V1 )

> K

�Z
B(0;10)

jr'j2+ j'j2+
Z
B(0;D)nB(0;5)

jr j2jV1j2+Re2( )jV1j4
�

¡ K

Z
B(0;D)

�~(j(jr(�� )¡r�� j2¡jr(�� )j2)jjV1j2+ jIm(rV1V1� ):r��Im( )Re(�� )j)

¡ K

Z
B(0;D)nB(0;5)

jr��j2j j2jV1j2: (3.3.2)

Since r�� is supported in B(0; 2�)nB(0; �) with jr��j6 K

�
, we haveZ

B(0;D)nB(0;5)
jr��j2j j2jV1j26K

Z
B(0;2�)nB(0;�)

j j2
(1+ r)2

; (3.3.3)

and by Cauchy-Schwarz, we have thatZ
B(0;D)

�~jIm(rV1V1� ):r��Im( )Re(�� )j6K
Z
B(0;2�)nB(0;�)

j j2
(1+ r)2

Z
B(0;D)nB(0;5)

Re2( )

s
and Z

B(0;D)

�~(j(jr(�� )¡r�� j2¡ jr(�� )j2)jjV1j2)

6 K

0@ Z
B(0;2�)nB(0;�)

j j2
(1+ r)2

Z
B(0;D)nB(0;5)

jr j2jV1j2
s

+
Z
B(0;2�)nB(0;�)

j j2
(1+ r)2

1A: (3.3.4)

Since  has no 0 harmonics, we have thatZ
B(0;D)nB(0;5)

j j2
(1+ r)2

6K
Z
B(0;D)nB(0;5)

jr j2jV1j2:
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We infer that there exists D0 > R0 a large constant such that, for D > D0, for all ' = V1 2
Cc
1(R2n

�
0
	
;C), there exists �2

h
R0;

D0
2

i
such thatZ

B(0;2�)nB(0;�)

j j2
(1+ r)2

6 "
Z
B(0;D)nB(0;5)

jr j2jV1j2 (3.3.5)

for some small �xed constant ">0. Indeed, if this does not hold, then
R
B(0;D)nB(0;5)jr j

2jV1j2=/ 0
and Z

B(0;D)nB(0;5)

j j2
(1+ r)2

>
Z
R0

D0 j j2
(1+ r)2

rdr

>
X
n=0

j
log2

�
D0
2R0

�k
¡2 Z

2nR0

2n+1R0 j j2
(1+ r)2

rdr

>
X
n=0

j
log2

�
D0
2R0

�k
¡2

"

Z
B(0;D)nB(0;5)

jr j2jV1j2

> "

��
log2

�
D0

2R0

��
¡ 1
�Z

B(0;D)nB(0;5)
jr j2jV1j2

>
1
K

Z
B(0;D)nB(0;5)

jr j2jV1j2

for D0 large enough. Taking "> 0 small enough, with equation (3.3.2) to (3.3.5), we conclude the
proof of this lemma. �

A consequence of Lemma 3.3.2 is that, for a function '=V1 2Cc1(R2n
�
0
	
;C) satisfying the

three orthogonality conditions in Lemma 3.3.2 and D>D0, then

BV1
locD(')>K(D)k'kH1(B(0;D))

2 : (3.3.6)

3.3.3 Coercivity for a travelling wave near its zeros
We recall from Lemma 3.3.1 that, for '2Cc1

¡
R2n

�
d~ce~1;¡d~ce~1

	
;C
�
, we have

hLQc('); 'i =
Z
R2
(1¡ �)(jr'j2¡Re(ic@x2''�)¡ (1¡ jQcj2)j'j2+2Re2(Qc'))

¡
Z
R2
r�:(Re(rQcQc)j j2¡ 2Im(rQcQc)Re( )Im( ))

+
Z
R2
c@x2�Re( )Im( )jQcj2

+
Z
R2
�(jr j2jQcj2+2Re2( )jQcj4)

+
Z
R2
�(4Im(rQcQc)Im(r )Re( )+2cjQcj2Im(@x2 )Re( )):

For D>D0 (D0> 0 being de�ned in Lemma 3.3.2), we de�ne, with '=Qc ,

BQc
loc�1;D(') :=

Z
B
¡
�d~ce1;D

�(1¡ �)(jr'j2¡Re(ic@x2''�)¡ (1¡ jQcj2)j'j2+2Re2(Qc'))

¡
Z
B
¡
�d~ce1;D

�r�:(Re(rQcQc)j j2¡ 2Im(rQcQc)Re( )Im( ))

+
Z
B
¡
�d~ce1;D

�c@x2�Re( )Im( )jQcj2

+
Z
B
¡
�d~ce1;D

��(jr j2jQcj2+2Re2( )jQcj4)

+
Z
B
¡
�d~ce1;D

��(4Im(rQcQc)Im(r )Re( )+2cjQcj2Im(@x2 )Re( )):
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We infer that this quantity is close enough to B
V~�1

locD(') for the coercivity to hold, with V~�1 being
centered at �d~ce1~ , the zero of Qc in the right half plane.

Lemma 3.3.3. There exist R; D0 > 0 with D0 > R, such that, for D > D0, 0 < c < c0(D) and
'=Qc 2Cc1

¡
R2n

�
d~ce1~

	
;C
�
, if the following three orthogonality conditionsZ

B
¡
d~ce1;R

�Re
¡
@x1V

~
1'�
�
=
Z
B
¡
d~ce1;R

�Re
¡
@x2V

~
1'�
�
=
Z
B
¡
d~ce1;R

�
nB
¡
d~ce1;R/2

�Im( )=0
are satis�ed, then

BQc
loc1;D(')>K(D)k'kH1

¡
B
¡
d~ce1;D

��2 :

Proof. First, remark that we write '=Qc and not '=V~1 , as we did in the proof of Proposition
1.4.2. Hence, to apply Lemma 3.3.2, the third orthogonality condition becomesZ

B
¡
d~ce1;R

�
nB
¡
d~ce1;R/2

�Im
�
 
Qc

V~1

�
=0:

With Lemma 3.1.14, we check that�����
Z
B
¡
d~ce1;R

�
nB
¡
d~ce1;R/2

�Im
�
 
Qc

V~1

������
6
�����
Z
B
¡
d~ce1;R

�
nB
¡
d~ce1;R/2

�Im( )
�����+ oc!0(1)k kL2¡B¡d~ce1;R�nB¡d~ce1;R/2��

6
�����
Z
B
¡
d~ce1;R

�
nB
¡
d~ce1;R/2

�Im( )
�����+ oc!0

D (1)k'kH1
¡
B
¡
d~ce1;D

��;
therefore, by standard coercivity argument, we can change this orthogonality condition, given that
c is small enough (depending on D). With equation (3.3.6), it is therefore enough to show that

jBQc
locD(')¡B

V~1

locD(')j6 oc!0
D (1)k'kH1

¡
B
¡
d~ce1;D

��2

to complete the proof of this lemma. Thus, for '=Qc 2Cc1
¡
R2n

�
d~ce1~

	
;C
�
, writing '=V1

�
Qc
V1
 
�

in B
V~1

locD('), we have

BQc
loc1;D(')¡B

V~1

locD(')

=
Z
B
¡
d~ce1;D

�¡Re(ic@x2''�)+
¡
jQcj2¡ jV~1j2

�
j'j2+2

¡
Re2(Qc')¡Re2

¡
V1~
� '
��

¡
Z
B
¡
d~ce1;D

�r�:(Re(rQcQc)j j2¡ 2Im(rQcQc)Re( )Im( ))

+
Z
B
¡
d~ce1;D

�r�:
�
Re
¡
rV~1V~1�

����Qc
V~1
 
���2¡ 2Im¡rV~1V~1� �Re

�
Qc

V~1
 

�
Im

�
Qc

V~1
 

��
+
Z
B
¡
d~ce1;D

�c@x2�Re( )Im( )jQcj2

+
Z
B
¡
d~ce1;D

��(jr j2jQcj2+2Re2( )jQcj4)

¡
Z
B
¡
d~ce1;D

��
����r�Qc

V~1
 

����2jQcj2+2Re2
�
Qc

V~1
 

�
jQcj4

�
+
Z
B
¡
d~ce1;D

��(4Im(rQcQc)Im(r )Re( )+ 2cjQcj2Im(@x2 )Re( ))

¡
Z
B
¡
d~ce1;D

��
�
4Im(rQcQc)Im

�
r
�
Qc

V~1
 

��
Re

�
Qc

V~1
 

��
:
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With Theorem 1.3.1 (for p=+1) and Cauchy-Schwarz, we check easily thatZ
B
¡
d~ce1;D

�jRe(ic@x2''�)j+ jjQcj2¡ jV~1j2jj'j2+2
��Re2(Qc')¡Re2

¡
V1~
� '
���

6 oc!0
D (1)k'kH1

¡
B
¡
d~ce1;D

��2 :

Since r� is supported in B
¡
d~ce1~ ; 2

�
nB
¡
d~ce1~ ; 1

�
, still with Theorem 1.3.1 (for p=+1), we check

that Z
B
¡
d~ce1;D

�
���r�:Re(rQcQc)j j2¡r�Re

¡
rV~1V~1�

����Qc
V~1
 
���2���

6 K

Z
B
¡
d~ce1;D

�
���r�:Re(rQcQc)j'j2¡r�Re

¡
rV~1V~1�

����Qc
V~1
'
���2���

6




r�:Re(rQcQc)¡r�Re

¡
rV~1V~1�

����Qc
V~1

���2




L1

¡¡
d~ce1;D

��k'kH1
¡
B
¡
d~ce1;D

��
6 oc!0

D (1)k'kH1
¡
B
¡
d~ce1;D

��2 :

We check similarly that the same estimate hold for all the remaining error terms, using the fact
that � is supported in R2nB

¡
d~ce1~ ; 1

�
. �

Remark that, by density argument (see the proof of Lemma 3.2.4), Lemma 3.3.3 holds for any
'2H1(B(0;D)). Now, we want to remove the orthogonality condition on the phase. For that, we
have to change the coercivity norm

Lemma 3.3.4. There exist R; D0 > 0 with D0 > R, such that, for D > D0, 0 < c < c0(D) and
'=Qc 2Cc1

¡
R2n

�
d~ce1~

	
;C
�
, if the following two orthogonality conditionsZ

B
¡
d~ce1;R

�Re
�
@x1V~1V~1 

�
=
Z
B
¡
d~ce1;R

�Re
�
@x2V~1V~1 

�
=0

are satis�ed, then

BQc
loc1;D(')>K(D)

Z
B
¡
d~ce1;D

�jr j2jQcj4+Re2( )jQcj4:

Proof. Take a function '2H1(B(0; D)) that satis�es the orthogonality conditionsZ
B
¡
d~ce1;R

�Re
�
@x1V~1V~1 

�
=
Z
B
¡
d~ce1;R

�Re
�
@x2V~1V~1 

�
=
Z
B
¡
d~ce1;R

�
nB
¡
d~ce1;R/2

�Im( )=0;

and let us show that BQc
loc1;D(')>Kk'kH1

¡
B
¡
d~ce1;D

��2 . Take "1; "2; "32R and we de�ne

'~ = '¡ "1@x1Qc¡ "2@x2Qc¡ "3iQc:

We have, for '=Qc , by Theorem 1.3.1 (for p=+1) and Lemma 3.1.14,�����
Z
B
¡
d~ce1;R

�Re
�
@x1V~1V~1 

�
¡
Z
B
¡
d~ce1;R

�Re(@x1QcQc )

�����
6
�����
Z
B
¡
d~ce1;R

�Re

 
@x1V~1

V~1
Qc
'�¡@x1Qc'�

!�����
6 K






@x1V~1 V~1Qc ¡ @x1Qc






L1

¡
B
¡
d~ce1;R

��k'kH1
¡
B
¡
d~ce1;D

��
6 oc!0

D (1)k'kH1
¡
B
¡
d~ce1;D

��:
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Similar estimates hold for
R
B
¡
d~ce1;R

�Re
�
@x2V

~
1V~1 

�
. By standard arguments, we check that there

exists "1; "2; "32R with j"1j+ j"2j+ j"2j6 oc!0(1)k'kH1
¡
B
¡
d~ce1;D

�� such that '~ satis�es the three

orthogonality conditions of Lemma 3.3.3. We deduce that, since (by Theorem 1.3.1 for p=+1)

k@x1QckH1
¡
B
¡
d~ce1;D

��+ k@x2QckH1
¡
B
¡
d~ce1;D

��+ kiQckH1
¡
B
¡
d~ce1;D

��6K(D);
BQc

loc1;D(') > BQc
loc1;D('~)¡ oc!0

D (1)k'kH1
¡
B
¡
d~ce1;D

��2

> K(D)k'~kH1
¡
B
¡
d~ce1;D

��2 ¡ oc!0
D (1)k'kH1

¡
B
¡
d~ce1;D

��2

> K(D)k'kH1
¡
B
¡
d~ce1;D

��2 ¡ oc!0
D (1)k'kH1

¡
B
¡
d~ce1;D

��2

> K(D)k'kH1
¡
B
¡
d~ce1;D

��2 ;

given that c is small enough (depending on D). For '=Qc , we infer thatZ
B
¡
d~ce1;D

�jr j2jQcj4+Re2( )jQcj46K(D)k'kH1
¡
B
¡
d~ce1;D

��2 :

Indeed, we haveZ
B
¡
d~ce1;D

�Re2( )jQcj46K
Z
B
¡
d~ce1;D

�Re2(')6Kk'kH1
¡
B
¡
d~ce1;D

��2 ;

and Z
B
¡
d~ce1;D

�jr j2jQcj4 =
Z
B
¡
d~ce1;D

�jr'¡rQc j2jQcj2

6 K

 Z
B
¡
d~ce1;D

�jr'j2+
Z
B
¡
d~ce1;D

�jrQc j2jQcj2
!

6 K

 Z
B
¡
d~ce1;D

�jr'j2+
Z
B
¡
d~ce1;D

�j'j2
!
:

We deduce that, under the three orthogonality conditions, for '=Qc ,Z
B
¡
d~ce1;R

�Re
�
@x1V~1V~1 

�
=
Z
B
¡
d~ce1;R

�Re
�
@x2V~1V~1 

�
=
Z
B
¡
d~ce1;R

�
nB
¡
d~ce1;R/2

�Im( )=0;
then

BQc
loc1;D(')>K(D)

Z
B
¡
d~ce1;D

�jr j2jQcj4+Re2( )jQcj4:

Now, let us show that for any �2R, '2H1
¡
B
¡
d~ce1~ ;D

��
,

BQc
loc1;D('¡ i�Qc)=BQc

loc1;D('):

For '2Cc1(R2;C), we have LQc('¡ i�Qc)=LQc(')2Cc1(R2;C), thus hLQc('¡ i�Qc); '¡ i�Qci
is well de�ned, and

hLQc('¡ i�Qc); '¡ i�Qci= hLQc('); '¡ i�Qci= h';LQc('¡ i�Qc)i= hLQc('); 'i:

With computations similar to the one of the proof of Lemma 3.3.1 and by density, using r( ¡
i�)=r and Re( ¡ i�)=Re( ), we deduce that BQc

loc1;D('¡ i�Qc)=BQc
loc1;D(').

Now, for �2R, '~ = '¡ i�Qc,  ~=  ¡ i�, '~=Qc ~, we have BQc
loc1;D(')=BQc

loc1;D('~),Z
B
¡
d~ce1;D

�jr j2jQcj4+Re2( )jQcj4=
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and Z
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=
Z
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�Re
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rV~1V~1 ~

�
:
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For this last equality, it comes from the fact that
R
B
¡
d~ce1;R

�Re
¡
irV~1V~1�

�
= 0, since Re

¡
irV~1V~1�

�
has no zero harmonic (see Lemma 1.2.1). We also check thatZ

B
¡
d~ce1;R

�
nB
¡
d~ce1;R/2

�Im( )=
Z
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¡
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�
nB
¡
d~ce1;R/2

�Im( ~)+K�
for a universal constantK>0. Therefore, choosing �2R such that

R
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d~ce1;R

�
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¡
d~ce1;R/2

�Im( ~)=0,
we have, for a function '=Qc that satis�esZ

B
¡
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�Re
�
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~
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�
=
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�Re
�
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�
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that

BQc
loc1;D(') = BQc

loc1;D('~)

>
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�jr ~ j2jQcj4+Re2( ~)jQcj4

=
Z
B
¡
d~ce1;D

�jr j2jQcj4+Re2( )jQcj4:

This concludes the proof of this lemma. �

3.3.4 Proof of Proposition 1.4.3

Proof. (of Proposition 1.4.3) From Lemma 3.3.1, we have, for '=Qc 2Cc1
¡
R2n

�
d~ce1~ ;¡d~ce1~

	
;

C
�
that

BQc(') =
Z
R2
(1¡ �)(jr'j2¡Re(ic@x2''�)¡ (1¡ jQcj2)j'j2+2Re2(Qc'))

¡
Z
R2
r�:(Re(rQcQc)j j2¡ 2Im(rQcQc)Re( )Im( ))

+
Z
R2
c@x2�Re( )Im( )jQcj2

+
Z
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�(jr j2jQcj2+2Re2( )jQcj4)

+
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R2
�(4Im(rQcQc)Im(r )Re( )+ 2cjQcj2Im(@x2 )Re( )):

We decompose the integral in three domains, B
¡
�d~ce1~ ; D

�
(which yield BQc

loc�1;D(')) and
R2n

¡
B
¡
d~ce1~ ;D

�
[B

¡
¡d~ce1~ ;D

��
for some D>D0> 0, where D0 is de�ned in Lemma 3.3.3.

Then, with the four orthogonality conditions and Lemma 3.3.3, we check that

BQc
loc1;D(')>K(D)

Z
B
¡
d~ce1;D

�jr j2jQcj4+Re2( )jQcj4;

and, by symmetry of the problem around B
¡
�d~ce1~ ; D

�
, since Qc =¡V¡1

¡
: + d~ce~1

�
+ oc!0(1) in

L1
¡
B
¡
¡d~ce1~ ;D

��
, and checking that multiplying the vortex by¡1 does not change the result, that

BQc
loc¡1;D(')>K(D)

Z
B
¡
¡d~ce1;D

�jr j2jQcj4+Re2( )jQcj4:

Furthermore, there existK1;K2>0, universal constants, such that, outside of B(dc~e1~ ;1)[B(¡dc~e1~ ;
1) for c small enough, we have

K1> jQcj2>K2

by (3.1.12). We also have

jIm(rQcQc)j6K
�

1
(1+ r~1)

+ 1
(1+ r~¡1)

�
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by (3.1.10). With these estimates and by Cauchy-Schwarz, for D>D0,Z
R2n

¡
B
¡
d~ce1;D

�
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¡
¡d~ce1;D

��2cjQcj2Im(@x2 )Re( )

> ¡Kc
Z
R2n

¡
B
¡
d~ce1;D

�
[B

¡
¡d~ce1;D

��jr j2jQcj4+Re2( )jQcj4;

and Z
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¡
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�
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��jr j2jQcj4+Re2( )jQcj4:

Therefore, taking D>D0 large enough (independently of c or c0, D>10K+1) and c small enough
(c6 10

K
), we haveZ

R2n
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¡
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�
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��jr j2jQcj2+2Re2( )jQcj4
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Z
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¡
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�
[B

¡
¡d~ce1;D

��jr j2jQcj4+Re2( )jQcj4:

We deduce that, for '=Qc 2Cc1(R2n
�
dc~e1~ ;¡dc~e1~

	
;C),

BQc(')>Kk'kC2

if Z
B
¡
d~ce1;R

�Re
�
@x1V~1V1~  

�
=
Z
B
¡
d~ce1;R

�Re
�
@x2V1~ V1~  

�
=0;

Z
B
¡
¡d~ce1;R

�Re
�
@x1V

~¡1V~¡1 
�
=
Z
B
¡
¡d~ce1;R

�Re
�
@x2V

~¡1V~¡1 
�
=0:

We argue by density to show this result inHQc. From Lemma 3.2.1, we know that k:kC is continuous
with respect to k:kHQc. Furthermore, we recall from Lemma 3.2.2, thatZ

B
¡
d~ce1;R

�
���Re
�
@x1V1~ V1~  

����6K(c)k'kHQc;
and similar estimates hold forZ

B
¡
d~ce1;R

�Re
�
@x2V1~ V1~  

�
;

Z
B(¡dce1;R)

Re
�
@x1V~¡1V~¡1 

�
and Z

B
¡
¡d~ce1;R

�Re
�
@x2V

~¡1V~¡1 
�
: (3.3.7)

In particular, we check that these quantities are continuous for the norm k:kHQc, and that we can
pass to the limit by density in these quantities by Lemma 3.2.4.

We are left with the passage to the limit for the quadratic form. For '2HQc, we recall from
(1.4.3) that

BQc(') =
Z
R2
jr'j2¡ (1¡ jQcj2)j'j2+2Re2(Qc')

+ c

Z
R2
(1¡ �)Re(i@x2''�)+ c

Z
R2
�Re(i @x2QcQc)j j2

¡ 2c
Z
R2
�Re Im@x2 jQcj2¡ c

Z
R2
@x2�Re Im jQcj2

¡ c

Z
R2
�Re Im @x2(jQcj2):

3.3 Coercivity results in HQc
183



Following the proof of Lemma 3.2.3, we check easily that, for '1=Qc 1; '2=Qc 22HQc, we haveZ
R2
jr'1r'2j+ j(1¡ jQcj2)'1'2j+ jRe(Qc'1)Re(Qc'2)j

+
Z
R2
(1¡ �)jRe(i@x2'1'2)j+

Z
R2
� jRe(i@x2QcQc)jj 1 2j

+
Z
R2
� jRe 1Im@x2 2jjQcj2+

Z
R2
j@x2�Re 1Im 2jjQcj2

+
Z
R2
� jRe 1Im 2@x2(jQcj2)j

6 K(c)k'1kHQck'2kHQc;

and thus we can pass at the limit in BQc by Lemma 3.2.4. This concludes the proof of Proposition
1.4.3. �

3.4 Proof of Theorem 1.4.4 and its corollaries

3.4.1 Link between the sets of orthogononality conditions
The �rst goal of this subsection is to show that the four particular directions (@x1Qc; @x2Qc; c

2@cQc;
c@c?Qc) are almost orthogonal between them near the zeros of Qc, and that they can replace the
four orthogonality conditions of Proposition 1.4.3. This is computed in the following lemma.

Lemma 3.4.1. For R > 0 given by Proposition 1.4.3, there exist K1; K2 > 0, two constants
independent of c, such that, for Qc de�ned in Theorem 1.3.1,

K16
Z
B
¡
�d~ce1;R

�j@x1Qcj2+
Z
B
¡
�d~ce1;R

�j@x2Qcj2+
Z
B
¡
�d~ce1;R

�jc2@cQcj2+
Z
B(�dce1;R)

jc@c?Qcj26K2:

Furthermore, for A; B 2
�
@x1Qc; @x2Qc; c

2@cQc; c@c?Qc
	
, A =/ B, we have that, for 1 > �0 > 0 a

small constant, Z
B
¡
d~ce1;R

�
[B

¡
¡d~ce1;R

�Re(AB�)= oc!0(c�0):

Proof. From Lemma 3.1.1, we have, in B(�dc~e1~ ;R), that (for 0<�=1¡ �0< 1)

Qc(x)=V1(x¡ dce1~ )V¡1(x+ dce1~ )+ oc!0(c�0)

and

rQc(x)=r(V1(x¡ dce1~ )V¡1(x+ dce1~ ))+ oc!0(c�0):

In this proof a oc!0(c�0) may depend on R, but we consider R as a universal constant. From
Lemmas 1.2.1 and 3.1.12 and equation (3.1.7), we show that, by the mean value theorem, in
B(�dc~e1~ ;R),

Qc=V1V¡1+ oc!0(c�0)=V�1+ oc!0(c�0)=V~�1+ oc!0(c�0) (3.4.1)

and, similarly,

rQc=rV~�1+ oc!0(c�0): (3.4.2)

Thus, in B(�dc~e1~ ;R), we have

@x1Qc= @x1V~�1+ oc!0(c�0) (3.4.3)

and

@x2Qc=@x2V~�1+ oc!0(c�0): (3.4.4)

Furthermore, by Lemma 3.1.2, we have in particular that in B(�dc~e1~ ;R),

c2@cQc=(1+ oc!0(c�0))@d(V1(x¡ de1~ )V¡1(x+ de1~ ))|d=dc+ oc!0(c�0):
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Thus, in B(�dc~e1~ ;R), with Lemmas 1.2.1 and 3.1.12, we estimate

c2@cQc=�@x1V~�1+ oc!0(c�0): (3.4.5)

Finally, from Lemma 3.1.6, we have
c@c?Qc=¡cx?:rQc

with x?=(¡x2; x1). In B(�dc~e1~ ;R), we have, since cdc~ =1+ oc!0(c�0) and Lemma 3.1.12,

cx?=�e2~ + oc!0(c�0):
Therefore, in B(�dc~e1~ ;R), we have

c@c?Qc=�@x2V~�1+ oc!0(c�0): (3.4.6)

Now, from Lemma 1.2.1, we have

K16
Z
B
¡
�d~ce1;R

���@x1V~�1��2+ Z
B
¡
�d~ce1;R

���@x2V~�1��26K2 (3.4.7)

for universal constant K1;K2>0 (depending only on R). By a change of variable, we have, writing
V~�1= �(r~�1)ei�

~�1 (with the notations of Lemma 1.2.1),

@x1V~�1=
�
cos
¡
�~�1

��0(r~�1)
�(r~�1)

¡ �i
r~�1

sin
¡
�~�1

��
V~�1 (3.4.8)

and

@x2V
~�1=

�
sin
¡
�~�1

��0(r~�1)
�(r~�1)

+ �i
r~�1

cos
¡
�~�1

��
V~�1: (3.4.9)

Since

Re
�
@x1V

~�1@x2V~�1
�
=2cos

¡
�~�1

�
sin
¡
�~�1

� �0(r~�1)
r~�1�(r~�1)

��V~�1��2;
by integration in polar coordinates, we haveZ

B
¡
�d~ce1;R

�Re
�
@x1V~�1@x2V~�1

�
=0: (3.4.10)

Combining (3.4.3) to (3.4.6) with (3.4.7) and (3.4.10), we can do every estimate stated in the
lemma. �

With (3.4.3) to (3.4.6), we check that these four directions are close to the ones in the ortho-
gonality conditions of Proposition 1.4.3. This will appear in the proof of Lemma 3.4.5. Now, we
give a way to develop the quadratic form for some particular functions.

Lemma 3.4.2. For '2Cc1(R2n
�
dc~e1~ ;¡dc~e1~

	
;C) and A2Span

�
@x1Qc; @x2Qc; @cQc; @c?Qc

	
, we

have
hLQc('+A); '+Ai= hLQc('); 'i+ h2LQc(A); 'i+ hLQc(A); Ai:

Furthermore, hLQc('+A); '+Ai=BQc('+A) and hLQc(A); Ai=BQc(A).

Proof. Since '2Cc1(R2n
�
dc~e1~ ;¡dc~e1~

	
;C), it is enough to check that Re(LQc(A)A�)2L1(R2;R)

for A2Span
�
@x1Qc; @x2Qc; @cQc; @c?Qc

	
to show that

hLQc('+A); '+Ai= hLQc('); 'i+ h2LQc(A); 'i+ hLQc(A); Ai:

From Lemma 3.1.7, we have, for A= �1@x1Qc+ �2@x2Qc+ �3@cQc+ �4@c?Qc, that

LQc(A)= �3i@x2Qc¡ �4i@x1Qc:

Now, with (3.1.16) (that holds also for A by linearity) and (3.1.9), (3.1.10), we check easily that
Re(LQc(A)A�)2L1(R2;R).

Now, from subsection 3.2.3, to show that for �= Qc	 2HQc \C2(R2;C), we have hLQc(�);
�i=BQc(�), it is enough to show that

R
R2@x2(�Re	Im	jQcj2) is well de�ned and is 0. For �=A

or �='+A, this is a consequence of (3.1.16), Lemma 3.1.16 and '2Cc1(R2n
�
dc~e1~ ;¡dc~e1~

	
;C). �
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3.4.2 Some useful elliptic estimates
We want to improve slightly the coercivity norm near the zeros of Qc. This is done in the following
lemma. The improvement is in the exponent of the weight in front of f2.

Lemma 3.4.3. There exists a universal constant K > 0 such that, for any D> 2, for V1 centered
at 0 and any function f 2Cc1

¡
R2n

�
d~ce~1;¡d~ce~1

	
;R
�
, we haveZ

B
¡
�d~ce~1;D

�f2jV1j3 dx6K
Z
B
¡
�d~ce~1;D

�jrf j2jV1j4+ f2jV1j4 dx:

In particular, this implies that, for  2Cc1(R2n
�
0
	
;C),Z

B(0;D)

Re2( )jV1j3 dx6K
Z
B(0;D)

jr j2jV1j4+Re2( )jV1j4 dx:

This lemma, with Lemmas 3.1.14 and 3.2.4, implies that, for '=Qc 2HQc,Z
R2

Re2( )jQcj36Kk'kC2: (3.4.11)

Proof. Since jV1j>K> 0 outside of B(0; 1), we take � a radial smooth non negative cuto� with
value 0 in B(0; 1) and value 1 outside B(0; 3/2). We haveZ

B(0;D)

�f2jV1j3 dx6K
Z
B(0;D)

�f2jV1j4 dx6K
Z
B(0;D)

f2jV1j4 dx:

In B(0; 2), from Lemma 1.2.1, there exists K1;K2> 0 such that K1> jV1j
r
>K2, and thusZ

B(0;D)

(1¡ �)f2jV1j3 dx6K
�Z

0

2�Z
0

2

(1¡ �(r))f2(x)r4dr
�
d�:

For g 2Cc1(Rn
�
0
	
;R), we haveZ

0

2

(1¡ �(r))g2(r)r4dr = ¡1
5

Z
0

2

@r((1¡ �)g2)r5dr

= ¡2
5

Z
0

2

(1¡ �(r))@rg(r)g(r)r5dr+
1
4

Z
0

2

�0(r)g2(r)r5dr;

and since �0(r)=/ 0 only for r2 [1; 2], we haveZ
0

2

j�0(r)jg2(r)r5dr6K
Z
0

2

g2(r)r4dr;

and, by Cauchy-Schwarz,Z
0

2

(1¡ �(r))j@rg(r)g(r)jr5dr6
Z
0

2

(@rg)2r5dr
Z
0

2

g2(r)r5dr

s
:

We deduce that Z
0

2

(1¡ �(r))g2(r)r4dr6K
�Z

0

2

(@rg)2r5dr+
Z
0

2

g2(r)r5dr
�
;

and taking, for any �2 [0;2�], g(r)= f(r cos(�); r sin(�)), and since r6K jV1j in B(0;2) (by Lemma
1.2.1), by integration with respect to �, we conclude thatZ

B(0;D)

(1¡ �)f2jV1j3 dx6K
Z
B(0;D)

jrf j2jV1j4+ f2jV1j4 dx;

which ends the proof of this lemma. �

We estimate here some quantities with the coercivity norm. These computations will be useful
later on.
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Lemma 3.4.4. There exists K> 0, a universal constant independent of c, such that, if c is small
enough, for Qc de�ned in Theorem 1.3.1, for '=Qc 2Cc1(R2n

�
dc~e1~ ;¡dc~e1~

	
;C), we have����Z

R2
Re( )Im(rQcQc)

����6K ln
�
1
c

�
k'kC

and ����Z
R2
Im( )Re(rQcQc)

����6Kk'kC:
Proof. By Cauchy-Schwarz, Lemmas 3.1.11 (with a slight modi�cation near the zeros of Qc that
does not change the result) and 3.4.3,����Z

R2
Re( )Im(rQcQc)

���� 6 Z
R2

Re2( )jQcj3
Z
R2

jIm(rQcQc)j2
jQcj3

r
6 K ln

�
1
c

� Z
R2

Re2( )jQcj3
r

6 K ln
�
1
c

�
k'kC:

We now focus on the second estimate. We take � a smooth function with value 1 outside of
�
r~>2

	
and 0 inside fr~6 1g, and that is radial around �d~ce1~ in B

¡
�d~ce1~ ; 2

�
. We remark that

Re(rQcQc)=
1
2
r(jQcj2)=

1
2
r(�(jQcj2¡ 1)+ (1¡ �)jQcj2)+

1
2
r�;

thus, by integration by parts, we haveZ
R2
Im( )Re(rQcQc) = 1

2

Z
R2

Im( )r(�(jQcj2¡ 1)+ (1¡ �)jQcj2)+
1
2

Z
R2
r�Im( )

= ¡1
2

Z
R2

Im(r )�(jQcj2¡ 1)¡
1
2

Z
R2
Im(r )(1¡ �)jQcj2

+ 1
2

Z
R2
r�Im( ):

and, since � is radial around �d~ce1~ in B
¡
�d~ce1~ ; 2

�
,Z

R2
Im( )r�=

Z
B
¡
d~ce1;2

�
[B

¡
¡d~ce1;2

�Im( =/0)r�:
Since r� is supported in

¡
B
¡
d~ce1~ ; 2

�
[ B

¡
¡d~ce1~ ; 2

��
n
¡
B
¡
d~ce1~ ; 1

�
[ B

¡
¡d~ce1~ ; 1

��
, by equations

(3.1.12), (3.1.28) and Cauchy-Schwarz,�����
Z
B
¡
d~ce1;2

�
[B

¡
¡d~ce1;2

�Im( =/0)r�
�����6K

Z
R2
jr j2jQcj4

r
:

Now, by Cauchy-Schwarz, we check that����Z
R2
Im(r )(1¡ �)jQcj2

����6K Z
R2
jr j2jQcj4

Z
R2
(1¡ �)2

r
6K

Z
R2
jr j2jQcj4

r
:

Furthermore, we check that (� being supported in
�
r~> 1

	
)����Z

R2
Im(r )�(jQcj2¡ 1)

���� 6 Z
R2
jr j2�

Z
R2
(jQcj2¡ 1)2

r
6 K

Z
R2
jr j2jQcj4

r
:

Indeed, we have, from equation (3.1.6) (for �=1/2), that

jjQcj2¡ 1j6
K

(1+ r~)3/2
;
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which is enough to show that Z
R2
(jQcj2¡ 1)26K:

Combining these estimates, we conclude the proof of����Z
R2

Im( )Re(rQcQc)
����6K Z

R2
jr j2jQcj4

r
6Kk'kC: �

3.4.3 Coercivity result under four othogonality conditions
The next result is the �rst part of Theorem 1.4.4, the second part (for the coercivity under
three orthogonalities) is done in Lemma 3.4.6 below. We recall that, in B

¡
�d~ce1~ ; R

�
, we have

 =/0(x)=  (x)¡  0;�1(r~�1) with  0;�1(r~�1) the 0-harmonic centered around �d~ce1~ of  .

Lemma 3.4.5. There exist R;K; c0> 0 such that, for 0< c6 c0 and '= Qc 2HQc, Qc de�ned
in Theorem 1.3.1, if

Re

Z
B
¡
d~ce1;R

�
[B

¡
¡d~ce1;R

�@x1QcQc =/0=Re

Z
B
¡
d~ce1;R

�
[B

¡
¡d~ce1;R

�@x2QcQc =/0=0;

Re

Z
B
¡
d~ce1;R

�
[B

¡
¡d~ce1;R

�@cQcQc =/0=Re

Z
B
¡
d~ce1;R

�
[B

¡
¡d~ce1;R

�@c?QcQc =/0=0;

then

BQc(')>Kk'kC2:

Proof. For '=Qc 2Cc1(R2n
�
dc~e1~ ;¡dc~e1~

	
;C), we take "1; "2; "3; "4 four real parameters and we

de�ne

 � :=  + "1
@x1Qc
Qc

+ "2
c2@cQc
Qc

+ "3
@x2Qc
Qc

+ "4
c@c?Qc
Qc

:

Since, by Lemma 3.1.7, @x1Qc;@x2Qc;@cQc;@c?Qc2HQc, we deduce that Qc 
�2HQc. Furthermore,

we have Z
B
¡
d~ce1;R

�Re
�
@x1V1

~ V1~  �
�
=
Z
B
¡
d~ce1;R

�Re
�
@x1V1

~ V1~  
�

+ "1

Z
B
¡
d~ce1;R

�Re

 
@x1V1~ @x1Qc

V1~
Qc

!

+ "2

Z
B
¡
d~ce1;R

�Re

 
@x1V1~ c2@cQc

V1~
Qc

!

+ "3

Z
B
¡
d~ce1;R

�Re

 
@x1V1

~ @x2Qc
V1~
Qc

!

+ "4

Z
B
¡
d~ce1;R

�Re

 
@x1V1~ c@c?Qc

V1~
Qc

!
:

From (3.4.8), we compute

@x1V1~ V1~
� =

�
cos
¡
�~1
��0(r~1)
�(r~1)

¡ i
r~1
sin
¡
�~1
��
jV1~ j2;

and in particular, it has no 0-harmonic (since jV1~ j2 is radial). Therefore,Z
B
¡
d~ce1;R

�Re
�
@x1V1

~ V1~  
�
=
Z
B
¡
d~ce1;R

�Re
�
@x1V1

~ V1~  =/0
�
=

Z
B
¡
d~ce1;R

�Re
�
@x1QcQc 

=/0
�
+
Z
B
¡
d~ce1;R

�Re
¡¡
@x1V1

~ V1~
� ¡ @x1QcQc

�
 =/0

�
:
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By Cauchy-Schwarz and equation (3.1.28),Z
B
¡
d~ce1;R

�
[B

¡
¡d~ce1;R

�jQc =/0j26K
Z
B
¡
d~ce1;R

�
[B

¡
¡d~ce1;R

�jQcj4jr j26Kk'kC2: (3.4.12)

Here, K depends on R, but we consider R as a universal constant. We remark, by equations (3.4.3),
(3.4.5) and (3.4.12) that

1
2
Re

Z
B
¡
d~ce1;R

�
[B

¡
¡d~ce1;R

�(@x1Qc¡ c2@cQc)Qc =/0
=
Z
B
¡
d~ce1;R

�Re
�
@x1QcQc 

=/0
�
+ oc!0(c�0)Kk'kC2 ;

where �0> 0 is a small constant. We supposed that

Re

Z
B
¡
d~ce1;R

�
[B

¡
¡d~ce1;R

�@x1QcQc =/0=Re

Z
B
¡
d~ce1;R

�
[B

¡
¡d~ce1;R

�@cQcQc =/0=0;
therefore Z

B
¡
d~ce1;R

�Re
�
@x1QcQc 

=/0
�
= oc!0(c�0)Kk'kC2:

Furthermore, by equations (3.1.7), (3.1.28), (3.4.3), Lemma 3.1.14 and Cauchy-Schwarz,�����
Z
B
¡
d~ce1;R

�Re
¡¡
@x1V1

~ V1~
� ¡@x1QcQc

�
 =/0

������ 6 oc!0(c�0)
Z
B
¡
d~ce1;R

�j =/0j2jQcj2
s

6 oc!0(c�0)Kk'kC

Now, from Lemma 3.1.14 and equation (3.4.3), we estimateZ
B
¡
d~ce1;R

�Re

 
@x1V1~ @x1Qc

V1~
Qc

!
=
Z
B
¡
d~ce1;R

�j@x1V1~ j2+ oc!0(1):

With (3.4.4), we check Z
B
¡
d~ce1;R

�Re

 
@x1V1

~ @x2Qc
V1~
Qc

!
= oc!0(1):

Similarly, by (3.4.5) and Lemma 3.1.14, we haveZ
B
¡
d~ce1;R

�Re

 
@x1V1~ c2@cQc

V1~
Qc

!
=¡

Z
B
¡
d~ce1;R

�j@x1V1~ j2+ oc!0(1)

and by (3.4.6), we have Z
B
¡
d~ce1;R

�Re

 
@x1V1

~ c@c?Qc
V1~
Qc

!
= oc!0(1):

Thus, with (3.4.7) we deduce that, writing

K(R)=
Z
B(0;R)

j@x1V1(x)j2dx;
since

K(R)=
Z
B
¡
d~ce1;R

�j@x1V1~ j2=
Z
B
¡
¡d~ce1;R

�j@x1V~¡1j2=
Z
B
¡
d~ce1;R

�j@x2V1~ j2=
Z
B
¡
¡d~ce1;R

�j@x2V~¡1j2;
we have Z

B
¡
d~ce1;R

�Re
�
@x1V1

~ V1~  �
�

= ("1¡ "2)K(R)+ oc!0(1)("1+ "2+ "3+ "4)+ oc!0(c�0)Kk'kC
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Similarly we can do the same computation for every orthogonalities, and we have the system0BBBBBBBBB@

R
B
¡
d~ce1;R

�Re
�
@x1V1~ V1~  �

�
R
B
¡
¡d~ce1;R

�Re
�
@x1V

~¡1V~¡1 �
�

R
B
¡
d~ce1;R

�Re
�
@x2V1

~ V1~  �
�

R
B
¡
¡d~ce1;R

�Re
�
@x2V~¡1V~¡1 �

�

1CCCCCCCCCA
=

0BB@K(R)
0BB@

1 ¡1 0 0
1 1 0 0
0 0 1 ¡1
0 0 1 1

1CCA+ oc!0(1)

1CCA
0BB@
"1
"2
"3
"4

1CCA

+ oc!0(c�0)Kk'kC:

Therefore, since the matrix is invertible and K(R)> 0, for c small enough, we can �nd "1; "2; "3;
"42R such that

j"1j+ j"2j+ j"3j+ j"4j6 oc!0(c�0)Kk'kC (3.4.13)

and Z
B
¡
d~ce1;R

�Re
�
@x1V1

~ V1~  �
�
=
Z
B
¡
d~ce1;R

�Re
�
@x2V1

~ V1~  �
�
=0;

Z
B
¡
¡d~ce1;R

�Re
�
@x1V~¡1V~¡1 �

�
=
Z
B
¡
¡d~ce1;R

�Re
�
@x2V~¡1V~¡1 �

�
=0:

Therefore, by Proposition 1.4.3, since Qc �2HQc, we have

BQc(Qc �)>KkQc �kC2:
From Lemma 3.1.8, we have,

k@x1QckC+ k@x2QckC+ kc2@cQckC+ c�0/2kc@c?QckC6K(�0)

hence, since Qc( �¡  )= "1@x1Qc+ "2c2@cQc+ "3@x2Qc+ "4c@c?Qc,

kQc kC2

6 kQc �kC2 + kQc( ¡  �)kC2

6 kQc �kC2 +K(�0) (j"1j+ j"2j+ j"3j+ c¡�0/2j"4j)2;

therefore, for c small enough, by (3.4.13), we have

kQc �kC2 >KkQc kC2

and

BQc(Qc �)>KkQc kC2

Finally, we compute, since Qc( ¡ �)="1@x1Qc+"2c2@cQc+"3@x2Qc+"4c@c?Qc, by Lemma 3.4.2,
that

BQc(')=BQc(Qc �)+BQc(Qc( ¡  �))+2hQc �; LQc(Qc( ¡  �))i:

Furthermore, we compute, still by Lemma 3.4.2,

hQc �; LQc(Qc( ¡  �))i=¡BQc(Qc( ¡  �))+ hQc ;LQc(Qc( ¡  �))i;
therefore

BQc(') = BQc(Qc 
�)¡BQc(Qc( ¡  �))+2hQc ;LQc(Qc( ¡  �))i

> KkQc kC2 ¡BQc(Qc( ¡  �))+ 2hQc ;LQc(Qc( ¡  �))i:

We have

Qc( ¡  �)=¡("1@x1Qc+ "2c2@cQc+ "3@x2Qc+ "4c@c?Qc);

and from Lemma 3.1.7, we have

LQc(Qc( ¡  �))=¡c2"2i@x2Qc+ c2"4i@x1Qc:
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We compute

BQc(Qc( ¡  �))
= h¡("1@x1Qc+ "2c2@cQc+ "3@x2Qc+ "4c@c?Qc);¡c2"2i@x2Qc+ c2"4i@x1Qci;

and with (3.1.3), we check that

BQc(Qc( ¡  �))= "22c4hLQc(@cQc); @cQci¡ "42c2hLQc(@c?Qc); @c?Qci:

With Lemma 3.1.9 and equation (3.4.13), we estimate

jBQc(Qc( ¡  �))j6Kc2("22+ "42)6 oc!0(1)kQc kC2:
Finally, we have

hQc ;LQc(Qc( ¡  �))i= hQc ;¡c2"2i@x2Qc+ c2"4i@x1Qci:
We compute

c2hQc ; irQci= c2
Z
R2

Im( )Re(rQcQc)¡ c2
Z
R2

Re( )Im(rQcQc);

and to �nish the proof, we use

jchQc ; irQcij6Kcln
�
1
c

�
kQc kC (3.4.14)

for a constant K > 0 independent of c by Lemma 3.4.4, which is enough to show that

jhQc ;LQc(Qc( ¡  �))ij
6 oc!0(1)(j"2j+ j"4j)kQc kC
6 oc!0(1)kQc kC2 ;

since cln
¡ 1
c

�
= oc!0(1). We have shown that, for '2Cc1(R2n{dc~e1~ ;¡dc~e1~ };C)

BQc(') > KkQc kC2 ¡BQc(Qc( ¡  �))+ 2hQc ;LQc(Qc( ¡  �))i
> (K ¡ oc!0(1))kQc kC2

> K
2
kQc kC2

for c small enough. Now, by Lemma 3.2.4, we conclude by density as in the proof of Proposition
1.4.3. �

3.4.4 Coercivity under three orthogonality conditions

Lemma 3.4.6. There exists R;K > 0 such that, for 0< � < �0, �0 a small constant, there exists
c0(�);K(�)> 0 with, for 0<c<c0(�), Qc de�ned in Theorem 1.3.1, '=Qc 2HQc, if

Re

Z
B
¡
d~ce1;R

�
[B

¡
¡d~ce1;R

�@x1QcQc =/0=Re

Z
B
¡
d~ce1;R

�
[B

¡
¡d~ce1;R

�@x2QcQc =/0=0;

Re

Z
B
¡
d~ce1;R

�
[B

¡
¡d~ce1;R

�@cQcQc =/0=0;
then

BQc(')>K(�)c2+�k'kC2:

Proof. As for the proof of Lemma 3.4.5, we show the result for '=Qc 2Cc1(R2n
�
dc~e1~ ;¡dc~e1~

	
;

C), and we conclude by density for '2HQc.
For '=Qc 2Cc1(R2n

�
dc~e1~ ;¡dc~e1~

	
;C), we take "1; "2; "3; "4 four real parameters and we de�ne

 � :=  + "1
@x1Qc
Qc

+ "2
c2@cQc
Qc

+ "3
@x2Qc
Qc

+ "4
c@c?Qc
Qc

:
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With the same computation as in the proof of Lemma 3.4.5, we check that Qc �2HQc, and using
similarly the estimates of Lemma 3.4.1, we can take "1; "2; "3; "42R such that

j"1j+ j"2j+ j"3j= oc!0(c�0)k'kC ;

j"4j6Kk'kC and such that  � satis�es the four orthogonality conditions of Lemma 3.4.5. There-
fore,

BQc(Qc �)>KkQc �kC2: (3.4.15)

We write

T = "1@x1Qc+ "2c2@cQc+ "3@x2Qc;

and we develop, by Lemma 3.4.2,

BQc(Qc )
= BQc(Qc �)+ c2"4

2BQc(@c?Qc)+BQc(T )
¡ 2hQc �; c"4LQc(@c?Qc)i¡ 2hQc �; LQc(T )i+2c"4hLQc(@c?Qc); T i:

Using Lemmas 3.1.7 and 3.1.9, we compute

jBQc(T )j = jhLQc(T ); T ij= jhLQc("2c2@cQc); "2c2@cQcij
= "2

2c4jhLQc(@cQc); @cQcij
6 K"2

2c2= oc!0(c2+2�0)k'kC2 (3.4.16)

Now, we compute, by Lemma 3.1.7, that

hQc �; c"4LQc(@c?Qc)i= "4c2hQc �; i@x1Qci:

From Lemma 3.4.4, we have

jchQc �; i@x1Qcij6 oc!0(c1¡�0/2)k'�kC;
therefore

jhQc �; c"4LQc(@c?Qc)ij6 oc!0(c1+�0/2)k'�kCk'kC: (3.4.17)

Similarly, we compute

hQc �; LQc(T )i= hQc �; "2c2LQc(@cQc)i= "2c2hQc �; i@x2Qci:

Still from Lemma 3.4.4, we have

jchQc �; i@x2Qcij6Kc ln
�
1
c

�
k'�kC;

therefore

jhQc �; LQc(T )ij6K j"2jc2 ln
�
1
c

�
k'�kC6 oc!0(c1+�0)k'�kCk'kC: (3.4.18)

Finally, we compute similarly that

cj"4hLQc(@c?Qc); T ij= cj"4hic@x1Qc; T ij= c2j"4hi @x1Qc; "2c2@cQc+ "3@x2Qcij:

Using Lemma 3.4.4 for '= c2@cQc (with Lemma 3.2.4), we infer

jhi@x1Qc; c2@cQcij6Kkc2@cQckC;

and kc2@cQckC6K by Lemma 3.1.8. Furthermore, since Qc(¡x1; x2)=Qc(x1; x2), we have

hi@x1Qc; @x2Qci=0:

We conclude that

jc"4hLQc(@c?Qc); T ij6Kc2 j"4j(j"2j+ j"3j)= oc!0(c2+�0/2)k'kC2: (3.4.19)

Now, combining (3.4.15) to (3.4.19), and with BQc(@c?Qc) = 2�+ oc!0(1) from Lemma 3.1.9, we
have

BQc(')>Kk'�kC2+K"42c2¡ oc!0(c2+�0/2)k'kC2 ¡ oc!0(c1+�0/2)k'�kCk'kC:
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Similarly as in the proof of Lemma 3.4.5, we have from Lemma 3.1.8 that, for any �0/2> � > 0,

k'kC2 6Kk'�kC2 +K(�)"42c¡� ;
hence

"4
2c2>K(�)c2+�(k'kC2 ¡k'�kC2);

therefore

BQc(') > K1(�)(k'�kC2 + c2+�k'kC2)¡K2(�)c2+�k'�kC2 ¡ oc!0(c2+�0/2)k'kC2

¡ oc!0(c1+�0)k'�kCk'kC
> K(�)c2+�k'kC2

for c small enough (depending on �). �

Lemmas 3.1.12, 3.4.5 and 3.4.6 together end the proof of Theorem 1.4.4. Remark
that in both Lemmas 3.4.5 and 3.4.6, we could replace the orthogonality condition
Re
R
B
¡
d~ce1;R

�
[B

¡
¡d~ce1;R

�@cQcQc =/0=0 by

Re

Z
B
¡
d~ce1;R

�
[B

¡
¡d~ce1;R

�@d(V1(x¡ de~1)V¡1(x+ de~1))|d=dcQc 
=/0(x)dx=0; (3.4.20)

since, by Theorem 1.3.1 (for p=+1),

kc2@cQc¡ @d(V1(x¡ de~1)V¡1(x+ de~1))|d=dckC1¡B¡d~ce1;R�[B¡¡d~ce1;R��= oc!0(1);

and thus this replacement creates an error term that can be estimate as the other ones in the proof
of Lemma 3.4.5.

3.4.5 Proof of the corollaries of Theorem 1.4.4

3.4.5.1 Proof of Corollary 1.4.5

Proof. We start with the proof that (i) implies (ii). We start by showing that, for '02Cc1(R2;C),

BQc('+ '0)=BQc('0):

We take '0=Qc 02Cc1(R2;C) and, by integration by parts, from (i), we check that

hLQc('0); 'i=0:

Furthermore, we check (for '2Cc1(R2n
�
dc~e1~ ;¡dc~e1~

	
;C) and then by density for ' 2HQc) that

for '02Cc1(R2;C),

BQc('+ '0)=BQc(')+BQc('0)+2h';LQc('0)i;
hence

BQc('+ '0)=BQc(')+BQc('0): (3.4.21)

Similarly as in the proof of Proposition 1.4.3, we argue by density that this result holds for '02HQc.
Now, taking '0=¡', we infer from (3.4.21) that BQc(')= 0, thus, for '2HQc,

BQc('+ '0)=BQc('0): (3.4.22)

Now, similarly as the proof of Lemma 3.4.5, we decompose '=Qc 2HQc in

'= '�+ "1@x1Qc+ "2@x2Qc+ "3c
2@cQc

with

j"1j+ j"2j+ j"3j6Kk'kC;

such that '� veri�es the three orthogonality conditions of Lemma 3.4.6. We write

A= "1@x1Qc+ "2@x2Qc+ "3c2@cQc2HQc

3.4 Proof of Theorem 1.4.4 and its corollaries 193



by Lemma 3.1.7, and using (3.4.22), we have

BQc('�)=BQc('¡A)=BQc(A):

From Lemma 3.4.6, we have BQc('�)>Kc2+�0/2k'�kC2. Furthermore, from Lemmas 3.1.7 and 3.1.9,

BQc(A)= "3
2c2BQc(@cQc)= (¡2�+ oc!0(1))"326 0:

We deduce that "3= 0 and k'�kC = 0, hence '�= i�Qc for some � 2R. Since '�= '¡R 2HQc,

we deduce that �=0 (or else k'�kHQc
2 >

R
R2

j'�j2

(1+ r~)2
=+1). Therefore,

'= "1@x1Qc+ "2@x2Qc2 SpanR(@x1Qc; @x2Qc):

Finally, the fact that (ii) implies (i) is a consequence of Lemma 3.1.7. This concludes the proof
of this lemma. �

3.4.5.2 Spectral stability

We haveH1(R2)�HQc, therefore BQc(') is well de�ned for '2H1(R2). Furthermore, the fact that
i@x2Qc2L2(R2) is a consequence of Theorem 3.1.4, and in particular this justi�es that h'; i@x2Qci
is well de�ned for '2H1(R2). For '2H1(R2), there are no issue in the de�nition of the quadratic
form, as shown in the following lemma.

Lemma 3.4.7. There exists c0 > 0 such that, for 0 < c < c0, Qc de�ned in Theorem 1.3.1, if
'2H1(R2), then

BQc(')=
Z
R2
jr'j2¡Re(ic@x2''�)¡ (1¡ jQcj2)j'j2+2Re2(Qc'):

Proof. We recall that H1(R2)�HQc and, for '=Qc 2H1(R2),

BQc(') =
Z
R2
jr'j2¡ (1¡ jQcj2)j'j2+2Re2(Qc')

¡ c

Z
R2
(1¡ �)Re(i@x2''�)¡ c

Z
R2
�Rei @x2QcQcj j2

+ 2c
Z
R2
�Re Im@x2 jQcj2+ c

Z
R2
@x2�Re Im jQcj2

+ c

Z
R2
�Re Im @x2(jQcj2):

Since '2H1(R2), the integral
R
R2Re(ic@x2''�) is well de�ned as the scalar product of two L2(R2)

functions. Now, still because '=Qc 2H1(R2), we can integrate by parts, and we check thatZ
R2
�Re Im@x2 jQcj2 = ¡

Z
R2
�Re@x2 Im jQcj2

¡
Z
R2
@x2�Re Im jQcj2¡

Z
R2
�Re Im @x2(jQcj2):

We conclude by expandingZ
R2
�Re(i@x2''�) =

Z
R2
�Re(i@x2QcQc)j j2+

Z
R2
�Re(i@x2  �)jQcj2

=
Z
R2
�Re(i@x2QcQc)j j2+

Z
R2
�Re(@x2 )Im jQcj2

+
Z
R2
�Re( )Im@x2 jQcj2:

�

The rest of this subsection is devoted to the proofs of Corollary 1.4.6, Proposition 1.4.7 and
Corollary 1.4.9.
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Proof. (of Corollary 1.4.6) For '2H1(R2) such that h'; i@x2Qci=0, we decompose it in

'= '�+ "1@x1Qc+ "2@x2Qc+ c
2"3@cQc:

Similarly as in the proof of Lemma 3.4.5, we can �nd "1; "2; "32R such that '� satis�es the three
orthogonality conditions of Lemma 3.4.6, and thus (since '2H1(R2)�HQc, for �= �0/2)

BQc('�)>Kc2+�0/2k'�kC2:

Now, we compute, by Lemma 3.4.2 and with a density argument, that

BQc(')=BQc('�)+ 2h'�; LQc("1@x1Qc+ "2@x2Qc+ c2"3@cQc)i+ "32c4BQc(@cQc):

We have from Lemma 3.1.7 that LQc("1@x1Qc+ "2@x2Qc+ c2"3@cQc)= c2"3i@x2Qc, therefore

BQc(')>Kc2+�0/2k'�kC2 +2c2"3h'�; i@x2Qci+ "32c4BQc(@cQc):

Since h'; i@x2Qci=0 and '= '�+ "1@x1Qc+ "2@x2Qc+ c
2"3@cQc, we have

h'�; i@x2Qci=¡h"1@x1Qc+ "2@x2Qc+ c2"3@cQc; i@x2Qci:

Since @x1Qc is odd in x1 and i@x2Qc is even in x1, we have h"1@x1Qc; i@x2Qci=0. Furthermore,

h"2@x2Qc; i@x2Qci= "2
Z
R2

Re(ij@x2Qcj2)= 0;

and, from Lemma 3.1.9, we have

BQc(@cQc)= h@cQc; i@x2Qci=
¡2�+ oc!0(1)

c2
;

thus

h'�; LQc("1@x1Qc+ "2@x2Qc+ c2"3@cQc)i=(2�+ oc!0(1))"3BQc(@cQc);

and

BQc(')>Kc2+�0/2k'�kC2 ¡ "32c4BQc(@cQc)>Kc2+�0/2k'�kC2 +2�"32c2(1+ oc!0(1))> 0

for c small enough. This also shows that if ' 2 H1(R2), BQc(') = 0 and h'; i@x2Qci = 0, then
'2 SpanR

�
@x1Qc; @x2Qc

	
. �

We can now �nish the proof of Proposition 1.4.7.

Proof. (of Proposition 1.4.7) First, we have from Theorem 3.1.4 that i@x2Qc2L2(R2). Now,
with Corollary 1.4.6, it is easy to check that n¡(LQc) 6 1. Indeed, if it is false, we can �nd u;
v2H1(R2) such that for all �; �2R with (�; �)=/ (0;0), �u+ �v=/ 0 and BQc(�u+ �v)<0. Then,
we can take (�; �)=/ (0; 0) such that

h�u+ �v; i@x2Qci=0;

which implies BQc(�u+ �v)> 0 and therefore a contradiction.
Let us show that LQc has at least one negative eigenvalue (with eigenvector in H1(R2)), which

implies that n¡(LQc)= 1 and that it is the only negative eigenvalue. We consider

�c := inf
'2H1(R2);k'kL2(R2)=1

BQc('):

We recall, from Lemma 3.4.7, that (since '2H1(R2))

BQc(')=
Z
R2
jr'j2¡Re(ic@x2''�)¡ (1¡ jQcj2)j'j2+2Re2(Qc');

and if '2H1(R2) with k'kL2(R2)=1, we have, by Cauchy-Schwarz,

BQc(')>
Z
R2
jr'j2¡Kck@x2'kL2(R2)¡K >¡K(c):

In particular, this implies that �c=/ ¡1.
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Now, assume that there exists no ' 2 Cc
1(R2; C) such that BQc(') < 0. Then, for any

' 2 Cc
1(R2; C), we have BQc(') > 0. Following the density argument at the end of the proof

of Proposition 1.4.3, we have BQc(') > 0 for all ' 2 HQc, and in particular BQc(@cQc) > 0 (we
recall that @cQc 2 HQc but is not a priori in H1(R2)), which is in contradiction with Lemma
3.1.9. Therefore, there exists ' 2 Cc1(R2; C) �H1(R2) such that BQc(') < 0, and in particular

BQc

�
'

k'kL2(R2)

�
< 0 and




 '

k'kL2(R2)





L2(R2)

=1, hence �c< 0.

Remark that we did not show that @cQc 2 L2(R2), and we believe this to be false. This
estimation on �c is the only time we need to work speci�cally with Qc from Theorem 1.3.1. From
now on, we can suppose that Qc is a travelling wave with �nite energy such that �c< 0.

To show that there exists at least one negative eigenvalue, it is enough to show that �c is
achieved for a function ' 2 H1(R2). Let us take a minimizing sequence 'n 2 H1(R2) such that
k'nkL2(R2)=1 and BQc('n)!�c. We haveZ

R2
jr'nj2=BQc('n)+

Z
R2
Re(ic@x2'n'n)+ (1¡jQcj2)j'nj2¡ 2Re2(Qc'n);

therefore, by Cauchy-Schwarz,Z
R2
jr'nj26 j�cj+Kckr'nkL2(R2)+K:

We deduce that, for c small enough,

kr'nkL2(R2)
2 ¡Kckr'nkL2(R2)6K(c);

hence kr'nkL2(R2)
2 is bounded uniformly in n given that c<c0 for some constant c0 small enough.

We deduce that 'n is bounded in H1(R2), therefore, up to a subsequence, 'n ! ' weakly in
H1(R2).

Now, we remark that for any '2H1(R2), by integration by parts (see Lemma 3.4.7),Z
R2
¡Re(ic@x2''�) = ¡c

Z
R2
Re(@x2')Im(')+ c

Z
R2

Re(')Im(@x2')

= 2c
Z
R2
Re(')Im(@x2'):

For R > 0, since 'n! ' weakly in H1(R2), this implies that 'n! ' strongly in L2(B(0; R)) by
Rellich-Kondrakov theorem. In particular, we haveZ

B(0;R)

Re('n)Im(@x2'n)!
Z
B(0;R)

Re(')Im(@x2'):

since 'n! ' strongly in L2(B(0; R)) and @x2'n! @x2' weakly in L2(B(0; R)). We deduce that,
up to a subsequence,Z

B(0;R)

jr'j2+2cRe(')Im(@x2')¡ (1¡jQcj2)j'j2+2Re2(Qc')

6 liminf
n!1

Z
B(0;R)

jr'nj2+2cRe('n)Im(@x2'n)¡ (1¡ jQcj2)j'nj2+2Re2(Qc'n)+ on!1R (1):

Furthermore, we have, by weak convergence

k'kH1(R2)6 liminf
n!1

k'nkH1(R2)6K(c)
therefore, we estimateZ

R2nB(0;R)
jr'j2+2cRe(')Im(@x2')¡ (1¡ jQcj2)j'j2+2Re2(Qc')

6 Kk'kH1(R2nB(0;R))
2 = oR!1(1):

We deduce that

BQc(') 6 liminf
n!1

Z
B(0;R)

jr'nj2+2cRe('n)Im(@x2'n)¡ (1¡ jQcj2)j'nj2+2Re2(Qc'n)

+ on!1
R (1)+ oR!1(1):
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Now, we have

liminf
n!1

Z
B(0;R)

jr'nj2+2cRe('n)Im(@x2'n)¡ (1¡ jQcj2)j'nj2+2Re2(Qc'n)

= liminf
n!1

BQc('n);

¡ liminf
n!1

Z
R2nB(0;R)

jr'nj2+2cRe('n)Im(@x2'n)¡ (1¡ jQcj2)j'nj2+2Re2(Qc'n)

and BQc('n)!�c, therefore

BQc(') 6 �c+ on!1R (1)+ oR!1(1)

¡ liminf
n!1

Z
R2nB(0;R)

jr'nj2+2cRe('n)Im(@x2'n)¡ (1¡ jQcj2)j'nj2+2Re2(Qc'n):

From Theorem 3.1.4, we have (1¡jQcj2)(x)!0 when jxj!1, therefore, since k'nkL2(R2)=1, we
have by dominated convergence thatZ

R2nB(0;R)
(1¡jQcj2)j'nj26

Z
R2nB(0;R)

(1¡ jQcj2)2
Z
R2
j'nj2

s
6 oR!1(1):

Furthermore, we check easily that (since (A+B)2> 1

2
A2¡B2)Z

R2nB(0;R)
Re2(Qc'n)>

1
2

Z
R2nB(0;R)

Re2(Qc)Re2('n)¡
Z
R2nB(0;R)

Im2(Qc)Im2('n);

and from Theorem 3.1.4, Im(Qc)(x) ! 0 and Re(Qc)(x) ! 1 when jxj ! 1, therefore, since
k'nkL2(R2)=1, by dominated convergence,Z

R2nB(0;R)
2Re2(Qc'n)>

Z
R2nB(0;R)

Re2('n)¡ oR!1(1):

We deduce that, since c< 2
p

,

BQc(') 6 �c+ on!1R (1)+ oR!1(1)

¡ liminf
n!1

�Z
R2nB(0;R)

jr'nj2+2cRe('n)Im(@x2'n)+Re2('n)
�

6 �c+ on!1R (1)+ oR!1(1)

¡ liminf
n!1

�Z
R2nB(0;R)

(jr'nj+ cRe('n))2+(2¡ c2)Re2('n)
�

6 �c+ on!1R (1)+ oR!1(1):

Thus, by letting n!1 and then R!1,

BQc(')6�c:

In particular, this implies that k'kL2(R2) =/ 0, or else BQc(') = 06 �c and we know that �c < 0.
Furthermore, by weak convergence, we have k'kL2(R2)6 1, and if it is not 1, then, since �c< 0,

BQc

�
'

k'kL2(R2)

�
6 �c
k'kL2(R2)

2
<�c

which is in contradiction with the de�nition of �c. Therefore k'kL2(R2)=1 and BQc(')=�c. This
concludes the proof of Proposition 1.4.7. �

Proof. (of Corollary 1.4.9) The hypothesis to have the spectral stability from Theorem 11.8 of
[30] are:

- The curve of travelling waves is C1 from ]0; c0[ to C1(R2;C) with respect to the speed. This is
a consequence of Theorem 1.3.1. This is enough to legitimate the computations done in the proof
of Theorem 11.8 of [30].

- Re(Qc) ¡ 1 2 H1(R2), rQc 2 L2(R2), jQcj ! 1 at in�nity and kQckC1(R2) 6 K. These are
consequences of Theorem 7 of [22].
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- n¡(LQc)6 1. This is a consequence of Proposition 1.4.7.
- @cP2(Qc)< 0. This is a consequence of Proposition 1.4.1. �

3.5 Coercivity results with an orthogonality on the phase
This section is devoted to the proofs of Proposition 1.4.10, 1.4.11 and Theorem 1.4.12.

3.5.1 Properties of the space HQc

exp

In this subsection, we look at the space HQc
exp. We recall the norm

k'kHQcexp
2 = k'kH1({r�610})

2 +
Z

{r~>5}
jr j2+Re2( )+ j j2

r~2ln(r~)2
:

The quadratic form we look at is

BQc
exp(') =

Z
R2
�(jr'j2¡Re(ic@x2''�)¡ (1¡jQcj2)j'j2+2Re2(Qc'))

¡
Z
R2
r�:(Re(rQcQc)j j2¡ 2Im(rQcQc)Re( )Im( ))

+
Z
R2
c@x2� jQcj2Re( )Im( )

+
Z
R2
(1¡ �)(jr j2jQcj2+2Re2( )jQcj4)

+
Z
R2
(1¡ �)(4Im(rQcQc)Im(r )Re( )+ 2cjQcj2Im(@x2 )Re( ))

We will show in Lemma 3.5.1 that BQc
exp(') is well de�ned for ' 2 HQc

exp. The main di�erence
between BQc and BQc

exp is the space on which they are de�ned. In particular, we can check easily for
instance that, for '2Cc1(R2) with support far from the zeros of Qc, we have BQc

exp(')=BQc('),
as the terms with the gradient of the cuto� are exactly the ones coming from the integrations by
parts. We start with a lemma about the space HQc

exp.

Lemma 3.5.1. The following properties of HQc
exp hold:

HQc�HQc
exp;

iQc2HQc
exp:

Furthermore, there exists K(c)> 0 such that, for '2HQc
exp,

k'kC6Kk'kHQcexp; (3.5.1)

k'kHQcexp6K(c)k'kHQc: (3.5.2)

and the integrands of BQc
exp('), de�ned in ( 1.4.4), are in L1(R2) for '2HQc

exp, and BQc
exp does not

depend on the choice of �. Finally, if '2HQc�HQc
exp,

BQc(')=BQc
exp('):

Proof. First, let us show (3.5.2). We have

k'kH1({r~610})6Kk'kHQc;

and, by equation (3.1.12) and Lemma 3.1.5, we check thatZ
{r~>5}

Re2( )6Kk'kHQc
2 ;

and also that Z
{r~>5}

j j2
r~2ln(r~)2

6K
Z

{r~>5}

j'j2
(1+ r~)2

6K(c)k'kHQc
2 :
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Furthermore, we compute, by equations (3.1.12), (3.2.1) and Proposition 3.1.4,Z
{r~>5}

jr j26K
Z

{r~>5}
jr j2jQcj46K

�Z
{r~>5}

jr'j2+
Z

{r~>5}
jrQcj2j'j2

�
6K(c)k'kHQc

2 :

We deduce that (3.5.2) holds, and therefore HQc�HQc
exp. Now, we check that

kiQckHQcexp
2 6 kiQckH1({r~610})

2 +K
Z

{r~>5}

jij2
r~2ln(r~)2

+
Z

{r~>5}
jrij2<+1: (3.5.3)

With regards to the de�nition of k:kC, we check easily that

k'kC6 k'kHQcexp:

Finally, we recall the de�nition of BQc
exp(') from equation (1.4.4),

BQc
exp(') =

Z
R2
(1¡ �)(jr'j2¡Re(ic@x2''�)¡ (1¡ jQcj2)j'j2+2Re2(Qc'))

¡
Z
R2
r�:(Re(rQcQc)j j2¡ 2Im(rQcQc)Re( )Im( ))

+
Z
R2
c@x2� jQcj2Re( )Im( )

+
Z
R2
�(jr j2jQcj2+2Re2( )jQcj4)

+
Z
R2
�(4Im(rQcQc)Im(r )Re( )+2cjQcj2Im(@x2 )Re( )):

For �> 0, we have k'kH1(B(0;�))6K(c; �)k'kHQcexp, therefore (since 1¡ � is compactly supported)
we only have to check that the integrands in the last two lines are in L1(R2), and this is a
consequence of Cauchy-Schwarz, sinceZ

R2
�(jr j2jQcj2+2Re2( )jQcj4+4jIm(rQcQc)Im(r )Re( )j+2cjQcj2jIm(@x2 )Re( )j)

6K
Z
R2
�(jr j2+Re2( ))6Kk'kHQcexp

2 :

Furthermore, for two cuto�s �; � 0 such that they are both 0 near the zeros of Qc and 1 at in�nity,
we have

BQc;�
exp (')¡BQc;� 0

exp (')

=
Z
R2
(� 0¡ �)(jr'j2¡Re(ic@x2''�)¡ (1¡ jQcj2)j'j2+2Re2(Qc'))

+
Z
R2
r(�¡ � 0):(Re(rQcQc)j j2¡ 2Im(rQcQc)Re( )Im( ))¡ c@x2(�¡ � 0)jQcj2Re( )Im( )

+
Z
R2
(� 0¡ �)(jr j2jQcj2+2Re2( )jQcj4)

+
Z
R2
(� 0¡ �)(4Im(rQcQc)Im(r )Re( )+ 2cjQcj2Im(@x2 )Re( ))

and, developping '=Qc (see the proof of Lemma 3.3.1) and by integration by parts using that
�¡ � 0=/ 0 only in a compact domain far from the zeros of Qc, we check that it is 0.

Finally, for '2HQc, BQc(') and BQc
exp(') are both well de�ned. We recall

BQc(') =
Z
R2
jr'j2¡ (1¡ jQcj2)j'j2+2Re2(Qc')

¡ c

Z
R2
(1¡ �)Re(i@x2''�)¡ c

Z
R2
�Rei @x2QcQcj j2

+ 2c
Z
R2
�Re Im@x2 jQcj2+ c

Z
R2
@x2�Re Im jQcj2

+ c

Z
R2
�Re Im @x2(jQcj2):
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With the same computation as in the proof of Lemma 3.3.1, we check that for '2Cc1
¡
R2n

�
d~ce~1;

¡d~ce~1
	
;C
�
, we have

BQc(')=BQc
exp('):

With the same arguments as in the density proof at the end of the proof of Proposition 1.4.3, we
check that this equality holds for '2HQc. �

Now, we state some lemmas that where shown previously in HQc, that we have to extend to
HQc

exp to replace some arguments that were used in the proof of Propositions 1.4.3 for the proofs of
Propositions 1.4.10, 1.4.11 and Theorem 1.4.12. We start with the density argument.

Lemma 3.5.2. Cc1
¡
R2n

�
d~ce~1;¡d~ce~1

	
;C
�
is dense in HQc

exp for k:kHQcexp.

Proof. The proof is identical to the one of Lemma 3.2.4, as we check easily that, for �> 10
c
large

enough,

k'kH1({r�610})
2 +

Z
{r~>5}\B(0;�)

jr j2+Re2( )+ j j2
r~2ln(r~)2

6K1(�; c)k'kH1(B(0;�))
2

and

k'kH1({r�610})
2 +

Z
{r~>5}\B(0;�)

jr j2+Re2( )+ j j2
r~2ln(r~)2

>K2(�; c)k'kH1(B(0;�))
2 �

We also want to decompose the quadratic form, but with a �fth possible direction: iQc.

Lemma 3.5.3. For '2Cc1(R2n
�
dc~e1~ ;¡dc~e1~

	
;C) and A2Span

�
@x1Qc; @x2Qc; @cQc; @c?Qc; iQc

	
,

we have

hLQc('+A); '+Ai= hLQc('); 'i+ h2LQc(A); 'i+ hLQc(A); Ai:

Furthermore, hLQc('+A); '+Ai=BQc
exp('+A), LQc(iQc)=0 and

k@x1QckHQcexp+ k@x2QckHQcexp+ kc
2@cQckHQcexp+ c

�0/2kc@c?QckHQcexp+ kiQckHQcexp6K(�0):

Proof. As for the proof of Lemma 3.4.2, we only have to show that Re(LQc(A)A�) 2 L1(R2) to
show the �rst equality.

By simple computation (or by invariance of the phase), we check that LQc(iQc) = 0. Writing
A=T + "iQc for "2R; T 2Span

�
@x1Qc; @x2Qc; @cQc; @c?Qc

	
, we compute from Lemma 3.1.7 that

LQc(A)=LQc(T )2 SpanR(i@x1Qc; i@x2Qc);

thus

Re(LQc(A)A�)=Re(LQc(T )T + "iQc)=Re(LQc(T )T�)+ "Re(LQc(T ) iQc):

From the proof of Lemma 3.4.2, we haveRe(LQc(T )T�)2L1(R2), and since LQc(T )2SpanR(i@x1Qc;
i@x2Qc), with Theorem 3.1.4, we have

jRe(LQc(T ) iQc)j6
K(c)
(1+ r)3

2L1(R2):

Let us check that, for '2HQc
exp, BQc

exp('+ "iQc)=BQc
exp(') for "2R.

We check, from (1.4.4), that, for '2Cc1(R2n
�
dc~e1~ ;¡dc~e1~

	
;C), this equality holds by integra-

tion by parts and because Re( + i)=Re( ), Im(r( + i))=Im(r ). We then argue by density,
as in the proof of Proposition 1.4.3.

We deduce, from Lemmas 3.1.7 and 3.4.2, that for '2Cc1(R2n
�
dc~e1~ ;¡dc~e1~

	
;C),

BQc
exp('+A) = BQc

exp('+T )=BQc('+T )
= hLQc('+T ); '+T i= hLQc('+A); '+T i
= hLQc('+A); '+Ai¡ hLQc('+A); "iQci;
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and we check, with Lemma 3.1.7, that for some v 2R2 depending on A,

hLQc('+A); "iQci = hLQc('); "iQci+ hLQc(P ); "iQci

= "h';LQc( iQc)i+ "v:
Z
R2
Re(rQcQc)

= 0:

From Lemma 3.1.8, we have,

k@x1QckC+ k@x2QckC+ kc2@cQckC+ c�0/2kc@c?QckC6K(�0);

and with Lemmas 1.2.1, 3.1.2 and equations (3.1.9), (3.1.10), (3.1.11), we check with the de�nition
of k:kHQcexp and k:kC that, for A2

�
@x1Qc; @x2Qc; c

2@cQc; c
1+�0/2@c?Qc

	
,

kAkHQcexp
2 6KkAkH1({r�610})

2 + kAkC2 6K(�0):
Finally, we check that

kiQckHQcexp
2 = kiQckH1({r�610})

2 +
Z

{r~>5}
jrij2+Re2(i)+ jij2

r~2ln(r~)2
6K: �

We can now end the proof of Proposition 1.4.10.

Proof. (of Proposition 1.4.10) From Theorem 1.4.4, for '2Cc1(R2n
�
dc~e1~ ;¡dc~e1~

	
;C), under

the four orthogonality conditions of Proposition 1.4.10, we have, by lemma 3.5.1,

BQc
exp(')=BQc(')= hLQc('); 'i>Kk'kC2:

We then conclude by density, as in the proof of Proposition 1.4.3, using Lemma 3.5.2. The proof for
the density in BQc

exp is similar to the one for BQc in the proof of Proposition 1.4.3. The coercivity
under three orthogonality conditions can be shown similarly.

Then, for the computation of the kernel, the proof is identical to the one of Corollary 1.4.5. With
Lemma 3.5.1, we check easily that we can do the same computation simply by replacing BQc(') by
BQc

exp('). The only di�erence is at the end, when we have k'�kC=0, it implies that '�=�iQc for
some �2R, and we can not conclude that �=0, since we only have '�2HQc

exp instead of '�2HQc.
This implies that

'2 SpanR(@x1Qc; @x2Qc; iQc):

Using Lemma 3.1.7 and 3.5.3, we check easily the implication from (ii) to (i). �

3.5.2 Change of the coercivity norm with an orthogonality on the phase
We now focus on the proofs of Proposition 1.4.11 and Theorem 1.4.12. In these results, we add an
orthogonality condition on the phase. We start with a lemma giving the coercivity result but with
the original orthogonality conditions on the vortices, adding the one on the phase.

Lemma 3.5.4. For '=Qc 2HQc
exp, if the following four orthogonality conditions are satis�ed:Z

B
¡
d~ce1;R

�Re
�
@x1V~1V1~  

�
=
Z
B
¡
d~ce1;R

�Re
�
@x2V1~ V1~  

�
=0;

Z
B
¡
¡d~ce1;R

�Re
�
@x1V

~¡1V~¡1 
�
=
Z
B
¡
¡d~ce1;R

�Re
�
@x2V

~¡1V~¡1 
�
=0;

then, if Re
R
B(0;R)

i =0; we have (with K(c)6 1)

BQc
exp(')>K(c)k'kHQcexp

2 +Kk'kC2 ;
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or if 8x2R; '(x1; x2)= '(¡x1; x2) and Re
R
B
¡
d~ce1;R

�
[B

¡
¡d~ce1;R

�iQc'� =0, then
BQc

exp(')>Kk'kHQcexp
2 :

Proof. Let us show these results for '=Qc 2Cc1
¡
R2n

�
d~ce~1;¡d~ce~1

	
;C
�
. We then conclude by

density. We start with the nonsymmetric case.
By Lemma 3.3.4, for '=Qc 2Cc1

¡
R2n

�
d~ce~1;¡d~ce~1

	
;C
�
such thatZ

B
¡
d~ce1;R

�Re
�
@x1V

~
1V1~  

�
=
Z
B
¡
d~ce1;R

�Re
�
@x2V1

~ V1~  
�
=0;

we have

BQc
loc1;D(')>K(D)

Z
B
¡
d~ce1;D

�jr j2jQcj4+Re2( )jQcj4:

By Lemma 3.3.3, we infer, by a standard proof by contradiction (with the �rst two orthogonality
conditions),

BQc
loc1;D(')>K1(D)k'kH1

¡
B
¡
d~ce1;D

��2 ¡K2(D)

 Z
B
¡
d~ce1;R

�
nB
¡
d~ce1;R/2

�Im( )
!
2

:

We deduce, with Lemma 3.3.3, that for any small "> 0

BQc
loc1;D(') > K(D)(1¡ ")

Z
B
¡
d~ce1;D

�jr j2jQcj4+Re2( )jQcj4

+ K1(D)"k'kH1
¡
B
¡
d~ce1;D

��2 ¡K2(D)"

 Z
B
¡
d~ce1;R

�
nB
¡
d~ce1;R/2

�Im( )
!
2

:

By Poincaré inéquality, if Re
R
B(0;R)

i =0, thenZ
B
¡
d~ce1;R

�
nB
¡
d~ce1;R/2

�Im( ) 6 K(c)
Z
R2n

¡
B
¡
d~ce1;R/2

�
[B

¡
¡d~ce1;R/2

��jr j2
s

6 K(c)
Z
R2
jr j2jQcj4

r
:

Therefore, for any small �> 0, taking "> 0 small enough (depending on c;D and �),

BQc
loc1;D(') > K(D)

Z
B
¡
d~ce1;D

�jr j2jQcj4+Re2( )jQcj4

+ K1(D; c; �)k'kH1
¡
B
¡
d~ce1;D

��2 ¡ �
Z
R2
jr j2jQcj4:

With similar arguments, we have a similar result for BQc
loc¡1;D('). Now, as in the proof of Propos-

ition 1.4.3, we have, taking �> 0 small enough and D> 0 large enough,

BQc(') > BQc
loc1;D(')+BQc

loc¡1;D(')

+ K

 Z
R2n

¡
B
¡
d~ce1;D

�
[B

¡
¡d~ce1;D

��jr j2jQcj4+Re2( )jQcj4
!

> K

Z
R2
jr j2jQcj4+Re2( )jQcj4+K1(c; �)k'kH1

¡
B
¡
d~ce1;10

��2

¡ �

Z
R2
jr j2jQcj4

> Kk'kC2 +K(c)k'kH1
¡
B
¡
d~ce1;10

��2 :

Then, by the same Hardy type inequality as in the proof of Proposition 1.4.3, we show thatZ
R2

j'j2
(1+ r~)2ln2(2+ r~)

6K
�
k'kH1

¡
B
¡
d~ce1;10

��2 +
Z
R2
jr j2jQcj4

�
;
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therefore

BQc(')>Kk'kC2 +K(c)k'kHQcexp
2 :

In the symmetric case, the proof is identical, exept that, by symmetry,

Re

Z
B
¡
d~ce1;R

�iQc'�=0;

and we check by Poincaré inequality that for a function ' satisfying this orthogonality condition,
'=Qc , �����

Z
B
¡
d~ce1;R

�
nB
¡
d~ce1;R/2

�Im( )
�����6Kk'kH1

¡
B
¡
d~ce1;R

��;
for a universal constant K > 0. By a similar computation as previously, we conclude the proof of
this lemma. �

We now have all the elements necessary to conclude the proof of Proposition 1.4.11.

Proof. (of Proposition 1.4.11) This proof follows the proof of Lemma 3.4.5. For ' 2
Cc
1¡R2n

�
d~ce~1;¡d~ce~1

	
;C
�
and �ve real-valued parameters "1; "2; "3; "4; "5 we de�ne '�=Qc 

� by

 �=  + "1
@x1Qc
Qc

+ "2
c2@cQc
Qc

+ "3
@x2Qc
Qc

+ "4
c@c?Qc
Qc

+ "5i:

From Lemma 3.5.3, we check that '�2HQc
exp. Now, similarly as the proof of Lemma 3.4.5, we check

that Z
B
¡
d~ce1;R

�Re
�
@x1V1~ V1~  �

�
=
Z
B
¡
d~ce1;R

�Re
�
@x1V1~ V1~  

�
+ "1

Z
B
¡
d~ce1;R

�Re

 
@x1V1~ @x1Qc

V1~
Qc

!

+ "2

Z
B
¡
d~ce1;R

�Re

 
@x1V1

~ c2@cQc
V1~
Qc

!

+ "3

Z
B
¡
d~ce1;R

�Re

 
@x1V1~ @x2Qc

V1~
Qc

!

+ "4

Z
B
¡
d~ce1;R

�Re

 
@x1V1~ c@c?Qc

V1~
Qc

!
+ "5

Z
B
¡
d~ce1;R

�Re
�
@x1V1~ iV1~

�
:

Furthermore, with Lemma 1.2.1, we check thatZ
B
¡
d~ce1;R

�Re
�
@x1V1iV1

~
�
=0;

and the other terms are estimated as in the proof of Lemma 3.4.5. Similarly,Z
B
¡
d~ce1;R

�Re
�
@x2V1iV1~

�
=
Z
B
¡
¡d~ce1;R

�Re
¡
@x1V¡1iV¡1

�
=
Z
B
¡
¡d~ce1;R

�Re
¡
@x2V¡1iV¡1

�
=0:

We also check that, from (3.1.9), (3.1.10), Lemmas 3.1.2 and 3.1.6 that����Z
B(0;R)

Re

�
i
@x1Qc
Qc

�����+ ����Z
B(0;R)

Re

�
i
@x2Qc
Qc

�����
+
����Z
B(0;R)

Re

�
ic2

@cQc
Qc

�����+ ����Z
B(0;R)

Re

�
ci
@c?Qc
Qc

�����
= oc!0(1);
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and Z
B(0;R)

Re(i� i)=¡�R2< 0:

We deduce, as in the proof of Lemma 3.4.5, that0BBBBBBBBBBB@

R
B
¡
d~ce1;R

�Re
�
@x1V1

~ V1~  �
�

R
B
¡
¡d~ce1;R

�Re
�
@x1V~¡1V~¡1 �

�
R
B
¡
d~ce1;R

�Re
�
@x2V1~ V1~  �

�
R
B
¡
¡d~ce1;R

�Re
�
@x2V

~¡1V~¡1 �
�

Re
R
B(0;R)

i =0

1CCCCCCCCCCCA

=

0BBBB@
0BBBB@
K(R) ¡K(R) 0 0 0
K(R) K(R) 0 0 0
0 0 K(R) ¡K(R) 0
0 0 K(R) K(R) 0
0 0 0 0 ¡�R2

1CCCCA+ oc!0(1)

1CCCCA
0BBBB@
"1
"2
"3
"4
"5

1CCCCA
+ oc!0(c�0)Kk'kC:

Therefore, we can �nd "1; "2; "3; "4; "52R such that

j"1j+ j"2j+ j"3j+ j"4j+ j"5j6 oc!0(c�0)k'kC
and '� satis�es the �ve orthogonality conditions of Lemma 3.5.4. Therefore,

BQc
exp('�)>K(c)k'�kHQcexp

2 +Kk'�kC2:

We continue as in the proof of Lemma 3.4.5, and with the same arguments, we have

BQc
exp(')>K(c)k'�kHQcexp

2 +Kk'kC2:

Now, by Lemma 3.5.3, we have

k'�kHQcexp > k'kHQcexp¡k"1@x1Qc+ "2c
2@cQc+ "3@x2Qc+ "4c@c?Qc+ "5ikHQcexp

> k'kHQcexp¡ oc!0(c�0/2)k'kC;

thus, since we can take K(c)6 1, we have

BQc
exp(')>K(c)k'kHQcexp

2 :

We conclude by density as in the proof of Proposition 1.4.3, thanks to Lemma 3.5.2. We are left
with the proof of BQc

exp(')6Kk'kHQcexp
2 . With regards to (1.4.4), the local terms can be estimated

by Kk'kH1({r~610})
2 6Kk'kHQcexp

2 and the terms at in�nity, by Cauchy Schwarz, can be estimated

by K
R

{r~>5} jr j
2+Re2( )+ j j2

r~2ln2(r~) 6Kk'kHQcexp
2 . �

As for the remark above equation (3.4.20), we can replace the orthogonality condition
Re
R
B
¡
d~ce1;R

�
[B

¡
¡d~ce1;R

�@cQcQc =/0=0 by

Re

Z
B
¡
d~ce1;R

�
[B

¡
¡d~ce1;R

�@d(V1(x¡ de~1)V¡1(x+ de~1))|d=dcQc 
=/0(x)dx=0 (3.5.4)

in Propositions 1.4.10 and 1.4.11.

Proof. (of Theorem 1.4.12) This proof follows closely the proof of Proposition 1.4.11,
First, From Lemma 3.1.3 and the de�nition of @c?Qc in Lemma 3.1.6, we check that @x1Qc

and @c?Qc are odd in x1, and for ' = Qc 2 Cc
1¡R2n

�
d~ce~1; ¡d~ce~1

	
; C
�
with 8(x1; x2) 2 R2;

'(x1; x2)='(¡x1; x2), we check that in B
¡
d~ce1~ ;R

�
[B
¡
¡d~ce1~ ;R

�
, Qc =/0 is even in x1. Therefore,

these two orthogonality conditions are freely given.
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We decompose as previously for, "1; "2; "3 three real-valued parameters,

'= '�+ "1iQc+ "2@x2Qc+ "3c2@cQc:

We suppose that

Re

Z
B
¡
d~ce1;R

�
[B

¡
¡d~ce1;R

�@cQc'� =Re

Z
B
¡
d~ce1;R

�
[B

¡
¡d~ce1;R

�@x2Qc'� =0;

Re

Z
B
¡
d~ce1;R

�
[B

¡
¡d~ce1;R

�iQc'� =0;

and we show, as in the proof of Lemma 3.4.5, that we can �nd "1; "2; "32R such that

j"1j+ j"2j+ j"3j6 oc!0(c�0)k'kHQcexp;

and '� satis�es the �ve orthogononality conditions of Lemma 3.5.4 (we recall that two of them are
given by symmetry). Here, since we did not remove the 0-harmonics, the error is only controlled
by k'kHQcexp instead of k'kC. For instance, we haveZ

B
¡
d~ce1;R

���Re
¡¡
@x2V1~ V1~

� ¡ @x2QcQc
�
 
���6 oc!0(1)kQc kL2¡B¡d~ce1;R��= oc!0(1)k'kHQcexp:

Now, from Lemma 3.5.4, since '�2HQc
exp, we have

BQc
exp('�)>Kk'�kHQcexp

2 :

We continue, as in the proof of Lemma 3.4.5, with j"1j+ j"2j+ j"3j= oc!0(1)k'kHQcexp and Lemma
3.5.3. We show that

BQc
exp(')>Kk'kHQcexp

2 :

We conclude the proof of Theorem 1.4.12 by density. �

3.6 Local uniqueness result

This section is devoted to the proof of Theorem 1.4.13. This proof will follow classical schemes for
local uniqueness using the coercivity. Here, we will use Propositions 1.4.10 and 1.4.11, with the
remark (3.5.4).

3.6.1 Construction of a perturbation
For a given c~ 02R2, 0< jc~ 0j6 c0 (c0 de�ned in Theorem 1.3.1), X 2R2 and 
 2R, we de�ne, thanks
to (1.4.1), the travelling wave

Q :=Qc~ 0(:¡X)ei
: (3.6.1)

We de�ne a smooth cuto� function �, with value 0 inB
¡
�d~ce1~ ;R+1

�
(R>10 is de�ned in Theorem

1.4.4), and 1 outside of B
¡
d~ce1~ ;R+2

�
[B

¡
¡d~ce1~ ;R+2

�
. The �rst step is to de�ne a function  

such that

(1¡ �)Q + �Q(e ¡ 1)=Z ¡Q; (3.6.2)

with Q satisfying the orthogonality conditions of Propositions 1.4.10 and 1.4.11. We start by
showing that there exists a function  solution of (3.6.2). We denote �j:j(ce2~ ; c~ 0) := jce2~ : c~

0

jc~ 0j ¡ c~ 0j
and �?(ce2~ ; c~ 0) := jce2~ :c~

0?

jc~ 0j ¡ c~
0j. At �xed c, these two quantities characterize c~ 0. We will use them

as variables instead of c~ 0, this decomposition being well adapted to the problem.
Since both Z and jQj go to 1 at in�nity, we have that such a function  is bounded at in�nity.
The perturbation here is chosen additively close to the zeros of the travelling wave, and multi-

plicatively at in�nity. This seems to be a �t form for the perturbation, and we have already used
it in the construction of Qc.
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Lemma 3.6.1. There exits c0 > 0 such that, for 0 < c < c0 and any � > 10
c
, with Z a function

satisfying the hypothesis of Theorem 1.4.13 and Q de�ned by ( 3.6.1) with c

2
6 jc~ 0j62c, there exist

K;K(�)> 0 such that

kZ ¡QkC1(B(0;�))6K(�)kZ ¡QckHQcexp+K
 
jX j+ �j:j(ce2~ ; c~ 0)

c2
+ �?(ce2~ ; c~ 0)

c
+ j
 j

!
:

We will mainly use this result for �=�+1, �> 0 de�ned in Theorem 1.4.13.

Proof. We recall that such a function Z is in C1(R2;C) by elliptic regularity.
We start with the estimation of w :=Qc¡Z in B(0;�). Since both Z and Qc solve (TWc), we

have

¡�w=(1¡ jQcj2)Qc¡ (1¡ jZ j2)Z + ic@x2w:

From Theorem 8.8 of [15], we have that for x2R2, 
 :=B(0;�), 2
=B(0; 2�),

kwkW2;2(
)6K(�)(kwkH1(
)+ kic@x2w+(1¡ jQcj2)Qc¡ (1¡ jZ j2)ZkL2(2
)):

We compute that

(1¡ jQcj2)Qc¡ (1¡jZ j2)Z =(Qc¡Z)(1¡ jQcj2)+Z(jQcj ¡ jZ j)(jQcj+ jZ j):

From [13], we have that any travelling wave of �nite energy is bounded in L1(R2) by a universal
constant, i.e.

jQcj+ jZ j6K; (3.6.3)

therefore

j1¡ jQcj2j+ jZ j (jQcj+ jZ j)6K

for a universal constant K. Thus,

k(1¡jQcj2)Qc¡ (1¡ jZ j2)ZkL2(2
)6KkwkL2(2
);

and we deduce, from Lemma 3.1.5, that

kwkW 2;2(
)6K(�)(kwkH1(2
)+ kic@x2wkL2(2
)+ kwkL2(2
))6K(�)kwkHQcexp:

By standard elliptic arguments, we have that for every k> 2,

kwkWk;2(
)6K(�; k)kwkHQcexp:

By Sobolev embeddings, we estimate

kwkC1(
)6K(�)kwkW4;2(
)6K(�)kwkHQcexp: (3.6.4)

From (3.6.4), we have

kZ ¡QkL1(
)6 kQ¡QckL1(
)+ kwkL1(
)6 kQ¡QckL1(R2)+K(�)kwkHQcexp:

We estimate

kQ¡QckL1(R2) = kQc~ 0(:¡X)ei
¡QckL1(R2)

6 kQc~ 0(:¡X)ei
¡Qc~ 0(:¡X)kL1(R2)+ kQc~ 0(:¡X)¡Qc~ 0kL1(R2)

+ kQc~ 0¡Qjc~ 0je~2kL1(R2)+ kQjc~ 0je~2¡QckL1(R2):

We check, with Theorem 1.3.1 and Lemma 3.1.6 that krQkL1(R2) + c2k@cQkL1(R2) +
ck@c?QkL1(R2) + kiQkL1(R2) 6 K, and that it also holds for any travelling wave of the form
Q&~(:¡Y )ei� if 2c> j&~ j> c/2; Y 2R2 and � 2R.

We check that kQc~ 0(:¡X)ei
 ¡ Qc~ 0(:¡X)kL1(R2)6 jei
 ¡ 1jkQc~ 0(:¡X)kL1(R2)6K j
 j; and
we estimate (by the mean value theorem)

kQc~ 0(:¡X)¡Qc~ 0kL1(R2)6K jX jkrQc~ 0kL1(R2)6K jX j:
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Similarly, we have

kQc~ 0¡Qjc~ 0je~2kL1(R2)6K
�?(ce2~ ; c~ 0)+ �j:j(ce2~ ; c~ 0)

c

and kQjc~ 0je~2¡QckL1(R2)6K �j:j(ce2; c~ 0)

c2
. We deduce that (since c6 1)

kQ¡QckL1(R2)6K
 
jX j+ �j:j(ce2~ ; c~ 0)

c2
+ �?(ce2~ ; c~ 0)

c
+ j
 j

!
; (3.6.5)

and thus

kZ ¡QkL1(B(0;�))6K(�)kZ ¡QckHQcexp+K
 
jX j+ �j:j(ce2~ ; c~ 0)

c2
+ �?(ce2~ ; c~ 0)

c
+ j
 j

!
: (3.6.6)

Finally, from Lemmas 1.2.1, 3.1.1 and 3.1.2, @c?Qc=¡x?:rQc and equation (3.1.11), we have

kr@x2QkL1(R2)+ c2kr@cQkL1(R2)+ ckr@c?QkL1(R2)+ kirQckL1(R2)6K:
We deduce that

kr(Q¡Qc)kL1(R2)6K
 
jX j+ �j:j(ce2~ ; c~ 0)

c2
+ �?(ce2~ ; c~ 0)

c
+ j
 j

!
;

and, by (3.6.4),

kr(Z ¡Q)kL1(B(0;�))6K(�)kZ ¡QckHQcexp+K
 
jX j+ �j:j(ce2~ ; c~ 0)

c2
+ �?(ce2~ ; c~ 0)

c
+ j
 j

!
:

�

Lemma 3.6.2. There exists "0(c)> 0 small such that, for Z a function satisfying the hyptothesis
of Theorem 1.4.13 with

jX j+ �j:j(ce2~ ; c~ 0)
c2

+ �?(ce2~ ; c~ 0)
c

+ j
 j6 "0(c);

there exists a function Q 2C1(R2;C) such that ( 3.6.2) holds. Furthermore, for any �> 10
c
, there

exists K;K(�)> 0 such that

kQ kC1(B(0;�))6K(�)kZ ¡QckHQcexp+K
 
jX j+ �j:j(ce2~ ; c~ 0)

c2
+ �?(ce2~ ; c~ 0)

c
+ j
 j

!
:

Proof. First, taking "0(c) small enough (depending on c), we check that c

2
6 jc~ 0j6 2c.

We recall equation (3.6.2):
(1¡ �)Q + �Q(e ¡ 1)=Z ¡Q:

We write it in the form

 + �(e ¡ 1¡  )= Z ¡Q
Q

;

and in
�
�=0

	
, we therefore de�ne

 = Z ¡Q
Q

: (3.6.7)

Now, we de�ne the set 
:=B(0; �+1)n(B(dce~1;R¡1)[B(¡dce~1;R¡1)). In this set, we have that



Z ¡QQ





C1(
)

6K"0(c)+K(�)kZ ¡QckHQcexp

by Lemma 3.6.1 and (3.1.12). Therefore, since e ¡ 1¡  is at least quadratic in  2 C1(
;C),
by a �xed point argument (on H( ) := Z ¡Q

Q
¡ �(e ¡ 1 ¡  ), which is a contraction on

k kL1({�=/0})< � for � > 0 small enough), we deduce that on 
, given that "0 and kZ ¡ QckHQcexp
are small enough (depending on � for kZ ¡QckHQcexp), there exists a unique function  2C1(
;C)
such that  + �(e ¡ 1 ¡  ) = Z ¡Q

Q
in 
. By unicity, since we have a solution of the same

problem on {� = 0} which intersect 
, we can construct Q 2 C1(B(0; � + 1); C) such that
�Q +(1¡ �)Q(e ¡ 1)=Z ¡Q in B(0; �+1).
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Furthermore, we use here the hypothesis that, outside of B(0; �), jZ ¡ Qcj6 �0. We deduce
that (taking �0<

1

4
) there exists � > 0 such that jZ j>� outside of B(0; �). In particular, since �

can be taken large, we have that outside of B(0; �), �=1. The equation on  then becomes

e = Z
Q
;

and by equation (3.1.12) and jZ j>�, we deduce that there exists a unique solution to this problem
in C1(R2nB(0; �);C) that is equal on B(0; �+1)nB(0; �) to the previously constructed function  .

Therefore, there exists Q 2 C1(R2; C) such that (1 ¡ �)Q + �Q(e ¡ 1) = Z ¡ Q in R2.
Furthermore, we check that (by the �xed point argument), since

�
�=/ 1

	
�B(0; �),

k kC1({�=/ 1}) 6 K





Z ¡QQ





C1({�=/ 1})

6 K(�)kZ ¡QckHQcexp+K

 
jX j+ �j:j(ce2~ ; c~ 0)

c2
+ �?(ce2~ ; c~ 0)

c
+ j
 j

!
:

From equation (3.1.12) and Lemma 3.6.1, we have

kQ kC1(B(0;�)) 6 kZ ¡QkC1(B(0;�))+Kk kC1({�=/ 1})+K(�)kZ ¡QckHQcexp

6 K(�)kZ ¡QckHQcexp+K

 
jX j+ �j:j(ce2~ ; c~ 0)

c2
+ �?(ce2~ ; c~ 0)

c
+ j
 j

!
:

This concludes the proof of the lemma. �

Lemma 3.6.3. The functions Q and  , de�ned respectively in ( 3.6.1) and Lemma 3.6.2, satisfy

' :=Q 2HQ
exp:

Furthermore, '2C2(R2;C) and there exists K(�; c;kZ ¡QckHQcexp; "0;Z)>0 such that, in
�
�=1

	
(i.e. far from the vortices),

jr j+ jRe( )j+ j� j6
K(�; c; kZ ¡QckHQcexp; "0; Z)

(1+ r)2
;

jrRe( )j6
K(�; c; kZ ¡QckHQcexp; "0; Z)

(1+ r)3
and

jIm( + i
)j6
K(�; c; kZ ¡QckHQcexp; "0; Z)

(1+ r)
:

Proof. From Lemma 3.6.2, for any �> 10
c
,

kQ kC1(B(0;�))6K(�)kZ ¡QckHQcexp+K
 
jX j+ �j:j(ce2~ ; c~ 0)

c2
+ �?(ce2~ ; c~ 0)

c
+ j
 j

!
; (3.6.8)

therefore, we only have to check the integrability at in�nity of Q to show that '= Q 2HQ
exp:

In
�
�=1

	
, we have

e = Z
Q
:

We have shown in the proof of Lemma 3.6.2 that K>
��� Z
Q

���>�/2 outside of B(0; �) for some � > 0,
and together with (3.6.8), we check that

k kC0({�=1})6K(�; kZ ¡QckHQcexp; "0): (3.6.9)

This implies that Z
{�=1}

jQ j2
r~2ln(r~)2

<+1:
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Similarly, we check that, in
�
�=1

	
, since e = Z

Q
,

r = e¡ 

Q
r(Z ¡Q)¡ rQ

Q
(1¡ e¡ );

therefore

jr j6K(�; kZ ¡QckHQcexp; "0)(jr(Z ¡Q)j+ jrQj): (3.6.10)

From Theorem 3.1.4, we have

jrZ j+ jrQj6 K(c; Z)
(1+ r)2

;

therefore, Z
{�=1}

jrQj2j j2<+1

and Z
{�=1}

jr(Z ¡Q)j2 6
Z

{�=1}

K(c; Z)
(1+ r)4

<+1:

We deduce that
R

{�=1} jr j
2<+1, and, furthermore, equation (3.6.10) shows that

jr j6
K(�; c; kZ ¡QckHQcexp; "0; Z)

(1+ r)2
in
�
�=1

	
.

Now, still in
�
�=1

	
, we have

Qe =Z;

we deduce that Qe¡i
(e +i
 ¡ 1) = Z ¡ Qe¡i
. Now, we recall that k kC0({�=1}) 6 K(�;
kZ ¡ QckHQcexp; "0), thus jRe(e +i
 ¡ 1 ¡ ( + i
))j 6 K(�; kZ ¡ QckHQcexp; "0)jRe(e +i
 ¡ 1)j.
We deduce from this, with (3.6.8) that, in {� = 1}, with 1

4
k + i
kL1(R2) 6 jRe(e +i
 ¡ 1)j 6

Kk + i
kL1(R2),

jRe( )j = jRe( + i
)j
6 jRe(e +i
¡ 1)j+ jRe(e +i
¡ 1¡ ( + i
))j
6 K(�; kZ ¡QckHQcexp; "0)jRe(e +i
¡ 1)j

6 K(�; kZ ¡QckHQcexp; "0)
����Re

 
(Z ¡Qe¡i
 )Qei


jQj2

!����
6 K(�; kZ ¡QckHQcexp; "0)(jRe(Z ¡Qe¡i
 )j+ jIm(Z ¡Qe¡i
)Im(Qei
¡ 1)j):

From Theorem 3.1.4,

jRe(Z ¡Qe¡i
 )j6 jRe(Z ¡ 1)j+ jRe(1¡Qe¡i
 )j6 K(c; Z)
(1+ r)2

and

jIm(Z ¡Qe¡i
)Im(Qei
¡ 1)j6 K(c; Z)
(1+ r)2

:

We conclude that, in
�
�=1

	
, we have jRe( )j6

K
�
�; c; kZ ¡QckHQc

exp; "0; Z
�

(1+ r)2
henceZ

{�=1}
Re2( )<+1:

This conclude the proof of ' = Q 2 HQc
exp. We are left with the proof of the following estim-

ates, j� j 6
K
�
�; c; kZ ¡QckHQc

exp; "0; Z
�

(1+ r)2
, jIm( + i
)j 6

K
�
�; c; kZ ¡QckHQc

exp; "0; Z
�

(1+ r)
and jRe(r )j 6

K
�
�; c; kZ ¡QckHQc

exp; "0; Z
�

(1+ r)3
in
�
�=1

	
.

3.6 Local uniqueness result 209



We recall that, in
�
� = 1

	
, r = e¡ 

Q
r(Z ¡ Q)¡ rQ

Q
(1¡ e¡ ), from which we compute, by

di�erentiating a second time,

� = ¡r :r(Z ¡Q)
Q

e¡ ¡ rQ
Q

e¡ :r(Z ¡Q)+ e¡ 

Q
�(Z ¡Q)

¡ �Q
Q

(1¡ e¡ )+ rQ:rQ
Q2

(1¡ e¡ )¡ rQ
Q

:r e¡ :

Using Theorem 3.1.4, �Q=¡ic~ 0:rQ ¡ (1¡ jQj2)Q, �Z =¡ic@x2Z ¡ (1¡ jZ j2)Z and previous
estimates on  , we check that, in

�
�=1

	
,

j� j6
K(�; c; kZ ¡QckHQcexp; "0; Z)

(1+ r)2
:

We have Qe¡i
(e +i
¡ 1)=Z ¡Qe¡i
 in
�
�=1

	
, therefore

e +i
¡ 1= Z

Qe¡i

¡ 1

We check, since k kC0({�=1})6K(�; kZ ¡QckHQcexp; "0), that we have by Theorem 3.1.4

jIm( + i
)j 6 K(�; kZ ¡QckHQcexp; "0)jIm(e
 +i
¡ 1)j

6 K(�; kZ ¡QckHQcexp; "0)
���� Z

Qe¡i

¡ 1
����

6
K(�; c; kZ ¡QckHQcexp; "0; Z)

(1+ r)
:

Finally, since r = e¡ 

Q
r(Z ¡ Q)¡ rQ

Q
(1¡ e¡ ) = rZ

Q
e¡ ¡ rQ

Q
, we check with Theorem 3.1.4

that, in
�
�=1

	
,

jrRe( )j 6
����Re

�
rZ
Q
e¡ 

�����+ ����Re

�
rQ
Q

�����
6
����Re

�
rZZ�e

¡ 

QZ�

�����+ jRe(rQQ�)j
jQj2

6
����Im(rZZ�)Im� e¡ QZ�

�����+ jRe(rZZ�)j
����Re

�
e¡ 

QZ�

�����+ jr(jQj2)j2jQj2

6
K(�; c; kZ ¡QckHQcexp; "0; Z)

(1+ r)2

����Im� e¡ QZ�

�����+ K(�; c; kZ ¡QckHQcexp; "0; Z)
(1+ r)3

:

We compute in
�
�=1

	
, still using Theorem 3.1.4,����Im� e¡ QZ�

����� = 1
jQZ j2 jIm(e

¡ ¡i
Q�Zei
)j

6 K(jIm(e¡ ¡i
¡ 1)Re(Q�Zei
)j+ jRe(e¡ ¡i
)Im(Q�Zei
)j)

6
K(�; c; kZ ¡QckHQcexp; "0; Z)

1+ r
+K(�; c; kZ ¡QckHQcexp; "0; Z)jIm(Q

�Zei
)j

6
K(�; c; kZ ¡QckHQcexp; "0; Z)

(1+ r)
+K(�; c; kZ ¡QckHQcexp; "0; Z)(jQe

¡i
¡ 1j+ jZ¡1j)

6
K(�; c; kZ ¡QckHQcexp; "0; Z)

(1+ r)
:

This concludes the proof of this lemma. �

We remark that here, since  9 0 at in�nity (if 
 =/ 0), we do not have Q 2HQ. This is one
of the main reasons to introduce the space HQ

exp.

Lemma 3.6.4. The functions Q and  , de�ned respectively in ( 3.6.1) and Lemma 3.6.2, satisfy,
with '=Q ,

hLQ
exp('); ('+ i
Q)i=BQ

exp(');
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where LQ
exp(')= (1¡ �)LQ(')+ �QLQ

0 ( ), with

LQ
0 ( )=¡� ¡ 2rQ

Q
:r + i c~:r +2Re( )jQj2:

Furthermore,

LQ(')=QLQ
0 ( ):

The equality hLQ
exp('); ('+ i
Q)i=BQ

exp(') is not obvious for functions '2C2(R2;C)\HQc
exp

(because of some integration by parts to justify) and we need to check that, for the particular
function ' we have contructed, this result holds. We will use mainly the decay estimates of Lemma
3.6.3.

Morally, we are showing that, since LQ(i
Q) = 0, that we can do the following computation:
hLQ('); '+ i
Qi= h';LQ('+ i
Q)i= h';LQ(')i=BQ('). The goal of this lemma is simply to
check that, with the estimates of Lemma 3.6.3, the integrands are integrable and the integration
by parts can be done to have hLQ

exp('); ('+ i
Q)i=BQ
exp(').

Proof. First, let us show that LQc(�)=QcLQc
0 (	) if �=Qc	2C2(R2;C). With equation (3.6.1),

it implies that LQ(')=QLQ
0 ( ): We recall that

LQc(�)=¡��¡ ic@x2�¡ (1¡jQcj2)�+2Re(Qc�)Qc;

and we develop with �=Qc	,

LQc(�)=TWc(Qc)	¡Qc�	¡ 2rQc:r	¡ icQc@x2	+2Re(	)jQcj2Qc;

thus, since (TWc)(Qc)= 0, we have LQc(�)=QcLQc
0 (	).

Now, for '=Q , we have

h(1¡ �)LQ(')+ �QLQ
0 ( ); ('+ i
Q)i

=
Z
R2

Re((1¡ �)LQ(')('+ i
Q))

+
Z
R2
� jQj2Re

��
¡� ¡ 2rQ

Q
:r + i c~ :r 

�
( + i
)

�
+ � jQj4Re2( ):

With Lemma 3.6.3, we check that all the terms are integrable independently (in particular since
' + i
Q = Q( + i
) and k( + i
)(1 + r)kL1({�=1}) < +1 by Lemma 3.6.3). We recall that
LQ(')=¡�'+ i c~:r'¡ (1¡jQj2)'+2Re(Q�')Q, and thusZ

R2
Re((1¡ �)LQ(')('+ i
Q)) =

Z
R2
(1¡ �)(Re(i c~:r''�)¡ (1¡jQj2)j'j2+2Re2(Q�'))

+
Z
R2
(1¡ �)Re(¡�''�)+ 


Z
R2
(1¡ �)Re(LQ(')iQ):

We recall that 1¡ � is compactly supported and that '2C2(R2;C). By integration by parts,Z
R2
(1¡ �)Re(¡�''�)=

Z
R2
(1¡ �)jr'j2¡

Z
R2
r�:Re(r''�);

and we decomposeZ
R2
(1¡ �)Re(�LQ(')iQ) =

Z
R2
(1¡ �)Re(¡�'iQ+ c~:r'Q� )

¡
Z
R2
(1¡ �)Re((1¡ jQj2)'iQ):

By integration by parts, that we haveZ
R2
(1¡ �)Re(c~:r'Q� )=¡c~:

Z
R2
¡r�Re('Q�)+ (1¡ �)Re('rQ�)
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and Z
R2
(1¡ �)Re(¡�'iQ) =

Z
R2
¡r�:(Re(i'rQ�)¡Re(ir'Q�))+

Z
R2
(1¡ �)Re(i'�Q�):

Combining this computations, we inferZ
R2

Re((1¡ �)LQ(')('+ i
Q))

=
Z
R2
(1¡ �)(jr'j2+Re(i c~:r''�)¡ (1¡jQj2)j'j2+2Re2(Q�'))

¡
Z
R2
r�:Re(r''�)
c~:

Z
R2
r�Re('Q�)

¡ 


�Z
R2
r�:(Re(i'rQ�)¡Re(ir'Q�))

�
+ 


Z
R2
(1¡ �)Re('(¡ c~:rQ� + i(1¡ jQj2)Q� + i�Q�)):

Since ¡�Q+ i c~:rQ¡ (1¡ jQj2)Q=0, we have ¡c~:rQ� + i(1¡ jQj2)Q� + i�Q� =0, thereforeZ
R2
Re((1¡ �)LQ(')('+ i
Q))

=
Z
R2
(1¡ �)(jr'j2+Re(ic~:r''�)¡ (1¡jQj2)j'j2+2Re2(Q�'))

¡
Z
R2
r�:Re(r''�)

¡ 


�
¡c~:
Z
R2
r�Re('Q�)+

Z
R2
r�:(Re(i'rQ�)¡Re(ir'Q�))

�
:

Until now, all the integrals were on bounded domain (since 1¡ � is compactly supported).
Now, by integration by parts, (that can be done thanks to Lemma 3.6.3 and Theorem 3.1.4)Z

R2
� jQj2Re(¡� ( + i
)) =

Z
R2
r�:jQj2Re(r ( + i
))

+
Z
R2
�r(jQj2):Re(r ( + i
))

+
Z
R2
� jQj2jr j2:

Now, we decompose (and we check that each term is well de�ned at each step with Lemma 3.6.3
and Theorem 3.1.4) Z

R2
� jQj2Re

�
¡2rQ

Q
:r 

�
( + i
)

�
= ¡2

Z
R2
�Re(rQQ� :r  �)¡ 2

Z
R2
�Re(rQQ� :r (i
));

with

¡2
Z
R2
�Re(rQQ� :r  �) = ¡2

Z
R2
�Re(rQQ�):Re(r  �)

+ 2
Z
R2
�Im(rQQ�):Im(r  �);

and since r(jQj2)= 2Re(rQQ�), we haveZ
R2
� jQj2Re

��
¡� ¡ 2rQ

Q
:r 

�
( + i
)

�
=
Z
R2
� jQj2jr j2+2

Z
R2
(1¡ �)Im(rQQ�):Im(r  �)

+
Z
R2
r�:jQj2Re(r ( + i
))+2

Z
R2
�Im(rQQ�):Im(r (i
))):
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We continue. We have

2
Z
R2
�Im(rQQ�):Im(r  �) = 2

Z
R2
�Im(rQQ�):Re( )Im(r )

¡ 2
Z
R2
�Im(rQQ�):Re(r )Im( );

and by integration by parts (still using Lemma 3.6.3 and Theorem 3.1.4),

¡2
Z
R2
�Im(rQQ�):Re(r )Im( )

= 2
Z
R2
�Im(rQQ�):Re( )Im(r )

+ 2
Z
R2
�Im(�QQ�)Re( )Im( )

+ 2
Z
R2
r�:Im(rQQ�)Re( )Im( ):

We have Im(�QQ�)=Im(i c~:rQ¡ (1¡ jQj2Q)Q�)=Re(c~:rQQ�), thereforeZ
R2
� jQj2Re

��
¡� ¡ 2rQ

Q
:r 

�
( + i
)

�
=
Z
R2
� jQj2jr j2+4

Z
R2
�Im(rQQ�):Re( )Im(r )

+ 2
Z
R2
�Im(rQQ�):Im(r (i
)))

+ 2
Z
R2
�Re(c~:rQQ�)Re( )Im( )

+
Z
R2
r�(jQj2Re(r ( + i
))+ 2Im(rQQ�)Re( )Im( )):

Now, we compute

c~:

Z
R2
� jQj2Re(ir ( + i
)) = c~:

Z
R2
� jQj2Re(r )Im( + i
)

¡ c~:

Z
R2
� jQj2Im(r )Re( );

and by integration by parts (still using Lemma 3.6.3 and Theorem 3.1.4),

c~:

Z
R2
� jQj2Re(r )Im( + i
) = ¡c~:

Z
R2
r� jQj2Re( )Im( + i
)

¡ c~:

Z
R2
�r(jQj2)Re( )Im( + i
)

¡ c~:

Z
R2
� jQj2Re( )Im(r ):

Since r(jQj2)= 2Re(rQQ�), we inferZ
R2
� jQj2Re

��
¡� ¡ 2rQ

Q
:r ¡ ic~:r 

�
( + i
)

�
=
Z
R2
�(jQj2jr j2+4Im(rQQ�):Re( )Im(r )¡ 2c~:Im(r )Re( ))

+ 2
Z
R2
�Im(rQQ�):Im(r (i
)))

¡ 2

Z
R2
�Re(c~:rQQ�)Re( )

+
Z
R2
r�:(jQj2Re(r ( + i
))+ 2Im(rQQ�)Re( )Im( ))

+ c~:

Z
R2
r� jQj2Re( )Im( + i
):
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Combining these computation yieldsZ
R2

Re(LQ
exp(')('+ i
Q)) = BQ

exp(')

¡ 


�
¡c~:
Z
R2
r�Re('Q�)+

Z
R2
r�:(Re(i'rQ�)¡Re(ir'Q�))

�
+ 2

Z
R2
�Im(rQQ�):Im(r (i
)))

¡ 2

Z
R2
�Re(c~:rQQ�)Re( )

+
Z
R2
r�:jQj2Re(r (i
))

¡ c~:


Z
R2
r� jQj2Re( ):

We compute, by integration by parts (still using Lemma 3.6.3 and Theorem 3.1.4), that

2
Z
R2
�Im(rQQ�):Im(r (i
))) = ¡2


Z
R2
�Im(rQQ�):Re(r )

= 2

Z
R2
r�:Im(rQQ�)Re( )

+ 2

Z
R2
�Im(�QQ�)Re( );

and since Im(�QQ�)=Re(c~:rQQ�) and Re(r (i
))= 
Im(r ), we haveZ
R2

Re(LQ
exp(')('+ i
Q)) = BQ

exp(')

¡ 


�
¡c~:
Z
R2
r�Re('Q�)+

Z
R2
r�:(Re(i'rQ�)¡Re(ir'Q�))

�
+ 2


Z
R2
r�:Im(rQQ�)Re( )

+ 


Z
R2
r�:jQj2Im(r )

¡ c~:


Z
R2
r� jQj2Re( ):

we check that Re('Q�)= jQj2Re( ), Re(i'rQ�)=¡Re(rQQ�)Im( )+ Im(rQQ�)Re( ) and that

¡Re(ir'Q�) = ¡Re(irQcQ� )¡Re(ir )jQj2

= Im(rQQ�)Re( )+Re(rQQ�)Im( )+ Im(r )jQj2;

thus concluding the proof of Z
R2

Re(LQ
exp(')('+ i
Q))=BQ

exp('): �

3.6.2 Properties of the perturbation
We look for the equation satis�ed by '=Q in the next lemma.

Lemma 3.6.5. The functions Q and  , de�ned respectively in ( 3.6.1) and Lemma 3.6.2, with
'=Q , satisfy the equation

LQ(Q )¡ i(ce2~ ¡ c~ 0):H( )+NLloc( )+F ( )= 0;

with LQ the linearized operator around Q: LQ(') :=¡�'¡ i c~:r'¡ (1¡ jQj2)'+2Re(Q�')Q,

S( ) := e2Re( )¡ 1¡ 2Re( );

F ( ) :=Q�(¡r :r + jQj2S( ));

H( ) :=rQ+ r(Q )(1¡ �)+Qr �e 
(1¡ �)+ �e 
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and NLloc( ) is a sum of terms at least quadratic in  , localized in the area where �=/ 1. Further-
more,

jhNLloc( ); Q( + i
)ij6K(kQ kC1({�=/ 1})+ j
 j)kQ kH1({�=/ 1})
2 :

Remark that here, the equation satis�ed by ' has a �source� term, i(ce2~ ¡c~ 0):H( ), coming from
the fact that Z and Qc might not have the same speed at this point. We will estimate it later on.

Proof. The function Z solves (TWc), hence,

i(ce2~ ¡ c~ 0):rZ =¡i c~ 0:rZ ¡�Z ¡ (1¡ jZ j2)Z:
From (3.6.2), we have

Z=Q+(1¡ �)Q + �Q(e ¡ 1):
We de�ne

� := 1+  ¡ e :

We replace Z = Q + (1 ¡ �)Q + �Q(e ¡ 1) in ¡i c~ 0:rZ ¡�Z ¡ (1¡ jZ j2)Z exactly as in the
proof of Lemma 2.1.7, by simply changing V ;	; ce~2; � respectively to Q;  ; c~ 0;1¡ �. In particular,
E ¡ ic@x2V becomes 0 (since TWc~ 0(Q)=0). This computation yields

i(ce2~ ¡ c~ 0):rZ =((1¡ �)+ �e )(LQ(Q )+NLloc( )+F ( )):

Furthermore, we have that ((1¡ �)+ �e )=/ 0 by Lemma 3.6.2 and equation (3.6.9) (for the same
reason as in the proof of Lemma 2.1.7), and we compute (as in Lemma 2.1.7) that

�e 

(1¡ �)+ �e 
= �+ �(1¡ �)

�
e ¡ 1

(1¡ �)+ �e 

�
: (3.6.11)

Furthermore, we have

rZ = rQ¡Qr�� +rQ((1¡ �) + � (e ¡ 1))+Qr ((1¡ �)+ �e )
= rQ(1¡ �+ �e )¡Qr�� +r(Q )(1¡ �)+Qr �e ;

hence
rZ

(1¡ �)+ �e 
=rQ¡ Qr��

(1¡ �)+ �e 
+ r(Q )(1¡ �)+Qr �e 

(1¡ �)+ �e 
;

therefore, with NLloc( )=NLloc( )+ i(ce2~ ¡ c~ 0): ¡Qr��
(1¡ �) + �e 

, we have

LQ(Q )¡ i(ce2~ ¡ c~ 0):H( )+NLloc( )+F ( )= 0:

Finally, we check, similarly as in the proof of Lemma 2.1.7, that

jhNLloc( ); Q( + i
)ij6K(kQ kC1({�=/ 1})+ j
 j)
Z
R2
jNLloc( )j;

hence

jhNLloc( ); Q( + i
)ij6K(kQ kC1({�=/ 1})+ j
 j)kQ kH1({�=/ 1})
2 : �

Now, we want to choose the right parameters 
; c~ 0; X so that ' satis�es the orthogonality
conditions of Proposition 1.4.10 and 1.4.11 (with remark 3.5.4).

Lemma 3.6.6. For the functions Q and  , de�ned respectively in ( 3.6.1) and Lemma 3.6.2, there
exist X; c~ 02R2; 
 2R such that

jX j+ �j:j(ce2~ ; c~ 0)
c2

+ �?(ce2~ ; c~ 0)
c

+ j
 j6 okZ¡QckHQcexp!0
�;c (1);
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and

Re

Z
B(dc~ 0;1;R)[B(dc~ 0;2;R)

@x1QQ 
=/0=Re

Z
B(dc~ 0;1;R)[B(dc~ 0;2;R)

@x2QQ 
=/0=0;

Re

Z
B(dc~ 0;1;R)[B(dc~ 0;2;R)

@c?QQ 
=/0=0;

Re

Z
B(dc~ 0;1;R)[B(dc~ 0;2;R)

@dVQ 
=/0=0

Re

Z
B((dc~ 0;1+dc~ 0;2)/2;R)

i =0;

where dc~ 0;1 and dc~ 0;2 are the zeros of Q, dc~ 0;1 being the closest one of d~ce1~ , and @dV is the �rst
order of Q by Theorem 1.3.1 and ( 1.4.1).

Here, the notations for the harmonics are done for Q, and are therefore centered around dc~ 0;1
or dc~ 0;2. This means that  =/0(x) =  (x)¡  0;1(r1) with r1 := jx¡ dc~ 0;1j, x ¡ dc~ 0;1= r1ei�1 2R2

and  0;1 being the 0-harmonic of  around dc~ 0;1 in B(dc~ 0;1;R), and  =/0(x)= (x)¡ 0;2(r2) with
r2 := jx ¡ dc~ 0;2j in B(dc~ 0;2; R) and  0;1 being the 0-harmonic of  around dc~ 0;2. We will denote
 0(x) the quantity equal to  0;1(r1) in the right half-plane and to  0;2(r2) in the left half-plane.
Remark that dc~ 0;1 2R2, whereas d~c 2R. We recall that, taking kZ ¡ QckHQcexp small enough, we

have �j:j(ce2; c~ 0)

c2
6 1, and in particular, for c small enough, it implies that c

2
6 jc~ 0j 6 2c. We recall

that okZ¡QckHQcexp!0
�;c (1) is a quantity going to 0 when kZ ¡QckHQcexp! 0 at �xed � and c.

Proof. For X =(X1; X2); c~ 02R2, we de�ne, as previously, the function

Q=Qc~ 0(:¡X)ei
:

We de�ne, to simplify the notations,


 :=B(dc~ 0;1; R)[B(dc~ 0;2; R)

and


0 :=B
�
(dc~ 0;1+dc~ 0;2)

2
; R

�
;

which is between the two vortices. We de�ne

G

0BBBB@
X1

X2

�1
�2



1CCCCA:=
0BBBBBBBB@

Re
R


@x1QQ 

=/0

Re
R


@x2QQ 

=/0

c2Re
R


@dVQ 

=/0

cRe
R


@c?QQ 

=/0

Re
R

0
i 

1CCCCCCCCA
;

where c~ 0 (used to de�ned Q=Qc~ 0(:¡X)ei
) is given by �1= �j:j(ce2~ ; c~ 0) and �2= �?(ce2~ ; c~ 0).
Here, we use the notation @cQ for @cQc|c=c0. We remark from (3.6.7) and the de�nition of �,

that in 
, we have

Q =Z ¡Q:

First, we have

kQ kC1(
)6 okZ¡QckHQcexp!0
�;c (1)+K

 
jX j+ �j:j(ce2~ ; c~ 0)

c2
+ �?(ce2~ ; c~ 0)

c
+ j
 j

!
; (3.6.12)
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which is a consequence of Lemma 3.6.1. By Lemma 3.4.1, we compute that����������
G

0BBBB@
0
0
0
0
0

1CCCCA
����������
6 okZ¡QckHQcexp!0

�;c (1):

Let us compute @X2G. We recall that Q 2C1(R2;C). Since 
 depends on X, we have

@X2Re

Z



@x2QQ 
=/0 =

Z
@


Re
�
@x2QQ 

=/0
�

¡
Z



Re
�
@x2x2
2 QQ =/0

�
+
Z



Re
�
@x2Q@X2(Q 

=/0)
�
:

By estimate (3.6.12), we have����Z
@


Re
�
@x2QQ 

=/0
�����+ ����Z




Re
�
@x2x2
2 QQ =/0

�����6
okZ¡QckHQc

exp!0
�;c (1)+K

 
jX j+ �j:j(ce2~ ; c~ 0)

c2
+ �?(ce2~ ; c~ 0)

c

!
;

and since Q =Z ¡Q and  =/0=  ¡  0 in 
, we check that,Z



Re
�
@x2Q@X2(Q 

=/0)
�
=¡

Z



j@x2Qj2+
Z



Re
¡
@x2Q@X(Q 0)

�
:

Now, using Q =Z ¡Q, we check that, in B(dc~ 0;1; R), where x= r1ei�1,

2�@X2(Q 0) = @X2

�
Q

Z
0

2�Z ¡Q
Q

d�1

�
= @x2Q

Z
0

2�Z ¡Q
Q

d�1

+ Q

Z
0

2�¡@x2Q
Q

d�1+Q

Z
0

2�¡(Z ¡Q)@x2Q
Q2

d�1

+ Q

Z
0

2�

@x2

�
Z ¡Q
Q

�
d�1

Therefore, we estimate (since R is a universal constant)�����
Z
B(dc~ 0;1;R)

Re
¡
@x2Q@X(Q 0)

������6�����
Z
B(dc~0;1;R)

Re

�
@x2QQ

Z
0

2�¡@x2Q
Q

d�1

������+KkZ ¡QkC1(
):
Let us show that, in B(dc~ 0;1; R),

Q

Z
0

2�¡@x2Q
Q

d�1= oc!0(1): (3.6.13)

We have in this domain that Q

V1
=1+ oc!0(1) and

��rQc¡rV~1��= oc!0(1) by Lemmas 3.1.13 and
3.1.14, where V1 is the vortex centered at dc~ 0;1. We deduce that, in B(dc~ 0;1; R),

Q

Z
0

2�¡@x2Q
Q

d�1=V1

Z
0

2�¡@x2V1

V1
d�1+ oc!0(1):
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Finally, by Lemma 1.2.1, we check that @x2V1

V1
has no 0-harmonic around dc~ 0;1, therefore

V1

Z
0

2�¡@x2V1

V1
d�1=0: (3.6.14)

By symmetry, the same proof holds in B(dc~ 0;2; R).
Adding up these estimates, we get����@X2Re

Z



@x2QQ 
=/0+

Z



j@x2Qj2
����6

okZ¡QckHQc
exp!0

�;c (1)+ oc!0(1)+K

 
jX j+ �j:j(ce2~ ; c~ 0)

c2
+ �?(ce2~ ; c~ 0)

c
+ j
 j

!
:

By a similar computation, we have����@X2Re

Z



@dVQ 
=/0¡

Z



Re(@dV@x2Q)
����6

okZ¡QckHQc
exp!0

�;c (1)+ oc!0(1)+K

 
jX j+ �j:j(ce2~ ; c~ 0)

c2
+ �?(ce2~ ; c~ 0)

c
+ j
 j

!
:

By Lemma 3.4.1 and Theorem 1.3.1 (for p=+1), we have����Z



Re(@dV@x2Q)
����6 ����Z




Re(c2@cQ@x2Q)
����+ ����Z




Re((@dV ¡ c2@cQ)@x2Q)
����= oc!0(1):

Similarly, we check ����@X2

Z



@x1QQ 
=/0

����¡ ����Z



Re(@x1Q@x2Q)
����6

okZ¡QckHQc
exp!0

�;c (1)+ oc!0(1)+K

 
jX j+ �j:j(ce2~ ; c~ 0)

c2
+ �?(ce2~ ; c~ 0)

c
+ j
 j

!
:

Still by Lemma 3.4.1, we have ����Z



Re(@x1Q@x2Q)
����= oc!0(1):

With the same arguments, we check that����@X2Z



c@c?QQ 
=/0

����6
okZ¡QckHQc

exp!0
�;c (1)+ oc!0(1)+K

 
jX j+ �j:j(ce2~ ; c~ 0)

c2
+ �?(ce2~ ; c~ 0)

c
+ j
 j

!
:

Finally, with equations (3.1.6) to (3.1.10) and (3.6.12), we check easily that

@X2

�
Re

Z

0
i 

�
6 okZ¡QckHQcexp!0

�;c (1)+ oc!0(1)+K

 
jX j+ �j:j(ce2~ ; c~ 0)

c2
+ �?(ce2~ ; c~ 0)

c
+ j
 j

!
:

We deduce that �����������
@X2G

0BBBB@
X1

X2

�1
�2



1CCCCA+
0BBBBB@

0R


j@x2Qj2

0
0
0

1CCCCCA

�����������
6

okZ¡QckHQc
exp!0

�;c (1)+ oc!0(1)+K

 
jX j+ �j:j(ce2~ ; c~ 0)

c2
+ �?(ce2~ ; c~ 0)

c
+ j
 j

!
:
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We can also check, with similar computations, that�����������
@X1G

0BBBB@
X1

X2

�1
�2



1CCCCA+
0BBBBB@
R


j@x1Qj2

0
0
0
0

1CCCCCA

�����������
6

okZ¡QckHQc
exp!0

�;c (1)+ oc!0(1)+K

 
jX j+ �j:j(ce2~ ; c~ 0)

c2
+ �?(ce2~ ; c~ 0)

c
+ j
 j

!
:

We infer that this also holds with a similar proof for the last two directions, namely�����������
c2@�1G

0BBBB@
X1

X2

�1
�2



1CCCCA+
0BBBBB@

0
0R



jc2@cQj2
0
0

1CCCCCA

�����������
6

okZ¡QckHQc
exp!0

�;c (1)+ oc!0(1)+K

 
jX j+ �j:j(ce2~ ; c~ 0)

c2
+ �?(ce2~ ; c~ 0)

c
+ j
 j

!

(using the fact that @dV is di�erentiable with respect to �1, which is not obvious for c2@cQ and is
the reason we have to use this orthogonality) and�����������

c@�2G

0BBBB@
X1

X2

�1
�2



1CCCCA+
0BBBBB@

0
0
0R



jc@c?Qj2

0

1CCCCCA

�����������
6

okZ¡QckHQc
exp!0

�;c (1)+ oc!0(1)+K

 
jX j+ �j:j(ce2~ ; c~ 0)

c2
+ �?(ce2~ ; c~ 0)

c
+ j
 j

!
:

We will only show for these directions that, in B(dc~ 0;1; R),����QZ
0

2�c2@cQ

Q
d�1

����+ ����QZ
0

2�c@c?Q

Q
d�1

����= oc!0(1);

the other computations are similar to the ones done for @X2F (using Lemma 3.4.1).
We recall from Lemma 3.1.2 that, in B(dc~ 0;1; R),

kc2@cQ¡ @dV kC1(B(dc~ 0;1;R))= oc!0(1);

where k@dV +@x1V1kC1(B(dc~ 0;1;R))= oc!0(1), V1 being centered around a point dc~ 02R2 such that

jdc~ 0¡dc~ 0;1j= oc!0(1):
Therefore, we check that����QZ

0

2�c2@cQ
Q

d�1

���� 6 ����V1

Z
0

2�@x1V1

V1
d�1

����+ oc!0(1)

= oc!0(1)

from (3.6.14). Finally, we have, from Lemma 3.1.6 that @c?Q = ¡x?;�?(ce2;c~ 0):rQ, where
x?;�

?(ce2;c~ 0) is x? rotated by an angle �?(ce2~ ; c~ 0). We remark that, in B(dc~ 0;1; R),����QZ
0

2�cdc~ 0;1:rQ
Q

d�1

����6 ����V1

Z
0

2� cdc~ 0;1:rV1

V1
d�1

����+ oc!0(1)
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and ����V1

Z
0

2�cdc~ 0;1:rV1

V1
d�1

����=0

by (3.6.14) and the same result for @x1 instead of @x2. Therefore, since jx?;�
?(ce2;c~ 0)¡dc~ 0;1j6K in

B(dc~ 0;1; R), ����QZ
0

2� c@c?Q
Q

d�1

���� 6
�����Q
Z
0

2�c(x?;�
?(ce2;c~ 0)¡dc~ 0;1):rQ

Q
d�1

�����+ oc!0(1)

6 Kc+ oc!0(1)
= oc!0(1):

Finally, we infer that �����������
@
G

0BBBB@
X1

X2

�1
�2



1CCCCA+
0BBBBB@

0
0
0
0

Re
R

0
Q

1CCCCCA

�����������
6

okZ¡QckHQc
exp!0

�;c (1)+ oc!0(1)+K

 
jX j+ �j:j(ce2~ ; c~ 0)

c2
+ �?(ce2~ ; c~ 0)

c
+ j
 j

!
:

The proof is similar of the previous computations, and we will only show that, in 
,

j@
(Q =/0)j6 okZ¡QckHQcexp!0
�;c (1):

We have

j@
(Q =/0)j = j@
(Q )¡ @
(Q 0)j

6
����¡iQ¡ Q

2�

Z
0

2�¡iQ
Q

d�

����+ okZ¡QckHQcexp!0
�;c (1)

6 okZ¡QckHQc
exp!0

�;c (1):

From Theorem 1.3.1, Re
R

0
Q = Re

R

0
¡1 + oc!0(1) 6 ¡K < 0. We conclude, by Lemma 3.4.1,

that, for c and kZ ¡ QckHQcexp small enough, dG is invertible in a vicinity of (0; 0; 0; 0; 0) of size
independent of kZ ¡QckHQcexp. Therefore, by the implicit function theorem, taking c small enough
and "(c; �) small enough, we can �nd X; c~ 02R2; 
 2R such that

jX j+ �j:j(ce2~ ; c~ 0)
c2

+ �?(ce2~ ; c~ 0)
c

+ j
 j6 okZ¡QckHQcexp!0
�;c (1);

and satisfying

Re

Z
B(dc~ 0;1;R)[B(dc~ 0;2;R)

@x1QQ 
=/0=Re

Z
B(dc~ 0;1;R)[B(dc~ 0;2;R)

@x2QQ 
=/0=0;

Re

Z
B(dc~ 0;1;R)[B(dc~ 0;2;R)

@dVQ 
=/0=Re

Z
B(dc~ 0;1;R)[B(dc~ 0;2;R)

@c?QQ 
=/0=0;

Re

Z
B((dc~ 0;1+dc~ 0;2)/2;R)

i =0: �

3.6.3 End of the proof of Theorem 1.4.13
From Lemmas 3.6.3 and 3.6.6, we can �nd '=Q 2HQ

exp such that

jX j+ �j:j(ce2~ ; c~ 0)
c2

+ �?(ce2~ ; c~ 0)
c

+ j
 j6 okZ¡QckHQcexp!0
�;c (1); (3.6.15)
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and

Re

Z
B(dc~ 0;1;R)[B(dc~ 0;2;R)

@x1QQ 
=/0=Re

Z
B(dc~ 0;1;R)[B(dc~ 0;2;R)

@x2QQ 
=/0=0;

Re

Z
B(dc~ 0;1;R)[B(dc~0;2;R)

@cQQ 
=/0=Re

Z
B(dc~ 0;1;R)[B(dc~ 0;2;R)

@c?QQ 
=/0=0;

Re

Z
B((dc~ 0;1+dc~ 0;2)/2;R)

i =0:

Now, from Lemma 3.6.5,  satis�es the equation

LQ(Q )¡ i(c~ 0¡ ce2~ ):H( )+NLloc( )+F ( )= 0: (3.6.16)

We remark that

LQ(Q )= (1¡ �)LQ(Q )+ �QLQ
0 ( );

and by Lemmas 3.6.3 and 3.6.4,

h(1¡ �)LQ(Q )+ �QLQ
0 ( ); Q( + i
)i=BQ

exp('):

We deduce that

BQ
exp(')¡hi(c~ 0¡ce2~ ):H( ); Q( + i
)i+hNLloc( ); Q( + i
)i+hF ( ); Q( + i
)i=0: (3.6.17)

Since Q 2HQ
exp by Lemma 3.6.3, with the orthogonality conditions satis�ed (see Lemma 3.6.6),

we can apply Propositions 1.4.10 and 1.4.11 with remark (3.5.4). We have

BQ
exp(')>Kk'kC2 +K(c)k'kHQexp

2 : (3.6.18)

3.6.3.1 Better estimates on c~ 0¡ ce2

The term i(c~ 0 ¡ ce2~ ):H( ) contains a �source� term, because Z and Q do not satisfy the same
equation (since the travelling waves Z and Q may not have the same speed at this point). We want
to show the following estimates:

�j:j(ce2~ ; c~ 0)6
�
Kc2ln

�
1
c

�
+ okZ¡QckHQcexp!0

�;c (1)
�
k'kC+ okZ¡QckHQcexp!0

�;c (1)k'kHQcexp (3.6.19)

and

�?(ce2~ ; c~ 0)6
�
Kc2ln

�
1
c

�
+ okZ¡QckHQcexp!0

�;c (1)
�
k'kC+ okZ¡QckHQcexp!0

�;c (1)k'kHQcexp; (3.6.20)

where �j:j(ce2~ ; c~ 0)= jce2~ : c~
0

jc~ 0j ¡ c~
0j and �?(ce2~ ; c~ 0)= jce2~ :c~

0?

jc~ 0j ¡ c~
0j.

This subsection is devoted to the proof of (3.6.19) and (3.6.20).

Step 1. We have the estimate (3.6.19).

We take the scalar product of (3.6.16) with c2@cQ, which yields

hi(c~ 0¡ ce2~ ):H( ); c2@cQi= hQ ; c2LQ(@cQ)i+ hNLloc( )+F ( ); c2@cQi:

We check here, with the L1 estimates on  and its derivatives, as well as on @cQ (see Lemma 3.1.2
and 3.6.3), that hLQ(Q ); c2@cQi is well de�ned and that all the integrations by parts can be done.

We recall that H( )=rQ+ r(Q )(1¡ �)+Qr �e 

(1¡ �)+ �e 
, and we check that, since 1¡ � is compactly

supported (in a domain with size independent of c; c~ 0), with equation (3.6.11)�����i(c~ 0¡ ce2~ ): r(Q )(1¡ �)+Qr �e 
(1¡ �)+ �e 

; c2@cQ

����� 6 K j(c~ 0¡ ce2~ ):h�iQr ; c2@cQij

+ K jc~ 0¡ ce2~ jk'kHQcexp:
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We compute with Lemma 3.1.2 that

jh�iQr ; c2@cQij =
����Z

R2
�Re(r iQc2@cQ)

����
6
����Z

R2
�Re(r )Im(Qc2@cQ)

����+ ����Z
R2
�Im(r )Re(Qc2@cQ)

����
6
����Z

R2
�Re( )r(Im(Qc2@cQ))

����+Kk'kHQcexp
+ k'kC

Z
R2
�Re2(Qc2@cQ)

r
:

From Lemmas 3.1.1 and 3.1.2, we check that
R
R2�Re2(Qc2@cQ)6K, and furthermore,

jr(Im(Qc2@cQ))j6 c2j@cQjjrQj+Kc2jr@cQj

and with Lemma 3.1.2 (with �=1/2), we check that

jr(Im(Qc2@cQ))j6
K

(1+ r~)3/2
;

thus, by Cauchy-Schwarz, ����Z
R2
�Re( )r(Im(Qc2@cQ))

����6Kk'kC:
Using jc~ 0 ¡ ce2~ j 6K(c)(�j:j(ce2~ ; c~ 0) + �?(ce2~ ; c~ 0)) 6 okZ¡QckHQc

exp!0
�;c (1) and k'kC 6 Kk'kHQcexp, we

deduce that �����i(c~ 0¡ ce2~ ):(1¡ �)r(Q )+ �e Qr 
(1¡ �)+ �e 

; c2@cQ

�����6 okZ¡QckHQcexp!0
�;c (1):

Furthermore, we check that, by symmetry (see (3.1.3)),

hi(c~ 0¡ ce2~ ):rxQ; c2@cQi= �j:j(ce2~ ; c~ 0)
�
i
c~ 0

jc~ 0j :rQ; c
2@cQ

�
:

Furthermore, from Lemma 3.1.7, we have LQ(@cQ)= irc~ 0Q, therefore, from Proposition 1.4.1,�
i
c~ 0

jc~ 0j :rQ; c
2@cQ

�
= c2BQ(@cQ)=¡2�+ oc!0(1):

We deduce that

�j:j(ce2~ ; c~ 0)6K jhQ ; c2LQ(@cQ)i+ hNLloc( )+F ( ); c2@cQij+ okZ¡QckHQcexp!0
�;c (1)k'kHQexp:

Now, since LQ(@cQ)= i
c~ 0

jc~ 0j :rQ, we check that

hQ ; c2LQ(@cQ)i= c2
�
Q ; i

c~ 0

jc~ 0j :rQ
�
;

and ����Q ; i c~ 0jc~ 0j :rQ
����6 ����Z

R2
Re( )Im

�
c~ 0

jc~ 0j :rQQ
�
�����+ ����Z

R2
Im( )Re

�
c~ 0

jc~ 0j :rQQ
�
�����:

From Lemma 3.4.4, we deduce that

jhQ ; c2LQ(@cQ)ij6Kc2 ln
�
1
c

�
k'kC:

Now, we check easily that, with Lemmas 3.6.1 and 3.6.5,

jhNLloc( ); c2@cQij6K(c)k'kHQexpk'kC1(B(0;�))6 okZ¡QckHQcexp!0
�;c (1)k'kHQexp:

To conclude the proof of estimate (3.6.19), we shall estimate

jhF ( ); c2@cQij6 okZ¡QckHQcexp!0
�;c (1)k'kHQexp+

�
K�0+ okZ¡QckHQcexp!0

�;c (1)
�
k'kC ;
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with F ( )=Q�(¡r :r + jQj2S( )). First, we estimate, for �>�> 10
c
, with Lemma 3.6.2,

jh¡Q�r :r ; c2@cQij =
����Z

R2
�Re(r :r c2Q�@cQ)

����
6
Z
R2
� jr j2jc2Q�@cQj

6 Kkr kL1(B(0;�)\{�=/ 0})

Z
B(0;�)

� jr j2
s Z

B(0;�)

� jc2Q�@cQj2
s

+ kc2Q�@cQkL1(R2nB(0;�))

Z
R2nB(0;�)

� jr j2

6 okZ¡QckHQc
exp!0

�;c (1)k'kC+ o�!1(1)k'kC ;

since, by Lemma 3.1.2, jc2Q�@cQj6 K

(1+ r~)1/2
. We deduce that

jh¡Q�r :r ; c2@cQij6 okZ¡QckHQcexp!0
�;c (1)k'kC:

Now, in
�
�=1

	
, since e = Z

Q
and 1¡K�06 jZ j

jQj 6 1+K�0 (by our assumptions on Z), we have

jRe( )j6K�0. We deduce, with Lemma 3.6.1, that in {�=/ 0},

jRe( )j6K�0+ okZ¡QckHQcexp!0
�;c (1):

With S( )= e2Re( )¡1¡2Re( ), we check that, in �=/ 0, jS( )j6K jRe( )j2 (given that �0 and
kZ ¡QckHQcexp are small enough), and with similar computations as for jh¡Q�r :r ; c2@cQij, we
conclude that

jhF ( ); c2@cQij6 okZ¡QckHQcexp!0
�;c (1)k'kC:

This concludes the proof of

�j:j(ce2~ ; c~ 0)6 okZ¡QckHQcexp!0
�;c (1)k'kHQexp+

�
Kc2ln

�
1
c

�
+ okZ¡QckHQcexp!0

�;c (1)
�
k'kC:

Step 2. We have the estimate (3.6.20).

Now, we take the scalar product of (3.6.16) with c@c?Q:

hi(c~ 0¡ ce2~ ):H( ); c@c?Qi= hQ ; cLQ(@c?Q)i+ hNLloc( )+F ( ); c@c?Qi:

We check that, since�
i(c~ 0¡ ce2~ ):

r(Q )(1¡ �)+Qr �e 
(1¡ �)+ �e 

; c@c?Q

�
6 K j(c~ 0¡ ce2~ ):h(1¡ �)iQr ; c@c?Qij

+ K jc~ 0¡ ce2~ jk'kHQcexp;

and

jh�iQr ; c@c?Qij =
����Z

R2
�Re(r iQc@c?Q)

����
6
����Z

R2
�Re(r )Im(Qc@c?Q)

����+ ����Z
R2
�Im(r )Re(Qc@c?Q)

����
6
����Z

R2
�Re( )r(Im(Qc@c?Q))

����+Kk'kHQcexp
+ k'kC

Z
R2
�Re2(Qc@c?Q):

We check, with Lemmas 3.1.1 and 3.1.2, thatZ
R2
�Re2(Qc@c?Q)6K
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and

jr(Im(Q@c?Q))j6 jrQjj@c?Qj+ jr@c?Qj6
K(c)
(1+ r)2

;

therefore, as for the previous estimation,�����i(c~ 0¡ ce2~ ):(1¡ �)r(Q )+ �e Qr 
(1¡ �)+ �e 

; c@c?Q

�����6 okZ¡QckHQcexp!0
�;c (1)k'kHQexp:

We check that, by symmetry (see equation (3.1.3))

hi(c~ 0¡ ce2~ ):rQ; c@c?Qi= �?(ce2~ ; c~ 0)
�
i
c~ 0

jc~ 0j :rQ; c@c?Q
�

Furthermore, from Lemma 3.1.7, we have LQ(@c?Q) = ¡ic
c~ 0?

jc~ 0j :rQ, therefore, from Proposition
1.4.1,

c

*
i
c~ 0?

jc~ 0j :rQ; @c?Q
+
=¡BQ(@c?Q)=¡2�+ oc!0(1):

We deduce that

�?(ce2~ ; c~ 0)6

K jhQ ; cLQ(@c?Q)i+ hNLloc( )+F ( ); c@c?Qij+ okZ¡QckHQcexp!0
�;c (1)k'kHQexp:

As previously, we check that

jhNLloc( )+F ( ); c@c?Qij6 okZ¡QckHQcexp!0
�;c (1)k'kHQexp+ okZ¡QckHQcexp!0

�;c (1)k'kC

and from Lemma 3.1.7, we have

jhQ ;LQ(@c?Q)ij =
����
*
Q ; i

c~ 0?

jc~ 0j :rQ

+����
6
�����
Z
R2
Re( )Im

 
c~ 0?

jc~ 0j :rQQ
�
!�����+

�����
Z
R2

Im( )Re

 
c~ 0?

jc~ 0j :rQQ
�
!�����;

and with Lemma 3.4.4, we deduce that

cjhQ ;LQ(@c?Q)ij6Kcln
�
1
c

�
k'kC:

We conclude that

�?(ce2~ ; c~ 0)6
�
Kc2ln

�
1
c

�
+ okZ¡QckHQcexp!0

�;c (1)
�
k'kC+ okZ¡QckHQcexp!0

�;c (1)k'kHQcexp:

3.6.3.2 Estimations on the remaining terms

Let us show in this subsection that

jhi(c~ 0¡ ce2~ ):H( ); Q( + i
)ij+ jhNLloc( ); Q( + i
)ij+ jhF ( ); Q( + i
)ij
6
�
oc!0(1)+ okZ¡QckHQcexp!0

�;c (1)+K�0
�
k'kC2 + okZ¡QckHQcexp!0

�;c (1)k'kHQexp
2 : (3.6.21)

Step 1. Proof of jhNLloc( ); Q( + i
)ij6 okZ¡QckHQcexp!0
�;c (1)k'kHQexp

2 .

From Lemma 3.6.5, we have

jhNLloc( ); Q( + i
)ij6K(kQ kC1({�=/ 1})+ j
 j)k'kH1({�=/ 1})
2 ;

therefore, from Lemmas 3.6.2, 3.6.6 and equation (3.6.15), we deduce

jhNLloc( ); Q ij6 okZ¡QckHQcexp!0
�;c (1)k'kHQexp

2 :
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Step 2. Proof of

jhi(c~ 0¡ ce2~ ):H( ); Q( + i
)ij

6
�
oc!0(1)+ okZ¡QckHQcexp!0

�;c (1)
�
k'kC2 + okZ¡QckHQcexp!0

�;c (1)k'kHQexp
2 :

We separate the estimation in two parts. First, we look at hi(c~ 0¡ ce2~ ):H( ); Q i. We recall

that H( ) = rQ + (1¡ �)r(Q )+ �e Qr 
(1¡ �)+ �e 

, and, since jc~ 0 ¡ ce2~ j 6 okZ¡QckHQc
exp!0

�;c (1) and 1 ¡ � is

compactly supported, we check easily that�����i(c~ 0¡ ce2~ ): (1¡ �)r(Q )+ �e Qr 
(1¡ �)+ �e 

; Q 

�����6
okZ¡QckHQc

exp!0
�;c (1)

¡
jh�iQr ; Q ij+K(c)k'kHQexp

2
�
:

Furthermore, we check that

jh�iQr ; Q ij6
����Z

R2
Re( )Im(r )jQj2�

����+ ����Z
R2

Im( )Re(r )jQj2�
����;

and by Cauchy-Scwharz, j
R
R2Re( )Im(r )jQj2� j6Kk'kC2. Now, by integration by parts (using

Lemma 3.6.3), we have����Z
R2
Im( )Re(r )jQj2�

���� 6 ����Z
R2
Re( )Im(r )jQj2�

����
+
����Z

R2
Im( )Re( )r(jQj2)�

����
+
����Z

R2
Im( )Re( )jQj2r�

����;
and by Cauchy-Schwarz, we check that����Z

R2
Im( )Re(r )jQj2�

����6Kk'kHQexp2 :

We deduce that�����i(c~ 0¡ ce2~ ): (1¡ �)r(Q )+ �e Qr 
(1¡ �)+ �e 

; Q 

�����6 okZ¡QckHQcexp!0
�;c (1)k'kHQexp

2 :

Finally, we write

jhi(c~ 0¡ ce2~ ):rQ; Q ij6 �j:j(ce2~ ; c~ 0)
����i c~ 0jc~ 0j :rQ; Q 

����+ �?(ce2~ ; c~ 0)����
*
i
c~ 0?

jc~ 0j :rQ; Q 

+����:
With Lemma 3.4.4, we check that����i c~ 0jc~ 0j :rQ; Q 

����+ ����
*
i
c~ 0?

jc~ 0j :rQ; Q 
+����6K ln

�
1
c

�
k'kC:

With (3.6.19) and (3.6.20), we deduce that

jhi(c~ 0¡ ce2~ ):rQ; Q ij 6
�
Kcln2

�
1
c

�
+ okZ¡QckHQcexp!0

�;c (1)
�
k'kC2 + okZ¡QckHQcexp!0

�;c (1)k'kHQexp
2

6
�
oc!0(1)+ okZ¡QckHQcexp!0

�;c (1)
�
k'kC2 + okZ¡QckHQcexp!0

�;c (1)k'kHQexp
2 :

Now, we look at hi(c~ 0¡ ce2~ ):H( ); Qi
 i. We check that

hirQ; Qi
 i= 


Z
R2
Re(rQQ�)= 


2

Z
R2
r(jQj2¡ 1)= 0;
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thus

hi(c~ 0¡ ce2~ ):H( ); Qi
 i=
�
i(c~ 0¡ ce2~ ):

(1¡ �)r(Q )+ �e Qr 
(1¡ �)+ �e 

; Qi


�
:

In the area
�
�=/ 0

	
, since j
 j= okZ¡QckHQcexp!0

�;c (1) by Lemma 3.6.6, since

jc~ 0¡ ce2~ j6K
�
cln
�
1
c

�
+ okZ¡QckHQcexp!0

�;c (1)
�
k'kC+ okZ¡QckHQcexp!0

�;c (1)k'kHQexp

by estimates (3.6.19) and (3.6.20), we check thatZ
{�=/ 0}

Re

�
i(c~ 0¡ ce2~ ):

(1¡ �)r(Q )+ �e Qr 
(1¡ �)+ �e 

Qi


�
6 okZ¡QckHQcexp!0

�;c (1)k'kHQexp
2 ;

and therefore (with Lemma 3.6.3 that justi�es the integrability)

jhi(c~ 0¡ ce2~ ):H( ); Qi
 ij6
����
(c~ 0¡ ce2~ ):Z

R2
� jQj2Re(r )

����+ okZ¡QckHQcexp!0
�;c (1)k'kHQexp

2 :

By integration by parts (since jRe( )j 6
K
�
�; c; kZ ¡QckHQc

exp; "0; Z
�

(1+ r)2
and jRe(r )j 6

K
�
�; c; kZ ¡QckHQc

exp; "0; Z
�

(1+ r)3
by Lemma 3.6.3) and Cauchy-Schwarz,����Z

R2
� jQj2Re(r )

���� 6 ����Z
R2
r� jQj2Re( )

����+ ����Z
R2
�r(jQj2)Re( )

����
6 K(c)k'kHQexp:

Since j
 j= okZ¡QckHQcexp!0
�;c (1) by Lemma 3.6.6 and jc~ 0¡ ce2~ j6

�
K(c)+ okZ¡QckHQcexp!0

�;c (1)
�
k'kHQexp

by (3.6.19), (3.6.20) and Lemma 3.5.1, we conclude that

jhi(c~ 0¡ ce2~ ):H( ); Qi
 ij6 okZ¡QckHQcexp!0
�;c (1)k'kHQexp

2 :

Step 3. Proof of jhF ( ); Q( + i
)ij6
�
okZ¡QckHQc

exp!0
�;c (1)+K�0

�
k'kC2.

We recall
F ( )=Q�(¡r :r + jQj2S( ));

S( )= e2Re( )¡ 1¡ 2Re( ):

First, we look at hF ( ); Q i. We have

jhF ( ); Q ij6 jhQ(1¡ �)r :r ; Q ij+ jhQ(1¡ �)jQj2S( ); Q ij:

We check that k'kL1(R2)6Kk kL1(R2nB(0;�))+Kk'kL1(B(0;�))6K�0+ okZ¡QckHQcexp!0
�;c (1)

jhQ�r :r ; Q ij6 k'kL1(R2)

Z
R2
� jr j26

�
K�0+ okZ¡QckHQcexp!0

�;c (1)
�
k'kC2:

Finally, since k'kL1(R2)6K a uniform constant for c and kZ ¡QckHQcexp small enough,

jhQ� jQj2S( ); Q ij6 k'kL1(R2)

Z
R2
�Re2( )6

�
K�0+ okZ¡QckHQcexp!0

�;c (1)
�
k'kC2:

Now, we compute

jhF ( ); Qi
 ij 6 j
 j
����Z

R2
¡Re(�ir :r )jQj2+ � jQj4Re(S( )i)

����;
and since S( ) is real-valued, we check that, since j
 j= okZ¡QckHQcexp!0

�;c (1) by Lemma 3.6.6,

jhF ( ); Qi
 ij6 j
 j
Z
R2
� jr j2jQj26 okZ¡QckHQcexp!0

�;c (1)k'kC2:
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3.6.3.3 Conclusion

Combining the steps 1 to 3 and (3.6.18) in (3.6.17), we deduce that, taking c small enough, and
then kZ ¡QckHQcexp small enough (depending on c and �), we have

0 > Kk'kC2 +K(c)k'kHQexp
2

¡
�
oc!0(1)+K�0+ okZ¡QckHQcexp!0

�;c (1)
�
k'kC2 ¡ okZ¡QckHQcexp!0

�;c (1)k'kHQexp
2 ;

hence, if �0 is taken small enough (independently of any other parameters) then c small enough
and kZ ¡QckHQcexp small enough (depending on � and c),

K(c)k'kHQcexp
2 +Kk'kC2 6 0:

We deduce that '=0, thus Z=Q. Furthermore, from (3.6.19) and (3.6.20) we deduce that c~ 0=ce2~ ,
and since Z! 1 at in�nity, we also have 
 = 0 (or else kZ ¡ QckHQcexp=+1). This concludes the
proof of Theorem 1.4.13.
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Chapter 4
Inversion of the linearized operator and
applications

In section 4.1, we recall previous results (mainly from the previous chapters) on the branch of
travelling wave of Theorem 1.3.1, and show some corollaries that will be useful here. Section 4.2 is
devoted to the proof of Theorem 1.5.1, and section 4.3 to the proof of Theorem 1.5.2, which relies
mainly on Theorem 1.5.1.

We recall from subsection 1.5 that, with dc de�ned in Theorem 1.3.1 (�dce~1 are the center of
the vortices from which Qc is constructed as a perturbation of), we de�ned

r~=min (jx¡ dce1~ j; jx+ dce1~ j);

as well as the two norms, for �; � 02R, '=Qc 2C2(R2;C),  =  1+ i 2, and Qch2C1(R2;C),
h=h1+ ih2,

k k
;� = kQc kC2({r~63})

+ kr~1+� 1kL1({r~>2})+ kr~2+�r 1kL1({r~>2})+ kr~2+�r2 1kL1({r~>2})

+ kr~� 2kL1({r~>2})+ kr~1+�r 2kL1({r~>2})+ kr~2+�r2 2kL1({r~>2})

and

khk

;� 0 = kQchkC1({r~63})

+ kr~1+� 0h1kL1({r~>2})+ kr~2+�
0rh1kL1({r~>2})

+ kr~2+� 0h2kL1({r~>2})+ kr~2+�
0rh2kL1({r~>2}):

We de�ned the spaces, for �; � 02R,

E
;�=
�
'=Qc 2C2(R2;C); k k
;�<+1;8(x1; x2)2R2; '(x1; x2)= '(¡x1; x2)

	
;

E
;�
2sym=

�
'=Qc 2E
;�;8(x1; x2)2R2; '(x1; x2)= '(x1;¡x2)

	
and

E

;� 0=
�
Qch2C1(R2;C); khk

;�0<+1;8(x1; x2)2R2; Qch(x1; x2)=Qch(¡x1; x2)

	
;

E

;� 0
2sym =

�
Qch2E

;� 0;8(x1; x2)2R2; Qch(x1; x2)=Qch(x1;¡x2)

	
:

4.1 Previous results on the branch
This section contains mostly results previously known on the branch of Theorem 1.3.1. This allows
us to present them in a way adapted to the proofs to come, and to regroup the properties from
other chapters and articles.

From Proposition 1.4.1, Qc has exactly two zeros, and they are near �dce~1. In particular, with
r~=min (jx¡ dce1~ j; jx+ dce1~ j), we have shown (see equation (3.1.12)) that outside of

�
r~6 2

	
,

1
K
6 jQcj6K

for a universal constant K > 0. This is why the norms k:k
;� and k:k

;� are separated in an
estimate on

�
r~6 3

	
and another outside this domain, to allow the division by Qc.
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4.1.1 Symmetries of the travelling wave
We recall that for all x=(x1; x2)2R2,

Qc(x1; x2)=Qc(¡x1; x2)=Qc(x1;¡x2):
This implies that

@cQc(x1; x2)= @cQc(¡x1; x2)=@cQc(x1;¡x2);

@x1Qc(x1; x2)=¡@x1Qc(¡x1; x2)= @x1Qc(x1;¡x2);
and

@x2Qc(x1; x2)=@x2Qc(¡x1; x2)=¡@x2Qc(x1;¡x2):

Remark that these three quantities all have di�erent symmetries. We also check that

@c?Qc(x1; x2)=¡@c?Qc(¡x1; x2)=¡@c?Qc(x1;¡x2);

see Lemma 3.1.6. We will not need it, since functions even in x1 satis�ed the orthogonality on this
direction.

4.1.2 Decay estimates for the travelling wave
In this subsection, we recall some decay in position satis�ed by the travelling wave. First, from
subsection 3.1.1.2, we recall that for all 0<�< 1,

j1¡ jQcj2j6
K(�)

(1+ r~)1+�
; (4.1.1)

jRe(rQcQc)j6
K(�)

(1+ r~)1+�
; (4.1.2)

jIm(rQcQc)j6
K
1+ r~

(4.1.3)

and from equations (2.2.13) and (2.2.15), with the fact that (TWc)(Qc
)= 0 (or see [6]),

kQckC2(R2;C)6K: (4.1.4)

We now give an estimate of Qc using the norm k:k

;�.

Lemma 4.1.1. For all 0<�< 1, there exists c0(�);K(�)> 0 such that, for all 0<c< c0(�);

jQc¡ 1j6
K(�)c¡�

(1+ r~)�
;

and 



 irQcQc








;�

6K(�)c¡�:

Proof. From equation (4.1.4), we check that

kQckC2({r~63})6 kQckC2(R2;C)6K:

Now, from section 2.2.2, outside of
�
r~6 3

	
, we can write Qc=Ve	c;dc with k	c;dckL1(R2)6 1 for

c> 0 small enough, and V =V1(:¡ dce1~ )V¡1(:+ dce1~ ). Thus

jQc¡ 1j 6 jV ¡ 1j+ jV jje	c;dc¡ 1j
6 jV ¡ 1j+K j	c;dcj:

From equation (2.2.13), we have j	c;dcj 6
K(�)c1¡�

(1+ r~)�
, and from Lemma 2.1.3, jrV j 6 Kc¡1

(1+ r~)2
,

therefore, integrating from in�nity (on axes where x1 is constant), we check that

jV ¡ 1j6 Kc¡1

(1+ r~)
:
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Now, since jV j6 1 by Lemma 1.2.1, jV ¡ 1j6 2, and by interpolation,

jV ¡ 1j6 Kc¡�

(1+ r~)�
;

thus, for c small enough,

jQc¡ 1j6
K(�)c¡�

(1+ r~)�
:

We recall that, with k:k

;� de�ned in (1.5.2),



 irQcQc








;�

= kirQckC1({r~63})

+




r~1+�Re

�
irQc
Qc

�




L1({r~>2})

+




r~2+�rRe

�
irQc
Qc

�




L1({r~>2})

+




r~2+�Im� irQcQc

�




L1({r~>2})

+




r~2+�rIm

�
irQc
Qc

�




L1({r~>2})

= krQckC1({r~63})

+




r~1+�Im�rQcQc

�




L1({r~>2})

+




r~2+�rIm

�
rQc
Qc

�




L1({r~>2})

+




r~2+�Re

�
rQc
Qc

�




L1({r~>2})

+




r~2+�rRe

�
rQc
Qc

�




L1({r~>2})

:

We have kirQckC1({r~63})6 kQckC2(R2;C)6K, and

rQc
Qc

= rQcQcjQcj2
:

Outside of
�
r~6 3

	
, Qc=Ve	c;dc, and thus

rQc
Qc

=
rVV�+r	c;dcjV j2

jQcj2
e2Re(	c;dc):

From equation (2.2.14), we have

j(1+ r~)2+�Re(r	c;dc)j+ j(1+ r~)1+�Im(r	c;dc)j6K(�)c1¡�;

and since, in
�
r~> 3

	
, ���� jV j2jQcj2

e2Re(	c;dc)

����6K;
we have 



r~1+�Im�r	c;dcjV j2jQcj2

e2Re(	c;dc)

�




L1({r~>2})

6K(�)c1¡�

and 



r~2+�Re

�
r	c;dcjV j2
jQcj2

e2Re(	c;dc)

�




L1({r~>2})

6K(�)c1¡�:

Now, from Lemma 1.2.1, we have, for a vortex V�1 centered at 0, j2Re(rV�1V�1)j= jrjV�1j2j6
K

(1+ r)3
, thus, by translation,

jRe(rVV�)j6 K
(1+ r~)3

:

Still from Lemma 1.2.1, we check that jrV j 6 K

(1+ r~)
, and from Lemma 2.1.3, we have jrV j 6

K

(1+ r~)2c
, therefore, by interpolation,

jIm(rVV�)j6K jrV j6 Kc¡�

(1+ r~)1+�
:

We deduce 



r~1+�Im�rQcQc

�




L1({r~>2})

+




r~2+�Re

�
rQc
Qc

�




L1({r~>2})

6K(�)c¡�:
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We now focus on the derivatives of rQc
Qc

. We compute

r
�
rQc
Qc

�
= r

 
e2Re(	c;dc)

jQcj2

!
(rVV�+r	c;dcjV j2)

+
r(rVV�)+ jV j2r2	c;dc

jQcj2
e2Re(	c;dc)

+
r	c;dcrjV j2

jQcj2
e2Re(	c;dc): (4.1.5)

Remark that r
�
e
2Re

¡
	c;dc

�
jQcj2

�
is real valued, and

r
 
e2Re(	c;dc)

jQcj2

!
=
2rRe(	c;dc)e

2Re(	c;dc)

jQcj2
¡ r(jQcj

2)
jQcj4

e2Re(	c;dc);

and by equation (2.2.13), (4.1.2) and (4.1.3), we check that�����r
 
e2Re(	c;dc)

jQcj2

!�����6 K
(1+ r~)

:

This is enough to show the estimates for the �rst term of (4.1.5). For the second term, from equation
(2.2.14) (with � 0= 1+�

2
>�),

j(1+ r~)2+�r2	c;dcj6K(�)c
1¡ 1+�

2 6K(�)c¡�:

Now, with Lemma 1.2.1,

jrRe(rVV�)j=
����12r2(jV j2)

����6 K
(1+ r~)3

;

and with Lemmas 1.2.1 and 2.1.2, we check easily that jr(rVV�)j 6 K

(1+ r~)2
. To conclude the

estimation of this term, we are left with the proof of

jr(rVV�)j6 Kc¡1

(1+ r~)3
:

We compute

rVV� = (rV1V1� )(:¡ dce1~ )jV¡1(:+ dce1~ )j2+(rV¡1V¡1)(:+ dce1~ )jV1(:¡ dce1~ )j2

= (rV1V1� )(:¡ dce1~ )+ (rV¡1V¡1)(:+ dce1~ )
+ (rV1V1� )(:¡ dce1~ )(jV¡1(:+ dce1~ )j2¡ 1)+ (rV¡1V¡1)(:+ dce1~ )(jV1(:¡ dce1~ )j2¡ 1):

We check easily, with Lemma 1.2.1, that

jr((rV1V1� )(:¡ dce1~ )(jV¡1(:+ dce1~ )j2¡ 1)+ (rV¡1V¡1)(:+ dce1~ )(jV1(:¡ dce1~ )j2¡ 1))j6
K

(1+ r~)3
:

Furthermore, with Lemma 1.2.1, we have that Im(r(rV1V1� ))(x)=¡Im(r(rV¡1V¡1))(x), there-
fore, with Theorem 1.3.1 (stating that dc6Kc¡1),

jIm(r((rV1V1� )(:¡ dce1~ )+ (rV¡1V¡1)(:+ dce1~ )))j
= jIm(r(rV1V1)(:¡ dce1~ )+r(rV¡1V¡1))(:+ dce1~ )j

=
����Z
¡2dc

0

@d(r(rV1V1))(:¡ dce1~ )
����

6 Kdc
(1+ r~)3

6 Kc¡1

(1+ r~)3

by Lemmas 2.1.2 and 2.1.6. Finally, for the third term, we recall that jrjV j2j6 K

(1+ r~)3
, which is

more than enough to do the required estimates. �
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We recall the de�nition of the energy space:

HQc=
�
'2Hloc

1 (R2);
Z
R2
jr'j2+ j1¡ jQcj2jj'j2+Re2(Qc')<+1

�
;

Remark in particular that for all 0<�<1, with (4.1.1) to (4.1.3) and the de�nition of k:k
;�, that

E
;��HQc:

4.2 Inversion of the linearized operator around Qc

This section is devoted to the proof of Theorem 1.5.1.

4.2.1 Inversion of the linearized operator at in�nity
The (additive) linearized operator around Qc is de�ned by

LQc(')=¡�'¡ ic@x2'¡ (1¡jQcj2)'+2Re(Qc')Qc;

and, for '=Qc , we de�ne the multiplicative linearized operator

LQc
0 ( ) :=¡� ¡ ic@x2 ¡ 2

rQc
Qc

:r +2Re( )jQcj2:

The �rst step of the proof of Theorem 1.5.1 is to invert these operators in suitable spaces.
Since (TWc)(Qc) = ¡�Qc ¡ ic@x2Qc ¡ (1 ¡ jQcj2)Qc = 0, we can check that, on R2n

�
d~ce~1;

¡d~ce~1
	
,with '=Qc , LQc(')=QcLQc

0 ( ) (we recall that�d~ce~1 are the zeros of Qc, see Proposition
1.4.1). Formally, at in�nity in position, the equation LQc(')=QcLQc

0 ( )=Qch becomes

¡ic@x2 ¡� +2Re( )=h:

We have already inverted this operator, see Lemma 2.1.15 for the result. We will use this result
extensively in this subsection. A consequence of this lemma is an estimate on @cQc.

Corollary 4.2.1. For 0<� < 1, there exists c0(�)> 0 such that, for all 0<c< c0(�),



@cQcQc







;�
6K(�)c¡2:

Proof. We recall from Lemma 3.1.7 that

LQc(@cQc)= i@x2Qc;

and by elliptic estimates on this equation, as well as Lemmas 2.1.6 and 2.3.6, we check that

k@cQckC3({r~63})6Kc¡2: (4.2.1)

Now, take � a smooth cuto� function with value 1 outside of
�
r~6 3

	
and 0 in

�
r~6 2

	
. We have

LQc(�@cQc)=QcLQc
0
�
�@cQc
Qc

�
= i@x2Qc+E�;

where E� are error term supported in {26 r~6 3}, and since

LQc
0 ( )=¡ic@x2 ¡� ¡ 2

rQc
Qc

:r +2Re( )jQcj2;
we have

(¡ic@x2¡�+2Re)
�
�@cQc
Qc

�
=
i@x2Qc+E�

Qc
+2rQc

Qc
:r
�
�@cQc
Qc

�
¡ 2Re

�
�@cQc
Qc

�
(1¡ jQcj2):
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From Lemma 4.1.1, for 1>� 0>�, 



 i@x2QcQc








;�0

6 K(� 0)
c�
0 ;

and with (4.2.1), we check easily that



E�
Qc







;� 0

6 K

c2
. Finally, we check with Lemma 4.1.1, as

well as equation (2.1.3), (2.2.14), Lemmas 2.1.6 and 2.3.6, that



2rQcQc
:r
�
�@cQc
Qc

�
¡ 2Re

�
�@cQc
Qc

�
(1¡jQcj2)








;�0

6 K

c2
:

We deduce, with Lemma 2.1.15 (taking � 0= 1+�

2
>�), that



�@cQcQc







;�
6 K(�)

c2
:

�

It will be useful to invert the equation ¡ic@x2 ¡� +2Re( )=h in the case h2E

;01 . There,
the function  will be in E
;¡"1 for all "> 0.

Lemma 4.2.2. For h2E

;01 and 1>"> 0, there exists a function  2E
;¡"1 , such that

¡ic@x2 ¡� +2Re( )=h;

and this function satis�es

k k
;¡";16K(")khk

;0;1:

Furthermore, all solutions of this problem in E
;¡"1 di�er by an element of SpanR(i).

In particular, remark that such a solution does not necessarily go to 0 at in�nity on its imaginary
part, but it does on its real part and for its derivatives. We believe that we could show that

k(1+ ln(1+ r~)) 2kL1(R2)6K(c)khk

;0;1;

but it is not necessary for the computations to come. Remark also that, for 0<"0<", E
;¡"0�E
;¡",
and thus the function  does not depend on ">0. Also, we do not require that

R
R2Im(h)=0 here.

This proof is similar to the proof of Lemma 2.1.15, with some slightly di�erent technical points.

Proof. For j 2
�
1; 2
	
, we de�ne the function

	1;j :=K0 � @xjh1+ cKj �h2:

From Lemma 2.1.13, we have (for �0=2¡ "< 2 and �= 2+�0

2
) that 	1;j 2C1(R2;C), with

j	1;j j+ jr	1;j j6
K(")khk

;0;1
(1+ r~)2¡"

:

As in the proof of Lemma 2.1.15, we de�ne, if x2> 0,

 1(x1; x2)=
Z
+1

x2

	1;2(x1; y2)dy2;

and if x2< 0,

 1(x1; x2)=
Z
¡1

x2

	1;2(x1; y2)dy2:

We have @x1	1;2=@x2	2;1 and thus
R
¡1
+1	1;2(x1; y2)dy2=0 as previously. We then check similarly

that

k(1+ r~)1¡" 1kL1(R2)+ k(1+ r~)2¡"r 1kL1(R2)+ k(1+ r~)2¡"r2 1kL1(R2)6K(")khk

;0;1:

Now, we de�ne

	2;j;k := (c2Lj;k¡Rj;k) �h2¡ cKj � @xkh1;
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and from Lemma 2.1.14, we have, for �0=2¡ "< 2, �= 2+�0

2
, 	2;j;k2C0(R2;C), with

j	2;j;kj6
K(")khk

;0;1
(1+ r~)2¡"

:

For 0<"<1, the decay is still enough to construct 	2;j2C1(R2;C) as in the proof of Lemma 2.1.15.
We now diverge from the proof of Lemma 2.1.15, and we de�ne  2 using  2(x1; x2)= 2(¡x1; x2),
by  2(�dce1~ )= 0, and

r 2=
�
	2;1

	2;2

�
:

We then check that  22C0(R2;C), and by integration from in�nity for r 2 and integration from
�dce1~ for  2, that

k(1+ r~)¡" 2kL1(R2)+ k(1+ r~)1¡"r 2kL1(R2)+ k(1+ r~)2¡"r2 2kL1(R2)6K(")khk

;0;1:

Finally, as in the proof of Lemma 2.1.15, we check that

¡ic@x2 ¡� +2Re( )=h;

since both sides of the equations are still temperated distribution, are bounded and goes to 0 at
in�nity in position. Furthermore, if  ~2E
;¡"1 is another solution of this problem, then

(¡ic@x2¡�+2Re)( ¡  ~)=0;

thus  ¡  ~2C[X1; X2], and using the decays of  ¡  ~2E
;¡"1 , we check that (with "< 1)

jRe( ¡  ~)j+ jIm( ¡  
~)j

(1+ r~)"
! 0

at in�nity, hence it is i� for some �2R. �

4.2.2 Inversion of the linearized operator around Qc

We recall

LQc(')=¡�'¡ ic@x2'¡ (1¡ jQcj2)'+2Re(Qc')Qc
and, for '=Qc ,

LQc
0 ( )=¡ic@x2 ¡� ¡ 2

rQc
Qc

:r +2Re( )jQcj2:

We also recall that, since (TWc)(Qc)=0, we have LQc(')=QcLQc
0 ( ) (where Qc=/ 0).

4.2.2.1 Inversion of the linearized operator around a vortex

This subsection uses mainly arguments from [10]. We recall the linearized operator around a vortex:

LV1(')=¡�'¡ (1¡jV1j2)'+2Re(V1� ')V1;

and with '=V1 ,

LV1
0 ( ) :=¡� ¡ 2rV1

V1
:r +2Re( )jV1j2;

we have (where V1=/ 0)

LV1(')=V1LV1
0 ( ):

This operator also has a resonance: LV1(iV1)=0. We give here a way to invert LV1 on this direction.
For R> 0 a large constant, we de�ne � 2Cc1(Rn[0; R];R+) such that (with �(r) = jV1(x)j where
jxj= r) Z

0

+1
s�2(s)�(s)ds=1: (4.2.2)

We recall

HV1=
�
'2Hloc

1 (R2;C); k'kHV1
2 =

Z
R2
jr'j2+(1¡ jV1j2)j'j2+Re2(V1� ')<+1

�
:
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Lemma 4.2.3. The problem

LV1(')= i�(j:j)V1

in the distribution sense admits the solution

'1 := iV1 1(j:j)
with

 1(r) :=¡
Z
0

r
�

1
u�2(u)

Z
0

u

s�2(s)�(s)ds
�
du;

which satis�es '12C1(R2;C) and

 1(r)�¡ln(r);  10(r)�
¡1
r
;  1
00(r)� 1

r2
when r!1.

Remark that '1=0 in B(0;R) since �=0 in B(0; R). See [10] for more general results on the
inversion of the linearized operator around V�1.

Proof. We look for an ansatz of the form '1 = iV1 1(r) with  1 2 C1(R+�;R). The equation
LV1('1)= i�(j:j)V1 then becomes

¡�r 1¡ 2
rV1
V1

:er~  1
0(r)= �(r):

From Lemma 2.1.2, we have rV1
V1
:er~ =

�0(r)

�(r)
, and therefore

¡ 100(r)¡
�
1
r
+ 2�0(r)

�(r)

�
 1
0(r)= �(r):

This equation can be factorized in

(r�2(r) 10(r))0=¡r�2(r)�(r);
and therefore a solution is

 1(r)=¡
Z
0

r
�

1
u�2(u)

Z
0

u

s�2(s)�(s)ds
�
du:

Furthermore, since Z
0

+1
s�2(s)�(s)ds=1;

we have, by Lemma 1.2.1,

 1(r)�¡
Z
1

r du
u�2(u)

�¡
Z
1

rdu
u
�¡ln(r)

when r!1. Now, we compute

 1
0(r)= ¡1

r�2(r)

Z
0

r

s�2(s)�(s)ds

and

 1
0 0(r)= 1

r2 �2(r)

Z
0

r

s�2(s)�(s)ds¡ 1
r
@r

�
1

�2(r)

Z
0

r

s�2(s)�(s)ds
�
;

and with Lemma 1.2.1, we infer the equivalents of  10(r) and  100(r) when r!1. �

We deduce the following small improvement of Theorem 1.2 of [10], since we removed an
orthogonality condition. It is also a good �rst step to understand some of the ideas of the proof
of Theorem 1.5.1.

Lemma 4.2.4. For h 2Lloc
2 (R2;C) such that

R
R2 jhj2(1 + r)2+�<+1 for some � > 0, and with

hh; @x1V1i= hh; @x2V1i=0, there exists '2Lloc
2 (R2;C) such that

LV1(')=h:

236 Inversion of the linearized operator and applications



Furthermore, '= '0+
hh; iV1i
2�

'1, where '1 is de�ned in Lemma 4.2.3, and '02HV1, with

k'0kHV1
2 6K(�)

Z
R2
jh¡hh; iV1ii�(j:j)V1j2(1+ r)2+�:

Proof. we consider h0 :=h¡ i�(j:j)V1 hh; iV1i2�
. We have

R
R2 jh0j2(1+ r)2+�<+1,

hh0; @x1V1i= hh; @x1V1i¡
hh; iV1i
2�

hi�(j:j)V1; @x1V1i=0

since, from Lemma 2.1.2,

hi�(j:j)V1; @x1V1i=¡
Z
0

+1�Z
0

2�

sin(�)d�
�
�(r)�2(r) dr=0:

Similarly, hh0; @x2V1i=0, and

hh0; iV1i= hh; iV1i¡
hh; iV1i
2�

hi�(j:j)V1; iV1i=0;

since

hi�(j:j)V1; iV1i=2�
Z
0

+1
�(r)�2(r)rdr=2�

by (4.2.2). From Theorem 1.2 of [10], we deduce that there exists '02HV1 such that

LV1('0)=h0=h¡ i�(j:j)V1
hh; iV1i
2�

:

Now, from Lemma 4.2.3, since LV1
�
hh; iV1i
2�

'1
�
= hh; iV1i

2�
i�(j:j)V1, we have

LV1

�
'0+

hh; iV1i
2�

'1

�
=h: �

We also infer the following result, that will be useful in the proof of Lemma 4.2.6.

Lemma 4.2.5. The problem

LV1(')= i�(j:j)V1
has no solution in HV1.

Proof. By standard elliptic estimates, we have that if such a function ' 2 HV1 exists, then
' 2 C1(R2; C). Following the proof of Lemma 4.2.3, writing ' = V1 and decomposing  in
harmonics, we check that (r�2(r) 10(r))0 = ¡r�2(r)�(r), with  1 2 C1(R+�; R) being the 0
harmonic of  .

We deduce that r�2(r) 10(r) = ¡
R
0

r
u�2(u)�(u)du +K1 for some K1 2 R, and since ' 2HV1,

K1=0, or else  10(r)s
K

�2r3
near r=0. Therefore,

 1(r)=¡
Z
0

r
�

1
u�2(u)

Z
0

u

s�2(s)�(s)ds
�
du+K2

for some K2 2R. By Lemma 4.2.3, this implies that  1(r)s¡ln(r) when r!1, which leads to
the contradiction

+1> k'kHV1
2 >

Z
R2
(1¡jV1j2)j'j2>K

Z
{r>1}

ln2(r)
(1+ r)2

=+1: �

4.2.2.2 Inversion of the linearized operator around Qc

We recall that

r~=min (jx¡ dce1~ j; jx+ dce1~ j)
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is the minimum of the distances to dce~1 and ¡dce~1, and that we have de�ned the norms, for �2R,
'=Qc 2C2(R2;C),  =  1+ i 2, and Qch2C1(R2;C), h=h1+ ih2,

k k
;� = kQc kC2({r~63})

+ kr~1+� 1kL1({r~>2})+ kr~2+�r 1kL1({r~>2})+ kr~2+�r2 1kL1({r~>2})

+ kr~� 2kL1({r~>2})+ kr~1+�r 2kL1({r~>2})+ kr~2+�r2 2kL1({r~>2})

and

khk

;� = kQchkC1({r~63})

+ kr~1+�h1kL1({r~>2})+ kr~2+�rh1kL1({r~>2})

+ kr~2+�h2kL1({r~>2})+ kr~2+�rh2kL1({r~>2}):

We want to invert the linearized operator around Qc from E

;� to E
;¡" for 1>� > 0, "> 0.
These spaces are close to E��;� and E�;¡" in Chapter 2. In fact, in Proposition 2.1.20, we inverted

the linearized operator around V = V1V¡1 in the �-spaces, and here we want to invert it around
Qc=V +oc!0(1) for the 
-spaces. Furthermore, in Chapter 2, we supposed two symmetries in the
space E�;�, and here we only have one. Therefore, we will need to add an orthogonality condition
on @x2Qc, but we will also have to deal with the phase. For that, we de�ne

� := (�(jx¡ dcj)+ �(jx+ dcj))Qc;

where � is the cuto� function from Lemma 4.2.3. As we have done for one vortex in Lemma 4.2.3, we
will look for a solution of LQc(')= i� to deal with the phase. This solution will also grow at in�nity.

We de�ne � a cuto� function, whith �(x) = �~(r1) + �~(r¡1) and �~ is a C1 positive cuto� with
�~(r)= 0 if r6R+1 and 1 if r>R+2 (R is considered as a universal constant). We then de�ne,
for '=Qc 2E
;�; Qch2E

;� 0, 1>� 0>� > 0,

�( ; h) :=

R
R2Im

�
h�¡ ic@x2� ¡�� ¡ 2r�:r +2� rQc

Qc
:r 

�
R
R2Im

�
i��

Qc

� :

Let us show that
j�( ; h)j6K(�; � 0)(k k
;�+ khk

;�0): (4.2.3)

First, since � = 1 on R2n(B(dce1~ ; R + 2) [ B(¡dce1~ ; R + 2)), ��; r� and @x2� are compactly
supported in B(dce1~ ;R+2)[B(¡dce1~ ;R+2). We deduce thatZ

R2
jIm(¡ic@x2� ¡�� ¡ 2r�:r )j6K(�)k k
;�:

With regards to the de�nition of khk

;� 0, we check easily thatZ
R2
j�Im(h)j6K

Z
R2

khk

;�0
(1+ r~)2+�0

6K(� 0)khk

;� 0:

Now, with (4.1.2) and (4.1.3), we check easily thatZ
R2

����Im�2� rQcQc
:r 

�����6 Z
R2

Kk k
;�
(1+ r~)2+�

6K(�)k k
;�:
Finally,Z

R2
Im

�
i��
Qc

�
=
Z
R2

Im(i(�(x¡ dc)+ �(x+ dc))�)=
Z
R2
�(�(x¡ dc)+ �(x+ dc));

and since Supp�(|:|)�
�
�=1

	
,
R
R2�(�(x¡dc)+�(x+dc))=

R
R2(�(x¡dc)+ �(x+dc))>K>0.

This concludes the proof of (4.2.3).
The proof of the inversion will be done in Lemmas 4.2.6 to 4.2.8. They follow closely the proofs

of Proposition 2.1.17, Lemma 2.1.19 and Proposition 2.1.20. To show the existence of a solution,
we start with an a priori estimate, then we solve the equation on a large bounded domain (to have
compactness), then we extend it to the whole space. The next lemma is the a priori estimate. We
will use the notation  =/0, de�ned in (1.5.3).
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Lemma 4.2.6. For 0 < � 0 < � < 1, there exists K(�; � 0); c0(�; � 0); R > 0 such that, if for
0<c< c0(�; � 0) and some Qch2E

;� 0, '=Qc 2E
;�,

LQc(')=Qch¡ �( ; h)i�
and

Re

Z
B(dce1;R)[B(¡dce1;R)

@cQc'�=Re

Z
B(dce1;R)[B(¡dce1;R)

@x2QcQc 
=/0=0;

then

k k
;�6K(�; � 0)khk

;�0:

Proof. This proof follows closely the proof of Proposition 2.1.17. We argue by contradiction.
Suppose that it does not hold. Then there exists cn! 0, 'n=Qcn n2E
;�, Qcnhn2E

;� 0 such
that LQcn('n)=Qcnhn¡ �( n; hn)i� (remark that � and � depend on n through dcn),

Re

Z
B(dcne1;R)[B(¡dcne1;R)

@cQcn'n=Re

Z
B(dcne1;R)[B(¡dcne1;R)

@x2Qcn'n=0

and

k nk
;�=1; khnk

;�0! 0:

with (4.2.3), we have j�( n; hn)j6K(�; � 0), thus �( n; hn)! �2R up to a subsequence.

We argue as in step 1 of the proof of Proposition 2.1.17. The functions 'n(: ¡ dcne1~ ) are
equicontiuous and bounded, as we check with the same arguments as in Chapter 2, that, up to a
subsequence, it converges to some limit �2HV1.

We check similarly that Qcn(:¡ dcne1~ )! V1 and �(:¡ dcne1~ )! �V1 in Cloc
2 (R2) by Theorem

1.3.1 (for p=+1), and therefore � satis�es the equation

LV1(�)= �i�V1:

By Lemma 4.2.5, this implies that �=0 (since �2HV1). Furthermore, we have

Re

Z
B(dcne1;R)[B(¡dcne1;R)

@cQcn'n=0;

and since 'n(¡x1; x2)= 'n(x1; x2), we deduce that

Re

Z
B(dcne1;R)

@cQcn'n=0:

When n!1, from Theorem 1.3.1 (for p=+1), we have cn2@cQcn(:¡ dcne1~ )! @x1V1, thus

Re

Z
B(0;R)

@x1V1�� =0:

Similarly, since @x2Qcn(:¡ dcne1~ )! @x2V1, and decomposing V1 in harmonics, we check

Re

Z
B(0;R)

@x2V1V1

�
�
V1

�
=/0

=Re

Z
B(0;R)

@x2V1�� =0:

Since �2HV1 and LV1(�)=0, by Theorem 1.1 of [10], we have �= "1@x1V1+ "2@x2V1 for "1; "22R.
With the two previous orthogonality conditions on �, we deduce that "1= "2=0, and thus �=0.
By symmetry, the same result holds if we shift by +dcne1~ instead of ¡dcne1~ .

Now, since

�( n; hn)! 0

when n!1 (since �=0), we check, as in the proof of Proposition 2.1.17, that this implies

k'nkC2({r~6�})= on!1� (1)

for any �>R.
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We now de�ne  ~n := � n. Since LQcn('n) = Qcnhn ¡ �( n; hn)i�, multiplying this equation
by �, we have

�L0( n)=hn�¡ �( n; hn)
i��
Qc

:

Now, we compute

�L0( n) = �

�
¡ic@x2 n¡� n¡ 2

rQcn
Qcn

:r n+2Re( n)jQcnj2
�

= ¡ic@x2 ~n¡� ~n+2Re
¡
 ~n
�

+ ic@x2� n+�� n+2r�:r n+2�Re( n)(jQcnj2¡ 1)

¡ 2� rQcn
Qcn

:r n:

We deduce that

¡ic@x2 ~n¡� ~n+2Re
¡
 ~n
�
= hn�¡ �( n; hn)

i��
Qc

¡ ic@x2� n¡�� n¡ 2r�:r n¡ 2�Re( n)(jQcnj2¡ 1)

+ 2� rQcn
Qcn

:r n:

We denote

h~n=hn�¡ ic@x2� n¡�� n¡2r�:r n¡2�Re( n)(jQcnj2¡1)+2�
rQcn
Qcn

:r n¡�( n;hn)
i��
Qcn

:

We check, as in the proof of Proposition 2.1.17, that

h~n



;� 0;1= o�!1(1)+ on!1� (1):

The only additional term we have to check is �( n; hn)
i��

Qc
, and since �( n; hn) = on!1

� (1), and
i��

Qcn
is compactly supported in B(dcne1~ ;R+2)[B(¡dcne1~ ;R+2), we check easily that



�( n; hn)i��Qcn








;� 0;1

= on!1� (1):

Furthermore, we have that Z
R2
Im
¡
h~n
�
=0;

since

�( n; hn)=

R
R2Im

�
hn�¡ ic@x2� n¡�� n¡ 2r�:r n+2�

rQcn
Qcn

:r n
�

R
R2Im

�
i��

Qcn

� :

Now, from Lemma 2.1.15, since ¡ic@x2 ~n¡� ~n+2Re
¡
 ~n
�
=h~n,

R
R2Im

¡
h~n
�
=0, h~n2E

;�1 and

 ~n2E
;�1 , we deduce

 ~n


;�;16K(�; � 0)

h~n



;� 0;16 on!1� (1)+ o�!1(1):

It implies, with k'nkC2({r~6�})= on!1� (1) and (2.1.18), that

k nk
;�6K
¡
k'nkC2({r~6�})+



 ~n


;�;1�= on!1� (1)+ o�!1(1);

hence, taking � large enough and then n large enough, this is in contradiction with k nk
;�=1. �

We continue as in Chapter 2. We want to show existence of a solution by constructing one on
a large ball B(0; a) by Fredholm alternative, then pass at the limit a!1 to have a solution in R2.

We de�ne, for a> 10/c2, R> 0 a large constant and '=Qc 2Hloc
1 (B(0; a)) the norm

k'kHa2 := k'kH1({r~62R})
2 +

Z
R2n{r~6R}

jr j2+Re2( )+ j j2

(1+ r~)5/2
;
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as well as the space

Ha :=
�
'2Hloc

1 (B(0; a)); k'kHa<+1
	
:

We de�ne

�a( ; h) :=

R
B(0;a)

Im
�
h�¡ ic@x2� ¡�� ¡ 2r�:r +2� rQc

Qc
:r 

�
R
B(0;a)

Im
�
i��

Qc

� :

Let us check that, for � 0> 0,

j�a( ; h)j6K(c; � 0)(k kHa+ khk

;� 0): (4.2.4)

As for the proof of (4.2.3), for a > 10 / c2, we have
R
B(0;a)

Im
�
i��

Qc

�
> K > 0. Since � = 1 on

R2n(B(dce1~ ;R+2)[B(¡dce1~ ;R+2)), we check easily by Cauchy-Schwarz thatZ
B(0;a)

jIm(h�¡ ic@x2� ¡�� ¡ 2r�:r )j6K(� 0)(k kHa+ khk

;� 0):

Now, we estimate by Cauchy-Schwarz thatZ
B(0;a)

����Im�2� rQcQc
:r 

�����
6

Z
B(0;a)

(jQcj2¡ 1)2
Z
R2n{r~6R}

Re2( )

s
+K

Z
B(0;a)

jrQcj2
Z
R2n{r~6R}

jr j2
s

6 K(E(Qc))k kHa:

We recall the notation, around �d~ce1~ , h=/0=h¡h0,

h0(x)= 1
2�

Z
0

2�

h
¡
jx� d~ce1~ jei�

�
d�:

Finally, we de�ne

�( ) := 1
V (B(0; 10/c2)nB(0; 5/c2))

Z
B(0;10/c2)nB(0;5/c2)

Im( );

where V (
) is the volume of 
, the average of the imaginary part of  in B(0; 10/c2)nB(0; 5/c2).

Lemma 4.2.7. For 0 < � 0 < 1 there exists c0(� 0) > 0 such that, for 0 < c < c0(� 0), there exists
K(� 0; c);R>0 such that there exists a0(c; �)>10/c2 such that, for any Qch2E

;� 0, a>a0(c; � 0),
the problem8>>>>><>>>>>:

LQc(')=Qch¡ �a( ; h)i� inB(0; a)
'=0 on @B(0; a)
'=Qc 2Ha;Re

R
B(dce1;R)[B(¡dce1;R)

@cQc'�=Re
R
B(dce1;R)[B(¡dce1;R)

@x2QcQc 
=/0=0

Re
R
B(dce1;R)[B(¡dce1;R)

@cQcQch=Re
R
B(dce1;R)[B(¡dce1;R)

@x2QcQch
=/0=0

admits a unique solution with

k'¡ i�( )QckHa6K(� 0; c)khk

;� 0:

This proof follows closely the proof of Lemma 2.1.19. The orthogonality conditions on h are
required to apply the Fredholm alternative.

Proof. We argue by contradiction on the estimation, assuming the existence. Suppose that there
exists a sequence an >

10
c2
, an ! 1, functions 'n = Qc n 2 Han, 'n = 0 on @B(0; an) and

Qcnhn2E

;� 0 such that k'n¡ i�( n)QckHan=1, khnk

;� 0! 0 and LQc('n)=Qchn¡ �an( n;
hn)i� on B(0; an). In particular, remark here that c is independent of n, only the size of the ball
grows. Our goal is to show that k'n¡ i�( n)QckHan= on!1(1), which leads to the contradiction.
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As in the proof of Lemma 2.1.19, we pass at the limit when n!1, and up to a subsequence,
in Cloc

1 (R2), 'n¡ i�( n)Qc! '= Qc 2H1 with LQc(') =¡�( ; 0)i� in R2 (the convergence
�an( n¡ i�( n); hn)! �( ; 0) up to a subsequence comes from the bilinearity of � and (4.2.4)),
and, since they are invariant by adding i�Qc to ',

Re

Z
B(dce1;R)[B(¡dce1;R)

@cQc'�=Re

Z
B(dce1;R)[B(¡dce1;R)

@x2QcQc 
=/0=0:

Let us check that this implies that '= i�Qc for some �2R.
As in the proof of Lemma 4.2.6, with the same cuto� function �, we de�ne  ~=� , that satis�es

(¡ic@x2¡�+2Re)( ~)

= ¡ic@x2� ¡�� ¡ 2r�:r +2� rQc
Qc

:r ¡ 2�Re( )(jQcj2¡ 1)¡ �( ; 0)i�:

Let us check that the right hand side is in E

;� 0 with 0 < � 0 < 1. Thanks to the equation
LQc(')=¡�( ; 0)i�, we have that '2Cloc

1 (R2;C), thus

¡ic@x2� ¡�� ¡ 2r�:r ¡ �( ; 0)i�2E

;� 0

for any 0<� 0<1, as these terms are compactly supported. For the two remainings term, the proof
is identical as the proof of Lemma 2.1.18.

From Lemma 2.1.15, we deduce that there exists � 2E
;� for some 0<� <� 0 such that

(¡ic@x2¡�+2Re)(�)

= ¡ic@x2� ¡�� ¡ 2r�:r +2�
rQc
Qc

:r ¡ 2�Re( n)(jQcnj2¡ 1)¡ �( ; 0)i�:

Now, we have that

(¡ic@x2¡�+2Re)( ~¡ �)= 0;

and we check that, for � > 0, E
;��H1, thus  ~¡ � 2H1. From the proof of Lemma 2.1.15, we
deduce that  ~ ¡ � 2C[X1; X2], and we check easily that H1 \C[X1; X2] = SpanR(i), thus there
exists �2R such that  ~¡ i�= � 2E
;�. In particular, if we de�ne '�='¡ i�Qc,  �=  ¡ i�, then
'�2E
;� (since  �=  ¡ i�= � +  ¡  ~, where  ¡  ~ is compactly supported) with

LQc('�)=¡�( �; 0)i�;

since LQc(iQc)= �(i; 0)= 0. By Lemma 4.2.6 (for h=02E

;� 0), since

Re

Z
B(dce1;R)[B(¡dce1;R)

@cQc'��=Re

Z
B(dce1;R)[B(¡dce1;R)

@cQc'� =0

by symmetry, and

Re

Z
B(dce1;R)[B(¡dce1;R)

@x2QcQc 
�=/0=Re

Z
B(dce1;R)[B(¡dce1;R)

@x2QcQc 
=/0=0;

we have '� = 0, and thus 'n¡ i�( n)Qc! i�Qc in C1(B(0;�)) for all �> 0. Furthermore, since
�( n¡ i�( n))= 0, taking �> 10/c2, we deduce that �=0.

This implies that, for all � > 0, k'n ¡ i�( n) QckC1(B(0;�)) = on!1
� (1). Furthermore, since

�(�i; 0)= 0 for any �2R, we have �an( n¡ i�( n); hn)! 0 when n!1.
Now, as in the proof of Lemma 4.2.6, multiplying the equation by �, we write it, with  ~n= � n,

on the form

¡ic@x2 ~n¡� ~n+2Re
¡
 ~n
�
=h~n;

where

h~n = hn�¡ ic@x2� n¡�� n¡ 2r�:r n¡ 2�Re( n)(jQcnj2¡ 1)

+ 2� rQcn
Qcn

:r n¡ �an( n; hn)
i��
Qc

:
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Now, the proof varies a little from the one of Lemma 2.1.19. Taking the scalar product of the
imaginary part of the equation with Im

¡
 ~n
�
, we inferZ

B(0;an)

c@x2Re
¡
 ~n
�
Im
¡
 ~n
�
+
Z
B(0;an)

¡�Im
¡
 ~n
�
Im
¡
 ~n
�
=
Z
B(0;an)

Im
¡
h~n
�
Im
¡
 ~n
�
:

By integration by parts, since  ~n=0 on @B(0; an), we haveZ
B(0;an)

¡�Im
¡
 ~n
�
Im
¡
 ~n
�
=
Z
B(0;an)

jrIm
¡
 ~n
�
j2

and ����Z
B(0;an)

c@x2Re
¡
 ~n
�
Im
¡
 ~n
����� 6 ����cZ

B(0;an)

Re
¡
 ~n
�
@x2Im

¡
 ~n
�����

6 c

Z
B(0;an)

Re2
¡
 ~n
�Z
B(0;an)

jrIm
¡
 ~n
�
j2

s
:

Furthermore, since
R
B(0;an)

Im
¡
h~n
�
=0, we haveZ

B(0;an)

Im
¡
h~n
�
Im
¡
 ~n
�
=
Z
B(0;an)

Im
¡
h~n
�
Im
¡
 ~n¡ i�( n)

�
;

and we estimate, since k'n¡ i�( n)QckC1(B(0;�))= on!1� (1), thatZ
B(0;�)

��Im¡h~n�Im¡ ~n¡ i�( n)���= on!1�;� (1);

and Z
B(0;an)nB(0;�)

��Im¡h~n�Im¡ ~n¡ i�( n)���
=
Z
B(0;an)nB(0;�)

����Im�2� rQcnQcn
:r ~n

�
Im
¡
 ~n¡ i�( n)

�����
6 o�!1

c (1)
Z
B(0;an)

��r ~n��2Z
B(0;an)nB(0;�)

����rQcnQcn

����2(1+ r)1/8Im2
¡
 ~n¡ i�( n)

�s

6 o�!1
c (1)

Z
B(0;an)

��r ~n��2Z
B(0;an)nB(0;�)

Im2
¡
 ~n¡ i�( n)

�
(1+ r)5/2

s
:

We deduce thatZ
B(0;an)

jrIm
¡
 ~n
�
j26 c

Z
B(0;an)

Re2
¡
 ~n
�Z
B(0;an)

jrIm
¡
 ~n
�
j2

s
+ o�!1c (1)k'~n¡ i�( n)QckHan

2 :

Now, taking the scalar product of the real part of the equation with Re
¡
 ~n
�
, the computation is

identical to the one in Lemma 2.1.19, and we haveZ
B(0;an)

jrRe
¡
 ~n
�
j2+

Z
B(0;an)

Re2
¡
 ~n
�

6 c

Z
B(0;an)

Re2
¡
 ~n
�Z
B(0;an)

jrIm
¡
 ~n
�
j2

s
+ o�!1c (1)k'~n¡ i�( n)QckHan:

Now, since r ~n=r
¡
 ~n¡ i�( n)

�
, Re

¡
 ~n
�
=Re

¡
 ~n¡ i�( n)

�
, and k'n¡ i�( n)QckC1(B(0;�))=

on!1
� (1), we compute, with the same Hardy type inequality as in the proof of Lemma 2.1.19, that

k'n¡ i�( n)QckHan
2 6 on!1c (1)+K

�Z
B(0;an)

jr ~nj2+
Z
B(0;an)

Re2
¡
 ~n
��
:

Combining these estimates, we deduce that

k'n¡ i�( n)QckHan
2 = on!1c (1)+ o�!1c (1):
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We concluded the proof of the estimation, taking � and n large enough. Now, for the existence,
we argue by Fredholm's alternative in8<:'2H0

1(B(0; a));Re

Z
B
¡
d~ce1;R

�
[B

¡
¡d~ce1;R

�@cQc'� =Re

Z
B
¡
d~ce1;R

�
[B

¡
¡d~ce1;R

�@x2QcQc =/0=0
9=;;

and we remark that the norms



: ¡ i�

�
:

Qc

�
Qc





Ha

and k:kH1 are equivalent on H0
1(B(0; a)).

By Riesz's representation theorem, the elliptic equation LQc(') = Qch ¡ �a( ; h)i� can be
rewritten in the operational form � + K(�) = S(h) where K is a compact operator in H0

1(B(0;

a)), and it has no kernel in Ha (i.e. in
�
' 2 H0

1(B(0; a)); Re
R
B
¡
d~ce1;R

�
[B

¡
¡d~ce1;R

�@cQc'� =

Re
R
B
¡
d~ce1;R

�
[B

¡
¡d~ce1;R

�@x2QcQc =/0 = 0
�
) by the estimation we just showed and the boundary

condition. Therefore, there exists a unique solution '=Qc 2Ha, and it then satis�es

k'¡ i�( )QckHa6K(� 0; c)khk

;� 0: �

Lemma 4.2.8. There exists R> 0 such that, for 0<�<� 0< 1, Qch2E

;� 0 with

Re

Z
B
¡
d~ce1;R

�
[B

¡
¡d~ce1;R

�@cQcQch=Re

Z
B
¡
d~ce1;R

�
[B

¡
¡d~ce1;R

�@x2QcQch=/0=0;

the problem

LQc(')=Qch¡ �( ; h)i�

admits a unique solution '=Qc 2E
;� such that

Re

Z
B
¡
d~ce1;R

�
[B

¡
¡d~ce1;R

�@cQc'�=Re

Z
B
¡
d~ce1;R

�
[B

¡
¡d~ce1;R

�@x2QcQc =/0=0:

Furthermore, this solution satis�es

k k
;�6K(�; � 0)khk

;�0:

Proof. The proof is identical to the one of Proposition 2.1.20, using Lemma 4.2.7 instead of Lemma
2.1.19. The other di�erence is that, when we have a solution in the whole space which is in H1,
we have '¡ i�Qc2 E
;� for some �2R (as in the proof of Lemma 4.2.7). The consider solution
is '¡ i�Qc, as we check that

LQc(')=LQc('¡ i�Qc);

�( ; h)= �( ¡ i�; h);

Re

Z
B
¡
d~ce1;R

�
[B

¡
¡d~ce1;R

�@cQc('¡ i�Qc)=Re

Z
B
¡
d~ce1;R

�
[B

¡
¡d~ce1;R

�@cQc'�
and

Re

Z
B
¡
d~ce1;R

�
[B

¡
¡d~ce1;R

�@x2QcQc( ¡ i�)=/0=Re

Z
B
¡
d~ce1;R

�
[B

¡
¡d~ce1;R

�@x2QcQc =/0: �

To complete the inversion of LQc, we need to inverse the problem LQc(')= i�.

Lemma 4.2.9. For c> 0 small enough, there exists a function '�2C2(R2;C) such that

LQc('�)= i�:

For all "> 0, this function '�=Qc � is in E
;¡" and, for c> 0 small enough (depending on "),



	�¡ i 1(x¡ dc)¡ i ¡1(x+ dc)
Qc






E
;¡"

6K(")c1¡":
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Proof. The equation, on R2n
�
dce1~ ;¡dce1~

	
, is LQc

0 ( )= i �
Qc

. We look for an ansatz of the form

 = i 1(x¡ dc)+ i ¡1(x+ dc)+ ��+�;

where  �1 are de�ned in Lemma 4.2.3, R>0 is given by Lemma 4.2.8, � is a smooth cuto� function
with value 0 in B(dce1~ ; 2R)[B(¡dce1~ ; 2R) and 1 in B(dce1~ ; 2R+1)[B(¡dce1~ ; 2R+1), � will be
the solution of (using Lemma 4.2.2)

¡ic@x2�¡��+2Re(�)=LQc
0 (i 1+ i ¡1)¡ i�;

and � is a remainder, that will solve

LQc
0 (�) = ¡ic@x2(��)¡�(��)+2Re(��)¡LQc

0 (��)
¡ ¡�(�;¡ic@x2(��)¡�(��)+2Re(��)¡LQc

0 (��)):

The idea of this ansatz is to compare Qc with two vortices, where i �1 are a solution of this
problem. The error terms are then small when c!0, but still does not decay enough to use Lemma
4.2.8. This is why we introduce �, that solves this problem at in�nity. The reminder is then small
when c! 0, and has now enough decay, i.e. is in E

;� for some � > 0, and � ties the reminders
up, and will be constructed using Lemma 4.2.8.

First, let us estimate

LQc
0 (i 1+ i ¡1)¡ i�:

By Lemma 4.2.3, i�=LV1
0 (i 1)+LV¡1

0 (i ¡1), where V�1 are centered at �dce1~ , and

LV1
0 ( )=¡� ¡ 2rV1

V1
:r +2Re( )jV1j2:

We have

LQc
0 (i 1+ i ¡1)¡ i�=LQc

0 (i 1)¡LV1
0 (i 1)+LQc

0 (i ¡1)¡LV¡1
0 (i ¡1):

We recall

LQc
0 ( )=¡� ¡ ic@x2 +2Re( )jQcj2¡ 2

rQc
Qc

:r ;

thus, since  1 is real-valued,

LQc
0 (i 1)¡LV1

0 (i 1)= c@x2 1+2i
�
rV1
V1

¡ rQc
Qc

�
:r 1:

We write Qc=V1V¡1+¡~c, where V�1 is centered at �dce1~ . We compute

LQc
0 (i 1)¡LV10 (i 1)= c@x2 1+2i

 
¡rV¡1
V¡1

¡ r¡
~
c

¡~c

!
:r 1:

We estimate, for all 0<�< 1, with Lemmas 2.2.8, 4.2.3 and 1

(1+ r1)(1+ r¡1)
6 Kc

(1+ r~)
, that

jRe(LQc
0 (i 1)¡LV10 (i 1))j 6

Kc
(1+ r1)

+ K
(1+ r¡1)(1+ r1)

+ K(�)c1¡�

(1+ r~)1+�(1+ r1)
:

6 K(�)c1¡�

(1+ r~)
;

jr(Re(LQc
0 (i 1)¡LV10 (i 1)))j 6

Kc
(1+ r1)2

+ K

(1+ r¡1)2(1+ r1)
+ K
(1+ r¡1)(1+ r1)2

+ K(�)c1¡�

(1+ r~)2+�/2(1+ r1)

6 K(�)c1¡�

(1+ r~)2
;
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as well as

jIm(LQc0 (i 1)¡LV10 (i 1))j 6
K

(1+ r1)(1+ r¡1)3
+ K(�)c1¡�

(1+ r1)(1+ r~)2+�/2

6 K(�)c1¡�

(1+ r~)2+�

and

jr(Im(LQc0 (i 1)¡LV10 (i 1)))j 6
K

(1+ r1)(1+ r¡1)3
+ K(�)c1¡�

(1+ r1)(1+ r~)2+�

6 K(�)c1¡�

(1+ r~)2+�
:

We deduce that ¡LQc
0 (i 1+ i ¡1)+ i�2E

;0 with, for all "> 0,

kLQc0 (i 1+ i ¡1)+ i�k

;06K(")c1¡":

From Lemma 4.2.2, there exists �=�1+ i�22C2(R2;C) such that

¡ic@x2�¡��+2Re(�)=¡LQc0 (i 1+ i ¡1)+ i�;
and

k�k
;¡";16K(")kLQc0 (i 1+ i ¡1)+ i�k

;06K(")c1¡": (4.2.5)

Now, since LQc
0 (i 1+ i ¡1)¡ i�=0 in B(dce1~ ; 2R+1)[B(¡dce1~ ; 2R+1), we have

�(LQc
0 (i 1+ i ¡1)¡ i�)=LQc0 (i 1+ i ¡1)¡ i�;

and therefore

¡ic@x2(��)¡�(��)+2Re(��)=¡LQc
0 (i 1+ i ¡1)+ i�¡ ic@x2��¡���¡ 2r�:r�:

We deduce that, writing  = i 1+ i ¡1+ ��+� for some function �,

LQc
0 ( )¡ i�

= LQc
0 (i 1(x¡ dc)+ i ¡1(x+ dc)+ ��+�)¡ i�

= LQc
0 (i 1(x¡ dc)+ i ¡1(x+ dc))¡ i�+LQc

0 (��)+LQc
0 (�)

= ic@x2(��)+�(��)¡ 2Re(��)+LQc
0 (��)

+ ic@x2��+���+2r�:r�+LQc0 (�):

We therefore look at

h=¡ic@x2(��)¡�(��)+2Re(��)¡LQc
0 (��)¡ ic@x2��¡���¡ 2r�:r�:

Since LQc
0 ( )=¡� ¡ ic@x2 +2Re( )jQcj2¡ 2rQcQc

:r , we deduce

h=2�Re(�)(1¡ jQcj2)¡ 2
rQc
Qc

:r(��):

We check, with Lemma 2.2.8 and (4.2.5), that 2Re(��)(1¡jQcj2)¡2rQcQc
:r(��)2E

;� for some

� > 0, and 



2Re(��)(1¡ jQcj2)¡ 2
rQc
Qc

:r(��)







;�

6K(")c1¡":

Similarly, as it is compatcly supported, with the estimates on � we check easily that

kic@x2��¡���¡ 2r�:r�k

;�6K(")c1¡":

We deduce, from Lemma 4.2.8, the orthogonality conditions being satis�ed since the source is 0 in
B
¡
d~ce1~ ;R

�
[B
¡
¡d~ce1~ ;R

�
(because of the cuto� �), that there exists �2E
;� 0, 0<� 0<� such that

LQc
0 (�)= 2Re(�)(1¡jQcj2)¡ 2

rQc
Qc

:r�+ (1¡ �)LQc
0 (i 1+ i ¡1)¡ �(�; h)Qci�;
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with 



 �Qc






;�

+ j�(�; h)j6K(")c1¡":
We deduce that

LQc
0 (i 1(x¡ dc)+ i ¡1(x+ dc)+�+�)= (1¡ �(�; h))Qci�;

thus

LQc
0
�
i 1(x¡ dc)+ i ¡1(x+ dc)+�+�

1¡ �(�; h)

�
= i�:

For c> 0 small enough (depending on "), j�(�; h)j< 1/2. We therefore de�ne

'� :=Qc

�
i 1(x¡ dc)+ i ¡1(x+ dc)+�+�

1¡ �(�; h)

�
:

Now, with

1¡ �(�; h)=1+ oc!0
" (1);

the estimates on � and



 �

Qc






;¡"

6



 �

Qc






;�
6K(")c1¡", we check the estimates on

	�¡ i 1(x¡ dc)¡ i ¡1(x+ dc): �

Now, we can invert the problem LQc(Qc )=Qch without requiring that �( ; h)= 0.

Proposition 4.2.10. Given 0<�<� 0< 1 and Qch2E

;� 0 with

Re

Z
B(dce1;R)[B(¡dce1;R)

@x2QcQch
=/0=0;

there exists �2R and '=Qc 2E
;� such that

LQc('+ �'�)=Qch:

Furthermore,

k k
;�6
K(�; � 0)

c2
khk

;� 0

and

j�j6 K(�; � 0)
c�
0 khk

;� 0:

Proof. First, we suppose additionally that

Re

Z
B(dce1;R)[B(¡dce1;R)

@cQcQch=0:

Then, from Lemma 4.2.6, there exists �2R, '=Qc 2E
;� such that

LQc(')=h¡ �i�;

with k k
;�6K(�;� 0)khk

;�0 and j�j6K(�;� 0)(khk

;� 0+k k
;�)6K(�;� 0)khk

;� 0. From
Lemma 4.2.9, LQc('�)= i�, therefore

LQc('+ �'�)=Qch:

In that case, k k
;�6K(�; � 0)khk

;� 0, where K(�; � 0) does not depend on c> 0.

Now, in the general case, we decompose for some �2R, Qch=Qch
0+�i@x2Qc with

Qch
0 :=Qch¡�i@x2Qc:

We have, by symmetry,

Re

Z
B(dce1;R)[B(¡dce1;R)

@x2QcQch
0=/0=0;
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and

Re

Z
B(dce1;R)[B(¡dce1;R)

@cQcQch
0

= Re

Z
B(dce1;R)[B(¡dce1;R)

@cQcQch¡�Re

Z
B(dce1;R)[B(¡dce1;R)

@cQci@x2Qc:

From and Theorem 1.3.1 (for p=+1), we have

c2Re

Z
B(dce1;R)[B(¡dce1;R)

@cQci@x2Qc6K:

For R> 0 large enough, using Lemma 4.1.1,

c2Re

Z
B(dce1;R)[B(¡dce1;R)

@cQci@x2Qc = 2Re

Z
B(0;R)

@x1V1(x)i@x2V1(x)+ oc!0(1)

= 2Re

Z
B(0;R)

@x1V1(x)i@x2V1(x)+ oc!0(1)

= 4�
Z
0

R

�0(r)�(r)dr+ oc!0(1)

= 4�(1¡ oR!1(1))+ oc!0(1);

and thus

c2Re

Z
B(dce1;R)[B(¡dce1;R)

@cQci@x2Qc>
1
K
:

We choose �2R such that

Re

Z
B(dce1;R)[B(¡dce1;R)

@cQcQch
0=0:

We check with Theorem 1.3.1 (for p=+1) that

j�j 6 Kc2Re

Z
B(dce1;R)[B(¡dce1;R)

j@cQcjjQchj

6 Kkhk

;�;

where K>0 does not depend on c. We deduce that there exists '0=Qc 
02E
;�0; �2R such that

LQc('0+ �'�)=Qch
0;

with (using Lemma 4.1.1)

j�j+ k'0k
;� 0 6 K(�; � 0)kh0k

;�
6 K(�; � 0)(khk

;�+ j�j ki@x2Qck

;�)

6 K(�; � 0)
c�

khk

;�:

Now, we recall from Lemma 3.1.7 that LQc(@cQc)= i@x2Qc, thus

LQc('0+ �'�+�@cQc)=Qch:

Therefore, de�ning '=Qc := '0+�@cQc, we check that LQc('+ �'�)=Qch and

k k
;� 6 K(�; � 0)(khk

;� 0+ j�j k@cQck
;�)

6 K(�; � 0)
c2

khk

;�0;

which concludes the proof of this proposition. �

4.2.3 Inversion with two symmetries
We recall the spaces

E
;�
2sym=

�
'2E
;�; 8(x1; x2)2R2; '(x1; x2)= '(x1;¡x2)
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and

E

;� 0
2sym =

�
Qch2E

;� 0;8(x1; x2)2R2; Qch(x1; x2)=Qch(x1;¡x2)

	
:

Proposition 4.2.11. Given 0 < � < � 0 < 1 and Qch 2 E

;� 0
2sym , there exists a unique function

'=Qc 2E
;� 0
2sym such that

LQc(')=Qch:

Furthermore,

k k
;�6
K(�; � 0)

c2
khk

;� 0

and

(c; Qch)! '

is a continuous function from (]0; c0(�;� 0)[;E

;� 0
2sym ) to E
;�

2sym for some small constant c0(�;� 0)>0.

Proof. With this second symmetry, we can check that �( ; h) = 0 and that the orthogonality
condition on @x2Qc is automatically satis�ed in Proposition 4.2.10. This implies the existence of a
solution with the require estimate.

To show uniqueness, suppose that '02E
;�
2sym also satis�es this equation. Then '¡'02E
;�

2sym�
HQc, and LQc('¡ '0) = 0. From Corollary 1.4.5, this implies that '¡ '0= �@x1Qc+ �@x2Qc for
some �; � 2R, and by the symmetries (see subsection 4.1.1), �= �=0.

We now focus on the continuity. One di�culty is that the spaces E
;�
2sym; E

;� 0

2sym and their
associated norms depends on c. Similarly as in subsection 2.2.1, we recall that for c; c0>0 small and
close enough, the norms between the associated spaces are equivalent, with a constant independent
of c; c0. Here, to show the continuity, we take cn! c and Qcnhn!Qch in E

;� 0

2sym , using for all the
norms the limit value c for the speed. Given that n is large enough, this choice does not change
the spaces.

Now, there exists 'n=Qcn n2E
;� 00
2sym for all � 0>� 00> 0 such that

LQcn('n)=Qcnhn:

We also de�ne '=Qc 2 E
;� 00
2sym

such that LQc(') = Qch. To show the continuity, it is enough to
show that 'n! ' in E
;� 00

2sym. First, we remark that

k nk
;� 006K(� 0; � 00)khnk

;� 0;

and since khnk

;� 0!khk

;� 0, is bounded uniformly in n. We compute

LQc('n¡ ')=Qcnhn¡Qch+(LQc¡LQcn)('n);

and therefore we simply have to show that



Qcnhn¡QchQc








;�0

+




 (LQc¡LQcn)('n)Qc








;�+�

0

2

! 0

when n!1. The fact that



Qcnhn¡Qch

Qc







;� 0

!0 comes from the hypothesis, and we are left with

the proof of



 (LQc¡LQcn)('n)

Qc







;�+�

0

2

!0. Since c!Qc¡12C1(]0; c0(&)[;E
;&
2sym) for all 0<& < 1,

we have that 



 (LQc¡LQcn)('n)Qc








;�+�

0

2

6 jcn¡ cj




@cLQc�('n)Qc








;�+�

0

2

for some c� 2 [min (c; cn);max (c; cn)]. Let us show that, more generally, for any 1> � 00> � 0> 0,
'=Qc 2E
;� 00

2sym, we have



@cLQc(')Qc








;� 0

6K(� 0; � 00)k k
;� 00: (4.2.6)
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Equality (4.2.6) is enough to conclude the proof of this proposition.
We recall that

LQc(')=¡�'¡ (1¡jQcj2)'+2Re(Qc')Qc¡ ic@x2';
and thus

@cLQc(')= 2Re(Qc@cQc)'+2Re(@cQc')Qc+2Re(Qc')@cQc¡ i@x2':

We check, with regards to the de�nition of the norms k:k

;� 0; k:k
;� 00 that, for 1> � 00> � 0> 0,
(with computations similar to the proof of Lemma 4.1.1)

ki@x2'k

;�06 k'k
;� 00:

For the other terms, the estimates are clear in the area
�
r~63

	
. With '=Qc , since c!Qc¡12

C1(]0; c0(&)[; E
;&
2sym) for all 0< & < 1, taking & =1+� 0¡� 00< 1, outside of

�
r~6 3

	
,

jRe(Qc@cQc) j6
K(� 0; � 00)

(1+ r~)1+&+� 00
6 K(� 0; � 00)
(1+ r~)2+� 0

:

We check similarly that

jr(Re(Qc@cQc) )j6
K(� 0; � 00)
(1+ r~)2+�0

:

Now, 2Re(@cQc') is real valued, and still with & =1+� 0¡� 00< 1, outside of
�
r~6 3

	
,

jRe(@cQc')j6 j@cQcQc j6
K(� 0; � 00)
(1+ r~)&+� 00

6 K(� 0; � 00)
(1+ r~)1+� 00

;

and, with Lemma 4.1.1,

jrRe(@cQc')j 6 K(jr@cQcjj j+ jrQcjj jj@cQcj+ jr jj@cQcj)

6 K(� 0; � 00)
�

1
(1+ r~)1+&+� 00

+ 1
(1+ r~)1+� 00+&

+ 1
(1+ r~)1+� 00+&

�
6 K(� 0; � 00)

(1+ r~)2+� 0
:

Finally, still with Lemma 4.1.1, we check that

jRe(Qc')@cQcj = jQcj2jRe( )@cQcj

6 K(� 0; � 00)
(1+ r~)1+� 00+&

6 K(� 0; � 00)
(1+ r~)2+� 0

;

and we check similarly that jr(Re(Qc')@cQc)j6 K(� 0; �00)

(1+ r~)2+�
0 . This concludes the proof of (4.2.6). �

4.3 Smoothness of the branch of travelling wave

4.3.1 Second derivative with respect to the speed

4.3.1.1 Proof of the di�erentiability

We recall that

LQc(')=¡ic@x2'¡�'¡ (1¡ jQcj2)'+2Re(Qc')Qc
and that

LQc(@cQc)= i@x2Qc:

We de�ne the operator

@cLQc(') := 2Re(@cQcQc)'+2Re(@cQc')Qc+2Re(Qc')@cQc¡ i@x2':
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Take "> 0 a small constant, and remark that LQc+"(@cQc+")= i@x2Qc+". We compute

LQc(@cQc+"¡@cQc)= (LQc¡LQc+")(@cQc+")¡ i@x2Qc+"+ i@x2Qc:

Let us show that for all "> 0, (LQc¡LQc+")(@cQc+")¡ i@x2Qc+"+ i@x2Qc2E

;�
2sym and that

(LQc¡LQc+")(@cQc+")¡ i@x2Qc+"+ i@x2Qc
"

! @cLQc(@cQc)+ i@x2@cQc

when "!0 for the norm



 1

Qc
:






;�

. Fort that, is is enough to show that @cLQc(@cQc)+ i@x2@cQc2
E

;�
2sym . From Corollary 4.2.1, we have @cQc2E
;�

2sym, thus we check that i@x2@cQc2E

;�
2sym (as in the

proof of Lemma 4.1.1). Now, still using Corollary 4.2.1, we check that

@cLQc(@cQc) := 4Re(@cQcQc)@cQc+2j@cQcj2Qc¡ i@x2@cQc2E

;�
2sym ;

using in particular that j@cQcj2 is real valued. We deduce that, with Proposition 4.2.11,

@cQc+"¡@cQc
"

!LQc
¡1(@cLQc(@cQc)+ i@x2@cQc)

when "! 0. In particular c!LQc
¡1(@cLQc(@cQc)+ i@x2@cQc) is a continuous function (for the norm

k:k
;�) and thus c!Qc¡12C2(]0; c0(�)[;E
;�
2sym) for c0(�)>0 small enough, depending only on �.

4.3.1.2 Di�erentiation of the energy and momentum

First, we check that, if A2E
;� and B2E

;�, then i@x2A2E

;� and Re(AB�)2L1(R2;R) since,
outside of

�
r~6 1

	
,

jRe(AB�)j6K
����Re

�
A
Qc

�������Re

�
B
Qc

����+ ���Im� A
Qc

�������Im� B
Qc

�����6 K(�)
(1+ r~)2+�

kAk
;�kBk

;�

for some � > 0. From Proposition 1.4.1, we have

@cP (Qc)= hLQc(@cQc); @cQci= hi@x2Qc; @cQci:

Now, we recall that @cQc; @c2Qc2E
;�, i@x2Qc2E

;�, and i@x2@cQc2E

;�. We deduce that

Re(i@x2@cQc@cQc);Re
¡
i@x2Qc@c

2Qc
�
2L1(R2;R);

and therefore hi@x2Qc; @cQci 2C1(]0; c0[;R) (for c0= c0(�); �=1/2 for instance) with

@c(hi@x2Qc; @cQci)= hi@x2@cQc; @cQci+ hi@x2Qc; @c2Qci:

We deduce that P (Qc)2C2(]0; c0[;R) and

@c
2P (Qc)= hi@x2@cQc; @cQci+ hi@x2Qc; @c2Qci:

Now, we recall from Proposition 1.4.1 that @cE(Qc)=c@cP (Qc). We deduce that E(Qc)2C2(]0; c0[;
R) and

@c
2E(Qc)= @cP (Qc)+ c@c2P (Qc): (4.3.1)

4.3.2 Generalisation to higher order derivatives
We argue by induction on n> 1. We de�ne the set of functions

An :=Span06k<n(i@x2@c
kQc)+ Spank;l;m>0;06k+l+m<n

¡
Re
¡
@c
kQc@c

lQc
�
@c
mQc

�
:

We suppose the following results for n> 1: for all 0<�< 1, there exists c0(�)> 0 such that

¡ c!Qc¡ 12Cn(]0; c0(�)[; E
;�
2sym)

¡ LQc(@c
nQc)=An(c)2An.
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In subsection 4.3.1.1, we have shown this results for n = 2. Let us show that these results then
holds for n+1 if they do for a given n> 1.

As in the previous subsection, we show that An(c); @cAn(c)2E

;�
2sym and @cLQc(@c

nQc)2E

;�
2sym ,

using @cnQc2E
;�
2sym instead of @cQc2E
;�

2sym. Now, as in the proof in subsection 4.3.1.1, we can show
similarly that

@c
nQc+"¡ @cnQc

"
!LQc

¡1(@cLQc(@c
nQc)+@cAn(c))

when "! 0 for the norm



 1

Qc
:





;�

. We deduce that c!Qc¡ 12Cn+1(]0; c0(�)[; E
;�
2sym) and that,

de�ning An+1(c) := @cLQc(@c
nQc)+@cAn(c), we have LQc(@c

n+1Qc)=An+1(c)2An+1.
Finally, we check that for all n;m>0,Re(i@x2@c

nQc@c
mQc)2L1(R2;R) since @cnQc;@cmQc2E
;�

2sym.
Therefore, we check by induction that P2(Qc)2C1(]0; c0[;R), with

@c
lP2(Qc)=

X
n+m=l

an;mhi@x2@cnQc; @cmQci

for some (an;m) 2 R. Using @cE(Qc) = c@cP2(Qc), we deduce that E(Qc) 2 C1(]0; c0[; R). This
concludes the proof of Theorem 1.5.2.
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