
HAL Id: tel-03184811
https://theses.hal.science/tel-03184811

Submitted on 29 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Interpretable machine learning for CLAS12 data analysis
Noëlie Cherrier

To cite this version:
Noëlie Cherrier. Interpretable machine learning for CLAS12 data analysis. High Energy Physics -
Experiment [hep-ex]. Université Paris-Saclay, 2021. English. �NNT : 2021UPASP017�. �tel-03184811�

https://theses.hal.science/tel-03184811
https://hal.archives-ouvertes.fr

Th
ès

e
de

 d
oc

to
ra

t
N
N
T:
2
0
2
1
U
PA

S
P
0
1
7

Interpretable Machine Learning
for CLAS12 Data Analysis

Thèse de doctorat de l’Université Paris-Saclay

École doctorale n◦ 576, Particules, Hadrons, Énergie,
Noyau, Instrumentation, Imagerie, Cosmos et Simulation

(PHENIICS)
Spécialité de doctorat: Physique hadronique

Unité de recherche: Université Paris-Saclay, CEA, Département de
Physique Nucléaire, 91191, Gif-sur-Yvette, France

Référent: Faculté des sciences d’Orsay

Thèse présentée et soutenue à Saclay, le 1er mars 2021, par

Noëlie CHERRIER

Composition du jury:

David Rousseau Président du jury
Directeur de recherche, Université Paris-Saclay
Christophe Denis Rapporteur & Examinateur
Maître de conférences, HDR, Sorbonne Université
David Ireland Rapporteur & Examinateur
Professeur, University of Glasgow
Michael Mayo Examinateur
Maître de conférences, University of Waikato

Franck Sabatié Directeur de thèse
Directeur de recherche, Université Paris-Saclay
Maxime Defurne Co-encadrant
Ingénieur de recherche, Université Paris-Saclay
Jean-Philippe Poli Co-encadrant
Ingénieur de recherche, Université Paris-Saclay

iii

Remerciements / Acknowledgements
Après la finalisation du manuscrit puis la soutenance deux mois plus tard, me restent
deux tâches importantes : rédiger le résumé en français de 5 à 10 pages, et écrire mes
remerciements. Je suis heureuse de pouvoir remercier ici les personnes m’ayant aidée
et/ou soutenue pendant ces trois ans (et quatre mois) de thèse.

I start by thanking the members of my jury for accepting to be part of it, and for the
very interesting questions during the defense and their suggestions for further work.
Thank you in particular to the two reviewers, David Ireland and Christophe Denis,
for their comments on my manuscript. Thank you to David Rousseau for accepting
to be the president of this jury.

Cette thèse n’aurait jamais existé sans la coopération de mes trois formidables encad-
rants : Franck, Jean-Philippe et Maxime. Pour commencer, merci d’avoir imaginé ce
sujet de thèse pour lequel j’ai eu un intérêt immédiat lorsque j’ai trouvé l’annonce
sur le site du CEA. Franck, merci d’avoir dirigé cette thèse, laissant toute latitude à
Jean-Philippe et Maxime tout en apportant un regard neuf quand nécessaire. Jean-
Philippe, Maxime, vous étiez complémentaires dans mon encadrement quotidien. Je
me suis beaucoup amusée à confronter vos points de vues et j’ai souvent été surprise
des idées originales que vous pouviez proposer concernant votre domaine de non-
expertise (!). Merci à vous deux pour votre dévouement et votre disponibilité, quelles
qu’étaient vos autres obligations.

I must thank a fourth person who played a significant role in this thesis. In addition
to being examiner for my defense, Michael Mayo is the initiator of the research we
conducted together on generalized additive models. Thanks to a casual discussion
during a conference in Wellington, these models took a big importance in my thesis,
as they turned out to be highly appreciated by physicists while obtaining very good
results for the physics analysis. Therefore, thank you Michael for introducing me to
GAM and for the long discussions and collaboration that followed.

Thanks to the 31 respondents to the survey of chapter 8, the results were numerous and
so much interesting to analyze. Many thanks to them for their time, and also special
thanks to the first six testers who helped us designing and improving the survey:
Francesco Bossu, Nicole d’Hose, David Lhuillier, Loïc Thuilliez, Marine Vandebrouck
and Michael Winn. Merci Nicole en particulier pour avoir fait le relais auprès de
COMPASS.

Merci à mes deux laboratoires d’accueil : le DPhN et le SID. J’ai pris beaucoup de
plaisir à nos discussions notamment lors des pauses du midi, que ce soit parmi des
physiciens ou des informaticiens/mathématiciens. Merci à l’ensemble du SID pour leur
accueil, leurs discussions et leurs encouragements sur la fin : merci à Eiji, Marine,
Youen, Arnaud, Ismaïl, Alyssa, Marisnel, Hung, Baptiste, Rafaël, Sandra... Merci
Mikael d’avoir implémenté la construction de features dans ExpressIF®, et Sébastien
d’avoir essayé d’extraire les probabilités de transition de livres de physique. Merci
Edwin pour avoir recodé FURIA et pour notre travail sur les imprécisions, Camille
pour ton aide avec R et les GAM. Côté physiciens, merci évidemment au groupe du
midi : Hervé & Hervé, Cédric, Francesco, Valerio, Arek, Aurore, Nabil, Christopher
(merci pour tes distractions du matin !). Merci à Danielle et Isabelle sans qui le
département aurait bien du mal à tourner. Merci aussi aux fameux précaires du
DPhN, et en particulier à Nancy, Zoé et Aude pour continuer à faire vivre ce groupe.

iv

Merci aussi à Benjamin, Charles, Antoine, Loïc. Merci à Guillaume et Marouen pour
notre travail commun sur les données CLAS12. Désolée de vous avoir battus ! ,

Merci à l’ensemble de mes proches pour leur soutien et pour m’avoir offert des moments
de décompression bienvenus. Merci à la double paire de jumeaux : Constant, Gautier,
Raphaël, Alexandre, et à Marine, Inès et Laure. Merci au Peignch étendu pour nos
soirées BGA, merci pour vos encouragements, félicitations à ceux qui ont soutenu et
bon courage aux suivants !

Merci à ma famille pour m’avoir soutenu durant ma thèse, et pour avoir sincèrement
essayé de comprendre mon sujet (avec plus ou moins de succès pour certains) ! Merci
à mes parents et à Rozenn d’être venus en personne à ma soutenance. Merci Gildas
d’avoir révisé pour tout comprendre à ma présentation ! Merci Caro pour nos longues
discussions par téléphone qui font toujours très plaisir, j’espère que ça continuera !
Merci Gaëlle, Gilles, Alexandre, Lyson pour votre soutien à distance.

Enfin, je ne pourrais pas conclure sans remercier ma moitié, Brian, qui m’a aidé et
soutenu sur tous les plans : professionnellement (pour les questions de physique, les
scripts, les RDataFrame...), logistiquement (tu fais trop bien la cuisine pour que j’ose
interférer) et personnellement (merci d’avoir supporté mes sautes d’humeur et m’avoir
aidée à tenir jusqu’au bout). J’espère être à la hauteur pour te rendre la pareille.

v

Contents

Remerciements / Acknowledgements iii

List of Abbreviations ix

Introduction 1

I Context and positioning 3

1 Study of the proton structure at CLAS12 5
1.1 Introduction to particle physics . 6
1.2 Generalized parton distributions . 8
1.3 CLAS12 experiment . 15
1.4 Methodology for DVCS analysis . 20

2 Interpretable machine learning 27
2.1 Interpretability: a general introduction 28
2.2 Common intrinsically interpretable machine learning models 38
2.3 Conclusion . 54

3 CLAS12 simulation and baselines using transparent models 55
3.1 Monte Carlo simulation of DVCS and π0 production events 55
3.2 Baselines using transparent models . 60
3.3 Proposed approach . 64

II Interpretable machine learning through feature construction 67

4 State of the art of feature construction 71
4.1 Tree-based feature construction algorithms 73
4.2 Evolutionary-based feature construction algorithms 74
4.3 Embedded feature construction . 81

5 Interpretable feature construction as a prior method 83
5.1 Constrained feature construction algorithm 84
5.2 Experiments on prior feature construction 88
5.3 Conclusion and perspectives . 100

6 Interpretable embedded feature construction 101
6.1 Embedded feature construction in tree-based and sequential covering

algorithms . 102
6.2 Boosting feature construction in generalized additive models 111
6.3 Conclusion and perspectives . 127

vi

III From simulation to real CLAS12 data analysis 131

7 Model transfer to real data 135
7.1 State of the art of domain adaptation 137
7.2 Domain adaptation of the particles momenta 142
7.3 Experiments . 146
7.4 Conclusion and perspectives . 159

8 Interpretability evaluation by experimental physicists 163
8.1 Survey form . 164
8.2 Results and discussion . 168
8.3 Conclusion . 184

9 Analysis of DVCS data from CLAS12 185
9.1 DVCS event selection in CLAS12 data 186
9.2 π0 subtraction and asymmetry computation 190
9.3 Optimal selection threshold and asymmetry computation 194
9.4 Comparisons with other techniques . 197
9.5 Conclusion and perspectives . 201

Conclusion 203

Publications and talks 207

Bibliography 209

A Introduction to fuzzy logic 235
A.1 Principle and operators . 235
A.2 Reasoning with fuzzy logic . 236
A.3 Fuzzy expert systems . 236
A.4 Handling imprecisions . 238
A.5 Advantages of fuzzy logic in machine learning 238

B Exploiting data imprecisions 239
B.1 Background on the use of imprecisions in transparent models 240
B.2 Adaptation of crisp and fuzzy C4.5 algorithms to imprecise data . . . 242
B.3 Adaptation of FURIA to imprecise data 244
B.4 Computation of CLAS12 imprecisions 245
B.5 Experiments . 247
B.6 Discussion . 250

C Experimental datasets 251
C.1 CLAS12 . 251
C.2 Higgs . 253
C.3 τ → 3µ . 256
C.4 MAGIC . 257
C.5 Summary . 257

D Model hyperparameters 259

E Additional experiments on embedded feature construction in tree-
based models 261

vii

E.1 Fuzzy C4.5: std version . 261
E.2 Fuzzy C4.5: Fibo version . 263
E.3 CART . 263
E.4 AdaBoost . 265
E.5 GradientBoosting . 265

F Additional experiments on domain adaptation 267
F.1 Experiments with smeared simulated data with flat distributions . . . 267
F.2 Experiments with smeared simulated data with cross-sections 268

G Complete interpretability survey and responses 273

H Asymmetries using additional models 305

I Résumé en français 321

ix

List of Abbreviations

AdaBoost Adaptive Boosting
CART Classification And Regression Tree
CFF Compton Form Factors
CLAS12 CEBAF Large Acceptance Spectrometer at 12 GeV
DIS Deep Inelastic Scattering
DVCS Deeply Virtual Compton Scattering
FURIA Fuzzy Unordered Rule Induction Algorithm
GA Genetic Algorithm
GAM Generalized Additive Model
GBM Gradient Boosting Machine
GE Grammatical Evolution
GP Genetic Programming
GPD Generalized Parton Distributions
HEP High Energy Physics
ID3 Iterative Dichotomiser 3
JLab Jefferson Laboratory
MLP MultiLayer Perceptron
PSO Particle Swarm Optimization
QCD Quantum ChromoDynamics
QED Quantum ElectroDynamics
RMS Root Mean Square
ROC Receiver Operating Characteristic

1

Introduction

This thesis aims at analyzing complex experimental physics data using and adapting
interpretable machine learning models. In particular, the case study of this thesis is
the investigation of the proton structure. The proton, which is a constituent of the
nuclei of atoms, is itself made of elementary particles called quarks and gluons. While
the nature and interactions of these elementary particles are described by the Stan-
dard Model, their combination and evolution inside a proton cannot be derived from
the equations. Therefore, experimental programs study the proton inner structure.
At CLAS12 in the Jefferson Laboratory, electrons are accelerated up to an energy of
10.6 GeV and sent onto a proton target. In the same way as an electronic microscope,
electrons permit here to probe matter. The collision between electrons and protons
create several output particles. Around the collision site is the CLAS12 spectrometer,
designed to detect the majority of these created or scattered particles and measure
their characteristics. From these measurements, the task of the experimental physi-
cists is to identify the nature of the interaction that occurred. Indeed, the objective is
to measure the frequency of certain interactions of interest, these measurements being
related to the descriptors of the proton structure.

Nowadays, machine learning has become a privileged tool to analyze data. In par-
ticular, classification models could be used to identify the different interactions at
CLAS12 from the detector responses. However, since the analysis pipeline must be
carefully controlled for robustness and peer-validated before the results are published,
using so called “black-box” machine learning algorithms for event selection is tedious.
Explainable artificial intelligence or interpretable machine learning are rising trends
in the past decade, making “transparent” machine learning models increasingly more
common. In this thesis, we propose and adapt several transparent machine learning
models for the analysis of CLAS12 data. Since this category of models often obtains
lower classification performances than models that are more opaque, we develop an au-
tomated feature construction algorithm aiming at increasing the discriminative power
of the inner data representation of such models. Ideally, we could hope to discover
new knowledge from the study of the induced models. Part of the work in machine
learning in this thesis is also dedicated to the proper functioning of these models on
CLAS12 data.

This thesis is the result of the collaboration between two institutes: CEA Irfu for the
experimental physics aspect, and CEA LIST for the artificial intelligence dimension.
The objectives are both to improve the physics analysis techniques with machine
learning and to make contributions to the field of interpretable machine learning. In
addition, the analysis conducted in this thesis is part of a larger study on DVCS
data at CLAS12: indeed, the interpretable machine learning techniques proposed in
this thesis are destined to be compared to two other approaches. The first approach
consists in the standard physics analysis, conducted by Guillaume Christiaens from
the University of Glasgow as part of his PhD thesis, while the second approach is

2 Introduction

based on neural networks and has been conducted by Marouen Baalouch from CEA
LIST during a one-year postdoctoral contract.

Overall, this thesis is divided into three parts. Part I introduces the context of the
thesis:

• Chapter 1 justifies the analysis from a physics point of view. It introduces the
theoretical physics objective and the experimental setup at CLAS12.

• Chapter 2 presents the field of interpretable machine learning. It reviews the
state of the art of this area and details the transparent machine learning models
that will be used afterwards.

• Chapter 3 is more practical: it details the data simulation process and gives first
baselines using transparent machine learning models.

Part II is dedicated to the improvement of transparent machine learning models
through automated feature construction, while adapting the latter to the physics
analysis and maintaining interpretability:

• Chapter 4 reviews the state of the art in feature construction.

• Chapter 5 presents the proposed feature construction technique and first exper-
iments performing feature construction ahead of model induction.

• Chapter 6 proposes an extension of the previously proposed feature construction
technique by embedding it into the induction of transparent machine learning
models. In particular, an enhancement of generalized additive models is pro-
posed to improve their interpretability.

Part III focuses on the specific CLAS12 data analysis. The classification performances
of the proposed models must be confirmed on real data and their interpretability
validated by domain experts before performing the final analysis:

• Chapter 7 investigates domain adaptation to make up for the discrepancies be-
tween simulated data and real data.

• Chapter 8 discusses the perceived interpretability of the proposed models by
expert experimental physicists through a survey.

• Chapter 9 conducts the final analysis on real data. Physics observables are
extracted from data using the proposed machine learning models, and the results
are notably compared with standard analysis techniques.

3

Part I

Context and positioning

5

Chapter 1

Study of the proton structure at
CLAS12

1.1 Introduction to particle physics 6
1.1.1 From the atom to the Standard Model 6
1.1.2 Quarks and the strong interaction 7

1.2 Generalized parton distributions 8
1.2.1 Introduction to GPD . 10
1.2.2 Properties of GPD . 10
1.2.3 Accessing GPD through deeply virtual Compton scattering 11
1.2.4 Accessing GPD through π0 electroproduction 13
1.2.5 Experimental status . 14

1.3 CLAS12 experiment . 15
1.3.1 Experimental setup . 16
1.3.2 Accessible phase space and DVCS event detection 19

1.4 Methodology for DVCS analysis 20
1.4.1 Standard physics analysis: event selection, π0 subtraction

and asymmetry computation 22
1.4.2 Improving event selection with interpretable machine learning 24

While the theoretical physics introduction is a logical prerequisite to an experimental
physics analysis, some persons will likely read this thesis without the necessary pre-
requisites. Hence, this chapter has been written to be as understandable as possible
for a layperson. If the reader is looking for more details, the reading of the theses
of my predecessors is strongly recommended: Gabriel Charles [2013], Maxime De-
furne [2015], Nabil Chouika [2018] and Antoine Vidon [2019]. In addition, the review
from Guidal et al. [2013] is advised for complementary information on phenomenology
(corresponding to section 1.2).

First, section 1.1 dives into the world of particle physics, presenting the Standard
Model and particularly the strong interaction, which is a major actor of the proton
structure. Section 1.2 deepens the investigation of the proton structure and intro-
duces the generalized parton distributions and the interaction of interest: deeply
virtual Compton scattering (DVCS). Then, section 1.3 presents the CLAS12 exper-
iment aiming notably at studying DVCS. Finally, section 1.4 concludes this chapter
by describing the challenges associated with the physics analysis of events collected
with the CLAS12 spectrometer.

6 Chapter 1. Study of the proton structure at CLAS12

1.1 Introduction to particle physics

1.1.1 From the atom to the Standard Model

From Antiquity to the present day, numerous scientists investigated the structure of
matter in greater and greater detail. With increasing knowledge, the size of the probed
constituents decreased. The equipment needed to carry out experiments to discover
hidden structures became even more complex.

For instance, Rutherford discovered that matter is essentially made of void and that
a tiny positively charged nucleus (its radius being 10000 times smaller than the atom)
contains the vast majority of the mass of the atom [Gegier and Marsden, 1909]. His
experiment consisted in sending helium nuclei (also called alpha particles) onto a
thin gold foil [Gegier and Marsden, 1909]. The nuclei either went through the foil
unaffected (proving the majority of void) or were scattered in different directions:
from slightly to strongly deviated (when they collide with the nucleus).

Further theoretical models and experiments finally led to the model of an atom com-
posed of a nucleus, formed of protons and neutrons, and a number of bound electrons
(see Figure 1.1). The size of the electron cloud determines the size of the atom. Pro-
tons and neutrons, also called nucleons, are themselves composed of quarks, which
are elementary particles such as the electron. Investigations of the proton structure
will be further described in section 1.2.

Figure 1.1: Inside of an atom. The size of the nucleus relatively to
the size of the atom is similar to a big orange compared to the inner

Paris.

The rise of particle accelerators since the second half of the 20th century permitted
to discover a wide variety of particles: elementary particles as well as composite
particles. Such experiments crosschecked with theoretical advances finally led to the
Standard Model: a theory classifying all known elementary particles and describing
their interactions (see Figure 1.2). Elementary particles divide into two kinds:

• Quarks (purple on Figure 1.2) and leptons (green on Figure 1.2) that are par-
ticles constituting matter. Both categories are subdivided into three families of
increasing mass. The particles that make up stable matter are those of the first
family (first column on Figure 1.2).

• Gluons, photon, Z and W bosons, i.e. particles that are the vectors of interac-
tions (red on Figure 1.2).

1.1. Introduction to particle physics 7

Standard Model of Elementary Particles
three generations of matter

(fermions)

I II III

mass

charge

spin

Q
U

A
R

K
S

u
≃2.2 MeV/c²

2/3

1/2

up

d
≃4.7 MeV/c²

−1/3

1/2

down

c
≃1.28 GeV/c²

2/3

1/2

charm

s
≃96 MeV/c²

−1/3

1/2

strange

t
≃173.1 GeV/c²

2/3

1/2

top

b
≃4.18 GeV/c²

−1/3

1/2

bottom

L
E

P
T

O
N

S

e
≃0.511 MeV/c²

−1

1/2

electron

νe
<2.2 eV/c²

0

1/2

electron
neutrino

μ
≃105.66 MeV/c²

−1

1/2

muon

νμ
<1.7 MeV/c²

0

1/2

muon
neutrino

τ
≃1.7768 GeV/c²

−1

1/2

tau

ντ
<15.5 MeV/c²

0

1/2

tau
neutrino G

A
U

G
E

 B
O

S
O

N
S

g
0

0

1

gluon

γ
0

0

1

photon

Z
≃91.19 GeV/c²

0

1

Z boson

W
≃80.39 GeV/c²

±1

1

W boson

S
C

A
L

A
R

 B
O

S
O

N
S

H
≃125.09 GeV/c²

0

0

Higgs

Figure 1.2: The Standard Model of elementary particles [Wikipedia,
2020].

The three fundamental interactions of the Standard Model are listed in Table 1.1.
The two fundamental interactions that will be encountered in this thesis are the
electromagnetic and the strong interaction.

Table 1.1: The three fundamental interactions of the Standard
Model.

Interaction name Mediator(s) Affected elementary particles

Strong interaction Gluons Color-charged particles1

(quarks and gluons only)
Electromagnetic
interaction Photon Electrically charged particles

Weak interaction Z, W+, W− Quarks and leptons

1.1.2 Quarks and the strong interaction

Quarks and gluons are the elementary particles affected by the strong interaction.
They form a number of composite particles called hadrons [Gell-Mann, 1964, Zweig,
1964]. Hadrons are defined by their valence quarks, i.e. the quarks responsible for its
quantum numbers. For instance, the valence quarks of the proton are two up quarks
and one down quark (uud), and those of the neutron are udd. Those of the meson π0

are uu/dd and of the meson π+ are ud (u is the anti-particle of the up quark).

The strong interaction is the only fundamental interaction that also affects its media-
tor particles: the gluons, since they carry a color charge as well. This property makes
the strong interaction bind the quarks and gluons together. Its behavior is therefore
very different with respect to the electromagnetic and weak interactions. Indeed, to

1Color charge for the strong interaction plays here the same role as electric charge for the elec-
tromagnetic interaction, except that it decomposes into three dimensions: red, green and blue.

8 Chapter 1. Study of the proton structure at CLAS12

QCD α �Μ �������������������s Z

0.1

0.2

0.3

0.4

0.5

α s (Q)

1 10 100
Q [GeV]

Heavy Quarkonia
e+e– Annihilation
Deep Inelastic Scattering

July 2009

Figure 1.3: Measurements of the QCD coupling αs as a function of
energy [Bethke, 2009].

each interaction is associated a coupling constant related to its strength. For instance,
the coupling constant of the electromagnetic interaction, described by quantum elec-
trodynamics (QED), is αem ≈ 1

137 . However, the coupling αs of the strong interaction
varies significantly with distance. At long distances (bigger than the nucleon size), it
is several orders of magnitude greater than αem. It reduces with decreasing distances
(i.e. increasing energy), as plotted on Figure 1.3. Consequently, the large value of αs
at long distances forbids the existence of free quarks. Therefore, quarks and gluons
are never detected individually and remain confined inside hadrons.

Most importantly, the equations of QCD are hardly computable when αs is of the
order of 1. Indeed, perturbation theory used to approximate these equations implies
to sum terms weighted by a power of αs. When αs is small (short distances), quarks
are free and perturbation theory applies: high order terms can be neglected. However,
when αs is too large, the equations of QCD are not easily computable anymore.

To compensate for this limit, the field of hadronic physics studies the strong inter-
action in its non-perturbative regime, i.e. where perturbative QCD does not apply.
Section 1.2 focuses on the search for generalized parton distributions notably through
deeply virtual Compton scattering (DVCS).

1.2 Generalized parton distributions

Similarly to Rutherford discovering the positive nucleus of the atom, contemporary
physicists access proton structure properties through experiments. Following the prin-
ciple of an electronic microscope, highly energetic electrons are sent to probe a proton:
the higher the probe momentum2, the smaller the probed distance. Cross-sections (i.e.
the probability that a given interaction will take place between the electron and the

2For particles that have a non-zero mass, the momentum p is proportional to the product of the
mass with the velocity of the particle. Globally, the momentum p, mass m and energy E of a particle
are linked by the following formula: E2 = m2c4 + p2c2, with c the speed of light.

1.2. Generalized parton distributions 9

proton) can be measured, and properties of the proton can be derived from the un-
derlying theory thanks to these measurements.

A complete description of the structure of the proton would imply the knowledge of
both spatial and momentum distributions of the quarks and gluons as well as their
correlations. However, the Heisenberg principle prevents the simultaneous knowledge
of all these variables. Instead, several processes permit to access different structure
functions carrying complementary partial information compatible with the Heisenberg
principle. Here, we focus on generalized parton distributions (GPD).

GPD are related to the correlations between the transverse positions and the longi-
tudinal momenta of the partons in the proton (i.e. quarks and gluons). They are
accessed through the experimental study of a family of processes called exclusive deep
inelastic processes, whose generic Feynman diagram is displayed on Figure 1.4.

q

p

e−

h

e−

X

Figure 1.4: Feynman diagram of deep exclusive processes. q rep-
resents the momentum of the virtual photon. h is the recoil hadron
(proton or neutron most of the times) and X the set of particles pro-
duced out of the collision. The striped circle represents the soft part

that cannot be computed perturbatively (short distance QCD).

Several kinematic variables can be identified using the Feynman diagram of Figure 1.4
and permit to define exclusive deep inelastic processes:

• Q2 = −q2 is the virtuality of the exchanged photon and must be high for the
interaction to be “deep” (Q2 � M2

p , with Mp the mass of the proton). This
makes the probed distance much smaller than the size of the proton, therefore
the virtual photon interacts with a single constituent (parton) of the proton.

• W 2 = (pp + q)2 is the available mass in the center of mass frame, with pp the
momentum of the incoming proton and q the momentum of the virtual photon.
It must be high as well (W 2 �M2

p) so that the interaction is “inelastic”, namely
several particles are produced out of the interaction (the so-called X set).

In addition, the set of particles X must be defined and measured so that the studied
process is exclusive.

Two notable studied processes are DVCS (see 1.2.3) and the deeply virtual meson
production (DVMP) (see 1.2.4 for π0 production, but other mesons can be produced).
An introduction to GPD and their properties is proposed before specific insights into
DVCS and π0 production.

10 Chapter 1. Study of the proton structure at CLAS12

1.2.1 Introduction to GPD

There exist eight GPD for each quark flavor and also eight GPD for gluons. These
eight GPD (H, E, H̃, Ẽ, HT , ET , H̃T and ẼT) are associated to different helicity3

combinations of the incoming and outgoing proton and parton.

The GPD are function of four variables: Q2 the virtuality of the virtual photon (in
practice omitted in the notations), x the average longitudinal momentum fraction,
t the square momentum transfer to the proton and ξ the longitudinal momentum
transfer (see for example Figure 1.6):

ξ ' xB
2− xB

. (1.1)

xB is the Bjorken variable comprised between 0 and 1. In a fixed target experiment
(which is the case of CLAS12), it writes:

xB =
Q2

2Mp(E − E′)
(1.2)

with Mp the mass of the proton, E and E′ the energies of respectively the incoming
and scattered electrons.

1.2.2 Properties of GPD

Extensive information about the proton structure can be derived from the knowledge
of GPD. Ralston and Pire [2002] showed that it is possible to plot spatial images of
the proton as a function of the longitudinal momentum fraction x thanks to GPD
(see Figure 1.5). According to their model, the quarks carrying the largest fraction of
momentum would be located close to the nucleon center, while the other quarks and
gluons are more spread out.

Figure 1.5: Simulation of a representation of the nucleon: the trans-
verse position distribution as function of the longitudinal momentum

fraction. Figure taken from [Charles, 2013].

Measurements of GPD also give access to the quark contribution to the proton orbital
angular momentum [Ji, 1997]:

Ji =
1

2

∫ 1

−1
x (Hi(x, ξ, 0) + Ei(x, ξ, 0)) dx ∀ξ ∈ [−1, 1] (1.3)

with i the quark flavor (or else gluon). Ji is the quark total angular momentum (spin
and orbital contributions).

3Helicity is the projection of the spin on the direction of the particle’s momentum.

1.2. Generalized parton distributions 11

1.2.3 Accessing GPD through deeply virtual Compton scattering

q

x+ ξ x− ξ

p

e−

p′

e−

γ

Figure 1.6: Feynman diagram of deeply virtual Compton scattering.
q is the four-momentum of the virtual photon, x the average longi-
tudinal momentum fraction carried by the quark, ξ the longitudinal
momentum transfer. Factorization is illustrated by the dashed hor-
izontal line, above which the perturbative theory applies but below

which it is non-perturbative and described by the GPD.

DVCS (Feynman diagram displayed on Figure 1.6) involves the emission of a real
photon by a parton (quark or gluon) of the proton from the interaction of the parton
with the virtual photon (emitted by the electron).

1.2.3.1 Compton form factors

The variable x of the GPD only exists in the inner cycle of the parton leaving the
proton, interacting with the virtual photon and going back into the proton. Contrary
to Q2, ξ and t, x is not observable and must be integrated over. GPD can therefore
not be accessed directly.

The DVCS cross-section involves Compton form factors (CFF), which are complex
convolutions of GPD with the hard scattering process. There is thus one CFF asso-
ciated to each GPD. For instance:

H(ξ, t) =

∫ 1

−1
H(x, ξ, t)C(x, ξ)dx

=

∫ 1

−1
H(x, ξ, t)

(
1

ξ − x− iε
− 1

ξ + x− iε

)
dx at leading order4

(1.4)

is the CFF associated to the GPD H. Equation (1.4) has been derived following the
principle of factorization: the hypothesis is made that the interaction can be separated
in two parts:

• a hard part (above the dashed line on Figure 1.6) accounting for the scattering
between the virtual photon and the parton of the proton; this part can be derived
using perturbation theory (function C in equation (1.4));

• a soft part (below the dashed line on Figure 1.6) describing the spectator partons
confined in the proton that are not part of the interaction with the virtual
photon; this part belongs to the non-perturbative regime described by the GPD.

4Higher orders involve perturbations in the Feynman diagram in the form of additional vertices.
They appear as additional terms weighted by a coupling constant.

12 Chapter 1. Study of the proton structure at CLAS12

The separation between the real and imaginary parts of the CFF at leading order
gives additional insight about the associated GPD. For instance with H:

ReH(ξ, t) = P
∫ 1

−1
(H(x, ξ, t)−H(−x, ξ, t))

(
1

x− ξ
+

1

x+ ξ

)
dx, (1.5)

ImH(ξ, t) = π (H (ξ, ξ, t)−H (−ξ, ξ, t)) . (1.6)

P is the principal value of the integral. Therefore, retrieving the imaginary part of
the CFF permits to directly access values of the associated GPD at x = ±ξ.

The DVCS amplitude5 is a linear combination of CFF. They can be separated through
a harmonic expansion of the square amplitude as a function of φ the angle between
the two interaction planes (see Figure 1.7).

Figure 1.7: Geometrical definition of φ, the angle between the lep-
tonic plane (interaction e→ eγ∗) and the hadronic plane (interaction

pγ∗ → pγ).

1.2.3.2 Bethe-Heitler interference and DVCS cross-section

The measured cross-section is not directly the square DVCS amplitude, forbidding
a direct access to the CFF moduli. Indeed, the Bethe-Heitler process (displayed on
Figure 1.8) also contributes to photon electroproduction. It has the exact same final
state as DVCS: a scattered electron, a recoil proton and an emitted photon. It is
actually an elastic scattering between the electron and the proton with a high-energy
photon radiated by either the incoming or scattered electron. The Bethe-Heitler
amplitude is well known and involves elastic form factors, which are other structure
functions of the proton.

q

p

e−

p′

e−γ

q

p

e−

p′

γ

e−

Figure 1.8: Feynman diagram of Bethe-Heitler process. q represents
the four-momentum of the virtual photon. The real photon is either

emitted by the incoming (left) or outgoing electron (right).

5The cross-section of a process is a function of the square of the amplitude.

1.2. Generalized parton distributions 13

DVCS and Bethe-Heitler are experimentally indistinguishable. The measured cross-
section of the observed process ep → epγ involves both the DVCS and the Bethe-
Heitler (BH) amplitudes, therefore an interference term I appears:

dσ

dΩ
∝
∣∣T DV CS + T BH

∣∣2 =
∣∣T DV CS∣∣2 +

∣∣T BH ∣∣2 + T DV CS∗T BH + T DV CST BH∗︸ ︷︷ ︸
I

.

(1.7)
While the square DVCS amplitude only permits to access the moduli of the CFF,
the interference term I gives access to their real and imaginary parts since it involves
the simple DVCS amplitude. In practice, both DVCS and Bethe-Heitler amplitudes
as well as the interference can be expressed as a harmonic expansion of φ to isolate
different terms.

In addition, playing with the polarizations of the beam and the target allows to
measure additional observables. The interference term is notably sensitive to the
beam and target polarizations. For instance, changing the helicity λ of the electron
beam (±1

2) allows the measurement of the beam asymmetry A:

A =
dσ+ − dσ−

dσ+ + dσ−
∝ sin(φ)

dσ+ + dσ−
Im

(
F1H+ ξ(F1 + F2)H̃+

t

4M2
p

F2E
)

(1.8)

with + and − denoting the beam polarization and F1 and F2 the Pauli and Dirac
elastic form factors (other structure functions of the proton that are experimentally
studied since the 1950s and well known) [Guidal et al., 2013]. The latter are real
numbers, thus the asymmetry gives access to the imaginary part of the CFF, which
are directly values of the GPD at x = ξ as seen above.

In this thesis, the final objective is to measure the DVCS/Bethe-Heitler beam spin
asymmetry as a function of φ over the (Q2, xB, t) phase space accessible at CLAS12
(see section 1.4 for an introduction to the practical problem and chapter 9 for asym-
metry computation after event selection).

1.2.4 Accessing GPD through π0 electroproduction

Contrary to DVCS, here a π0 meson is produced instead of a photon (see Feynman
diagram on Figure 1.9). A π0 is not stable and rapidly decays into two photons that
can be detected.

There is no equivalent of the Bethe-Heitler process for π0 electroproduction. There-
fore, this process does not have any interference and the square amplitude can be
directly measured. However, there are two levels of factorization: one due to the
proton structure (involving the GPD) and another one linked to the meson structure,
described by the distribution amplitude (DA). It is therefore harder to separate the
GPD from the DA contribution: instead of single convolutions like CFF, the ampli-
tude involves double convolutions with an additional unknown hadronic structure (the
DA).

However, studying π0 electroproduction permits to access different GPD than with
DVCS: it gives a favored access to the tilded GPD H̃ and Ẽ, and the quark transversity
GPD (HT , ET , H̃T and ẼT) are available through π0 electroproduction but cancelled
in the DVCS cross-section [Goloskokov and Kroll, 2011]. Finally, DVMP in general
permits to know more precisely which quark flavor was involved in the process thanks
to the knowledge of the produced meson.

14 Chapter 1. Study of the proton structure at CLAS12

q

x+ ξ x− ξ

p

e−

p′

e−

π0

Figure 1.9: Feynman diagram of π0 electroproduction. q is the four-
momentum of the virtual photon. Two factorizations appear, materi-
alized by the dashed lines: the horizontal line corresponds to the target
proton while the oblique line refers to the creation of the π0 meson.

1.2.5 Experimental status

In the remainder of this thesis, DVCS will stand for the superposition of DVCS and
Bethe-Heitler since the two processes are undistinguishable. Experimentally, only a
small phase space is accessible at a time and multiple facilities are needed to cover
a larger phase space in Q2, xB. Figure 1.10 illustrates the phase space regions in
(Q2, xB) covered by different facilities having studied or currently studying DVCS.
HERMES completed their experimental program, while COMPASS and JLab 12 GeV
analyses are still ongoing.

• HERMES, located at DESY laboratory in Hamburg, Germany ended in 2007.
It has measured DVCS asymmetry in the intermediate values of xB with almost
every beam and target polarization combinations;

• JLab 6 GeV included the Hall A and CLAS (CEBAF Large Acceptance Spec-
trometer) collaborations, located at the Jefferson Laboratory (JLab) in the US.
They measured DVCS in the valence quark region (xB > 0.1). Since then the
CEBAF accelerator upgraded to a 12 GeV electron beam to reach higher xB
and Q2;

• JLab 12 GeV is the upgraded version of JLab 6 GeV and the experiments are
still running: the objective is to study regions of the phase space with higher Q2

(up to ' 10GeV2/c4) in Halls A, B and C (the CLAS12 collaboration exploits
Hall B);

• The COMPASS collaboration has finished taking data in the intermediate xB
region to study sea quarks and gluons with a 160 GeV muon beam;

• In the future, the new Electron Ion Collider (EIC) [Accardi et al., 2016] (not
represented on Figure 1.10) aims at reaching the very small xB region (up to
xB ' 10−4) to hit the gluon GPD.

Next section presents the CLAS12 experiment in more details as the analysis of its
data is the focus of this thesis.

1.3. CLAS12 experiment 15

JLab
6Ge
V

JLa
b1
2G
eV

HERMES

xB

2

0.1 0.2 0.3 0.4 0.5 0.6

2

4

6

8

Q

COMPASS

Figure 1.10: Phase space in (Q2, xB) studied by different facilities.
Figure taken from [Guidal et al., 2013].

1.3 CLAS12 experiment

The Jefferson Laboratory is located in Newport News, Virginia, USA. It carries fun-
damental research on nucleus and nucleon structure. It comprises the CEBAF (Con-
tinuous Electron Beam Accelerator Facility) composed of two linear accelerators con-
nected to each other with recirculating arcs. An electron beam is going up to 5.5
times through the linear accelerators to reach a maximal energy of 11.5 GeV before
being sent into 4 experimental halls, from A to D (see Figure 1.11). The beam can
be longitudinally polarized up to 85%.

Linear accelerators

Injector

Magnets

Hall D

Hall A

Hall B

Hall C

Figure 1.11: CEBAF accelerator and four halls.

In Hall B, the electron beam is sent onto a liquid hydrogen target, leading to a lumi-
nosity (i.e. number of events per second and per square centimeter) of 1035 cm−2 s−1

for the CLAS12 experiment. Surrounding the target, the CLAS12 apparatus involves
several particle detectors to characterize and identify the output particles from the
collisions. The objectives of the CLAS12 collaboration are numerous and include the
study of the proton structure: the electrons of the beam collide with the protons of
the target. Among the possible interactions (inelastic, meson production, etc.), the
objective of this thesis is to isolate DVCS events by detecting the three particles of the

16 Chapter 1. Study of the proton structure at CLAS12

final state (scattered electron, recoil proton and emitted photon) to finally measure
physics observables such as cross-sections or asymmetries.

The different components of CLAS12 are described in the following subsection.

1.3.1 Experimental setup

Around the target in Hall B are three different detector packages corresponding to
three different angular coverages (see Figure 1.12):

• The central detector, which aims at detecting particles with a polar angle θ with
respect to the beam axis between 35 and 125 degrees. Most of the recoil protons
of DVCS events are detected in this central detector.

• The forward detector, which detects particles with 5 ≤ θ ≤ 40 degrees, namely
the scattered electron and the photon for DVCS and exclusive π0 electroproduc-
tion events.

• The forward tagger to detect electrons and photons that have a small θ angle,
between 2.5 and 4.5 degrees.

Figure 1.12: The CLAS12 detectors: photograph (top) and schema
(bottom). The beamline comes from the right. Some components are
not indicated on the schema since they are hidden by others, notably
the central tracking system and the forward tagger. Both images are

taken from [Burkert et al., 2020].

1.3. CLAS12 experiment 17

The different submodules of the central detectors, forward detectors and forward tag-
ger are detailed hereafter. More details on the experimental setup can be found in
[Burkert et al., 2020].

1.3.1.1 Central detector

The central detector has a cylindrical shape and is placed around the collision site.
It covers polar angles from 35 to 125 degrees with respect to the beamline. It is
composed of three parts: a tracking system, a time-of-flight detector and a neutron
detector. It is inserted in a solenoid magnet that generates a 5 Tesla magnetic field in
the direction of the beam to curve the trajectories of charged particles. The radius of
curvature of the charged particles is then proportional to its transverse momentum.
The measurement of this radius in tracking systems is therefore of high interest.

Tracking system

The tracking system in the central detector is composed of two detectors: a silicon
vertex tracker (SVT) placed inside a barrel Micromegas tracker (BMT). Overall, the
tracking system aims at detecting charged particle tracks. From recorded hits, a
reconstruction software is able to compute the momentum and vertex of the particle
with a certain relative momentum resolution ∆p

p , estimated to be below 5% thanks
to the combination of the two detectors. For DVCS, the central detector will mainly
detect the recoil proton.

Time-of-flight detector

The objective of this detector is to identify the particles crossing it. The central time-
of-flight (CTOF) detector measures the time between the activation of this scintillator
and the moment the electron beam crossed the proton target. This time depends on
the momentum of the particle and on its mass. The CTOF permits to distinguish
π+ from K+ mesons up to ≈ 0.5GeV/c and protons from π+ up to ≈ 1.3GeV/c (see
Figure 1.13).

Figure 1.13: Time of flight of protons, positive kaons and positive
pions as measured by the CTOF as a function of their momentum.

Figure from [Charles, 2013].

18 Chapter 1. Study of the proton structure at CLAS12

1.3.1.2 Forward detector

The forward detector covers polar angles from 5 to 40 degrees with respect to the
beamline. Ordered by increasing distance from the target, the detector is composed
of:

• a high threshold Cherenkov counter (HTCC);

• a tracking system;

• a low threshold Cherenkov counter (LTCC);

• a forward time-of-flight (FTOF);

• an electromagnetic calorimeter in two parts (PCAL and EC).

A torus magnet is included in between the drift chambers. Its six coils generate a
toroidal magnetic field up to 3.6 Tesla.

Drift chambers (tracking system)

Drift chambers permit to obtain a resolution up to 250 – 350 µm on the position of
the particle in the detector. In the forward detector, three successive regions of drift
chambers constitute the tracking system. Figure 1.14 illustrates the relative resolution
expectations after reconstruction. Overall, the relative resolution ∆p

p is worth 0.5 –
1.5 %.

Figure 1.14: Estimation of the relative momentum resolution using
the drift chambers at different polar angles [Mestayer et al., 2020].

Cherenkov counters

Cherenkov counters are used to improve particle identification. The detector is filled
with a gas of a chosen refractive index, and a particle crossing it will generate light,
a Cherenkov radiation, if its speed exceeds the speed of light in this medium.

Two Cherenkov detectors are used in CLAS12: the high and low threshold Cherenkov
counters (HTCC and LTCC). They use distinct gases with different refractive indexes.
The former separates electrons from pions, kaons and protons at momenta up to

1.3. CLAS12 experiment 19

4.9 GeV/c, while the latter separates pions from kaons and protons at momenta above
3.5 GeV/c.

To improve particle identification at high momentum (3 – 8 GeV/c), one sector of the
LTCC has been replaced with a ring imaging Cherenkov detector (RICH). The prin-
ciple is to measure the angle at which the Cherenkov light is emitted with respect to
the particle’s trajectory. This angle is related to the velocity of the particle. Together
with the information of the momentum, the mass can be computed and therefore the
particle is identified.

Time-of-flight detector

The forward time-of-flight (FTOF) has a similar functioning than the CTOF. It is
designed to separate protons from kaons and pions at larger momentum values.

Calorimeters

The electromagnetic calorimeters are the outer-most detectors of CLAS12. They con-
sist in two parts: a preshower calorimeter (PCAL) and an electromagnetic calorimeter
(EC). The objective of the PCAL is to increase the granularity of the global calorime-
ter and notably to be able to separate two close photons, which is of high interest
to reconstruct π0 mesons. The PCAL and EC are disposed in six sectors around the
beamline, at six meters of the target.

Calorimeters aim at measuring the energy of particles. They also separate electromag-
netic (electron, photon) from hadronic (proton, neutron) particles by looking at the
shape of the produced showers. The expected energy resolution is ∆E

E '
0.1√

E (GeV)
.

1.3.1.3 Forward tagger

The forward tagger is composed of a tracking system, a hodoscope to separate electrons
from photons, and a calorimeter (FTCAL). Contrary to PCAL that measures only a
fraction of the particle’s energy, the FTCAL measures its full energy. The expected
resolution is ∆E

E '
0.02√
E (GeV)

.

1.3.2 Accessible phase space and DVCS event detection

Because of covered angles, particle identification challenges, etc., the CLAS12 setup
constrains the observable phase space. In addition, some constraints must be en-
forced to be consistent with theoretical hypotheses made to extract CFF from DVCS
observables. Notably, the electron must have an energy over 0.8 GeV to be detected,
preferably in the forward detector. Globally, the following constraints define the ac-
cessible phase space at CLAS12:

E′ ≥ 0.8GeV, (1.9)
5◦ ≤ θe ≤ 40◦, (1.10)

Q2 ≥ 1.5GeV2/c4, (1.11)

W 2 = (pp + q)2 = M2
p +Q2

(
1

xB
− 1

)
≥ 4GeV2/c4. (1.12)

Figure 1.15 illustrates the accessible phase space at three different beam energies.

20 Chapter 1. Study of the proton structure at CLAS12

Figure 1.15: The (Q2, xB) phase space accessible at CLAS12, with
three different beam energies.

The final state of a DVCS event (namely the four-momentum of the three output
particles) can be computed given a quadruplet of kinematic variables (Q2, xB, t, φ).
Figure 1.16 shows simulations of DVCS events following the cross-section distribution
over the phase space:

• the scattered electron is emitted in majority at angles below 40 – 45 degrees,
namely in the forward detector and forward tagger;

• the recoil proton has a smaller momentum (≈ 1GeV/c) sent at angles most of
the time covered by the central detector;

• the photon is emitted at high energies and small polar angles, it will therefore
be found preferably in the forward detector or in the forward tagger.

In this way, CLAS12 earned its name of “large acceptance spectrometer”, since it
is designed to cover the vast majority of the theoretically accessible phase space.
Figure 1.17 shows an example of a DVCS event as seen by the CLAS12 detector.

1.4 Methodology for DVCS analysis

As a summary of this chapter so far, the final objective is to learn more about the pro-
ton structure thanks to the GPD, accessed through the CFF. The CFF are themselves
parameters of the DVCS cross-section and asymmetries, which are the observables to
measure. The CLAS12 experiment has been designed to record DVCS events in a
large phase space. The DVCS cross-section is directly proportional to the number of
observed DVCS events in CLAS12, the other factors being the luminosity and CLAS12
acceptance among others. The experimental goal is therefore to isolate DVCS events
from all CLAS12 data.

Two types of errors arise from this selection:

• the measurement of the cross-section has an associated statistical error that
evolves in square root of the number of selected events;

1.4. Methodology for DVCS analysis 21

10 20 30 40 50 60
e

2

4

6

8
pe

20 40 60
p

0.25

0.50

0.75

1.00

1.25

1.50

1.75

pp

10 20 30 40 50 60
1

2

4

6

8

p
1

99%

95%

90%

75%

50%

25%

0%

Figure 1.16: Simulations of the distributions of momentum and po-
lar angle of the three particles (top left: electron; top right: proton;
bottom: photon) of the output state for DVCS events, taking into

account the cross-sections.

Figure 1.17: A DVCS event visualized in the CLAS12 event display
interface. The proton has been reconstructed in the central detector,
the electron in the forward detector, and the photon in the forward

tagger. Credits: Maxime Defurne.

• the systematic error comes from all parameters involved in the measurement,
notably the uncertainty on the luminosity, beam polarization, background con-
tamination estimation, selection efficiency, etc.

22 Chapter 1. Study of the proton structure at CLAS12

Both errors contribute to the relative error associated to the measured observable
(cross-section, asymmetry) and must be minimized.

In the context of DVCS analysis, the main contamination comes from π0 electropro-
duction. While the DVCS final state consists of an electron, a proton and a photon,
the π0 electroproduction process final state involves a π0 instead of the photon that
decays into two photons: ep → epπ0 → epγγ. Two cases may therefore compromise
the DVCS selection:

• a DVCS event that has an additional photon for various reasons (radiation of
the electron for instance) may be confounded with a π0 electroproduction event;

• a π0 electroproduction event in which one of the two photons has a very high
energy and the other one very low may be taken for a DVCS event, because the
lowest energetic photon will probably remain undetected.

Therefore, a physics analysis necessarily involves a careful event selection to retrieve
the maximum of DVCS events while minimizing the π0 contamination.

1.4.1 Standard physics analysis: event selection, π0 subtraction and
asymmetry computation

1.4.1.1 Event selection

Event selection is made based on reconstructed particle information and notably
their four-momentum p = (E, px, py, pz) with E their energy in GeV and pi the ith-
component of their three-momentum p. For particles that have a non-zero mass m,
the momentum p is proportional to the product of the mass with the velocity of the
particle. Globally, the three-momentum, mass and energy of a particle are linked by
the following formula:

E2 = m2 + ‖p‖2 (1.13)

where E, m and p are expressed in natural units, i.e. setting fundamental constants
to 1. The Minkowski norm of the four-momentum therefore equals the mass of the
particle:

‖p‖2 = E2 − p2
x − p2

y − p2
z = m2. (1.14)

During a physical interaction, all components of the four-momenta must be conserved.

Therefore, event selection is usually based on exclusivity cuts: high-level variables
checking conservations of energy and momentum are examined. For instance:

• The square missing mass ep→ epγX should be around 0 for a DVCS event (no
other particle has been created):

M2
ep→epγX = ‖pe,in + pp,in − pe,out − pp,out − pγ,out‖2 (1.15)

with pe,in, pp,in, pe,out, pp,out, pγ,out the four-momentum of respectively the in-
coming electron, proton and outgoing electron, proton and photon.

• The missing mass ep → eγX should equal the mass of the proton (particle
that is not counted in the outgoing particles in this missing mass), namely
0.938GeV/c2.

• The cone angle, i.e. the angle between the detected photon and the particle
defined by pe,in + pp,in− pe,out− pp,out (the theoretical photon) should be small.

1.4. Methodology for DVCS analysis 23

• Etc.

Considering physics phenomena and because of the resolutions of the detectors, the
distributions of these variables have a certain width around their expected value.
Figure 1.18 shows the missing mass ep → eγX in CLAS12 data for DVCS and π0

electroproduction events. The cut on this variable must be optimized to keep the
maximum of DVCS events while rejecting the maximum of the π0 contamination.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Missing mass ep e X

0

50000

100000

150000

200000 DVCS
0 production

Total

Figure 1.18: Missing mass ep → eγX in CLAS12 simulation. The
two processes have been weighted to approximately reproduce the real

proportions in data.

However, part of the π0 contamination is physically impossible to remove. Indeed, the
π0 created by the interaction between the virtual photon and the proton disintegrates
into two real photons. In the π0 rest frame, these two photons are emitted back to
back in a completely symmetrical way. Their momentum in the laboratory frame is
boosted by the momentum of the π0. As a result, the two photons can have the same
momentum or on the contrary have completely unbalanced momenta depending on
the angle at which they were emitted (see Figure 1.19 for an illustration).

When one of the two photons has a very large energy compared to the other, it
is comparable to a DVCS photon. On the contrary, the other photon may not be
energetic enough to be detected in CLAS12. In this case, even the best event selection
technique is not able to distinguish this kind of event from a true DVCS event given
the resolutions of the CLAS12 detectors.

1.4.1.2 π0 subtraction and asymmetry computation

An event selection method labels selected CLAS12 events as “DVCS candidates”. How-
ever, amongst these candidates are a certain number of true DVCS events, but also
contaminating π0 electroproduction events and a number of various other contaminat-
ing events. The latter can be reduced to zero, however a residual π0 electroproduction
contamination remains (see the explanations above and notably Figure 1.19). This
residual contamination accounts for the statistical and systematic errors. However, it
is possible to estimate and subtract it afterwards. The procedure will be detailed in
the last chapter together with the analysis (chapter 9).

24 Chapter 1. Study of the proton structure at CLAS12

Stationary

momentum

Stationary

momentum

frame
Isotropic decay: photons are emitted

back to back in any direction

Laboratory frame
Photons are boosted by

the momentum

Boost

Boost

Case 1:
The two photons can
be detected

Case 2:
The first photon will
not be detected

Figure 1.19: π0 decay as seen in its own frame (left) and in the
laboratory frame (right). In some cases, one of the two emitted photons

has an energy too low to be detected (bottom case).

From the contaminated set of DVCS events selected from data and the set of iden-
tified contaminating π0 events, the π0 contamination can be subtracted from any
distribution of the contaminated set, for instance the missing mass of Figure 1.18.

Notably, the number of contaminating events can be subtracted from the number
of selected candidate DVCS events in every bin in φ to compute the φ-dependent
asymmetry. The measured beam asymmetry is expressed as:

A(φ) =
1

P

N+(φ)−N−(φ)

N+(φ) +N−(φ)
(1.16)

with P the polarization degree (between 0 and 1), N+ the number of selected events
at helicity 1 and N− the number of events at helicity -1.

1.4.2 Improving event selection with interpretable machine learning

The classic analysis method seen above is not optimized. Only linear cuts are per-
formed on a handful of high-level variables. The values of these cuts are chosen by
looking directly at the data distributions to eliminate contributions from various back-
ground processes. Moreover, the order in which these cuts are performed may not be
optimized. Meanwhile, substantial investments are made in the technology, to im-
prove the intensity of the beam or the quality of the detectors to acquire more data.
However, a similar gain in statistics could be obtained by improving the analysis tools.

Besides, machine learning became a widely used tool to tackle a huge variety of prob-
lems. Its use is notably well developed in healthcare [Caruana et al., 2015], biology
[Tarca et al., 2007], finance [Klaas, 2019] among others. In physics, apart from as-
trophysics and cosmology that have been using deep learning for several years, as
reviewed in [Carleo et al., 2019], the involvement of physicists in machine learning is
more recent, especially in nuclear and particle physics.

1.4. Methodology for DVCS analysis 25

Nonetheless, the high-energy physics community is increasingly including ML pro-
grams at numerous stages: in trigger systems [Gligorov and Williams, 2013, Likhoma-
nenko et al., 2015], generative models [de Oliveira et al., 2017], tracking (with a chal-
lenge on the Kaggle platform in 20186), particle identification [Yang et al., 2005, Dery
et al., 2017], or event classification [Baldi et al., 2014, Sadowski et al., 2014, de Oliveira
et al., 2016]. The European Organization for Nuclear Research (CERN) developed
ROOT, a library for particle physics data analysis, including TMVA (Toolkit for Mul-
tivariate Data Analysis). TMVA is a package providing tools for several ML algorithms
(shallow or deep neural networks, boosted decision trees, etc.).

Machine learning has many assets to help improving event selection:

• Instead of Boolean tests in the form of one-dimensional cuts, most machine
learning algorithms assign a probability to each event to be a DVCS. This per-
mits to observe the ROC (receiver operating characteristic) curve and balance
between statistics and contamination more easily [Fawcett, 2006];

• Using such algorithms should optimize the performance of event selection and
retain more DVCS events with similar or lower contamination, hence diminishing
the statistical and systematic errors;

• A machine learning algorithm is capable of considering detector specificities,
such as the resolutions that vary geometrically or even the lower efficiency of a
subpart of a detector. The selection is thus customed to the experimental setup.

Therefore, a machine learning algorithm trained on simulation data can be envisaged
for event selection in CLAS12 data. As input variables, the different components of
the momenta of the output particles (px, py, pz) are available, with more elaborated
high-level variables, or on the contrary lower-level detector responses.

However, the validation of an analysis method is a sine qua none condition for pub-
lication authorization by the physics collaboration and for acceptation at the peer-
reviewing stage. The use of “black-box” machine learning is therefore hazardous for
such an analysis. On the contrary, transparent machine learning models have several
general advantages [Arrieta et al., 2020] that are presented in the next chapter. Addi-
tional reasons for the use of transparent machine learning for physics event selection
in this thesis are:

• Optimized one-dimensional cuts (such as rule bases or decision trees) should
already improve the event selection quality while being as transparent as physi-
cists’ cuts;

• The statistical and systematic errors should be at least as well estimated than
with standard cuts and better estimated than with “black-box” models thanks
to the ability to inspect the model in details;

• A direct control of the learned knowledge is possible. This is especially important
since any supervised model needs supervised data, hence simulated data that
cannot be perfectly conform to reality;

• A definitive asset is also the possibility to retro-engineer the transparent model
and acquire new knowledge: the cuts usually performed on chosen variables can

6www.kaggle.com/c/trackml-particle-identification

26 Chapter 1. Study of the proton structure at CLAS12

be optimized, new variables relevant for event selection can be found. In addi-
tion, the analysis of the model may reveal information about the performances
of the experimental setup.

However, the main negative aspect of using transparent models is their diminished
performance compared to what can be obtained with “black-box” models such as deep
neural networks [Došilović et al., 2018]. The comparison between the standard physics
analysis, the transparent machine learning approach and the neural network approach
is conducted in chapter 9. Meanwhile, the following chapter introduces interpretable
machine learning in more details. After that, part II tackles the lack of performance
of transparent machine learning.

27

Chapter 2

Interpretable machine learning

2.1 Interpretability: a general introduction 28
2.1.1 Definitions . 28
2.1.2 Types of interpretability . 30
2.1.3 Evaluation of interpretability 33
2.1.4 Discussion on the limits of interpretability 36

2.2 Common intrinsically interpretable machine learning mod-
els . 38

2.2.1 Decision trees and fuzzy decision trees 38
2.2.2 Rule bases and fuzzy rule bases 44
2.2.3 Generalized additive models 50

2.3 Conclusion . 54

Responsibility in AI has recently received an exploding gain of interest, especially
in the last ten years, including aspects such as fairness, ethics, robustness, privacy,
legality, etc. Two major reasons can be drawn:

• The boom of machine learning applications in many domains including health-
care [Caruana et al., 2015] or banking [Rudin, 2019] among others. These do-
mains have a number of specific requirements to authorize the generalized use
of a machine learning algorithm. Moreover, the Equal Credit Opportunity Act
[Federal government of the United States, 1974] demands creditors to provide
specific reasons for any decision or action taken for an applicant (e.g. credit
denial or grant, account closure, etc.). Similarly, the European General Data
Protection Regulation [European Parliament and Council of European Union,
2016] can enforce since 2018 a “right to explanation” concerning each algorithm
that has an impact for at least one person. Notably, when a decision is made
about an individual, this individual could have the right to a “meaningful ex-
planation of the logic involved”.

• The fact the machine learning models developed to tackle these diverse appli-
cations are largely based on opaque models such as deep neural networks. The
exponential rise of computational resources and available data surely encouraged
these developments, at the expense of transparency. The symbolic AI techniques
at their peak of popularity between the 1950s and 1980s were interpretable by
nature without needing to claim it.

Requesting interpretability is a popular solution to ensure compliance with the vari-
ous application requirements: if the machine learning model is explainable, then its

28 Chapter 2. Interpretable machine learning

reasoning may be analyzed to verify other criteria. Arrieta et al. [2020] give a few pur-
poses of explainability in machine learning given the audience: managers can verify
regulatory compliance, while affected users can understand their situation. Another
interesting purpose they mention is for domain experts, who can trust the model itself
and hopefully gain scientific knowledge. In this thesis, interpretability will indeed per-
mit to verify the reliability of the model since specific analyses must be conducted a
posteriori on the model when applied on specific subspaces of the phase space. More-
over, the knowledge acquired by the model will be compared to expert knowledge.

The increasing interest for explainable and interpretable AI is verifiable on Figure 2.1:
the number of publications related to these fields exploded recently, especially for ex-
plainability. Moreover, Google Scholar1 returns around 92900 results for “interpretable
machine learning”, including around 27300 in the last five years.

In short, this chapter aims at giving an overview of the literature in interpretabil-
ity techniques. Many works already review the field of interpretability in machine
learning, some of which being cited in this chapter. Section 2.1 gives definitions of
several terms used in the field and introduces the next sections by describing the dif-
ferent types of interpretability before discussing possible methods to evaluate it and
limitations of interpretability. Then, section 2.2 reviews a few popular intrinsically
interpretable machine learning models.

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
Year

0.000

0.002

0.004

0.006

0.008

0.010

No
rm

al
ize

d
va

lu
e

Query
Interpretable machine learning
Explainable machine learning
Interpretable artificial intelligence
Explainable artificial intelligence

Figure 2.1: Evolution of the number of publications found in Scopus
database2 about interpretable or explainable machine learning and AI.
On the graph, the number of publications normalized by the number
of AI or machine learning related publications each year is displayed.

2.1 Interpretability: a general introduction

2.1.1 Definitions

Despite the growing interest in interpretability in the machine learning community, the
consensus seems difficult on common definitions of the terms interpretability, explain-
ability, transparency, intelligibility, etc. They are also often used in an interchangeable
way.

1scholar.google.com (accessed 22nd April 2020)
2scopus.com (accessed 21st April 2020)

scholar.google.com
scopus.com

2.1. Interpretability: a general introduction 29

Several definitions for interpretability can be found in dictionaries or very recently in
the AI literature:

Definition 1 (Cambridge English Dictionary3) If something is interpretable, it
is possible to find its meaning or possible to find a particular meaning in it.

Definition 2 (Doshi-Velez and Kim [2017]) Interpretability is the ability to ex-
plain or to present in understandable terms to a human.

Explainability is also widely used in the literature, notably with the rise of eXplainable
AI (XAI) introduced in the american Defense Advanced Research Projects Agency
(DARPA) program [Gunning, 2017]. Although frequently confounded with inter-
pretability, it has separate definitions.

Definition 3 (Cambridge English Dictionary3) To explain is to make something
clear or easy to understand by describing or giving information about it.

Definition 4 (Guidotti et al. [2018b]) An explanation is an “interface” between
humans and a decision maker that is at the same time both an accurate proxy of the
decision maker and comprehensible to humans.

Definition 5 (Arrieta et al. [2020]) Explainable Artificial Intelligence is a system
that produces details or reasons to make its functioning clear or easy to understand.

To synthesize, interpretability is often considered as a passive characteristic of the
machine learning model, sometimes referred to as transparency, while explainability
requires a procedure to make the model clearer [Arrieta et al., 2020]. Another crucial
element in these definitions is the relativity of these notions: the interpretability of
a model is always expressed in regards to a target group or individual. A layperson
would need a basic explanation while an expert in the field would benefit from more
complete details about the model functioning.

Doshi-Velez and Kim [2017] discuss a few dimensions of interpretability:

• Local or global : a model can be globally interpretable, i.e. it is understandable
by itself, or only locally interpretable, i.e. an explanation can be provided for
only one decision/prediction at a time.

• Area and severity of incompleteness: AI is generally used because of a lack of
knowledge. Depending on the desired information, the explanation formulation
may vary accordingly. For instance for self-driving cars, one may want to learn
on what criteria they make decisions, or else check safety issues.

• Time limitation: in some cases, the user may need to make a rapid decision when
faced with new data (e.g. a surgical operation, natural disaster, military attack,
etc.). The explanation is then required to be concise and to well summarize the
reasons for the model’s decision. Otherwise, a deeper and exhaustive description
of the model may be preferable for long-term decisions.

• Nature of user expertise: depending on the background knowledge of the users,
the explanation may be targeted differently, as stated above.

Consequently, interpretability breaks down into several categories, described in the
next subsection.

3dictionary.cambridge.org/dictionary/english/interpretable (accessed 22nd April 2020)

dictionary.cambridge.org/dictionary/english/interpretable

30 Chapter 2. Interpretable machine learning

2.1.2 Types of interpretability

The main distinction broadly accepted in the literature is between transparent models
(i.e. understanding how the model itself works) and post-hoc explanations (i.e. extract
additional information from the model). A schematic illustration of this categorization
and hereafter detailed subdivisions is proposed on Figure 2.2.

Interpretability

Transparent models
Post-hoc explanation

techniques

Local explanation Global explanation

- Visualization
- Explanation by simplification
- Feature relevance explanation
- Explanation by example

- Textual explanation
- Visual explanation
- Local simplification
- Explanation by example

Simulatable

Decomposable

Algorithmically
transparent

Figure 2.2: Overview of interpretability types (based on the classifi-
cation of Lipton [2018] and Arrieta et al. [2020]).

2.1.2.1 Transparency

According to Arrieta et al. [2020], “a model is considered to be transparent if by itself
it is understandable”, i.e. it does not require further investigations.

Lipton [2018] and later Arrieta et al. [2020] see three different levels of transparency:

• Simulatability : a model is simulatable if a human is able to imitate its func-
tioning and compute by himself its output given a set of inputs. This ability
depends notably on the size of the model (a too big decision tree is not hu-
manly simulatable) and on the amount of required computation time (a model
including too many mathematical operations is harder to simulate).

• Decomposability : each part of a model should be explainable, including the
inputs, model parameters, and computation methods. This notably implies
that the input features have to be readable, i.e. anonymized and normalized
features do not fulfill this requirement. The branches of a decision tree can be
translated into plain sentences and understood separately, while hidden layers
of a neural network need additional tools to be understood. Decomposability is
also referred to as intelligibility in the literature [Caruana et al., 2015].

• Algorithmic transparency : a model is algorithmically transparent if the user
can understand how the model produces the output given some inputs. While
the neural network is often optimized through stochastic gradient descent, the
global space being unobservable, a linear regression model is algorithmically
transparent since the user can guess how the model will act given an input.

Each of these three layers of transparency contains its predecessor: a simulatable
model is also decomposable and algorithmically transparent. Arrieta et al. [2020]
discuss the levels of transparency of different interpretable models. References are
made for each model in Section 2.2.

2.1. Interpretability: a general introduction 31

2.1.2.2 Post-hoc explanation techniques

Below is a classification of post-hoc explanation techniques based on [Lipton, 2018]
and [Arrieta et al., 2020] and also a short review of the contributions in each category.
Detailed reviews can be found in [Guidotti et al., 2018b] or [Arrieta et al., 2020].

Post-hoc explanation techniques apply to opaque models. They can be roughly divided
into local and global explanation techniques: global explanations describe the behavior
of the model at a global scale, while local explanations focus on subspaces of the data
domain or on a single example.

Subcategories can be found below, derived from the works of Lipton [2018] and Arrieta
et al. [2020] (the scope, local or global, is indicated between parentheses).

Textual explanation (local)

The principle is to generate a textual justification of a particular decision or prediction.
Baaj and Poli [2019] use a natural language generator to produce example-specific
explanations from a fuzzy rule base (see the review of rule bases in 2.2.2). Similarly,
ExpliClas [Alonso and Bugarín, 2019] is a software capable of generating a textual
explanation for the classification of an example by a decision tree or a fuzzy rule base.
In computer vision, Hendricks et al. [2016] provide explanations in natural language for
the classification of images using classes definitions and extraction of visual features.
Dong et al. [2017] do video captioning using a long short-term memory (LSTM) to
generate text.

Visual explanation (local)

Similarly to textual explanation, the objective is to explain a particular prediction,
but using visualization techniques instead of natural language. This is particularly
used in computer vision, notably with class-specific saliency masks [Xu et al., 2015,
Zhou et al., 2016, Selvaraju et al., 2017, Fong and Vedaldi, 2017]. The principle is
illustrated on Figure 2.3: a mask is extracted corresponding to the prediction. If the
mask is removed from the original image, then the classifier is incapable of finding
the correct class. Besides, a pointing and justification model (PJ-X) [Huk Park et al.,
2018] is able to highlight the relevant parts of an image to answer a question through
an attention mechanism. PJ-X also provides a textual explanation along with the
annotated image. Visual explanation techniques do not exclusively apply to images:
Arras et al. [2017] use a technique called layer-wise relevance propagation to highlight
important words sentences for sentiment analysis.

flute: 0.9973 flute: 0.0007 Learned Mask

Figure 2.3: Illustration of saliency masks [Fong and Vedaldi, 2017].

32 Chapter 2. Interpretable machine learning

Local simplification (local)

Instead of giving a global explanation of how the model works on the whole data
space, only a subspace of the data domain is considered for interpretation. Local
interpretable model-agnostic explanations (LIME) [Ribeiro et al., 2016] is among the
most known techniques for post-hoc explanation. Its principle is illustrated on Fig-
ure 2.4: it generates a local training set in the neighborhood of the data point of
interest, labels these new points with the opaque machine learning model, and then
trains a local surrogate linear model with the fidelity to the original model as loss
function. Besides, several local explanation methods generate rules to locally explain
a prediction [Ribeiro et al., 2018, Guidotti et al., 2018a].

Figure 2.4: Illustration of the principle of LIME [Ribeiro et al., 2016].

Visualization (global)

The principle is to represent visually what the model has learned. It commonly implies
dimensionality reduction, for instance using 2D visualization techniques such as t-
distributed stochastic neighbor embedding (t-SNE) [Maaten and Hinton, 2008] where
instances that are similarly treated by the model are represented close to each other.
Some approaches in computer vision aim at visualizing the information content in the
inner layers of a convolutional neural network [Mahendran and Vedaldi, 2015]. Others
map the output in the input space to highlight the areas that were decisive [Zeiler
et al., 2011]. Outside of the computer vision community, Cortez and Embrechts [2011,
2013] use sensitivity analysis techniques along with visualization methods to represent
a model. Finally, partial dependence plots represent the relationship between one or
two features and the output of the model [Goldstein et al., 2015, Krause et al., 2016].

Explanation by simplification (global)

A transparent model is trained with the objective to imitate the target model’s be-
havior, while at the same time remaining intrinsically interpretable. This sometimes
includes local simplification techniques presented above. Among global techniques,
G-REX [Konig et al., 2008] is a rule extraction technique based on genetic program-
ming that has been used as surrogate of opaque models [Johansson et al., 2004a,b].
Another example is the work of Kuralenok et al. [2019] simplifying tree ensembles
through polynomials.

Feature relevance explanation (global)

The idea is to quantify the sensitivity of the model with respect to the different
features. This is notably performed by Cortez and Embrechts [2011, 2013] cited
above with sensitivity analysis. Game theory [Shapley, 1953] also inspired feature
relevance studies: the SHAP (SHapley Additive exPlanations) method [Lundberg and

2.1. Interpretability: a general introduction 33

Lee, 2017] computes Shapley values of features for each prediction and summarizes
feature importances and interactions globally.

Explanation by example (global or local)

Carefully chosen representative examples serve to illustrate the behavior of the model.
This principle is inspired from case-based reasoning [Aamodt and Plaza, 1994]. As an
example, Papernot and McDaniel [2018] use neighbors in a deep k-nearest neighbors
neural network as examples to explain the prediction. Their method is used to identify
biases. Kim et al. [2016] criticize the principle of using examples to explain a model:
examples are insufficient to describe completely a complex data distribution, and an
example-based explanation should comprise both representative examples and out-
liers. For instance, adversarial examples [Szegedy et al., 2013] are outliers justifying
the lack of trust in such shallow explanations.

2.1.3 Evaluation of interpretability

Doshi-Velez and Kim [2017] distinguish two main cases for evaluating interpretability.
Interpretability can be evaluated with respect to a specific application, and in this case
the evaluation must notably take into account the target users and characteristics of
the problem. Otherwise, interpretability can concern a class of models, independently
of an application. To go more into details, three evaluation procedures can be drawn
[Doshi-Velez and Kim, 2017]:

• Application-grounded evaluation: with humans and real tasks. Interpretability
requirements are defined relative to the application, and evaluated with do-
main experts. A good baseline is human-produced explanations. A rigorous
interpretability evaluation in this category is more complicated because of the
difficulty to conduct a large human experiment (only domain experts are rele-
vant).

• Human-grounded evaluation: with humans and simplified tasks. As the task
is not directly related to a real application, a wider human experiment can be
conducted to assess the interpretability of the selected model.

• Functionally-grounded evaluation: no humans and proxy tasks. This kind of
experiments use general knowledge about interpretability of models, and the
proxy is chosen accordingly. For instance, it is well known that decision trees
(details in 2.2.1) are interpretable [Freitas, 2014]. Objective metrics can be used
to assess the superiority of a new method over previously proposed methods
along these criteria.

The remaining of this subsection presents methods of evaluation for class of models
and by human-based experiments.

2.1.3.1 Class of models

Model size

One important aspect for the interpretability of given methods is their size. Explana-
tions that are both simple and probable are indeed favored by the users [Lombrozo,
2007]. Miller’s law [Miller, 1956] states that an average human can handle seven cog-
nitive chunks simultaneously. Considering a rule base for instance, this would mean
limiting the number of predicates to seven.

34 Chapter 2. Interpretable machine learning

However, not only this limit could considerably impair the model’s accuracy but is
also sometimes counter-productive: Allahyari and Lavesson [2011] conducted human
experiments showing a positive correlation between complexity and understandability.
In their case, the datasets were small and then large models less difficult to understand.
Elomaa [1994] criticizes the use of one-level decision trees and argues that medical
decisions, for instance, should not rely on a single attribute. Medical experts need
bigger trees they can trust to support their decisions [Lavrač, 1999]. However, Lage
et al. [2019] observed an increased response time for users when faced to a model of
larger complexity.

Instead of specifying a maximum size for a classification model, Freitas [2014] suggests
to use instead a multi-objective approach so as to maximize accuracy while minimizing
complexity.

Ranking models according to their interpretability

Freitas [2014] discusses the interpretability of different classification models through
user-based experiments and draws some general conclusions: models using symbolic
representations such as decision trees or rule bases (details about these models will
be provided in 2.2.1 and 2.2.2) are more comprehensible to most users than math-
ematical equations and non-linear models. For instance, oblique decision trees (i.e.
decision trees using linear combinations of attributes) are less easily understood than
standard decision trees. Depending on the problem, a decision tree might be more or
less interpretable compared to a rule set of similar complexity. Lakkaraju et al. [2016]
found that user’s understanding of the model and simulation rapidity is better when
faced to rule sets (voting ensemble of IF ... THEN rules) instead of lists (ordered
list of rules, i.e. IF ... THEN ... ELSE IF ... etc. rules, as explained in subsec-
tion 2.2.2). Concerning graphical models, users seem to understand better decision
trees than Bayesian networks [Freitas, 2014], although no plausible explanation has
been proposed.

However, Lage et al. [2019] give a few examples of studies comparing interpretability
between two models, and note that the relative ordering between the two depends on
the application field. In short, the choice of a model should eventually depend on the
users’ preferences, background, and on the characteristics of the problem. There is no
total order between the machine learning models.

Finally, Freitas [2014] encourages the enforcement of monotonicity constraints, namely
forcing the output of an algorithm to evolve monotonically with respect to the inputs.
This constraint helps to avoid counterintuitive rules and then supports interpretability.
The idea has been implemented in several studies [Fard et al., 2016a, Kotłowski and
Słowiński, 2009].

Evaluating the quality of post-hoc explanations

Several general computational techniques can be used to evaluate a post-hoc expla-
nation of a model [Gilpin et al., 2018, Mohseni et al., 2018]. They mostly rely on the
objective of fidelity or model consistency with respect to the analyzed model:

• The completeness of an explanation is a measure of the distance between the
predictions of the model and the explanation.

2.1. Interpretability: a general introduction 35

• The completeness can be measured on a substitute task depending on the expla-
nation type: a saliency map should be compared to a direct sensitivity analysis
[Mohseni et al., 2018].

• The explanation should be able to detect biases in the analyzed model.

• An explanation can be compared to those produced by other state of the art
techniques or to interpretable models [Ribeiro et al., 2016].

• Edge cases should be carefully studied, when the post-hoc explanation technique
gives unreliable explanations [Kindermans et al., 2019].

2.1.3.2 Application-specific human experiments

Few complete case studies on a specific task using artificial intelligence techniques
also perform a rigorous human experiment to evaluate the interpretability of the de-
ployed model. Authors of many studies simply assess that their model is “obviously
interpretable” [Tjoa and Guan, 2019].

The methods used to evaluate interpretability depend on several factors. Mohseni
et al. [2018] enumerate the different types of evaluation techniques depending first on
the targeted users:

• The first kind of users is novice users, i.e. who are not assumed to have any
prior knowledge on the problem nor on machine learning. Experiments that
can be performed are studies of the mental model of these users, namely their
understanding of how the model works. One drawback is that they can be biased
by the format of the explanation presentation. One can also study the users’
trust for the proposed model.

• Data experts have a deeper knowledge concerning the application field but do
not necessarily know much about data analysis techniques. They can notably
express their satisfaction for the provided explanation in several case studies.

• Machine learning experts do not have a deep knowledge about the application
domain, but can conduct computational studies including checks of compliance
between the interpretation and the model’s accuracy.

Then, many different kinds of human experiments can be conducted. Doshi-Velez and
Kim [2017] give a framework of possible experiments exclusively for simplified tasks,
allowing a larger sample of users.

• Users choose between two explanations proposed for solving a problem. Lage
et al. [2019] give a few examples of works using this technique, varying the
explanation size, the concepts involved, and the redundancy of concepts in the
explanation.

• Users have to simulate the model by making predictions manually. This permits
to check that the model’s functioning has been well understood. This is also
called the “mental model” by Mohseni et al. [2018].

• Users are asked how to modify the model to obtain a desired output, or else how
to modify the input to change the output.

Mohseni et al. [2018] give additional evaluation methods:

36 Chapter 2. Interpretable machine learning

• Interviews and questionnaires can be used to ask users about their satisfaction
about the provided explanation and about their trust in the system. Baaj and
Poli [2019] for instance conduct a survey among non-expert users to evaluate
generated text explanations. More precisely, they propose a number of criteria
on the form and substance of the explanations.

• For domain experts, diverse performance metrics can be measured on the tar-
geted task using the provided explanation.

Finally, Lage et al. [2019] summarize the different types of measures that can be made:
the response time of the users, the accuracy of the understanding, and their subjective
satisfaction.

2.1.4 Discussion on the limits of interpretability

2.1.4.1 About the notion of interpretability

Despite the urgent need of the AI community to develop more reliable models (which
implies interpretability or explainability in many cases), no rigorous definition of in-
terpretability was proposed until very recently. Whereas many papers use the terms
“interpretability”, “explainability”, “intelligibility”, “transparency”, etc. in interchange-
able ways, it remains to be seen whether a consensus will appear in the future.

Similarly, there exists no common rigorous framework for the evaluation of the in-
terpretability of a system. Works that perform an in-depth study of interpretability
including human experiments remain rare, and are mostly made in the context of a
specific application. Doshi-Velez and Kim [2017] underline the difficulty for researchers
to perform such experiments and for the community to check the rigor of their ex-
perimental design. However, such evaluations directly measure the performance of an
explanation with respect to the targeted application.

2.1.4.2 On interpretability methods

Transparent models

The major argument against transparent models is their loss in performance compared
to opaque models [Došilović et al., 2018]. Popular machine learning models are often
represented along a curve such as the one on Figure 2.5, although the relative ordering
between the models is not absolute and varies notably depending on subjective per-
ceptions and applicative problems. Post-hoc techniques attempt to move the points
to the right side of the plot.

The choice of the balance between performance and transparency depends on the
application. Lipton [2018] explains that the transparency requirement for doctors
to trust the system can prevent from improving healthcare in general. Emmert-
Streib et al. [2020] suggest that explainability is an acceptable criterion as long as the
generalization error remains within an acceptable margin.

Efforts recently appeared to merge connectionist (opaque) models with symbolic
(transparent) approaches, to get the best of both worlds by trying to raise up the
points on Figure 2.5 towards the top right side of the plot. Arrieta et al. [2020] give
a few examples of works pursuing this idea. As an example, DeepMind propose a
differentiable inductive logic programming framework to mix highly perceptive neural
networks with reasoning models [Evans and Grefenstette, 2018].

2.1. Interpretability: a general introduction 37

Interpretability

P
er
fo
rm
an
ce

Deep learning models
Ensemble models (boosted trees, random forests...)

Support Vector Machines (SVM)

Generalized Additive Models (GAM)

Decision trees

Rule bases

Linear models

Figure 2.5: Representation of the relative positioning of popular
machine learning models according to their perceived performance and
interpretability [Arrieta et al., 2020]. The three models with red dots

will be presented in 2.2).

Post-hoc explanations

As post-hoc explanations are often global simplifications or local approximations of
an opaque model, they suffer from the confirmation bias. Multiple papers are ques-
tioning the validity of explanations generated from a neural network. Heo et al. [2019]
show that adding a well-chosen term in the training loss permits to manipulate the
interpretation computed by an external algorithm, while keeping the same level of
performance. Post-hoc explanations also undergo adversarial attacks [Slack et al.,
2020]: the parameters of a model can be carefully fine-tuned so that the interpreta-
tion hides some biases that are yet present within the model’s functioning. Denis and
Varenne [2019] underline that explanation are often biased towards persuasion instead
of information. Laugel et al. [2019] point out the dangers of counterfactual examples,
as they may be unjustified, namely not related to existing data.

The doubts of the machine learning community on the reliability of such techniques
became important enough so that new post-hoc explanation techniques must now
defend their robustness [Alvarez-Melis and Jaakkola, 2018, Melis and Jaakkola, 2018].

2.1.4.3 On the explanation complexity

It has already been mentioned that a too simple explanation could be counterpro-
ductive, both in terms of performance, user’s trust and understanding [Elomaa, 1994,
Lavrač, 1999, Allahyari and Lavesson, 2011]. Emmert-Streib et al. [2020] state on
the contrary that explanations could be too big and complex. They draw a parallel
with physics theories: explanations, here the theories such as quantum mechanics
or quantum field theory, take the form of mathematical formulas that are less conve-
nient in the context of higher level physics such as fluid mechanics or thermodynamics
even if they describe completely and perfectly the system’s functioning. For machine
learning models explanations, they conclude that even a perfect explanation could be
unacceptable: only trained experts would understand and be able to interpret the

38 Chapter 2. Interpretable machine learning

explanation, while others (i.e. managers or end-users) would only see another opaque
and non-explainable model. This confirms that the choice of the explanation should
highly rely both on the targeted users and on the desired accuracy.

2.2 Common intrinsically interpretable machine learning
models

As stated in the introduction of this chapter, the review proposed in this section
does not aim at being exhaustive, since the number of methods considered more or
less interpretable is large. The focus is on the three classes of models highlighted on
Figure 2.5. Decision trees and rule-based methods are considered on the one hand.
On the other hand, generalized additive models are more difficult to interpret [Arrieta
et al., 2020] but are usually more performing while remaining analyzable by domain
experts and notably by physicists.

Concerning the verbal models, there exist variants using fuzzy logic instead of Boolean
logic. The advantages of fuzzy logic are numerous and are presented in Appendix A.
The models themselves are presented hereafter.

2.2.1 Decision trees and fuzzy decision trees

Decision trees are machine learning models that can be used both for classification
and regression. They have a tree structure in which the leaves contain the information
to compute the prediction and the internal nodes are conditions on the attributes.

Building optimal binary decision trees has been proven to be a NP-complete problem
[Laurent and Rivest, 1976]. Therefore, most of induction algorithms rely on heuristics
such as greedy algorithms. Most of them proceed in a top-down approach by recursive
partitioning:

1. an attribute A is selected regarding a measure of discrimination;

2. according to this attribute A, the dataset is split into several subsets;

3. if a subset meets a stop criterion, a leaf is created, otherwise, the algorithm
resumes from the first step.

The different algorithms differ from each other mostly by their splitting method and
termination criteria.

2.2.1.1 Crisp decision trees

Decision trees are either vocabulary based or numerical. The latter are the only
ones able to handle numerical (i.e. continuous) attributes without prior partitioning,
contrary to vocabulary based trees. In the following are presented three popular tree
induction algorithms for classification: ID3, producing vocabulary based trees, and
C4.5 and CART, which produce numerical trees.

ID3 (Iterative Dichotomiser 3) [Quinlan, 1986] and C4.5 [Quinlan, 2014] both use
the information gain as measure of discrimination. The information gain IG of an
attribute A is the difference between the entropy of the current node and the weighted

2.2. Common intrinsically interpretable machine learning models 39

sum of the entropies of the children nodes:

IG = H(X)−
∑
i

piH(Xi). (2.1)

H(X) = −
∑
k

pk(X) log2 pk(X). (2.2)

X is the data contained in the current node, and theXi are the data subsets that would
be created splitting along the tested attribute A. pi is the proportion of instances in
child node i. k covers the space of data labels, and pk(X) is the proportion of class k
amongst the dataset X.

Since ID3 handles only attributes that are already partitioned, a prior partitioning
of numerical attributes must be conducted. This can be done through various dis-
cretization methods including for instance binning, clustering, or else the use of domain
expertise.

On the opposite, C4.5 is able to handle both continuous (i.e. without prior partition-
ing) and discrete attributes. In addition to browsing the list of attributes, it scans
each attribute in ascending order, computing the information gain associated to each
candidate threshold on the attribute. The node then splits along the best attribute,
producing two branches: one corresponding to the attribute values below the thresh-
old and the other to the attribute values over the threshold. In contrast to ID3, C4.5
can reuse several times the same attribute, notably to perform several splits on the
same attribute.

Once the attribute A has been selected, the node splits into several children and the
algorithm resumes. A branch stops (i.e. the last node turns into a leaf) if:

• the best possible information gain is negative or null (for instance when all
instances in the node belong to the same class);

• if no attribute has been found to split the node, namely the created subsets
would not contain enough instances (the minimum required number is a hyper-
parameter of the algorithm).

C4.5 extends ID3 since it is able to handle missing values. Missing values in the train-
ing set are simply ignored during the entropy computation, while several strategies
exist to deal with missing values in test data:

• instances containing missing values may be discarded;

• imputation can be conducted to make up for missing values;

• the models themselves can be adapted, for instance by adding a branch specific
to missing values or by taking an approach similar to fuzzy decision trees and
propagating examples with missing values in several branches simultaneously.

In addition, C4.5 performs post-pruning using a validation set: several techniques exist
[Altay and Cinar, 2016]. The most common pruning technique for C4.5 is minimal
error pruning: the idea is to take into account the validation error rate of a subtree
with respect to the same error if it would be replaced by a leaf. A node may be
replaced by a leaf, or a branch may be deleted, if the score improves on the validation
set. This permits to reduce overfitting.

40 Chapter 2. Interpretable machine learning

The CART (Classification and Regression Trees) [Breiman et al., 1984] algorithm can
build both classification and regression trees, and uses the Gini impurity as discrimi-
nation measure:

IG(X) =
∑
k

pk(X)(1− pk(X)) (2.3)

with k iterating over the number of classes, and pk(X) the fraction of elements of
class k in the set X. For regression, CART uses the mean squared error:

E(X) =
1

N

∑
i

(yi − ȳ)2 (2.4)

with N the number of instances in X, yi the target value of example i, and ȳ the
mean of target values in set X.

CART produces only binary trees: in the case of continuous attributes it splits data
along a threshold similarly to C4.5, but for discrete attributes it selects the best
value against the others: one of the two created branches contains the instances
taking this particular value, and the other branch gets the remaining instances. The
same attribute can thus be selected more than once. CART usually performs cost
complexity pruning: the pruning decision also depends on the size of the subtree,
weighted by a hyperparameter α.

2.2.1.2 Fuzzy decision trees

Fuzzy extensions of ID3 have been proposed [Weber, 1992, Janikow, 1998, Wang et al.,
2000]. The induction itself follows the same principle, although the computation
of the information gain differs since the examples can go into several nodes at a
time. Indeed, they obtain a membership degree µXi(x) for each child node, which is
combined with their current membership degree in the node. The possibilistic method
[Zadeh, 1978, Dubois and Prade, 2012] uses the min operator to update membership
degrees, while the probabilistic method [Tsang et al., 2009, Sébert and Poli, 2018b]
progressively multiplies the degrees with the previous one. Usually, each attribute
is strongly partitioned, namely ∀x ∈ X,

∑
i µXi(x) = 1. Then, the computation of

pk(X) in the entropy takes into account these degrees:

pk(X) =

∑
i,xi∈k µX(xi)∑
i µX(xi)

. (2.5)

However, other discrimination measures have been employed in the fuzzy ID3 lit-
erature. Bouchon-Meunier and Marsala [2003] discuss the choice of discrimination
measure for selecting an attribute in fuzzy decision trees, including information gain
and an ambiguity measure [Yuan and Shaw, 1995]. Marsala [2012] proposes a dis-
crimination measure including both the ambiguity principle of Yuan and Shaw [1995]
and the graduality between the attribute and the class.

The processing of an example by a fuzzy ID3 is illustrated on Figure 2.6, with two
attributes x1 and x2 that have been uniformly partitioned. In the end, the contribu-
tions of each leaf reached by the example are either summed (probabilistic method)
or the maximum is taken (possibilistic method) to get the final prediction.

Besides, the induction of a fuzzy ID3 tree requires a prior fuzzy partitioning for the
numerical attributes. While it is often designed by domain experts [Weber, 1992], a few
works automate this step. Bouchon-Meunier and Marsala [1999] cite a few methods

2.2. Common intrinsically interpretable machine learning models 41

0
1

3
5

6
0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0
2

4
6

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

F
uz

zy
 p

ar
ti

ti
on

in
g

of

F
uz

zy
 p

ar
ti

ti
on

in
g

of

Figure 2.6: Example of the classification of an example X by a fuzzy
decision tree with two classes T (true) or F (false). The red numbers
are the membership degrees of X to the different nodes according to
the possibilistic approach (min/max operators), while the blue num-
bers are the same degrees but following the probabilistic approach

(sum/product operators).

42 Chapter 2. Interpretable machine learning

for the determination of fuzzy modalities (another wording for determining a fuzzy
partitioning). For instance, Qin and Lawry [2005] perform a uniform partitioning.
Janikow [2004] pre-partitions the attributes using information gain until a maximum
number of subsets is created. Pedrycz and Sosnowski [2001] use a fuzzy clustering
algorithm (fuzzy C-means) to obtain a strong partition for each attribute. Sébert and
Poli [2018a] perform fuzzy clustering as well with a dissimilarity measure adapted to
imprecise data.

Recently, the focus in the community is on intuitionistic fuzzy decision trees based
on fuzzy ID3 [Bujnowski et al., 2015], which introduce a non-membership degree in
addition to the classical membership degree. The entropy computation is adapted to
take into account both of these degrees.

The inference of fuzzy numerical trees is exactly the same than for fuzzy ID3: each
example may be propagated through several branches simultaneously, and the final
prediction consists in a weighted sum of the reached leaves.

The induction of a fuzzy numerical tree relies on the fuzzification of its thresholds.
Olaru and Wehenkel [2003] first determine the optimal attribute with the correspond-
ing threshold, and then create a linear transition between the two branches. They
search an optimal width for the transition through a Fibonacci search [Ferguson, 1960]
with five evaluations aiming at minimizing the root mean square (RMS) error.

Chandra and Varghese [2009] also start by finding the attribute and threshold to get
the best Gini impurity, and then fuzzify the boundary with a sigmoid function using
the standard deviation of the attribute:

µR(x) =
1

1 + e−σ(x−thr) ; µL(x) = 1− µR(x) (2.6)

thr being the retained threshold, σ the standard deviation of the attribute, µR(x) and
µL(x) the membership degree of x respectively to the right branch (or corresponding
to x ≥ thr), or to the left branch (or x < thr), as illustrated by Figure 2.7.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Attribute values

0.0

0.2

0.4

0.6

0.8

1.0

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Attribute values

0.0

0.2

0.4

0.6

0.8

1.0

Figure 2.7: Examples of fuzzy membership functions to the two
branches created by a split with threshold 10 and standard deviation

3: x < 10 on the left and x ≥ 10 on the right.

2.2.1.3 Tree ensembles

Although they are often considered not interpretable [Arrieta et al., 2020], a few tree
ensemble methods are still described here since their size can be limited and individual
trees are usually smaller.

2.2. Common intrinsically interpretable machine learning models 43

Ensemble methods combine multiple individual “weak” classifiers to obtain a better
performance globally. In this case, several shallow trees are built and the global
prediction is a vote amongst these individual trees. The individual trees can be
induced with any algorithm, for instance ID3, C4.5 or CART.

Random forests, bagging and boosting are the most common techniques to induce tree
ensembles. Random forests [Breiman, 2001] build a fixed number of unconstrained
trees (i.e. without limitation on their size) but each tree can only use a random
subsample of the input features.

Bagging methods [Breiman, 1996] select a random subsample of the training dataset
to induce each tree to be built.

Finally, boosting methods iteratively add new trees to correct for the errors of the
previous ones. Adaptive boosting (AdaBoost) [Freund and Schapire, 1995] weights the
examples depending on their difficulty to be classified by the previous classifiers. The
tree depth in AdaBoost is usually restricted (the depth is set to 1 in the implementation
of scikit-learn4).

Gradient boosting [Friedman, 2001] is a subfield of boosting and combines gradient
descent with boosting: the idea is to use regression trees (usually CART) as individual
learners, and to update the target variable at each iteration. Given a training dataset
(x, y), a current global model Fn, and a differentiable loss function L(y, Fn(x)), the
next individual tree is trained using the residuals rn as target values:

rn = −∂L(y, Fn(x))

∂Fn(x)
. (2.7)

The tree model hn+1 is then added to the global model Fn(x) with a multiplying
factor γn+1 chosen to minimize the loss function.

Fn+1(x) = Fn(x) + γn+1hn+1. (2.8)

Regularization can be applied to reduce the overfitting effect, notably through shrink-
age (i.e. reducing the contribution of each individual tree), stochastic learning (i.e.
using only a subsample of the data for each iteration), or limiting the individual tree
size. The most popular variants of this principle are the Gradient Boosting Machine
(GBM) [Friedman, 2001], eXtreme Gradient Boosting (XGBoost) [Chen and Guestrin,
2016], and LightGBM [Ke et al., 2017], the last two being optimized versions (in terms
of computation and performances) of the standard GBM.

2.2.1.4 Interpretability of decision trees

According to Freitas [2014], the graphical structure of decision trees supports their
interpretability: the path taken by an instance can be easily followed by a user, the
hierarchy gives the relative importance of the attributes, and only a subset of the
attributes is effectively used in the tree. Arrieta et al. [2020] discuss the three levels
of transparency for decision trees:

• Decision trees are algorithmically transparent, since they consist in human read-
able rules that explain by themselves the knowledge that have been learned.

4scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.
html

scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html
scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html

44 Chapter 2. Interpretable machine learning

• Decision trees are decomposable in several rules that can be interpreted inde-
pendently, provided their size is reasonable.

• Decision trees are simulatable without any background knowledge within the
limits of human computation capabilities.

In short, increasing the size of a decision tree makes it progressively lose its trans-
parency levels: reaching a certain depth, the tree will first lose its simulatability and
then its decomposability. Indeed, a very deep tree is hardly decomposable since the
obtained rules themselves are not simulatable.

In particular, ID3-based decision trees are considered more easily interpretable. In-
deed, each value of an attribute can be named, so that the tree can be expressed
in natural language. In fuzzy ID3 notably, the attributes can be linguistic variables:
for instance if x represents a measure of satisfaction defined over X, X1 can be “low
satisfaction”, X2 “medium satisfaction”, and X3 “high satisfaction”. Arrieta et al.
[2020] agree that fuzzy versions of decision trees and rules improve understandability.
However, the drawback of ID3 is that it can lead to irrelevant attributes because it
creates a subtree for each value of the attributes, even if this value has no particular
correlation with the target [Freitas, 2014].

Concerning tree ensembles, they are often considered opaque: post-hoc explanations
are mostly used instead, mainly through model simplification and feature relevance
studies [Arrieta et al., 2020]. However, since individual decision trees are usually much
shallower inside an ensemble than a single classification tree, restraining the size of
the ensemble could lead to a quasi-transparent model.

2.2.2 Rule bases and fuzzy rule bases

Rule bases permit to symbolically represent expert knowledge or knowledge learned
from data. Decision rules are of the form IF conditions THEN statement. In machine
learning, rule lists or rule sets are in majority used for classification purposes:

• In rule lists, the rules are sequentially read. The next rule is computed only if
the previous one is not satisfied.

• In rule sets, all rules are computed and the final prediction is computed through
a vote amongst the rules in the set. The weight of each rule notably depends
on their individual accuracy.

Contrary to decision trees that partition the input domain, rule bases cover part or
the totality of the input domain. Therefore, there is often a default rule in the case of
rule lists, or checks for complete covering of the input domain in the case of rule sets.

While rule sets can be generated through the translation of a decision tree [Quinlan,
1987], a number of methods directly produce rule bases from training data. Fürnkranz
and Kliegr [2015] propose a brief review of rule learning algorithms. The majority of
rule base induction techniques relies on a sequential covering principle, while some
methods rely on the extraction of association rules. Finally, population-based algo-
rithms can be used to produce rule bases. Algorithms extracting (fuzzy) rule bases
from (fuzzy) opaque models as an interpretation of the latter are not considered in
the following.

2.2. Common intrinsically interpretable machine learning models 45

2.2.2.1 Sequential covering methods

Crisp methods

The objective of covering methods is to produce a minimal set of rules that cover the
training data. The principle is described in Algorithm 1 below and originally comes
from Michalski [1969] with his AQ (algorithm quasi-optimal) algorithm. AQ performs
a top-down beam search, which depends on a seed example to find the individual rules.

Algorithm 1: Sequential covering principle.
Input : X training data belonging to classes K1,...,Kn

Output: rule set R
Initiate an empty global rule set R
for each class Ki do

Pi ← set of examples of class Ki (positive examples)
Ni ← set of examples of other classes (negative examples)
Initiate an empty rule set Ri for class Ki

while Pi is not empty do
Add one rule covering some examples of Pi and no examples of Ni

Add the new rule to the rule set Ri associated to Ki

Remove the examples covered by the new rule from Pi
Add the rule set Ri to the global rule set R

return R

CN2 [Clark and Niblett, 1989] iterates over the basic AQ algorithm by making it more
robust to noise:

• the induction of a rule does not depend on a seed example: the beam search iter-
atively adds conditions to the rule while maximizing a criteria (for instance the
purity of the covered set, the Laplace estimate, or the m-estimate of accuracy);

• the stopping criteria for the beam search is relaxed: instead of stopping when
no negative example is covered like in AQ, the rule stops growing as soon as
the performance of the rule (for instance the frequency of positive examples) is
greater than a threshold;

• the stopping criteria of the covering algorithm is relaxed: the performance of
the rule set must be above a threshold instead of waiting for all examples to be
covered;

• CN2 is capable of producing unordered or ordered rules. In the former case, it
applies the covering algorithm by iterating over the classes, while in the latter
case CN2 determines iteratively the best conditions and then the associated
class for the next rule.

In addition to pre-pruning (i.e. early stopping of the rule induction and covering
algorithm), RIPPER (Repeated Incremental Pruning to Produce Error Reduction)
[Cohen, 1995] performs post-pruning: the training set is divided into a growing set
and a pruning set. It produces rule sets for minority classes first, and finally adds a
default rule for the majority class. The induction of a rule is done as follows:

46 Chapter 2. Interpretable machine learning

1. Using the growing set, grow a rule by greedily adding conditions that maximize
the FOIL’s information gain criterion [Quinlan, 1990]:

IG = pr

(
log2

(
pr

pr + nr

)
− log2

(
p

p+ n

))
(2.9)

with pr and nr the number of positive and negative examples covered by the
rule, and p and n the number of positive and negative examples covered by the
default rule. Cohen [1995] uses the total description length [Quinlan, 1995] as
criterion to stop growing the rule.

2. Using the pruning set, prune the rule so as to maximize the performance on the
pruning set. The position to cut the rule is computed to maximize the pruning
metric:

V =
pr − nr
pr + nr

. (2.10)

Moreover, after all the rules are inducted, RIPPER performs an optimization step.
For each rule in the set, two alternative rules are produced:

• the replacement rule is grown from scratch with the objective to minimize the
error on the global rule set;

• the revision rule starts from the original rule and adds antecedents also to min-
imize the error on the global rule set.

The rule obtaining the minimal minimum description length [Quinlan, 2014] is re-
tained. The optimization can be repeated several times (usually twice).

Fürnkranz [2002] uses RIPPER in a round robin classification, namely they induce
one model per pair of classes. Each model consists in a rule set describing the first
class, a default rule being implemented for the second class. This method, called R3
for Round Robin RIPPER, outperforms RIPPER on a number of datasets.

Finally, Janssen and Fürnkranz [2010] compare several choices of heuristics for rule
induction and find indicators of a good heuristic. For instance, consistency (related
to the number of covered negative examples) must be favored against coverage.

Fuzzy methods

A number of fuzzy rule learning algorithms extend the covering principle of crisp rule
induction algorithms.

Fertig et al. [1999] perform a fuzzy partitioning of all continuous attributes before
applying a beam search to obtain a rule. Cloete and van Zyl [2006] include this
technique into a full covering algorithm.

FR3 (Fuzzy Round Robin) [Hühn and Hüllermeier, 2008] builds upon R3. It performs
a post-processing of the rules to fuzzify their crisp boundaries and obtain fuzzy sets
for each antecedent in the form of trapezoidal membership functions. More precisely,
the algorithm searches an extension of the support of the crisp boundary for every
antecedent: the bounds of the support are greedily optimized by trying each example
that is covered by the rule so far, as illustrated on Figure 2.8. The boundaries that
lead to the best rule purity (i.e. proportion of positive examples) are retained.

2.2. Common intrinsically interpretable machine learning models 47

Crisp
boundary

Values taken by the attribute

core possible support bounds

0

1

Figure 2.8: Fuzzification procedure for an antecedent in FR3 and
FURIA.

FURIA (Fuzzy Unordered Rule Induction Algorithm) [Hühn and Hüllermeier, 2009]
extends directly RIPPER with two main contributions to improve the crisp algorithm:

• FURIA produces unordered rule sets instead of decision lists, by implementing a
one-vs-rest decomposition for every single class, which does not favor any default
class. Rule stretching permits to classify examples that are not covered by any
rule: each rule is generalized by removing the minimal number of antecedents so
that the considered example gets covered. Then, the example is classified by the
generalized rule, which obtains the best Laplace accuracy on the training set.
This strategy has been experimentally proven to be better than just predicting
the majority class.

• FURIA fuzzifies the antecedent boundaries in the same way as FR3.

The additions of FURIA obviously demand a higher computation time, both to fuzzify
the antecedents and to classify uncovered examples. However, Hühn and Hüllermeier
[2009] claim that FURIA obtains better performances than other fuzzy rule induction
algorithms and than C4.5 on a number of problems.

2.2.2.2 Methods based on association rules

The principle of such methods is first to extract properties from data in the form of
association rules, and then use them to classify new examples.

Association rules

Association rules permit to find correlations and frequent patterns in data. They
are of the form “IF X THEN Y ”, with X and Y being two disjoint itemsets (i.e.
statements on attributes), but Y does not necessarily correspond to a target label.
An itemset can be the intersection (i.e. conjunction of premises) of several itemsets.
The relevance of an association rule can be measured through two criteria:

• its support s = card(X∩Y)
card(E) , with card(E) the number of instances;

• its confidence c = card(X∩Y)
card(X) .

Popular association rule extraction algorithms are for instance A Priori [Agrawal et al.,
1994], Eclat [Zaki, 2000], and FP-Growth [Han et al., 2000]. The principle is to find all

48 Chapter 2. Interpretable machine learning

itemsets that have a minimal support (otherwise, the itemset could be due to noise)
and a minimal confidence.

The search for frequent itemsets is often exhaustive. As an example, A Priori itera-
tively builds itemsets of increasing size: with the frequent itemsets of size 1, it builds
all possible itemsets of size 2 and keeps the ones with sufficient support, and continues
until no new itemset with enough support can be built. In a second phase, which is
mostly common to all association rule extraction algorithms, all possible rules are
built (varying the relative position of the implication sign) from resulting itemsets.
Only the rules with sufficient confidence are retained.

Besides, fuzzy versions of association rule mining algorithms have been proposed
[Dubois et al., 2006, Hong and Lee, 2008, Pierrard et al., 2018]. The quantitative
values are transformed into linguistic terms (namely fuzzy sets). The support and
confidence measures are extended:

s =

∑
z∈E µXY (z)

card(E)
, (2.11)

c =

∑
z∈E µXY (z)∑
z∈E µX(z)

. (2.12)

The search is based on these fuzzy counts using the membership functions to the
different itemsets. As an example, a fuzzy version of FP-Growth has been developed
[Wang et al., 2010].

Classification by association

Several rule learning algorithms use association rules to produce a classification model.
One option is to simply keep the association rules that have a subset of the target
variable as consequence [Liu et al., 1998]. CMAR [Li et al., 2001] optimizes the process
by producing exclusively association rules that have a specific class as consequence.
Sulzmann and Fürnkranz [2008] compares several techniques to produce rule sets from
association rules, notably selection and combination techniques. For instance, Letham
et al. [2015] create Bayesian rule lists directly through frequent itemsets obtained by
the FP-Growth algorithm. Then, they learn an associated label for each pattern. The
rule list is iteratively modified by adding, removing or switching rules, following a
Bayesian approach in which the prior distribution permits to limit the number and
length of rules.

FARC-HD [Alcala-Fdez et al., 2011] extends the crisp approach with fuzzy logic for
high-dimensional problems. From fuzzy association rules generated by a fuzzy A
Priori algorithm, candidate rules are preselected and a genetic algorithm is performed
to select and tune the final rule set. Similarly, Antonelli et al. [2015] extend the CMAR
algorithm and use the association rules generated by a fuzzy FP-Growth algorithm to
generate a fuzzy rule set for classification.

2.2.2.3 Population-based algorithms

In addition to the traditional top-down induction of the individual rules, population-
based algorithms are also widely used: swarm intelligence and genetic algorithms can
both represent rules as individuals so as to optimize their antecedents, antecedent pa-
rameters and consequences. Fernández et al. [2010] and Martens et al. [2011] propose
respectively a review of genetic algorithms and swarm intelligence algorithms applied

2.2. Common intrinsically interpretable machine learning models 49

to data mining and particularly to rule learning. Besides, Herrera [2008] reviews
genetic fuzzy systems.

Some of these rule induction methods still exploit the sequential covering framework,
while adapting the rule induction technique:

• Ant-colony optimization (ACO) [Dorigo and Di Caro, 1999, Dorigo et al., 2006]
is based on the biological phenomenon: ants choose a trajectory and drop a
quantity of pheromones proportional to the quality of their choice. Next ants
are attracted by the solutions with the most pheromones and the population
converges progressively. Ant-Miner [Parpinelli et al., 2002] encodes rules into
trajectories, and iteratively adds rules obtained through such an algorithm to
the global rule base.

• Particle swarm optimization (PSO) [Kennedy and Eberhart, 1995] consists in a
population of particles, each one being a candidate solution. Particles have a
position and velocity and move in the search space to find the optimal solution.
Sousa et al. [2004] encode rules into the positions of particles to optimize one
rule at a time.

• Genetic algorithms (GA) evolve a population of chromosomes through mu-
tations, crossovers, and survival of the fittest. For rule induction, SLAVE
[González and Pérez, 1999] evolves a population of candidate fuzzy rules by
updating their antecedents, consequences, and membership function parame-
ters.

Hybrid methods combine several of these algorithms, such as PSO and ACO for Holden
and Freitas [2008].

Other methods move away from the sequential covering idea and use boosting instead:
Del Jesus et al. [2004] and Sánchez and Otero [2007] use adaptive boosting to iterate
over the rule set and a GA to produce individual fuzzy rules.

Finally, other methods directly optimize the total rule set. Greene and Smith [1993]
perform a cooperative GA in which several populations of rules are evolved simulta-
neously: each population contributes to one rule in the rule set, and individual rules
must compete to remain the fittest to stay in the rule set. Ishibuchi et al. [1997] pro-
pose a two-objective GA to maximize the accuracy and minimize the number of fuzzy
rules in the final fuzzy rule set. Olmo et al. [2010] create rules through ACO with a
niching approach to constitute the final rule set: diversity of solutions is maintained
during the ACO and the most accurate ones are retained to form a rule set. Otero
and Freitas [2013, 2016] directly create an entire list of rules through ACO.

2.2.2.4 Interpretability of rule bases

The interpretability of rule bases is closely related to the one of decision trees. Com-
pared to the graphical representation of decision trees, rules have a textual repre-
sentation, which hides the relative importance of the input variables [Freitas, 2014].
However, the very nature of rule sets allows the users to decompose the set and ana-
lyze the rules one by one, which makes a rule set easier to understand than a decision
tree. Converting a decision tree to a set of rules is indeed a good method to improve
its understandability [Quinlan, 1987]. However, rule lists are less interpretable than
rule sets: understanding rules at the end of the list is harder since their interpretation
must be done in the context of all of the previous ones. On another note, rules are

50 Chapter 2. Interpretable machine learning

less prone to having irrelevant conditions since they do not have to be mutually ex-
clusive like the branches of a decision tree. Rule sets are usually more compact than
a decision tree converted to rules [Freitas, 2014].

Concerning the transparency of rules bases, Arrieta et al. [2020] underline the strong
relationship of rule base transparency with their complexity:

• If the variables in the rule are humanly comprehensible and the rule base size is
manageable by a human, then the rule base is simulatable.

• When the rule sizes become too large, the rules need to be decomposed in chunks
to be understandable.

• Finally, a too large rule set makes the base only algorithmically transparent:
mathematical tools are needed to inspect the model in further details.

The interpretation of “too large” depends on the particular characteristics of the prob-
lem and on the appreciation of the users.

Besides, fuzzy rule bases lead to a better interpretability than crisp rule bases: they
use linguistic terms and are often more concise than crisp bases thanks to fuzzy
logic, which is more flexible than standard Boolean logic [Cpałka, 2017, Arrieta et al.,
2020]. Triangular or trapezoidal shapes work well as the membership functions while
being simple [Barua et al., 2013]. Mencar [2013] discusses the interpretability of fuzzy
systems in particular and provides several interpretability criteria. Notably, he states
that continuity is one of the main asset of fuzzy sets, as it better reflects our natural
representation of concepts.

2.2.3 Generalized additive models

2.2.3.1 From linear models to generalized additive models

Generalized additive models (GAM) [Hastie and Tibshirani, 1986] are statistical mod-
els derived from generalized linear models and additive models.

A simple linear model can be written:

ỹ = β0 +
∑
j

βjxj (2.13)

with ỹ the prediction, xj the input variables for example x and βj the parameters to
determine. The βj (including β0) are obtained by a least squares estimation. From
there, generalized linear models add a link function g between the linear predictor
and the model’s output:

g(ỹ) = β0 +
∑
j

βjxj . (2.14)

There exist several common link functions depending on the desired output distri-
bution. For logistic regression for instance, g(ỹ) = log ỹ

1−ỹ . The estimation of the
βj parameters is obtained following an iteratively reweighted least squares algorithm.
Each step actualizing the βj involves a weighted least squares estimation with the
weights being a function of the residuals.

2.2. Common intrinsically interpretable machine learning models 51

Then, additive models are of the form:

ỹ = β0 +
∑
j

fj(xj) (2.15)

where the fj are “smooth” functions, which is a rather vague term. Historically,
piecewise linear functions or smoothing splines [Wood, 2003] were used as the fj and
fitted by a backfitting algorithm [Hastie and Tibshirani, 1986]:

1. β0 is initialized to obtain a unique solution: β0 = 1
n

∑
i yi.

2. The shape function f1 is learned on the residual y − β0.

3. The next shape functions fk+1 are fitted on the residuals y− β0 −
∑k

j=1 fj(xj).

4. When d shape functions have been fitted, the first one is discarded and refitted
on the residuals y − β0 −

∑d
j=2 fj(xj), and so on.

Finally, this leads to GAM:

g(ỹ) = β0 +
∑
j

fj(xj). (2.16)

A visualization of a three-term GAM is displayed on Figure 2.9.

75 50 25 0 25 50 75

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.6 0.5 0.4 0.3 0.2 0.1
3

2

1

0

1

2

3

90 100 110 120 130

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Figure 2.9: A GAM with three terms.

2.2.3.2 Shape functions and fitting methods

As stated in equation 2.16, GAM are a sum of smooth univariate functions. Similarly
to additive models, the shape functions can be for instance splines [Wood, 2003], which
are commonly written:

fj(x) =
∑
k

βj,kbk(x) (2.17)

with bk being basis functions (B-splines) and βj,k the parameters to fit. More recently,
tree ensembles of a single variable have been used as shape functions [Lou et al., 2012].
Lou et al. [2012] find that using boosting and bagging tree ensembles as shape functions
leads to better results than using splines in general cases.

Methods based on backfitting, iteratively reweighted least squares [Wood, 2017] or
gradient boosting [Tutz and Binder, 2006] can be used. Below is a short description
of these three fitting methods.

52 Chapter 2. Interpretable machine learning

Backfitting

A generalization of backfitting called local scoring algorithm can be used for classifi-
cation purposes (i.e. g(ỹ) = log ỹ

1−ỹ):

1. ŷ = 1
n

∑
i yi. β0 is initialized to obtain a unique solution: β0 = log ỹ

1−ŷ . All
shape functions are set to 0.

2. At a given step k, let F (x) = β0 +
∑

j fj(xj) and p(x) = 1
1+e−F (x) .

(a) The “residuals”, i.e. target values for the current backfitting step, are ri =

F (xi) + yi−p(xi)
p(xi)(1−p(xi)) for each training example xi.

(b) In contrast to the backfitting algorithm for additive models, the shape
function fitting is here weighted by wi = p(xi)(1− p(xi)).

Gradient boosting

Lou et al. [2012] use gradient boosting to learn the shape functions for all input
variables. They loop over a number of iterations and over the input variables. For
each input variable j in iteration m, they:

1. compute the residuals (different in case of classification or regression);

2. fit an univariate function of variable xj on the residuals;

3. add this new function to the shape function fj .

Iteratively reweighted least squares

In the case where the shape functions are smoothing splines, an iteratively reweighted
least squares algorithm can be used. The advantage is that a penalization on the shape
function complexity can be added (thus solving a penalized iteratively reweighted least
squares problem). The fitting of the fj is done by minimizing the penalized sum of
squares:

min
β

{∥∥y −BTβ
∥∥2

+ λβTPβ
}
, β = (βj,k) (2.18)

with B the vector of bk(xj) and λβTPβ a penalty term. P can for instance penalize the
differences between adjacent βj,k, or the second derivative of the shape function. The
larger the λ parameter, the smoother the final function. This smoothing parameter
is usually optimized (with respect to a performance metric) by generalized cross-
validation (GCV) or restricted maximum likelihood (REML) [Gu and Wahba, 1991].

2.2.3.3 Generalized additive models plus interactions

Lou et al. [2013] introduce GAM plus interactions (denoted as GA2M), in which a
number of bivariate terms are added to the model:

g(ỹ) = β0 +
∑
j

fj(xj) +
∑

(i,j)∈I
fi,j(xi, xj) (2.19)

where I is the set of feature pairs used to model pairwise interactions, allowing to
exploit 2D-correlations. Lou et al. [2013] first build a standard GAM model, and then
use a fast interaction detection algorithm to select the most relevant feature pairs to
fit additional bivariate shape functions. They get a significant improvement over the

2.2. Common intrinsically interpretable machine learning models 53

results obtained without pairwise terms. An example of a GA2M with three univariate
terms and two bivariate terms is illustrated on Figure 2.10.

75 50 25 0 25 50 75

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.6 0.5 0.4 0.3 0.2 0.1
3

2

1

0

1

2

3

90 100 110 120 130

0.2

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0
.0
0

0
.1
0

0
.2
0

0
.3
0

0
.4
0

0
.5
0

0
.6
0

0
.7
0

0
.8
0

0
.9
0

1
.0
0

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.0

0.2

0.4

0.6

0.8

1.0

0
.0
0

0
.1
0

0
.2
0

0
.3
0

0
.4
0

0
.5
0

0
.6
0

0
.7
0

0
.8
0

0
.9
0

1
.0
0

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Figure 2.10: A GA2M with three univariate terms and two bivariate
terms.

2.2.3.4 Interpretability of generalized additive models

Caruana et al. [2015] claim the intelligibility of GAM and GA2M since univariate
and bivariate functions can be visualized (respectively as curves and heatmaps as on
Figure 2.10). They find that users may prefer graphs to numbers, hence facilitating
their understanding. They examine a few learned univariate and bivariate terms for
pneumonia risk prediction and find them consistent with expert knowledge. However,
they find that using splines leads to a degradation in performance compared to tree
ensembles because of their smoothness.

Examples of the same terms learned with tree ensembles or splines are illustrated on
Figure 2.11. The tree-ensemble terms are wigglier than the spline terms. However,
Ross and Doshi-Velez [2018] find that regularizing gradients improves interpretability
and robustness for neural networks. If extrapolated to GAM, this would mean an
argument in favor of splines against tree ensembles. Objectively, the small variations
in the tree-ensemble terms are difficult to interpret while they are absent in the spline
terms.

According to Arrieta et al. [2020], GAM are algorithmically transparent with the help
of mathematical and statistical tools to analyze them. They are decomposable by
nature since each term can be interpreted independently. However, Arrieta et al. [2020]
state that interactions are too complex to be simulated. The variables and smooth
functions involved in the model must be “constrained within human capabilities for
understanding” so that the global model is simulatable. The complexity of the link
function g must also be taken into account.

Finally, GAM have been used in several applications such as healthcare [Caruana et al.,
2015], finance [Calabrese et al., 2012], energy [Pierrot and Goude, 2011], environment
[Murase et al., 2009], etc. for their understandability: such models are indeed often
used to discover knowledge in data in addition to obtaining high accuracy. GAM are

54 Chapter 2. Interpretable machine learning

0
.0
0

0
.1
0

0
.2
0

0
.3
0

0
.4
0

0
.5
0

0
.6
0

0
.7
0

0
.8
0

0
.9
0

1
.0
0

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.2

0.4

0.6

0.8

Boosted decision trees

0
.0
0

0
.1
0

0
.2
0

0
.3
0

0
.4
0

0
.5
0

0
.6
0

0
.7
0

0
.8
0

0
.9
0

1
.0
0

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.0

0.2

0.4

0.6

0.8

1.0

Splines

0 5 10 15 20 25 30 35 40

1.0

0.5

0.0

0.5

1.0

Boosted decision trees

0 5 10 15 20 25 30 35 40

1.0

0.5

0.0

0.5

1.0

Splines

Figure 2.11: Comparison of two terms learned with tree ensembles
(on the left) and with splines (on the right), for an univariate term (on

the top) and a bivariate term (on the bottom).

considered more accurate than other transparent models such as decision trees while
remaining intelligible.

2.3 Conclusion

This chapter presented the tools in interpretable machine learning that will be ex-
ploited in the remaining of the thesis. We made a summary of the challenges around
the notion of interpretability in machine learning, including its definition, classifica-
tion, evaluation methods and limits. We presented three main classes of transparent
models, notably tree-based models, rule-based models and GAM. These three cate-
gories will serve as a basis for the developments in this thesis. One main limitation of
transparent models is their diminished classification performance compared to models
that are more opaque. We will particularly focus on this aspect. We will also rely on
the interpretability evaluation guidelines detailed in 2.1.3 to assess the interpretability
of the models we will use for the physics analyses.

In the next chapter, we precise our positioning in this thesis by preparing training
datasets and baseline models.

55

Chapter 3

CLAS12 simulation and baselines
using transparent models

3.1 Monte Carlo simulation of DVCS and π0 production events 55
3.1.1 Simulation pipeline . 55
3.1.2 Constitution of training datasets 57

3.2 Baselines using transparent models 60
3.2.1 Selected transparent models 60
3.2.2 Baselines . 63

3.3 Proposed approach . 64

This chapter prepares the ground for the remaining of the thesis. Since the supervised
learning algorithms presented in chapter 2 need labeled data, simulations are used to
constitute the training samples. Section 3.1 presents the simulation process and how
to constitute a training dataset for machine learning. Then, section 3.2 lists the
selected transparent models that will be used in the thesis and shows some baselines.

3.1 Monte Carlo simulation of DVCS and π0 production
events

Since the objective is to select DVCS events, two classes are used for training machine
learning models: the signal class, composed of simulated DVCS events, and the back-
ground class. Since the main background to DVCS is π0 production, the background
class is only composed of simulated π0 production events.

Data simulation is done through a Monte Carlo simulation in several steps, detailed
in the following.

3.1.1 Simulation pipeline

The overall simulation and reconstruction process is illustrated on Figure 3.1.

The simulation process involves two steps:

1. event generation: kinematic variables (Q2, xB, t, φ) are drawn from the phase
space following a certain distribution. Then, the output state of DVCS or π0

production events is computed from these phase space coordinates;

56 Chapter 3. CLAS12 simulation and baselines using transparent models

Distribution over Generated
particles

LUND files EVIO files

Detector
responses

HIPO files

Reconstructed events
Real CLAS12

detector
responses

EVIO files

Generation
Simulation

GEMC Reconstruction
CLARA

- Tracking
- Clustering
- PID
- ...

Event recording

Figure 3.1: CLAS12 simulation and reconstruction.

2. detector simulation: the passage of the generated output particles through the
detectors is simulated and artificial detector responses are created.

Step 1 requires the knowledge of the reachable phase space, as determined in 1.3, and
the knowledge of the cross-sections to get a probability distribution for the kinematic
variables (Q2, xB, t, φ). Models of DVCS and π0 production cross-sections exist based
on the data from previous experiments [Drechsel et al., 1999]. For the CLAS12 phase
space, Valery Kubarovsky proposed an empirical fit of the cross-sections of π0 pro-
duction, available online1. The so-called VGG model of GPD is used to model DVCS
cross-sections [Vanderhaeghen et al., 1999, Goeke et al., 2001, Guidal et al., 2005].
However, since DVCS data has not yet been analyzed in the CLAS12 phase space,
these models are subject to potentially large errors and must be taken with caution.

From a set of picked kinematic variables, the full output state of a DVCS or π0 pro-
duction event is computed. This is the generated event, with true particle’s momenta.
Then, step 2 involves detector simulation. To this extent, GEANT4 is a framework
for the simulation of the passage of particles through matter. Therefore, the mod-
eled CLAS12 detectors are implemented in this framework. GEANT4 Monte Carlo
(GEMC) has been developed to interface event generation with GEANT4 [Ungaro
et al., 2020]: it takes as input LUND files containing information about the generated
particles, and outputs detector responses under the form of EVIO files. It is flexible
as the nature of the target or the magnetic fields can easily be modified.

Then, the reconstruction is the third step, common both to simulated and real data.
Indeed, it takes detector responses as input. The principle is to group the detector
signals that are associated to the same particles, reconstruct the momentum and
energy of these particles and identify their nature:

• For charged particles, tracking consists in grouping the detector hits belonging
to a same particle (pattern recognition) and fit its trajectory. The charge, mo-
mentum and vertex of the particle are inferred from the curvature of the track
in a given magnetic field.

• Particle identification systems (Cherenkov counters, time of flight detectors)
differentiate several particles (see Figure 1.13 in chapter 1).

• In calorimeters, a clustering algorithm is used to isolate the contributions of
different particles to the detector response. Some clusters can be linked to the
trajectory of a charged particle. Remaining clusters are associated to neutral
particles, namely photons and neutrons. They are differentiated by their time
of flight and the shape of the shower in the calorimeter.

1https://github.com/vkubarovsky/Model-for-the-pi0-eta-exclusive-cross-section

https://github.com/vkubarovsky/Model-for-the-pi0-eta-exclusive-cross-section

3.1. Monte Carlo simulation of DVCS and π0 production events 57

The reconstruction software [Ziegler et al., 2020] uses the CLARA framework for
reconstruction and production of the final HIPO files, to be used for physics analyses.

3.1.2 Constitution of training datasets

Using the simulation software, we produce a dataset to feed machine learning algo-
rithms for DVCS event selection.

3.1.2.1 Event preselection and choice of input variables

The physics analysis starts from the list of reconstructed particles, namely the list of
identified particles with their four-momentum. Events that are kept must fulfill the
following conditions:

• exactly one electron with an energy over 2 GeV (mandatory since it triggers the
acquisition and to compute kinematic variables);

• at least one photon of energy over 0.8 GeV (to compute kinematic variables);

• the kinematics must comply with the phase space of interest being the deep
inelastic regime, namely Q2 ≥ 1.5GeV2, W 2 ≥ 4GeV2.

In practice, machine learning models that are used later in this thesis require a fixed
input size. Therefore, the input vector is chosen to contain maximum five particles:
the mandatory electron, an optional proton (it may have not been detected) and
from one to three photons. The photons are ranked by increasing squared missing
mass ep → epγ (equals 0 for DVCS since no particle is missing and also 0 for π0

production since the mass of the missing photon is 0). The three-momentum for all of
these particles is included in the input vector in either coordinate system: Cartesian,
spherical, or both. Therefore, missing values will be present in any sufficiently large
data sample: either the proton remains undetected, or no background photon was
emitted, leading to only one or two detected photons. A missing value does not
necessarily mean that the particle has not been detected: it can simply mean that the
particle never existed. Therefore, data imputation is not relevant.

3.1.2.2 Choice of phase space distribution: uniform or with cross-sections

We consider two strategies for data generation: taking into account the cross-sections
models of DVCS and π0 production, or generating data uniformly over the available
CLAS12 phase space. Intuitively, a machine learning model trained on data with
cross-sections risk to perform DVCS/π0 production separation based on the relative
dynamics of the two processes. Indeed, as shown on Figure 3.2, DVCS events are
mostly localized in the low xB region while π0 production events are rather in the
high xB region.

Therefore, we develop an alternative generation strategy where both DVCS and π0

production events are generated uniformly. We perform a uniform generation over the
four-dimensional space (Q2, xB, t, φ), knowing that the upper and lower bounds of xB
depend on Q2 and those of t depend on both Q2 and xB. However, φ is generated
independently in [-180°, 180°].

We pass generated data, both with flat distribution and with cross-sections, into the
simulation and reconstruction process. In the end, the nature of events retained after
the preselection detailed above is presented in Table 3.1 for the flat generation and for

58 Chapter 3. CLAS12 simulation and baselines using transparent models

0.1 0.2 0.3 0.4 0.5 0.6 0.7
xB

2

4

6

8

10

Q
2

DVCS
Pi0

Figure 3.2: Localization of DVCS and π0 production events in the
(Q2, xB) phase space.

the generation with cross-sections. One thing to note specifically about π0 production
events is that the two photons are detected in about only half of the cases. In the
other half, only one photon is detected, not to mention the numerous cases where no
photon is detected, which are not represented in these tables.

Table 3.1: Percentages of events belonging to different categories.
Top: flat generation; bottom: generation with cross-sections; for
DVCS events on the left and π0 production events on the right. The
percentages are computed as function of the number of photons (noted

γ in the table) and the presence or not of the proton.

Flat generation

DVCS: 84.8% of generated

No proton Proton

1γ 17.7% 44.8% 62.5%
2γ 6.1% 14.2% 20.3%
3γ 4.9% 12.3% 17.2%

28.7% 71.3% 100%

π0: 45.8% of generated

No proton Proton

1γ 11.8% 28.7% 40.5%
2γ 9.0% 23.5% 32.5%
3γ 7.5% 19.5% 27.0%

28.3% 71.7% 100%

Generation with cross-sections

DVCS: 11.1% of generated

No proton Proton

1γ 43.0% 47.8% 90.8%
2γ 3.1% 4.5% 7.6%
3γ 0.7% 0.9% 1.6%

46.8% 53.2% 100%

π0: 16.2% of generated

No proton Proton

1γ 12.0% 39.8% 51.8%
2γ 10.8% 26.9% 37.7%
3γ 3.3% 7.2% 10.5%

26.1% 73.9% 100%

Using the two generated datasets (with or without cross-sections), we train a FURIA
rule base separately on each dataset with a size of 20000 instances (the justification
for this dataset size is given in section 3.2). As input features, we provide the three-
momenta of the input particles, plus a few high-level variables such as missing or

3.1. Monte Carlo simulation of DVCS and π0 production events 59

invariant masses. The FURIA base induced on the dataset generated without cross-
sections (named “flat FURIA” in the following) comprises 16 rules, against 114 for
the FURIA base induced on the dataset generated with cross-sections (named “cross-
sections aware FURIA” in the following). Among the antecedents of all the rules
for the flat FURIA, 45% use high-level variables, against only 23% for the cross-
sections aware FURIA. Among the 55% other antecedents of the flat FURIA, 43% are
still relevant variables for event selection, for instance the photons energies. These
observations are summarized in Table 3.2.

Therefore, just observing the rule bases and the used variables confirms our intuition:
the cross-sections aware FURIA base does not use discriminative variables that are
mostly independent of the generation strategy, but rather the momenta of the particles
that greatly vary depending on whether cross-sections were taken into account. For
instance, the electron momentum and scattering angle θ are directly correlated withQ2

and xB. Moreover, many rules in the cross-sections aware FURIA base are dedicated
to the split along the phase space, and very few to the physics discrimination. In
other words, the model did not learn objective criteria that are independent of the
generation.

Table 3.2: Accuracies of a FURIA rule base depending on the train-
ing and testing datasets.

induced on flat induced on cross-sections

Number of rules 16 114
Percentage of high-level variables 45% 23%

Accuracy on flat 71% 60%
Accuracy on cross-sections 82% 94%

Table 3.2 also gives the accuracies of the FURIA bases when applied on flat or cross-
sections generated data. When applying the cross-sections aware FURIA to the flat
generated data, the accuracy drops down to 60%. Nevertheless, the accuracy of the flat
FURIA applied to cross-sections generated data is a 12% less than the score obtained
by the cross-sections aware FURIA. Plotting the repartition of examples (with a flat
generation) classified as signal and background as function of Q2 and xB, we obtain
Figure 3.3. This is obvious that the cross-sections aware model based its selection
on the cross-section distribution over the phase space. In the flat dataset used for
testing, equal amounts of DVCS and π0 production events are generated uniformly
everywhere in the phase space.

From this last figure and the observation of the generated rules, we conclude that
any machine learning model would be biased immediately if given the cross-section
information. In regions dominated by a given process, the model is not able to isolate
events of rare processes. In addition, rare events (for instance in high Q2 regions) are
very interesting from the physics point of view and should not be neglected in the
training. It should be noted that a cut on the model’s output, when possible, would
permit to refine the selection purity in certain regions of the phase space. We conclude
that a model is less biased if trained on a flat dataset than on a dataset generated
with cross-sections. Therefore, all machine learning models in the remaining of this
thesis will be trained on a dataset generated with a flat distribution over the phase
space.

60 Chapter 3. CLAS12 simulation and baselines using transparent models

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
xB

2

4

6

8

10

Q
2

Classified as DVCS
Classified as Pi0

Figure 3.3: Phase space distribution of events classified by the FU-
RIA model induced on data with cross-sections and applied on data

generated without cross-sections.

3.2 Baselines using transparent models

Now that the training dataset is formed, baselines can be established using some of
the transparent models presented in 2.2. First, we list the selected models.

3.2.1 Selected transparent models

C4.5

We use C4.5 decision tree as a first model that we implemented in Python. Missing
values are handled as follows: an instance that has a missing value for the splitted
attribute is spread into the sub-branches with a weight proportional to the number of
data sent in each sub-branch. C4.5 usually obtains very good classification scores, at
the expense of very large trees.

Fuzzy C4.5

We develop two fuzzified versions of C4.5 inspired from Olaru and Wehenkel [2003]
and Chandra and Varghese [2009]. In both cases, we make the transition linear (see
Figure 3.4:

• Fuzzy C4.5 std uses the principle of Chandra and Varghese [2009], namely setting
the width of the fuzzy transition as function of the standard deviation of the
attribute. In practice, we set β = ασ with α a hyperparameter of the algorithm.

• Fuzzy C4.5 Fibo determines β by Fibonacci search, following Olaru and We-
henkel [2003], to maximize the fuzzy information gain.

However, we noticed that this principle to split and then fuzzify raises an issue for
ordinal attributes, i.e. attributes with a finite number of values but having an ordering,
for instance the number of detected photons. Indeed, it can happen that the fuzzy split
leading to the best information gain overlaps one of the values taken by the attribute.
However, the same split will be repeated indefinitely in a very deep degenerate branch,
so as to put apart a small proportion of instances taking the same value in a leaf at

3.2. Baselines using transparent models 61

11

0
support core

= support - core

Figure 3.4: Illustration of the width β to determine for fuzzy splits
in fuzzy C4.5.

each split. Such a degenerate branch is illustrated on Figure 3.5. The information
gain of each split progressively becomes very small.

1

leaf

leaf

leaf

...0.9

0.1

0.09

0.81

0.081

Figure 3.5: Degenerate fuzzy branch in case of an ordinal attribute
z taking values [0, 1, 2, 3, 4].

The problem arises from the fact that fuzzification is performed after the search of
the split threshold. Indeed, fuzzification does not necessarily improves the information
gain notably in the standard deviation version. This can lead to information gains
superior to 0 but too small to be really significant regarding the number of instances or
the number of classes. In addition, fuzzification does not have to respect the minimum
number of instances per branch that is required when looking for the split threshold.
That problem was neither mentioned by [Olaru and Wehenkel, 2003] nor by [Chandra
and Varghese, 2009]. To solve it, we first set the minimal information gain to 10−5

to split the node instead of 0. We did not observe any split having an information
gain below this value in our experiments, apart from the degenerate splits on ordinal
attributes. In addition, we check the number of instances (as the sum of weights) in
each child node also during fuzzification:

• for Fuzzy C4.5 std, we cancel fuzzification if it leads to children nodes without
a sufficient number of instances;

• for Fuzzy C4.5 Fibo, we exclude from the Fibonacci search the widths that
would violate the minimum instances per child node requirement.

Similarly to crisp C4.5, the fuzzy versions get good classification performances but
often produce big trees that take advantage of big datasets, as displayed on Figure 3.6.
However, fuzzy trees are often smaller, as displayed on the right plot of Figure 3.6.

62 Chapter 3. CLAS12 simulation and baselines using transparent models

20000 40000 60000 80000 100000
Dataset size

0.30

0.32

0.34

0.36

0.38

0.40

0.42

0.44

Co
he

n
ka

pp
a

C4.5
Fuzzy C4.5 std
Fuzzy C4.5 fibo

20000 40000 60000 80000 100000
Dataset size

102

103

Nu
m

be
r o

f n
on

-le
af

 n
od

es
 o

f t
he

 tr
ee

C4.5
Fuzzy C4.5 std
Fuzzy C4.5 fibo

Figure 3.6: Left: Cohen’s kappa score2 of crisp and fuzzy versions
of C4.5 as function of the dataset size. Right: the number of non-leaf
nodes of the trees as function of the dataset size. The y axis is in log
scale, since crisp trees are 3 times bigger than fuzzy trees for large

datasets.

CART, AdaBoost and GradientBoosting

We utilize the CART, AdaBoost and GradientBoosting algorithms as they are imple-
mented in the scikit-learn package [Pedregosa et al., 2011]. However, scikit-learn in
general does not handle missing values and demands data imputation, which is not
relevant in our case. In practice, using such models for CLAS12 would require to
divide the data in separate training samples with different inputs depending on the
present particles. However, we still consider these models as baselines and to compare
notably with ensemble methods.

FURIA

FURIA is implemented in the Weka package in Java [Frank et al., 2016]. It has been
reimplemented during this thesis in the ExpressIF® platform in C# developed at
CEA3. In FURIA, instances with missing values will not be satisfying a rule involving
the missing attribute(s). We noticed that FURIA does not necessarily take advantage
of large datasets. Indeed, the FURIA algorithm is based on the rule covering principle,
namely all instances of a given class must be covered by the rule base dedicated to
this class, and no example of other classes must be covered by any rule of this rule
base. This principle makes larger datasets more difficult to apprehend. This results
in smaller rule bases and degraded classification performances when using too large
datasets, as plotted on Figure 3.7.

Another weakness of FURIA is that it does not provide a continuous output between
0 and 1 contrary to a large number of machine learning models when dealing with
binary classification. A given example is often covered by one or two rules of the
same class and therefore assigned the output 0 or 1. Examples covered by at least one
rule of each class are very rare. In the end, producing a ROC curve out of a FURIA
model is impractical, making FURIA a model with poor flexibility when it comes to
balancing between true positive rate and false positive rate.

2Cohen’s kappa is a performance metric measuring the degree of agreement between two anno-
tators (models in this case). It varies between -1 and 1: -1 means complete disagreement, 1 perfect
agreement, and 0 is equivalent to random predictions.

3https://expressif.cea.fr/

https://expressif.cea.fr/

3.2. Baselines using transparent models 63

20000 40000 60000 80000 100000
Dataset size

0.26

0.28

0.30

0.32

0.34

0.36

0.38

0.40
Co

he
n

ka
pp

a
FURIA

20000 40000 60000 80000 100000
Dataset size

20

25

30

35

40

45

50

55

Nu
m

be
r o

f a
nt

ec
ed

en
ts

Figure 3.7: Left: Cohen’s kappa score of FURIA as function of the
dataset size. Right: the total number of antecedents in the base as

function of the dataset size.

GAM

GAM are implemented in the InterpretML package in python using boosted decision
trees as shape functions [Nori et al., 2019]. GAM with splines as shape functions
are instead implemented in the mgcv package in R [Wood and Wood]. GAM do not
natively handle missing values, however we propose the following solution: each term
fj(xj) will take a specific separate value for all instances having a missing value for
xj . Namely, a term fj will be defined by a smooth univariate function (e.g. splines)
over the range of xj and by a constant value Cj that will be assigned to missing values
of xj . The Cj are determined over the training set to minimize the sum of squared
errors.

3.2.2 Baselines

In the following, we use the Cohen’s kappa4 as performance metric. Indeed, we will
deal with imbalanced datasets in part II and this metric permits a fair evaluation.
We now obtain the first baselines training a few standard transparent algorithms on
a 25000-events data sample. The results of a 5-fold cross-validation are presented in
Table 3.3.

Table 3.3: Cohen’s kappa obtained by a 5-fold cross-validation with
a few transparent algorithms on CLAS12 simulated data with DVCS
events as signal and π0 production events as background. 25000 in-
stances are used to obtain the results with missing values (first column)

and 15000 instances without missing values (second column).

With missing values Without missing values

C4.5 0.369 ± 0.013 0.350 ± 0.015
Fuzzy C4.5 std 0.390 ± 0.018 0.399 ± 0.018

Fuzzy C4.5 Fibo 0.381 ± 0.010 0.395 ± 0.020
AdaBoost // 0.285 ± 0.009

GradientBoosting // 0.373 ± 0.015
FURIA 0.336 ± 0.036 0.281 ± 0.016

GAM with splines 0.404 ± 0.017 0.357 ± 0.014

4See footnote 2.

64 Chapter 3. CLAS12 simulation and baselines using transparent models

The best models on simulated data are the fuzzy C4.5 trees and the GAM. Gradient-
Boosting also performs well on the dataset without missing values, but is obviously
limited to it. C4.5 comes just after, followed by AdaBoost and FURIA. Regarding
FURIA, it should be noted that the rule bases are much simpler than the trees gener-
ated by the crisp and fuzzy C4.5 trees, which is an asset for interpretability. Indeed,
rule bases produced by FURIA are often incomplete, and rule stretching permits to
classify uncovered examples. On the opposite, decision trees are by nature exhaustive.
The evolution of the C4.5 score as function of the maximal depth is displayed on Fig-
ure 3.8. For the dataset with missing values, equalizing FURIA in terms of number
of nodes or antecedents (37.6± 3.1 antecedents for FURIA at this dataset size) would
set the maximal depth to blog2(37.6) + 1c = 6. The Cohen’s kappa obtained by such
a tree on the dataset with missing values is 0.263 ± 0.028, largely smaller than the
score obtained by FURIA.

1 2 3 5 7 9 11 13 15 17 19
Tree depth

0.175

0.200

0.225

0.250

0.275

0.300

0.325

0.350

0.375

Co
he

n
ka

pp
a

Dataset with missing values size 15000
C4.5

1 2 3 5 7 9 11 13 15 17 19
Tree depth

0.10

0.15

0.20

0.25

0.30

0.35

Co
he

n
ka

pp
a

Dataset without missing values size 25000
C4.5

Figure 3.8: The evolution of Cohen’s kappa score of C4.5 as function
of its maximal allowed depth, for the dataset with missing values (left)

and without missing values(right).

3.3 Proposed approach

The objective now is to improve the baselines scores of Table 3.3. The drawback of
transparent models is often their lower classification performance compared to more
complex models (Figure 2.5 in 2.1.4). Notably, they do not build complex internal
representations of the training data. Therefore, next part (part II) focuses on the en-
hancement of the classification performance of different transparent models, through
automated feature construction and inclusion of prior knowledge. However, the de-
veloped models are dedicated to be applied to real CLAS12 data analysis. Part III
focuses on this objective: the models trained on simulated data are notably trans-
posed to real CLAS12 data. The interpretability and selection performances of the
models are assessed and compared to other approaches for the DVCS analysis.

Finally, we also attempted to exploit the knowledge of data imprecisions: indeed,
the detectors are intrinsically imperfect and we have a limited knowledge of their
performances. Errors arise both from the passage of particles through the detectors
and from the reconstruction process. Fuzzy logic allows to consider fuzzy inputs:
therefore, we adapted the crisp and fuzzy versions of C4.5 as well as FURIA to be
capable of handling imprecise input. However, results obtained with these methods
did not meet our expectations and we did not continue efforts in this direction. The
details of our work on CLAS12 imprecisions handling in C4.5 and FURIA can be
found in Appendix B.

65

Conclusion of part I

Chapter 1 introduced the physics context and challenges of the DVCS analysis con-
ducted at CLAS12. Deeper information about the inner proton structure can be
obtained thanks to correlation functions called generalized parton distributions, ac-
cessed through several exclusive inelastic processes including deeply virtual Compton
scattering. This latter interaction is notably studied in the CLAS12 experiment that
involves a series of detectors placed around a collision site between an accelerated
electron beam and a fixed proton target. These detectors aim at covering the maxi-
mum available phase space while ensuring a reconstruction good enough to conduct
the physics experimental program. The challenge is now to be able to distinguish
properly the signal DVCS events from other background events, notably π0 produc-
tion events, to measure precisely the DVCS beam asymmetry. To deal with physical
limits of the detectors and with limits of the standard physics analysis, artificial intel-
ligence is proposed as a solution to optimize event selection, with a total transparency
requirement.

Then, chapter 2 presented the field of interpretability in machine learning. Differ-
ent types of interpretability coexist, notably transparency and post-hoc explainabil-
ity. Classification, evaluation methods and limits of interpretability are discussed.
Transparent models are then detailed, including decision trees, rule bases, generalized
additive models with fuzzy variants. The remainder of this thesis will focus on these
transparent models to perform DVCS event selection while being able to analyze the
used model.

Finally, chapter 3 set the stage for the following parts by detailing the simulation
process to constitute a training dataset, and by providing baseline scores using some
transparent machine learning models. It was notably determined that machine learn-
ing models must be trained on datasets that are generated independently of the cross-
sections to avoid biasing the training on the dynamics. This study was a first demon-
stration of the interest of using transparent machine learning models, since it provided
additional arguments to dismiss one of the generation strategies.

The key points of this first part are:

1. Separating π0 production events from DVCS events is the main challenge of
DVCS event selection. Machine learning and especially transparent machine
learning should help improving the selection by increasing the statistics and
therefore reducing the statistical and systematic error due to background sub-
traction.

2. The transparency of certain machine learning models is a real asset to validate
the robustness, evaluate errors, and inspect the learnt knowledge, but commonly
comes with a degraded classification performance compared to models that are
more opaque.

66 Conclusion of part I

3. The training data directly impacts the knowledge that is learnt by a machine
learning model. Notably, this also implies that simulation data must reflect
as close as possible the reality. Otherwise, the selection performances will be
degraded when analyzing real data. Most importantly, these performances will
be poorly known, which is a major issue for the computation of cross-sections
where the selection efficiency must be corrected for.

Each of these points will be discussed in the remaining of this thesis. The first point,
i.e. the π0 separation from DVCS, is the main goal of this entire thesis. The final
analysis is performed in chapter 9. Part II is dedicated to tackling the second point to
improve the classification performances of transparent models. Chapter 8 completes
the discussion on the assets of interpretability specifically for CLAS12 data analysis.
Finally, the third point on the importance of the training dataset and quality of the
simulation has started to be studied in chapter 3 and will be further developed in
chapter 7 where a domain adaptation from simulated data to real data is proposed.

67

Part II

Interpretable machine learning
through feature construction

69

Introduction

Interpretable machine learning models often suffer from a decrease in performance
compared to models that are more opaque [Došilović et al., 2018]. In this part, the
objective is to increase the classification performance of transparent models. Their
internal representation of data is often poorly elaborated, notably considering decision
trees and rule bases that perform cuts of the unaltered input variables. In this part,
we consider feature construction, a set of techniques aiming at building new features
from the original ones.

No linear cut would be able to separate the two classes (orange and blue) in the ex-
ample on Figure 3.9a. However, the computation of a new feature makes the problem
solvable by a simple cut (see Figure 3.9b).

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

y

(a) y versus x.

0 1 2 3 4 5 6 7 8
x2 + y2

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

y

(b) y versus x2 + y2.

Figure 3.9: Illustration of the computation of a new feature that
greatly simplify the classification task for this toy dataset.

In this part, we propose a feature construction algorithm that is adapted to experimen-
tal physics datasets and apply it to a few classification tasks using several transparent
models. Chapter 4 first reviews the state of the art in automated feature construction.
Then, chapter 5 details the proposed feature construction algorithm adapted to exper-
imental physics analyses that retains interpretability, and presents first experiments.
Finally, chapter 6 deepens the experiments by embedding feature construction into
decision trees, rule bases and GAM, the latter with additional adaptations.

71

Chapter 4

State of the art of feature
construction

4.1 Tree-based feature construction algorithms 73
4.2 Evolutionary-based feature construction algorithms 74

4.2.1 Swarm intelligence . 74
4.2.2 Genetic programming . 75

4.3 Embedded feature construction 81

The choice of features can greatly affect the performances of machine learning algo-
rithms, in particular the least complex [Sondhi, 2009]. In some cases, an inappropriate
choice of features can even degrade the predictive power of a model [John et al., 1994].

The introduction of this part gave an example where adding a single feature permitted
to solve perfectly a classification task. Note that adding new features is not the
only way to improve the predictive capability: for instance, Support Vector Machines
(SVM) [Vapnik, 1995] are able to linearly separate data after transforming the feature
space through a kernel function.

The general field of feature engineering refers to any processing of the feature space,
with the objective of ultimately using a feature set as input to a learning algorithm.
Feature engineering gathers a large range of techniques, including feature extraction
from raw data, data encoding, and feature transformation among others.

Feature selection and feature construction are two related subfields of feature engi-
neering. While the objective of feature selection is to reduce the dimensionality of the
feature set, notably to avoid overfitting, feature construction aims at building new
features from the original ones, so that the performance of a learning algorithm is
improved. Feature selection is widely studied in the literature (see [Chandrashekar
and Sahin, 2014] for a survey). However, feature selection will never make up for
an initial inappropriate feature set, while feature construction directly searches new
relevant features for the learning task.

There exist a wide variety of feature construction algorithms, notably depending on
the data type: for instance extracting useful features from pixelized images [Lim et al.,
2007] or time series [Harvey and Todd, 2014]. Features can also be constructed indi-
rectly by the learning algorithms themselves: SVM [Vapnik, 1995] use kernel functions
to modify internally the feature space; the variables in the last layers of a deep neural
network constitute good discriminating features as well [Bengio, 2013]. Principal Com-
ponent Analysis (PCA) [Jolliffe, 2002] or Linear Discriminant Analysis (LDA) [Fisher,

72 Chapter 4. State of the art of feature construction

1936] perform both dimensionality reduction and feature construction (i.e. combina-
tion of features).

However, features derived by these previous methods are often complex combinations
of the primary ones and are not human readable, which is an issue in several sensitive
applications (for instance health [Ambrosino et al., 1995]). One recent work [Kaul
et al., 2017] uses correlations between feature pairs to add new features through a
regression method. In the following, the focus is on explicit feature transformation,
using a set of operators: Boolean (OR, AND, etc.), nominal (mean, number of oc-
currences, etc.) or numeric (+, −, log, etc.) among others. A constructed feature
can thus be represented by a tree such as the one on Figure 4.1. In the context of
physics applications, only numeric operators are used since the initial feature set con-
sists in numeric values describing the state of the particles. However, a few studies
using other types of operators will be included in this review. Not covered here but
worth being mentioned, inductive logic programming is a class of feature construction
methods returning Boolean features.

+

log

f2

f1

Figure 4.1: Tree representation of a feature, here log(f2) + f1. The
circles represent internal nodes and the squares represent leaves.

Depending on the classification algorithm and the candidate feature evaluation method,
both feature construction and feature selection methods can be divided into three
groups [Kohavi et al., 1997]:

• Filter methods compute a candidate feature score independently of the learn-
ing algorithm. For instance, information theoretic criteria such as information
gain [Quinlan, 1986] or correlation with the output [Hall, 1999] may be com-
puted to rank the candidate features and select the best one(s). Shafti and Pérez
[2007] propose a comparison between several filter methods. It comes up with
generic features that can be helpful for several learning algorithms at a time
while avoiding the risk for overfitting. However, the final feature set may not be
the most adapted regarding the chosen learning algorithm since the latter was
not involved in the process.

• Wrapper methods use the prediction score of a learning algorithm to evaluate the
candidate features. The main drawback of this class of methods is the computa-
tion time: it implies training and evaluating a model for each candidate, namely
multiple times. This approach is therefore usually slower than a filter approach.
However, the final feature set will be more specific to the learning algorithm,
hence guaranteeing a better improvement of the performance compared to a set
obtained through a filter method [Kohavi et al., 1997].

4.1. Tree-based feature construction algorithms 73

• Embedded methods combine the feature construction/selection process with the
training of the machine learning model. These methods are usually fast but very
specific to the chosen learning algorithm and hardly generalizable.

The different groups of algorithms for feature construction are presented in the next
sections, as illustrated on Figure 4.2. A general survey can be found in [Sondhi,
2009] or in a more recent review focused on evolutionary methods [Swesi and Bakar,
2019]. Although filter and wrapper methods are presented together in their respective
method-specific sections, a specific section (Section 4.3) is dedicated to embedded
feature construction methods.

Feature
construction

Evolutionary-
based (4.2)

Genetic
programming

(4.2.2) Constrained
genetic

programming
(4.2.2.2)

Grammatical
evolution
(4.2.2.1)

Swarm
intelligence

(4.2.1)

Tree-based
(4.1)Embedded

(4.3)

Filter

Wrapper

Figure 4.2: Classes of feature construction methods and structure
of this chapter (in the parenthesis are the sections or subsections indi-

cating where the topic is covered).

4.1 Tree-based feature construction algorithms

The first works on feature construction use mostly tree-based methods to search the
feature space. The principle is to iteratively generate new features by combining those
of the previous stage with the available operators (see Figure 4.3 for an example). The
generation strategy (exhaustive or not, and with or without feature selection) varies
between the different works.

The first tree-based algorithms such as FRINGE [Pagallo, 1989], CITRE [Matheus
and Rendell, 1989] and DCFRINGE [Yang et al., 1991] use Boolean operators such
as conjunction and disjunction. Then, FICUS [Markovitch and Rosenstein, 2002]
generalized these previous methods notably by proposing numerical operators.

Several works use the strategy of expansion-reduction: new features are generated
at each stage (for instance the exhaustive list of features that can be generated
from the previous stage), and then a feature selection step is applied to keep only
the most promising features for the next stage. TFC [Piramuthu and Sikora, 2009],
FEADIS [Dor and Reich, 2012], DSM [Kanter and Veeramachaneni, 2015] and OneB-
utton [Lam et al., 2017] apply this strategy. The main drawback is obviously the
dimensionality of the feature set before selection that can become huge.

Maes et al. [2012] do not maintain a population of candidate features in their work, but
instead grow iteratively one feature at a time using a Monte Carlo search embedded
into the induction of a decision tree.

74 Chapter 4. State of the art of feature construction

f1 f2 f3 f4

f1 + f2 f1f2
√
f3 f4 − f2 f3 + f4log(f1) f2

4

f3 + f4f1f2 f2
4

f1f2(f3 + f4) log(f3 + f4) f1f2 − f2
4 exp f2

4

Optional feature selection

Figure 4.3: Example of a tree-based search for new features.

Khurana et al. [2016] propose Cognito, a framework to recommend univariate trans-
formations to apply on a dataset, with a performance-guided exploration strategy of
the transformation graph. Reinforcement learning is later applied to find the best ex-
ploration strategy [Khurana et al., 2018]. However, this method is memory-consuming
and demands training on several different datasets.

More recently, the trend is to develop general feature engineering methods, i.e. that are
applicable to any new dataset and learning task without specific retraining [Nargesian
et al., 2017, Zhang et al., 2018].

While the most recent developments of tree-based algorithms overcome the drawbacks
of the first works in the field, these methods are often memory-consuming. Moreover,
since these methods are following a greedy approach, some good features may never
be found if the path leading to them is cut in the early stages.

4.2 Evolutionary-based feature construction algorithms

Evolutionary algorithms are a class of metaheuristic algorithms inspired from bio-
logical evolution. The principle is to evolve a population of individuals that encode
relevant information in their genes. Evolutionary computation applied to feature con-
struction has been widely studied (see [Swesi and Bakar, 2019] for a survey). Two fam-
ilies of evolutionary computation methods are used for feature construction: swarm
intelligence and genetic programming (GP), the latter being the most popular.

4.2.1 Swarm intelligence

A few works have been using particle swarm optimization (PSO) for feature construc-
tion. PSO [Kennedy and Eberhart, 1995] consists in a population of particles, each
one being a candidate solution. Particles move in the search space to find the optimal
solution. Each particle has a position X and a velocity V , each one being a vector of
size D the dimension of the search space. Depending on the best individual position
found by the particle P i and on the best position found by its neighborhood Pn,

4.2. Evolutionary-based feature construction algorithms 75

particles update their position and velocity:

V = ωV + b1(P i −X) + b2(Pn −X) (4.1)
X = X + V (4.2)

ω is the inertia parameter, b1 and b2 are randomly selected in the intervals [0, c1],
[0, c2] respectively, with c1 and c2 as acceleration constants.

Xue et al. [2013] claim to be the first to propose a PSO based feature construction
method. They use a binary version of the PSO algorithm to indicate the presence
or absence of each base feature in the final constructed feature. Thus, each particle
corresponds to one candidate feature, the dimensionality of the particle being the
number of base features. This method does not include the choice of operators to
combine the features. Dai et al. [2014] use the classical continuous version of PSO,
and expand the dimensionality to include the selection of operators. They propose
two representations: pair and array representation, to enable the evolution to optimize
the operators as well as the features used:

• In the pair representation, the particles still have the dimensionality of the
number of original features. Each element x of the position array of the particle
corresponds to one feature: if x < 0.5 the feature is not used, otherwise the
corresponding operator is chosen by dividing the interval [0.5, 1] into equal parts.

• In the array representation, the size of the particle position vector is 2n− 1, n
being the number of initial features. Half of the vector is used to determine if
the feature is used or not, and the other half to choose the operator associated
to the feature in the case it is selected.

The advantage of the array representation over the pair is the independence of the
choice of the operator with respect to the choice of using the feature. However, the
pair representation is twice smaller and therefore simpler to optimize. Mahanipour
and Nezamabadi-pour [2017] improve the previous algorithms by including a feature
selection algorithm to reduce feature dimensionality before applying the PSO algo-
rithm. Finally, Swesi [2020] adds feature clustering to reduce the dimensionality of
the final feature set.

The main drawback of all of these PSO based methods is that the tree structure of the
built features is highly constrained and has to be chosen before performing the PSO
algorithm. The works presented above used only binary operators in a degenerate
tree structure in which each node has at least one leaf child.

A recent method inspired by PSO exploits gravitational search algorithm (GSA)
[Rashedi et al., 2009] for feature construction [Mahanipour and Nezamabadi-pour,
2019]. GSA is a swarm intelligence algorithm in which agents evolve and are subject
to gravity. Each agent gets a mass corresponding to a heuristic evaluation. Agents at-
tract each other by a gravity force, and progressively move towards the heavier agents
(i.e. the good solutions). Multiple features can be built at a time, but this method
still suffers the lack of flexible tree structure despite achieving good results.

4.2.2 Genetic programming

Genetic programming (GP) is an evolutionary computation technique comparable
to genetic algorithms. However, while individuals in genetic algorithms are vectors,

76 Chapter 4. State of the art of feature construction

individuals in GP are represented as trees [Koza, 1992]. Several representations that
are more specific exist:

• linear GP [Banzhaf et al., 1998] with only a sequence of unary functions and
one terminal, which is of little interest for feature construction purposes since
correlations between features would not be exploited;

• Cartesian GP [Miller and Harding, 2008] in which individuals are represented
as graphs, thus generalizing tree-based GP;

• grammar-based GP [Mckay et al., 2010a], which is more specifically covered in
4.2.2.2.

Tree-based GP evolves a population of individuals through specific mutation and
crossover operations. The probabilities that crossover and/or mutation occur for a
given individual are hyperparameters of the algorithm. Individuals are evaluated with
a fitness function, and the poorly-scoring are eliminated from the next generation.
Figure 4.4 summarizes the evolution process: a generation n of individuals undergoes
crossover (exchanging branches) and mutation (modifying a branch); the offspring is
evaluated and selection is performed to obtain the next generation.

...

...

Crossover
Mutation

Evaluation and selection

Generation n

Offspring

Generation n+1

Figure 4.4: Overview of the principle of genetic programming.

The evolution operators (generation of the initial population, mutation, crossover,
selection, and especially evaluation) can vary between the different studies, but the
most used are:

• Generation, three different methods can actually be used:

– Full : the tree is generated until a certain depth. All leaves reach this
maximal depth.

4.2. Evolutionary-based feature construction algorithms 77

– Grow : for each node, unless it has reached the maximal depth, the node
has a certain probability to be a leaf or else to begin a subtree.

– Half and half : half of the time, the individual is generated using the “Full”
algorithm, and the other half with the “Grow” algorithm.

• Mutation: the most common method is to regenerate a subtree, although many
other methods exist (for instance replacing a node, generating a new branch or
pruning one, etc.) [Koza, 1992].

• Crossover: two subtrees are exchanged between the two parents.

• Evaluation: depends on the application but involves a fitness function.

• Selection: usually a repeated tournament between k individuals: the individual
with the best score among the k individuals is selected for the next generation.
Compared to the strategy of selecting the best individuals, the tournament
permits to introduce randomness into the selection process and to prevent quick
convergence into a local optimum.

GP has been widely used as a feature construction method. The fitness function
here serves to rank the individuals according to the fitness score of the corresponding
candidate feature. The fitness function notably depends on the chosen evaluation
approach: wrapper or filter. In addition, GP-based feature construction methods
distinguish by the number of built features: some methods (mostly filter methods)
add a single feature to the original feature set, while other methods produce multiple
features and either add them to the original set or completely replace it.

Single feature construction

Various filter measures can be used for single feature construction. Otero et al. [2003]
uses information gain ratio to evaluate the candidate features, while others prefer the
Fisher criterion [Guo et al., 2005, Aslam et al., 2013, Ahmed et al., 2014b]. Muharram
and Smith [2005] try four different filter measures for single feature construction. With
the wrapper approach, Ahmed et al. [2014a] uses the classification score of a random
forest to evaluate the candidate features.

Multiple feature construction

In most cases, single feature construction techniques add the newly built feature to
the initial feature set. In contrast, build multiple features at a time is useful for
classification problems for several reasons:

• adding more than one feature may add useful information to help the classifica-
tion task;

• replacing entirely the initial set of features with a set of multiple built features
can reduce the data dimensionality.

One approach is to perform several single feature construction processes: Neshatian
et al. [2007, 2012] add sequentially one feature per class to discriminate this specific
class from the others, using an entropy-based fitness function. Hart et al. [2017] also
perform multiple feature constructions with the Hellinger distance (a distance between
distributions) as filter fitness function, and then feature selection. This method is more
computationally demanding since it requires more feature constructions than needed

78 Chapter 4. State of the art of feature construction

and an additional feature selection step. Finally, Krawiec and Włodarski [2004] use
cooperative coevolution to build multiple features: several single-tree populations
evolve simultaneously. The fitness function of an individual in a given population is
computed taking into account the best individuals in other populations, to maintain
the complementarity between all the built features: each population is providing one
built feature in the final feature set. This approach is more complex than the multi-
tree representation techniques presented in the next paragraph.

Another method is thus to use a multi-tree representation for the individuals in GP:
instead of having a single tree, an individual is now a fixed-length vector of trees
and corresponds to a set of features. The evolution can then be done with a classi-
cal genetic algorithm [Vafaie and De Jong, 1995, Drozdz and Kwasnicka, 2010], with
the mutation operator regenerating one of the trees, and for instance a single-point
crossover operator. The other possibility is to use GP operators: the crossover ex-
changes two subtrees between two trees at the same location in the two parents, and
the mutation operates only on one tree of the individual [Krawiec, 2002, Smith and
Bull, 2005, 2007]. Tran et al. [2016b] build with this technique a number of features
proportional to the number of classes, using a fitness function combining the accu-
racy of a classifier with a distance computed to minimize the intra-class distance and
maximize the inter-class distance. The major drawback of these methods is that the
number of built features becomes a hyperparameter of the algorithms.

The last method is to use a single-tree representation and to extract subtrees from
it to form a multiple feature set. Guo et al. [2011] add a univariate function F to
the list of operators for the GP algorithm. This function F denotes the start of a
subtree that will be added as a feature in the final feature set. The advantage is
that the number of built features is not fixed. Similarly, Ahmed et al. [2014b] extract
all possible subtrees from the best individual to form a new feature set. Tran et al.
[2016a] do the same but incorporating a feature selection step. However, they show
later that a multi-tree representation generally gives better results than a single-tree
representation for multiple feature construction, since interactions between features
are better modeled in the multi-tree case [Tran et al., 2019].

In addition, a few works use Cartesian GP to perform multiple feature construction
[Yazdani et al., 2017, Elola et al., 2017]. The graph representation of Cartesian GP
allows to build a variable number of features at a time, but does not necessarily exploit
the complementarity between features as in the multiple trees approach.

4.2.2.1 Grammatical evolution

Grammatical evolution (GE) is an evolutionary algorithm similar to GP, except that
it uses grammars to generate the programs (or the features in the context of feature
construction) [O’Neill and Ryan, 2001]. However, even if the generated programs take
the form of trees, the evolution is different from the one of GP and is performed instead
by a genetic algorithm. GE distinguishes indeed the genotype from the phenotype:
the genotype is usually a list of integers that goes through the evolution process, and
can be transformed into the phenotype, which is a tree expression used to get the
fitness score.

Figure 4.5 illustrates the translation process from the genotype to the phenotype.
The genotype is translated to the phenotype thanks to the context-free grammar
associated with the problem. A context-free grammar does not depend on the context

4.2. Evolutionary-based feature construction algorithms 79

and is defined by non-terminal symbols (that can be decomposed in a combination of
symbols), terminal symbols (operators, variables or constants), and production rules
(possible transformations from non-terminal symbols to other symbols). Figure 4.6
shows an example of a typical grammar used for feature construction that corresponds
to the translation example on Figure 4.5. Starting from an individual (a list of integers,
i.e. the genotype), the associated expression tree (i.e. the phenotype) is obtained
by reading the individual left to right: an integer is translated into an expression
by replacing the first non-terminal symbol by the nth production rule of that non-
terminal, n being the modulus of the integer by the number of rules.

Genotype: 08604221
s t a r t <expr>

0 % 3 = 0 <expr> <op> <expr>
8 % 3 = 2 <term> <op> <expr>
6 % 2 = 0 <var> <op> <expr>
0 % n = 0 f1 <op> <expr>
4 % 4 = 0 f1 + <expr>
2 % 3 = 2 f1 + <term>
2 % 2 = 0 f1 + <var>
1 % n = 1 f1 + f2
Phenotype: f1 + f2

Figure 4.5: Illustration of the phenotype derivation from the gram-
mar.

<s t a r t > : := <expr>
<expr> : := <expr> <op> <expr> | <func> (<expr >) | <term>
<op> : := + | − | × | ÷
<func> : := cos | s i n | tan | exp | l o g
<term> : := <var> | <const>
<var> : := f1 | f 2 | . . . | f n
<const> : := 0 | 1 | . . . | 9

Figure 4.6: Example of a context-free grammar used for feature
construction with GE algorithms.

A few works use GE for feature construction. Gavrilis and Tsoulos [2005] say they are
the first to propose GE to build a fix number of features with a wrapper method and
continue their work in [Gavrilis et al., 2008]. Tzallas et al. [2016] apply this technique
to electroencephalogram signals classification, using a radial basis function network
as classifier to evaluate the individuals. Miquilini et al. [2016] extend this approach
to single feature construction, hence with individuals of shorter length and easier to
evolve. Gunawan et al. [2012] associate a probability to each production rule for a
given non-terminal symbol, thus biasing the genotype generation.

However, Whigham et al. [2015] compare GE with grammar-based GP (covered in
4.2.2.2), and conclude that grammar-based GP outperforms GE in most of the prob-
lems. They also report that GE is often similar to a random search method. GE has
indeed some drawbacks, including high redundancy (several individuals can lead to
the same expression tree).

80 Chapter 4. State of the art of feature construction

4.2.2.2 Constrained genetic programming

The next paragraphs are dedicated to the review of methods that constrain GP to
either incorporate knowledge or improve interpretability. In many fields, there are
requirements concerning the interpretability of the analysis method and/or the use
of prior knowledge, which can guide the feature search [Doshi-Velez and Kim, 2017,
Ratle and Sebag, 2001b]. Genetic programming offers many possibilities to enforce
interpretability and/or to incorporate prior knowledge.

For instance, a few articles focus on improving the interpretability of the features a
posteriori. Smith and Bull [2007] improve the readability of features with a parsi-
mony measure, limiting their complexity. Several works use a multi-objective fitness
function including a measure of simplicity (feature depth for instance) in addition to
a performance metric [Icke and Rosenberg, 2011, Zhang and Rockett, 2011, Ahmed
et al., 2016]. Similarly, Cano et al. [2017] facilitate data visualization as an additional
objective.

Not limited to feature construction, several works constrain GP in its structure to
incorporate prior knowledge. In his early work, Koza [1992] uses syntactic constraints
to enforce the production of valid individuals. He notably restricts the crossover
operation according to the operator types (Boolean, nominal, ...). Keijzer and Babovic
[1999] deal with variables that have a dimension (there can be matrices or vectors for
instance). They perform a multi-objective evolution to favor dimensionally consistent
solutions, but non-valid individuals are still present in the population. Schmidt and
Lipson [2009] use symbolic regression, containing a GP algorithm, to extract physics
laws from experimental data. They do not consider the dimensionality of the input
variables, letting constant scalar variables compensate for the units. They perform a
multi-objective optimization with a parsimony measure.

In strongly-typed GP [Montana, 1995, Haynes et al., 1996], the crossover and mu-
tation operators are restricted according to the constraints put on the construction
process. Montana [1995] defines types to be assigned to each original feature. Every
operator gets a list of accepted types (e.g. vectors, matrices, angles, etc.) to combine
and a return type. Standard GP actually requires closure, namely that any individual
tree can be considered as a subtree of another tree. To keep individuals valid during
the entire evolution when constraining the construction process, the evolution func-
tions are modified accordingly. For instance, the crossover operation is only possible
between two subtrees of the same type. The mutation of a subtree should produce a
new subtree of the same root type.

Constraints in GP can also be expressed through grammars: the technique is called
grammar-based GP [Mckay et al., 2010b]. In grammar-based GP, contrary to GE, an
individual is a tree derived from the grammar, called a derivation tree, from which one
can infer a GP-regular expression tree by retrieving the leaves of the derivation tree.
Examples of a derivation tree and an expression tree are displayed on Figure 4.7. The
evolution uses the same operators than in standard GP, but applies on the derivation
trees (the genotype) instead of the expression tree (the phenotype). However, the
crossover and mutation operators are constrained so that the offspring respects the
grammar.

4.3. Embedded feature construction 81

start

expr

op

+

expr

func

log

expr

term

var

f2

expr

term

var

f1

+

log

f2

f1

Figure 4.7: Derivation tree (on the left) and associated expression
tree (on the right). The leaves of the derivation tree are read left to

right to form the expression tree in a depth-first manner.

In [Ratle and Sebag, 2001b], a context-free grammar constrains the evolution to pro-
duce only individuals representing dimensionally valid expressions, to discover empir-
ical physics laws from numerical experiments. They modify the initialization proce-
dure, which can raise an error if there is not a terminal for each type. Crochepierre
et al. [2020] use this principle for extraction of dimensionally-consistent features from
sensor data.

In conclusion, grammar-based GP is a flexible method to enforce constraints and
especially to consider the dimensionality of the input variables.

4.3 Embedded feature construction

The last section of this review is dedicated to embedded feature construction, in
opposition to filter or wrapper methods, which are preprocessing methods. Indeed,
prior feature construction may use a learning algorithm to compute the scores of
the candidate features (if the wrapper approach is chosen), but the definitive model
is trained only once the feature construction process is completed, using the final
feature set. On the opposite, embedded feature construction permits to train the final
model at the same time as the features are built. For instance, in a decision tree
induction, each node would require its own feature construction process to get the
splitting feature.

Few works are performing explicit numerical feature construction in an embedded
manner. Most of the field is dedicated to performing feature construction in decision
trees.

82 Chapter 4. State of the art of feature construction

Ekárt and Márkus [2003] are the first to use a GP algorithm to find the best splitting
feature at each node in the induction of a decision tree, with a custom error-based
fitness function. In [Mugambi et al., 2004], a GP algorithm is also run in each node of
a decision tree to find a polynomial of the initial features to be used as the splitting
feature. The FCTree algorithm [Fan et al., 2010] randomly generates few candidate
features in each step of the induction of a decision tree: the operators are weighted
depending on their performance in previous iterations, and good operators have a
higher probability to be picked later in the decision tree. In [Maes et al., 2012] a
Monte Carlo search of features is embedded in several tree-based ensemble methods,
building one feature at each node of the trees. The core idea is to explore a small
part of the feature space at each decision node, given a set of constructor functions
and the set of initial features. A simple search is performed to preserve the weak
aspect of the base learner in ensemble methods. They suggest that the entire space of
features may be explored in the whole training process by visiting only a small part
of it at each node. Moreover, other optimization algorithms such as GP are avoided
to prevent overfitting especially in the context of ensemble models. A randomized
feature generation algorithm is performed at each node during tree growing. Zięba
et al. [2016] also embed feature construction into tree ensembles (XGBoost in their
cases): for a given tree, the considered features are combinations (with mathematical
operators) of the most used features in the previous trees.

Finally, several works use genetic algorithms for both feature construction and model
induction [García et al., 2014, 2015]. In a similar manner, Chen et al. [2017] use GP
in a integrated manner to build the features and the model.

To conclude, embedded feature construction methods differ from the learning algo-
rithm they are embedded into, but also from the complexity of the feature construction
method itself: a number of methods avoid evolutionary algorithms by fear of overfit-
ting [Maes et al., 2012].

In the two next chapters, we develop our own feature construction algorithm based
on the state of the art, and apply it in a prior and embedded manner.

83

Chapter 5

Interpretable feature construction
as a prior method

5.1 Constrained feature construction algorithm 84
5.1.1 Grammar-based GP to handle physical quantities 84
5.1.2 Transition matrix for guiding according to physics principles 85
5.1.3 Evolution . 87

5.2 Experiments on prior feature construction 88
5.2.1 Experimental settings . 88
5.2.2 Convergence of the algorithm 89
5.2.3 Performance comparison . 90
5.2.4 Computation time . 97
5.2.5 Discussion on interpretability 97

5.3 Conclusion and perspectives 100

As seen in the previous chapter, while most previous work in the feature construction
field combine base variables without considering their potential units or dimensional-
ities, few works introduce grammars to control the validity of the built features [Ratle
and Sebag, 2001b, Schmidt and Lipson, 2009].

This chapter introduces our feature construction algorithm adapted to physics data
analysis by including prior knowledge about the built features: their units and dimen-
sions are taken into account and a prior probability distribution is assumed in between
the different mathematical operators. This chapter presents a generic method of con-
strained feature construction that can be applied to similar high-energy physics (HEP)
event selection tasks and easily adapted to any problem that has similar prior knowl-
edge, namely quantities with units and/or dimensions and prior knowledge about
their relevant combinations. To demonstrate the performance of our method applied
to other problems than CLAS12 event selection, all experiments presented in this
chapter and the next one include up to three additional HEP datasets whose descrip-
tion is provided in Appendix C.

Section 5.1 details the general algorithm for constrained feature construction. This al-
gorithm is used as a prior feature construction algorithm in the experiments conducted
in section 5.2.

The method presented in section 5.1 and the experimental results for prior feature
construction in section 5.2 have been published in the proceedings of the 2019 IEEE
Congress on Evolutionary Computation (CEC):

84 Chapter 5. Interpretable feature construction as a prior method

N. Cherrier, J. Poli, M. Defurne and F. Sabatié, “Consistent Feature
Construction with Constrained Genetic Programming for Experimental
Physics”, 2019 IEEE Congress on Evolutionary Computation (CEC), pages
1650-1658, IEEE, 2019.

5.1 Constrained feature construction algorithm

As seen in chapter 4 and particularly in 4.2.2.2, GP is the most flexible feature con-
struction method to incorporate domain knowledge and notably for enforcing feature
interpretability. Therefore, GP will be used and adapted for feature construction in
the context of HEP applications.

HEP involves quantities that are each associated to a dimension and to a physical
unit. For instance, input features are particle momenta in GeV/c, geometrical angles
in degrees or radians, etc. When combining these base features into high-level vari-
ables through automated feature construction, some associations must be forbidden:
for instance, adding an energy in GeV to a length in centimeters. Moreover, some re-
current patterns exist in the standard physics analyses that can be exploited to guide
the search for relevant high-level features. In particular, we want to reproduce the
approach of creating high-level features, common in fundamental sciences. Variables
such as the missing masses or invariant masses are frequently used to select signal
events, and consist in the square root of a sum of squared quantities (actually the
norm of a four-momentum).

Therefore, two forms of prior knowledge can be used: first the knowledge of the base
variables units and dimensions and second the experience of their usual combinations
in physics analyses. Moreover, guiding the feature search as such should also permit
to ensure interpretability of the finally built features: unit and dimension-consistent
features are obviously mathematically valid and features that resemble in some ways
to usual variables used by expert physicists are easier to read and more interpretable.
These two forms of guidance are tackled respectively in subsections 5.1.1 and 5.1.2.
The global algorithm is summarized in subsection 5.1.3.

5.1.1 Grammar-based GP to handle physical quantities

Grammar-based GP permits to enforce constraints during feature construction. Fol-
lowing the idea of Ratle and Sebag [2001b], we define a context-free grammar that
constrains feature construction so that only valid features can be built form the point
of view of units and dimensions. We limit the achievable unit powers so that the
algorithm does not produce quantities with unit GeV8/rad3 for instance.

The grammar differs a bit depending on the dataset. For CLAS12, we make available
the three-momentum as three independent components in Cartesian (px, py, pz) and
spherical coordinates (pT , θ, φ). Finally, we also provide the 3D vector p as addi-
tional base variable. All base features, their dimensions and units are summarized
in Table 5.1. For other datasets used in the experiments, only the features present
in the dataset are used as base features. The grammar is defined accordingly. The
descriptions of these datasets, their base features and grammars can be found in Ap-
pendix C.

CLAS12 grammar is presented on Figure 5.1. It includes standard operators such
as addition, product, trigonometric functions and operations on vectors such as the

5.1. Constrained feature construction algorithm 85

Table 5.1: Base features of each particle for CLAS12 data. Axis z is
the incoming beam axis, pT is the momentum in the transverse plane
(x, y), θ the polar angle between the z axis and the transverse plane
to the beam, φ the azimuthal angle between axes x and y. In total,
there are 7 base features per particle for a total of 35 base features for

CLAS12.

Dimension Unit

px 1 GeV/c
py 1 GeV/c
pz 1 GeV/c
pT 1 GeV/c
θ 1 rad
φ 1 rad
p 3 GeV/c

norm, scalar product, angle between two vectors, etc. A terminal can be either a base
variable or a constant of the proper dimension/unit. We notably provided the proton
mass Mp = 0.938GeV/c2 and the incoming electron beam energy E = 10.6GeV as
constants. The grammar-based GP can be seen here as a strongly-typed GP, the types
being the different unit and dimension configurations.

<s t a r t > : := <E> | <E2> | <A> | <F>
<E> : := <E> + <E> | <E> − <E> | <E> × <F> | <E> ÷ <F>

| s q r t (<E2>) | norm(<M>) | <component>(<M>) | <termE>
<E2> : := <E2> + <E2> | <E2> − <E2> | <E2> × <F> | <E2> ÷ <F>

| <E> × <E> | squa r e (<E>) | dot(<M>,<M>) | <termE2>
<A> ::= <A> + <A> | <A> − <A> | <A> × <F> | <A> ÷ <F>

| ang l e (<M>,<M>) | <termA>
<F> : := <F> + <F> | <F> − <F> | <F> × <F> | <F> ÷ <F>

| <E> ÷ <E> | <E2> ÷ <E2> | <A> ÷ <A> | s q r t (<F>) | squa r e (<F>)
| cos (<A>) | s i n (<A>) | tan(<A>) | <termF>

<M> ::= <M> + <M> | <M> − <M> | <termM>
<component> : := get_x | get_y | get_z

Figure 5.1: Grammar used for CLAS12 data. E stands for a 1D
momentum or energy in GeV/c or GeV, E2 for a squared momentum
or energy in GeV2/c2 or GeV2, A for an angle in radians, F for a unitless
real number,M for a three-momentum of unit GeV/c. <termX>means

a terminal of type X, namely a base feature or a constant.

5.1.2 Transition matrix for guiding according to physics principles

The default grammar-based GP algorithm randomly selects a production rule each
time a non-terminal symbol must be transformed. For instance, the probabilities to
transform the symbol <component> into get_x, get_y and get_z are equal. In
HEP, operators are more frequent than others. For instance, the division is not often
employed contrary to the addition. This is logical because physics analyses largely
rely on energy and momentum conservation, i.e. summing the input and subtracting
the output. The grammar as in Figure 5.1 already biases the search: trigonometric
operators will be quite rare since they appear in only 3 out of the 13 production rules
of <F>.

86 Chapter 5. Interpretable feature construction as a prior method

To enforce our own guidance on the feature search and favor the construction of
formulas that are similar to those used in HEP, we choose a probability distribution
on the transitions between operators. For instance, a square root in physics is very
often followed by a sum of squares. In this way, we also forbid a square operator
followed by a square root and conversely, to simplify the trees. This last constraint
could actually appear in the grammar itself, but it would lead to a more complex and
less readable grammar.

The transition matrix for CLAS12 is displayed on Table 5.2. These probabilities
have been chosen manually following our expertise of the usual patterns in usual
discriminative variables. The return type (i.e. the unit of the feature) is chosen
among the one-dimensional types with a prior distribution. The first operator (i.e.
the root of the tree) is chosen among all operators of the selected return type with a
uniform distribution.

Table 5.2: Transition matrix for CLAS12 data. The probabilities
are displayed for the next possible operations (as columns) given the
previous operation (as row). Operations that are not listed as rows
have a uniform transition probability distribution. Operations that are
not listed as columns for a given previous operation cannot be selected
as next operation (probability 0). The notations are the same than in

the grammar (Figure 5.1).

Return type: {E: 0.5, A: 0.2, F: 0.1}.
E + E E - E E × F E ÷ F sqrt(E2)

E + E 0.1 0.1 0.1 0.1 0.6
E - E 0.225 0.225 0.25 0.2 0.1

E + E E - E E × F E ÷ F norm(M)

square(E) 0.5 0.1 0.07 0.03 0.3

E2 + E2 E2 - E2 square(E) E × E

E2 + E2 0.4 0.15 0.4 0.05
E2 - E2 0.2 0.07 0.7 0.03
sqrt(E2) 0.7 0.25 0 0.05

E + E E - E E × F E ÷ F sqrt(E2)

E × F 0.15 0.15 0.35 0.3 0.05
E ÷ F 0.15 0.15 0.35 0.3 0.05

F + F F - F F × F square(F) cos(A) sin(A) tan(A)

E × F 0.025 0.025 0.025 0.025 0.375 0.375 0.15
E ÷ F 0.025 0.025 0.025 0.025 0.1 0.1 0.7

M + M M - M

norm(M) 0.9 0.1

An attempt has been made to extract these probabilities automatically from physics
documents: articles, books, lectures, etc. However, notations were often simplified and
were mostly using vector notations instead of separate components. As an example,
trigonometric functions barely appear. Therefore, this attempt to automate the design
of the transition matrix failed and we kept our initial matrix (the one of Table 5.2).

5.1. Constrained feature construction algorithm 87

Ratle and Sebag [2001a] set probabilities in the grammar (as opposed to our transition
matrix between successive operators) and update them during the evolution. On the
opposite, we choose not to update our transition matrix during the evolution. The
idea behind introducing probabilities during the generation of individuals is indeed to
guide the search towards physically sound features and not to seek higher performance.

5.1.3 Evolution

From the grammar and transition matrix, one can obtain valid tree-like individu-
als forming a population that can be evolved with GP. Since the grammar and the
transition matrix are guiding the search, a few subtleties add to the standard GP
evolution.

Contrary to GE, grammar-based GP directly evolves the trees. We consider both
single and multiple feature construction: in the multiple feature construction case, we
use a multi-tree representation and therefore evolve a population of individuals, which
are lists of trees.

An initial population is firstly generated, evaluated and then evolved. For each indi-
vidual in the population, mutation can be applied with a probability Pmutation and
crossover with a probability Pcrossover. The offspring is then evaluated, and the se-
lection is performed over the whole offspring and parent population, which has the
advantage of keeping in the population some efficient features from the parent popu-
lation.

The following paragraphs detail the evolution methods for both single and multiple
feature construction.

5.1.3.1 Generation

Whether for constructing one or several trees (i.e. one or several features), the trees
are generated using the half and half generation (see 4.2.2). The process of choosing
the operators is however altered to respect the grammar.

A type T and the first operator (returning type T) are selected under the initial prob-
ability distribution. Then, while the condition on current depth is not satisfied, the
tree keeps growing. The possible operators are selected according to the grammar.
The transition matrix then defines a distribution probability among the possible op-
erators according to the parent node. Finally, the leaves of the tree are randomly
chosen among the set of base features and constants of the proper type.

After the population is initialized, the evolution process begins with a series of mu-
tations, crossovers, evaluations and selections. However, the generation technique is
still used during the evolution each time a tree or a subtree needs to be created, to
keep following the same grammar rules and transition probabilities.

5.1.3.2 Mutation and crossover

Mutation and crossover operators apply classically at each generation of the GP al-
gorithm to constitute the offspring.

The mutation method is randomly picked among three existing techniques. Each of
these techniques is modified to be compatible with the grammar:

88 Chapter 5. Interpretable feature construction as a prior method

• Uniform mutation: a node is selected in the tree, then the subtree is entirely
regenerated from that node while making sure that the dimensional consistency
is still respected in particular at the root.

• Node replacement : a node is selected and replaced with any dimensionally com-
pliant node.

• Insertion: from a selected node, a new subtree is inserted that have the original
subtree(s) of the mutated node as child nodes. The inserted subtree is generated
so that the grammar is also respected at the connections with the original tree.

The transition matrix is used each time a new tree or subtree needs to be generated
to support the interpretability. In the case of multiple feature construction, mutation
is applied on each tree of the list.

The crossover operation is the standard GP one-point crossover, assuming that the
exchange of the two subtrees is compatible with the grammar, i.e. that the two roots
of the subtrees share the same type. For multiple feature construction, the crossover
is applied on the lists instead of on the trees: two sublists are exchanged.

The newly created individuals (either trees or lists of trees) form the offspring, which
is to be evaluated.

5.1.3.3 Evaluation and selection

To evaluate an individual, trees are converted to numerical features by computing the
function they represent on the base features. Any invalid operation (division by zero
for instance) would create a missing value. Then, a fitness function must evaluate
the transformed individual. To this end, several methods exist as seen in chapter 4.
Wrapper methods evaluate the score (for instance accuracy) of a classifier trained with
the newly built feature(s). Filter methods use ranking measures that are independent
of any predictor.

The individuals of the offspring are therefore given a fitness. Selection applies on
the joint set of individuals from the offspring and from the parent population. A
repeated tournament selection among three randomly picked individuals constitutes
the next generation population. The tournament size of three is a compromise between
randomness and quick convergence.

5.2 Experiments on prior feature construction

This section presents experiments using the constrained feature construction algo-
rithm detailed in section 5.1 as wrapper or filter feature construction method. For
these experiments, three datasets are used: CLAS12 (without missing values), Higgs
and τ → 3µ. Their descriptions, grammars and transition matrices can be found in
Appendix C.

5.2.1 Experimental settings

In the experiments, different versions of the proposed grammar-based GP algorithm
are compared:

• standard GP (noted GP), without any constraint;

• grammar-based GP (noted GBGP), with the grammar;

5.2. Experiments on prior feature construction 89

• probabilistic grammar-based GP (noted PGBGP), with the grammar and the
transition matrix.

The probability of mutation and crossover are both set to 0.6. Individuals can un-
dergo both mutation and crossover during the same generation. The complexity of
the built features is restrained by setting a maximal depth of 4 for the individuals
(corresponding to maximum 15 nodes). An individual can consist of one or several
trees, i.e. features. The experiments go from 1 to 6 built features. The GP evolu-
tion consists of a population of 500 individuals being evolved over 100 generations.
The PSO method for feature construction proposed by Dai et al. [2014] and detailed
in 4.2.1 is used as baseline for the proposed GP-based methods. Both the array and
pair representations are tested. Similarly to the GP-based methods, 500 particles are
evolved during 100 iterations. Other hyperparameters are the same as determined
in [Dai et al., 2014]. Since PSO is only capable of building one feature at a time, it is
compared only with the proposed methods for a single built feature.

In the following, several fitness functions are used. Filter and wrapper approaches are
notably compared. For the wrapper approach, whatever the classification algorithm,
its Cohen’s kappa score over a 3-fold cross-validation performed on the joint set of
base features and candidate feature(s) is used as fitness score.

The hyperparameters specific to each machine learning model can be found in Ap-
pendix D.

Evaluation is performed using a classification algorithm trained with the base features
on the one hand and with the base features plus the newly built ones on the other
hand. All results are presented with their mean and standard deviation over at least
25 independent runs (5 for each fold, for five folds).

5.2.2 Convergence of the algorithm

Figures 5.2, 5.3 and 5.4 display the evolution of the population fitness along the
number of generations respectively for the CLAS12, Higgs and τ → 3µ datasets using
CART as wrapper fitness function to build 1 or 6 features.

0 20 40 60 80 100
Number of generations

0.22

0.24

0.26

0.28

0.30

0.32

M
ea

n
fit

ne
ss

 o
f t

he
 p

op
ul

at
io

n

1 feature

GP
GBGP
PGBGP

0 20 40 60 80 100
Number of generations

0.25

0.30

0.35

0.40

M
ea

n
fit

ne
ss

 o
f t

he
 p

op
ul

at
io

n

6 features

GP
GBGP
PGBGP

Figure 5.2: Convergence with CART as wrapper fitness function of
the three variants of the GP algorithm for the CLAS12 dataset: mean

fitness of the generation as function of the generation number.

In all cases, convergence is reached after 100 iterations or less. However, building
6 features require more generations than building a single one. Convergence is also

90 Chapter 5. Interpretable feature construction as a prior method

0 20 40 60 80 100
Number of generations

0.24

0.26

0.28

0.30

0.32
M

ea
n

fit
ne

ss
 o

f t
he

 p
op

ul
at

io
n

1 feature

GP
GBGP
PGBGP

0 20 40 60 80 100
Number of generations

0.15

0.20

0.25

0.30

0.35

0.40

M
ea

n
fit

ne
ss

 o
f t

he
 p

op
ul

at
io

n

6 features

GP
GBGP
PGBGP

Figure 5.3: Convergence with CART as wrapper fitness function of
the three variants of the GP algorithm for the Higgs dataset: mean

fitness of the generation as function of the generation number.

0 20 40 60 80 100
Number of generations

0.36

0.38

0.40

0.42

0.44

0.46

0.48

M
ea

n
fit

ne
ss

 o
f t

he
 p

op
ul

at
io

n

1 feature

GP
GBGP
PGBGP

0 20 40 60 80 100
Number of generations

0.2

0.3

0.4

0.5
M

ea
n

fit
ne

ss
 o

f t
he

 p
op

ul
at

io
n

6 features

GP
GBGP
PGBGP

Figure 5.4: Convergence with CART as wrapper fitness function of
the three variants of the GP algorithm for the τ → 3µ dataset: mean

fitness of the generation as function of the generation number.

slower for CLAS12 than for other datasets, probably due to the larger number of base
features plus the vectors. The convergence for the τ → 3µ dataset is fast in the very
first generations. Then, the average fitness of the population hardly increases.

Therefore, setting the number of generations to 100 seems an appropriate choice for
these datasets. To optimize the evolution, this number could be tuned depending on
the dataset, evolution method and number of built features.

5.2.3 Performance comparison

In the experiments, three different fitness functions were tested: two wrapper ap-
proaches with CART and FURIA and one filter approach with the information gain.
The main criterion for choosing the classifiers used for the wrapper fitness function is
their rapidity of induction. This rapidity depends of course on the implementation,
therefore C4.5 could be used as well as fitness function if the used Python imple-
mentation was as optimized as the CART implementation in scikit-learn. However,
the induction of more sophisticated models like tree ensembles (AdaBoost, Gradient-
Boosting) or GAM is intrinsically more complex and hence these models cannot be
used as wrapper fitness function for feature construction in a reasonable amount of
time.

5.2. Experiments on prior feature construction 91

5.2.3.1 Using the information gain as a filter fitness function

The information gain used in C4.5 decision tree induction is first used as a filter fitness
function. Only one feature can be built with this technique since there is no control
of inner correlations between features. Therefore, features built with this technique
may be redundant in terms of discriminative information.

Table 5.3 compares the results obtained by the constrained GP versions (GBGP and
PGBGP) with a few baselines for the three considered datasets. In all cases, feature
construction permits to significantly improve the baselines: from 0.018 for τ → to
0.070 for CLAS12. It is still difficult for the τ → 3µ dataset for which the PSO
methods degrade the classification score. However, PSO pair performs particularly
well for the CLAS12 dataset: actually, it is able to find most of the times a very good
feature, namely:

pez + ppz + pγ1z . (5.1)

This feature leads to an average gain of 0.078 on the Cohen’s kappa score, which
amounts to 20% of the baseline C4.5 score. It is very simple to build and therefore to
find during a feature construction. It is also very often built by the constrained GP
versions, GBGP and PGBGP. However, this result demonstrates a better stability
of the PSO algorithm compared to the GP one for feature construction, since the
unconstrained GP fails to find this feature most of the times, while PSO pair finds it
in 97% of cases at least as part of a more complex feature.

Table 5.3: Cohen’s kappa score for one built feature with differ-
ent feature construction methods. Fitness function: information gain;

evaluation: C4.5.

CLAS12 Higgs τ → 3µ

Baseline (without feature
construction)

0.318 ± 0.018 0.384 ± 0.006 0.470 ± 0.009

PSO pair 0.383 ± 0.037 0.351 ± 0.006 0.447 ± 0.036
PSO array 0.317 ± 0.108 0.343 ± 0.012 0.457 ± 0.019
GP 0.330 ± 0.034 0.404 ± 0.013 0.488 ± 0.014

GBGP 0.374 ± 0.026 0.395 ± 0.010 0.484 ± 0.010
PGBGP 0.378 ± 0.020 0.396 ± 0.013 0.483 ± 0.010

In other cases, the GP algorithms systematically obtain better results than the PSO
based approaches. Then, the results are not significantly different between the uncon-
strained GP and the constrained versions except for CLAS12: GBGP and PGBGP
surpass the simple GP method. This better outcome is probably due to the use of
vectorized base variables for CLAS12. The unconstrained GP is incapable of han-
dling them, while the vector data structure brings a significant contribution as prior
knowledge to guide the feature search towards geometrical features.

Although the difference is not significant for other datasets, the simple GP algorithm
outperforms slighly the constrained versions. Indeed, it has a larger search space avail-
able and should theoretically find equal or better features if given sufficient resources
(for instance, population size and number of generations). However, the performance
gap is not significant between unconstrained and constrained GP. This means that

92 Chapter 5. Interpretable feature construction as a prior method

the set of potentially interpretable features is as discriminative as the set of least
understandable features built by the unconstrained GP.

Finally, the difference between GBGP and PGBGP is not significant, but these two
methods are actually very similar in their conception, and only differ by the choice
of the probabilities to construct the candidate features. It is therefore expected to
not observe any significant variation in the distributions of the results. However, we
hope to observe improvements regarding interpretability. This point will be discussed
in 5.2.5.

Information gain is also a consistent fitness function to use to improve the classification
performance of fuzzy C4.5, as displayed in Table 5.4. In this table are also displayed
the classification scores of other classifiers, not necessarily linked to the information
gain. For instance, CART, AdaBoost and GradientBoosting use the Gini impurity
as discrimination measure and FURIA uses the FOIL’s information gain. Using the
built feature for other machine learning algorithms permits to increase significantly the
classification score in all cases for CLAS12 and Higgs, except for AdaBoost with the
Higgs dataset where the improvement is not statistically significant. However, building
a feature with information gain as fitness function does not help other classifiers for the
τ → 3µ dataset, except for CART and fuzzy C4.5 Fibo. These observations permit to
conclude that the built feature with information gain has a good discriminative power
generally and can be used in several contexts.

Table 5.4: Cohen’s kappa score for one built feature with PGBGP
and information gain as fitness function, using different classifiers for

evaluation. “GB” stands for “GradientBoosting” in the table.

CLAS12 Higgs τ → 3µ

Fuzzy C4.5 std Baseline 0.345 ± 0.019 0.394 ± 0.004 0.542 ± 0.004
PGBGP 0.396 ± 0.020 0.410 ± 0.014 0.453 ± 0.074

Fuzzy C4.5 Fibo Baseline 0.356 ± 0.017 0.400 ± 0.003 0.545 ± 0.004
PGBGP 0.400 ± 0.019 0.416 ± 0.013 0.549 ± 0.008

CART Baseline 0.243 ± 0.016 0.276 ± 0.005 0.432 ± 0.007
PGBGP 0.294 ± 0.025 0.289 ± 0.010 0.443 ± 0.007

AdaBoost Baseline 0.333 ± 0.019 0.450 ± 0.014 0.643 ± 0.005
PGBGP 0.361 ± 0.017 0.456 ± 0.010 0.645 ± 0.007

GB Baseline 0.302 ± 0.012 0.387 ± 0.004 0.582 ± 0.006
PGBGP 0.396 ± 0.020 0.417 ± 0.012 0.581 ± 0.024

FURIA Baseline 0.236 ± 0.011 0.228 ± 0.021 0.483 ± 0.011
PGBGP 0.311 ± 0.030 0.306 ± 0.046 0.464 ± 0.045

GAM Baseline 0.320 ± 0.006 0.363 ± 0.007 0.636 ± 0.005
PGBGP 0.391 ± 0.014 0.395 ± 0.025 0.631 ± 0.030

5.2.3.2 Using CART for the fitness function

The implementation of CART in scikit-learn is sufficiently fast to be used as a wrapper
fitness function for feature construction. However, it does not handle missing values.
Therefore, any feature leading to missing values (for instance, division by 0) will be
discarded during the evolution.

5.2. Experiments on prior feature construction 93

Table 5.5 compares the scores obtained by the different feature construction methods
while building one feature. Here, feature construction permits again to increase the
classification score whatever the dataset or construction technique. In this case, GP
outperforms PSO in all cases, including CLAS12: it seems that CART is a better fit-
ness function than the information gain to guide the GP evolution. The constrained
GP versions outperform the unconstrained GP for CLAS12 thanks again to the vec-
torized base features, with a gain of up to 0.020 for the PGBGP with respect to the
unconstrained GP. The unconstrained GP beats slightly the constrained GP versions
for Higgs and τ → 3µ.

Table 5.5: Cohen’s kappa score for one built feature with different
feature construction methods. Fitness function: CART; evaluation:

CART.

CLAS12 Higgs τ → 3µ

Baseline (without feature
construction)

0.243 ± 0.016 0.278 ± 0.007 0.432 ± 0.007

PSO pair 0.290 ± 0.020 0.307 ± 0.007 0.437 ± 0.008
PSO array 0.293 ± 0.021 0.306 ± 0.006 0.439 ± 0.008
GP 0.290 ± 0.020 0.330 ± 0.006 0.462 ± 0.017

GBGP 0.310 ± 0.024 0.330 ± 0.010 0.458 ± 0.012
PGBGP 0.300 ± 0.022 0.327 ± 0.009 0.455 ± 0.011

The main advantage of using CART as fitness function is that several features can be
built at a time with GP. Since the built features must collectively improve the classi-
fication score of CART, this prevents them from being strongly correlated. Figure 5.5
displays the evolution of the Cohen’s kappa score as function as the number of built
features, for the three GP variants. PSO has here the drawback of not being able
to build several features at a time. For CLAS12 and Higgs, the classification score
increases with the number of built features. However, it does not for the τ → 3µ
dataset: it seems that all discriminative information for improvement can already be
contained in a single built feature. Similarly, the unconstrained GP for CLAS12 does
not benefit from a larger number of built features. Maybe the gap is again simply
due to the vector representation of base features exploited by the constrained GP,
or maybe the unconstrained GP did not reached convergence: Figure 5.2 has indeed
shown that the convergence of GP was not perfectly achieved when building 6 fea-
tures. Therefore, the classification scores might be a bit better for GP. Regarding
Higgs and τ → 3µ, GP keeps performing slightly but not significantly better than the
constrained versions while increasing the number of built features.

Features built using CART as fitness function are optimized to improve the classifi-
cation score of CART models, but it does not mean that they are not generalizable
to other machine learning models. First, AdaBoost and GradientBoosting use CART
as individual learner. Therefore, their score improvement with feature construction
should be comparable to the one of CART. Figure 5.6 displays the evolution of the
Cohen’s kappa score of AdaBoost and GradientBoosting trained using the features ob-
tained by PGBGP with CART as fitness function. As expected, the global trends for
the three datasets resemble those obtained with CART as evaluation model: the score
raises until stagnating for CLAS12, keeps increasing for Higgs, and finally building
many features does not seem to help the classification on the τ → 3µ dataset.

94 Chapter 5. Interpretable feature construction as a prior method

1 2 3 4 5 6
Number of built features

0.28

0.30

0.32

0.34

0.36

0.38

Co
he

n'
s k

ap
pa

CLAS12
GP
GBGP
PGBGP

1 2 3 4 5 6
Number of built features

0.32

0.34

0.36

0.38

0.40

Co
he

n'
s k

ap
pa

Higgs
GP
GBGP
PGBGP

1 2 3 4 5 6
Number of built features

0.44

0.45

0.46

0.47

0.48
Co

he
n'

s k
ap

pa
3

GP
GBGP
PGBGP

Figure 5.5: Evolution of the Cohen’s kappa score with the number
of built features with CART as fitness function and evaluation model.

0 1 2 3 4 5 6
Number of built features

0.30

0.35

0.40

0.45

Co
he

n'
s k

ap
pa

CLAS12

AdaBoost
GradientBoosting

0 1 2 3 4 5 6
Number of built features

0.40

0.45

0.50

0.55

Co
he

n'
s k

ap
pa

Higgs

AdaBoost
GradientBoosting

0 1 2 3 4 5 6
Number of built features

0.58

0.60

0.62

0.64

0.66

Co
he

n'
s k

ap
pa

3

AdaBoost
GradientBoosting

Figure 5.6: Evolution of the Cohen’s kappa score with the number of
built features by PGBGP with CART as fitness function and AdaBoost

and GradientBoosting as evaluation models.

Figure 5.7 displays the scores using C4.5 and its fuzzy versions as evaluation methods.
Using CART as fitness function seems to be beneficial as well to find features that are
discriminant for C4.5, as least for the CLAS12 and Higgs datasets.

5.2. Experiments on prior feature construction 95

0 1 2 3 4 5 6
Number of built features

0.30

0.35

0.40

0.45

0.50
Co

he
n'

s k
ap

pa
CLAS12

C4.5
Fuzzy C4.5 std
Fuzzy C4.5 fibo

0 1 2 3 4 5 6
Number of built features

0.35

0.40

0.45

0.50

0.55

Co
he

n'
s k

ap
pa

Higgs
C4.5
Fuzzy C4.5 std
Fuzzy C4.5 fibo

0 1 2 3 4 5 6
Number of built features

0.450

0.475

0.500

0.525

0.550

0.575

0.600

Co
he

n'
s k

ap
pa

3

Figure 5.7: Evolution of the Cohen’s kappa score with the number
of built features by PGBGP with CART as fitness function and C4.5

(crisp and fuzzy) as evaluation model.

Finally, Figure 5.8 shows the results using FURIA and GAM as evaluation methods:
these models are quite different from the decision trees used as fitness function, there-
fore they are relevant models to test the generalization power of the built features.
For CLAS12, the built features improve significantly the classification score for GAM
and FURIA, the latter in a more dramatic manner. The built features for Higgs also
significantly improve the GAM classification performance, but not those of FURIA.
Finally, the built features for the τ → 3µ dataset do not increase the classification
scores of FURIA and GAM: these features are not generalizable.

5.2.3.3 Using FURIA for the fitness function

Finally, we perform experiments using FURIA as fitness function, for the CLAS12
dataset only. Table 5.6 presents the results. Again, we significantly increase the clas-
sification score with a gain of 0.127 (60% of the baseline) thanks to feature construc-
tion. The constrained GP versions outperform the unconstrained one. PSO feature
construction methods are also largely behind GP based methods: the unconstrained
GP improves by 28% the score of PSO pair.

Figure 5.9 displays the evolution of the Cohen’s kappa score as function as the number
of built features for FURIA. We observe again an improvement of the classification
score with the number of built features but more moderately than previously. Indeed,
the plateau is reached after only three built features for the constrained GP versions.
Overall, we obtain a better score while using FURIA as fitness function than when
using CART. For instance, building 5 features with CART as fitness function leads to
a Cohen’s kappa of 3.375 ± 0.037 with FURIA, while with FURIA as fitness function
this score raises to 0.459 ± 0.010.

96 Chapter 5. Interpretable feature construction as a prior method

0 1 2 3 4 5 6
Number of built features

0.20

0.25

0.30

0.35

0.40

0.45

Co
he

n'
s k

ap
pa

CLAS12

FURIA
GAM

0 1 2 3 4 5 6
Number of built features

0.25

0.30

0.35

0.40

0.45

0.50

Co
he

n'
s k

ap
pa

Higgs
FURIA
GAM

0 1 2 3 4 5 6
Number of built features

0.40
0.45
0.50
0.55
0.60
0.65
0.70

Co
he

n'
s k

ap
pa

3

FURIA
GAM

Figure 5.8: Evolution of the Cohen’s kappa score with the number of
built features by PGBGP with CART as fitness function and FURIA

and GAM as evaluation models.

Table 5.6: Cohen’s kappa score for one built feature with different
feature construction methods. Fitness function: FURIA; evaluation:

FURIA.

CLAS12

Baseline (without feature construction) 0.212 ± 0.031
PSO pair 0.247 ± 0.039
PSO array 0.227 ± 0.044
GP 0.316 ± 0.061

GBGP 0.337 ± 0.047
PGBGP 0.339 ± 0.041

The constrained feature construction algorithm permits to globally increase the clas-
sification performances for all datasets, whatever the fitness function, except for the
τ → 3µ dataset. Indeed, this dataset suffers from one major drawback: although the
momentum and polar θ angle are available for the given particles, their azimuthal φ
angles are not provided. Indeed, they are not discriminant since their distribution is
often uniform over the range [-180°, 180°]. However, they are indispensable to build
features that represent geometrical operations. Along with the τ → 3µ were already
provided some handcrafted high-level features. With the features provided in the
dataset, more complex non-linear and therefore non-interpretable combinations are
probably more efficient to increase the classification score of a classifier. This can ex-
plain the better score of the simple GP, which is not constrained and then allowed to
apply complex operations such as trigonometric functions on all variables. Therefore,
this dataset is not very well suited for our feature construction algorithms.

5.2. Experiments on prior feature construction 97

1 2 3 4 5 6
Number of built features

0.25

0.30

0.35

0.40

0.45

Co
he

n'
s k

ap
pa

CLAS12

GP
GBGP
PGBGP

Figure 5.9: Evolution of the Cohen’s kappa score with the number of
built features with FURIA as fitness function and evaluation method.

5.2.4 Computation time

The computation time of the proposed feature construction techniques strongly de-
pends on the kind of fitness function: while information gain is fast to evaluate,
machine learning models such as CART or FURIA demand more time to be induced.
Figure 5.10 displays the computation time taken per generation using PSO and GP
for different numbers of features. The runs were performed with parallel computing
on 8 to 12 cores. The computation time increases with the number of built features
approximately linearly. PSO is twice faster than GP for entropy and CART and 20%
more efficient for FURIA, probably due to the array representation instead of the
more complex tree representation in GP. Finally, using entropy as fitness function
is obviously faster than using CART. Although the results are presented here only
for CLAS12, the trend remains the same for the two others. Our implementation of
FURIA being less efficient than the implementation of CART in scikit-learn, we could
not perform prior feature construction with FURIA as fitness function for the Higgs
and τ → 3µ datasets.

PSO entropy GP entropy PSO CART GP 1 CART GP 3 CART GP 5 CART PSO FURIA GP 1 FURIA GP 3 FURIA GP 5 FURIA
0

500

1000

1500

2000

Ti
m

e
pe

r g
en

er
at

io
n

(s
)

CLAS12

Figure 5.10: Computation time and standard deviation per gener-
ation for different feature construction methods and number of built

features.

Figure 5.11 compares the computation time between the three variants of GP. Adding
constraints to the GP algorithm, through grammars or transition matrices, increases
complexity by a factor between 1.2 and 1.7 depending on the dataset.

5.2.5 Discussion on interpretability

In this work, we state that a feature is interpretable if a domain expert is able to recog-
nize all or part of it and to understand why the feature is discriminative with respect

98 Chapter 5. Interpretable feature construction as a prior method

GP GBGP PGBGP
0

200

400

600

800

Ti
m

e
pe

r g
en

er
at

io
n

(s
)

CLAS12

GP GBGP PGBGP
0

500

1000

1500

2000

2500

Ti
m

e
pe

r g
en

er
at

io
n

(s
)

Higgs

GP GBGP PGBGP
0

500

1000

1500

2000

2500

3000

Ti
m

e
pe

r g
en

er
at

io
n

(s
)

3

Figure 5.11: Computation time and standard deviation per genera-
tion for the three GP variants.

to the considered task. However, the feature is not necessarily known beforehand by
the domain expert. This implies that the feature must be mathematically correct and
that its unit can be inferred from its formula. In practice, interpretability is difficult
to measure objectively, as discussed in chapter 2. However, we try to provide compar-
ative elements in this part for the CLAS12 and Higgs datasets in particular. We do
not focus on the interpretability of the τ → 3µ dataset, since the relevance of feature
construction for this dataset is limited.

The following features have been built by the simple GP algorithm with CART as
fitness function, the first two for CLAS12 and the next two for the Higgs dataset.

cos(
√
ppyp

γ2
T) +

pγ1z pey
sin(φγ2)

(5.2)

θγ2pγ1z (5.3)

sin(cos(pτT)) (5.4)

cos(φτ − φlep) (5.5)

These features contain several inconsistencies from a physics interpretability point
of view: series of trigonometric operations that should be applied only on angles,
addition of a cosine with a product of momentum, etc. However, we notice for instance
the cos

(
φlep − φτ

)
, which is perfectly valid and can actually be found among the

features built by the constrained feature construction versions for the Higgs dataset.
In addition, we mentioned that PSO pair for CLAS12 is building in most of the cases
features that contain the following very discriminative pattern:

pez + ppz + pγ1z . (5.6)

This feature is a quasi constant for DVCS (the beam energy), while it belongs to a
continuous interval for background processes. Actually, this exact feature is built in
only 10% of cases. In all other cases over the 97% where this pattern appears, it is
combined with other operations, for instance:

pez + ppz + pγ1z + pγ2x , (5.7)

pex − pez + ppx − ppz − pγ1z + pγ2x .p
γ2
z p

γ3
z (5.8)

Although the first of these two features respects the physical units, it is difficult to
understand why adding pγ2x makes it more discriminative. The second feature is not
valid from a physics viewpoint since it adds momentum (in GeV/c) with a product of

5.2. Experiments on prior feature construction 99

three momenta (in GeV3/c3).

However, these features could be used in practice for their discriminative power under
the condition to fix the units of measurement for the input variables, since using other
units could completely change the distribution of the features due to the different
orders of magnitude of the variables.

The GBGP and PGBGP algorithms systematically build valid features, since they
were designed for this purpose. Therefore, the features built by these algorithms are
interpretable, but not necessarily as efficient as the non interpretable ones for the
classification task. However, the interpretation process can still be complex.

The feature below has been built by the GBGP algorithm for the Higgs dataset:√
plept

(
missingtE + plept + pτt

)
+
√
m2
H0 +missingtE2 + pτt

2

(cos (φlep − φτ) + 2)
2

cos4 (θlep − θτ)
(5.9)

The feature above respects the physical units, but does not have a direct intuitive
meaning. However, although the ratio is not a usual operation in HEP, the elemen-
tary components can be interpreted. The numerator indeed resembles a transverse
energy/momentum balance. In the denominator, the elements are more interpretable.
As expected, the θ and φ angles are not mixed since they are defined in orthogonal
planes. From energy/momentum conservation, a strong correlation exists between the
direction of the lepton and the τ -lepton. Therefore, comparing the two angles of the
two particles makes completely sense. Because the angles are defined within [-180°,
180°], the comparison is much easier with the cosine function.

For instance, the PGBGP builds the five following features for the Higgs dataset:

cos
(
φlep − φτ

)
(5.10)

cos
(
θlep − θτ

)
(5.11)

cos
(
φmissing − φlep

)
(5.12)

pleadingT

∑
pjetsT −

(
EmissingT + plepT

)2
(5.13)

m2
H0 +

(
plepT + pτT

)2
(5.14)

The first and second features (5.10) (5.11) are exact elementary components of the
single feature constructed by the GBGP. The third (5.12) is another geometrical com-
bination of the angles of the missing transverse energy (most likely corresponding to
a neutrino) and the lepton, which both come from the same τ lepton. It should be
noted that the θ and φ angles are almost never mixed in the output features, proving
that the GP algorithm inferred that these two angles belong to two different planes.
The two last features (5.13) (5.14) are energy balances in the transverse space. These
five constructed features are more interpretable features than the one from the GBGP,
and are also independent of the system of measurement and therefore reusable in HEP
analyses.

Regarding the CLAS12 dataset, the main asset of the GBGP and PGBGP over the
simple GP for feature construction is that they have vectorized forms of the momenta

100 Chapter 5. Interpretable feature construction as a prior method

available, making geometrical operations much easier. Below are three features built
together by the PGBGP algorithm for CLAS12:

angle(
−→
pγ1 ,−

−→
pe +

−→
ein −

−→
pγ1 −

−→
pp) (5.15)

ppz + pγ1z + pez + pγ2z (5.16)

cos(angle(
−→
pγ1 ,
−→
pγ2)) (5.17)

with
−→
ein the incoming beam momentum (0, 0, 10.6). The second feature echoes the

very discriminative one built by PSO, with pγ2z in addition. This still makes sense,
since a π0 production event will produce two photons, and such event is in most of
the cases identified this way by physicists. The first and third features can actually
be explained together. Indeed, the third feature observes the angle between the two
photons if they exist: two photons by a π0 decay are correlated, whereas if one of the
photon is background this feature can take any value. The first feature compares the
most energetic photon to the missing particle ep→ epγ1: if there exist a particle that
has not been detected, this missing particle may be correlated with the first detected
photon. In this case, the detected event is not a DVCS event since a DVCS event
should only comprise the three particles e, p and γ1.

5.3 Conclusion and perspectives

In this chapter, we have presented an adaptation of a new grammar-based GP algo-
rithm to dimensional consistency and physics laws, aided with probability transition
matrices that follow expert knowledge. Compared to a simple GP algorithm without
constraints, we have shown that this method significantly improves the classification
score of several classifiers for three high-energy physics datasets from completely dif-
ferent experimental setups. Nevertheless, the possibilities to build new features for
the τ → 3µ dataset are limited due to the lack of base features. However, for the
three datasets, our interpretable PGBGP-based feature construction algorithm brings
a significant improvement on the classification score, up to 60% of the baseline for FU-
RIA. We discussed the trade-off dilemma between performances and interpretability
raised by the application of the transition matrix. The comparison between GBGP
and PGBGP in gain in classification scores mainly relies on the data on which the
experiment is conducted and on the number of features that are constructed. The
interpretability for physics experts is definitely better with PGBGP, but the score
may be better with GBGP (without probabilities) because of the need to compress
information into a small number of features.

A perspective for this work would be to enforce the impact of probabilities as we
go deeper in the generation of the tree: this could help building consistent elemen-
tary components while enabling more complex combinations at the root of the tree,
imitating the high performing feature obtained by the GBGP on the Higgs dataset.

However, using the PGBGP as a prior construction method can be time-consuming.
Therefore, we propose in the next chapter to use PGBGP as an embedded feature
construction method.

101

Chapter 6

Interpretable embedded feature
construction

6.1 Embedded feature construction in tree-based and sequen-
tial covering algorithms . 102

6.1.1 Principle . 102
6.1.2 Experiments . 104
6.1.3 Discussion on interpretability 107

6.2 Boosting feature construction in generalized additive mod-
els . 111

6.2.1 Principle . 111
6.2.2 Bitonicity as prior knowledge 112
6.2.3 Global GAM fitting method with embedded feature con-

struction and bitonicity . 117
6.2.4 Experiments . 119
6.2.5 Discussion on interpretability 124

6.3 Conclusion and perspectives 127

Instead of using the constrained feature construction method presented in chapter 5
as a prior step before training a classifier, this chapter focuses on embedding the
feature construction in the induction process of the classifier. This approach uses a
filter fitness function, quicker to evaluate than a wrapper one. The constrained feature
construction algorithm has been implemented in tree-based and rule-based algorithms
(section 6.1) and in generalized additive models (section 6.2) with the goal to include
prior knowledge.

The work on embedded feature construction in fuzzy decision trees detailed in sec-
tion 6.1 has been accepted for publication in the proceedings of the 2020 IEEE Inter-
national Conference on Systems, Man, and Cybernetics (SMC):

N. Cherrier, J. Poli, M. Defurne and F. Sabatié, “Embedded Feature Con-
struction in Fuzzy Decision Tree Induction for High Energy Physics Clas-
sification”, 2020 IEEE International Conference on Systems, Man and Cy-
bernetics (SMC), pages 615-622, IEEE, 2020.

The work on generalized additive models with embedded feature construction ex-
plained in section 6.2 has been accepted for publication in the proceedings of the 2020
International Conference on Discovery Science (DS):

102 Chapter 6. Interpretable embedded feature construction

N. Cherrier, M. Mayo, J. Poli, M. Defurne and F. Sabatié, “Interpretable
Machine Learning with Bitonic Generalized Additive Models and Auto-
matic Feature Construction”, International Conference on Discovery Sci-
ence, pages 386-402, Springer, Cham, 2020.

6.1 Embedded feature construction in tree-based and se-
quential covering algorithms

6.1.1 Principle

In this section, the fitness function is the split criterion in decision trees, tree ensemble
methods or rule-based algorithms. One feature can potentially be built at each node
of the tree(s) or at each condition of each rule in a rule base. However, Kotsiantis
[2013] states that the decision complexity in decision trees decreases with the depth
of the tree. In the context of oblique decision trees, linear models may generalize
better, while non-linear models may lead to overfitting especially when used in deeper
nodes [Yildiz and Alpaydin, 2001]. Therefore, just as ensemble methods restrict the
complexity of individual classifiers, the number of feature constructions is limited and
the construction algorithm is restrained. The method to embed feature construction
is first presented for tree-based algorithms and then for sequential covering algorithms
to produce rule bases.

6.1.1.1 In tree-based algorithms

The general algorithm for crisp or fuzzy decision tree induction with embedded feature
construction is presented in Algorithm 2. A parameter Nmax controls the maximum
number of features that it is authorized to build. When the number of allowed con-
structions is restrained, the features are built from the root and level by level, going
down as the tree is formed.

The constructionCondition can be for instance the condition in Equation (6.1) below:
if it is satisfied for a depth d in the tree and a number of features built so far nf ,
then the algorithm does not select an original attribute regarding the discrimination
measure H but creates instead a new feature.

d ≤ log2(1 +Nmax) and nf < Nmax. (6.1)

The feature construction algorithm can actually build features represented by trees
of depth 1, which are the “rebuilt” raw features. These raw features might then have
been feature candidates but discarded during the construction process.

Algorithm 2 is applicable to any tree-based algorithm following this scheme: for in-
stance C4.5, CART, fuzzy decision trees, tree ensemble methods such as adaptive
boosting or gradient boosting. For C4.5, the discrimination measure H is the in-
formation gain (possibly its fuzzy version for fuzzy C4.5), thus it is used as fitness
function in the feature construction process. As for boosting algorithms, the fitness
function varies. Boosting methods proceed iteratively by sequentially adding a new
weak classifier to improve the overall performance. In adaptive boosting [Freund and
Schapire, 1995] with decision trees, the weak classifiers are classification decision trees.
What changes between the successive classifiers is the distribution of training exam-
ples: the latter are weighted depending on the performances of the previous classifiers.
The Gini index used by the individual CART classifiers as discrimination measure is

6.1. Embedded feature construction in tree-based and sequential covering
algorithms 103

Algorithm 2: Generic induction of a decision tree with embedded feature con-
struction.
Input : data, subset of the dataset

nf , number of built features so far in the tree
depth, depth of the current node
Nmax, maximum number of features to build in the tree

Output: a tree and the number of constructed features
Function createTree(data, nf , depth, Nmax)

r ← create a new node
if constructionCondition (nf , depth) then

A← build new feature
nf ← nf + 1

else
A← select the best original attribute regarding the discrimination
measure H

Affect to r a test on A
M ← create m1, . . . ,mt a crisp or fuzzy partitioning for A
Split data into d1, . . . , dt regarding M
foreach couple (mi, di) do

if stoppingCriterion(mi, di) then
create a branch mi from r to a leaf built with statistics of di

else
create a branch mi from r to createTree (di, nf , depth+1, Nmax)

return (r, nf)

then weighted. In the gradient tree boosting classifier [Friedman, 2001], regression
trees are used as weak classifiers to fit residuals. The measure here is not binary but
the mean squared error (MSE) between the residual and the mean of target values of
the data in the considered node. H of a given feature and partitioning is the sum of
the MSE of the children nodes that would be created by splitting on this feature.

The number of built features for a tree ensemble is already large if Nmax = 1 for
each individual tree. Instead, the parameter Nmax is altered in this case to admit a
probability to build a single feature at the root of the tree. It does not control in
which tree a feature is built or not.

6.1.1.2 In sequential covering algorithms

Similarly to the embedding of feature construction in tree-based algorithms, a feature
construction can be performed at each addition of an antecedent in a rule. As a
reminder, sequential covering algorithms progressively add rules so that the training
set is covered with a minimal set of rules.

In RIPPER and FURIA for instance, antecedents are added to a rule so as to maximize
the FOIL’s information gain (see 2.2.2). In the same way as for decision trees, a feature
construction algorithm can be performed at this stage, the fitness function being the
discrimination measure i.e. the FOIL’s information gain.

The number of built features Nmax can be limited as well. For a single rule, Nmax

varies from 0 to +∞. The Nmax features are built sequentially in the first antecedents
of the rule. A rule base is treated the same way as a tree ensemble: Nmax is the

104 Chapter 6. Interpretable embedded feature construction

number of built features per rule. To allow for a smaller number of built features in
total, Nmax can take values below 1 to reflect the probability to build a single feature
in a given rule. There is no consideration of the order in which the rules are built.

6.1.2 Experiments

In these experiments on embedded feature construction in tree-based and rule-based
models, we apply the different methods on the four datasets described in Appendix C:
CLAS12 (without missing values), Higgs, τ → 3µ and MAGIC.

6.1.2.1 Baseline: Monte Carlo search

The work of Maes et al. [2012] is used as a baseline in the following experiments.
Their algorithm is adapted to handle constraints like those encountered in HEP.

Maes et al. [2012] propose an embedded Monte Carlo search of features in tree-based
models. The core idea is to explore a small part of the feature space at each decision
node, given a set of constructor functions and the set of initial features, while preserv-
ing the weak aspect of the base learner in ensemble methods. They use a randomized
feature generation algorithm at each node during tree growing.

A candidate feature is represented by its reverse polish notation (also called postfix
notation). From the set of symbols containing the base features and the list of con-
structor functions, one can build an expression representing a valid candidate feature.
The evaluation of one feature is done by numerically evaluating the expression and
compute the discrimination measure used in the tree-based model at the current node.

Although Maes et al. [2012] present three Monte Carlo simulation strategies, the
“step” variation is used in the experiments. Starting from an empty state, symbols
are iteratively added. At a given iteration k, a random simulation, i.e. construction of
a feature, is performed from the current state. The resulting feature is evaluated and
its score compared to the best feature found so far. The symbol number k of the best
feature found so far is added to the current state. The maximal length of a feature is
a parameter of the algorithm but the simulation can be stopped earlier depending on
the random simulation.

To constrain the Monte Carlo search, we adapt the computation of the set of valid
actions depending on the current state. The set of allowed actions normally depends
only on the length of the stack, the length of the current state and the arities of
the operators. To constrain the search, the set of allowed actions must also depend
on the units of measurement of the symbols. Each constructor function is assigned
a set of valid input configurations, and each input feature is assigned a type (the
same as in the constrained GP algorithm, e.g. energy, angle, unitless quantity). This
assignment is directly linked to the grammar. With this modification, it may happen
in simulations that no valid action exists for a given state. In this case, the current
state is discarded and a new one starts.

We expect the Monte Carlo search to behave well while constructing one feature at
each split node or rule antecedent, but we anticipate that the GP algorithm will
already obtain good results when constructing features only at the first layers of the
trees or first antecedents of the rules. A comparison of both feature construction
techniques as well as a study of the impact of Nmax are conducted in the following.

6.1. Embedded feature construction in tree-based and sequential covering
algorithms 105

6.1.2.2 Experimental settings

In the experiments, we compare the proposed embedded constrained GP algorithm
to the Monte Carlo search baseline. The same settings as in 5.2 are used for the
constrained GP algorithm, although the fitness function changes.

For the Monte Carlo search, the same settings as in [Maes et al., 2012] are used,
namely a budget of 100n evaluations for single decision trees and 10n for ensemble
methods, with n the number of base features.

To be comparable with Monte Carlo search, a downgraded version of the constrained
GP algorithm is proposed: only 6 generations are computed so that the number of
evaluations of candidate features (6× 500 = 3000) is of the same order of magnitude
for both Monte Carlo and GP methods.

The hyperparameters specific to each machine learning model can again be found in
Appendix D.

The Cohen’s kappa metric is used to compare the models. All results are presented
with their mean and standard deviation over at least 25 independent runs (5 for each
fold, for five folds).

6.1.2.3 Performance comparison

Many of the transparent models used before can be implemented with embedded
feature construction following the principle detailed in 6.1.1. Although we present
the results here only for C4.5 and FURIA, the complete experiments can be found in
Appendix E: embedded feature construction scores have been computed for the fuzzy
versions of C4.5 (std and Fibo), CART, AdaBoost and GradientBoosting.

C4.5

Table 6.1 compares the Cohen’s kappa scores of different embedded feature construc-
tion methods in C4.5. The number of built features leading to the best Cohen’s
kappa score for the GP-based methods is specified in parentheses, while the Monte
Carlo search builds 100 features. In all cases, performing embedded feature construc-
tion improves significantly the classification score, whatever the construction method.
The downgraded GP algorithm performs better than the Monte Carlo search for all
datasets except τ → 3µ for which both methods achieve a comparable score. Finally,
the complete GP technique permits to improve significantly over the downgraded GP
score. It should also be noticed that for two out of four datasets, the maximal score
is obtained while building a limited number of features: from 15 to 20. This is a very
interesting point concerning interpretability, since the complexity of the overall model
is thus lower.

Figure 6.1 displays the evolution of the Cohen’s kappa score for GP and downgraded
GP while building from 0 (baseline) to 100 features. The score obtained by building
features seems to reach a maximum, stagnating or even decreasing after a certain
threshold of constructed features. Indeed, using 10 to 15 built features for CLAS12
already permits to reach a score that is not significantly far from the maximum. For
Higgs and τ → 3µ, the score seems to stagnate starting from 15 built features, but the
score with 100 features is still higher. For MAGIC, the score with 100 built features
is lower than with fewer than 25 features. In the end, it seems that the objective
is reached: obtain a maximal classification score while building a limited number of

106 Chapter 6. Interpretable embedded feature construction

Table 6.1: Cohen’s kappa score with different feature construction
methods embedded into C4.5. The number of built features leading to
the best scores for GP and downgraded GP is specified in parentheses.

CLAS12 Higgs

Baseline (without feature
construction)

0.316 ± 0.018 0.384 ± 0.005

MC 0.387 ± 0.018 0.419 ± 0.015

Downgraded GP 0.450 ± 0.024 (20) 0.442 ± 0.013 (100)
GP 0.476 ± 0.025 (15) 0.461 ± 0.014 (100)

τ → 3µ MAGIC

Baseline (without feature
construction)

0.470 ± 0.007 0.658 ± 0.010

MC 0.490 ± 0.008 0.674 ± 0.016

Downgraded GP 0.492 ± 0.010 (100) 0.693 ± 0.015 (20)
GP 0.520 ± 0.010 (100) 0.705 ± 0.011 (20)

CLAS12 Higgs

0 5 10 15 20 25
Nmax

0.30

0.35

0.40

0.45

0.50

Co
he

n'
s k

ap
pa

GP
Downgraded GP

0 5 10 15 20 25
Nmax

0.38

0.40

0.42

0.44

0.46

Co
he

n'
s k

ap
pa

GP
Downgraded GP

τ → 3µ MAGIC

0 5 10 15 20 25
Nmax

0.44

0.46

0.48

0.50

0.52

Co
he

n'
s k

ap
pa

GP
Downgraded GP

0 5 10 15 20 25
Nmax

0.66

0.68

0.70

Co
he

n'
s k

ap
pa

GP
Downgraded GP

Figure 6.1: Evolution of the Cohen’s kappa score with the number
of built features in C4.5. The red marker on the right indicates the

score obtained when building 100 features.

features. Indeed, while 100 features are impossible to apprehend together by a single
person, it seems more feasible to analyze 10 or perhaps up to 15 features. A more
thorough interpretability discussion is conducted in 6.1.3.

6.1. Embedded feature construction in tree-based and sequential covering
algorithms 107

FURIA

We build features embedded in FURIA with the GP and downgraded GP versions.
Table 6.2 details the results for the four usual datasets. For the GP algorithm, we
go up to 3 features per rule for MAGIC, 2 for CLAS12, and one feature per rule for
Higgs and τ → 3µ for computing time reasons. For the downgraded GP algorithm,
up to 10 features per rule can be built.

Table 6.2: Cohen’s kappa score with different feature construction
methods embedded into FURIA. The number of built features per rule
leading to the best scores for GP and downgraded GP is specified in

parentheses.

CLAS12 Higgs

Baseline (without feature
construction)

0.236 ± 0.011 0.228 ± 0.021

Downgraded GP 0.490 ± 0.017 (2) 0.387 ± 0.053 (4)
GP 0.496 ± 0.039 (2) 0.350 ± 0.091 (1)

τ → 3µ MAGIC

Baseline (without feature
construction)

0.483 ± 0.011 0.498 ± 0.035

Downgraded GP 0.490 ± 0.083 (2) 0.660 ± 0.022 (10)
GP 0.490 ± 0.075 (1) 0.602 ± 0.042 (3)

Again, impressive improvements of the baseline classification scores are obtained
thanks to the feature construction. The GP algorithm does not necessarily lead to
better results compared to its downgraded counterpart. Figure 6.2 displays the evo-
lution of the classification score as a function of the number of built features per rule.
Depending on the dataset, a maximal score is reached at some point: for CLAS12
and Higgs notably, building more than 2 or 3 features is useless if not counterpro-
ductive. Building too many features may indeed lead to overfitting. On the contrary,
the MAGIC dataset does not seem to suffer from this limit. However, restraining
the number of built features is an asset for the interpretability of the model overall.
Finally, only a small improvement is observed with one (GP) or two (downgraded GP)
built features per rule for the τ → 3µ dataset.

Here, the optimization step of the FURIA induction algorithm adds complexity: in-
stead of building rules once and for all, the optimization considers a replacement rule
and a revision rule for each rule in the base [Hühn and Hüllermeier, 2009]. Therefore,
the number of feature constructions to perform is multiplied. Figure 6.3 displays the
number of rules and feature constructions as a function of Nmax the maximum num-
ber of built features per rule. Because of this optimization step (done twice in our
settings), the number of performed feature constructions per rule is approximately
three times Nmax, which makes the embedded feature construction impractical for
large rule bases.

6.1.3 Discussion on interpretability

Model conciseness is supported by the smaller number of built features required by
the models to get an optimal classification score. The final feature space obtained

108 Chapter 6. Interpretable embedded feature construction

CLAS12 Higgs

0 2 4 6 8 10
Nmax per rule

0.25

0.30

0.35

0.40

0.45

0.50

0.55

Co
he

n'
s k

ap
pa

GP
Downgraded GP

0 2 4 6 8 10
Nmax per rule

0.20

0.25

0.30

0.35

0.40

0.45

Co
he

n'
s k

ap
pa

GP
Downgraded GP

τ → 3µ MAGIC

0 2 4 6 8 10
Nmax per rule

0.30

0.35

0.40

0.45

0.50

0.55

Co
he

n'
s k

ap
pa

GP
Downgraded GP

0 2 4 6 8 10
Nmax per rule

0.45

0.50

0.55

0.60

0.65

0.70

Co
he

n'
s k

ap
pa

GP
Downgraded GP

Figure 6.2: Evolution of the Cohen’s kappa score with the number
of built features per rule in FURIA.

1 2 3 4 5 10
Nmax per rule

0

25

50

75

100

125

150

Nu
m

be
r o

f r
ul

es

0

500

1000

1500

2000

2500
Nu

m
be

r o
f f

ea
tu

re
 c

on
st

ru
ct

io
nsNumber of rules

Number of feature constructions

Figure 6.3: Number of rules and feature constructions with their
standard deviations for the CLAS12 dataset as a function of the num-

ber of built features per rule.

with embedded feature construction is hence of reduced size compared to other fea-
ture construction methods. The features themselves are interpretable thanks to the
constraints put on the GP algorithm, as discussed in 5.2.5. Moreover, they are glob-
ally discriminative for the classification problem especially if they are used in the first
nodes of the trees, since they are relevant for the separation of bigger data subsets.

Equations (6.2) and (6.3) display two features built for the Higgs dataset that are
either recurrent in their simple form or recurrent as a pattern in more complex features

6.1. Embedded feature construction in tree-based and sequential covering
algorithms 109

(they appear in respectively 61% and 74% of runs):

cos
(
θlep − θτ

)
(6.2) cos

(
φlep − φτ

)
(6.3)

These features visibly compare the geometrical angles of a lepton and a τ , two particles
that are indeed expected to be the products of a single interaction: either a Z-boson
disintegration into two τ leptons (the Z-boson may come from a Higgs boson), or the
decay of two top quarks, or misidentified particles coming from the decay of a W
boson. Comparing the geometrical positions of these two particles gives clues on their
origin.

Equation (6.4) shows a recurrent feature built for the DVCS dataset (it appears in
79% of runs):

pez + pγ1z + ppz (6.4)

This feature is a momentum conservation check along the beam direction, absolutely
relevant considering the detector and event geometries of a fixed-target experiment.
A π0 event would obviously miss a second photon momentum in the pz sum so this
feature would not take the same value.

However, these features were especially created in the first layers of the trees. They are
globally discriminative for the considered problems. When looking more specifically at
features built at deeper nodes of the trees, the interpretation is trickier. The following
feature has been built in a fuzzy C4.5 Fibo for CLAS12 at depth 6:

− peT + 2pγ1T + pγ2z + pez + ‖
−→
pp‖. (6.5)

While it respects the physical units, its physical meaning is more complex to under-
stand. Two parts can be distinguished: one the one hand a sum of transverse momenta,
and on the other hand a sum of z momenta. The norm of the proton momentum may
contribute to both sums. This feature was built based on the samples that reached
the node, namely 365 samples i.e. 2.4% of data. It is logical that this feature is more
specialized to this selected sample and therefore less easily interpretable.

Regarding the model complexity itself, Figure 6.4 displays the number of nodes in the
trees as function of the number of built features. It also includes fuzzy variants of
C4.5. No correlation can be inferred between the size of the tree and the number of
built features. However, building features permit to decrease the size of the tree for
CLAS12 and MAGIC. In addition, the fuzzy versions of C4.5 are significantly smaller
than its crisp counterpart except for τ → 3µ. Of course, the size of the trees can be
limited a posteriori by stopping the classification at a chosen maximal depth.

Regarding FURIA, the produced rule bases become more complex with the number
of built features (see Figure 6.3), which is a major downside. Of course, we could still
consider deleting the last antecedents of the rules, even if it is not intended by the
FURIA algorithm.

110 Chapter 6. Interpretable embedded feature construction

CLAS12

0 5 10 15 20 25
Nmax

0

200

400

600

800

Nu
m

be
r o

f n
od

es

C4.5
Fuzzy C4.5 std
Fuzzy C4.5 fibo

Higgs

0 5 10 15 20 25
Nmax

0

1000

2000

3000

4000

5000

6000

Nu
m

be
r o

f n
od

es

C4.5
Fuzzy C4.5 std
Fuzzy C4.5 fibo

τ → 3µ

0 5 10 15 20 25
Nmax

0

2000

4000

6000

8000

Nu
m

be
r o

f n
od

es

C4.5
Fuzzy C4.5 std
Fuzzy C4.5 fibo

MAGIC

0 5 10 15 20 25
Nmax

0

200

400

600

Nu
m

be
r o

f n
od

es

C4.5
Fuzzy C4.5 std
Fuzzy C4.5 fibo

Figure 6.4: Number of nodes in trees and standard deviation as
function of the number of built features in C4.5 and its fuzzy versions.

6.2. Boosting feature construction in generalized additive models 111

6.2 Boosting feature construction in generalized additive
models

This section focuses on embedding feature construction in GAM with a few adap-
tations. An effort is indeed made in this work to include prior knowledge about the
bitonicity of features. The embedding principle is first detailed in 6.2.1. Then, bitonic-
ity is introduced in 6.2.2, before the global model is proposed in 6.2.3. Experiments
are conducted in 6.2.4 and interpretability is discussed in 6.2.5.

6.2.1 Principle

GAM are a sum of univariate shape functions, as seen in 2.2.3. Since each term of
the GAM involves a single input feature, feature construction will occur in each term
of the GAM in an embedded manner. To be able to build each feature independently,
the GAM must be fitted iteratively and not globally. Therefore, gradient boosting
seems perfectly adapted to learn the GAM terms.

For a binary classification task, we start from a list of inputs X and a target vector
y. A standard classification GAM is modeled by a sigmoid of the sum F (x) of the
GAM terms (the link function is g(ỹ) = log ỹ

1−ỹ). In the proposed method, the GAM
is built iteratively, building a feature at each step. The objective is to minimize the
cross-entropy between the target y and the prediction p(x) = 1

1+e−F (x) , noted p for
conciseness:

L(F (x)) = − (y log(p) + (1− y) log(1− p)) (6.6)

We apply a gradient boosting method to improve this loss function (which is convex)
at each step of the algorithm. More precisely, the steps to learn a GAM with gradient
boosting and embedded feature construction are:

1. Start from a first prediction model predicting a constant p0 = 1
n

∑
i yi for each

x in X. Then, F0(x) = log p0
1−p̂0 .

2. At a given step n, compute the residual rn:

rn = −∂L(Fn−1(x))

∂Fn−1(x)
= y − pn−1. (6.7)

3. Build a new feature zn using the constrained GP algorithm of chapter 5 as filter
method with a fitness function targeting the residual rn (see precisions below).

4. Fit a term hn(zn) to the new feature using any shape function (splines, boosted
trees, etc.) and update the GAM: Fn(x) = Fn−1(x) + αnhn(zn), zn being a
function of x thanks to the feature construction process. αn is determined by
performing a gradient descent with the goal to minimize the cross-entropy in
average. αn is then directly linked to the importance of the new term in the
global result.

Concerning step 3 above, there is no explicit criterion to choose a feature for GAM
as opposed to tree-based models. Usually, GAM exploit all available features without
specific ordering. However, feature construction requires a specific fitness function.
Fitting the GAM term is too time-consuming to be applicable in practice. Instead, we
choose to train a shallow univariate decision tree with maximum four leafs on the set
{(zi, ri,n)}, z being the candidate feature. Thus, the decision tree can only perform

112 Chapter 6. Interpretable embedded feature construction

cuts on the candidate feature and observe its discriminating power. The fitness of the
candidate feature is minus the RMS error between the prediction of the shallow tree
and the target rn.

The method presented here is the basis for GAM with embedded feature construction.
In addition, prior knowledge is included about the shape of the distributions of the
features.

6.2.2 Bitonicity as prior knowledge

The objective is to integrate prior knowledge during the inference of GAM terms.

For instance, a monotonicity assumption is often made in the literature [Marsala and
Petturiti, 2013, Fard et al., 2016a,b, Gupta et al., 2016, Nguyen and Martínez, 2019]:
one or several input variables are assumed to be monotonic with respect to the target
variable. The machine learning model is then constrained to respect this assumption
such that the predicted value of the model should be monotonic with respect to the
input variable(s).

However, in the HEP field in particular, the most frequently used high-level variables
often present a local extremum with respect to the output (see Figure 6.5 for instance).
This property is called unimodality or bitonicity. It can be used as a constraint in the
induction of GAM terms. Bitonicity has been proven to be a relevant constraint, for
instance in dose-response analysis [Köllmann et al., 2014]. Bitonicity is introduced
here as an extension to monotonicity in the context of HEP applications, to be enforced
in GAM terms.

0.000 0.005 0.010 0.015 0.020 0.025
invariant mass

0

100

200

300

400

500

600

Data histogram
Pi0 (background)
DVCS (signal)

0.000 0.005 0.010 0.015 0.020 0.025
invariant mass

0.0

0.1

0.2

0.3

0.4

0.5

Averaged target

Figure 6.5: Invariant mass γγ, a high-level variable often used in
HEP to recognize π0 production events. On the left, the unnormalized
distributions of the two classes with respect to the invariant mass γγ.
On the right, the averaged target (corresponding to the ratio between

numbers of signal and background instances per bin).

6.2.2.1 Bitonicity definition

Starting from the definition of monotonicity, we propose a formal definition for bitonic-
ity of a multivariate function.

A function f of one real variable is commonly said to be monotonic if and only if
f(y) ≥ f(x) (resp. f(y) ≤ f(x) for the decreasing case) for any (x, y) in R such
that y ≥ x. Fard et al. [2016a] define a multi-variable function to be monotonic

6.2. Boosting feature construction in generalized additive models 113

with respect to feature d if and only if f(y) ≥ f(x) (resp. f(y) ≤ f(x)) for any two
feature vectors x, y in RD such that y[d] ≥ x[d] and y[m] = x[m] for m 6= d with
m, d ∈ {1, 2, ..., D}.

Definition 6 f is positively (resp. negatively) bitonic w.r.t. feature d if and only if
for each set of values [xm]m6=d (setting all values of input X except feature d), it exists
at most one x∗d in the domain of feature d such that these two conditions are satisfied:

• f(X) ≥ f(X ′) (resp. f(X) ≤ f(X ′)) with X = (x1, ..., xd, ..., xD) and X ′ =
(x1, ..., x

′
d, ..., xD) for each xd and x′d such that xd ≤ x′d < x∗d,

• f(X) ≤ f(X ′) (resp. f(X) ≥ f(X ′)) with X = (x1, ..., xd, ..., xD) and X ′ =
(x1, ..., x

′
d, ..., xD) for each xd and x′d such that x∗d < xd ≤ x′d.

In contrast to the usual definition of bitonicity in the context of bitonic sorters, the
circular shifts (i.e. binding the end of the function to its start) are here not considered.
In addition, this definition includes fully monotonic functions, e.g. if the value of x∗d
is beyond the range of feature d. Quasi-convex and quasi-concave functions are also
bitonic functions (the reciprocal is false for D > 1). Figure 6.6 displays two examples
of univariate bitonic functions, one example of a bivariate bitonic function and one
bivariate non-bitonic function.

0.0 0.2 0.4 0.6 0.8 1.0

2.0

1.8

1.6

1.4

1.2

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.0

0.2

0.4

0.6

0.8

1.0

0.
00

0.
10

0.
20

0.
30

0.
40

0.
50

0.
60

0.
70

0.
80

0.
90

1.
00

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

0.2

0.4

0.6

0.8

1.0

0.
00

0.
10

0.
20

0.
30

0.
40

0.
50

0.
60

0.
70

0.
80

0.
90

1.
00

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

0.08

0.04

0.00

0.04

0.08

Figure 6.6: First two plots: two bitonic univariate functions. Third
plot: bivariate bitonic function (i.e. bitonic w.r.t its two variables).
Fourth plot: non-bitonic bivariate function, since the y variable is

increasing then decreasing for low x and the opposite for high x.

6.2.2.2 Procedure to evaluate the bitonicity degree of a feature

The bitonicity of a function is often hard to prove with an analytical method, except
for simple functions [Barthelemy, 2015]. To numerically quantify the non-bitonicity
degree of a function, it is sampled into an ordered vector (sequence noted v), then
compared to a close bitonic sequence.

For instance, monotonicity can be assessed by comparing the sequence to its cumu-
lative maximum (for a non-decreasing sequence) or to its cumulative minimum (non-
increasing). The ith-component of the cumulative maximum is the maximum value

114 Chapter 6. Interpretable embedded feature construction

taken by the sequence between components 0 and i. A bitonic sequence is thus equal
to its cumulative maximum in its increasing part and to its cumulative minimum in
its decreasing part. This property can be exploited to determine the bitonicity degree
of a sequence.

Alternatively, isotonic regression Chakravarti [1989] fits a non-decreasing or non-
increasing function to the data. Unimodal regression Stout [2008] extends this idea to
unimodal (i.e. bitonic) distributions: the algorithm finds the optimal extremum and
fits a non-decreasing function to the left part of the extremum and a non-increasing
function to the right part. A method using cumulatives is preferred because it is
simpler to implement and since the objective is just to rank features with respect to
each other and not to get the closest bitonic approximation.

The proposed algorithm to measure the non-bitonicity of a feature is detailed in Algo-
rithm 3. This algorithm has complexity O(n2) and involves about n(n−1)

2 comparisons
by avoiding to recompute all cumulative arrays at each step, with n the size of the
sequence. To summarize, the procedure is as follows:

1. Find the point in the sequence leading to the best bitonic approximation using
cumulative minimum and maximum on each side of the point;

2. Compute the integral of the absolute difference between the sequence and its
bitonic approximation, and normalize it by the length and amplitude (i.e. its
maximum minus its minimum) of the sequence.

Algorithm 3: Evaluation of the non-bitonicity of a sequence
Input : v sequence to check of size n
Output: non-bitonicity degree of v
// Check monotonicity first
cummax ← cumulative maximum of v (vector of size n)
cummin ← cumulative minimum of v (vector of size n)
diff1 ←

∑
|v − cummax| // = 0 if v is increasing

diff2 ←
∑
|v − cummin| // = 0 if v is decreasing

minDiff ← min(diff1, diff2)
// Initialization of the for loop
cumminBefore ← cummin, cummaxBefore ← cummax
cumminAfter ← cummin, cummaxAfter ← cummax
for i← 0 to n− 1 do

if v[i] > v[i− 1] then // Recompute cumminAfter
cumminAfter[i:] ← cumulative minimum of v[i :]

if v[i] < v[i− 1] then // Recompute cummaxAfter
cummaxAfter[i:] ← cumulative maximum of v[i :]

diff1 ←
∑
|v[: i]− cummaxBefore[: i]|+

∑
|v[i :]− cumminAfter[i :]|

// diff1 = 0 if v is increasing then decreasing with maximum at i
diff2 ←

∑
|v[: i]− cumminBefore[: i]|+

∑
|v[i :]− cummaxAfter[i :]|

// diff2 = 0 if v is decreasing then increasing with minimum at i
minDiff ← min(minDiff, diff1, diff2)

return minDiff
n(max(v)−min(v))

A sequence is perfectly bitonic if and only if the application of this algorithm to
the sequence returns 0. The non-bitonicity degree of a sequence varies consequently
between 0 and 0.5, the worst case being a sequence of alternating zeros and ones.

6.2. Boosting feature construction in generalized additive models 115

The bitonicity of a data feature is checked by looking at the variation of the target
values along this feature. More precisely, the non-bitonicity of the function h : y →
h(x) is computed, with y the target vector and x the feature. Figure 6.7 illustrates
two applications of this procedure.

0 10000 20000 30000 40000 50000 60000

0.45

0.50

0.55

0.60

0.65

Bitonic feature

0 2000 4000 6000 8000 10000 12000

0.50

0.55

0.60

0.65

0.70

Non-bitonic feature

Figure 6.7: Two smoothed features (in orange). The y-axis corre-
sponds to the smoothed output value sorted along the tested feature.
The x-axis denotes the rank of the sorted output sequence with respect
to the tested feature. In dotted blue is represented the cumulative
minimum/maximum that is the reference to compute the difference
and get the non-bitonicity degree penalty. The red vertical line marks
the hypothesis of the algorithm for the extremum. Visually, the first
feature is bitonic but not the second. With Algorithm 3, the first fea-
ture obtains a non-bitonicity degree of 0.00143 and the second one of

0.14265.

The bitonicity of a two-dimensional array (i.e. of a pair of features with respect to a
target variable) can be checked by summing the result of Algorithm 3 over rows and
columns.

Evaluating bitonicity in practice

Applying directly the procedure detailed above to evaluate bitonicity can be trouble-
some: first, data are often noisy; second, the target values take a finite number of
values in a classification task. To ensure robustness, the data feature is preprocessed
as follows (numbers have been determined empirically):

1. Take the target vector r = (r1, ..., rn) sorted along the evaluated feature
x = (x1, ..., xn). Average the values of r where x takes the same values.

2. A moving average box of size n
10 is propagated through the r vector.

3. If n > 1000, a median filter of size n
100 is applied to r.

4. Then, if n > 10000, a median filter of size n
1000 is applied to r.

116 Chapter 6. Interpretable embedded feature construction

Finally, the bitonicity is evaluated on the smoothed r sequence. As a consequence of
the smoothing, the non-bitonicity degree will rarely reach its theoretical maximum.

6.2.2.3 Using bitonicity as a penalization

During feature construction

Feature construction is embedded in each GAM term fitting during boosting, as de-
tailed in 6.2.1. To enforce bitonicity during feature construction, a bitonicity penalty
term is added to the fitness of the candidate feature zi. This penalty term b is the
result of applying the procedure detailed above on the sequence of residuals rn, sorted
along zi. In the end, the fitness of the candidate feature zi is f = −(RMS + b), to be
maximized during the evolution process.

In shape functions

As seen in chapter 2, GAM are a sum of univariate shape functions. These shape
functions can take different forms, for instance splines or boosted decision trees. A
method is proposed hereafter to enforce bitonicity for two types of shape functions
without loss of generality: splines and functions learnt by a neural network. The idea
in both cases is based on the exploitation of the regularization parameter.

Splines as commonly used in GAM are written f(x) =
∑

k βkbk(x) with bk basis
functions (B-splines) and βk the parameters to fit. The fitting of f is done by mini-
mizing the sum of squared errors, with a penalization parameterized by a smoothing
factor λ. The latter is usually optimized (with respect to a performance metric) by
generalized cross-validation (GCV) or restricted maximum likelihood (REML) as seen
in chapter 2.

The following procedure permits to obtain a bitonic shape function:

1. Fit the shape function f with GCV or REML and retrieve smoothing parameter
λ0.

2. Check the bitonicity of f by applying it to a regular test sequence s spanning
the range of x and assess bitonicity of f(s) using the procedure detailed above.

3. If f(s) is bitonic, then accept function f as bitonic. Else set λ = λµ with µ > 1,
refit f with imposed λ and go back to step 2.

As long as the test sequence s is large enough to account for the complexity of f , the
proposed procedure permits to obtain a bitonic function at the cost of multiple refits.
Moreover, this procedure will always converge since an infinite λ leads to a linear
function. The choice of µ balances between speed and performance: the performance
tends to decrease as λ increases and moves off the optimum found by GCV or REML.

The procedure is similar for shape functions learnt by a neural network. The weights
of the network must minimize a cost function plus a regularization term expressed as
λR(W), with R for instance a L1 or L2 regularization of the weights. The intuition
behind λ is the same as for spline fitting: the larger the λ, the smoother the result-
ing function. To enforce bitonicity of the learnt function, the same procedure than
for splines is applied but setting the first parameter λ0 as a hyperparameter (small
enough).

6.2. Boosting feature construction in generalized additive models 117

Related work on unimodal regression with splines

Some previous works constrain the shape of splines by adding linear constraints to
the optimization problem, producing functions that are increasing, decreasing, con-
vex, concave among others [Pya and Wood, 2015]. In [Köllmann et al., 2014], data are
fitted by unimodal B-splines, namely a function with a single local maximum. How-
ever, it requires knowing beforehand the location of the maximum to formulate the
linear constraint. One must either try all possible locations of the maximum (because
of possible noise, the global maximum may not be the proper one for unimodal re-
gression), or perform a more computationally intensive Bayesian approach. Moreover,
the authors do not consider other forms of bitonicity including monotonic functions
and decreasing-increasing functions. In contrast, our approach does not require prior
knowledge on the type of bitonicity nor on the optimum location. Taking their ap-
proach is more time-consuming because of multiple REML computations: two for each
monotonicity type, and twice the number of knots for the two other bitonicity types
(the knots correspond to the possible locations of the optimum). Our approach com-
putes REML once and then only solves consecutive penalized least squares problems
by increasing λ as long as the function is not bitonic. Moreover, it can be used with
any shape function that supports penalization.

6.2.3 Global GAM fitting method with embedded feature construc-
tion and bitonicity

Algorithm 4 summarizes the induction of a complete GAM with (bitonic) shape func-
tions fitted to automatically built (bitonic) features: FCGAM (Feature Construction
in Generalized Additive Model).

Algorithm 4: FCGAM algorithm
Input : data used to build the features, of size (m,D)

y target vector of length m
n the number of GAM terms to learn

Output: induced FCGAM
Initialization:
p← p0 proportion of the majority class in y

F ← log
(

p
1−p

)
r ← y − p
for i← 0 to n do // one iteration builds one term of the GAM

(1) Build one single feature z using feature construction with r as the target for
the fitness function. Bitonicity may or may not be enforced at this step.

(2) Train a single GAM term h on the built feature z with target r. Bitonicity
may or may not be enforced at this step.
g ← +∞, α← random(0,100)
while |g| > ε do // gradient descent for α with learning rate β

F̃ ← F + αh, p̃← 1

1+e−F̃
, g ← 1

m

∑m
i=1 hi(p̃i − yi), α← α− βg

F ← F + αh, p← 1
1+e−F

, r ← y − p
return p

We consider four variants of Algorithm 4 regarding the bitonicity constraints (sum-
marized in Table 6.3). Bitonicity can be enforced or not during feature construc-
tion (label (1) in Algorithm 4) or for shape functions (label (2)). Bitonic FCGAM

118 Chapter 6. Interpretable embedded feature construction

(BFCGAM) enforces bitonicity both in features and shape functions.

Table 6.3: Four variants of Algorithm 4. FCGAM_bmax makes the
shape functions bitonic if and only if the feature is itself bitonic, i.e.

if and only if the bitonicity b of the feature is below bmax.

Name Bitonicity enforced in
feature construction

Bitonicity enforced in
shape functions

FCGAM_∅ No No
FCGAM_bmax No Yes if b ≤ bmax
FCGAM_∞ No Yes
BFCGAM Yes Yes

To activate the bitonicity constraint for shape functions for the FCGAM_bmax variant,
a parameter bmax is set: if the bitonicity of a built feature is below bmax, the associated
shape function will be forced to be bitonic. Looking at various features from the three
datasets used in the experiments, a near-optimal bitonicity threshold bmax is set at
0.04 (see Figure 6.8).

b� 0.04

0 200 400 600 800 1000
0.0

0.2

0.4

0.6

0.8
Output probability

0 20000 40000 60000 80000

0.2

0.4

0.6

Smoothed output probability
0 200 400 600 800 1000

0.2

0.4

0.6

0.8

1.0
Output probability

0 10000 20000 30000 40000 50000 60000
0.50

0.55

0.60

0.65

0.70

0.75
Smoothed output probability

Higgs: DER_mass_MMC (b = 0.000200) τ → 3µ: IP_p1p2 (b = 0.00283)

b ≤ 0.04

0 2000 4000 6000 8000 10000 12000

0.55

0.60

0.65

0.70

0.75
Smoothed output probability, isotonic regression, b=0.0092

0 2000 4000 6000 8000 10000 12000

0.55

0.60

0.65

0.70

0.75
Smoothed output probability

0 200 400 600 800 1000
0.0

0.2

0.4

0.6

0.8

1.0
Output probability

0 2500 5000 7500 10000 12500 15000 17500

0.30

0.35

0.40

0.45

0.50
Smoothed output probability

CLAS12: pT_p (b = 0.0130) MAGIC: fConc1 (b = 0.0383)

b ≥ 0.04

0 200 400 600 800 1000
0.0

0.2

0.4

0.6

0.8

1.0
Output probability

0 10000 20000 30000 40000 50000
0.60

0.62

0.64

Smoothed output probability
0 200 400 600 800 1000

0.0

0.2

0.4

0.6

Output probability

0 20000 40000 60000 80000

0.32

0.33

0.34

0.35

0.36

Smoothed output probability

τ → 3µ: p2_IP (b = 0.0699) Higgs: DER_pt_tot (b = 0.0847)

b� 0.04

0 200 400 600 800 1000
0.0

0.2

0.4

0.6

0.8

1.0
Output probability

0 2500 5000 7500 10000 12500 15000
0.25

0.30

0.35

0.40

0.45
Smoothed output probability

0 200 400 600 800 1000
0.0

0.2

0.4

0.6

0.8

1.0
Output probability

0 2000 4000 6000 8000 10000 12000

0.59

0.60

0.61

0.62

0.63
Smoothed output probability

MAGIC: fM3Trans (b = 0.206) CLAS12: phi_g1 (b = 0.284)

Figure 6.8: Feature bitonicity examples on three datasets, from
smaller to higher bitonicity penalties. On the graph is plotted the
output probability after smoothing (i.e. the vector used for the com-
putation of the bitonicity penalty). In dotted black is the cumulative
minimum/maximum that is the reference to compute the difference
and get the bitonicity penalty corresponding to the area between the
dotted line and the orange feature data. The red vertical line marks

the hypothesis of the algorithm for the extremum.

6.2. Boosting feature construction in generalized additive models 119

6.2.4 Experiments

6.2.4.1 Validation of the principle to enforce bitonicity of shape functions

The method to enforce bitonicity in shape functions is tested on a toy dataset of 1000
instances displayed on Figure 6.9 (data generated with the make_classification
function of scikit-learn [Pedregosa et al., 2011]). Experiments are conducted by fitting
a bivariate GAM term, either with splines or with a multilayer perceptron (MLP),
while trying different values for the regularization parameter λ. The evolution of
the Cohen’s kappa score and the bitonicity penalty obtained by the fitted function
is plotted on Figure 6.10. Figure 6.11 depicts the fitted terms at small, large, and
optimal λ (for which the bitonicity penalty is 0).

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0 0
1

Figure 6.9: Toy dataset with two variables x1 (x-axis) and x2 (y-axis)
and two classes (blue and orange dots).

10 4 10 3 10 2 10 1 100 101 102 103

0.72

0.74

0.76

0.78

0.80

0.82

Co
he

n'
s k

ap
pa

 sc
or

e

Splines
Cohen's kappa score
Bitonicity

10 4 10 3 10 2 10 1 100 101 102 103
0.70

0.72

0.74

0.76

0.78

0.80

0.82

0.84

Co
he

n'
s k

ap
pa

 sc
or

e

Neural network
Cohen's kappa score
Bitonicity

0.0

0.1

0.2

0.3

0.4

0.5

Bi
to

ni
cit

y

0.00

0.05

0.10

0.15

0.20

Bi
to

ni
cit

y

Figure 6.10: Evolution of Cohen’s kappa score (left y-axis) and func-
tion non-bitonicity degree (right y-axis) as function of the regulariza-
tion parameter λ. Left plot: with splines as shape functions; right
plot: with neural networks (two layers of size 100) as shape functions.

These plots show an experimental validation of the proposed method, as the bitonicity
decreases until reaching 0 definitively as λ increases. Moreover, these plots give an
interesting comparison between spline and neural network fitting methods: while the
spline terms never obtain a score below 0.72, the score of the neural network fitted
terms finally drops to 0 (outside the scope of the plot) shortly after reaching bitonicity.

120 Chapter 6. Interpretable embedded feature construction

0.0

0.2

0.4

0.6

0.8

1.0

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0
.0
0

0
.1
0

0
.2
0

0
.3
0

0
.4
0

0
.5
0

0
.6
0

0
.7
0

0
.8
0

0
.9
0

1
.0
0

0
.0
0

0
.1
0

0
.2
0

0
.3
0

0
.4
0

0
.5
0

0
.6
0

0
.7
0

0
.8
0

0
.9
0

1
.0
0

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0
.0
0

0
.1
0

0
.2
0

0
.3
0

0
.4
0

0
.5
0

0
.6
0

0
.7
0

0
.8
0

0
.9
0

1
.0
0

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

λ = 0.0001 λ = 2.683 λ = 10

0.0

0.2

0.4

0.6

0.8

1.0

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0
.0
0

0
.1
0

0
.2
0

0
.3
0

0
.4
0

0
.5
0

0
.6
0

0
.7
0

0
.8
0

0
.9
0

1
.0
0

0.2

0.4

0.6

0.8

0
.0
0

0
.1
0

0
.2
0

0
.3
0

0
.4
0

0
.5
0

0
.6
0

0
.7
0

0
.8
0

0
.9
0

1
.0
0

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.500089

0.500092

0.500095

0.500098

0.500101

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0
.0
0

0
.1
0

0
.2
0

0
.3
0

0
.4
0

0
.5
0

0
.6
0

0
.7
0

0
.8
0

0
.9
0

1
.0
0

λ = 0.0001 λ = 1 λ = 10

Figure 6.11: Top: spline models fitted on toy dataset. λ = 2.683
corresponds to the minimal λ value for which the bitonicity equals 0.
Bottom: MLP models fitted on toy dataset. λ = 1 corresponds to the

minimal λ value for which the bitonicity equals 0.

6.2.4.2 Experimental settings

The four variants presented in Table 6.3 are compared for GAM with splines or neural
networks as shape functions.

The same parameters for the constrained GP algorithm for feature construction are
kept: 100 generations of 500 individuals.

The GAM version with neural network as shape function uses a MLP regressor with
two hidden layers of size 100 each, Adam optimizer with a constant learning rate
of 0.001 and rectified linear unit as activation function. The shape (100,100) of the
network is not fine-tuned since the objective is to have sufficient degrees of freedom
to handle the dimensionality of the problem, while letting the optimization of the
regularization parameter (through bitonicity requirement) compensate the potential
overfitting. These parameters were found by quick testing on the datasets.

As for the terms modeled with splines, penalized B-splines are used with 14 knots
spaced along the quantiles of the feature.

The multiplying factor µ to increase the regularization λ if the resulting shape function
is not bitonic is arbitrarily set to µ =

√
10. The β parameter for the gradient descent

of the learning rates αn is set to 30 and the demanded maximum ε for the gradient is
set to 10−5. These parameters have been experimentally proven to lead to convergence
in almost all cases for the experimental datasets. In the case an αn rate was not found,
the current iteration n of the FCGAM algorithm is dropped and recomputed (a new
feature construction and shape function fit are done). Boosting is performed for 20
iterations. The convergence is discussed before presenting the main results.

The mean and standard deviation of the Cohen’s kappa score are presented for each
dataset and algorithm configuration, averaged over at least 5 independent runs and
doing 5-fold cross-validation (25 runs in total for each numerical result).

6.2. Boosting feature construction in generalized additive models 121

6.2.4.3 Convergence of the boosting algorithm

The global GAM consists of 20 terms, namely 20 shape functions each associated to
a built feature. Figure 6.12 displays the evolution of the classification score for each
dataset against the number of GAM terms.

Convergence is reached in every case after maximum 20 iterations, whatever the
FCGAM variant:

• the maximum needed number of iterations to reach convergence for the CLAS12
dataset is 16, whatever the shape function used or the FCGAM variant;

• for Higgs this number is 18;

• for the τ → 3µ 16;

• and for MAGIC 17.

Convergence is considered achieved if the p-value of a Welch’s t-test between the
distribution of scores at 20 iterations and the distribution of scores at a sooner iteration
is over 0.05, i.e. the two distributions are not significantly different from each other.

In particular, fewer iterations suffice in several cases to reach an already satisfying
score, which is sufficiently close to the score reached after 20 iterations. Since inter-
pretability decreases with increasing number of GAM terms, it is interesting to limit
this number. This is a trade-off that experts must consider depending on their own
criteria.

6.2.4.4 Comparison of the four proposed variants for FCGAM

Tables 6.4 and 6.5 presents the results obtained respectively with splines and MLP
as shape functions while applying the four variants of the FCGAM algorithm on four
datasets.

Table 6.4: Cohen’s kappa score of the four proposed variants with
splines as shape functions.

CLAS12 Higgs τ → 3µ MAGIC

GAM 0.320 ± 0.006 0.363 ± 0.007 0.636 ± 0.005 0.668 ± 0.012

FCGAM_∅ 0.462 ± 0.020 0.458 ± 0.013 0.546 ± 0.017 0.717 ± 0.015
FCGAM_bmax 0.460 ± 0.022 0.458 ± 0.013 0.548 ± 0.011 0.715 ± 0.015
FCGAM_∞ 0.462 ± 0.017 0.453 ± 0.016 0.548 ± 0.012 0.715 ± 0.016
BFCGAM 0.436 ± 0.017 0.341 ± 0.057 0.446 ± 0.120 0.684 ± 0.015

Table 6.5: Cohen’s kappa score of the four proposed variants with
neural networks as shape functions.

CLAS12 Higgs τ → 3µ MAGIC

GAM 0.241 ± 0.007 0.329 ± 0.011 0.582 ± 0.006 0.637 ± 0.015

FCGAM_∅ 0.463 ± 0.046 0.455 ± 0.020 0.535 ± 0.013 0.714 ± 0.015
FCGAM_bmax 0.469 ± 0.013 0.455 ± 0.014 0.532 ± 0.014 0.714 ± 0.015
FCGAM_∞ 0.451 ± 0.019 0.434 ± 0.029 0.532 ± 0.015 0.709 ± 0.016
BFCGAM 0.443 ± 0.020 0.357 ± 0.029 0.471 ± 0.017 0.693 ± 0.017

122 Chapter 6. Interpretable embedded feature construction

0 5 10 15 20
Iterations

0.0

0.1

0.2

0.3

0.4

0.5
Co

he
n'

s k
ap

pa
 sc

or
e

Splines

FCGAM_
FCGAM_bmax

FCGAM_
BFCGAM

0 5 10 15 20
Iterations

0.0

0.1

0.2

0.3

0.4

0.5

Co
he

n'
s k

ap
pa

 sc
or

e

Neural network

FCGAM_
FCGAM_bmax

FCGAM_
BFCGAM

DVCS

(a) CLAS12 dataset

0 5 10 15 20
Iterations

0.0

0.1

0.2

0.3

0.4

0.5

Co
he

n'
s k

ap
pa

 sc
or

e

Splines

FCGAM_
FCGAM_bmax

FCGAM_
BFCGAM

0 5 10 15 20
Iterations

0.0

0.1

0.2

0.3

0.4

0.5

Co
he

n'
s k

ap
pa

 sc
or

e

Neural network

FCGAM_
FCGAM_bmax

FCGAM_
BFCGAM

Higgs

(b) Higgs dataset

0 5 10 15 20
Iterations

0.0

0.1

0.2

0.3

0.4

0.5

Co
he

n'
s k

ap
pa

 sc
or

e

Splines

FCGAM_
FCGAM_bmax

FCGAM_
BFCGAM

0 5 10 15 20
Iterations

0.0

0.1

0.2

0.3

0.4

0.5

Co
he

n'
s k

ap
pa

 sc
or

e

Neural network

FCGAM_
FCGAM_bmax

FCGAM_
BFCGAM

3

(c) τ → 3µ dataset

0 5 10 15 20
Iterations

0.0

0.2

0.4

0.6

Co
he

n'
s k

ap
pa

 sc
or

e

Splines

FCGAM_
FCGAM_bmax

FCGAM_
BFCGAM

0 5 10 15 20
Iterations

0.0

0.2

0.4

0.6

Co
he

n'
s k

ap
pa

 sc
or

e

Neural network

FCGAM_
FCGAM_bmax

FCGAM_
BFCGAM

MAGIC

(d) MAGIC dataset

Figure 6.12: Evolution of the Cohen’s kappa score as function of the
number of boosting iterations in FCGAM, for the four datasets and
the two shape functions (splines on the top, MLP on the bottom).

6.2. Boosting feature construction in generalized additive models 123

A first observation is that feature construction permits to improve significantly the
classification scores except for the τ → 3µ dataset. Contrary to previous experiments,
here the model only uses newly built features and discards the original ones. Since
we observed that τ → 3µ does not benefit much from feature construction, it is not
surprising that the classification performances degrade for this dataset if the original
features are removed.

Apart from the baselines comparison, the fourth version (BFCGAM) always gives
worse scores than the no bitonicity FCGAM_∅ version, in a significant manner for the
Higgs and τ → 3µ datasets in particular. In all cases, letting the feature construction
free and enforcing bitonicity only on relevant shape functions (i.e. those for which the
feature is actually bitonic) in the FCGAM_bmax variant improves the score at the
level of the FCGAM_∅ version. Even if not significantly, the FCGAM_bmax version
with bmax = 0.004 threshold sometimes gets better results than the FCGAM_∅.
One conclusion for this is that forcing bitonicity may be good for interpretability,
but can be too restrictive: some really discriminative features are not bitonic and are
indispensable to get a good score. This is probably the case for the Higgs dataset.

6.2.4.5 Bitonicity potential of the different datasets

Enforcing bitonicity on built features or shape functions will only be beneficial if there
exist a discriminative set of bitonic features for a given dataset. Figure 6.13 displays
the boxplots of the features bitonicities: those already present in the dataset (raw
features) and those which have been found to be discriminative through the feature
construction process (built features) without the bitonicity constraint. Therefore,
the built features boxplots represent well the distribution of the most discriminative
features for a given dataset. These plots have been made with all the features built
in the FCGAM_∅ configuration, so around 1000 built features and around 10 raw
features for each dataset.

DVCS raw DVCS built Higgs raw Higgs built 3 raw 3 built MAGIC raw MAGIC built
0.00

0.05

0.10

0.15

0.20

0.25

0.30

Fe
at

ur
e

bi
to

ni
cit

y
pe

na
lti

es

Figure 6.13: Boxplots of features non-bitonicity degrees. The box
indicates the first and third quantiles with an orange line at the me-
dian, while the whiskers extend to the farthest data point within 1.5
IQR (interquartile range) after the box. The horizontal dotted red
line represents the bitonicity threshold bmax set to 0.04 to trigger the

bitonicity constraint on the shape function.

The bitonicity of the raw features seems not to influence the bitonicity of the built
high-level features nor the potential of a dataset to get good results while enforcing
bitonicity. Indeed, the Higgs and τ → 3µ datasets present mainly bitonic raw features
whereas their scores are impaired under bitonicity constraints, when it is the opposite
for CLAS12.

124 Chapter 6. Interpretable embedded feature construction

The large majority of the features built for the MAGIC dataset are bitonic, without
the need to add a bitonicity penalty term during the FC process. It is then logical
that the scores of the MAGIC dataset are not penalized when adding this constraint,
which is already satisfied.

However, the most discriminative features found for the Higgs dataset (i.e. the built
features) are often not bitonic, hence the decrease in score when trying to force the
bitonicity.

Not all the features built for the CLAS12 dataset are bitonic, however the bitonicity
penalty does not impair the performance on this dataset. Some redundancy may
indeed be present between the built features, hence all the required information to
perform a proper classification can be contained in the subsample of bitonic features.

τ → 3µ is a particular case. Indeed, this dataset comprises several ordinal features, i.e.
features taking a limited number of values but that are still orderable real numbers and
usable in feature construction. The bitonicity of built features combining continuous
raw features with ordinal features is more difficult to evaluate. Notably, the dataset
comprises seven variables that take the value 0 from 27 to 77% of times. Therefore,
combinations of these variables with continuous variables will have a large number
of instances at 0. Since the bitonicity penalty computation depends on the variable
distribution, it will be biased by the zero-valued instances. The bitonicity penalty will
be driven down closer to 0 because of this particularity of the feature. In addition,
such features are poorly suited for fitting shape functions.

6.2.4.6 Impact of the bitonicity threshold

The parameter bmax for the application of the bitonicity constraint on shape functions
has been determined experimentally by looking at raw features of the considered
datasets. This part aims at evaluating the impact of this bmax parameter on the
classification performance of the FCGAM_bmax variant.

The evolution of the Cohen’s kappa score against the non-bitonicity threshold bmax
is displayed on Figure 6.14 for each dataset and shape function. In the neighborhood
of bmax = 0.04, no significant variation in the Cohen’s kappa score is observed. Since
bmax = 1 corresponds to the FCGAM_∞ variant, the classification scores indeed
drops significantly for the Higgs dataset.

In conclusion, modifying bmax around the determined value 0.04 (for instance 0.01
or 0.06) does not alter significantly the classification performances. The latter start
dropping from bmax = 0.1 for some datasets. The presented results for FCGAM_bmax
with bmax = 0.04 are therefore stable.

6.2.5 Discussion on interpretability

The global GAM models consist of 20 terms, namely 20 shape functions each associ-
ated to a built feature. As discussed with Figure 6.12, a choice must be made between
classification performance (increasing with the number of terms) and interpretability
(decreasing with complexity hence decreasing with the number of terms).

We analyze now a few features and the associated fitted shape functions for the
CLAS12 and Higgs dataset. Figures 6.15, 6.16 and 6.17 are presented in the same
way: the left plot is the target vector binned along the built feature (so the y value
on the plot is the averaged target for a bin), the central plot is a GAM term learnt

6.2. Boosting feature construction in generalized additive models 125

0 0.01 0.04 0.06 0.1 1
bmax

0.42

0.44

0.46

0.48

0.50
Co

he
n'

s k
ap

pa
 sc

or
e

Splines
Neural network

(a) CLAS12 dataset

0 0.01 0.04 0.06 0.1 1
bmax

0.42

0.44

0.46

0.48

Co
he

n'
s k

ap
pa

 sc
or

e

(b) Higgs dataset

0 0.01 0.04 0.06 0.1 1
bmax

0.52

0.53

0.54

0.55

0.56

Co
he

n'
s k

ap
pa

 sc
or

e

(c) τ → 3µ dataset

0 0.01 0.04 0.06 0.1 1
bmax

0.68

0.70

0.72

0.74

Co
he

n'
s k

ap
pa

 sc
or

e

(d) MAGIC dataset

Figure 6.14: Cohen’s kappa score against bitonicity threshold bmax
for the four datasets. bmax = 0 is equivalent to the FCGAM_∅ version

of the algorithm, and bmax = 1 to FCGAM_∞.

6 7 8 9 10 11 12 13

0.0

0.2

0.4

0.6

0.8

Output probability

6 7 8 9 10 11 12 13

3

2

1

0

1

Non bitonic term

6 7 8 9 10 11 12 13
2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

Bitonic term

Figure 6.15: CLAS12: pze + pzp + pzγ1 . Lower value means higher
probability to have a signal event.

for this feature using splines without bitonicity enforcement, and the right plot is a
GAM term learnt using splines and with bitonicity enforcement.

Figure 6.15 illustrates a feature for the CLAS12 dataset, which is the sum of the
z momenta that has already been encountered in previous experiments on feature
construction. According to momentum conservation, the total momentum of the
output particles must be equal to the momentum of the input particles, here 10.6
GeV/c. If the sum of the momenta of the output particles is inferior to 10.6 GeV/c,
additional particles have been produced from the collision and hence it is not a signal
event. This explanation is well reproduced in the non-bitonic term on the central plot,
but disappears in the bitonic term on the right plot. In this particular case, enforcing
bitonicity is not a good idea as the important thing is the peak at 10.6 GeV/c.

126 Chapter 6. Interpretable embedded feature construction

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

0.4

0.5

0.6

0.7

0.8

0.9

Output probability

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
1.0

0.5

0.0

0.5

1.0

1.5

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

0.5

0.0

0.5

1.0

1.5

Non bitonic term Bitonic term

Figure 6.16: CLAS12: ∠(pγ2 , pγ1 + pγ2). Lower value means higher
probability to have a signal event.

Figure 6.16 illustrates a CLAS12 built feature, which is the angle between γ2 the
second highest energetic photon and the sum of two detected photons γ1 + γ2. A
signal DVCS event involves a single γ photon. Nevertheless, a second uncorrelated
photon from background may be simultaneously detected. It then resembles the major
background being π0 production. The two γ photons of this background process are
produced by the decay of a same particle, the π0, and are therefore correlated due to
the energy-momentum conservation. Consequently, the distribution of this angle is not
random and presents a peak around 5 degrees. However, the oscillations learnt in the
non-bitonic term are probably learnt from the noise present in the data distribution.
The bitonic term permits to solve this irregularity: experts can visually tell that it
generalizes better and is more consistent with their expectations.

-300 -200 -100 0 100 200 300

0.2

0.3

0.4

0.5

0.6

Output probability

300 200 100 0 100 200 300

1.0

0.5

0.0

0.5

1.0

1.5

2.0
Non bitonic term

300 200 100 0 100 200 300

1.0

0.5

0.0

0.5

1.0

Bitonic term

Figure 6.17: Higgs dataset: φlep − φmissingtE . Higher value means
higher probability to have a signal event.

Another case of bitonicity issue is illustrated by Figure 6.17. The angle between the
lepton and a hypothetical missing particle to enforce momentum conservation of the
collision is one of the most common feature built by a FCGAM for the Higgs dataset.
Indeed, this missing momentum actually relates to neutrinos, which are undetectable
particles. In signal events, the neutrinos are in majority emitted in the same direction
than the lepton. However, in several background processes, there is only one neutrino
emitted in the opposite direction of the lepton (see Figure 6.18). Therefore, the
probability to have a signal event is higher at 0 degrees and at its lowest at -180 and
180 degrees. This particular feature is highly discriminative but not bitonic. Enforcing
bitonicity on this feature would be counterproductive. However, this particular case
could be solved in two different ways:

• the feature construction could have found a bitonic equivalent for this feature,
for instance by computing its absolute value or its square;

6.3. Conclusion and perspectives 127

• we could authorize more than one shape function to fit the same feature, but in
this case we would lose in interpretability.

H
lep
ν
ν ν

h

lep

missing
angle = 0°

Wlep
ν
h

lep missing
angle = 180°

Figure 6.18: Illustration of signal events on the left and one type of
background events on the right.

6.3 Conclusion and perspectives

This chapter proposed different methods to embed the constrained feature construc-
tion methods introduced in chapter 5 in several transparent models. First, embed-
ded feature construction in tree-based and rule-based models has been studied: it
improves the classification performances (up to 0.260 for FURIA with the CLAS12
dataset) while limiting the overall dimensionality of the models, and producing only
interpretable features. The proposed method can be applied without loss of generality
to other tree-based or rule-based models that were not included in the experiments
of this chapter. Secondly, we proposed to embed the feature construction technique
into GAM. Again, it significantly improves the classification scores (with a gain for
CLAS12 of 0.142), while producing interpretable features for physicists. In addition,
we introduced bitonicity to take into account prior knowledge about HEP applications.
A method is proposed to test the bitonicity of a feature and to enforce it when fitting
shape functions. The combination of feature construction with bitonicity enforcement
increases the interpretability potential and generalization power of the global model,
with a classification score comparable to the score obtained without constraint, if not
greater. Bitonicity extends the notion of monotonicity in the literature, and we can
imagine several applications where it can be useful to constrain models to enhance
interpretability.

Further work can be carried out to understand why bitonicity is more compliant with
some datasets than others. In addition, a very interesting extension of this work could
be conducted using bivariate terms as part of a GA2M model. This would imply the
embedded feature construction of a pair of features for each bivariate term, as well as
an extension of the bitonicity evaluation procedure and constraint enforcement.

129

Conclusion of part II

Chapter 4 introduced the field of feature construction with a review of the state of the
art. The feature construction methods mainly divide into tree-based and evolutionary-
based techniques, the latter being the most widespread. In particular, genetic pro-
gramming is a very flexible tool for feature construction. Notably, several techniques
exist to constrain GP. Besides, three approaches coexist to perform feature construc-
tion:

• filter fitness functions can be used that are faster but lead to less specialized
features;

• wrapper fitness functions give the best discriminative power;

• embedded feature construction exploits most of the times filter fitness functions
but embeds them into the induction of machine learning models instead of per-
forming feature construction ahead of it.

Therefore, drawn from the state of the art, chapter 5 proposed a constrained GP algo-
rithm for feature construction adapted to experimental physics analyses. A grammar
is designed so that only valid feature combinations are made, and a transition matrix
is proposed to guide the feature search. Experiments on prior feature construction
with a filter fitness function and two wrapper fitness functions confirm the significant
contribution of the proposed feature construction techniques to improve the classifi-
cation score (up to 0.260 for FURIA with embedded feature construction with the
CLAS12 dataset) while obtaining a superior interpretability compared objectively to
other feature construction methods (PSO for prior feature construction, Monte Carlo
search for embedded feature construction in tree-based models).

Chapter 6 deepened the experiments with embedded feature construction in tree-based
and rule-based models as well as in GAM. For the latter, bitonicity constraints have
been introduced to further strengthen interpretability. Embedded feature construction
allows to build more features in a given amount of time than prior feature construction,
although the produced features are more specific and less interpretable especially in
deeper nodes of decision trees.

Table 6.6 summarizes the results obtained for the CLAS12 dataset. Globally, the
models with embedded feature construction outperform their equivalent with prior
feature construction, at the expense of more built features. The fuzzy decision trees
and FURIA with embedded feature construction are the best models in terms of
classification performance.

Regarding interpretability, features built through prior feature construction are prob-
ably more general than those built in an embedded way. Moreover, rule bases are
smaller when induced with prior feature construction compared to embedded feature
construction. However, it takes more computation time to build features with wrapper

130 Conclusion of part II

Table 6.6: Summary of the classification performances of the pro-
posed models for the CLAS12 dataset without missing values. FC

stands for feature construction.

Cohen’s kappa

Prior FC (5 features, CART as fitness and evaluator) 0.362 ± 0.020
Prior FC (5 features, CART as fitness and C4.5 as evaluator) 0.445 ± 0.021
Prior FC (5 features, FURIA as fitness and evaluator) 0.459 ± 0.010

Embedded FC (C4.5, 15 features) 0.476 ± 0.025
Embedded FC (fuzzy C4.5 std, 15 features) 0.492 ± 0.021
Embedded FC (fuzzy C4.5 Fibo, 15 features) 0.496 ± 0.026
Embedded FC (CART, 100 features) 0.437 ± 0.044
Embedded FC (AdaBoost, 50 features) 0.447 ± 0.015
Embedded FC (GradientBoosting, 350 features) 0.482 ± 0.031
Embedded FC (FURIA, 2 features per rule) 0.496 ± 0.039
Embedded FC (FCGAM_bmax splines, 16 terms) 0.466 ± 0.014

fitness functions such as CART or FURIA compared to embedded feature construc-
tion, where the fitness function is an information metric. The GAM could not be used
as a fitness function for prior feature construction for this reason.

The models implemented in scikit-learn, namely CART, AdaBoost and Gradient-
Boosting are discarded for CLAS12 data analysis in the remaining of this thesis be-
cause they do not handle missing values.

Finally, we will consider three of these models to go further in the CLAS12 data
analysis in the next part. In particular, we consider FURIA with prior feature con-
struction of 5 features, fuzzy C4.5 Fibo with 15 features built in an embedded way,
and FCGAM with 16 terms with splines as shape function and bitonicity enforcement
in shape functions for bitonic features.

The classification performances of these models on the CLAS12 dataset containing
missing values are printed in Table 6.7.

Table 6.7: Classification performances of the retained models on the
CLAS12 dataset with missing values. FC stands for feature construc-

tion.

Cohen’s kappa

Prior FC (5 features, FURIA as fitness and evaluator) 0.361 ± 0.021
Embedded FC (fuzzy C4.5 Fibo, 15 features) 0.463 ± 0.018
Embedded FC (FCGAM_bmax splines, 16 terms) 0.315 ± 0.014

Part III will tackle the transition from the induction using simulated data to the
application to real CLAS12 data.

131

Part III

From simulation to real CLAS12
data analysis

133

Introduction

This part tackles more specifically the DVCS event selection at CLAS12, and the
transition from simulated data to real CLAS12 data. Indeed, transparent models
with automated feature construction have been developed in part II, tailored to HEP
datasets such as simulation data provided for CLAS12. We state that these models
are both interpretable and efficient for event selection, and that they can be used
for DVCS analysis from CLAS12 data. These two assertions will be verified in this
part. However, a problem remains, which is the distribution shift between simula-
tion and real data. Due to uncertainties in the experimental setup and in theoretical
physics models, the data used for training may not reflect perfectly the reality. In ad-
dition, the interpretability of the proposed models must be validated by the physicists
users themselves, so that they can be effectively be employed for a physics analysis.
Finally, the performances of these models for the actual physics analysis must be
demonstrated.

Using the proposed adapted transparent machine learning models with prior or embed-
ded feature construction, the objectives are now to assess their performances in terms
of classification on real data and interpretability on the one hand, and to perform the
final analysis of DVCS data on the other hand.

To these ends, three chapters constitute this part:

• Chapter 7 introduces domain adaptation to handle the distribution shift be-
tween simulated data and real data. The objective is to better evaluate the
classification performances of the models on real data and if possible to improve
them.

• Chapter 8 conducts a survey to evaluate the perceived interpretability of the
proposed models by a population of experimental physicists. This study should
permit to verify whether these models could be used in practice for an analysis.

• Chapter 9 applies the proposed models on real data, with the objective to extract
the DVCS asymmetry and compare the results with those obtained by a standard
analysis.

135

Chapter 7

Model transfer to real data

7.1 State of the art of domain adaptation 137
7.1.1 Domain adaptation via invariant feature representation . . 137
7.1.2 Domain adaptation via domain mapping 139

7.2 Domain adaptation of the particles momenta 142
7.2.1 Constitution of a training dataset: control process 142
7.2.2 Proposed method for domain adaptation from simulation to

CLAS12 data . 145
7.3 Experiments . 146

7.3.1 Experimental settings . 146
7.3.2 Experiments with smeared simulated data with flat distri-

butions . 149
7.3.3 Experiments with smeared simulated data with cross-sections 152
7.3.4 Domain adaptation to real data 154
7.3.5 Adapting transparent models to transported data 156

7.4 Conclusion and perspectives 159

While all previously presented machine learning models have been trained on simu-
lated data, there exist some differences in the distributions between simulated and
real data from CLAS12. Indeed, several sources of uncertainties coexist:

• In case of using a Monte Carlo simulation considering the cross-sections, the
latter are not perfectly known and therefore may be quite far from reality: they
are actually the quantities physicists want to measure;

• The detector responses are imprecise. Indeed, the detectors themselves can be
partially inefficient due to imperfections or environmental factors not taken into
account in the simulation;

• Contrary to simulation, the real-world detector geometry is not perfectly known,
which induces imprecisions during event reconstruction.

In total, putting aside the errors on cross-sections, the real data present biases due to
distortions of the phase space and loss of acceptance.

Therefore, the models trained on simulation data are not optimal when applied to real
data. First, some of the variables are noisier than expected. For instance, the missing
mass ep → eγX is shifted and broader in real data compared to simulated data, as
displayed on Figure 7.1.

136 Chapter 7. Model transfer to real data

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Squared missing mass ep e X (GeV²/c⁴)

0.0

0.5

1.0

1.5

2.0

2.5

D
e
n
si

ty

Simulation
Data

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Squared missing mass ep e X (GeV²/c⁴)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

D
e
n
si

ty

Simulation
Data

Figure 7.1: Squared missing mass ep → eγγX for exclusive π0 pro-
duction events in Monte Carlo simulated data and in CLAS12 data.
Left: photons were sent in the forward tagger (θ < 5°); right: in the

forward detector (θ > 5°).

These remarks require either to find variables that are less affected by the change of
distributions or to shift split thresholds in decision trees and rule bases for instance.
Secondly and most importantly, the estimation of the model classification performance
is wrong, since this estimation is made on labeled data as well. However, an accurate
estimation of the percentage of selected DVCS events as well as of the percentage of
contaminating π0 production events is crucial for the analysis.

Transfer learning is the field of machine learning that consists in adapting a model
trained on a source task to be applied to a somehow related target task. In this chapter,
a method is proposed to overcome the distribution shift between simulated and real
data to get a more accurate evaluation of performances of the machine learning models.

In transfer learning, different sub-fields exist depending on the nature of the differences
between the source and target domains [Kouw and Loog, 2019]: the task might be
different, the input features as well, the input and/or target value distributions might
change between the source and target domains.

However, the majority of techniques of transfer learning suppose to have a few labeled
data in the target domain. This is not exactly possible in our case:

• It is possible to obtain a quasi-pure DVCS sample but only in a reduced region
of the phase space where the π0 production cross-section is much smaller than
the DVCS cross-section. Therefore, the labeled data in the target domain that
could be obtained would not be representative.

• The simulation on which the models are trained comprises exclusively DVCS
and π0 production events. However, numerous other processes occur that are
present in real data, not to mention a constant background noise difficult to
simulate.

Therefore, transferring trained models is not directly possible. Instead, we focus
on domain adaptation, which is a sub-field of transfer learning aiming at learning a
transformation between the source domain and the target domain. The objective is
to learn a transformation of CLAS12 simulated data so that they reproduce better
the real distributions. The machine learning models can then be either transferred to
the transformed data or entirely retrained.

Section 7.1 presents a summary of the state of the art for domain adaptation, and then
our method adapted to domain adaptation of CLAS12 data is detailed in section 7.2.

7.1. State of the art of domain adaptation 137

7.1 State of the art of domain adaptation

Domain adaptation is the sub-field of transfer learning where no labeled target data
is available, the input domains differ between source and target and the task remains
the same. Surveys can be found in [Kouw and Loog, 2019], [Wilson and Cook, 2020]
or [Farahani et al., 2020]. Three types of distribution shifts between source S and
target T are covered in the literature:

• Prior shift, where the prior distributions of classes y changes (pS(y) 6= pT (y)
with S and T the source and target domains) but the conditional probabilities
of data x given class y are equal (pS(x|y) = pT (x|y)). This means that the prior
assumption on the relative proportion of the different classes is wrong.

• Covariate shift, where the distributions of examples are different (pS(x) 6=
pT (x)) but the posterior distribution of classes y remains the same (pS(y|x) =
pT (y|x)). This shift is the most widely tackled in the literature.

• Concept shift, where the prior distributions of examples are equal between source
and target, but the posterior distributions of classes are different: pS(x) = pT (x)
but pS(y|x) 6= pT (y|x).

Solving prior or concept shifts requires to have labeled data from both source and
target domains. Besides, covariate shift can be tackled in an unsupervised manner,
although conditional methods exist to take into account label information.

The remaining of this review focuses on unsupervised domain adaptation where nei-
ther label information is available on source nor on target data. Therefore, only the
covariate shift can be tackled. When the source and target domains are sufficiently
similar, instance-based domain adaptation methods can be applied. They often consist
in sample reweighting so that the distribution of weighted source samples resembles
the target distribution [Sugiyama et al., 2008, Gretton et al., 2009]. When the shift is
too substantial, notably when the supports of the source and target distributions are
disjointed for instance, reweighting is not efficient. Feature-based domain adaptation
methods are therefore more appropriate. We divide these methods in two categories:
those that seek a feature representation that is invariant of the domain on the one
hand and those that build a mapping between the source and target domains on the
other hand.

7.1.1 Domain adaptation via invariant feature representation

While covariate shift implies that the input distributions vary between the source
and target domains, finding a feature representation that is invariant with respect to
the domain permits to train a general classifier on this representation. The idea of
finding an invariant feature representation is validated by the theory of Ben-David
et al. [2007, 2010]: the transferable information across domains should not comprise
any domain-specific information and therefore should be independent of the domain.
This representation search can be performed ahead of the classifier training or simul-
taneously with it.

Among this first category, Pan et al. [2010] propose transfer component analysis to
minimize the maximum mean discrepancy (MMD) [Gretton et al., 2012] metric be-
tween representations of the source and target domains. The MMD is a distance
between distributions: more precisely, it is the difference between moments of the dis-
tributions. MMD is defined by a feature map ϕ (linked to the so-called kernel through

138 Chapter 7. Model transfer to real data

a scalar product) to compute these moments. Then, the MMD between distributions
P and Q writes:

MMD(P,Q) = ‖EX∼P [ϕ(X)]− EX′∼Q[ϕ(X ′)]‖H (7.1)

where H is the output space of ϕ, a so-called reproducing kernel Hilbert space. The
choice of the kernel permits to choose which “moments” of the distributions to com-
pare. Joint domain adaptation [Long et al., 2013] extends the idea of Pan et al. [2010]
by taking into account the conditional distributions. Later with the development of
deep learning, many methods appeared based on autoencoders: the objective of these
networks is to encode the input into a lower-dimensional representation while being
able to reconstruct the original. Glorot et al. [2011] and Chen et al. [2012] notably
use stacked denoising autoencoders to extract invariant features. A general classifier
is trained afterwards on these invariant features. Ghifary et al. [2016] use a similar
idea with deep reconstruction-classification networks.

Recent methods simultaneously perform invariant feature extraction and classifier
training. Indeed, deep learning is known for its ability to learn relevant feature rep-
resentations [Bengio et al., 2013]. Long et al. [2015] were the first to propose a deep
adaptation network (DAN): while the first layers are common to all domains, task-
specific layers align the distributions across domains using multiple kernel variants of
MMD. Ganin et al. [2016] propose a domain adversarial neural network (DANN) to
perform both classification and feature extraction: first layers are common and then
the network divides into two branches. The first one classifies the instances and has a
classical cross-entropy loss, while the second branch is a domain classifier that verifies
whether it is possible to recognize source examples from target examples. The loss of
this second branch is a reversed cross-entropy so that the common layers are trained
to build an invariant feature representation. The DANN principle is illustrated on
Figure 7.2. Tzeng et al. [2015] also use an adversarial architecture and takes into
account both marginal and conditional distributions. Deep CORAL [Sun and Saenko,
2016] uses the principle of correlation alignment of [Sun et al., 2015] and embeds it
into a deep architecture.

Figure 7.2: Domain-adversarial neural network [Ganin et al., 2016].

However, not all methods presented in this first category are compliant with in-
terpretability: the invariant feature representation loses all pre-existing information
about the original input features.

7.1. State of the art of domain adaptation 139

7.1.2 Domain adaptation via domain mapping

A second category of feature-based domain adaptation techniques performs a mapping
from source to target domains instead of finding a common feature representation.

A simple idea consists in renormalizing the features: Wang et al. [2019] replace the
batch normalization in neural networks by a “TransNorm” layer that uses domain-
specific mean and variance to improve the network’s generalization capacity. CORAL
[Sun et al., 2015] aligns second-order statistics in addition to the means.

A few methods project data on a latent space and then find a transformation between
the source and target latent spaces. Principal component analysis (PCA) can for
instance be used to project data into a lower-dimensional space. Gopalan et al. [2011]
then find a geodesic path between the source and target points. Gong et al. [2012]
extends their approach with a kernel-based domain adaptation. Finally, Chopra et al.
[2013] perform the transition between projected source and target domains with a
sequence of autoencoders. The problem with these projection-based methods is that
the transformation is performed on the projections, therefore interpretability is lost
again.

Direct mapping techniques transform directly the source input space. The two main
methods are optimal transport and deep learning.

7.1.2.1 Optimal transport

The problem of optimal transport (OT) has been introduced by Monge [1781]. The
problem is to find a solution of least effort to transport mass from one distribution
to another. More rigorously, OT is the search of a transport map T from the source
space ΩS to the target space ΩT that minimizes the transportation cost C(T):

C(T) =

∫
ΩS

c(X,T (X))dP (X), (7.2)

where P is the marginal distribution over ΩS , and c a distance. Then, the optimal
transport map T ∗ verifies:

T ∗ = argmin
T

C(T) so that T#P = Q (7.3)

where T#P means the transformation of distribution P by the map T and Q is the
marginal distribution over ΩT .

This transport map defines then a distance across distributions called the Wasserstein
distance of order p:

Wp(P,Q) =

(∫
ΩS

c(X,T ∗(X))pdP (X)

) 1
p

. (7.4)

In the particular case where c is the Euclidean distance, W1 is called the Earth-Mover
distance. It has been applied early to measure similarity between images [Rubner
et al., 2000].

A minimizer of equation (7.3) does not exist in the general case. The simpler ex-
ample is the one-dimensional case, where T ∗(X) = C−1

T (CS(X)) with CS and CT the
cumulative distribution functions of respectively the source and target domain. This

140 Chapter 7. Model transfer to real data

particular case is illustrated on Figure 7.3. In the general case, relaxations are applied
so that the problem is not intractable and a suboptimal transport plan can be found.

Figure 7.3: Illustration of optimal transport in the one-dimensional
case [Peyré and Cuturi, 2019]. Source and target distributions P and

Q are noted α and β on the figure.

In domain adaptation, only samples of P and Q are available and not the explicit
distributions. Optimal transport between two points clouds is solvable but costly
[Kuhn, 1955]: the complexity is O(n3), which delayed the introduction of OT in
machine learning. Nearest-neighbors are used to transport new samples.

Cuturi [2013] however proposes an entropic regularization to the optimization problem
of OT: the resulting problem is strictly convex and can be solved easily. OT started
being used in machine learning notably by Courty et al. [2016] or by Redko et al.
[2019] and Turrisi et al. [2020] for multiple sources. The principle is to map the
labeled source domain to an unlabeled target domain, as illustrated on Figure 7.4.
Other regularizations are possible depending on the nature of the data, for instance
Laplacian for graphs [Courty et al., 2016], or using the known classes in the source
domain [Courty et al., 2016]. Joint distributions can be used instead of marginal
distributions as in [Courty et al., 2017].

Figure 7.4: Illustration of the use of optimal transport in machine
learning [Courty et al., 2016]. The classifier is trained on the trans-

ported samples.

Finally, there are recent proposals of combinations between OT and deep learning,
notably using the Earth-Mover distance [Bhushan Damodaran et al., 2018, Chen et al.,

7.1. State of the art of domain adaptation 141

2018]. The most notable contribution of OT to deep learning is found in the work
of [Arjovsky et al., 2017]: a Wasserstein generative adversarial network (Wasserstein
GAN) permits to generate samples following a given distribution.

The principle of a GAN is the competition between two networks [Goodfellow et al.,
2014]: a generative network whose objective is to generate samples as “realistic” as
possible, and a discriminative network that takes as input both real samples drawn
from the target distribution and samples produced by the generator. The two parts are
trained in alternation. The discriminator is trained to classify real samples from fake
generator-produced samples, while the generator is trained to fool the discriminator
and produce realistic samples. Convergence is reached when there is an equilibrium
between the generator and the discriminator.

A Wasserstein GAN uses the discriminator as an emulator for the Wasserstein dis-
tance. Arjovsky et al. [2017] provide theoretical guarantees and experimental con-
straints regarding the OT theory.

7.1.2.2 Deep learning

A number of works used differentiable distances between distributions as loss functions
for a generative neural network. Notably, the MMD distance is differentiable as long
as its kernel is differentiable. Dziugaite et al. [2015] propose MMD nets that use
MMD with Gaussian kernel as loss function, since its good theoretical properties have
been proven [Gretton et al., 2012]. Li et al. [2015] also use MMD but as part of
an embedded feature extractor. Li et al. [2017] propose a MMD-GAN in which the
discriminator learns the kernel for the MMD distance.

Arjovsky et al. [2017] conduct a study of different distances to be used with generative
networks. They conclude that the Wasserstein distance is more regular than other
integral probability metrics such as the Jensen-Shannon or the Kullback-Leibler (KL)
divergence. They believe the MMD distance may have the same downside depending
on the kernel with a saturation regime when distributions are too different. In these
cases, gradient descent techniques are poorly efficient.

Finally, WGAN-GP [Gulrajani et al., 2017] improves the Wasserstein GAN of [Ar-
jovsky et al., 2017] through experimental adjustments, notably the addition of a gra-
dient penalty loss and a change of the optimizer. This model moves away from the
OT theory that led to WGAN but achieves a more stable convergence.

Deep domain adaptation has been actually particularly developed in computer vision:
Zhu et al. [2017] propose Cycle-GAN, an architecture that permits to perform domain
translation in both directions thanks to two generators and two discriminators. Teng
and Choromanska [2019] propose an invertible autoencoder to replace the generator
so that a single network is trained for domain translation.

GAN in HEP

Finally, it should be mentioned that GAN have been increasingly used in HEP, started
by de Oliveira et al. [2017] for jet shower simulations at LHC: for faster data simu-
lation of cosmic ray-induced showers in Cherenkov detectors [Erdmann et al., 2018],
particle showers in calorimeters [Erdmann et al., 2019], event simulation at LHC
[Martínez et al., 2020], simulation of Cherenkov detectors at LHCb [Maevskiy et al.,
2020] or shower simulation at ATLAS [Ghosh et al., 2020]. It is interesting to note

142 Chapter 7. Model transfer to real data

that Matchev and Shyamsundar [2020] warn against the use of GAN as a replacement
for usual data generators since their accuracy cannot exceed the one of training data.

In particular, Alanazi et al. [2020] propose a feature-augmented GAN for event gen-
eration notably for CLAS12 and EIC. In their model, additional high-level features
are provided to the discriminator.

7.2 Domain adaptation of the particles momenta

In this section, we develop a process to assess correctly the performances of the pro-
posed transparent machine learning models on real data. We use mapping techniques
of domain adaptation to map the labeled simulated data onto the real data distribu-
tions.

However, the source and target data used to learn the mapping must come from the
same process: indeed, real data comprise additional background processes that are
difficult or time-consuming to simulate.

In the following, we establish a training dataset that comprises a single control process.
We make two hypotheses:

• First, that the posterior distribution is not altered by the mapping T between
the source and target: p(y|X) = p(y|T (X));

• Second, we assume there exists a single mapping T that applies for all processes.
Namely, if we learn T on a specific process present in CLAS12 data, this T can
be reliably applied on other processes such as DVCS or π0 production, as long
as they share the same domains for the input variables.

7.2.1 Constitution of a training dataset: control process

Actually, π0 production events are easier to isolate in data compared notably to DVCS
events. In particular, exclusive events, namely with measured electron, proton and
two photons can be extracted with almost no remaining background. As long as the
selection process is the same in simulation as in real data, two corresponding datasets
are obtained. However, this selection must not be too tight so that the dataset is
representative of the global distribution. The objective is then to learn a mapping T
between the source dataset and the target dataset. The former consists in two-photons
π0 production events in simulation and the latter in two-photons π0 production events
in real data. This mapping is then to be applied on other processes.

The cuts used to select exclusive two-photons π0 production events are the following:

• the missing energy ep→ epγγ must be below 1.8 GeV in absolute value;

• the squared total missing mass ep→ epγγ must be below 0.2 GeV2/c4 in abso-
lute value;

• the invariant mass γγ must be between 0.09 GeV/c2 and 0.18 GeV/c2;

• the squared missing mass ep→ eγγ must be between 0 and 1.6 GeV2/c4;

• the total missing transverse momentum must be below 0.14 GeV/c.

7.2. Domain adaptation of the particles momenta 143

Histograms of a few common low-level and high-level variables are displayed on Fig-
ure 7.5. They permit to apprehend the distance between the source and target distri-
butions.

9 10 11 12
0

500

1000

1500

2000

2500

3000

Sum of pz (GeV/c)

0.00 0.05 0.10
0

200

400

600

800

1000
Missing pT (GeV/c)

0.0 0.5 1.0 1.5
0

200

400

600

800

1000

1200

Squared missing mass e X (GeV²/c⁴)

0.10 0.12 0.14 0.16 0.18
0

500

1000

1500

2000

Invariant mass (GeV/c²)

Simulation
Data

Figure 7.5: Histograms of simulated (source) and real (target) π0

production events.

To control the proper functioning of the domain adaptation, we design a smeared
dataset that will play the role of real data during the development phase. From a
simulated dataset with cross-sections containing both DVCS and π0 production events,
we alter the distributions to imitate degraded detector resolutions and reconstruction
biases. Noting pgen the generated momentum of a given particle, prec its reconstructed
momentum and psm the smeared momentum, we modify the momenta of the electron,
proton and photons as follows:

• for charged particles in the forward detector (namely the electron and sometimes
the proton): psm = pgen + 3.2 (prec − pgen);

• for charged particles in the central detector (sometimes the proton): psm =
0.9 (pgen + 2.5 (prec − pgen));

• the momenta of photons is drawn from a Gaussian distributionN (prec, 0.05 prec)

In addition, the direction of the momentum of all particles is also smeared by an
angle drawn from a Gaussian distribution of standard deviation 1◦: N

(
0, π

180

)
. This

smearing is performed in an arbitrary direction from prec. Histograms of the smeared
data compared to the original simulated data are displayed on Figure 7.6.

144 Chapter 7. Model transfer to real data

9 10 11 12
0

500

1000

1500

2000

2500

3000

3500

4000

Sum of pz (GeV)

0.00 0.05 0.10
0

200

400

600

800

1000

Missing pT (GeV)

0.0 0.5 1.0 1.5
0

500

1000

1500

2000

Squared missing mass e X (GeV²)

0.10 0.12 0.14 0.16 0.18
0

500

1000

1500

2000

2500

3000

3500

Invariant mass (GeV)

Simulation
Smeared simulation

Sum of pz (GeV/c) Missing pT (GeV/c)

Squared missing mass e X (GeV²/c⁴) Invariant mass (GeV/c²)

Figure 7.6: Histograms of simulated and smeared π0 production
events.

We then dispose of a source dataset and a target dataset, both containing DVCS
and π0 production events. However, the mapping T will be learnt exclusively on
selected π0 production events according to the list of cuts presented above. Applying
a few classifiers on simulated and smeared data gives the ROC curves displayed on
Figure 7.7. We use two models for this ROC comparison:

• a fuzzy C4.5 (Fibo version) with 25 high-level features automatically built in an
embedded manner;

• a GAM of 16 terms with embedded feature construction and enforced bitonicity
where the features are themselves bitonic (FCGAM_bmax).

Both models are initially trained on simulated flat data.

The objective of the domain adaptation is to transport the simulated data so that the
classifiers applied to the transported data get the same performances as on smeared
data, namely to reproduce the ROC curve of smeared data with the transported data.
This would guarantee that the mapping T learnt on π0 production events also extends
to DVCS events. In addition, the performances of the models can be assessed on
smeared data using the transported data. Therefore, the domain adaptation technique
would be usable with real data as target. The models could be retrained or transferred
on the transported data to improve their performance on real data.

7.2. Domain adaptation of the particles momenta 145

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
T
ru

e
 P

o
si

ti
ve

 R
a
te

Applied to smeared data
Applied to simulated data

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
si

ti
ve

 R
a
te

Applied to smeared data
Applied to simulated data

Figure 7.7: ROC curves of two transparent models trained on sim-
ulated flat data and applied to simulated cross-sections data and its
smeared counterpart. Left: for a fuzzy C4.5 Fibo with 25 built fea-

tures; right: for a FCGAM_bmax.

7.2.2 Proposed method for domain adaptation from simulation to
CLAS12 data

From the review presented above, we retain a few domain adaptation techniques for
CLAS12 domain adaptation: baseline methods such as renormalization and CORAL
[Sun et al., 2015], regularized optimal transport [Cuturi, 2013], MMD-nets [Dziugaite
et al., 2015] and WGAN-GP [Gulrajani et al., 2017]. This selection has been made
considering that we need a mapping that conserves the original data structure and
hence its interpretability. Revertible GAN are not considered here since we are looking
for a mapping from simulated data to real data with degraded resolutions: the inverse
path from real data to simulation is not possible.

We know that each type of particle can be transported independently. Indeed, the
function mapping a simulated electron to its real counterpart does not depend on other
particles produced at the same time. Therefore, the methodology to find a mapping
for each particle is displayed on Figure 7.8: independent mappings are learnt for each
type of particle (electron, proton, photon), but the evaluation (and training when
possible) is common. Indeed, we follow the idea of Alanazi et al. [2020] to include
additional high-level variables in the evaluation of the mappings to better constrain
the training. The mappings only learn a transformation of the three-vector (p, θ, φ)
of the particle. Then, the collective evaluation takes as input the transported three-
vectors of all particles as well as additional high-level variables.

The chosen high-level variables are a mixture of frequent features built by the auto-
matic feature construction and of common variables used by physicists:

•
∑
pez + ppz + pγ1z (noted

∑
pz in

the graphs);
• sin(φe − φγ1);
• cos(φe − φγ2);
• cos(θe − θγ1);
• missing energy epγX;
• squared missing mass epγX;

• photon cone angle;
• squared missing mass eγX;
• missing energy epγγX;
• squared missing mass epγγX;
• π0 cone angle;
• invariant mass γγ.

146 Chapter 7. Model transfer to real data

Electron Proton Photons

Electron
mapping

Proton
mapping

Photon
mapping

Computation of high-level variables

Evaluation

Independent training based on
or global training based on additional
high-level variables

Figure 7.8: Methodology for CLAS12 domain adaptation.

From there, we decline the methods from the state of the art. The normalization is
intrinsically independent for each variable. CORAL and optimal transport are applied
on each particle separately. The training cannot take into account high-level variables
for these three methods. Therefore, only the evaluation will consider them.

The details for our adaptation of MMD-nets and WGAN-GP are illustrated on Fig-
ure 7.9. The training of these networks takes into account the high-level variables as
long as they are differentiable, which is the case.

As illustrated on Figure 7.9, we also try to simply learn a correction to the input data
by including an additive loop (green on Figure 7.9): the generator networks should
only produce a small correction to be added to the input data. With this idea, we
include prior knowledge that the transported events should remain individually close
to their source events.

Finally, we propose an alternative to these networks by adding random variables as
input in addition to the three-vectors (p, θ, φ) (in blue on Figure 7.9). Indeed, part
of the domain shift stems from overestimated detector resolutions, hence producing
random Gaussian effects.

7.3 Experiments

7.3.1 Experimental settings

Normalization and CORAL do not have any hyperparameter since they simply use
the statistics of the source and target data.

For the other methods, hyperparameters are determined based on the two-sample
Kolmogorov-Smirnov (KS) distance1: we want classifiers to behave similarly on trans-
ported data and on target data. Therefore, we make use of the two same models
applied to obtain the baselines of Figure 7.7: a fuzzy C4.5 Fibo with 25 built features
and a FCGAM_bmax. We apply these models on the validation dataset, comprising
exclusively π0 production events. The output distributions of these models applied
to the transported validation data and to the target validation data are compared

1The Kolmogorov-Smirnov distance is a non-parametric distance between the cumulative distri-
butions functions of two one-dimensional probability distributions. The associated statistical test
permits to assess whether two distributions are significantly different from each other.

7.3. Experiments 147

Target (24 variables)Transported source (24 variables)

Electron generator
fully-connected

Proton generator
fully-connected

Photon generator
fully-connected

Photon generator
fully-connected

++ + + +

Electron Proton Photon 1 Photon 2

Electron Proton Photon 1 Photon 2

+ 3 random variables
(Gaussian N(0,0.2))() + 3 random variables

(Gaussian N(0,0.2))() + 3 random variables
(Gaussian N(0,0.2))() + 3 random variables

(Gaussian N(0,0.2))()

Computation of high-level variables
and concatenation

Additive option
Random option

Feature augmented (FA) option

Wasserstein loss

1 variable

Discriminator
fully-connected

W
G

A
N

-G
P

OR MMD loss

M
M

D
-n

et

Evaluation
Choice between WGAN-GP
and MMD-net

Figure 7.9: Adaptation of MMD-nets and WGAN-GP to CLAS12
domain adaptation.

with the KS distance. Returning to hyperparameter tuning, we choose the parame-
ters minimizing the two KS distances (one for the fuzzy C4.5 Fibo and one for the
FCGAM_bmax). Among two candidates in the Pareto optimum, we prefer the one
for which the gains in KS distances are balanced between the fuzzy C4.5 Fibo and
one for the FCGAM_bmax, namely we consider the ratio:

r =
KSFuzzy C4.5(target,source)−KSFuzzy C4.5(target,transported)

KSFCGAM(target,source)−KSFCGAM(target,transported)
(7.5)

and choose a set of hyperparameters in the Pareto optimum so that r or 1
r is the

closest to 1.

Using this principle, the regularization parameter for optimal transport is chosen by
grid search over the range [0.01, 10] with a multiplying factor of 3.33 between the
successive trials. It varies as function of the training dataset and will be specified in
the dedicated sections in the following.

For WGAN-GP, we start with the parameters used by Gulrajani et al. [2017] for their
toy tabular dataset (experiments in their paper concern images), and perform a grid
search in the neighborhood of these parameters to finetune the architecture and batch
size. These specific hyperparameters vary in the following experiments and will be
specified in the dedicated sections. All models comprise a certain number of dense

148 Chapter 7. Model transfer to real data

layers of 512 neurons each with leaky ReLU of slope 0.2 as activation function and
dropout rate 0.1. The optimization is made via an Adam optimizer with learning
rate 10−4, β1 = 0.5 and β2 = 0.9 for both the generators and the discriminator. The
training ratio is set to 5, namely there are 5 updates of the generators’ weights for
1 update of the discriminator’s weights. The discriminator loss is expressed as the
mean of the product between the discriminator output and 1 for target samples, -1
for transported samples, plus a gradient penalty loss. The discriminator should learn
to output a negative value for true target samples and a positive value for transported
samples. Therefore, the discriminator is trained to maximize the distance between
transported samples and target samples. On the contrary, the global generator (i.e.
concatenation of the individual particle generators) loss is the mean of the discrimi-
nator outputs for the generated samples. In this way, the generator is trained to fool
the discriminator (i.e. the discriminator should output negative values such as for
real target samples). The discriminator disposes of the high-level variables computed
from the transported and target samples.

We found that these parameters were well suited to MMD-nets as well, except that
there is no discriminator. The loss of the generators is the MMD with Gaussian kernel
between the target and the transported data comprising high-level variables.

For the random versions of MMD-nets and WGAN-GP, three random variables with
Gaussian distribution N (0, 0.2) are added to the input of the generators. Indeed,
three random variables should reflect the three-dimensional smearing applied to each
source particle.

The training is performed on π0 production events with their corresponding smeared
events, among which 20% are used for validation. We found that 1200 epochs are
sufficient to achieve convergence. A higher number of epochs sometimes leads to
overfitting (the MMD starts increasing on the validation set).

The results presented in the following are evaluations of these methods on simulated
test sets of around 180000 examples. These sets comprise DVCS and π0 production
events in equal amounts. To evaluate the quality of the transport, two quantities are
considered for both considered models (the fuzzy C4.5 and the FCGAM). Firstly, the
KS distance is computed between the output distributions of the classifier applied on
the target data and on the transported test data. Secondly, the area of the absolute
difference between the two ROC curves (the one when the model is applied to target
data and the one when it is applied to transported data) permits to confirm the results.
This area, noted AUD (for Area Under Difference), writes:

AUD =

∫ 1

fpr=0
|ROCtransported − ROCtarget| dfpr. (7.6)

These four evaluation measures (two KS distances and two AUD, one for each model)
are evaluated on 5 folds of the test sets and presented with their mean and standard
deviation.

To summarize, we consider successively:

• the validation set, comprising exclusively π0 production events, used to deter-
mine the hyperparameters and choose the best model;

• the test set, comprising both DVCS and π0 production events, on which the
AUD metrics can be computed.

7.3. Experiments 149

7.3.2 Experiments with smeared simulated data with flat distribu-
tions

Here, we consider a training set comprising π0 production events simulated with a flat
distribution over the CLAS12 phase space. The validation set comprises 20% of such
events, and the test set both DVCS and π0 production events simulated with a flat
distribution.

We only present the results of the additive networks with feature augmentation, with
or without random inputs. Additional experiments have been performed on normaliza-
tion, CORAL, optimal transport and neural networks without feature augmentation
or additive loop and can be found in Appendix F.

Hyperparameters have been tuned with the method detailed above:

• additive FA MMD-net: 5 layers, batch size 512;

• additive FAWGAN-GP: 5 layers for both the generator and discriminator, batch
size 512;

• additive random FA MMD-net: 5 layers, batch size 512;

• additive random FA WGAN-GP: 7 layers for both the generator and discrimi-
nator, batch size 512.

Table 7.1 presents the KS distances on the validation set, namely the set used to
choose the hyperparameters. The WGAN-GP networks performs better than the
MMD-nets whatever the variant (random or not). The best model based on these
validation scores is the additive random FA WGAN-GP with a KS distance dropping
to 0.007 for the fuzzy C4.5 model and to 0.019 for the FCGAM. It should be noted that
the significance threshold for the KS distance with this number of samples is 0.008,
making the output distributions from fuzzy C4.5 between the target and transported
data not significantly different.

Table 7.1: Results on the validation set for flat distributions (π0

production events only).

KSFuzzy C4.5 KSFCGAM min
(
r, 1
r

)
Baseline 0.019 0.031

Additive FA MMD-net 0.019 0.029 0
Additive FA WGAN-GP 0.008 0.021 0.91
Additive random FA MMD-net 0.019 0.027 0
Additive random FA WGAN-GP 0.007 0.019 0.92

Table 7.2 presents the KS distances and AUD metrics when the learnt mapping is
applied on the test set generated with flat distributions. This test set comprises
additional π0 production events and DVCS events as well. All models permit to
improve the KS distances on the test set. Considering also the AUD, the WGAN-GP
variants with additivity, feature augmentation and optional randomness remain the
best models overall.

The ROC curves of the fuzzy C4.5 and the GAM applied to the source dataset,
target dataset, and transported dataset using the additive random FA WGAN-GP
are displayed on Figure 7.10. The output distributions of the fuzzy C4.5 Fibo and

150 Chapter 7. Model transfer to real data

Table 7.2: Results on the test set generated with flat distributions
(DVCS and π0 production events).

KSFuzzy C4.5 KSFCGAM

Baseline 0.104 0.047

Additive FA MMD-net 0.062 0.024
Additive FA WGAN-GP 0.016 0.023
Additive random FA MMD-net 0.058 0.019
Additive random FA WGAN-GP 0.067 0.015

AUDFuzzy C4.5 AUDFCGAM

Baseline 0.070 0.043

Additive FA MMD-net 0.048 0.036
Additive FA WGAN-GP 0.009 0.012
Additive random FA MMD-net 0.045 0.035
Additive random FA WGAN-GP 0.008 0.007

the FCGAM are plotted on Figure 7.11. On this figure, we see that π0 production
events (classified closer to 0) are better reproduced than DVCS events (classified closer
to 1). We can infer that domain adaptation is tuned for π0 production events and
therefore cannot be extrapolated in the DVCS region that easily. Distributions of a
few high-level variables are displayed on Figure 7.12. These figures confirm that the
target distributions are better reproduced than with the source distributions.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
si

ti
ve

 R
a
te

Smeared
Simulated
Transported simulated

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
si

ti
ve

 R
a
te

Smeared
Simulated
Transferred simulated

Figure 7.10: ROC curves of a fuzzy C4.5 (left) and a FCGAM (right)
applied on the source dataset, target dataset and transported dataset

(flat generation).

Arjovsky et al. [2017] mention that using the MMD distance as loss function is haz-
ardous because of the shape of its gradient: indeed, the gradient quickly goes to 0 as
soon as the two compared distributions are far enough from each other. Therefore,
gradient descent is impractical on this distance. However, the considered source and
target distributions are already quite close here. Therefore, the gradient is probably
non-zero and gradient descent is possible, which explains the good results obtained
by the MMD-net variants here.

7.3. Experiments 151

0.0 0.2 0.4 0.6 0.8 1.0
0

2500

5000

7500

10000

12500

15000

17500
Output of fuzzy C4.5 fibo

Simulation
Smeared simulation
Transported simulation

0.0 0.2 0.4 0.6 0.8 1.0
0

1000

2000

3000

4000

5000
Output of FCGAM

Simulation
Smeared simulation
Transported simulation

Figure 7.11: Distributions of fuzzy C4.5 (top) and FCGAM (bottom)
outputs when applied on the source, target and transported datasets

(flat generation).

9 10 11 12
0

200

400

600

800

1000

Sum of pz (GeV)

0.00 0.05 0.10
0

50

100

150

200

250

300

Missing pT (GeV)

0.0 0.5 1.0 1.5
0

100

200

300

400

500

600

700
Squared missing mass e X (GeV²)

0.10 0.12 0.14 0.16 0.18
0

200

400

600

800

1000

Invariant mass (GeV)

Simulation
Smeared simulation
Transported simulation

Sum of pz (GeV/c) Missing pT (GeV/c)

Squared missing mass e X (GeV²/c⁴) Invariant mass (GeV/c²)

Figure 7.12: Histograms of simulated, smeared and transported π0

production events (flat generation).

152 Chapter 7. Model transfer to real data

7.3.3 Experiments with smeared simulated data with cross-sections

Domain adaptation is now put into practice with a more realistic training dataset,
consisting of exclusive π0 production events simulated with cross-sections. Again, the
validation set comprises 20% of such events. The test set is formed with DVCS and
π0 production events in equal amounts, simulated with cross-sections.

Hyperparameters with this training set are:

• additive FA MMD-net: 6 layers, batch size 256;

• additive FAWGAN-GP: 7 layers for both the generator and discriminator, batch
size 256;

• additive random FA MMD-net: 4 layers, batch size 256;

• additive random FA WGAN-GP: 7 layers for both the generator and discrimi-
nator, batch size 256.

Table 7.3 presents the KS distances on the validation set. All models get an im-
provement of the KS distances for both the fuzzy C4.5 and the FCGAM. Here the
MMD-nets obtain better results overall than the WGAN-GP networks. Overall, the
best model considering a similar improvement on both the KS distances of fuzzy
C4.5 and FCGAM is the additive FA MMD-net, closely with the additive random FA
WGAN-GP.

Table 7.3: Results on the validation set for cross-sections distribu-
tions.

KSFuzzy C4.5 KSFCGAM min
(
r, 1
r

)
Baseline 0.041 0.089

Additive FA MMD-net 0.017 0.028 0.39
Additive FA WGAN-GP 0.020 0.029 0.35
Additive random FA MMD-net 0.022 0.017 0.26
Additive random FA WGAN-GP 0.018 0.029 0.38

Table 7.4 presents the KS distances and AUD metrics when the learnt mapping is
applied on the test set generated with cross-sections. The generalized improvement
of the KS distances observed on the validation set is not visible anymore here: the
additive FA MMD-net, which was identified as the best performing model according
to the validation scores degrades KS distance for FCGAM. The additive random FA
WGAN-GP improves the AUD metrics but not the KS distances. Finally, the additive
FA WGAN-GP degrades every metric while the random version of MMD-net is the
only one to improve all of them. At first sight, the validation scores are here not
correlated to the test scores and therefore to the generalization ability of the learnt
mapping.

However, π0 production events that were used for training here have been generated
following the cross-sections: in practice, they are mostly produced in a region of the
phase space quite different that the one covered by the DVCS events. π0 production
events generated with a flat distribution used in the previous experiments as training
set provided a better coverage of the phase space. Therefore, the domain adaptation
task was easier. Here, the extrapolation of the mapping to a part of the phase space

7.3. Experiments 153

Table 7.4: Results on the test set generated with cross-sections.

KSFuzzy C4.5 KSFCGAM

Baseline 0.090 0.047

Additive FA MMD-net 0.025 0.049
Additive FA WGAN-GP 0.138 0.141
Additive random FA MMD-net 0.023 0.036
Additive random FA WGAN-GP 0.096 0.058

AUDFuzzy C4.5 AUDFCGAM

Baseline 0.040 0.028

Additive FA MMD-net 0.011 0.009
Additive FA WGAN-GP 0.085 0.056
Additive random FA MMD-net 0.007 0.010
Additive random FA WGAN-GP 0.040 0.014

where training examples are rare is hazardous and may explain the disappointing
efficiency of some mappings.

To further investigate, we observe the performances of the proposed domain adap-
tation techniques on the reduced phase space where π0 production events are found
in abundance. Figure 7.13 displays the distribution of π0 production events in the
(xB, Q

2) plane for real data and simulated data, as well of the subspace that will be
focused on in the following. This subspace is chosen to coincide with the kinematic
bins that will be used for the analysis in chapter 9:

• 0.16 < xB < 0.26 and Q2 < 2.4GeV2/c4;

• or 0.26 < xB and Q2 < 3.25GeV2/c4.

0.1 0.2 0.3 0.4 0.5 0.6 0.7
xB

2

4

6

8

10

Q
2

Data

0.1 0.2 0.3 0.4 0.5 0.6 0.7
xB

2

4

6

8

10

Q
2

MC cross-sections
99%

95%

90%

75%

50%

25%

0%

99%

95%

90%

75%

50%

25%

0%

Figure 7.13: Distribution of exclusive π0 production events in
CLAS12 data on the left and in simulation on the right. In red are the
boundaries of the two bins that are considered for further investigation.

We constitute a reduced test set with 50% π0 production events and 50% DVCS events,
each process being generated following the cross-sections in the reduced phase space.

154 Chapter 7. Model transfer to real data

The performances of domain adaptation on this subset are displayed in Table 7.5.
Now, more methods achieve a satisfying performance based on the evaluated metrics.
The additive FA WGAN-GP still degrades the metrics, although we could not find
any plausible explanation. Here, the additive random FA MMD-net seems the most
stable reliable model. The better agreement of the distributions can be observed on
Figure 7.14, although there is still room for improvement especially regarding the
invariant mass γγ.

Table 7.5: Results on the reduced test set.

KSFuzzy C4.5 KSFCGAM

Baseline 0.080 0.043

Additive FA MMD-net 0.024 0.044
Additive FA WGAN-GP 0.088 0.098
Additive random FA MMD-net 0.015 0.014
Additive random FA WGAN-GP 0.063 0.068

AUDFuzzy C4.5 AUDFCGAM

Baseline 0.038 0.035

Additive FA MMD-net 0.012 0.015
Additive FA WGAN-GP 0.062 0.044
Additive random FA MMD-net 0.013 0.016
Additive random FA WGAN-GP 0.030 0.013

Finally, Figure 7.15 displays the ROC curves of the fuzzy C4.5 and the FCGAM when
applied to the simulated dataset, smeared dataset and transported dataset with the
additive random FA WGAN-GP, reduced to the two bins of interest. The ROC is
closely approached for the both models. Figure 7.16 shows that the output distribu-
tions of the fuzzy C4.5 and FCGAM are in better agreement after applying the learnt
mapping.

7.3.4 Domain adaptation to real data

Finally, we perform domain adaptation for real data. As target dataset, we use se-
lected exclusive π0 production events from CLAS12 data. As source dataset, we use
simulated π0 production events generated with cross-sections that went through the
same cuts performed on real data (listed in 7.2.1).

The hyperparameters are determined the usual way:

• additive FA MMD-net: 4 layers, batch size 512;

• additive FAWGAN-GP: 5 layers for both the generator and discriminator, batch
size 256;

• additive random FA MMD-net: 5 layers, batch size 512;

• additive random FA WGAN-GP: 7 layers for both the generator and discrimi-
nator, batch size 512.

The KS distances for the validation set are displayed in Table 7.6. The best identified
model according to the KS distances is the additive FA WGAN-GP. However, based

7.3. Experiments 155

9 10 11 12
0

500

1000

1500

2000

2500

3000
Sum of pz (GeV)

0.00 0.05 0.10
0

100

200

300

400

500

600

700

Missing pT (GeV)

0.0 0.5 1.0 1.5
0

200

400

600

800

1000

1200

1400

1600

Squared missing mass e X (GeV²)

0.10 0.12 0.14 0.16 0.18
0

500

1000

1500

2000

2500

Invariant mass (GeV)

Simulation
Smeared simulation
Transported simulation

Sum of pz (GeV/c) Missing pT (GeV/c)

Squared missing mass e X (GeV²/c⁴) Invariant mass (GeV/c²)

Figure 7.14: Histograms of simulated, smeared and transported π0

production events with the additive random FA MMD-net (generation
with cross-sections).

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
si

ti
ve

 R
a
te

Smeared
Simulated
Transported simulated

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
si

ti
ve

 R
a
te

Smeared
Simulated
Transferred simulated

Figure 7.15: ROC curves of a fuzzy C4.5 (left) and a FCGAM (right)
applied on the source dataset, target dataset and transported dataset

(generation with cross-sections).

on the previous experiments, these validation scores must be taken with cautious and
confirmed while looking at the high-level variables distributions. Figure 7.17 displays
these distributions for the additive FAWGAN-GP. Since the additive randomWGAN-
GP has proven to be a more stable domain adaptation technique in the previous
experiments, and since it also obtained good validation scores, the decision is also
made based on visual improvement of the distributions: Figure 7.18 displays the
distributions obtained by this means. The distributions are quite similar between

156 Chapter 7. Model transfer to real data

0.0 0.2 0.4 0.6 0.8 1.0
0

10000

20000

30000

40000
Output of fuzzy C4.5 fibo

Simulation
Smeared simulation
Transported simulation

0.0 0.2 0.4 0.6 0.8 1.0
0

2500

5000

7500

10000

12500

15000

Output of FCGAM
Simulation
Smeared simulation
Transported simulation

Figure 7.16: Distributions of fuzzy C4.5 (top) and FCGAM (bottom)
outputs when applied on the source, target and transported datasets

(generation with cross-sections).

the two techniques, but in better agreement for the additive random WGAN-GP
notably looking at the squared missing mass ep → eγ‘γX or at the sum of the z
momenta. Visibly, the distributions of missing transverse momentum and invariant
mass γγ are both over-degraded. Therefore, it is probable that the ROC curves will
be underestimated as well. Actually, the features used in the models should be studied
in particular to evaluate the shift in their distributions, especially those in the first
layers of the tree or in the first terms of the FCGAM.

Table 7.6: Results on the validation set for real data (π0 production
events only).

KSFuzzy C4.5 KSFCGAM min
(
r, 1
r

)
Baseline 0.054 0.068

Additive FA MMD-net 0.016 0.052 0.42
Additive FA WGAN-GP 0.022 0.035 0.97
Additive random FA MMD-net 0.018 0.046 0.61
Additive random FA WGAN-GP 0.026 0.043 0.89

For the remaining experiments, we retain the additive random FA WGAN-GP as
definitive domain adaptation technique.

7.3.5 Adapting transparent models to transported data

With the learnt mapping from source to target data, three options are open:

1. we can stay with the transparent models trained on flat simulated data, and
assess their true performances on transported, realistic data;

7.3. Experiments 157

9 10 11 12
0

500

1000

1500

2000

2500

3000

Sum of pz (GeV)

0.00 0.05 0.10
0

200

400

600

800

1000
Missing pT (GeV)

0.0 0.5 1.0 1.5
0

200

400

600

800

1000

1200

Squared missing mass e X (GeV²)

0.10 0.12 0.14 0.16 0.18
0

500

1000

1500

2000

Invariant mass (GeV)

Simulation
Real data
Transported simulation

Sum of pz (GeV/c) Missing pT (GeV/c)

Squared missing mass e X (GeV²/c⁴) Invariant mass (GeV/c²)

Figure 7.17: Histograms of simulated, real and transported π0 pro-
duction events with the additive WGAN-GP.

2. since simulated data is unlimited, a large transported dataset can be formed and
transported models completely retrained on the transported dataset, including
feature construction;

3. transparent models trained on simulated data can be partly transferred to the
transported data, thus preserving the information learnt on an ideal simulation
while avoiding biases from transported data.

We try these three alternatives for the two evaluation models used above: the fuzzy
C4.5 and the GAM. While options 1 and 2 are straightforward, the methodology for
option 3 depends on the considered classification model. The principle is to keep
the built features and structure of the model, but refit the values associated to each
feature. For C4.5, this means re-determining the split thresholds, width of fuzzification
and potentially pruning some branches. For GAM this means re-inducing the shape
functions with the same features and regularization parameters but different training
data (here the transported dataset).

Model transfer or re-induction is performed on the transported flat dataset. Only the
events belonging to the π0-dominated subspace are retained since the generalization
of domain adaptation cannot be guaranteed in the region of low π0 density. Therefore,
the learnt mapping is applied on the subset of the dataset generated with flat distri-
butions that belongs to the two bins of the phase space where domain adaptation is
reliable.

The ROC curves of the different options applied on the reduced flat dataset (trans-
ported with the mapping learnt with real data) are displayed on Figures 7.19 and 7.20

158 Chapter 7. Model transfer to real data

9 10 11 12
0

500

1000

1500

2000

2500

3000

Sum of pz (GeV)

0.00 0.05 0.10
0

200

400

600

800

1000
Missing pT (GeV)

0.0 0.5 1.0 1.5
0

200

400

600

800

1000

1200

Squared missing mass e X (GeV²)

0.10 0.12 0.14 0.16 0.18
0

500

1000

1500

2000

Invariant mass (GeV)

Simulation
Real data
Transported simulation

Sum of pz (GeV/c) Missing pT (GeV/c)

Squared missing mass e X (GeV²/c⁴) Invariant mass (GeV/c²)

Figure 7.18: Histograms of simulated, real and transported π0 pro-
duction events with the additive random WGAN-GP.

for fuzzy C4.5 and GAM respectively.

The retrained models obtain the best classification performance. Indeed, they are
specialized not only in the transported dataset that should reflect real distributions,
but also in the reduced phase space. Regarding the transferred models, they do not
necessarily perform better than the original versions. This is actually a good sign, since
it means that the classification performances of the models are stable with respect to
perturbations of the split thresholds. Moreover, depending on the selection threshold
in the ROC curve, it may be possible to slightly increase the classification score.

To discuss the different options, option 1 (keeping the original model) is the one leading
to the worse classification performance on real data. However, option 2 (retraining
the model) is hazardous if the covariate shift is not the only shift that is corrected:
indeed, π0 cross-section models are not perfectly reliable on the considered phase
space. Therefore, the learnt mapping probably corrects as well for the disagreement
between the π0 cross-section model and reality. Applying the learnt mapping on a
dataset simulated with flat distributions will deform the phase space regarding this
error on the cross-section model. Option 2 thus risks to produce a biased model.
However, the gain in statistics may be enormous: up to 10% for the GAM at low false
positive rates. Finally, retraining a model implies building new high-level features.
The question is whether it is desirable or not to build features that rely on the quality
of the target data. We could lose in interpretability since the features could be biased.
Indeed, CLAS12 data currently contains biases due to imprecise calibration or empty
regions in the phase space because of detector areas that are out of order. In addition,
the resolutions of the detectors may vary with time, because of radiation damage for

7.4. Conclusion and perspectives 159

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 p

o
si

ti
ve

 r
a
te

Original fuzzy C4.5
Retrained fuzzy C4.5
Transferred fuzzy C4.5

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.00

0.05

T
PR

Figure 7.19: ROC curves of the original fuzzy C4.5 model, the trans-
ferred model to the transported data, and the retrained model on the
transported data. Below are plotted the differences in true positive

rates with the original model at fixed false positive rate.

instance. Option 3 (transfer the model) seems to be a good compromise to try to
improve classification performance without biasing too much on the transported data.

7.4 Conclusion and perspectives

In this chapter, we covered the state of the art in domain adaptation to make up for
the covariate shift between CLAS12 simulation and data. We constituted a training
dataset consisting in exclusive π0 production events, which are easily isolated in data.
We tested several methods of the state of the art, concluding that the generative
neural networks constitute the best option for domain adaptation. We proved the
efficiency of the method on flat generated data, where the training dataset covers the
entire phase space. This is especially true for the π0 production sample. However, our
assumption that the mapping derived from π0 production events can be extrapolated
to DVCS is not correct, despite the similarities between the two processes. Consid-
ering the cross-sections, the data used for training is located in majority in a specific
region of the phase space. Therefore, domain adaptation does not generalize well
elsewhere. However, the proposed methods remain a promising approach to correct
for the distribution shifts between simulation and real CLAS12 data.

160 Chapter 7. Model transfer to real data

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 p

o
si

ti
ve

 r
a
te

 (
T
PR

)

Original GAM
Retrained GAM
Transferred GAM

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.05

0.00

0.05

0.10

T
PR

Figure 7.20: ROC curves of the original GAM model, the transferred
model to the transported data, and the retrained model on the trans-
ported data. Below are plotted the differences in true positive rates

with the original model at fixed false positive rate.

A first idea for further work is to imitate a large part of domain adaptation techniques
building an invariant feature representation, but preserving interpretability. For in-
stance, the proposed feature construction techniques of part II can be adapted to
favor domain-invariant features with an additional term to the fitness computation.
However, one needs to be sure of the quality of the data: indeed, the objective is to
avoid biasing feature construction towards specificities of the CLAS12 actual setup.
For instance, there currently exist dead areas in the detectors. To be generalizable,
built features should not consider these details. We still think that encouraging fea-
ture construction to produce domain-invariant features is a good idea to facilitate or
eliminate the need for domain mapping.

About the bias that can be created regarding the uncertainties of the π0 production
cross-section model, an idea would be to divide the phase space so that the difference
in distributions between the source and target sample in terms of cross-section is
negligible, leaving only the covariate shift. Therefore, a mapping between these two
distributions would not be biased by the cross-sections. However, such a division
is impractical since only 53232 events from real data are available, which is already
limited to train the proposed models. With more events, such an approach would be
feasible.

7.4. Conclusion and perspectives 161

One main limitation to the proposed domain adaptation method is the phase space
covered by the process used for training, namely exclusive π0 production. Moreover, π0

production events could even be easy to transport. Indeed, the calorimeter calibration
in CLAS12 is performed with π0 production events, which means it is the most optimal
for low energy photons such as the ones that come from a π0 decay. DVCS photons
are usually much more energetic, therefore the calibration may not be optimal at their
energies.

To get a training set that covers a larger phase space and improve the generalization
ability of the proposed method, the following methodology could be applied: DVCS
events actually cover the region of interest. However, obtaining a pure DVCS sample
is complicated due to the π0 contamination but not impossible. Indeed, using the
method detailed in 9.2, we can subtract the π0 contamination and retrieve distri-
butions of almost pure DVCS events selected with strict cuts. The remaining work
would be to adapt the proposed neural networks, taking negative weights for the π0

contamination, thus embedding the subtraction in the domain adaptation. Domain
adaptation can be performed on the concatenation of two sets: the set of exclusive
π0 production events already available, and the set comprising both strictly selected
DVCS events (comprising π0 contamination) and estimated contaminating π0 events,
the latter with negative weights. Therefore, the combination of both samples covers
the entire phase space as well as the complete energy range of the photons. Hopefully,
it will improve the capacities of the domain adaptation method.

163

Chapter 8

Interpretability evaluation by
experimental physicists

8.1 Survey form . 164
8.1.1 Evaluation of automatically built features 164
8.1.2 Evaluation of the interpretability of two given models . . . 165
8.1.3 Comparison among several models 166

8.2 Results and discussion . 168
8.2.1 Profile of the respondents 168
8.2.2 Transparency requirements 170
8.2.3 Evaluation of the features 170
8.2.4 Evaluation of the models 175
8.2.5 Global comparison . 181

8.3 Conclusion . 184

As detailed in chapter 2 and more specifically in 2.1.3, the evaluation of interpretabil-
ity is based on objective criteria but is also mostly done with respect to a specific
application and to the target users. In this chapter, we follow the guidelines pre-
sented in 2.1.3 to rigorously evaluate the interpretability of the presented previously
models.

Objective facts about the interpretability of the models have been progressively pre-
sented in part II, notably in 5.2.5 for automatically built features and respectively
in 6.1.3 and 6.2.5 for decision trees and GAM with embedded feature construction.

To complete the objective remarks and because interpretability must be evaluated by
the target users of the proposed models, we conduct an application-specific experiment
with experimental physicists. According to the classification of Doshi-Velez and Kim
[2017], our study is application-grounded : it concerns humans (here physicists) and
real tasks (here event classification in CLAS12). However, Doshi-Velez and Kim [2017]
state that large scale experiments are difficult to conduct since target users are experts
of the field, therefore not numerous. Besides, human-produced explanations make a
good baseline.

In this study, we designed a survey targeted to physicists to evaluate their perceived
interpretability of the different components of the proposed models: the features auto-
matically built by feature construction and the complete proposed transparent models.
Finally, a comparison between transparent models, a neural network and a classical
physicist analysis is conducted.

164 Chapter 8. Interpretability evaluation by experimental physicists

The survey, detailed in 8.1, has been sent to the CLAS12, COMPASS and Hall A
international collaborations, as they are the most closely related to the DVCS analysis.
Thus, all respondents were familiar with the physics context. The survey was divided
into two parts: 31 physicists completed the first part and 24 the second part of the
survey. The two parts were linked by a keyword provided by the respondents. Their
responses are summarized and analyzed in 8.2.

8.1 Survey form

To design this survey, we followed the ideas of Mohseni et al. [2018] and Doshi-Velez
and Kim [2017], presented in chapter 2, regarding the tasks that can be requested to
specific types of users to evaluate at best interpretability of machine learning models.

We limit the survey so that it does not take more than one hour of the respondents’
time. Since it demands concentration and thinking, the survey is split into two inde-
pendent forms.

The survey is divided into three main parts:

• evaluation of automatically built features;

• evaluation of the interpretability of two given models;

• comparison among several models.

These three parts are detailed in the following. In addition, the profile of the re-
spondents is studied through a series of questions regarding their status, age, field of
expertise, etc. Their expectations regarding the use of machine learning in a physics
analysis are also collected. Notably, the survey inquires about the degree of trans-
parency necessary, according to them, for each subtask of a physics analysis. The
complete survey can be found in Appendix G.

8.1.1 Evaluation of automatically built features

The goal here is to evaluate the interpretability of features built automatically by the
feature construction algorithm described in chapters 5 and 6.

Considering the randomness of the feature construction process on the one hand, and
the recommendation of Doshi-Velez and Kim [2017] to compare setups by pairs on the
other hand, we establish the following evaluation protocol. First, we determine a list
of pairwise matches that we want to make:

• probabilistic grammar-based GP (noted PGBGP) as feature construction method
against the standard unconstrained GP-based technique;

• feature construction prior to model induction against embedded feature con-
struction;

• automatic feature construction techniques (PGBGP prior or embedded) against
regular variables used by expert physicists.

For each of these three matches, we randomly pick four features for each of the two
involved categories, leading to a total of eight features. The respondent is then asked
to give a mark between 1 and 5 to each feature, from poorly understandable to highly
understandable, according to his perception of the physical meaning and of the rele-
vance of the proposed feature. The respondent is encouraged to use the full range of

8.1. Survey form 165

available marks, since the marks will be independent between each successive match.
In total, the respondent will rate 24 features (8 for each of the three matches).

The marks obtained by each group are compared globally among all responses. If
the difference is significant, then we conclude that one group is significantly more
interpretable than the other.

8.1.2 Evaluation of the interpretability of two given models

Apart from the built features, we also want to evaluate the interpretability of the
inducted models themselves. The chosen models are considered intrinsically transpar-
ent, but their reception by the physicists’ community remains to be discussed.

This part of the survey is based on the framework proposed by Doshi-Velez and Kim
[2017]. Notably, we take two ideas to verify the respondent’s understanding of the
model’s functioning:

• the user is asked to simulate the model: a concrete instance is given to him and
he should be able to determine how it is classified by the presented model;

• the user is asked to modify the model so that the output changes.

Since we are facing physicists who would maybe use these models someday, we also
ask their opinion about the provided model, under the form of a mark between 1
(distrust or disagreement) and 5 (enthusiasm for using the model). The respondents
are asked to think about the ease of validation, which is correlated with transparency.
By validation, we imply retro-engineering of the decision process to understand the
performances of the model in given regions of the phase space.

In addition to accuracy of understanding and subjective satisfaction, Lage et al. [2019]
also suggest to measure the response time of the users. Regrettably, it is not a feature
of Google Forms, used to organize the survey. We considered asking the respondent
the hour at which he started reading the question and the hour at which he finished,
but we finally renounced to avoid giving the impression of taking an exam.

We apply this evaluation protocol on two models: one parametric model and one
vocabulary-based model. Evaluating more models would have led to a too long and
time-consuming survey for the respondents. Moreover, most respondents were prob-
ably facing these models for the first time, even if we did not verify this assertion.

We choose a GAM with feature construction (algorithm developed in 6.2) for the
parametric model, and a FURIA base for the vocabulary-based model. FURIA is
preferred to a decision tree since it usually produces rules that are more compact. The
instance used for model simulation is the same for the two models but is classified
differently: the GAM classifies it as a background event while FURIA classifies it as
a DVCS event.

166 Chapter 8. Interpretability evaluation by experimental physicists

Evaluating a GAM

For this evaluation, a GAM with feature construction and limited bitonicity enforce-
ment (FCGAM_bmax as described in section 6.2) is trained on the flat CLAS12 sim-
ulation data with missing values (20000 training examples). The optimal number of
terms for this model is 16, however we restrict the model to the first 5 terms in the
survey to limit the time spent on it by the respondents. The 5-terms model is 3% less
accurate than the full 16-terms model.

The model can be found in Appendix G. For the simulation question, the numerical
values of a borderline example are provided. It suffices to remove a single term of
the GAM to change the classification. Therefore, the respondents are first asked to
classify the given example using the GAM model and then to remove one term of the
GAM to change the output. Finally, the opinion of the respondents about the model’s
transparency is rated.

Evaluating a FURIA base

To have a similar complexity than the GAM model presented above, we consider
a FURIA model with prior feature construction of five features. It is inducted on
the same data, namely flat CLAS12 simulation data with missing values, using 4000
instances for the rule base induction.

The rule base can be found in Appendix G. The provided example, common to all
proposed models, is classified as a DVCS example by the FURIA base. Two DVCS
rules of the base are fired by this example against a single π0 rule. Removing the
DVCS rule with the highest confidence degree permits to reverse the classification of
the base, since the remaining DVCS rule has a lower confidence value than the π0

rule. Therefore, the respondents are asked the same questions than for the GAM:
how does the rule base classify the example? Which rule should be removed to change
the output? How transparent is the provided model according to the respondent?

8.1.3 Comparison among several models

Finally, the last part of the survey aims at assessing the physicists’ overall preference
on the proposed transparent models, compared to the standard physics analysis on
the one hand and to a black-box model, here a neural network, on the other hand.

The physicist’s cuts are provided by Guillaume Christiaens from the University of
Glasgow who is working as a PhD student and performing the same analysis on the
same dataset at CLAS12. He optimized these cuts to maximize the statistics (i.e.
number of selected DVCS events) while minimizing the π0 contamination on Monte

8.1. Survey form 167

Carlo data. According to these cuts, an event is a DVCS event if:

the missing mass eγ is in
[
0.1GeV/c2, 1.7GeV/c2

]
(8.1)

and angle
(−→
pγ1 ,
−→
ein −

−→
pe −

−→
pp
)
≤ 0.6° (photon cone angle) (8.2)

and
√

(pex + ppx + pγ1x)
2

+
(
pey + ppy + pγ1y

)2 ≤ 0.12GeV/c (8.3)

and the squared missing mass epγ is in
[
−0.04GeV2/c4, 0.04GeV2/c4

]
(8.4)

and the missing energy epγ is in [−0.5GeV, 1.2GeV] (8.5)

and angle
(−→
pe ,
−→
pγ1
)
> 10°. (8.6)

In addition, Marouen Baalouch worked as a post-doctoral researcher at CEA, LIST
notably on black-box models to perform event selection. We use one of his models and
hyperparameters, namely a two-layer fully-connected network with 20 and 30 hidden
neurons respectively, with Adam optimizer with learning rate 0.05 and momentum
0.9. The model is trained for 60 epochs on 1.7 million events from flat CLAS12
simulation, with a batch size of 10000. It is represented in the survey along with a
post-hoc explanation using SHAP [Lundberg and Lee, 2017] to quantify sensitivity to
the different input features. It can be found in Appendix G. To ensure the respondents
get a little familiar with the neural network, we ask the same questions than with the
GAM and FURIA: we provide the same example and ask how it is classified by the
neural network, given the SHAP values, and the opinion of the respondents about the
model’s ease of validation. Finding a modification of the model to change the output
is intractable. Therefore, we do not include this question.

0.0 0.1 0.2 0.3 0.4 0.5
Contamination / proportion of Pi0 events among selected events

0.0

0.2

0.4

0.6

0.8

1.0

Ef
fic

ie
nc

y
/ n

b
of

 se
le

ct
ed

 D
VC

S
ev

en
ts

 o
ve

r t
ot

al
 n

b
of

 D
VC

S
ev

en
ts

GAM (model A)
FURIA (model B)
Neural network (model C)
Cuts (model D)

Figure 8.1: Selection efficiency as a function of π0 contamination,
for the four models presented in the survey.

After examining these four candidate models, the users are provided their perfor-
mances on a test dataset of 100000 examples, under the form of a efficiency against
contamination curve. In y-axis is the true positive rate, i.e. number of selected DVCS

168 Chapter 8. Interpretability evaluation by experimental physicists

events over the total number of DVCS events, and in x-axis is the π0 contamination
rate, i.e. the number of selected π0 events over the number of selected events. This
curve is displayed on Figure 8.1. The neural network obtains the best performance,
followed by the GAM and the FURIA base. The cuts (red dot) get the worst per-
formance with 23% efficiency and 16% contamination. However, they represent the
approach physicists are the most used to.

It is specified in the survey that FURIA has a limited flexibility in the true positive/-
false positive tradeoff. In addition, the survey mentions the π0 subtraction step, which
here is said to be able to remove the contamination provided it does not exceed 30%.

Then, the respondents are asked to rank the four models according to their subjective
preference: which one would they use in practice for a physics analysis? How do they
make their tradeoff between performance and interpretability?

8.2 Results and discussion

In practice, the survey has been split into two forms. The first one includes:

• the question about the respondent’s expectations regarding interpretability of
the used method for each step of the data analysis;

• two blocks of feature evaluation, i.e. PGBGP versus unconstrained GP, and
prior versus embedded feature construction;

• GAM evaluation.

The second form comprises:

• a block of feature evaluation with automatically built features versus features
designed by an expert physicist;

• FURIA evaluation;

• the global comparison between the GAM, the FURIA rules, a neural network
and the classical analysis method;

• questions about the profile of the respondent.

A keyword has been asked to each respondent, to fill in at the beginning of each form,
in order to associate the two parts.

The survey has first been sent to 6 beta-testers, whose feedback permitted to improve
the clarity of the questions and explanations, notably the questions on the perceived
transparency of the models and the global comparison. Thanks to them, we also
noticed that the neural network needed its own questions, similarly to GAM and
FURIA, so that the respondents better apprehend this model.

8.2.1 Profile of the respondents

31 physicists answered to the first form and 24 to the second. Since the profiling
questions were located at the end of the second part, we know the characteristics of
77% of the respondents. The distributions of age and professional status properly
cover all categories of the researchers population (see Figures 8.2 and 8.3). The two
persons that answered “Other” to the status were respectively a data scientist and a
retired staff scientist.

8.2. Results and discussion 169

However, it was predictable that people who would answer the survey would be a priori
interested by machine learning and not completely opposed to its usage. Indeed, 87.5%
of the respondents declared being at least curious of machine learning (Figure 8.4) and
nobody stated that they do not expect machine learning to change dramatically the
reach of physics experiments (Figure 8.5). Actually, 50% of the respondents believe
that using machine learning for the full reconstruction-analysis chain will significantly
improve the physics output. These first questions demonstrate the largely positive
attitude of the respondents towards machine learning.

65 or more
4,2%

35 to 49
37,5%

25 to 34
25,0%

50 to 64
33,3%

Figure 8.2: Age of
the respondents.

Post-doc
8,3%
Other
8,3%

PhD student
16,7%

Professor
20,8%

Staff scientist
45,8%

Figure 8.3: Profes-
sional status of the re-

spondents.

0

5

10

15

I am a frequent user of
machine learning

techniques

I am curious of these
techniques or had once a
student who used these

techniques

I do not know anything
about machine learning

How knowledgeable are you about machine learning/artificial intelligence?

Figure 8.4: Respondents’ knowledge about machine learning.

0

5

10

15

It can mostly improve the low-level
analysis: tracking efficiency, particle

identification, shower reconstruction, ...

Having the full reconstruction-analysis
chain with machine learning tools will

improve significantly the physics output

What are your expectations of applying machine learning techniques in physics?

Figure 8.5: Respondents’ expectations about machine learning.

170 Chapter 8. Interpretability evaluation by experimental physicists

8.2.2 Transparency requirements

The first question of the survey is about the respondents’ requirements for trans-
parency in different tasks of a physics analysis: tracking, particle identification, event
selection and data smearing. Three options were offered to the respondents:

• no need for any explanation as long as the method is working well;

• the method should be sufficiently transparent to be validated;

• complete understanding of the method is far more important than performance.

The results are displayed on Figure 8.6. Globally, the participants seem to prefer the
compromise between performance and transparency for all tasks. However, some dis-
crepancies appear between the tasks: tracking is the task for which respondents prefer
the most performance to transparency. On the opposite, transparency is required the
most for particle identification and event selection. The last item, “smearing simula-
tion to imitate data”, has been probed to evaluate whether domain adaptation from
simulation to real data should be interpretable from a physicist’s point of view. As a
result, the request for transparency is reduced compared to event selection or particle
identification, but stronger than for tracking. Indeed, it has been shown in chapter 7
that relying on the generalization power of an opaque technique for domain adaptation
is hazardous.

Tracking Particle identification Event selection Smearing simulation
to imitate data

10

4
3

8

17
18

17
18

5

10

12

6

Which degree of transparency would you estimate necessary for each of these tasks?

No need for any explanation as long as the method is working well
The method should be sufficiently transparent to be validated
Complete understanding of the method is far more important than performance

Figure 8.6: Transparency requirements of the respondents for differ-
ent tasks of a physics analysis.

8.2.3 Evaluation of the features

In three groups of eight features, categories of features have been evaluated against
each other using a scale of 5 steps (from 1: poorly understandable; to 5: highly
understandable). We detail the results for each group first and make global comments
afterwards.

8.2. Results and discussion 171

8.2.3.1 Constrained against unconstrained feature construction

Figure 8.7 displays the results of the block of features containing four features built
with a constrained GP algorithm and four features built with the unconstrained GP
algorithm. It is clearly visible that constrained features have been better rated than
the unconstrained ones: the average score for the unconstrained feature construction
is 1.69, against 3.19 for constrained feature construction. One exception subsists
though: the last feature has been built with constrained GP but is badly noted. The
feature is: (

ppT +
∥∥∥−→pγ2∥∥∥) tan

(
angle

(−→
pγ2 ,
−→
pγ1
))

. (8.7)

Although it respects the physical units, we can guess that the sum of a transverse
momentum with a norm is complex to apprehend and to understand. However, no
one made a remark in the comment section.

8%

38%

29%

67%

87%

88%

88%

62%

75%

54%

54%

21%

4%

4%

4%

4%

17%

8%

17%

12%

8%

8%

8%

33%8

7

3

2

6

5

4

1

100 50 0 50 100
Percentage

Poorly understandable 2 3 4 Highly understandable

Evaluation of constrained and unconstrained feature construction

Feature

Feature

Feature

Feature

Feature

Feature

Feature

Feature

8%

38%

29%

67%

87%

88%

88%

62%

75%

54%

54%

21%

4%

4%

4%

4%

17%

8%

17%

12%

8%

8%

8%

33%8

7

3

2

6

5

4

1

100 50 0 50 100
Percentage

Poorly understandable 2 3 4 Highly understandable

Evaluation of constrained and unconstrained feature construction

Feature

Feature

Feature

Feature

Feature

Feature

Feature

Feature

U
nc

on
st

ra
in

ed
F

C
C

on
st

ra
in

ed
 F

C

Average = 1.42

Average = 1.58

Average = 2.21

Average = 1.54

Average = 3.13

Average = 3.25

Average = 4.21

Average = 2.17

G
lo

ba
l a

ve
ra

ge
 =

 1
.6

9
G

lo
ba

l a
ve

ra
ge

 =
 3

.1
9

Figure 8.7: Results of the survey on constrained against uncon-
strained feature construction (FC). The distributions of the responses
are displayed for each feature, along with the mean over all respon-
dents. The average score for each category is printed on the right.

However, several respondents said they were puzzled by the proposed features. Here
are a few examples among the seven comments for this question:

– “What is the meaning of a cosine of a momentum?”

– “Trigonometric functions acting on non-pure numbers are meaningless.”

– “Not familiar enough to judge the understanding of the variables.”

– “I think I am missing something – all of these seem really obscure, except the
simple momentum balance. Also, cosine of a momentum? That seems odd...”

172 Chapter 8. Interpretability evaluation by experimental physicists

8.2.3.2 Prior against embedded feature construction

Figure 8.8 displays the results of the block of features opposing prior and embedded
feature construction. No clear tendency emerges from the visualization of the results:
the average score for embedded feature construction is 2.86, closely ahead of prior
feature construction with 2.77. Performing feature construction in an embedded way
does not seem to impair interpretability, while it is computationally more efficient
than prior feature construction. However, our intuition is that four features are not
enough to be representative of embedded feature construction: this category covers
many algorithms (crisp and fuzzy decision trees, FURIA, GAM) and features built at
different levels of specificities. Indeed, a feature built at the root of a decision tree has
a high probability to be similar to a feature built with prior feature construction since
it uses all available data. However, a feature built in a deeper node of the tree will be
specific to the data subset that reached this node. Intuitively, the more specific the
features, the less understandable they are.

6%

19%

29%

58%

74%

55%

74%

81%

87%

74%

45%

26%

23%

23%

16%

16%

6%

6%

26%

16%

3%

23%

10%

3%

7

4

3

2

8

6

5

1

100 50 0 50 100
Percentage

Poorly understandable 2 3 4 Highly understandable

Evaluation of prior and embedded feature construction

Feature

Feature

Feature

Feature

Feature

Feature

Feature

Feature

6%

19%

29%

58%

74%

55%

74%

81%

87%

74%

45%

26%

23%

23%

16%

16%

6%

6%

26%

16%

3%

23%

10%

3%

7

4

3

2

8

6

5

1

100 50 0 50 100
Percentage

Poorly understandable 2 3 4 Highly understandable

Evaluation of prior and embedded feature construction

Feature

Feature

Feature

Feature

Feature

Feature

Feature

Feature

Average = 3.29

Average = 4.29

Average = 2.00

Average = 1.87

Average = 2.06

Average = 3.90

Average = 2.61

Average = 2.48

G
lo

ba
l a

ve
ra

ge
 =

 2
.8

6
G

lo
ba

l a
ve

ra
ge

 =
 2

.7
7

E
m

be
dd

ed
F

C
P

rio
r

F
C

Figure 8.8: Results of the survey on prior against embedded feature
construction (FC). The distributions of the responses are displayed for
each feature, along with the mean over all respondents. The average

score for each category is printed on the right.

One of the proposed features raised comments:

− θp + angle
(−→
pγ2 , 2

−→
pe
)

+ angle
(−→
pγ2 ,
−→
pp
)
. (8.8)

The two comments about this feature are:

– “I cannot quite understand why the first variable’s middle term is angle(
−→
pγ2 ,

2
−→
pe). Is the coefficient of

−→
pe , ‘2’, necessary?”

– “in variable 6, when calculating angle why instead of
−→
pe , the 2

−→
pe is used? the

result should be the same right?”

Indeed, these comments underline the fact that the proposed feature construction
algorithm does not look for simple features, it just optimizes their discriminative

8.2. Results and discussion 173

power. When facing two features of equal fitness, the algorithm simply picks the first
one in its list. This is obviously an area of improvement.

8.2.3.3 Automatic feature construction against regular physicists’ vari-
ables

Figure 8.9 presents the results of the last comparison, namely automatic feature con-
struction against regular variables used by physicists. Again, there is no significant
difference between the two categories, but physicists’ regular variables are still slightly
ahead of automatically built features, with an average score of respectively 3.74 and
3.51. However, the score obtained by the two last physicists’ regular variables (features
7 and 8 on Figure 8.9) must be discussed. Indeed, they are very common variables
used by physicists for exclusivity cuts, but were written in the survey as mathematical
formulas that might have not been recognized:

missing mass ep→ eγX :

√(
−
∥∥∥−→pe∥∥∥− ∥∥∥−→pγ1∥∥∥+Mp + einz

)2
−
∥∥∥∥−−→pe −−→pγ1 +

−→
ein
∥∥∥∥2

,

(8.9)

missing energy ep→ epγX : einz +Mp −
∥∥∥−→pe∥∥∥−√∥∥∥−→pp∥∥∥2

+M2
p −

∥∥∥−→pγ1∥∥∥ . (8.10)

This last feature has indeed received contradictory scores, with 23% of respondents
saying it is poorly understandable and 32% that it is highly understandable. With
the textual formulations such as “missing mass” and “missing energy”, probably these
features would have received a higher score. However, comparing all features on equal
terms indicates that features with complex mathematical formulations are considered
less understandable.

10%

10%

10%

13%

39%

29%

32%

68%

90%

84%

81%

81%

55%

55%

48%

19%

0%

6%

10%

6%

6%

16%

19%

13%

8

7

4

3

6

5

2

1

100 50 0 50 100
Percentage

Poorly understandable 2 3 4 Highly understandable

Evaluation of automatically constructed features and regular physicists’ variables

Feature

Feature

Feature

Feature

Feature

Feature

Feature

Feature

10%

10%

10%

13%

39%

29%

32%

68%

90%

84%

81%

81%

55%

55%

48%

19%

0%

6%

10%

6%

6%

16%

19%

13%

8

7

4

3

6

5

2

1

100 50 0 50 100
Percentage

Poorly understandable 2 3 4 Highly understandable

Evaluation of automatically constructed features and regular physicists’ variables

Feature

Feature

Feature

Feature

Feature

Feature

Feature

Feature

A
ut

om
a

tic
 F

C
P

hy
si

ci
st

s'
 r

eg
ul

ar
 v

ar
ia

b
le

s

Average = 2.13

Average = 4.09

Average = 4.39

Average = 3.42

Average = 4.23

Average = 4.39

Average = 3.10

Average = 3.26

G
lo

ba
l a

ve
ra

ge
 =

 3
.5

1
G

lo
ba

l a
ve

ra
ge

 =
 3

.7
4

Figure 8.9: Results of the survey on automatic feature construction
(FC) against regular variables used by physicists. The distributions of
the responses are displayed for each feature, along with the mean over
all respondents. The average score for each category is printed on the

right.

174 Chapter 8. Interpretability evaluation by experimental physicists

Globally, there is no significant difference between the understandability of automat-
ically built features and physicists’ regular variables. Therefore, our proposed con-
strained feature construction algorithm permits to automate the feature engineering
step without significant loss in interpretability. Moreover, the automatically built
features were demonstrated more discriminant than physicists’ regular features.

8.2.3.4 Global comments about the features

Some comments have been made that are not specific to a particular group of features.
In particular, it has been noted through comments and also oral discussions with a
few participants that some of them needed a proof of the discriminative power of the
variables, more than a physical intuition of what they are.

– “The expressions are clear, the physical meaning is not clear sometimes, but
I can understand the idea that those variables might have a good separation
power based on whether the event is signal or background!”

– “Maybe with oral explanations I could understand more variables.”

– “The understandability seems almost binary to me: either I understand what the
variable is, and then it is absolutely clear, or I kind of see what the expression
is doing but I do not see exactly why.”

Orally, a few participants said that they would have liked being given the histograms
of the proposed features to evaluate their discriminative power.

One participant went further in this idea:

“It is highly unclear how the reader’s vector algebra proficiency is relevant
at all in how the machine learning algorithm is supposed to work. I al-
ways thought that the promise of machine learning is to let the computer
find out features and combinations thereof that might escape a human.
The fact that a variable makes or does not make sense or has an imme-
diate physical interpretation (again, for humans) should not be a reason
for preventing a machine learning algorithm from using it. That said
this reviewer is highly skeptical of variables that combine several/many
individually measured features, especially as there could/are correlations
between these that might, or might not be fully taken into account and/or
might be underestimated.”

This last comment shows a clear preference towards algorithm performance, ignoring
any interpretability requirement. The person that left this comment voted “highly
understandable” for every feature in any group.

Finally, we draw a few conclusions from this first part of the survey: first, the con-
strained feature construction algorithm (PGGGP) produces significantly more un-
derstandable features than the unconstrained (GP) version. This was quite obvious
objectively since the majority of the built features with the GP algorithm do not
respect the physical units, but this is now proven subjectively. No clearly visible
difference appears in the understandability of features built prior to model induction
or embedded into it, but this could be due to a lack of representativity notably for
embedded feature construction. Finally, regular physicists’ variables are probably
noted slightly more understandable than automatically built features, but it must be

8.2. Results and discussion 175

emphasized that the mathematical formulas of automatically built features are often
more concise, which is an asset towards understandability.

8.2.4 Evaluation of the models

The same questions were asked about a GAM and a FURIA base: how a given example
is classified, how to modify the model to change the classification, how sure is the
respondent about his answers and a subjective evaluation of the model’s transparency
or ease of validation. The same questions were also asked for a neural network except
for the question on how to modify the model.

8.2.4.1 GAM

Figure 8.10 displays the results of the simulation of the GAM. 64.5% of the respondents
obtained the right classification and term to remove. In total, 74.2% found the right
classification. The people who answered correctly were globally more sure of their
answers than those who had at least one wrong answer (wrong classification or wrong
term), as displayed on Figure 8.11.

Right term only
3,2%
Right classification
9,7%

Wrong or don't know
22,6%

Right classification and term
64,5%

Figure 8.10: Results of the simulation of the GAM by the respon-
dents.

Overall Right classification and term Wrong classification or term
0

20

40

60

80

100

Co
nf

id
en

ce

Figure 8.11: Respondents confidence in their answers depending on
their correctness, along with the standard deviation (black line).

176 Chapter 8. Interpretability evaluation by experimental physicists

Globally, respondents gave an average score of 2.90 to their perceived ease of validation
of the GAM. As displayed on Figure 8.12, the score is higher for people who understood
well the model (3.20 in average), and lower (2.22 in average) for people who did not
know how to use the model. The scores also increase with confidence in respondents’
answers, as visible on Figure 8.13.

15%

26%

25%

44%

40%

32%

25%

11%

45%

42%

50%

44%Don’t know

False

True

Overall

100 50 0 50 100
Percentage

Not at all, I cannot imagine how to validate such a model 2 3 4 Completely transparent, easy v

GAM evaluation

Completely transparent, easy validation

Average = 2.90

Average = 3.20

Average = 3.00

Average = 2.22

Figure 8.12: Transparency scores given to GAM depending on the
correctness of the respondents’ answers to the simulation.

Random guess
or I don't know

25% sure 50% sure 75% sure 100% sure

Confidence

1.0

1.5

2.0

2.5

3.0

3.5

4.0

T
ra

n
sp

a
re

n
cy

 s
co

re
/p

e
rc

e
iv

e
d
 e

a
se

 o
f
va

lid
a
ti
o
n

n=7

n=1

n=2

n=13 n=7

Figure 8.13: Transparency scores given to GAM as function of the
respondents’ confidence in their answers to the simulation.

The GAM received 11 comments about various subjects. Two comments add insights
about the validation problem:

– “I think that the correlation between the variablesXi should be studied- I believe
that this is already done. It is hardly possible to validate the model without
understanding the correlation between the variables, understanding the vari-
able is important and not essential, but in separating signal/background, it is
important to understand correlations between different variables.”

– “GAM do not produce really transparent results even though they are opti-
mal, with respect to a certain training. The danger to me would be the bias
introduced by the training of this model, which makes some variables more dis-
criminant than others for a specific training set. This can be called a systematic

8.2. Results and discussion 177

error... This seems to me less trustworthy than a classical analysis where this
bias is more controlled, or at least understandable.”

Indeed, if some variables used by the GAM are correlated, then the importance (i.e.
range taken by the associated term) of these variables cannot be interpreted. About
the second comment, it could be applied to other models than the GAM: biases
towards a particular training set must be carefully checked. In our opinion, it should
be easier with transparent machine learning models, but maybe not as simple as with
cuts. This last person gave the GAM a transparency score of 1 despite correct answers
to the simulation with 100% confidence.

Two respondents interestingly understood that classifying with a GAM requires choos-
ing a threshold on the model’s output:

– “How to put the frontier between a signal and background event? Is 0.5 the best
choice? What is the shape of the probability distribution for a set of known
signal events (and background events), is the separation completely clear (or
figure of merit)?”

– “Lacking a threshold value for the classification means that the output is pure
guesswork. One would (wrongfully) assume that the threshold would be halfway
between 0 and 1 (so 0.5) thus possibly changing the classification by removing
the second term. However, that threshold might as well be 0.9 (again, we are not
told!), in which case the second does not make a difference in the classification.”

Indeed, the choice of the threshold is of the first importance and will be made to
optimize the physics analysis. These persons perfectly understood this challenge.

8.2.4.2 FURIA

Figure 8.14 displays the results of the simulation of the FURIA base. 50% of the
respondents obtained the right classification and rule to remove, which is lower than
for the GAM. Again, the confidence of the persons who gave right answers is higher
than for people that are wrong (wrong classification or wrong rule to remove), as
displayed on Figure 8.15.

Right rule only
4,2%
Right classification
4,2%

Wrong or don't know
41,7%

Right classification and rule
50,0%

Figure 8.14: Results of the simulation of the FURIA base by the
respondents.

Globally, the transparency of the FURIA base is noted 2.92, which is similar to the
score obtained by the GAM. Again, people who did not know how to use the base
gave it a lower score than others, as displayed on Figure 8.16. Interestingly, people
who gave a wrong answer rated FURIA higher than people that were right for the
simulation. This remark must be taken with caution: the understanding of respon-
dents and therefore their answers and confidence highly depend on the quality of our

178 Chapter 8. Interpretability evaluation by experimental physicists

Overall Right classification and term Wrong classification or term
0

20

40

60

80

100

Co
nf

id
en

ce

Figure 8.15: Respondents confidence in their answers depending on
their correctness, along with the standard deviation (black line).

explanations. Some people may have thought they understood well the model and
rated it high while their representation was erroneous.

The global trend correlating confidence with transparency score is visible on Fig-
ure 8.17.

0%

33%

33%

50%

50%

42%

33%

12%

50%

25%

33%

38%Don’t know

False

True

Overall

100 50 0 50 100
Percentage

Not at all, I cannot imagine how to validate such a model 2 3 4 Completely transparent, easy v

FURIA evaluation

Completely transparent, easy validation

Average = 2.92

Average = 3.00

Average = 3.75

Average = 2.38

Figure 8.16: Transparency scores given to FURIA depending on the
correctness of the respondents’ answers to the simulation.

Random guess
or I don't know

25% sure 50% sure 75% sure 100% sure

Confidence

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

T
ra

n
sp

a
re

n
cy

 s
co

re
/p

e
rc

e
iv

e
d
 e

a
se

 o
f
va

lid
a
ti
o
n

n=6

n=2

n=1

n=6 n=6

Figure 8.17: Transparency scores given to FURIA as function of the
respondents’ confidence in their answers to the simulation.

8.2. Results and discussion 179

Several respondents demonstrated in the comments a high curiosity to understand
how the model has been built:

– “I presume the c-values are confidence values, but no information was given on
how the c-values are computed.”

– “1) How are determined the numbered values indicated in the condition of the
rules? (and the score?) Would it be interesting to have distributions instead of
raw numbers? (a smooth real valued function (score) taking the z-momentum
balance as parameter?)
2) How are considered the correlations between rules? Can one simply sums the
output of 2 correlated rules? Would it be interesting to have a smooth score
function taking all the variables and constructing a score out of them?
3) The conditions inside one rule can be correlated, and to me, can be called
‘cuts’. Is this conceptually really better than a usual ‘cut and count’ analysis?
4) I guess the main goal is to find the structure of the signal (or background)
inside a phase space region, and try to discriminate it via a simple real valued
function (score) (To integrate non linear correlation laying inside data, would it
be interesting to apply a manifold learning algorithm to understand the structure
of signal for instance, and put a notion of distance for one event to this manifold
structure? but would it be interpretable...)
5) Why only 5 rules for signal and 10 for π0?”

The fact that the FURIA base comprises many rules (15 in total) disturbed a few
respondents. The more rules, the more difficult it is to apprehend the model in its
globality, whereas the GAM comprises only 5 terms. We were expecting that the
FURIA base would be more interpretable than the GAM, but the respondents have
shown themselves more severe, probably because this model is the most similar to the
cuts they are used to. To conclude, one respondent preferred the GAM to FURIA:

“More black box like than the first model.”

8.2.4.3 Neural network

Finally, a few questions were asked about a neural network to make respondents more
familiar with it. The respondents were supposed to use the provided SHAP values to
classify the given example. However, we noticed during the response period that the
description of these values could be misinterpreted. Indeed, the values taken by each
variable of the given example were provided along with a color sticker indicating if the
value is high or low compared to other values in the training set. These colors must be
put in parallel with the SHAP diagram to determine the influence of the variables on
the network’s output. However, after discussing with a few respondents that left their
email, we figured out that some people directly took the colors as the impact of the
variable on the network’s output, without using the SHAP diagram. One respondent
also underlines his perplexity in the comments:

“I did not get the model; To me the PDF seems really ill-posed... what is
a SHAP value? In the PDF, next to ‘SHAP value’ is written ‘impact on
model output’, this is ambiguous and can be understood as the importance
of a variable in the classification (but it is not, this is for the color I guess?
...) So one should look on the variables with red dots because they are
more important in the classification. OK now why do we need the values
of the observables? is it the SHAP value? should we sum them weighted

180 Chapter 8. Interpretability evaluation by experimental physicists

with the color? I guess then most of the red variables are positive, so
positive SHAP? DVCS event?”

Therefore, the results of simulation questions are skewed.

However, Figure 8.18 shows a big dispersion in people’s answers, with a third of
respondents giving the right classification, another third the wrong, and the last third
saying they do not know how to classify the given event.

Right classification
33,3%

I don't know
29,2%

Wrong classification
37,5%

Figure 8.18: Results of the simulation of the neural network by the
respondents.

The neural network obtains an overall transparency score of 2.08, without significant
difference according to respondents’ answers to the simulation (see Figure 8.19).

62%

50%

78%

57%

0%

0%

0%

0%

38%

50%

22%

43%Don’t know

False

True

Overall

100 50 0 50 100
Percentage

Not at all, I cannot imagine how to validate such a model 2 3 4 Completely transparent, easy v

Evaluation of a neural network

Completely transparent, easy validation

Average = 2.08

Average = 2.25

Average = 2.00

Average = 2.00

Figure 8.19: Transparency scores given to the neural network de-
pending on the correctness of the respondents’ answers to the simula-

tion.

Globally, the network received more suspicion than the previous models:

– “Not enough explication given.”

– “Maybe the event is more blue than red, but very difficult to conclude. You can-
not convince colleagues without presenting efficiency and purity and changing
the initial sample (degrading resolution or adding other type of background).”

– “I would tend not to trust a model if I do not understand the output.”

– “I am not totally sure that I am interpreting the information correctly. Also,
the colours are not enough to tell how far along the SHAP scale each variable
is. But it does give an overall feel...”

The second comment gives an interesting point for the validation: the performance of
event selection must be checked on degraded data samples. This was indeed the point

8.2. Results and discussion 181

of the domain adaptation (chapter 7). Other types of background are indeed a problem
here: the proposed models only classify two processes, DVCS and π0 production. We
hope the models’ output for other processes will be close to 0.5, so that a proper
threshold choice will be able to remove them completely. This will be discussed in
chapter 9.

8.2.5 Global comparison

First, Table 8.1 summarizes the individual results of the GAM, FURIA and neural
network evaluations. From these results, the GAM appears as the most interpretable
of the three models: respondents have the most succeeded understanding its function-
ing and were the most confident about their answers. The GAM and FURIA received
the same transparency score in average namely 2.9, with the neural network further
behind with an average score of 2.1. This confirms that the GAM and FURIA have
the potential of being understood by the respondents: some participants underlined
that it would be easier for them to get the functioning of the model if given more
explanations, notably on how the model was induced or the distributions of involved
features.

Table 8.1: Transparency score, confidence and percentage of good
and wrong answers for each of the proposed models.

GAM FURIA Neural network

Transparency score 2.90 2.92 2.08
Confidence 60.48 56.25 39.58
Percentage of good answers 64.50 50.00 33.33*
Percentage of wrong answers 12.90 16.67 37.50*
* The description of the procedure to classify the example using the
SHAP values has been misunderstood.

The last question asked to rank four event selection methods: the GAM, the FURIA
base, the neural network and regular physicists’ cuts. Figure 8.20 presents the counts
of ranks for each model. Globally, the GAM gets the best rank (2.04 in average),
but is mostly rank second, either behind the neural network or cuts. FURIA has
disappointed most respondents, since it is the model ranked the most often last and
third. Indeed, FURIA offers less flexibility to choose a position on the ROC curve.

– “I rate worst FURIA, because it looks the less easy to train and run.”

– “FURIA is also easy to understand, but seems to be a set of fancy probability-
weighted cuts and though it performs slightly better for lower π0 contamination,
it seems to be only applicable to just above 20%. I feel somehow more uneasy
relying on it.”

The ranks of the neural network and cuts are more disputed. Nevertheless, the neural
network is the model ranked first most of the times. This comes from people preferring
performance to transparency: Table 8.2 indeed presents the transparency requirements
for event selection of the respondents according to the model they ranked first. 80% of
people having chosen cuts as their favorite event selection technique initially required
a complete understanding of the method. This proportion drops down to 33% for the
neural network and for the GAM as well. Interestingly, the person who answered that

182 Chapter 8. Interpretability evaluation by experimental physicists

GAM

FURIA

Neural network

Cuts

6

3

9

5

11

2

5

5

5

8

5

5

1

10

4

8

Ranked 1st Ranked 2nd Ranked 3nd Ranked 4th

Average = 2.04

Average = 3.09

Average = 2.17

Average = 2.70

Figure 8.20: Ranks given to the four models, for all respondents.

there is no need for any explanation as long as the method is working well has been
convinced by the GAM.

Table 8.2: Transparency requirements of respondents (as lines) as
function of their first choice (as columns). The percentages are dis-

played along with the raw count between parentheses.

Ranked GAM first Ranked FURIA first

Sufficiently transparent 50% (3) 100% (3)
Completely transparent 33% (2) 0
No need for transparency 17% (1) 0

Ranked neural network first Ranked cuts first

Sufficiently transparent 67% (6) 20% (1)
Completely transparent 33% (3) 80% (4)
No need for transparency 0 0

If we focus on respondents that understood correctly the functioning of the GAM
and FURIA, namely that they obtained correct answers to the model simulations, we
obtain the ranks presented on Figure 8.21. 39% of respondents fall in that category.
We observe that the ranking is less severe for FURIA, with only 6 persons that rank
it last or third, against 18 initially. Similarly, the neural network looses two thirds of
the persons that ranked it first.

GAM

FURIA

Neural network

Cuts

2

2

3

2

5

1

1

2

2

3

2

2

3

3

3

Ranked 1st Ranked 2nd Ranked 3nd Ranked 4th

Average = 2.00

Average = 2.78

Average = 2.56

Average = 2.67

Figure 8.21: Ranks given to the four models, among respondents
having given the right answers to the GAM and FURIA simulations.

Figure 8.22 compares the average ranks of the four models for all respondents against
for respondents that gave right answers to the FURIA and GAM simulations. While

8.2. Results and discussion 183

the GAM and cuts keep the same average, we observe a slight increase in FURIA
rank and a slight decrease for the neural network. We can conclude that FURIA may
have been misunderstood by some of the respondents, or intimidated them with its
15 rules.

GAM FURIA Neural network Cuts
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Av
er

ag
e

sc
or

e

2.04

3.09

2.17

2.7

2.0

2.78
2.56 2.67

Overall Right answers

Figure 8.22: Comparison of average ranks given to each model for
all respondents and among respondents that gave right answers to
GAM and FURIA simulations. The black lines represent standard

deviations.

Globally, we can say that the GAM has been well appreciated by the respondents.

“GAM is easy to understand and very transparent and seems robust.”

FURIA is controversial. For some people, it looks like common physicists’ cuts and
therefore easier to understand, for others the rules are too numerous and complicated.
Moreover, it offers less flexibility for efficiency/contamination balance.

“To me, all the methods are far more complicated to implement than a
usual ‘cuts’ analysis. FURIA provides interesting improvements to be
considered.”

The usual cuts received various ranks. Some respondents underlined that a ROC
curve could be obtained by varying the values of the cuts, which is true but more
complicating since it involves multi-dimensional cuts instead of a single cut on the
output of a machine learning model.

– “For the ‘cuts’ model you give only one point, i.e. a specific set of cuts. But in
principle, one can study the signal and background fraction when varying the
cuts.”

– “For the cuts model it would have been informative to vary the size of the cuts
to get a dependence rather than a single point. One suspects that with very
generous cuts one will pick up all DVCS events while not incurring (at least not
according to the plot) more than 50% π0 background.”

184 Chapter 8. Interpretability evaluation by experimental physicists

Finally, respondents either ranked first the neural network because of its best classi-
fication performance or were suspicious about it:

– “The neural network is the best working model, but 1) it’s a completely black
box 2) I did not understand your explanation 3) people not familiar with them,
dislike them.”

– “Although the neural network is the most efficient I cannot imagine its behavior
when introducing noise and smearing... They can be perfect for other tasks than
data selection though...”

– “Neural networks clearly show the best performance, but, based purely on the
info in this survey, I do not feel I am confident enough understanding how to
use the information. This can be fixed with a more in-depth study, though, so I
might change my preference. For a PhD student or a postdoc just starting out,
GAM might be a clearer starting point.”

To conclude on the model comparison, FURIA is too complex to apprehend globally
and its performances are not satisfying enough according to the physicists who an-
swered. This conclusion permits to be cautious as well for decision trees: they are
often more complex than FURIA bases, although their performance is better and they
do not suffer from the lack of flexibility of FURIA. For the physics analysis, we should
settle for a small decision tree, not deeper than 3 or 4 layers. A GAM with only 5
terms approaches very closely the performance of the neural network, which makes it
a very interesting compromise for event selection.

8.3 Conclusion

In this chapter, we proposed an interpretability survey to assess the subjective vali-
dation of the developed transparent models by physicists. We designed a survey to
evaluate the proper understandability of the automatically built features on the one
hand, and to evaluate the interpretability of two transparent models, a FURIA base
and a GAM, on the other hand. Finally, a global comparison between these two
models, a neural network and standard cuts was conducted.

This study on the physicists’ perception of transparent machine learning models have
led to very interesting results. We confirmed the understandability of the features
built by automatic constrained feature construction. The transparency of a GAM
model and a FURIA base has also been validated, the GAM having received very
positive comments. We also studied the subjective preference of respondents after
presenting them several models for event selection. From the results of the survey, we
discovered that the respondents globally preferred the GAM over FURIA, and that
the GAM is a very good candidate to replace the usual cuts in a physics analysis.
We should pay attention to the size of the proposed models: the number of rules of
FURIA may have startled a few respondents, while the first 5 terms of the GAM
suffice to obtain a satisfying classification performance.

All results and comments can be found in Appendix G. We would like to warmly thank
all participants to the survey and in particular the six first testers: Francesco Bossu,
Nicole d’Hose, David Lhuillier, Loïc Thuilliez, Marine Vandebrouck and Michael
Winn.

185

Chapter 9

Analysis of DVCS data from
CLAS12

9.1 DVCS event selection in CLAS12 data 186
9.1.1 Momentum corrections . 186
9.1.2 Machine learning models for the analysis 188
9.1.3 Removal of other background processes 189

9.2 π0 subtraction and asymmetry computation 190
9.2.1 Principle . 191
9.2.2 Results and validation of the proposed models 192

9.3 Optimal selection threshold and asymmetry computation 194
9.3.1 Optimal selection threshold to minimize the asymmetry sta-

tistical error . 194
9.3.2 Asymmetry computation 196

9.4 Comparisons with other techniques 197
9.4.1 Impact of momentum corrections and domain adaptation . 197
9.4.2 Alternative methods for event selection 199

9.5 Conclusion and perspectives 201

Data acquisition at CLAS12 for DVCS on an unpolarized target started in spring 2018
and is divided into several periods:

• The first period of spring 2018 encountered a few difficulties due to unoptimized
detector settings and high background noise. The reconstruction is therefore
challenging for this period;

• The setup was improved for the fall 2018 data taking. Reconstruction for this
period has been successfully completed;

• Data taking continued in spring 2019 with a beam energy lowered to 10.2 GeV.
Reconstruction is currently ongoing.

For this analysis, we use data from fall 2018, which constitutes over 1 Po of raw data.
During this period, two settings varied: the beam helicity (plus or minus 1) and the
torus magnetic field orientation (leading to electron trajectory bent inwards or out-
wards of CLAS12). Comparing the yields for the different beam helicities permits to
compute the beam spin asymmetry (see section 9.3). The inbending setup naturally
cuts electrons leading to Q2 ≤ 1.5 GeV2/c4 since these electrons have a small scat-
tering angle and are sent towards the beamline by the torus magnetic field. On the

186 Chapter 9. Analysis of DVCS data from CLAS12

opposite, the outbending configuration will get a large number of these small scatter-
ing angle electrons, but many protons will be lost when directed towards the forward
detector since their trajectories will be deviated towards the beamline.

Preselection cuts are applied on the data to ensure its quality:

• the vertex position of the electron and proton must be between -8 and 5 cm
along the z-axis;

• the χ2 of particle identification for the electron and proton must be below 3;

• the angle between the electron and the photon must be over 5°;

• the photon energy must be over 0.5 GeV;

• β of the photon must be comprised between 0.9 and 1.1;

• the polar angle θ of the photon must be over 2.75°;

• fiducial cuts (i.e. geometrical cuts to remove the edges of the detectors) are ap-
plied on the drift chambers (forward detector), forward calorimeter and forward
tagger calorimeter.

For DVCS event selection, additional loose cuts are performed to remove the majority
of background:

• the missing energy ep→ epγX must be below 1.4 GeV in absolute value;

• the squared missing mass ep → epγX must be below 0.2 GeV2/c4 in absolute
value.

The work presented in this chapter has been carried out in close collaboration with
Maxime Defurne from CEA Irfu and Guillaume Christiaens from the University of
Glasgow.

9.1 DVCS event selection in CLAS12 data

9.1.1 Momentum corrections

As detailed in the experiments of chapter 7, the proposed domain adaptation technique
is only applicable in the region of the phase space where exclusive π0 production events
are found in abundance, namely in the two kinematic bins:

• 0.16 < xB < 0.26 and Q2 < 2.4GeV2/c4;

• 0.26 < xB and Q2 < 3.25GeV2/c4.

For the physics analysis, 24 bins are considered in total over Q2, xB and t, displayed
on Figure 9.1. The two regions of the phase space where domain adaptation can
be applied group the bins 2, 5, 8, 11 and 3, 6, 9, 12. The four bins in each region
correspond to subdivisions in t.

In the 16 remaining bins, the domain adaptation technique is not applicable as such.
Instead, a backup solution is to perform momentum corrections: the idea is to correct
manually the variables that are the most biased. We know this is currently the case
for the photon energy, which is underestimated by the calorimeters and for the proton
in the central tracker, which suffers from calibration errors. Figure 9.2 displays the
squared missing mass ep→ eγγX for exclusive π0 production events in Monte Carlo

9.1. DVCS event selection in CLAS12 data 187

Figure 9.1: Kinematic bins used for the physics analysis. Left: in
the (xB , t) plane; right: in the (xB , Q

2) plane. The numbers identify
the bins [Christiaens, 2021].

simulated data (with cross-sections) and in CLAS12 data, for photons in the forward
tagger (scattering angle θ below 5°) or in the forward detector (θ > 5°). There is
a clear shift of the distribution in particular regarding the forward tagger, while the
peak of the distribution should be at the squared mass of the proton namely 0.88
GeV2/c4.

0.5 1.0 1.5
Squared missing mass eggX

0.0

0.5

1.0

1.5

2.0

0.5 1.0 1.5
Squared missing mass eggX

0

200

400

600

800

1000 Simulation
Data
Corrected data

(GeV²/c⁴) (GeV²/c⁴)

Figure 9.2: Squared missing mass ep → eγγX for exclusive π0 pro-
duction events in Monte Carlo simulated data and in CLAS12 data.
Left: photons were sent in the forward tagger (θ < 5°); right: in the

forward detector (θ > 5°).

Since calibration is still ongoing for the central tracker, the proton is not reconstructed
properly. Therefore, momentum corrections are applied to both the photon energy
and the proton three-momentum. They are performed using exclusive DVCS events,
selected with strict cuts, with π0 subtraction as explained in 9.2. For these correc-
tions, the hypothesis is made that the electron and the direction of the photon are
well reconstructed. This information suffices to recompute the four-momenta of the
particles in the output state and develop a momentum correction strategy for both
the photon energy and proton three-momentum.

The distributions of the squared missing mass with momentum corrections are dis-
played in red on Figure 9.2. In the remaining of this chapter, corrected data will be
used for the analysis unless otherwise stated.

188 Chapter 9. Analysis of DVCS data from CLAS12

9.1.2 Machine learning models for the analysis

In the end, a specific domain adaptation should be performed using the corrected
data as target, with events covering the entire phase space as discussed in chapter 7.
In practice, in this analysis, we use domain adaptation in bins where it is possible (8
bins over 24), and momentum corrections elsewhere. We also compare the analysis
using momentum corrections against the analysis with domain adaptation on the eight
compliant bins.

Three models are considered in the following:

• A FURIA base with prior feature construction of 5 features (the same that was
studied in the interpretability survey of chapter 8). It comprises 11 rules.

• A fuzzy C4.5 Fibo with embedded feature construction of 15 features. It has
95 non-leaf nodes but we will try limiting its maximal depth to 3 and see the
impact on the analysis.

• A FCGAM_bmax with 16 terms (the same that was used for domain adaptation
in chapter 7, and this model restricted to 5 terms was also used in the inter-
pretability survey of chapter 8). We will try reducing the number of terms to 5
as in the survey and see the impact on the analysis as well.

In addition, we consider a neural network and physicists’ cuts (details respectively in
9.4.2.2 and 9.4.2.1), as competitor models.

The ROC curves and efficiency against contamination curves of these models on Monte
Carlo simulated data with cross-sections are displayed on Figure 9.3. However, these
classification performances are probably overestimated and we do not know them
precisely on real data. At first sight, the relative ordering of the three best models
reverses in the middle: the neural network is the best model in terms of classification
performances at low contamination, followed by the FCGAM and the fuzzy C4.5.
However, at high efficiency (i.e. true positive rate), the fuzzy C4.5 has lower false
positive rates, followed by the GAM and the neural network. FURIA permits to
retain more than twice as much DVCS events compared to the cuts while keeping
approximately the same contamination level.

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 p

o
si

ti
ve

 r
a
te

Neural network
GAM 16 terms
Fuzzy C4.5 max depth (13)
FURIA
Cuts

0.00 0.05 0.10 0.15 0.20 0.25
Contamination = selected Pi0 events / total selected events

0.0

0.2

0.4

0.6

0.8

1.0

E
ff
ic

ie
n
cy

 =
 s

e
le

ct
e
d
 D

V
C
S
 e

ve
n
ts

 /
 t

o
ta

l D
V
C
S
 e

ve
n
ts

Figure 9.3: ROC curves (left) and efficiency against contamination
curve (right) for the considered models.

9.1. DVCS event selection in CLAS12 data 189

9.1.3 Removal of other background processes

Simulation data used for training machine learning models consist exclusively of DVCS
and π0 production events. Therefore, there is no third class for other background
processes. However, other processes may contaminate the event selection despite π0

production is the main background for DVCS.

Intuitively, other processes should get an output around 0.5, namely the classification
is not sharp since they are neither π0 production events nor DVCS events. To remove
them, a higher threshold must be determined.

As control process, we use η production. η is a meson 5 times heavier than the
π0 meson. It decays mostly into two photons (40% of cases), three π0 (30%) or
π++π−+π0 (22%) [Zyla et al., 2020]. The non-exclusive π0 should be removed thanks
to π0 subtraction. However, the two photons channel may constitute a contamination
to DVCS selection for the same reasons than for exclusive π0 production, considering
the energy resolution for the photons. However, the invariant mass of these two
photons equals the mass of the η instead of the π0 mass, as displayed on Figure 9.4.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Invariant mass

102

103

104

105

= 0.135 GeV/c² = 0.547 GeV/c²

Figure 9.4: Invariant mass γγ in CLAS12 data after applying cuts on
the total missing energy and squared total missing mass. The presence
of π0 production events and η production events is clearly visible.

Two-photons η production events are isolated in the data using the following cuts:

• the missing energy ep→ epγγ must be below 1.8 GeV in absolute value;

• the squared total missing mass ep→ epγγ must be below 0.2 GeV2/c4 in abso-
lute value;

• the invariant mass γγ must be between 0.502 and 0.592 GeV/c2 (0.045 GeV/c2

apart from the η mass).

5230 η production events are retrieved in this way. Applying the selected machine
learning models on these events with momentum corrections produces Figure 9.5.
FURIA is not displayed on Figure 9.5 since the large majority of events (86%) are
classified to 0 or 1. More precisely, 13% of η production events are classified as 1 by
FURIA.

190 Chapter 9. Analysis of DVCS data from CLAS12

0.0 0.2 0.4 0.6 0.8 1.0
0

200

400

600
Fuzzy C4.5 (max depth)

0.0 0.2 0.4 0.6 0.8 1.0
0

100

200

FCGAM (16 terms)

Figure 9.5: Output of machine learning models for η production
events in data. 1 corresponds to DVCS and 0 to π0 production.

These plots give an estimate of the minimal threshold on the models’ outputs to
eliminate the majority of η production events. Starting from 0.6 – 0.65, η production
events and hopefully other remaining background events should be absent from the
selection. Another approach would be to perform an η subtraction similar to the π0

subtraction detailed in 9.2, therefore enabling lower selection thresholds. This would
also require ensuring that no other background process is significantly contaminating
the selection.

For this analysis, to make sure to remove the majority of η production background,
we set the minimal selection threshold so that 95% of the η background is removed,
provided there is a significant proportion of η production events in data. This minimal
selection threshold is determined per kinematic bin on Q2, xB, t and varies depending
on the studied classification model. In some kinematic bins, almost no η production
event is present. Therefore, we set the minimal threshold to 0.6 as a precaution,
to eliminate any other background process. For FURIA, we keep only the events
classified as 1. Analysis results using FURIA should be taken with precaution since
many η production events remain in the selected sample.

Considering the entire phase space, distributions of the squared missing mass ep →
epγX and of the photon cone angle for different selection thresholds of the FCGAM are
displayed on Figure 9.6. Below 0.6, more background is present, notably η production
events. This can be seen notably on the cone angle, expected to be 0 for DVCS: the
peak progressively moves towards lower values, suggesting that additional background
is present at thresholds 0.4 and 0.6 compared to thresholds 0.8 and 0.9.

9.2 π0 subtraction and asymmetry computation

If we consider that all other backgrounds have been removed, the only remaining
background is π0 production. This section presents a methodology to remove this
background and choose the optimal selection threshold to minimize the statistical
error of the asymmetry.

9.2. π0 subtraction and asymmetry computation 191

0.0100 0.0050
(GeV²/c⁴)

0.0000 0.0050 0.0100
Squared missing mass

0

1000

2000

3000

4000

5000

6000 Threshold 0.4
Threshold 0.6
Threshold 0.8
Threshold 0.9

0.0 0.1 0.2 0.3 0.4 0.5
Photon cone angle (deg)

0

250

500

750

1000

1250

1500

1750

2000 Threshold 0.4
Threshold 0.6
Threshold 0.8
Threshold 0.9

FCGAM (16 terms)

Figure 9.6: Distributions of the missing mass ep→ epγX and of the
photon cone angle for different selection thresholds on the models.

9.2.1 Principle

The different steps to perform π0 subtraction are summarized on Figure 9.7.

 production
event selection

Selected DVCS sample
(including contamination)

events
decays

2 photons

1 photon

0 photon
DVCS event

selection

Estimated contamination

(to be weighted by)

DVCS event
selection

Data
preselected

Figure 9.7: π0 subtraction principle.

As stated before, π0 production events are easy to isolate in data, as long as the two
photons emitted from its decay are detected. Keeping only events that present an
electron, a proton and at least two photons and that satisfy a few conservation laws
permit to constitute a sample of π0 production events of great purity. The cuts to
retrieve two-photons π0 events are the following:

• the missing energy ep→ epγγ must be below 1.8 GeV in absolute value;

• the squared total missing mass ep→ epγγ must be below 0.2 GeV2/c4 in abso-
lute value;

• the invariant mass γγ must be between 0.09 GeV/c2 and 0.18 GeV/c2.

Note that both exclusive and non-exclusive π0 production events are selected with this
set of cuts. Indeed, all production channels constitute a contamination to the DVCS.
Applying these cuts on reconstructed data from fall 2018 gives 260291 two-photons
π0 production events for inbending data and 483067 for outbending data.

Then, the π0 four-momentum is computed as the sum of the two detected photons for
each event. Each π0 is decayed N = 1500 times into two new photons. The decays are
isotropic in the π0 frame. Then, fiducial cuts are applied on the photons to determine
if they would be detected by the calorimeters and preselection cuts detailed in the
introduction of this chapter are applied as well.

192 Chapter 9. Analysis of DVCS data from CLAS12

Over all decays in one bin, n0 is the number of times no decayed photon is detected,
n1 the count when only one photon passes the selections and n2 when the two photons
are detected and pass the selections.

All events resulting from the π0 decays are submitted to the DVCS event selection:
this can be done either with machine learning models or using standard exclusivity
cuts, as long as the method is consistent with the one used for the actual event
selection. The events that pass the DVCS selection constitute the π0 contamination.
Since only two-photons π0 production events were selected initially to perform this
contamination estimation, contaminating events must be weighted by 1

N
N
n2

= 1
n2

when
subtracted from the selected DVCS events.

Sometimes, the ratio n2
N is not big enough to ensure a proper contamination estimation,

namely the two photons decayed out of the π0 are almost never detected. In this
case, the π0 event is rejected. Conversely, DVCS events for which π0 subtraction is
not possible must be rejected as well. To this end, the photon of a DVCS event is
artificially converted into a π0 with same momentum and decayed N = 1500 times.
Over these decays, if n2 < 0.04N (the two photons are detected in less than 4% of
cases) then the corresponding DVCS event is rejected.

The performance of this procedure requires retrieving the full set of π0 production
events in data that have two detected photons. Otherwise, the n2 weighting is over-
estimated and therefore the contamination is underestimated.

9.2.2 Results and validation of the proposed models

Figure 9.8 displays the models’ outputs for the preselected data as well as the es-
timated π0 contamination. It must be noted that the contamination is sometimes
overestimated (notably at low output), thus it is not excluded that it is over or un-
derestimated elsewhere. The implementation of π0 subtraction is still ongoing work.
Again, FURIA classifies the vast majority of events to 0 or 1.

0.0 0.2 0.4 0.6 0.8 1.0
0

20000

40000

Fuzzy C4.5 (max depth)

All events
0 contamination

0.0 0.2 0.4 0.6 0.8 1.0
0

10000

20000

FCGAM (16 terms)

All events
0 contamination

Figure 9.8: Outputs of classification models for preselected data and
estimated π0 contamination.

We can use the π0 subtraction process to validate the functioning of the proposed
models. Figure 9.8 already confirms that π0 production events are classified closer

9.2. π0 subtraction and asymmetry computation 193

to 0 and DVCS events closer to 1 for the FCGAM and the fuzzy C4.5. Concerning
FURIA, the large majority of events is again classified as 0 (90%). As seen on the
ROC curves (Figure 9.3), FURIA has a limited flexibility for choosing the output
threshold. Varying it should not alter significantly the results of the analysis. Retain-
ing exclusively events classified as 1 leads to 24% π0 contamination in the selected
set, comprising 272224 events.

The five first terms of the FCGAM model can be found at the end of Appendix G.
Figure 9.9 displays the distributions in data of two first features used by the FCGAM
and the associated terms, stacked with the induced shape function. The distributions
of the two variables are compliant with the shape functions. The first feature has been
seen multiple times in the experiments in part II: it is the sum of the momenta of the
three particles of DVCS along the beam axis. For this first feature, it is more likely
to have a π0 production event for low values of this feature, and conversely. However,
the range taken by the shape function is much larger than the values taken by data.
Either preselection cuts drastically reduced this range (especially the missing energy),
or the training dataset covered a larger phase space than the data. The second feature
compares the two photons produced in the collision, probably to detect π0 production
events. It apparently presents a peak around 12 – 15°, which is consistent with the
induced shape function.

0

5000

10000

15000

20000

25000

7 8 9 10 11 12 13

1.5

1.0

0.5

0.0

0.5

1.0

f(
z)

get_z(p_e + p_g1 + p_p)

H
is

to
g
ra

m
s

co
u
n
ts

0 10 20 30 40 50 60 70
0

500

1000

1500

2000

2500

3000

0.0

0.5

1.0

1.5

f(
z)

f(
z)

H
is

to
g
ra

m
s

co
u
n
ts

All events
0 contamination

Shape function

angle(p_g1, p_g2) + angle(p_g2, p_g1) + angle(p_g1 + p_g2, p_g2)

Figure 9.9: Distributions of the two first variables used by FCGAM.
The induced shape functions (in red) are superimposed. Attention:
the shape functions are reversed here. Indeed, the smaller the value
taken by the shape function, the most likely the event is classified as

DVCS, and conversely.

Figure 9.10 displays the distributions of the first three features used by the fuzzy C4.5
(at the root and its two children nodes), along with the fuzzy cut. The first feature is a
momentum conservation check for DVCS. It perfectly corresponds to what is expected:
the cut on this variable isolates more DVCS events to the left, and more π0 production
events to the right side of the threshold. The second variable (corresponding to the left
branch of the root node, with a higher DVCS purity) compares the electron with the
photon, considering notably their transverse momenta. The electron and the photon
account indeed for most of the energy balance. The second variable separates more
π0 production events to the left of the induced fuzzy threshold. Finally, the third
variable (corresponding to the right branch of the root node) involves the first photon
with several of its features, and notably compares the azimuthal angles of the first and
second photons. This feature probably aims at recognizing π0 production events. It
improves the purity of the sample in its right side (greater than the threshold), which
contains a larger proportion of π0 production events than the left side.

194 Chapter 9. Analysis of DVCS data from CLAS12

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
0

2000

4000

6000

8000

10000

12000

10 12 14 16 18 20 22 24
0

2000

4000

6000

8000

10000

12000

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
0

2000

4000

6000

8000

10000

Figure 9.10: Distributions of the first three variables used by the
fuzzy C4.5. The fuzzy thresholds (in red) are superimposed. The first
cut was not applied to produce the distributions of the two next cuts.

9.3 Optimal selection threshold and asymmetry compu-
tation

9.3.1 Optimal selection threshold to minimize the asymmetry sta-
tistical error

The final selection threshold is determined to minimize the statistical error on the
asymmetry. The asymmetry and its statistical error write:

A =
1

P

N+ −N−

N+ +N−
, (9.1)

(∆A)2 =
(∆N+)2(2N−)2 + (∆N−)2(2N+)2

P 2(N+ +N−)4
, (9.2)

with P the polarization degree (between 0 and 1), N+ the number of selected events
at helicity 1 and N− the number of events at helicity -1. Whatever the helicity, the
number of events we consider is the subtraction of the number of selected events with
the quantity of estimated π0 contamination. Namely:

N = Ndata −Ncont (9.3)

∆Ndata =
√
Ndata (9.4)

Ncont =
∑
cont

1

n2
(9.5)

(∆Ncont)
2 =

∑
cont

(√
n2

n2
2

)2

(9.6)

(∆N)2 = (∆Ndata)
2 + (∆Ncont)

2 (9.7)

9.3. Optimal selection threshold and asymmetry computation 195

We perform the computation of the optimal threshold per kinematic bin. In each bin,
a minimal selection threshold is set to remove 95% of η production events provided
the ratio Nη

Ndata
is over 1%.

For instance, Figure 9.11 displays the computation of the optimal threshold for the
FCGAM in bin 6. This bin comprises a lot of π0 production events, therefore the
contamination is high. Rather than minimizing the asymmetry error, it is rather
the removal of η production events that determines the selection threshold. The
asymmetry is computed considering the events with φ ∈ [72°,108°].

0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

20

25

Minimal threshold to remove 95% of eta = 0.60

Classification of eta

0.0 0.2 0.4 0.6 0.8 1.0
0

500

1000

1500

2000

2500

Classification for all data
All events

0 contamination

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.05

0.10

0.15

0.20

0.25

0.30

Optimal threshold: 0.60, error=0.0842, asymmetry=0.1455

Asymmetry error

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5
Asymmetry

Figure 9.11: Determination of the optimal selection threshold for
FCGAM in bin 6. The green vertical line materializes the minimal
acceptable selection threshold and the red vertical line the optimal
threshold above this limit. The error and asymmetry have been com-
puted with φ between 72° and 108°, while the two top plots comprise

the whole range in φ.

On the opposite, Figure 9.12 displays the same computation but for the fuzzy C4.5

196 Chapter 9. Analysis of DVCS data from CLAS12

in bin 13, where there is almost no contamination. Therefore, the asymmetry error
increases simply with the selection threshold.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Minimal threshold to remove 95% of eta = 0.60

Classification of eta

0.0 0.2 0.4 0.6 0.8 1.0
0

500

1000

1500

2000

Classification for all data
All events

0 contamination

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.05

0.10

0.15

0.20

0.25

0.30

Optimal threshold: 0.61, error=0.1134, asymmetry=0.2574

Asymmetry error

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5
Asymmetry

Figure 9.12: Determination of the optimal selection threshold for
the fuzzy C4.5 in bin 13. The green vertical line materializes the
minimal acceptable selection threshold and the red vertical line the
optimal threshold above this limit. The error and asymmetry have
been computed with φ between 72° and 108°, while the two top plots

comprise the whole range in φ.

9.3.2 Asymmetry computation

Finally, the asymmetries are computed for each kinematic bin. The asymmetries
for the 24 bins using the FCGAM are displayed on Figure 9.13. From a theoretical
viewpoint, the asymmetry should be a function of the kinematic variable φ of the
form:

A =
A sinφ

1 +B cosφ
. (9.8)

9.4. Comparisons with other techniques 197

This description matches what is observed on Figure 9.13. In addition, the results of
the fits of parameters A and B are printed in each bin below the asymmetry curve.

Asymmetries plots can be found for other models in Appendix H. The results are
consistent while using different event selection techniques, which permits to globally
validate all models simultaneously.

9.4 Comparisons with other techniques

9.4.1 Impact of momentum corrections and domain adaptation

By default, we use the momentum corrections designed by Maxime Defurne for the
analysis. However, we compare here the results of the analysis with those that would
be obtained with the original data without momentum corrections, and with those
that would be obtained with the transferred and retrained FCGAM and fuzzy C4.5
using the domain adaptation of chapter 7. Table 9.1 compares a few metrics over
bins 2 and 3 (both are comprised in the subspace covered by domain adaptation): the
statistics (i.e. number of selected events), the percentage of π0 contamination and the
asymmetry statistical error on the parameter A of the fit.

Table 9.1: Statistics and contamination percentage in two bins with
or without momentum corrections and considering domain adaptation.

Bin 2 Bin 3

Stat. Cont. Error Stat. Cont. Error

FURIA without corrections 7920 11.6% 0.025 19379 37.2% 0.027
FURIA with corrections 8148 12.1% 0.025 20211 37.6% 0.025

FCGAM without corrections 6528 9.1% 0.028 14528 29.5% 0.029
FCGAM with corrections 6648 9.1% 0.027 15743 30.3% 0.027
FCGAM transferred 3594 6.0% 0.035 2346 13.4% 0.068
FCGAM retrained 2569 5.1% 0.042 6263 19.0% 0.041

Fuzzy C4.5 without corrections 5308 8.8% 0.030 14956 32.4% 0.029
Fuzzy C4.5 with corrections 5588 9.1% 0.030 15293 32.0% 0.028
Fuzzy C4.5 transferred 5990 10.0% 0.030 14621 32.7% 0.030
Fuzzy C4.5 retrained 5695 8.5% 0.030 14301 33.3% 0.031

Overall, the momentum corrections are efficient: they permit to diminish the asymme-
try statistical error compared to the error without corrections, in particular in bin 3.
The transfer does not seem to have an effect for the fuzzy C4.5 since the statistical
errors remain close. However, the transfer failed for the FCGAM with increased statis-
tical errors compared to the errors without corrections. Although the contamination
percentage is lower, fewer events are retained, thus impairing the statistical error. The
selection threshold is indeed quite high for the transferred and retrained FCGAM. We
saw in chapter 7 that the domain adaptation worked better for π0 production events,
which constitute the training dataset, than for DVCS events that have a different
topology.

To conclude on this topic, domain adaptation still requires further investigations so
that it is more robust and reliable. Momentum corrections are great substitute in the
meantime.

198 Chapter 9. Analysis of DVCS data from CLAS12

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

1,
 th

re
sh

ol
d=

0.
60

51
78

 se
le

ct
ed

 e
ve

nt
s

0.
6%

 c
on

ta
m

in
at

io
n

A=
0.

26
6

±
0.

03
2

B=
0.

42
5

±
0.

19
2

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

2,
 th

re
sh

ol
d=

0.
65

66
48

 se
le

ct
ed

 e
ve

nt
s

9.
1%

 c
on

ta
m

in
at

io
n

A=
0.

25
0

±
0.

02
7

B=
-0

.1
91

 ±
 0

.1
69

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

3,
 th

re
sh

ol
d=

0.
60

15
74

3
se

le
ct

ed
 e

ve
nt

s
30

.3
%

 c
on

ta
m

in
at

io
n

A=
0.

18
5

±
0.

02
7

B=
-0

.4
81

 ±
 0

.1
35

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

13
, t

hr
es

ho
ld

=0
.6

0

93
46

 se
le

ct
ed

 e
ve

nt
s

0.
4%

 c
on

ta
m

in
at

io
n

A=
0.

19
9

±
0.

03
1

B=
0.

24
2

±
0.

25
4

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

14
, t

hr
es

ho
ld

=0
.6

0

11
18

6
se

le
ct

ed
 e

ve
nt

s
2.

2%
 c

on
ta

m
in

at
io

n
A=

0.
21

2
±

0.
02

2
B=

0.
21

0
±

0.
18

3
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

15
, t

hr
es

ho
ld

=0
.6

6

88
53

 se
le

ct
ed

 e
ve

nt
s

14
.7

%
 c

on
ta

m
in

at
io

n
A=

0.
23

5
±

0.
02

4
B=

-0
.1

52
 ±

 0
.1

74

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

4,
 th

re
sh

ol
d=

0.
69

52
85

 se
le

ct
ed

 e
ve

nt
s

0.
9%

 c
on

ta
m

in
at

io
n

A=
0.

20
0

±
0.

04
6

B=
-0

.0
65

 ±
 0

.3
44

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

5,
 th

re
sh

ol
d=

0.
62

64
34

 se
le

ct
ed

 e
ve

nt
s

12
.4

%
 c

on
ta

m
in

at
io

n
A=

0.
19

7
±

0.
03

4
B=

-0
.2

38
 ±

 0
.2

14
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

6,
 th

re
sh

ol
d=

0.
60

96
57

 se
le

ct
ed

 e
ve

nt
s

43
.7

%
 c

on
ta

m
in

at
io

n
A=

0.
16

6
±

0.
04

1
B=

-0
.4

59
 ±

 0
.2

36
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

16
, t

hr
es

ho
ld

=0
.6

1

10
93

7
se

le
ct

ed
 e

ve
nt

s
0.

6%
 c

on
ta

m
in

at
io

n
A=

0.
25

8
±

0.
03

0
B=

-0
.0

69
 ±

 0
.1

67
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

17
, t

hr
es

ho
ld

=0
.6

0

14
25

2
se

le
ct

ed
 e

ve
nt

s
3.

4%
 c

on
ta

m
in

at
io

n
A=

0.
25

6
±

0.
02

0
B=

0.
05

6
±

0.
12

8
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

18
, t

hr
es

ho
ld

=0
.6

4

13
63

1
se

le
ct

ed
 e

ve
nt

s
27

.2
%

 c
on

ta
m

in
at

io
n

A=
0.

25
1

±
0.

02
2

B=
0.

08
2

±
0.

16
5

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

7,
 th

re
sh

ol
d=

0.
01

50
31

 se
le

ct
ed

 e
ve

nt
s

5.
0%

 c
on

ta
m

in
at

io
n

A=
0.

11
8

±
0.

04
1

B=
-0

.5
83

 ±
 0

.2
78

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

8,
 th

re
sh

ol
d=

0.
72

61
27

 se
le

ct
ed

 e
ve

nt
s

15
.4

%
 c

on
ta

m
in

at
io

n
A=

0.
17

7
±

0.
04

3
B=

-0
.3

79
 ±

 0
.2

35
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

9,
 th

re
sh

ol
d=

0.
66

53
70

 se
le

ct
ed

 e
ve

nt
s

50
.2

%
 c

on
ta

m
in

at
io

n
A=

0.
18

6
±

0.
06

1
B=

-0
.4

64
 ±

 0
.3

59
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

19
, t

hr
es

ho
ld

=0
.6

1

84
77

 se
le

ct
ed

 e
ve

nt
s

1.
5%

 c
on

ta
m

in
at

io
n

A=
0.

12
8

±
0.

02
4

B=
-0

.6
75

 ±
 0

.1
15

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

20
, t

hr
es

ho
ld

=0
.6

0

11
94

4
se

le
ct

ed
 e

ve
nt

s
6.

2%
 c

on
ta

m
in

at
io

n
A=

0.
17

9
±

0.
02

7
B=

-0
.3

90
 ±

 0
.1

43
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

21
, t

hr
es

ho
ld

=0
.6

0

12
37

4
se

le
ct

ed
 e

ve
nt

s
38

.4
%

 c
on

ta
m

in
at

io
n

A=
0.

22
1

±
0.

03
1

B=
-0

.2
51

 ±
 0

.1
92

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

10
, t

hr
es

ho
ld

=0
.6

0

55
74

 se
le

ct
ed

 e
ve

nt
s

9.
0%

 c
on

ta
m

in
at

io
n

A=
0.

11
6

±
0.

03
8

B=
0.

01
9

±
0.

55
1

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

11
, t

hr
es

ho
ld

=0
.7

2

56
81

 se
le

ct
ed

 e
ve

nt
s

30
.4

%
 c

on
ta

m
in

at
io

n
A=

0.
03

4
±

0.
04

5
B=

-0
.4

58
 ±

 1
.3

26
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

12
, t

hr
es

ho
ld

=0
.6

1

60
92

 se
le

ct
ed

 e
ve

nt
s

52
.7

%
 c

on
ta

m
in

at
io

n
A=

0.
07

1
±

0.
05

5
B=

-0
.5

66
 ±

 0
.7

30
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

22
, t

hr
es

ho
ld

=0
.6

0

89
10

 se
le

ct
ed

 e
ve

nt
s

7.
0%

 c
on

ta
m

in
at

io
n

A=
0.

10
8

±
0.

03
0

B=
-0

.3
15

 ±
 0

.3
26

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

23
, t

hr
es

ho
ld

=0
.6

0

83
55

 se
le

ct
ed

 e
ve

nt
s

18
.6

%
 c

on
ta

m
in

at
io

n
A=

0.
02

9
±

0.
03

1
B=

-0
.6

57
 ±

 0
.5

70
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

24
, t

hr
es

ho
ld

=0
.6

4

14
01

3
se

le
ct

ed
 e

ve
nt

s
47

.0
%

 c
on

ta
m

in
at

io
n

A=
0.

09
2

±
0.

03
1

B=
0.

70
4

±
0.

22
2

Figure 9.13: Asymmetries in each bin as function of the kinematic
parameter φ, computed using the FCGAM.

9.4. Comparisons with other techniques 199

9.4.2 Alternative methods for event selection

9.4.2.1 Cuts

Guillaume Christiaens from the University of Glasgow first determined a set of cuts
on Monte Carlo simulated data from a base of five high-level variables. The thresholds
on these variables were determined to minimize the statistical error on the asymmetry.
Contrary to the approach based on machine learning models where only one threshold
on the model’s output must be determined, here a multidimensional cut must be
found. The cuts determined on Monte Carlo simulated data (they were presented in
chapter 8 for the interpretability survey) are then “transferred” to real data looking
at the resolutions of the involved high-level variables. It is actually a renormalization
strategy from the viewpoint of domain adaptation. The resulting cuts for real data
are:

• the missing mass eγ is in
[
0.1GeV/c2, 1.7GeV/c2

]
;

• angle
(−→
pγ1 ,
−→
ein −−→pe −−→pp

)
≤ 1.2° (photon cone angle);

•
√

(pex + ppx + pγ1x)
2

+
(
pey + ppy + pγ1y

)2 ≤ 0.12GeV/c (missing pT);

• the squared missing mass epγ is in
[
−0.04GeV2/c4, 0.04GeV2/c4

]
;

• the missing energy epγ is in [−0.5GeV, 1.2GeV].

Varying the values of the cuts on Monte Carlo simulated data permits to obtain
efficiency against purity curves. However, it implies multivariate operations instead
of only considering the model output for the proposed machine learning models.

As perspectives for this method, cuts could be differentiated depending on the kine-
matic bin. Similarly to the machine learning approach that we presented, this would
permit to improve the statistical error on the asymmetry in each bin. However, cus-
tomizing the cuts in each bin would mean a degraded interpretability in the machine
learning viewpoint: indeed, the overall model would be more complex because divided
in 24 cases. This is left to the judgment of the physicist in charge of the analysis.

9.4.2.2 Neural network

A study using neural networks to analyze CLAS12 data started being conducted by
Marouen Baalouch from CEA LIST but has not been finalized. Marouen Baalouch
compared several sets of features to use as input for the neural network, and concluded
that using low-level features such as calorimeter responses is very beneficial to improve
the classification performance. However, this raises a problem with respect to the π0

subtraction since the decayed π0 production events do not go through the complete
event reconstruction. Instead, the two photons decayed from the π0 simply undergo
cuts on their energy and fiducial cuts to determine whether they are detected in the
calorimeters. With the current analysis scheme, methods using low-level features are
not exploitable.

We still picked up the designed network architectures and retrained them on Monte
Carlo simulated data, with only the particles’ three-momenta as input. This network
was used for the interpretability survey in chapter 8.

Marouen Baalouch also studied DANN to handle the covariate shift between Monte
Carlo simulation and real data [Baalouch et al., 2019]. As perspective for this work, a

200 Chapter 9. Analysis of DVCS data from CLAS12

DANN should be trained and tested using exclusive π0 production as control process to
learn domain-invariant features while performing DVCS event selection. The DANN
should improve the classification performance of the neural network on real data, in
the same way we performed domain adaptation to transfer our transparent models.

9.4.2.3 Results

In addition to comparing to the cuts and the neural network, we examine to which
extent simplifying the FCGAM and FURIA to improve interpretability degrades the
selection performances. We reduce the FCGAM to 5 terms and the fuzzy C4.5 to
a maximal depth of 3. Table 9.2 compares the statistics (i.e. number of selected
events) and contamination percentage in three representative bins: bin 3 comprises
many contaminating events, bin 17 almost none, and bin 2 is an intermediate.

Table 9.2: Statistics and contamination percentage in three bins with
several models.

Bin 2 Bin 3 Bin 17

Stat. Cont. Stat. Cont. Stat. Cont.

Cuts 5434 10.4% 11517 33.6% 12459 3.8%
Neural network 6287 8.5% 15450 30.9% 14456 3.5%
FURIA 8148 12.1% 20211 37.6% 15649 5.6%
FCGAM 6648 9.1% 15743 30.3% 14252 3.4%
FCGAM 5 terms 6828 9.7% 16618 33.2% 14007 3.4%
Fuzzy C4.5 5588 9.1% 15293 32.0% 13972 3.4%
Fuzzy C4.5 depth 3 5504 9.5% 14263 33.7% 11880 2.6%

FURIA is systematically obtaining the larger number of selected events, at the expense
of a higher contamination level. The neural network is having the lower contamina-
tion level in bin 2, while it is the FCGAM in bin 3. Three models are tied in bin
17: the FCGAM, the same FCGAM limited to 5 terms, and the fuzzy C4.5. The
complete FCGAM is the one retaining the most statistics. Overall, excluding FURIA,
the cuts have the lowest statistics and the highest contamination in all bins. This
proves the great interest of machine learning for a physics analysis: for instance, us-
ing the FCGAM permits to increase the statistics by 24% in average over these three
bins, while reducing the contamination. This is equivalent to 24% additional beam-
time. Finally, simplifying the FCGAM or the fuzzy C4.5 translates into only slight
degradations of the results.

Table 9.3 compares the five main methods in a more complete way by summarizing
the percentage of bins in which the model in line obtains a better asymmetry error
than the model in column.

FURIA is the only model surpassing all the others. However, these results should be
taken with very high precaution: indeed, FURIA is keeping much more events than the
other models, including 13% of identified η production events (see 9.1.3). Therefore,
its performance must be read with caution since there is a high associated systematic
error, linked to other background processes that were not properly removed. FURIA
is not applicable as is for this particular analysis, unless proper weights are set during
training, which was not done in this study. On the contrary, all methods outperform
the cuts. This proves again the interest of machine learning to enhance the analysis.

9.5. Conclusion and perspectives 201

Cuts Neural network FURIA Fuzzy C4.5 FCGAM

Cuts / 8% 17% 29% 12%
Neural network 88% / 21% 54% 38%
FURIA 83% 79% / 71% 63%
Fuzzy C4.5 71% 38% 29% / 21%
FCGAM 88% 58% 37% 71% /

Table 9.3: Percentage of winning bins of the models in lines, against
the models in columns, in terms of asymmetry error.

The FCGAM is better than all other models except FURIA. This includes the neural
network, which is surprising considering the ROC curves presented at the beginning
of this chapter (Figure 9.3). However, considering per bin comparisons, the FCGAM
is more relevant.

9.5 Conclusion and perspectives

This chapter concludes the thesis with the actual DVCS data analysis at CLAS12.
We applied the previously developed transparent models with automatically built
features on preselected CLAS12 data. Using the π0 subtraction procedure to estimate
π0 contamination, we were able to validate the proper functioning of the different
models. The selection threshold of the models has been fine-tuned in each kinematic
bin to minimize the asymmetry error, the DVCS asymmetry being the final observable
we want to measure. We produced asymmetry plots with several analysis techniques
(cuts, transparent models, neural network), which are all consistent with each other
and follow the expected shape.

The proposed FCGAM turns out to be a very satisfying model: it was rated as the
preferred model in terms of interpretability by the physicists (chapter 8) and obtains
similar or better performances than the neural network for the data analysis. Overall,
all of the proposed transparent models perform honourably and significantly improve
the usual physics cuts for the data analysis. Compared to the cuts, the FCGAM
increases the statistics by 24%. It is equivalent to having 24% of free additional beam
time. These results constitute an excellent proof of the interest of our models.

To pursue this work, more attention should be paid to other background processes.
We saw that η production events can be bothersome for a few models. An option
would be to subtract this process following the same guidelines as for π0 subtraction.
Another potentially contaminating process is the ∆-VCS: the final state consists of
an electron, a photon and a ∆ baryon, an excited state of the proton. This ∆ particle
decays either into a π0 and a proton, or into a π+ and a neutron. In the first case,
the event can be confounded with a DVCS. Actually, a proper way of dealing with
additional background is to include more classes during model induction. Here, η
production events were neither classified as π0 events nor as DVCS events, which is
logical since these events were not included in the training dataset. Adding more
background classes or simply merging all of them into a background class as opposed
to the signal class for DVCS would permit to eliminate such processes more surely. In
the first place, we should produce simulations of these processes for training. However,
this is not necessarily a simple task since the cross-sections may be poorly known, as
this is the case for ∆-VCS.

203

Conclusion of part III

This part was dedicated to ensure the transparent models proposed in part II are
applicable to real CLAS12 data.

Chapter 7 started by tackling the distribution shifts between Monte Carlo simulation
and CLAS12 data. Due to uncertainties in the experimental setup and theoretical
models, the agreement between experimental and simulated data is degraded. We
proposed a domain adaptation technique using generative neural networks to map
the simulation distributions to the real data distributions. However, since the control
process used to learn the mapping covers only a limited region of the phase space, this
mapping is not entirely generalizable. This work still demonstrates the feasibility of
such an approach thanks to promising results on flat generated data and establishes
guidelines for further research.

Chapter 8 discussed the interpretability of the proposed models, from a subjective
point of view. Indeed, the proposed transparent models and the features they include
should be interpretable to the physicist users. Therefore, we designed a survey aiming
at evaluating the perception of physicists of our built features and models. We be-
lieve such a study is of high interest for both the interpretable machine learning field
and the experimental physics domain. The results of the survey validated the under-
standability of the features built with constraints, and the interpretability notably of
the GAM and of FURIA to a lesser extent. Globally, the respondents particularly
appreciated the proposed GAM model.

Finally, we performed in chapter 9 the final physics analysis of CLAS12 data, using
the proposed transparent models. The advantage of GAM and decision trees over
FURIA are their flexibility in the decision threshold to optimize the asymmetry sta-
tistical error. We validated the functioning of the GAM and fuzzy C4.5 thanks to the
observation of the models themselves applied to CLAS12 data. Finally, we extracted
DVCS asymmetries using these models, which are the final observables we wanted to
extract to help the investigations of the proton structure. Compared to the physicists’
cuts, significant improvements of the results have been obtained: more events are re-
trieved with lower π0 contamination. Concretely, 24% more statistics are retained for
an average decrease of 11% of the contamination. Selecting more events is particularly
crucial for bins with low statistics, notably at high Q2 values. Finally, the results are
comparable between the neural network and the transparent models thanks to feature
construction, but the neural network cannot be validated in the same way as for the
GAM and fuzzy C4.5. To complete the analysis, a detailed study of the systematic
errors must be conducted. These errors are common to all analysis methods.

205

Conclusion

This thesis has the objective to propose and adapt transparent machine learning mod-
els for the analysis of DVCS data at CLAS12. Indeed, event selection is a crucial step
in a physics analysis that can be optimized, thanks to computing tools, more easily
than detector performances that have already received large investments. The trans-
parency of the models is necessary to guarantee their validation for application to real
data and peer-reviewing before publication. To ensure the performances of such mod-
els for event selection, this thesis aims at upgrading their classification performances
while guaranteeing their interpretability.

Thus, part I started by presenting the context of the studies and our positioning.
First, the physics theoretical and experimental background was introduced, to un-
derstand the physics challenges. Then, we proposed a review of the state of the
art in interpretable machine learning. Evaluation protocols of the interpretability of
machine learning models were notably discussed. In particular, we concluded that
transparent machine learning models often suffer from a gap in classification perfor-
mance compared to so-called “black-box” models. We initiated the analysis workflow
by producing simulated data for model induction. In particular, flat generation must
be privileged to avoid biasing the models towards the cross-sections distributions. We
implemented a few transparent models as baselines.

Part II dived into the enhancement of the performances and interpretability of trans-
parent machine learning models. We developed a new constrained feature construction
algorithm that is able to build consistent and understandable features for HEP appli-
cations. Thanks to grammars and transition matrices, the built features follow expert
knowledge about physics laws. This algorithm was successfully applied, first as a
prior method using various fitness functions, and secondly as an embedded method in
tree-based models, FURIA and GAM. For the latter, we also defined bitonicity as a
new constraint to enforce so that the model has a bitonic output with respect to any
bitonic input feature. This contribution permits to strengthen the interpretability of
the model, especially for bitonic features, found in abundance in HEP. The method-
ologies developed in this part can actually be applied to many other experiments in
HEP: we gave a few examples with the Higgs, τ → 3µ and MAGIC datasets since
they are publicly available, but other physics experiments could be considered. More
generally, any data analysis problem involving input variables having dimensions and
units could benefit from our approach.

Part III focused on the application of the enhanced models to real CLAS12 data. Al-
though this part is more specific to CLAS12, the analysis workflow can be extracted
and adapted to other HEP experiments. First, we must take care of the distribution
shifts between simulation and real data that can be due to multiple factors including
uncertainties on the experimental setup or on physics theory. We proposed a domain
adaptation technique based on generative networks that was experimentally proven to
work on flat generated data. Then, to be applicable to real data, the interpretability

206 Conclusion

of the models as perceived by our physicists colleagues must be assessed. To this
end, we performed a complete interpretability evaluation based on a survey to which
31 physicists responded. Such a study is of high interest both for the interpretable
machine learning community and for the physicists. The results confirmed and vali-
dated the interest of the respondents for the proposed models, to be used in a physics
analysis. Finally, we successfully conducted the DVCS analysis using the proposed
models: the removal of other background processes was ensured by the choice of a
minimal selection threshold. Then, π0 subtraction permitted to determine the opti-
mal selection threshold to minimize the statistical error on the DVCS asymmetry, our
goal observable. Observing the distributions of the main variables used by our models
permitted to validate their consistency. We also compared the proposed transparent
models to two alternatives for event selection: standard cuts on the one hand, and
a neural network on the other hand. While the proposed transparent models largely
outperform the cuts, the GAM notably obtains similar or better results (i.e. statisti-
cal error) than the neural network. This is a great conclusion for our approach, since
we are able to combine both interpretability and classification performance with the
GAM.

In the introduction of this thesis, we stated that a side objective of using transparent
machine learning, apart from validating them, is to retro-engineer the induced mod-
els to maybe learn from them and improve the standard analysis. In this thesis, we
discovered numerous discriminative high-level variables to be used to separate signal
from background in data. For DVCS event selection, it turned out that using vari-
ables to identify π0 production events is very beneficial to eliminate them. Notably,
variables comparing two photons, if any, have been found to be very discriminative.
Regarding DVCS-related variables, the sum of the z momenta of the output particles
is also a very frequent variable found by the feature construction algorithm, including
the unconstrained ones that have a larger search space available. Besides, the cuts
themselves could be optimized thanks to machine learning: if we wanted to keep the
same structure, i.e. a series of cuts on chosen variables, we could perform successive
feature constructions and selection thresholds optimizations using for instance an in-
formation metric. We could also fuzzify these thresholds to take advantage of the
flexibility fuzzy logic allows. To go further, GAM with few terms permit to boost the
classification performances, thanks to the smooth shape functions.

Many opportunities can be imagined for future work. The feature construction pro-
posed in part II is applicable to many other experiments in HEP, and is the core of the
proposed transparent models for event selection. With provided samples of DVCS,
π0 production events, η production events or others, it is straightforward to apply
the proposed algorithms. Notably, it could be of high interest to apply the feature
construction algorithm to COMPASS or the future EIC data for instance, and study
the differences with CLAS12 discriminative features. Of course, given the geometry of
these experiments, the most interesting features will not be the same. The beam axis
was favored in CLAS12 since it is a fixed target experiment, while at EIC the trans-
verse plane will probably be more interesting given its geometry. Outside of the DVCS
analysis, other experiments such as ATLAS (Higgs dataset) could of course benefit as
well from this technique. However, since the challenges differ, more adaptations are
probably needed.

Domain adaptation is of primary importance to ensure the proper functioning of the
induced models on real data. We started the research in chapter 7 and identified
the most promising technique being generative neural networks. We identified the

207

bottleneck of our current approach, which is our training set: consisting of exclusive
π0 production events, it does not cover the entire phase space. To further deepen
this work and design a robust mapping between simulation and real data, a more
representative dataset needs to be built. Selecting DVCS events with very strict cuts
and performing π0 subtraction should provide us with a dataset covering a larger part
of the phase space. Directly domain-invariant models constitute an alternative, but
fewer initiatives exist in the literature apart from domain-invariant neural networks.
An idea would be to introduce domain-invariant metrics in the feature construction
process: the built features would therefore be robust to the distributions shift.

Finally, the analysis needs to be perfected: the π0 subtraction process is still ongoing
work. Besides, improvements of the reconstruction are also in progress. In addition,
a complete study of the systematic errors must be ultimately conducted before pub-
lication of the analysis results. They notably involve the acceptance of the detectors,
the error on the estimation of the π0 contamination fraction, the uncertainty on the
beam polarization fraction, considerations of radiative corrections, etc. These errors
are common to all analysis techniques and will not alter the comparative results pre-
sented in chapter 9. To further improve the statistics retained by the different models,
we should consider including more background processes during the training process.
Notably, η production and ∆-VCS are possible contaminations to the DVCS. In ad-
dition, all the methods we proposed in this thesis for event selection are compatible
with missing values and are applicable in particular when the proton is missing. In
chapter 9, we only considered full events with an electron, a proton and at least a
photon, while we expect that the number of events could be approximately doubled
by considering events without proton.

The works accomplished in this thesis led to a number of publications and talks, listed
on the next page.

209

Publications and talks

Publications

International conferences

N. Cherrier, J. P. Poli, M. Defurne and F. Sabatié, “Consistent Feature Construc-
tion with Constrained Genetic Programming for Experimental Physics”, 2019 IEEE
Congress on Evolutionary Computation (CEC), pages 1650-1658, IEEE, 2019.

N. Cherrier, J. P. Poli, M. Defurne and F. Sabatié, “Embedded Feature Construction
in Fuzzy Decision Tree Induction for High Energy Physics Classification”, 2020 IEEE
International Conference on Systems, Man and Cybernetics (SMC), pages 615-622,
IEEE, 2020.

N. Cherrier, M. Mayo, J. P. Poli, M. Defurne and F. Sabatié, “Interpretable Machine
Learning with Bitonic Generalized Additive Models and Automatic Feature Construc-
tion”, International Conference on Discovery Science, pages 386-402, Springer, Cham,
2020.

Workshops

M. Baalouch, M. Defurne, J. P. Poli, F. Sabatié and N. Cherrier, “Sim-to-Real Domain
Adaptation For High Energy Physics”, Machine Learning and the Physical Sciences
workshop at the 33rd Conference on Neural Information Processing Systems, 2019.

N. Cherrier, M. Defurne, J. P. Poli and F. Sabatié, “Embedded Constrained Feature
Construction for High-Energy Physics Data Classification”, Machine Learning and the
Physical Sciences workshop at the 33rd Conference on Neural Information Processing
Systems, 2019.

Talks

“Construction de features interprétables pour la classification en physique expérimen-
tale”, GT explicabilité, 2018.

“Interpretable machine learning techniques for CLAS12 data analysis”, Artificial in-
telligence and physics conference (PhysAI), 2019.

“Interpretable ML for CLAS12 data analysis: adaptation of Generalized Additive
Models”, IN2P3/IRFU Machine Learning workshop, 2020.

“Interpretable machine learning for CLAS12 data analysis”, InTheArt, 2020.

“Event classification with ML at CLAS12”, A.I. for Nuclear Physics workshop, 2020.

211

Bibliography

A. Aamodt and E. Plaza. Case-based reasoning: Foundational issues, methodological
variations, and system approaches. AI communications, 7(1):39–59, 1994.

A. Accardi, J. Albacete, M. Anselmino, N. Armesto, E. Aschenauer, A. Bacchetta,
D. Boer, W. Brooks, T. Burton, N.-B. Chang, et al. Electron-ion collider: The next
QCD frontier. The European Physical Journal A, 52(9):268, 2016.

C. Adam-Bourdarios, G. Cowan, C. Germain, I. Guyon, B. Kegl, and D. Rousseau.
Learning to discover: the Higgs boson machine learning challenge. 9, 2014. URL
http://higgsml.lal.in2p3.fr/documentation.

R. Agrawal, R. Srikant, et al. Fast algorithms for mining association rules. In Pro-
ceedings of the 20th International Conference on Very Large Data Bases, volume
1215, pages 487–499, 1994.

S. Ahmed, M. Zhang, and L. Peng. A new GP-based wrapper feature construction
approach to classification and biomarker identification. In 2014 IEEE Congress on
Evolutionary Computation (CEC), pages 2756–2763. IEEE, 2014a.

S. Ahmed, M. Zhang, L. Peng, and B. Xue. Multiple feature construction for effective
biomarker identification and classification using genetic programming. In Proceed-
ings of the 2014 Annual Conference on Genetic and Evolutionary Computation,
pages 249–256, 2014b.

S. Ahmed, M. Zhang, L. Peng, and B. Xue. A multi-objective genetic programming
biomarker detection approach in mass spectrometry data. In European Conference
on the Applications of Evolutionary Computation, pages 106–122. Springer, 2016.

Y. Alanazi, N. Sato, T. Liu, W. Melnitchouk, M. P. Kuchera, E. Pritchard, M. Robert-
son, R. Strauss, L. Velasco, and Y. Li. Simulation of electron-proton scatter-
ing events by a feature-augmented and transformed generative adversarial network
(FAT-GAN). arXiv preprint arXiv:2001.11103, 2020.

J. Alcala-Fdez, R. Alcala, and F. Herrera. A fuzzy association rule-based classification
model for high-dimensional problems with genetic rule selection and lateral tuning.
IEEE Transactions on Fuzzy systems, 19(5):857–872, 2011.

H. Allahyari and N. Lavesson. User-oriented assessment of classification model under-
standability. In 11th scandinavian conference on Artificial intelligence. IOS Press,
2011.

J. M. Alonso and A. Bugarín. ExpliClas: automatic generation of explanations in
natural language for WEKA classifiers. In 2019 IEEE International Conference on
Fuzzy Systems (FUZZ-IEEE), pages 1–6. IEEE, 2019.

A. Altay and D. Cinar. Fuzzy decision trees. In Fuzzy Statistical Decision-Making,
pages 221–261. Springer, 2016.

http://higgsml.lal.in2p3.fr/documentation

212 BIBLIOGRAPHY

D. Alvarez-Melis and T. S. Jaakkola. On the robustness of interpretability methods.
arXiv preprint arXiv:1806.08049, 2018.

R. Ambrosino, B. G. Buchanan, G. F. Cooper, and M. J. Fine. The use of misclassi-
fication costs to learn rule-based decision support models for cost-effective hospital
admission strategies. In Proceedings of the Annual Symposium on Computer Ap-
plication in Medical Care, page 304. American Medical Informatics Association,
1995.

M. Antonelli, P. Ducange, F. Marcelloni, and A. Segatori. A novel associative classi-
fication model based on a fuzzy frequent pattern mining algorithm. Expert Systems
with Applications, 42(4):2086–2097, 2015.

M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein GAN. arXiv preprint
arXiv:1701.07875, 2017.

L. Arras, G. Montavon, K.-R. Müller, and W. Samek. Explaining recurrent neural
network predictions in sentiment analysis. arXiv preprint arXiv:1706.07206, 2017.

A. B. Arrieta, N. Díaz-Rodríguez, J. Del Ser, A. Bennetot, S. Tabik, A. Barbado,
S. García, S. Gil-López, D. Molina, R. Benjamins, et al. Explainable artificial
intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward re-
sponsible AI. Information Fusion, 58:82–115, 2020.

M. W. Aslam, Z. Zhu, and A. K. Nandi. Feature generation using genetic programming
with comparative partner selection for diabetes classification. Expert Systems with
Applications, 40(13):5402–5412, 2013.

I. Baaj and J.-P. Poli. Natural language generation of explanations of fuzzy inference
decisions. In 2019 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE),
pages 1–6. IEEE, 2019.

M. Baalouch, M. Defurne, J.-P. Poli, and N. Cherrier. Sim-to-real domain adaptation
for high energy physics. arXiv preprint arXiv:1912.08001, 2019.

P. Baldi, P. Sadowski, and D. Whiteson. Searching for exotic particles in high-energy
physics with deep learning. Nature communications, 5(1):1–9, 2014.

W. Banzhaf, P. Nordin, R. Keller, and F. Francone. Genetic programming: An in-
troduction on the automatic evolution of computer programs and its applications.
1998.

T. Barthelemy. On the unimodality of METRIC approximation subject to normally
distributed demands. 2015.

A. Barua, L. S. Mudunuri, and O. Kosheleva. Why trapezoidal and triangular mem-
bership functions work so well: Towards a theoretical explanation. 2013.

S. Ben-David, J. Blitzer, K. Crammer, and F. Pereira. Analysis of representations for
domain adaptation. In Advances in neural information processing systems, pages
137–144, 2007.

S. Ben-David, J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, and J. W. Vaughan.
A theory of learning from different domains. Machine learning, 79(1-2):151–175,
2010.

Y. Bengio. Deep learning of representations: Looking forward. In International Con-
ference on Statistical Language and Speech Processing, pages 1–37. Springer, 2013.

BIBLIOGRAPHY 213

Y. Bengio, A. Courville, and P. Vincent. Representation learning: A review and new
perspectives. IEEE transactions on pattern analysis and machine intelligence, 35
(8):1798–1828, 2013.

S. Bethke. The 2009 world average of α s. The European Physical Journal C, 64(4):
689–703, 2009.

B. Bhushan Damodaran, B. Kellenberger, R. Flamary, D. Tuia, and N. Courty. Deep-
JDOT: Deep joint distribution optimal transport for unsupervised domain adap-
tation. In Proceedings of the European Conference on Computer Vision (ECCV),
pages 447–463, 2018.

C. Borgelt, J. Gebhardt, and R. Kruse. Concepts for probabilistic and possibilistic
induction of decision trees on real world data. Proc. of the EUFIT, 96:1556–1560,
1996.

B. Bouchon-Meunier and C. Marsala. Learning fuzzy decision rules. In Fuzzy Sets in
Approximate Reasoning and Information Systems, pages 279–304. Springer, 1999.

B. Bouchon-Meunier and C. Marsala. Measures of discrimination for the construction
of fuzzy decision trees. In International Conference on Fuzzy Information Process-
ing, pages 709–714, 2003.

L. Breiman. Bagging predictors. Machine learning, 24(2):123–140, 1996.

L. Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen. Classification and regression
trees. CRC press, 1984.

P. Bujnowski, E. Szmidt, and J. Kacprzyk. An approach to intuitionistic fuzzy decision
trees. In 2015 Conference of the International Fuzzy Systems Association and the
European Society for Fuzzy Logic and Technology (IFSA-EUSFLAT-15). Atlantis
Press, 2015.

V. Burkert, L. Elouadrhiri, K. Adhikari, S. Adhikari, M. Amaryan, D. Anderson,
G. Angelini, M. Antonioli, H. Atac, S. Aune, et al. The CLAS12 Spectrometer
at Jefferson Laboratory. Nuclear Instruments and Methods in Physics Research
Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 959:
163419, 2020.

R. Calabrese et al. Estimating bank loans loss given default by generalized additive
models. UCD Geary Institute Discussion Paper Series, WP2012/24, 2012.

A. Campagner, F. Cabitza, and D. Ciucci. Three-way decision for handling uncertainty
in machine learning: A narrative review. In International Joint Conference on
Rough Sets, pages 137–152. Springer, 2020.

A. Cano, S. Ventura, and K. J. Cios. Multi-objective genetic programming for feature
extraction and data visualization. Soft Computing, 21(8):2069–2089, 2017.

G. Carleo, I. Cirac, K. Cranmer, L. Daudet, M. Schuld, N. Tishby, L. Vogt-Maranto,
and L. Zdeborová. Machine learning and the physical sciences. Reviews of Modern
Physics, 91(4):045002, 2019.

R. Caruana, Y. Lou, J. Gehrke, P. Koch, M. Sturm, and N. Elhadad. Intelligible
models for healthcare: Predicting pneumonia risk and hospital 30-day readmission.

214 BIBLIOGRAPHY

In Proceedings of the 21th ACM SIGKDD international conference on knowledge
discovery and data mining, pages 1721–1730, 2015.

N. Chakravarti. Isotonic median regression: a linear programming approach. Mathe-
matics of operations research, 14(2):303–308, 1989.

B. Chandra and P. P. Varghese. Fuzzifying Gini index based decision trees. Expert
Systems with Applications, 36(4):8549–8559, 2009.

G. Chandrashekar and F. Sahin. A survey on feature selection methods. Computers
& Electrical Engineering, 40(1):16–28, 2014.

G. Charles. Development of Micromegas detectors for the CLAS12 experiment at
Jefferson Laboratory. PhD thesis, Université Paris Sud - Paris XI, 2013.

M. Chen, Z. Xu, K. Weinberger, and F. Sha. Marginalized denoising autoencoders for
domain adaptation. arXiv preprint arXiv:1206.4683, 2012.

Q. Chen, M. Zhang, and B. Xue. Genetic programming with embedded feature con-
struction for high-dimensional symbolic regression. In Intelligent and Evolutionary
Systems, pages 87–102. Springer, 2017.

Q. Chen, Y. Liu, Z. Wang, I. Wassell, and K. Chetty. Re-weighted adversarial adap-
tation network for unsupervised domain adaptation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), June 2018.

T. Chen and C. Guestrin. XGBoost: A scalable tree boosting system. In ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 785–794, 2016.

S. Chopra, S. Balakrishnan, and R. Gopalan. DLID: Deep learning for domain adap-
tation by interpolating between domains. In ICML workshop on challenges in rep-
resentation learning, volume 2, 2013.

N. Chouika. Generalized Parton Distributions and their covariant extension: towards
nucleon tomography. PhD thesis, Université Paris-Saclay, 2018.

G. Christiaens. Beam-spin asymmetry of deeply virtual Compton scattering off the
proton at 10.6 GeV with CLAS12 at Jefferson Laboratory. PhD thesis, University
of Glasgow, 2021.

P. Clark and T. Niblett. The CN2 induction algorithm. Machine learning, 3:261–283,
1989.

I. Cloete and J. van Zyl. Fuzzy rule induction in a set covering framework. IEEE
Transactions on Fuzzy Systems, 14(1):93–110, 2006.

W. W. Cohen. Fast effective rule induction. In Proceedings of the Twelfth International
Conference on Machine Learning, pages 115–123. Elsevier, 1995.

G. Cormode and A. McGregor. Approximation algorithms for clustering uncertain
data. In Proceedings of the twenty-seventh ACM SIGMOD-SIGACT-SIGART sym-
posium on Principles of database systems, pages 191–200, 2008.

P. Cortez and M. J. Embrechts. Opening black box data mining models using sensi-
tivity analysis. In 2011 IEEE Symposium on Computational Intelligence and Data
Mining (CIDM), pages 341–348. IEEE, 2011.

BIBLIOGRAPHY 215

P. Cortez and M. J. Embrechts. Using sensitivity analysis and visualization techniques
to open black box data mining models. Information Sciences, 225:1–17, 2013.

N. Courty, R. Flamary, D. Tuia, and A. Rakotomamonjy. Optimal transport for do-
main adaptation. IEEE transactions on pattern analysis and machine intelligence,
39(9):1853–1865, 2016.

N. Courty, R. Flamary, A. Habrard, and A. Rakotomamonjy. Joint distribution opti-
mal transportation for domain adaptation, 2017.

K. Cpałka. Design of Interpretable Fuzzy Systems, volume 684. Springer, 2017.

L. Crochepierre, L. Boudjeloud-Assala, and V. Barbesant. Interpretable
dimensionally-consistent feature extraction from electrical network sensors. In Eu-
ropean Conference on Machine Learning and Principles and Practice of Knowledge
Discovery in Databases ECML/PKDD’20, 2020.

M. Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In
Advances in neural information processing systems, pages 2292–2300, 2013.

W. M. Czarnecki and I. T. Podolak. Machine learning with known input data un-
certainty measure. In IFIP International Conference on Computer Information
Systems and Industrial Management, pages 379–388. Springer, 2013.

Y. Dai, B. Xue, and M. Zhang. New representations in PSO for feature construc-
tion in classification. In European Conference on the Applications of Evolutionary
Computation, pages 476–488. Springer, 2014.

L. de Oliveira, M. Kagan, L. Mackey, B. Nachman, and A. Schwartzman. Jet-
images—deep learning edition. Journal of High Energy Physics, 2016(7):69, 2016.

L. de Oliveira, M. Paganini, and B. Nachman. Learning particle physics by example:
location-aware generative adversarial networks for physics synthesis. Computing
and Software for Big Science, 1(1):4, 2017.

M. Defurne. Photon and π0 electroproduction at Jefferson Laboratory-Hall A. PhD
thesis, Université Paris Sud - Paris XI, 2015.

M. J. Del Jesus, F. Hoffmann, L. J. Navascués, and L. Sánchez. Induction of fuzzy-
rule-based classifiers with evolutionary boosting algorithms. IEEE Transactions on
Fuzzy Systems, 12(3):296–308, 2004.

C. Denis and F. Varenne. Interprétabilité et explicabilité pour l’apprentissage machine:
entre modèles descriptifs, modèles prédictifs et modèles causaux. une nécessaire
clarification épistémologique. 2019.

L. M. Dery, B. Nachman, F. Rubbo, and A. Schwartzman. Weakly supervised clas-
sification in high energy physics. Journal of High Energy Physics, 2017(5):1–11,
2017.

Y. Dong, H. Su, J. Zhu, and B. Zhang. Improving interpretability of deep neural
networks with semantic information. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 4306–4314, 2017.

O. Dor and Y. Reich. Strengthening learning algorithms by feature discovery. Infor-
mation Sciences, 189:176–190, 2012.

216 BIBLIOGRAPHY

M. Dorigo and G. Di Caro. Ant colony optimization: a new meta-heuristic. In
Proceedings of the 1999 Congress on Evolutionary Computation, volume 2, pages
1470–1477. IEEE, 1999.

M. Dorigo, M. Birattari, and T. Stutzle. Ant colony optimization. IEEE computational
intelligence magazine, 1(4):28–39, 2006.

F. Doshi-Velez and B. Kim. Towards a rigorous science of interpretable machine
learning. arXiv preprint arXiv:1702.08608, 2017.

F. K. Došilović, M. Brčić, and N. Hlupić. Explainable artificial intelligence: A survey.
In 2018 41st International convention on information and communication technol-
ogy, electronics and microelectronics (MIPRO), pages 0210–0215. IEEE, 2018.

D. Drechsel, O. Hanstein, S. Kamalov, and L. Tiator. A unitary isobar model for pion
photo-and electroproduction on the proton up to 1 GeV. Nuclear Physics A, 645
(1):145–174, 1999.

K. Drozdz and H. Kwasnicka. Feature set reduction by evolutionary selection and
construction. In KES International Symposium on Agent and Multi-agent Systems:
Technologies and Applications, pages 140–149. Springer, 2010.

D. Dua and C. Graff. UCI machine learning repository, 2017. URL http://archive.
ics.uci.edu/ml.

D. Dubois and H. Prade. Possibility theory. In Computational Complexity: Theory,
Techniques, and Applications, pages 2240–2252. Springer, 2012.

D. Dubois, E. Hüllermeier, and H. Prade. A systematic approach to the assessment
of fuzzy association rules. Data Mining and Knowledge Discovery, 13(2):167–192,
2006.

G. K. Dziugaite, D. M. Roy, and Z. Ghahramani. Training generative neural networks
via maximum mean discrepancy optimization. arXiv preprint arXiv:1505.03906,
2015.

A. Ekárt and A. Márkus. Using genetic programming and decision trees for gen-
erating structural descriptions of four bar mechanisms. Artificial Intelligence for
Engineering Design, Analysis and Manufacturing: AI EDAM, 17(3):205, 2003.

A. Elola, J. Del Ser, M. N. Bilbao, C. Perfecto, E. Alexandre, and S. Salcedo-Sanz.
Hybridizing Cartesian genetic programming and harmony search for adaptive fea-
ture construction in supervised learning problems. Applied Soft Computing, 52:
760–770, 2017.

T. Elomaa. In defense of C4.5: Notes on learning one-level decision trees. In Machine
Learning Proceedings 1994, pages 62–69. Elsevier, 1994.

F. Emmert-Streib, O. Yli-Harja, and M. Dehmer. Explainable artificial intel-
ligence and machine learning: A reality rooted perspective. arXiv preprint
arXiv:2001.09464, 2020.

M. Erdmann, L. Geiger, J. Glombitza, and D. Schmidt. Generating and refining
particle detector simulations using the Wasserstein distance in adversarial networks.
Computing and Software for Big Science, 2(1):4, 2018.

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

BIBLIOGRAPHY 217

M. Erdmann, J. Glombitza, and T. Quast. Precise simulation of electromagnetic
calorimeter showers using a Wasserstein generative adversarial network. Computing
and Software for Big Science, 3(1):4, 2019.

European Parliament and Council of European Union. Regulation (EU) 2016/679 of
the European Parliament and of the Council of 27 April 2016 on the protection
of natural persons with regard to the processing of personal data and on the free
movement of such data, and repealing Directive 95/46/EC (General Data Protection
Regulation), 2016.

R. Evans and E. Grefenstette. Learning explanatory rules from noisy data. Journal
of Artificial Intelligence Research, 61:1–64, 2018.

W. Fan, E. Zhong, J. Peng, O. Verscheure, K. Zhang, J. Ren, R. Yan, and Q. Yang.
Generalized and heuristic-free feature construction for improved accuracy. In Pro-
ceedings of the 2010 SIAM International Conference on Data Mining, pages 629–
640. SIAM, 2010.

A. Farahani, S. Voghoei, K. Rasheed, and H. R. Arabnia. A brief review of domain
adaptation. arXiv preprint arXiv:2010.03978, 2020.

M. M. Fard, K. Canini, A. Cotter, J. Pfeifer, and M. Gupta. Fast and flexible mono-
tonic functions with ensembles of lattices. In Advances in Neural Information Pro-
cessing Systems, pages 2919–2927, 2016a.

M. M. Fard, K. Canini, A. Cotter, J. Pfeifer, and M. Gupta. Fast and flexible mono-
tonic functions with ensembles of lattices. In Advances in neural information pro-
cessing systems, pages 2919–2927, 2016b.

T. Fawcett. An introduction to ROC analysis. Pattern recognition letters, 27(8):
861–874, 2006.

Federal government of the United States. Equal Credit Opportunity Act (Regulation
B of the Code of Federal Regulations), Title 12, Chapter X, Part 1002, §1002.9,
1974.

D. E. Ferguson. Fibonaccian searching. Communications of the ACM, 3(12):648, 1960.

A. Fernández, S. García, J. Luengo, E. Bernadó-Mansilla, and F. Herrera. Genetics-
based machine learning for rule induction: state of the art, taxonomy, and com-
parative study. IEEE Transactions on Evolutionary Computation, 14(6):913–941,
2010.

C. S. Fertig, A. A. Freitas, L. V. Arruda, and C. Kaestner. A fuzzy beam-search rule
induction algorithm. In European Conference on Principles of Data Mining and
Knowledge Discovery, pages 341–347. Springer, 1999.

R. A. Fisher. The Use of Multiple Measurements in Taxonomic Problems. Annals of
Eugenics, 7(2):179–188, 1936.

R. C. Fong and A. Vedaldi. Interpretable explanations of black boxes by meaningful
perturbation. In Proceedings of the IEEE International Conference on Computer
Vision, pages 3429–3437, 2017.

E. Frank, M. A. Hall, and I. H. Witten. The WEKA workbench. Morgan Kaufmann,
2016.

218 BIBLIOGRAPHY

A. A. Freitas. Comprehensible classification models: a position paper. ACM SIGKDD
explorations newsletter, 15(1):1–10, 2014.

Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning
and an application to boosting. In European conference on computational learning
theory, pages 23–37. Springer, 1995.

J. H. Friedman. Greedy function approximation: A gradient boosting machine. Annals
of Statistics, pages 1189–1232, 2001.

J. Fürnkranz. Round robin classification. Journal of Machine Learning Research, 2:
721–747, 2002.

J. Fürnkranz and T. Kliegr. A brief overview of rule learning. In International
symposium on rules and rule markup languages for the semantic web, pages 54–69.
Springer, 2015.

Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, M. Marc-
hand, and V. Lempitsky. Domain-adversarial training of neural networks. The
Journal of Machine Learning Research, 17(1):2096–2030, 2016.

D. García, A. González, and R. Pérez. A feature construction approach for genetic
iterative rule learning algorithm. Journal of Computer and System Sciences, 80(1):
101–117, 2014.

D. García, D. Stavrakoudis, A. González, R. Pérez, and J. B. Theocharis. A fuzzy
rule-based feature construction approach applied to remotely sensed imagery. In
2015 Conference of the International Fuzzy Systems Association and the European
Society for Fuzzy Logic and Technology (IFSA-EUSFLAT-15). Atlantis Press, 2015.

D. Gavrilis and I. Tsoulos. Classification of fetal heart rate using grammatical evolu-
tion. In IEEE Workshop on Signal Processing Systems Design and Implementation,
2005., pages 425–429. IEEE, 2005.

D. Gavrilis, I. G. Tsoulos, and E. Dermatas. Selecting and constructing features using
grammatical evolution. Pattern Recognition Letters, 29(9):1358–1365, 2008.

H. Gegier and E. Marsden. On a diffuse reflection of the α-particles. Proceedings of
the Royal Society of London. Series A, Containing Papers of a Mathematical and
Physical Character, 82(557):495–500, 1909.

M. Gell-Mann. A schematic model of baryons and mesons. Physics Letters, 8(3):
214–215, 1964.

M. Ghifary, W. B. Kleijn, M. Zhang, D. Balduzzi, and W. Li. Deep reconstruction-
classification networks for unsupervised domain adaptation. In European Conference
on Computer Vision, pages 597–613. Springer, 2016.

A. Ghosh et al. Deep generative models for fast shower simulation in ATLAS. In
Journal of Physics: Conference Series, volume 1525, page 012077. IOP Publishing,
2020.

L. H. Gilpin, D. Bau, B. Z. Yuan, A. Bajwa, M. Specter, and L. Kagal. Explaining
explanations: An approach to evaluating interpretability of machine learning. arXiv
preprint arXiv:1806.00069, 2018.

V. V. Gligorov and M. Williams. Efficient, reliable and fast high-level triggering using
a bonsai boosted decision tree. Journal of Instrumentation, 8(02):P02013, 2013.

BIBLIOGRAPHY 219

X. Glorot, A. Bordes, and Y. Bengio. Domain adaptation for large-scale sentiment
classification: A deep learning approach. In ICML, 2011.

K. Goeke, M. V. Polyakov, and M. Vanderhaeghen. Hard exclusive reactions and the
structure of hadrons. arXiv preprint hep-ph/0106012, 2001.

A. Goldstein, A. Kapelner, J. Bleich, and E. Pitkin. Peeking inside the black box: Vi-
sualizing statistical learning with plots of individual conditional expectation. Jour-
nal of Computational and Graphical Statistics, 24(1):44–65, 2015.

S. Goloskokov and P. Kroll. Transversity in hard exclusive electroproduction of pseu-
doscalar mesons. The European Physical Journal A, 47(9):112, 2011.

B. Gong, Y. Shi, F. Sha, and K. Grauman. Geodesic flow kernel for unsupervised
domain adaptation. In 2012 IEEE Conference on Computer Vision and Pattern
Recognition, pages 2066–2073. IEEE, 2012.

A. González and R. Pérez. SLAVE: A genetic learning system based on an iterative
approach. IEEE Transactions on Fuzzy Systems, 7(2):176–191, 1999.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio. Generative adversarial nets. In Advances in neu-
ral information processing systems, pages 2672–2680, 2014.

R. Gopalan, R. Li, and R. Chellappa. Domain adaptation for object recognition: An
unsupervised approach. In 2011 international conference on computer vision, pages
999–1006. IEEE, 2011.

D. P. Greene and S. F. Smith. Competition-based induction of decision models from
examples. Machine Learning, 13(2-3):229–257, 1993.

A. Gretton, A. Smola, J. Huang, M. Schmittfull, K. Borgwardt, and B. Schölkopf.
Covariate shift by kernel mean matching. Dataset shift in machine learning, 3(4):
5, 2009.

A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and A. Smola. A kernel
two-sample test. The Journal of Machine Learning Research, 13(1):723–773, 2012.

C. Gu and G. Wahba. Minimizing GCV/GML scores with multiple smoothing parame-
ters via the Newton method. SIAM Journal on Scientific and Statistical Computing,
12(2):383–398, 1991.

M. Guidal, M. Polyakov, A. Radyushkin, and M. Vanderhaeghen. Nucleon form factors
from generalized parton distributions. Physical Review D, 72(5):054013, 2005.

M. Guidal, H. Moutarde, and M. Vanderhaeghen. Generalized parton distributions in
the valence region from deeply virtual compton scattering. Reports on Progress in
Physics, 76(6):066202, 2013.

R. Guidotti, A. Monreale, S. Ruggieri, D. Pedreschi, F. Turini, and F. Giannotti.
Local rule-based explanations of black box decision systems. arXiv preprint
arXiv:1805.10820, 2018a.

R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti, and D. Pedreschi.
A survey of methods for explaining black box models. ACM computing surveys
(CSUR), 51(5):1–42, 2018b.

220 BIBLIOGRAPHY

I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville. Improved
training of Wasserstein GANs. In Advances in neural information processing sys-
tems, pages 5767–5777, 2017.

G. F. Gunawan, S. C. Gosaria, and A. Z. Arifin. Grammatical evolution for feature
extraction in local thresholding problem. Jurnal Ilmu Komputer dan Informasi, 5
(2):106–111, 2012.

D. Gunning. Explainable artificial intelligence (XAI). Defense Advanced Research
Projects Agency (DARPA), nd Web, 2, 2017.

H. Guo, L. B. Jack, and A. K. Nandi. Feature generation using genetic programming
with application to fault classification. IEEE Transactions on Systems, Man, and
Cybernetics, Part B (Cybernetics), 35(1):89–99, 2005.

L. Guo, D. Rivero, J. Dorado, C. R. Munteanu, and A. Pazos. Automatic feature ex-
traction using genetic programming: An application to epileptic EEG classification.
Expert Systems with Applications, 38(8):10425–10436, 2011.

M. Gupta, A. Cotter, J. Pfeifer, K. Voevodski, K. Canini, A. Mangylov, W. Moczyd-
lowski, and A. Van Esbroeck. Monotonic calibrated interpolated look-up tables.
The Journal of Machine Learning Research, 17(1):3790–3836, 2016.

M. A. Hall. Correlation-based feature selection for machine learning. 1999.

J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation. In
Proceedings of the 2000 ACM SIGMOD International Conference on Management
of Data, pages 1–12, 2000.

E. Hart, K. Sim, B. Gardiner, and K. Kamimura. A hybrid method for feature
construction and selection to improve wind-damage prediction in the forestry sector.
In Proceedings of the Genetic and Evolutionary Computation Conference, pages
1121–1128, 2017.

D. Y. Harvey and M. D. Todd. Automated Feature Design for Numeric Sequence
Classification by Genetic Programming. IEEE Transactions on Evolutionary Com-
putation, 19(4):474–489, 2014.

T. J. Hastie and R. J. Tibshirani. Generalized additive models. Statistical Science, 1
(3):297–310, 1986.

T. D. Haynes, D. A. Schoenefeld, and R. L. Wainwright. Type inheritance in strongly
typed genetic programming. Advances in genetic programming, 2(2):359–376, 1996.

L. A. Hendricks, Z. Akata, M. Rohrbach, J. Donahue, B. Schiele, and T. Darrell.
Generating visual explanations. In European Conference on Computer Vision, pages
3–19. Springer, 2016.

J. Heo, S. Joo, and T. Moon. Fooling neural network interpretations via adversarial
model manipulation. In Advances in Neural Information Processing Systems, pages
2921–2932, 2019.

F. Herrera. Genetic fuzzy systems: taxonomy, current research trends and prospects.
Evolutionary Intelligence, 1(1):27–46, 2008.

N. Holden and A. A. Freitas. A hybrid PSO/ACO algorithm for discovering classifi-
cation rules in data mining. Journal of Artificial evolution and Applications, 2008,
2008.

BIBLIOGRAPHY 221

T.-P. Hong and Y.-C. Lee. An overview of mining fuzzy association rules. In Fuzzy
Sets and Their Extensions: Representation, Aggregation and Models, pages 397–410.
Springer, 2008.

G. Huang, S. Song, C. Wu, and K. You. Robust support vector regression for uncer-
tain input and output data. IEEE Transactions on Neural Networks and Learning
Systems, 23(11):1690–1700, 2012.

J. Hühn and E. Hüllermeier. FURIA: an algorithm for unordered fuzzy rule induction.
Data Mining and Knowledge Discovery, 19(3):293–319, 2009.

J. C. Hühn and E. Hüllermeier. FR3: A fuzzy rule learner for inducing reliable
classifiers. IEEE Transactions on Fuzzy Systems, 17(1):138–149, 2008.

D. Huk Park, L. Anne Hendricks, Z. Akata, A. Rohrbach, B. Schiele, T. Darrell, and
M. Rohrbach. Multimodal explanations: Justifying decisions and pointing to the
evidence. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 8779–8788, 2018.

E. Hüllermeier. Does machine learning need fuzzy logic? Fuzzy Sets and Systems,
281:292–299, 2015.

I. Icke and A. Rosenberg. Multi-objective genetic programming for visual analytics.
In European Conference on Genetic Programming, pages 322–334. Springer, 2011.

H. Ishibuchi, T. Murata, and I. Türkşen. Single-objective and two-objective genetic
algorithms for selecting linguistic rules for pattern classification problems. Fuzzy
sets and systems, 89(2):135–150, 1997.

C. Z. Janikow. Fuzzy decision trees: issues and methods. IEEE Transactions on
Systems, Man, and Cybernetics, Part B (Cybernetics), 28(1):1–14, 1998.

C. Z. Janikow. FID4.1: an overview. In IEEE Annual Meeting of the Fuzzy Informa-
tion, 2004. Processing NAFIPS’04., volume 2, pages 877–881. IEEE, 2004.

F. Janssen and J. Fürnkranz. On the quest for optimal rule learning heuristics.
Machine Learning, 78(3):343–379, 2010.

I. Jenhani, N. B. Amor, and Z. Elouedi. Decision trees as possibilistic classifiers.
International journal of approximate reasoning, 48(3):784–807, 2008.

X. Ji. Gauge-invariant decomposition of nucleon spin. Physical Review Letters, 78(4):
610, 1997.

U. Johansson, R. König, and L. Niklasson. The truth is in there-rule extraction from
opaque models using genetic programming. In FLAIRS Conference, pages 658–663.
Miami Beach, FL, 2004a.

U. Johansson, L. Niklasson, and R. König. Accuracy vs. comprehensibility in data
mining models. In Proceedings of the seventh international conference on informa-
tion fusion, volume 1, pages 295–300, 2004b.

G. H. John, R. Kohavi, and K. Pfleger. Irrelevant features and the subset selection
problem. In Machine Learning Proceedings 1994, pages 121–129. Elsevier, 1994.

I. T. Jolliffe. Principal Component Analysis. Springer Series in Statistics. Springer-
Verlag New York, Inc., 2 edition, 2002.

222 BIBLIOGRAPHY

J. M. Kanter and K. Veeramachaneni. Deep feature synthesis: Towards automating
data science endeavors. In 2015 IEEE International Conference on Data Science
and Advanced Analytics (DSAA), pages 1–10. IEEE, 2015.

A. Kaul, S. Maheshwary, and V. Pudi. Autolearn — automated feature generation
and selection. In 2017 IEEE International Conference on Data Mining (ICDM),
pages 217–226. IEEE, 2017.

G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-Y. Liu.
LightGBM: A highly efficient gradient boosting decision tree. In Advances in neural
information processing systems, page 3149–3157, 2017.

M. Keijzer and V. Babovic. Dimensionally aware genetic programming. In Proceedings
of the 1st Annual Conference on Genetic and Evolutionary Computation-Volume 2,
pages 1069–1076, 1999.

J. Kennedy and R. Eberhart. Particle swarm optimization. In Proceedings of ICNN’95-
International Conference on Neural Networks, volume 4, pages 1942–1948. IEEE,
1995.

U. Khurana, D. Turaga, H. Samulowitz, and S. Parthasrathy. Cognito: Automated
feature engineering for supervised learning. In 2016 IEEE 16th International Con-
ference on Data Mining Workshops (ICDMW), pages 1304–1307. IEEE, 2016.

U. Khurana, H. Samulowitz, and D. Turaga. Feature engineering for predictive mod-
eling using reinforcement learning. In Proceedings of the AAAI Conference on Ar-
tificial Intelligence, volume 32, 2018.

B. Kim, R. Khanna, and O. O. Koyejo. Examples are not enough, learn to criticize!
criticism for interpretability. In Advances in neural information processing systems,
pages 2280–2288, 2016.

P.-J. Kindermans, S. Hooker, J. Adebayo, M. Alber, K. T. Schütt, S. Dähne, D. Er-
han, and B. Kim. The (un)reliability of saliency methods. In Explainable AI:
Interpreting, Explaining and Visualizing Deep Learning, pages 267–280. Springer,
2019.

J. Klaas. Machine learning for finance: principles and practice for financial insiders.
Packt Publishing Ltd, 2019.

R. Kohavi, G. H. John, et al. Wrappers for feature subset selection. Artificial intelli-
gence, 97(1-2):273–324, 1997.

C. Köllmann, B. Bornkamp, and K. Ickstadt. Unimodal regression using Bernstein–
Schoenberg splines and penalties. Biometrics, 70(4):783–793, 2014.

R. Konig, U. Johansson, and L. Niklasson. G-REX: A versatile framework for evo-
lutionary data mining. In 2008 IEEE International Conference on Data Mining
Workshops, pages 971–974. IEEE, 2008.

W. Kotłowski and R. Słowiński. Rule learning with monotonicity constraints. In Pro-
ceedings of the 26th Annual International Conference on Machine Learning, pages
537–544, 2009.

S. B. Kotsiantis. Decision trees: a recent overview. Artificial Intelligence Review, 39
(4):261–283, 2013.

BIBLIOGRAPHY 223

W. M. Kouw and M. Loog. A review of domain adaptation without target labels.
IEEE transactions on pattern analysis and machine intelligence, 2019.

J. R. Koza. Genetic programming: on the programming of computers by means of
natural selection, volume 1. MIT press, 1992.

J. Krause, A. Perer, and K. Ng. Interacting with predictions: Visual inspection of
black-box machine learning models. In Proceedings of the 2016 CHI Conference on
Human Factors in Computing Systems, pages 5686–5697, 2016.

K. Krawiec. Genetic programming-based construction of features for machine learning
and knowledge discovery tasks. Genetic Programming and Evolvable Machines, 3
(4):329–343, 2002.

K. Krawiec and L. Włodarski. Coevolutionary feature construction for transformation
of representation of machine learners. In Intelligent Information Processing and Web
Mining, pages 139–150. Springer, 2004.

H.-P. Kriegel and M. Pfeifle. Density-based clustering of uncertain data. In Proceedings
of the eleventh ACM SIGKDD international conference on Knowledge discovery in
data mining, pages 672–677, 2005.

H. W. Kuhn. The Hungarian method for the assignment problem. Naval research
logistics quarterly, 2(1-2):83–97, 1955.

I. Kuralenok, V. Ershov, and I. Labutin. MonoForest framework for tree ensemble
analysis. In Advances in neural information processing systems, pages 13780–13789,
2019.

I. Lage, E. Chen, J. He, M. Narayanan, B. Kim, S. Gershman, and F. Doshi-
Velez. An evaluation of the human-interpretability of explanation. arXiv preprint
arXiv:1902.00006, 2019.

H. Lakkaraju, S. H. Bach, and J. Leskovec. Interpretable decision sets: A joint
framework for description and prediction. In Proceedings of the 22nd ACM SIGKDD
international conference on knowledge discovery and data mining, pages 1675–1684,
2016.

H. T. Lam, J.-M. Thiebaut, M. Sinn, B. Chen, T. Mai, and O. Alkan. One button
machine for automating feature engineering in relational databases. arXiv preprint
arXiv:1706.00327, 2017.

T. Laugel, M.-J. Lesot, C. Marsala, X. Renard, and M. Detyniecki. The dangers of
post-hoc interpretability: Unjustified counterfactual explanations. arXiv preprint
arXiv:1907.09294, 2019.

H. Laurent and R. L. Rivest. Constructing optimal binary decision trees is NP-
complete. Information processing letters, 5(1):15–17, 1976.

N. Lavrač. Selected techniques for data mining in medicine. Artificial intelligence in
medicine, 16(1):3–23, 1999.

B. Letham, C. Rudin, T. H. McCormick, D. Madigan, et al. Interpretable classifiers
using rules and Bayesian analysis: Building a better stroke prediction model. The
Annals of Applied Statistics, 9(3):1350–1371, 2015.

LHCb collaboration. Search for the lepton flavour violating decay τ -→ µ- µ+ µ-.
Journal of High Energy Physics, 2015(2):121, 2015.

224 BIBLIOGRAPHY

C.-L. Li, W.-C. Chang, Y. Cheng, Y. Yang, and B. Póczos. MMD GAN: Towards
deeper understanding of moment matching network. In Advances in neural infor-
mation processing systems, pages 2203–2213, 2017.

W. Li, J. Han, and J. Pei. CMAR: Accurate and efficient classification based on
multiple class-association rules. In Proceedings 2001 IEEE international conference
on data mining, pages 369–376. IEEE, 2001.

Y. Li, K. Swersky, and R. Zemel. Generative moment matching networks. In Inter-
national Conference on Machine Learning, pages 1718–1727, 2015.

T. Likhomanenko, P. Ilten, E. Khairullin, A. Rogozhnikov, A. Ustyuzhanin, and
M. Williams. LHCb topological trigger reoptimization. volume 664, page 082025,
2015.

S. H. Lim, L.-L. Wang, and G. DeJong. Explanation-based feature construction.
In Proceedings of the 20th international joint conference on Artifical intelligence,
volume 7, pages 931–936, 2007.

Z. C. Lipton. The mythos of model interpretability. Queue, 16(3):31–57, 2018.

B. Liu, W. Hsu, Y. Ma, et al. Integrating classification and association rule min-
ing. In ACM International Conference on Knowledge Discovery and Data Mining,
volume 98, pages 80–86, 1998.

T. Lombrozo. Simplicity and probability in causal explanation. Cognitive psychology,
55(3):232–257, 2007.

M. Long, J. Wang, G. Ding, J. Sun, and P. S. Yu. Transfer feature learning with
joint distribution adaptation. In Proceedings of the IEEE international conference
on computer vision, pages 2200–2207, 2013.

M. Long, Y. Cao, J. Wang, and M. Jordan. Learning transferable features with deep
adaptation networks. In International conference on machine learning, pages 97–
105. PMLR, 2015.

Y. Lou, R. Caruana, and J. Gehrke. Intelligible models for classification and regression.
In Proceedings of the 18th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 150–158, 2012.

Y. Lou, R. Caruana, J. Gehrke, and G. Hooker. Accurate intelligible models with
pairwise interactions. In Proceedings of the 19th ACM SIGKDD international con-
ference on Knowledge discovery and data mining, pages 623–631, 2013.

S. M. Lundberg and S.-I. Lee. A unified approach to interpreting model predictions.
In Advances in neural information processing systems, pages 4765–4774, 2017.

L. v. d. Maaten and G. Hinton. Visualizing data using t-SNE. Journal of machine
learning research, 9(Nov):2579–2605, 2008.

F. Maes, P. Geurts, and L. Wehenkel. Embedding Monte Carlo search of features in
tree-based ensemble methods. In Joint European Conference on Machine Learning
and Knowledge Discovery in Databases, pages 191–206. Springer, 2012.

A. Maevskiy, D. Derkach, N. Kazeev, A. Ustyuzhanin, M. Artemev, L. Anderlini,
L. Collaboration, et al. Fast data-driven simulation of Cherenkov detectors using
generative adversarial networks. In Journal of Physics: Conference Series, volume
1525. IOP Publishing, 2020.

BIBLIOGRAPHY 225

A. Mahanipour and H. Nezamabadi-pour. Improved PSO-based feature construction
algorithm using feature selection methods. In 2017 2nd Conference on Swarm
Intelligence and Evolutionary Computation (CSIEC), pages 1–5. IEEE, 2017.

A. Mahanipour and H. Nezamabadi-pour. A multiple feature construction method
based on gravitational search algorithm. Expert Systems with Applications, 127:
199–209, 2019.

A. Mahendran and A. Vedaldi. Understanding deep image representations by invert-
ing them. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 5188–5196, 2015.

P. E. Maher and D. S. Clair. Uncertain reasoning in an ID3 machine learning frame-
work. In [Proceedings 1993] Second IEEE International Conference on Fuzzy Sys-
tems, pages 7–12. IEEE, 1993.

S. Markovitch and D. Rosenstein. Feature generation using general constructor func-
tions. Machine Learning, 49(1):59–98, 2002.

C. Marsala. Gradual fuzzy decision trees to help medical diagnosis. In 2012 IEEE
International Conference on Fuzzy Systems, pages 1–6. IEEE, 2012.

C. Marsala and D. Petturiti. Monotone classification with decision trees. In EUSFLAT
Conf., 2013.

D. Martens, B. Baesens, and T. Fawcett. Editorial survey: swarm intelligence for data
mining. Machine Learning, 82(1):1–42, 2011.

J. A. Martínez, T. Q. Nguyen, M. Pierini, M. Spiropulu, and J.-R. Vlimant. Particle
generative adversarial networks for full-event simulation at the LHC and their ap-
plication to pileup description. In Journal of Physics: Conference Series, volume
1525. IOP Publishing, 2020.

K. T. Matchev and P. Shyamsundar. Uncertainties associated with GAN-generated
datasets in high energy physics. arXiv preprint arXiv:2002.06307, 2020.

C. J. Matheus and L. A. Rendell. Constructive induction on decision trees. In IJCAI,
volume 89, pages 645–650, 1989.

R. I. Mckay, N. X. Hoai, P. A. Whigham, Y. Shan, and M. O’neill. Grammar-based
genetic programming: a survey. Genetic Programming and Evolvable Machines, 11
(3-4):365–396, 2010a.

R. I. Mckay, N. X. Hoai, P. A. Whigham, Y. Shan, and M. O’neill. Grammar-based
genetic programming: a survey. Genetic Programming and Evolvable Machines, 11
(3-4):365–396, 2010b.

D. A. Melis and T. Jaakkola. Towards robust interpretability with self-explaining
neural networks. In Advances in Neural Information Processing Systems, pages
7775–7784, 2018.

C. Mencar. Interpretability of fuzzy systems. In International Workshop on Fuzzy
Logic and Applications, pages 22–35. Springer, 2013.

M. Mestayer, K. Adhikari, R. Bennett, S. Bueltmann, T. Chetry, S. Christo,
M. Cook IV, R. Cuevas, G. Dodge, L. El Faasi, et al. The CLAS12 drift chamber
system. Nuclear Instruments and Methods in Physics Research Section A: Acceler-
ators, Spectrometers, Detectors and Associated Equipment, 959:163518, 2020.

226 BIBLIOGRAPHY

R. S. Michalski. On the quasi-minimal solution of the general covering problem.
Proceedings of the 5th International Symposium on Information Processing, 3:125–
128, 1969.

G. A. Miller. The magical number seven, plus or minus two: Some limits on our
capacity for processing information. Psychological review, 63(2):81, 1956.

J. F. Miller and S. L. Harding. Cartesian genetic programming. In Proceedings of the
10th annual conference companion on Genetic and evolutionary computation, pages
2701–2726, 2008.

P. Miquilini, R. C. Barros, V. V. de Melo, and M. P. Basgalupp. Enhancing discrimina-
tion power with genetic feature construction: A grammatical evolution approach.
In 2016 IEEE Congress on Evolutionary Computation (CEC), pages 3824–3831.
IEEE, 2016.

S. Mohseni, N. Zarei, and E. D. Ragan. A survey of evaluation methods and measures
for interpretable machine learning. arXiv preprint arXiv:1811.11839, 2018.

G. Monge. Mémoire sur la théorie des déblais et des remblais. Histoire de l’Académie
Royale des Sciences de Paris, 1781.

D. J. Montana. Strongly typed genetic programming. Evolutionary computation, 3
(2):199–230, 1995.

E. Mugambi, A. Hunter, G. Oatley, and L. Kennedy. Polynomial-fuzzy decision tree
structures for classifying medical data. Knowledge-Based Systems, 2(17):81–87,
2004.

M. Muharram and G. D. Smith. Evolutionary constructive induction. IEEE transac-
tions on knowledge and data engineering, 17(11):1518–1528, 2005.

H. Murase, H. Nagashima, S. Yonezaki, R. Matsukura, and T. Kitakado. Application
of a generalized additive model (GAM) to reveal relationships between environmen-
tal factors and distributions of pelagic fish and krill: a case study in Sendai Bay,
Japan. ICES Journal of Marine Science, 66(6):1417–1424, 2009.

F. Nargesian, H. Samulowitz, U. Khurana, E. B. Khalil, and D. S. Turaga. Learning
feature engineering for classification. In IJCAI, pages 2529–2535, 2017.

K. Neshatian, M. Zhang, and M. Johnston. Feature construction and dimension
reduction using genetic programming. In Australasian Joint Conference on Artificial
Intelligence, pages 160–170. Springer, 2007.

K. Neshatian, M. Zhang, and P. Andreae. A filter approach to multiple feature con-
struction for symbolic learning classifiers using genetic programming. IEEE Trans-
actions on Evolutionary Computation, 16(5):645–661, 2012.

W. K. Ngai, B. Kao, C. K. Chui, R. Cheng, M. Chau, and K. Y. Yip. Efficient
clustering of uncertain data. In Sixth International Conference on Data Mining
(ICDM’06), pages 436–445. IEEE, 2006.

A.-p. Nguyen and M. R. Martínez. MonoNet: Towards interpretable models by learn-
ing monotonic features. arXiv preprint arXiv:1909.13611, 2019.

H. Nori, S. Jenkins, P. Koch, and R. Caruana. InterpretML: A unified framework for
machine learning interpretability. arXiv preprint arXiv:1909.09223, 2019.

BIBLIOGRAPHY 227

C. Olaru and L. Wehenkel. A complete fuzzy decision tree technique. Fuzzy sets and
systems, 138(2):221–254, 2003.

J. L. Olmo, J. R. Romero, and S. Ventura. A grammar based ant programming
algorithm for mining classification rules. In IEEE Congress on Evolutionary Com-
putation, pages 1–8. IEEE, 2010.

M. O’Neill and C. Ryan. Grammatical evolution. IEEE Transactions on Evolutionary
Computation, 5(4):349–358, 2001.

F. E. Otero and A. A. Freitas. Improving the interpretability of classification rules
discovered by an ant colony algorithm. In Proceedings of the 15th annual conference
on Genetic and evolutionary computation, pages 73–80, 2013.

F. E. Otero and A. A. Freitas. Improving the interpretability of classification rules
discovered by an ant colony algorithm: extended results. Evolutionary computation,
24(3):385–409, 2016.

F. E. Otero, M. M. Silva, A. A. Freitas, and J. C. Nievola. Genetic programming
for attribute construction in data mining. In European Conference on Genetic
Programming, pages 384–393. Springer, 2003.

G. Pagallo. Learning DNF by decision trees. In IJCAI, volume 89, pages 639–644,
1989.

S. J. Pan, I. W. Tsang, J. T. Kwok, and Q. Yang. Domain adaptation via transfer
component analysis. IEEE Transactions on Neural Networks, 22(2):199–210, 2010.

N. Papernot and P. McDaniel. Deep k-nearest neighbors: Towards confident, inter-
pretable and robust deep learning. arXiv preprint arXiv:1803.04765, 2018.

R. S. Parpinelli, H. S. Lopes, and A. A. Freitas. An ant colony algorithm for classi-
fication rule discovery. In Data mining: A heuristic approach, pages 191–208. IGI
Global, 2002.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Courna-
peau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

W. Pedrycz and Z. A. Sosnowski. The design of decision trees in the framework of
granular data and their application to software quality models. Fuzzy Sets and
Systems, 123(3):271–290, 2001.

G. Peyré and M. Cuturi. Computational optimal transport. Foundations and Trends
in Machine Learning, 11(5-6):355–607, 2019.

R. Pierrard, J.-P. Poli, and C. Hudelot. A fuzzy Close algorithm for mining fuzzy
association rules. In International Conference on Information Processing and Man-
agement of Uncertainty in Knowledge-Based Systems, pages 88–99. Springer, 2018.

A. Pierrot and Y. Goude. Short-term electricity load forecasting with generalized
additive models. Proceedings of ISAP power, 2011.

S. Piramuthu and R. T. Sikora. Iterative feature construction for improving inductive
learning algorithms. Expert Systems with Applications, 36(2):3401–3406, 2009.

228 BIBLIOGRAPHY

N. Pya and S. N. Wood. Shape constrained additive models. Statistics and computing,
25(3):543–559, 2015.

B. Qin, Y. Xia, and F. Li. DTU: a decision tree for uncertain data. In Pacific-Asia
conference on knowledge discovery and data mining, pages 4–15. Springer, 2009a.

B. Qin, Y. Xia, S. Prabhakar, and Y. Tu. A rule-based classification algorithm for
uncertain data. In 2009 IEEE 25th International Conference on Data Engineering,
pages 1633–1640. IEEE, 2009b.

Z. Qin and J. Lawry. Decision tree learning with fuzzy labels. Information Sciences,
172(1-2):91–129, 2005.

J. R. Quinlan. Induction of decision trees. Machine learning, 1(1):81–106, 1986.

J. R. Quinlan. Generating production rules from decision trees. In International Joint
Conference on Artificial Intelligence, page 304–307. Morgan Kaufmann Publishers
Inc., 1987.

J. R. Quinlan. Learning logical definitions from relations. Machine learning, 5(3):
239–266, 1990.

J. R. Quinlan. MDL and categorical theories (continued). In Machine Learning
Proceedings 1995, pages 464–470. Elsevier, 1995.

J. R. Quinlan. C4.5: Programs for Machine Learning. Elsevier, 2014.

J. P. Ralston and B. Pire. Femtophotography of protons to nuclei with deeply virtual
compton scattering. Physical Review D, 66(11):111501, 2002.

E. Rashedi, H. Nezamabadi-Pour, and S. Saryazdi. GSA: a gravitational search algo-
rithm. Information sciences, 179(13):2232–2248, 2009.

A. Ratle and M. Sebag. Avoiding the bloat with stochastic grammar-based genetic
programming. In International Conference on Artificial Evolution (Evolution Arti-
ficielle), pages 255–266. Springer, 2001a.

A. Ratle and M. Sebag. Grammar-guided genetic programming and dimensional con-
sistency: application to non-parametric identification in mechanics. Applied Soft
Computing, 1(1):105–118, 2001b.

I. Redko, N. Courty, R. Flamary, and D. Tuia. Optimal transport for multi-source
domain adaptation under target shift. In The 22nd International Conference on
Artificial Intelligence and Statistics, pages 849–858, 2019.

M. S. Reis and P. M. Saraiva. Integration of data uncertainty in linear regression and
process optimization. AIChE journal, 51(11):3007–3019, 2005.

M. T. Ribeiro, S. Singh, and C. Guestrin. “why should I trust you?” explaining the
predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international
conference on knowledge discovery and data mining, pages 1135–1144, 2016.

M. T. Ribeiro, S. Singh, and C. Guestrin. Anchors: High-precision model-agnostic
explanations. In Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

A. S. Ross and F. Doshi-Velez. Improving the adversarial robustness and interpretabil-
ity of deep neural networks by regularizing their input gradients. In Thirty-second
AAAI Conference on Artificial Intelligence, 2018.

BIBLIOGRAPHY 229

T. J. Ross. Fuzzy logic with engineering applications. John Wiley & Sons, 2005.

Y. Rubner, C. Tomasi, and L. J. Guibas. The Earth mover’s distance as a metric for
image retrieval. International journal of computer vision, 40(2):99–121, 2000.

C. Rudin. Stop explaining black box machine learning models for high stakes decisions
and use interpretable models instead. Nature Machine Intelligence, 1(5):206–215,
2019.

P. J. Sadowski, D. Whiteson, and P. Baldi. Searching for Higgs boson decay modes
with deep learning. Advances in neural information processing systems, 27:2393–
2401, 2014.

L. Sánchez and J. Otero. Boosting fuzzy rules in classification problems under single-
winner inference. International journal of intelligent systems, 22(9):1021–1034,
2007.

M. Schmidt and H. Lipson. Distilling free-form natural laws from experimental data.
science, 324(5923):81–85, 2009.

E. Schubert and P. J. Rousseeuw. Faster k-medoids clustering: improving the PAM,
CLARA, and CLARANS algorithms. In International Conference on Similarity
Search and Applications, pages 171–187. Springer, 2019.

A. G. Sébert and J.-P. Poli. Fuzzy rule learning for material classification from impre-
cise data. In International Conference on Information Processing and Management
of Uncertainty in Knowledge-Based Systems, pages 62–73. Springer, 2018a.

A. G. Sébert and J.-P. Poli. Material classification from imprecise chemical composi-
tion: Probabilistic vs possibilistic approach. In 2018 IEEE International Conference
on Fuzzy Systems (FUZZ-IEEE), pages 1–8. IEEE, 2018b.

R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra. Grad-
CAM: Visual explanations from deep networks via gradient-based localization. In
Proceedings of the IEEE international conference on computer vision, pages 618–
626, 2017.

L. S. Shafti and E. Pérez. Fitness function comparison for GA-based feature con-
struction. In Conference of the Spanish Association for Artificial Intelligence, pages
249–258. Springer, 2007.

L. S. Shapley. A value for n-person games. Contributions to the Theory of Games, 2
(28):307–317, 1953.

D. Slack, S. Hilgard, E. Jia, S. Singh, and H. Lakkaraju. Fooling LIME and
SHAP: Adversarial attacks on post hoc explanation methods. In Proceedings of
the AAAI/ACM Conference on AI, Ethics, and Society, pages 180–186, 2020.

M. Smith and L. Bull. Improving the human readability of features constructed by
genetic programming. In Proceedings of the 9th annual conference on Genetic and
evolutionary computation, pages 1694–1701, 2007.

M. G. Smith and L. Bull. Genetic programming with a genetic algorithm for feature
construction and selection. Genetic Programming and Evolvable Machines, 6(3):
265–281, 2005.

P. Sondhi. Feature construction methods: a survey. sifaka. cs. uiuc. edu, 69:70–71,
2009.

230 BIBLIOGRAPHY

T. Sousa, A. Silva, and A. Neves. Particle swarm based data mining algorithms for
classification tasks. Parallel computing, 30(5-6):767–783, 2004.

Q. F. Stout. Unimodal regression via prefix isotonic regression. Computational Statis-
tics & Data Analysis, 53(2):289–297, 2008.

M. Sugiyama, S. Nakajima, H. Kashima, P. V. Buenau, and M. Kawanabe. Direct
importance estimation with model selection and its application to covariate shift
adaptation. In Advances in neural information processing systems, pages 1433–1440,
2008.

J.-N. Sulzmann and J. Fürnkranz. A comparison of techniques for selecting and com-
bining class association rules. In Proceedings of the LeGo’08: From Local Patterns
to Global Models, ECML/PKDD 2008 Workshop, pages 87–93, 2008.

B. Sun and K. Saenko. Deep CORAL: Correlation alignment for deep domain adap-
tation. In European conference on computer vision, pages 443–450. Springer, 2016.

B. Sun, J. Feng, and K. Saenko. Return of frustratingly easy domain adaptation.
arXiv preprint arXiv:1511.05547, 2015.

I. M. A. O. Swesi. Feature clustering for PSO-based feature construction on high-
dimensional data. Journal of Information and Communication Technology, 18(4):
439–472, 2020.

I. M. A. O. Swesi and A. A. Bakar. Recent developments on evolutionary computation
techniques to feature construction. In Asian Conference on Intelligent Information
and Database Systems, pages 109–122. Springer, 2019.

C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fer-
gus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199,
2013.

M. Tami, M. Clausel, E. Devijver, A. Dulac, E. Gaussier, S. Janaqi, and M. Chebre.
Uncertain trees: Dealing with uncertain inputs in regression trees. arXiv preprint
arXiv:1810.11698, 2018.

A. L. Tarca, V. J. Carey, X.-w. Chen, R. Romero, and S. Drăghici. Machine learning
and its applications to biology. PLoS Comput Biol, 3(6):e116, 2007.

Y. Teng and A. Choromanska. Invertible autoencoder for domain adaptation. Com-
putation, 7(2):20, 2019.

E. Tjoa and C. Guan. A survey on explainable artificial intelligence (XAI): Towards
medical XAI. arXiv preprint arXiv:1907.07374, 2019.

B. Tran, B. Xue, and M. Zhang. Genetic programming for feature construction and
selection in classification on high-dimensional data. Memetic Computing, 8(1):3–15,
2016a.

B. Tran, M. Zhang, and B. Xue. Multiple feature construction in classification on high-
dimensional data using GP. In 2016 IEEE Symposium Series on Computational
Intelligence (SSCI), pages 1–8. IEEE, 2016b.

B. Tran, B. Xue, and M. Zhang. Genetic programming for multiple-feature construc-
tion on high-dimensional classification. Pattern Recognition, 93:404–417, 2019.

BIBLIOGRAPHY 231

S. Tsang, B. Kao, K. Y. Yip, W.-S. Ho, and S. D. Lee. Decision trees for uncertain
data. IEEE transactions on knowledge and data engineering, 23(1):64–78, 2009.

R. Turrisi, R. Flamary, A. Rakotomamonjy, and M. Pontil. Multi-source domain
adaptation via weighted joint distributions optimal transport. arXiv preprint
arXiv:2006.12938, 2020.

G. Tutz and H. Binder. Generalized additive modeling with implicit variable selection
by likelihood-based boosting. Biometrics, 62(4):961–971, 2006.

A. T. Tzallas, I. Tsoulos, M. G. Tsipouras, N. Giannakeas, I. Androulidakis, and
E. Zaitseva. Classification of EEG signals using feature creation produced by gram-
matical evolution. In 2016 24th Telecommunications Forum (TELFOR), pages 1–4.
IEEE, 2016.

E. Tzeng, J. Hoffman, T. Darrell, and K. Saenko. Simultaneous deep transfer across
domains and tasks. In Proceedings of the IEEE International Conference on Com-
puter Vision, pages 4068–4076, 2015.

M. Ungaro, G. Angelini, M. Battaglieri, V. Burkert, D. Carman, P. Chatagnon,
M. Contalbrigo, M. Defurne, R. De Vita, B. Duran, et al. The CLAS12 GEANT4
simulation. Nuclear Instruments and Methods in Physics Research Section A: Ac-
celerators, Spectrometers, Detectors and Associated Equipment, 959:163422, 2020.

H. Vafaie and K. De Jong. Genetic algorithms as a tool for restructuring feature space
representations. In Proceedings of 7th IEEE International Conference on Tools with
Artificial Intelligence, pages 8–11. IEEE, 1995.

D. E. Van de Vlag and A. Stein. Incorporating uncertainty via hierarchical classi-
fication using fuzzy decision trees. IEEE Transactions on geoscience and remote
sensing, 45(1):237–245, 2006.

M. Vanderhaeghen, P. A. Guichon, and M. Guidal. Deeply virtual electroproduc-
tion of photons and mesons on the nucleon: Leading order amplitudes and power
corrections. Physical Review D, 60(9):094017, 1999.

V. N. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag New York,
Inc., 1995.

A. Vidon. Probing the proton structure through deep virtual Compton scattering at
COMPASS, CERN. PhD thesis, Université Paris-Saclay, 2019.

C.-H. Wang, W.-H. Lee, and C.-T. Pang. Applying fuzzy FP-Growth to mine fuzzy
association rules. World Academy of Science, Engineering and Technology, 65:956–
962, 2010.

X. Wang, B. Chen, G. Qian, and F. Ye. On the optimization of fuzzy decision trees.
Fuzzy Sets and Systems, 112(1):117–125, 2000.

X. Wang, Y. Jin, M. Long, J. Wang, and M. I. Jordan. Transferable normalization:
Towards improving transferability of deep neural networks. In Advances in Neural
Information Processing Systems, pages 1951–1961, 2019.

R. Weber. Fuzzy-ID3: A class of methods for automatic knowledge acquisition. In-
ternational Conference on Fuzzy Logic and Neural Networks, pages 265–268, 01
1992.

232 BIBLIOGRAPHY

P. A. Whigham, G. Dick, J. Maclaurin, and C. A. Owen. Examining the “best of both
worlds” of grammatical evolution. In Proceedings of the 2015 Annual Conference
on Genetic and Evolutionary Computation, pages 1111–1118, 2015.

Wikipedia. Standard model, 2020. URL https://en.wikipedia.org/wiki/
Standard_Model. [Online; accessed 28-July-2020].

G. Wilson and D. J. Cook. A survey of unsupervised deep domain adaptation. ACM
Transactions on Intelligent Systems and Technology (TIST), 11(5):1–46, 2020.

S. Wood and M. S. Wood. Package ‘mgcv’.

S. N. Wood. Thin plate regression splines. Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 65(1):95–114, 2003.

S. N. Wood. Generalized Additive Models: An Introduction with R. Chapman and
Hall/CRC, 2 edition, 2017.

K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudinov, R. Zemel, and Y. Ben-
gio. Show, attend and tell: Neural image caption generation with visual attention.
In International conference on machine learning, pages 2048–2057, 2015.

B. Xue, M. Zhang, Y. Dai, and W. N. Browne. PSO for feature construction and
binary classification. In Proceedings of the 15th annual conference on Genetic and
evolutionary computation, pages 137–144, 2013.

D.-S. Yang, L. A. Rendell, and G. Blix. A scheme for feature construction and a
comparison of empirical methods. In IJCAI, pages 699–704. Citeseer, 1991.

H.-J. Yang, B. P. Roe, and J. Zhu. Studies of boosted decision trees for MiniBooNE
particle identification. Nuclear Instruments and Methods in Physics Research Sec-
tion A: Accelerators, Spectrometers, Detectors and Associated Equipment, 555(1-2):
370–385, 2005.

S. Yazdani, J. Shanbehzadeh, and E. Hadavandi. MBCGP-FE: A modified balanced
Cartesian genetic programming feature extractor. Knowledge-Based Systems, 135:
89–98, 2017.

C. Yildiz and E. Alpaydin. Omnivariate decision trees. IEEE Transactions on Neural
Networks, 12(6):1539–1546, 2001.

Y. Yuan and M. J. Shaw. Induction of fuzzy decision trees. Fuzzy Sets and systems,
69(2):125–139, 1995.

L. A. Zadeh. Fuzzy sets. Information and control, 8(3):338–353, 1965.

L. A. Zadeh. Fuzzy sets as a basis for a theory of possibility. Fuzzy sets and systems,
1(1):3–28, 1978.

M. J. Zaki. Scalable algorithms for association mining. IEEE Transactions on Knowl-
edge and Data Engineering, 12(3):372–390, 2000.

M. D. Zeiler, G. W. Taylor, and R. Fergus. Adaptive deconvolutional networks for
mid and high level feature learning. In 2011 International Conference on Computer
Vision, pages 2018–2025. IEEE, 2011.

J. Zhang, F. Fogelman-Soulié, and C. Largeron. Towards automatic complex feature
engineering. In International Conference on Web Information Systems Engineering,
pages 312–322. Springer, 2018.

https://en.wikipedia.org/wiki/Standard_Model
https://en.wikipedia.org/wiki/Standard_Model

BIBLIOGRAPHY 233

Y. Zhang and P. I. Rockett. A generic optimising feature extraction method using
multiobjective genetic programming. Applied Soft Computing, 11(1):1087–1097,
2011.

B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba. Learning deep features
for discriminative localization. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 2921–2929, 2016.

J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-to-image translation us-
ing cycle-consistent adversarial networks. In Proceedings of the IEEE international
conference on computer vision, pages 2223–2232, 2017.

M. Zięba, S. K. Tomczak, and J. M. Tomczak. Ensemble boosted trees with synthetic
features generation in application to bankruptcy prediction. Expert systems with
applications, 58:93–101, 2016.

V. Ziegler, N. Baltzell, F. Bossù, D. Carman, P. Chatagnon, M. Contalbrigo,
R. De Vita, M. Defurne, G. Gavalian, G. Gilfoyle, et al. The CLAS12 software
framework and event reconstruction. Nuclear Instruments and Methods in Physics
Research Section A: Accelerators, Spectrometers, Detectors and Associated Equip-
ment, 959:163472, 2020.

H.-J. Zimmermann. Fuzzy set theory—and its applications. Springer Science & Busi-
ness Media, 2011.

G. Zweig. An SU(3) model for strong interaction symmetry and its breaking. Version
2, volume 1, pages 22–101. 1964.

P. Zyla et al. Review of Particle Physics. PTEP, 2020(8):083C01, 2020.

235

Appendix A

Introduction to fuzzy logic

A.1 Principle and operators

Fuzzy logic has been introduced by Zadeh [1965] and extends Boolean logic with
partial truth information. In Boolean logic, an element x belongs or not to a subset
A of an ensemble E: x ∈ A or x /∈ A. However, in fuzzy logic, each element x gets a
membership degree to the subset A given by the membership function fA : E → [0, 1].
The principle is illustrated on Figure A.1 with E = [0, 10]: the left plot represents
a crisp set A = {x ≥ 5}, while the right plot represents a fuzzy set with a linear
membership function in the interval [4, 6]. The transition does not have to be linear,
although it is faster to compute. Shapes of membership functions can be triangular
(as on Figure A.1), trapezoidal, Gaussian among others. References for fuzzy logic
are the books of Ross [2005] and Zimmermann [2011].

0 2 4 6 8 10
x

0.0

0.2

0.4

0.6

0.8

1.0

f A
(x

)

0 2 4 6 8 10
x

0.0

0.2

0.4

0.6

0.8

1.0

f A
(x

)

Figure A.1: Illustration of fuzzy logic with E = [0, 10].
On the left: a crisp set A = {x ≥ 5}.

On the right, a fuzzy set fA(x) = 0 if x < 4, fA(x) = 1 if x > 6,
fA(x) = x

2 − 2 if x ∈ [4, 6].

The classical AND and OR operators are extended as well to fuzzy logic: while prob-
abilistic operators are the multiplication for the AND and the addition for the OR,
Zadeh uses the minimum as AND operator and the maximum as OR operator. In
this way, the membership functions of intersection, union, and complement of fuzzy
sets can be derived:

• fA∩B : x 7→ min (fA(x), fB(x));

• fA∪B : x 7→ max (fA(x), fB(x));

• fĀ : x 7→ 1− fA(x).

236 Appendix A. Introduction to fuzzy logic

Note that some common properties of Boolean logic are no longer maintained: the
intersection of a subset and its complement may be not empty (A∩ Ā 6= ∅), and their
union can have a membership function non equal to 1 (∃x ∈ E, fA∪Ā(x) 6= 1).

A.2 Reasoning with fuzzy logic

“IF ... THEN” rules can be defined with fuzzy sets, for example:

IF x ∈ A1 OR y ∈ B1 THEN z ∈ C1

with A1, B1 and C1 being fuzzy subsets of A, B and C the respective domains of x,
y and z. The Mamdani inference process is illustrated on Figure A.2, although other
generalizations of the logic implication exist [Ross, 2005, Chapter 5]. With given x
and y, the membership degree of z in C is:

µC(z) = min [max(fA1(x), fB1(y)), fC1(z)] . (A.1)

2 1 0 1 2 3 4 5 6

0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 8 10

0.0

0.2

0.4

0.6

0.8

1.0

3 4 5 6 7 8 9 10

0.0

0.2

0.4

0.6

0.8

1.0

Figure A.2: Mamdani inference of a single rule: IF x ∈ A1 OR
y ∈ B1 THEN z ∈ C1 for x = 3 and y = 5.3.

A complete rule base usually covers the entire definition domain of the input variables.
A fuzzy partitioning is defined such as the one on Figure A.3 for y in B. An example
of a rule set is:

IF x ∈ A1 OR y ∈ B1 THEN z ∈ C1

IF x ∈ A2 OR y ∈ B3 THEN z ∈ C2

IF y ∈ B2 THEN z ∈ C3.

The inference is then made by computing the disjunction between the rules, i.e. taking
the maximum (union) of all rule outputs, as illustrated on Figure A.4. The final z is
defuzzified either by taking for instance the mean of maximum (MoM) or the center
of gravity (COG).

Another popular type of fuzzy rule is Takagi-Sugeno fuzzy rule (as opposed to Mam-
dani fuzzy rules illustrated above). Instead of having a fuzzy set as output, Takagi-
Sugeno fuzzy rules output a function of the inputs, for instance:

IF x ∈ A1 OR y ∈ B1 THEN z = f(x, y)

where f is any real function.

A.3 Fuzzy expert systems

From the inference principles described above, a fuzzy expert system can be designed:
as illustrated by Figure A.5, a fuzzy system first fuzzifies the inputs (i.e. computes the

A.3. Fuzzy expert systems 237

3 4 5 6 7 8 9 10 11

0.0

0.2

0.4

0.6

0.8

1.0

Figure A.3: A fuzzy trapezoidal partition of B.

2 0 2 4 6 8 10 12

0.0

0.2

0.4

0.6

0.8

1.0

2 0 2 4 6 10 12

0.0

0.2

0.4

0.6

0.8

1.0

3 4 5 8 9 10 11

0.0

0.2

0.4

0.6

0.8

1.0

3 4 5 8 9 10 11

0.0

0.2

0.4

0.6

0.8

1.0

3 4 5 6 7 8 9 10 11

0.0

0.2

0.4

0.6

0.8

1.0

4 6 8 10 12 14 16

0.0

0.2

0.4

0.6

0.8

1.0

4 6 8 10 12 14 16

0.0

0.2

0.4

0.6

0.8

1.0

4 6 8 10 12 14 16

0.0

0.2

0.4

0.6

0.8

1.0

4 6 8 10 12 14 16

0.0

0.2

0.4

0.6

0.8

1.0

Figure A.4: Induction of a fuzzy rule set with x = 7.8 and y = 6.3.
One line corresponds to one rule in the set.

membership degrees to every subset of the fuzzy partition), computes the inference,
and defuzzifies the outputs (i.e. returns a crisp output value). All of these steps pick
the necessary elements in the knowledge base, containing the fuzzy partitionings and
rules that can be either determined by domain experts or automatically derived.

238 Appendix A. Introduction to fuzzy logic

Inference
engine

Input Fuzzification Defuzzification Output

Knowledge
base

Figure A.5: Fuzzy expert systems.

A.4 Handling imprecisions

Instead of crisp values, such systems are also able to handle data with imprecisions,
i.e. fuzzy numbers. A fuzzy number x is associated to a membership function µx
defined on the definition domain A. The membership degree of a fuzzy number x to
a fuzzy subset A1 is given by:

µ̃A1(x) = max
t

[min(fA1(t), µx(t))] . (A.2)

An alternative is to take the integral of the product instead of the maximum over
the t variable of the minimum. The two approaches are compared by Sébert and
Poli [2018b] for the induction of fuzzy decision trees. Once the inputs have been
fuzzified (i.e. once their membership degrees to every subset in the partition have
been computed), the inference is performed the same way as for crisp inputs.

A.5 Advantages of fuzzy logic in machine learning

Hüllermeier [2015] discusses the assets of fuzzy logic for machine learning, and ac-
knowledges its interest to express uncertainty. According to him, fuzzy logic is not
the best method to enhance algorithms such as support vector machines (SVM) (a
Gaussian kernel is more interesting) or nearest neighbors (a weighting scheme is the
same), with the notable exception of decision trees and rules. Arrieta et al. [2020]
underline the ability of fuzzy logic to better handle uncertainty and to improve un-
derstandability in decision rules.

239

Appendix B

Exploiting data imprecisions

Real-world data often comprise uncertainty in measurement, as they come from sen-
sors or detectors with limited resolutions, and as the experimental conditions are not
always exactly known. Uncertainty and imprecision handling is difficult with statisti-
cal models such as neural networks that perform simple operations on input variables.
However, these uncertainties may be in themselves a valuable information. For in-
stance in a classification problem, if the measures are very accurate, the classifier
should be very certain of its decision. On the opposite, if a variable is subject to
big errors of measurement, the classifier can rely on other variables to guide the final
output and should not be biased by a misleading crisp mean value.

Figure B.1: Resolutions of the tracking on simulation: as function
of the momentum p for protons in the central tracker (top left) and for
pions in the forward tracker (top right), as function of the scattering

angle θ in the forward tracker (bottom) [Ziegler et al., 2020].

In HEP notably, particle detectors are subject to noise and introduce uncertainties
in event reconstruction since particles interact with the detectors they cross. These
imperfections are related to the detector resolutions that are not always well known,
but also to physics phenomena and geometry of the experiment. Therefore, for each
momentum that is measured for a particle, there is an associated error of measurement
that notably depends on the geometric location of the particle inside the detector.

240 Appendix B. Exploiting data imprecisions

Figure B.1 illustrates this phenomenon for CLAS12: particles with low momentum
p interact more with matter thus loosing energy faster; therefore, the resolution is
degraded at low p due to these multiple scatterings. On the opposite, particles with
large momenta are less deviated by the magnetic field, therefore the measurement of
their curvature radius is more imprecise. This leads to a higher uncertainty on their
momentum. Regarding the scattering angle θ, the intensity of the magnetic field is
higher at low θ angles, making the curvature measurement easier and the momentum
computation more precise.

Our objective is to use this additional information in an interpretable classifier, able
to distinguish between relevant signal events and background events.

Notably, fuzzy logic treats uncertainties in measurement as imprecisions in the data
(see Appendix A). We are thus interested in fuzzy models and notably FURIA and
fuzzy C4.5 trees. A number of algorithms exist that are fuzzy in their functioning,
but that do not necessarily take imprecise data as inputs. In this study, we adapt
FURIA and fuzzy C4.5 to handle imprecise data, and apply these adapted algorithms
to CLAS12 event selection.

Section B.1 recalls the representation of imprecision in fuzzy logic and lists a few ar-
ticles that exploit data imprecision. Sections B.2 and B.3 present the adaptations re-
spectively of crisp and fuzzy C4.5 and FURIA to handle imprecisions in data. CLAS12
imprecisions are computed in B.4 and experiments conducted in B.5. Finally, a dis-
cussion is proposed in section B.6.

B.1 Background on the use of imprecisions in transparent
models

Instead of a vector of crisp numerical values, imprecise data consists of a vector of
fuzzy numbers. These fuzzy numbers are represented by their membership function
µx over the definition domain of x, as illustrated on Figure B.2.

Two alternatives coexist to handle imprecisions in fuzzy logic: the possibilistic and
the probabilistic approaches.

• In the possibilistic approach, the usual Zadeh operators of fuzzy logic are used.
Namely, the minimum between two fuzzy numbers computes a conjunction and
the maximum a disjunction. An imprecise variable is represented by a normal-
ized fuzzy number so that its maximum reaches 1.

• In the probabilistic approach, the product of two fuzzy numbers computes a
conjunction, and a disjunction is the sum of these fuzzy numbers minus the
conjunction (A + B − A × B). Imprecise variables are represented by fuzzy
numbers whose integrals equal 1.

When the data are imprecise and when the imprecision is known and characterized,
the classical machine learning algorithms hardly manage this type of attribute. Ma-
chine learning usually tackles uncertainty in the target variable or in the model itself
[Campagner et al., 2020].

Nevertheless, Czarnecki and Podolak [2013] augment the number of instances by sam-
pling many data points from imprecise measures.

B.1. Background on the use of imprecisions in transparent models 241

x1 = 4.5, x2 = −1.7, x3 = −0.38, x4 = 42

x1 =

0.0 2.5 5.0 7.5
x1

0.00

0.25

0.50

0.75

1.00

, x2 =

3 2 1
x2

0

1

2

x3 =

0.6 0.4 0.2 0.0
x3

0

10

20

, x4 =

0 50 100
x4

0.000

0.025

0.050

0.075

0.100

Figure B.2: On the top: an instance without imprecisions. All vari-
ables are crisp numbers. On the bottom: an instance with impreci-
sions. The variables are represented as fuzzy numbers in the proba-

bilistic framework.

A few works directly model data uncertainty in the models. Reis and Saraiva [2005]
integrate data uncertainty in multivariate regression models. Huang et al. [2012] pro-
pose a support vector regression model with uncertain data. Several works propose
uncertain clustering Cormode and McGregor [2008], Kriegel and Pfeifle [2005], Ngai
et al. [2006] with a distance between probability distributions instead of usual Eu-
clidean distances.

Some works propose to represent uncertain data under the form of probability distri-
butions, and adapt the induction of decision trees Qin et al. [2009a], Tami et al. [2018]
or rule bases Qin et al. [2009b] to handle them. The criteria used in such models are
adapted: a probabilistic entropy for decision trees, a probabilistic information gain
for rules.

Using fuzzy logic, Maher and Clair [1993] do not change the induction of the classical
ID3 decision tree but adapt its reasoning: the imprecisions about some inputs are
propagated through the tree using fuzzy logic and the possibility theory to produce
an imprecise output. A few works exploit the possibility theory to adapt the induction
of fuzzy ID3 to uncertain data [Maher and Clair, 1993, Borgelt et al., 1996, Jenhani
et al., 2008]. A Bayesian hierarchical model is used by Van de Vlag and Stein [2006]
to perform clustering before inducing a fuzzy ID3 tree to classify geographical objects.

Sébert and Poli [2018a] propose a fuzzy clustering of the input variables using k-
medoids [Schubert and Rousseeuw, 2019] with a dissimilarity measure between two
probabilistic distributions. Then, the fuzzy ID3 is induced using a fuzzified version
of the entropy criterion. This new criterion is specifically adapted for probabilistic
distributions. The resulting tree is a hybrid approach mixing probabilistic distribu-
tions and fuzzy logic while the natural approach would have been possibilistic decision
trees [Maher and Clair, 1993, Borgelt et al., 1996, Jenhani et al., 2008]. However, the
hybrid approach seems to overcome the possibilistic one [Sébert and Poli, 2018b], at

242 Appendix B. Exploiting data imprecisions

least on their experiments on nuclear physics data.

B.2 Adaptation of crisp and fuzzy C4.5 algorithms to im-
precise data

In addition to the fuzzy ID3 algorithm, we propose to compare against the crisp and
fuzzy C4.5 algorithms that we adapt to be able to handle imprecise data. Imprecise
data are represented by the Gaussian probability distributions for each variable. We
focus on the probabilistic management of imprecision as it provides better results for
the use case of Sébert and Poli [2018b].

B.2.1 Crisp C4.5

Instead of following a single branch, instances propagate through the branches with
different weights according to their membership degree to each branch. As illustrated
on Figure B.3, the membership degrees of an instance x to the children nodes of a
parent node N are given by:

f≤α(x) = fN (x)

∫ α

−∞
µx(t) dt, (B.1)

f>α(x) = fN (x)

∫ +∞

α
µx(t) dt (B.2)

with f≤α(x) and f>α(x) the membership degrees of example x respectively to the
left and right child node, α the split threshold of the parent node N , fN (x) the
membership degree of x to the parent node N , and µx the membership function of x.

Figure B.3: Computation of the membership degree of the fuzzy
example x to an antecedent of type ≤ with threshold α.

In the case of crisp C4.5 decision tree, we adapt the entropy measure of the classical
algorithm to consider the imprecisions of the data. Using precise data, the information
gain IG of an attribute A is the difference between the entropy of the current node
and the weighted sum of the entropies of the children nodes:

IG = H(X)−
∑
i

piH(Xi). (B.3)

B.2. Adaptation of crisp and fuzzy C4.5 algorithms to imprecise data 243

H(X) = −
∑
k

pk(X) log2 pk(X). (B.4)

X is the data contained in the current node, and theXi are the data subsets that would
be created splitting along the tested attribute A. pi is the proportion of instances in
child node i. k covers the space of data labels, and pk(X) is the proportion of class k
amongst the dataset X.

Considering data imprecisions, the proportions pk are fuzzified to use the membership
degrees fN (xi) of the examples xi ∈ X to the current node N :

pk(X) =

∑
i,xi∈k fN (xi)∑
i fN (xi)

. (B.5)

B.2.2 Fuzzy C4.5

While the computation of the information gain remains the same as for crisp C4.5,
taking membership degrees into account, the computation of these membership de-
grees gets more complicated: indeed, the split of a node is itself fuzzified. Therefore,
the membership degree of an example to a node becomes the integral of the product
between the membership function of the example and the membership function of the
node itself, as illustrated on Figure B.4:

f≤α(x) = fN (x)

∫ +∞

−∞
µx(t)µ≤α(t) dt, (B.6)

f>α(x) = fN (x)

∫ +∞

−∞
µx(t)µ>α(t) dt (B.7)

with same notations as above and µ≤α(t) and µ>α(t) the membership functions of the
left and right children nodes. Notably we have:

∀t ∈ R, µ≤α(t) + µ>α(t) = 1. (B.8)

Figure B.4: Computation of the membership degree of the fuzzy
example x to a fuzzy antecedent.

244 Appendix B. Exploiting data imprecisions

B.3 Adaptation of FURIA to imprecise data

As in the previous section, the different metrics and heuristics used in FURIA have
to be adapted to our representation of imprecise data by Gaussian probability distri-
bution.

FURIA follows the rule covering principle, namely the algorithm progressively adds
rules until all instances of a given class are covered by the rules. A particular rule
is grown until all instances of other classes are no longer covered by the rule. After
rule bases have been built for every class, optimization is performed: a replacement
rule and a revision rule are proposed for each already built rule, and the best among
the three is retained for the final rule base. Pruning is performed at this step, using
the subset of examples of the pruning dataset that are not covered by the subsequent
rules of the rule base. Overall, the notion of coverage is critical in FURIA but is
intrinsically a Boolean, crisp notion. To adapt it to imprecise data, we define that an
instance is covered by an antecedent, rule or rule base if its coverage degree to the
antecedent, rule or rule base is non zero. The coverage degree of an imprecise instance
x to an antecedent A writes:

fA(x) =

∫ α

−∞
µx(t) dt if the antecedent is ≤ α, (B.9)

fA(x) =

∫ +∞

α
µx(t) dt if the antecedent is ≥ α (B.10)

with α the split threshold of the antecedent and µx the membership function of x
(the Gaussian probability distribution). Then, the coverage degree of an imprecise
instance x to a rule writes:

fR(x) =
∏
i

fAi(x) (B.11)

as the product of the coverage degrees by all antecedents of the rule. Finally, the
coverage degree to a rule base writes as the sum of the coverage degrees over the rules
of the base:

fRB(x) =
∑
j

fRj (x). (B.12)

Using the proposed definition of coverage degree, the different steps requiring a crisp
notion of coverage are adapted:

• FURIA adds rules for a given class until all instances of the class are at least
partially covered (namely ∀ positive x, fRB(x) > 0);

• a particular rule is grown until all instances of other classes are entirely not
covered (namely ∀ negative x, fRB(x) = 0);

• pruning is performed on all instances that are not entirely covered by the subse-
quent rules in the base; their coverage degrees to the subsequent rules are taken
into account to weight the pruning criteria.

FURIA uses many criteria at the various steps of the induction (see 2.2.2): the FOIL
information gain to grow the rules, the pruning metric, the rule set error and the
minimum description length during optimization, the purity for fuzzification. For

B.4. Computation of CLAS12 imprecisions 245

instance, the FOIL information gain writes:

IG = pr

(
log2

(
pr

pr + nr

)
− log2

(
p

p+ n

))
(B.13)

with pr and nr the number of positive and negative examples covered by the rule, and
p and n the number of positive and negative examples covered by the default rule (i.e.
current rule, without adding a new antecedent).

With precise data, p, pr, n and nr are integers, while they are real numbers for
imprecise data. The membership function is therefore introduced in the computation
of these variables:

p =
∑
x∈Pos

fR(x) pr =
∑
x∈Pos

fR(x)fA(x) (B.14)

n =
∑
x∈Neg

fR(x) nr =
∑
x∈Neg

fR(x)fA(x) (B.15)

R is the rule already learnt during the current growing phase and A the candidate
antecedent evaluated by the information gain calculation.

The membership functions fR(x) and fA(x) are computed following the same principle
as for decision trees: Equation (B.1) before the rules are fuzzified, and Equation (B.6)
afterwards.

These measures of the instances coverage are used in a similar manner for the other
criteria in FURIA: the pruning metric and the fuzzification purity, and for the com-
putation of rule stretching measures and of the certainty factors for each rule.

B.4 Computation of CLAS12 imprecisions

We know that the reconstruction of the energies and three-momenta of particles does
not give a perfect image of the particles. The geometry of the experiment and the
detector resolutions are encoded into the GEMC software that serves to imitate the
real detectors in simulations [Ungaro et al., 2020].

The performance of an ideal spectrometer and of the reconstruction can be charac-
terized using the simulation since we have the knowledge of the generated particles.
The imprecisions mainly depend on the momentum p and of the θ angle between the
beam axis and the particle’s direction, as seen on Figure B.1. For charged particles
such as the electron and the proton, tracking will determine the resolution. However,
photons are only detected in calorimeters.

To estimate the data imprecisions and try to exploit them in classifiers, we derive
the theoretical imprecisions from simulated data. We compute the errors on the
momentum p, θ and φ angles as function of the momentum p and θ and φ angles.
Figure B.5 illustrates the errors between reconstructed and generated particles as
function of the momentum p. The resolutions on photons energies are largely worse
than for other particles, and often exceed 5%. The expected resolution for the PCAL
and EC calorimeters is indeed 10%√

E (GeV)
[Burkert et al., 2020]. On the opposite, the

resolution of the drift chambers in the forward detector is expected to be comprised
between 0.5 and 1.5%.

246 Appendix B. Exploiting data imprecisions

0 2 4 6 8 10
p

0.100

0.075

0.050

0.025

0.000

0.025

0.050

0.075

0.100
dp/p (p) for electrons

0 2 4 6 8 10
p

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0
dtheta (p) for electrons

0 2 4 6 8 10
p

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0
dphi (p) for electrons

0 2 4 6 8 10
p

0.100

0.075

0.050

0.025

0.000

0.025

0.050

0.075

0.100
dp/p (p) for protons

0 2 4 6 8 10
p

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0
dtheta (p) for protons

0 2 4 6 8 10
p

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0
dphi (p) for protons

0 2 4 6 8 10
p

0.100

0.075

0.050

0.025

0.000

0.025

0.050

0.075

0.100
dp/p (p) for photons

0 2 4 6 8 10
p

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0
dtheta (p) for photons

0 2 4 6 8 10
p

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0
dphi (p) for photons

100

101

102

103

100

101

102

103

104

100

101

102

103

104

100

101

102

103

100

101

102

103

100

101

102

103

100

101

102

100

101

102

103

104

100

101

102

103

Figure B.5: Distributions of errors on (p, θ, φ) for electrons, protons
and photons as function of the momentum p.

Since the errors are symmetrical in φ, we compute imprecisions that depend only on
p and θ. The steps are as follows:

1. we divide the simulated data in 10 bins for p and 10 bins for θ so that the data
is equally divided into the resulting bins;

2. in each bin, we compute the relative errors on p and the absolute errors on θ
and φ;

3. we take the standard deviation of dp
p , dθ and dφ in each bin, which is the final

imprecision for a given bin;

4. covariances between p, θ and φ are also computed to be able to compute the
imprecisions on the Cartesian coordinates dpx, dpy and dpz.

Here biases are not considered, i.e. when the mean of the errors is not 0. This must
be corrected on the data themselves and not through fuzzy solutions.

However, these computations require knowing beforehand the detector resolutions.
Here, they are implemented in the simulation software as estimations of the real

B.5. Experiments 247

detectors resolutions. Moreover, the calibration may be sub-optimal in reality and
induce reconstruction errors, which is not the case in pure simulation. For now, we
conduct experiments using the simulations. Therefore, this method is not directly
applicable to real data unless the Monte Carlo simulation shows perfect agreement
with data.

B.5 Experiments

Table B.1 presents the accuracies averaged over five folds along with their standard
deviations obtained when training different models while taking account or not of
data imprecisions. In addition, Table B.1 also displays the scores while considering
only the imprecisions on the electron and proton, and not on the photons. This last
score is not presented for FURIA, for which the implementation does not currently
authorize having mixture of precise and imprecise input features.

Table B.1: Accuracy scores obtained with different usages of data
imprecisions, for crisp C4.5, fuzzy C4.5 (std or fibo versions), and
FURIA. The first line displays the scores without imprecisions, the
second line with imprecisions on the electron and proton only, and the

last line with all imprecisions (including those on the photons).

Crisp C4.5 Fuzzy C4.5 std Fuzzy C4.5 fibo FURIA

No imp. 0.651± 0.004 0.659± 0.009 0.658± 0.008 0.604± 0.016
e and p 0.642± 0.008 0.647± 0.009 0.645± 0.010 (not implemented)
All imp. 0.612± 0.011 0.612± 0.010 0.612± 0.009 0.570± 0.010

In all cases, using the knowledge about imprecisions degrades significantly the clas-
sification score. Moreover, the imprecisions on the photons are the one contributing
the most to the score drop: in average, 74% of the decrease is due to photons in all
versions of C4.5.

To further investigate, Figure B.6 displays the ROC curves for the crisp and fuzzy
C4.5 trees. However, FURIA is not adapted to the usage of ROC curves.

The drop in performance, observed through accuracies, is visible again here. However,
starting from ' 10% of false positives, the difference is not significant any more. Since
it is the region of interest for DVCS event selection, this is a direction for further
research.

Finally, we manually vary the imprecision, from 0% to 100% of its value. We obtain
a progressive decrease in accuracy as displayed on Figure B.7. The ROC curves are
displayed on Figure B.8. The same progressive drop is observed.

However, zooming on the ROC curves gives Figure B.9: on this zoom, the curves
seem to mix. Progressively, the curves taking into account an increasing degree of
imprecisions surpass the no imprecisions curve. It seems that the imprecisions add
valuable information at small false positives rates, but that the model benefits from
a moderate imprecision information.

248 Appendix B. Exploiting data imprecisions

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
si

ti
ve

 R
a
te

Crisp C4.5

No imprecisions
Imprecisions on e and p only
All imprecisions

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
si

ti
ve

 R
a
te

Fuzzy C4.5 std

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
si

ti
ve

 R
a
te

Fuzzy C4.5 fibo

Figure B.6: ROC curves of crisp C4.5 (left), fuzzy C4.5 std (mid-
dle) and fuzzy C4.5 fibo (right) while taking into account or not data

imprecisions.

0 20 40 60 80 100
Percentage of imprecisions

0.56

0.58

0.60

0.62

0.64

0.66

Ac
cu

ra
cy

Crisp C4.5
Fuzzy C4.5 std
Fuzzy C4.5 fibo
FURIA

Figure B.7: Accuracy as function of the imprecision degree, for the
crisp and fuzzy C4.5 versions and for FURIA.

B.5. Experiments 249

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
si

ti
ve

 R
a
te

Crisp C4.5

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
si

ti
ve

 R
a
te

Fuzzy C4.5 std

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
si

ti
ve

 R
a
te

Fuzzy C4.5 fibo

No imprecisions
20% of imprecisions
40% of imprecisions
60% of imprecisions
80% of imprecisions
100% of imprecisions

Figure B.8: ROC curves crisp C4.5 (left), fuzzy C4.5 std (middle)
and fuzzy C4.5 fibo (right) while taking into account data impreci-
sions at different degrees, from blue (no imprecisions) to red (100% of

imprecisions).

0.000 0.025 0.050 0.075 0.100
False Positive Rate

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

T
ru

e
 P

o
si

ti
ve

 R
a
te

Crisp C4.5

0.000 0.025 0.050 0.075 0.100
False Positive Rate

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

T
ru

e
 P

o
si

ti
ve

 R
a
te

Fuzzy C4.5 std

0.000 0.025 0.050 0.075 0.100
False Positive Rate

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

T
ru

e
 P

o
si

ti
ve

 R
a
te

Fuzzy C4.5 fibo

No imprecisions
20% of imprecisions
40% of imprecisions
60% of imprecisions
80% of imprecisions
100% of imprecisions

Figure B.9: Zoom on the ROC curves of Figure B.8.

250 Appendix B. Exploiting data imprecisions

B.6 Discussion

There are two opposite visions about the usage of imprecisions:

• Adding prior information is supposed to help the model improving its classifi-
cation. In this case, we give the knowledge about which variables are the most
imprecise and therefore the least reliable to use. Split thresholds can also be
adapted to handle more or less imprecise values on both sides. In addition,
knowing data imprecision permits the model to temper its decision when the
inputs are too imprecise. Imprecisions should help decrease false positives and
false negatives at extreme regions of the ROC curve by softening radical classi-
fications.

• However, imprecisions are useful to prioritize the most precise variables to per-
form the classification, when there are several variables carrying the same in-
formation: otherwise, there is no other choice than to use an imprecise variable
if no other correlated variable is available. In addition, the three coordinates
of the particle’s three-momenta are probably correlated, and the imprecisions
similar among them. Therefore, maybe the knowledge of imprecisions can not
improve the classification.

We observe that the usage of imprecisions in transparent machine learning models
does not necessarily help the classification. However, there is a hope for improvement
in the small false positive rate region, where using imprecisions seems to be able to
increase the true positive rate. The framework to embed imprecisions into the machine
learning models may not be adapted: the model should be able to choose to which
extent it is useful to exploit imprecisions, while the proposed method imposes the
procedure to use imprecise information. This forced functioning can be the cause
for the degraded classification performances. Otherwise, the imprecisions themselves
could be badly modeled: a Gaussian with a smaller standard deviation is perhaps
more subtle, or other probability distributions might be more appropriate.

One main point about the usage of imprecisions is the correlation between variables.
A perspective would be to search for other variables as combinations of the base ones,
so that their imprecisions are cancelled thanks to the correlations of the base variables
but so that their discriminative power stays high.

However, one main limitation to this work is the determination of the imprecisions
themselves: as is, it requires knowing the generated particles’ three-momenta, before
going through the detectors and passing the reconstruction process. Therefore, the
procedure demands a better knowledge of the detector resolutions and a validation of
the simulation. This can be solved notably using domain adaptation, which is tackled
in chapter 7.

251

Appendix C

Experimental datasets

Part II describes several machine learning algorithms that have been developed in
this thesis. To assess their interest for other physics problems than CLAS12 data
classification, other physics-related public datasets are used. A description of the
statistics and associated physics problem is provided for each dataset that is used for
experiments in part II.

C.1 CLAS12

Although the generation method of this dataset is detailed in chapter 3, a summary
of the statistics and features is provided here.

Summary of the physics problem

At the CLAS12 experiment at Jefferson Laboratory, an electron beam scatters off
protons at rest in the lab frame. The objective is to discriminate between the DVCS
events whose final state is composed of an electron, a proton, and a photon noted γ,
and the π0 production events that have a similar final state, except that the photon
is replaced by a π0. The later immediately decays into two correlated photons. One
of them may not be detected, mimicking a DVCS event. On the other side, accidental
photons may appear during a DVCS event, which will then have two or more photons
in its final state while remaining a signal event.

Available features

Up to five particles of the output state are kept to form the feature set: one electron,
one proton, and up to three photons ranked by missing mass ep→ epγ. In total, the
35 available features are the three-dimensional momentum (namely mass times speed
of the particle) for each identified particle, expressed in two coordinate systems, plus
the three-vector as is: px, py, pz, pT , θ, φ,p.

Grammar

The grammar for the CLAS12 dataset is displayed on Figure C.1. It involves ener-
gies in GeV, angles in radians and also handles operations on vectors (on the three-
momenta of the output particles).

The transition matrix is presented in Table C.1.

252 Appendix C. Experimental datasets

<s t a r t > : := <E> | <E2> | <A> | <F>
<E> : := <E> + <E> | <E> − <E> | <E> × <F> | <E> ÷ <F>

| s q r t (<E2>) | norm(<M>) | <component>(<M>) | <termE>
<E2> : := <E2> + <E2> | <E2> − <E2> | <E2> × <F> | <E2> ÷ <F>

| <E> × <E> | squa r e (<E>) | dot(<M>,<M>) | <termE2>
<A> ::= <A> + <A> | <A> − <A> | <A> × <F> | <A> ÷ <F>

| ang l e (<M>,<M>) | <termA>
<F> : := <F> + <F> | <F> − <F> | <F> × <F> | <F> ÷ <F>

| <E> ÷ <E> | <E2> ÷ <E2> | <A> ÷ <A> | s q r t (<F>) | squa r e (<F>)
| cos (<A>) | s i n (<A>) | tan(<A>) | <termF>

<M> ::= <M> + <M> | <M> − <M> | <termM>
<component> : := get_x | get_y | get_z

Figure C.1: Grammar used for the CLAS12 dataset. E stands for
a 1D momentum or energy in GeV, E2 for a squared momentum or
energy in GeV2, A for an angle in radians, F for a unitless real number,
M for a three-momentum of unit GeV. <termX> means a terminal of

type X, namely a base feature or a constant.

Table C.1: Transition matrix for the CLAS12 dataset. The prob-
abilities are displayed for the next possible operations (as columns)
given the previous operation (as row). Operations that are not listed
as rows have a uniform transition probability distribution. Operations
that are not listed as columns for a given previous operation cannot
be selected as next operation (probability 0). The notations are the

same than in the grammar (Figure C.1).

Return type: {E: 0.5, A: 0.2, F: 0.1}.
E + E E - E E × F E ÷ F sqrt(E2)

E + E 0.1 0.1 0.1 0.1 0.6
E - E 0.225 0.225 0.25 0.2 0.1

E + E E - E E × F E ÷ F norm(M)

square(E) 0.5 0.1 0.07 0.03 0.3

E2 + E2 E2 - E2 square(E) E × E

E2 + E2 0.4 0.15 0.4 0.05
E2 - E2 0.2 0.07 0.7 0.03
sqrt(E2) 0.7 0.25 0 0.05

E + E E - E E × F E ÷ F sqrt(E2)

E × F 0.15 0.15 0.35 0.3 0.05
E ÷ F 0.15 0.15 0.35 0.3 0.05

F + F F - F F × F square(F) cos(A) sin(A) tan(A)

E × F 0.025 0.025 0.025 0.025 0.375 0.375 0.15
E ÷ F 0.025 0.025 0.025 0.025 0.1 0.1 0.7

M + M M - M

norm(M) 0.9 0.1

C.2. Higgs 253

Size of the dataset Two variants of this dataset are used depending on the consid-
ered learning algorithm. Indeed, this dataset comprises missing values: many events
(i.e. instances) involve less than three photons, which creates missing values for these
photons-related features. Some of the algorithms presented in the following do not
handle missing values. Consequently, two different datasets are considered: one of
25000 instances comprising missing values for some of them, and the other of 14730
instances with no missing value, i.e. with three photons associated to each event. The
major drawback of this second dataset is that the phase space is biased: the machine
learning algorithm will not be able to learn to discriminate between single photon
events. For algorithms that cannot handle missing values, several separate algorithms
need to be trained for each subconfiguration.

These sizes have been chosen regarding baseline scores obtained by a few transparent
machine learning models, as displayed on Figure C.2. Since part II is using feature
construction to enhance the performances of these models, baselines using common
high-level variables used by physicists are also computed on subfigures C.2b and C.2d.

5000 10000 15000 20000 25000 30000 35000 40000
Dataset size

0.30

0.32

0.34

0.36

0.38

0.40

0.42

Co
he

n
ka

pp
a

Dataset with missing values

C4.5
GAM
FURIA

(a) With missing values, using base features

5000 10000 15000 20000 25000 30000 35000 40000
Dataset size

0.44

0.46

0.48

0.50

0.52

0.54

Co
he

n
ka

pp
a

Dataset with missing values
C4.5
GAM
FURIA

(b) With missing values, using high-level features

5000 10000 15000 20000 25000 30000 35000 40000
Dataset size

0.225

0.250

0.275

0.300

0.325

0.350

0.375

0.400

Co
he

n
ka

pp
a

Dataset without missing values

C4.5
AdaBoost
GradientBoosting
GAM
FURIA

(c) Without missing values, using base features

5000 10000 15000 20000 25000 30000 35000 40000
Dataset size

0.40

0.42

0.44

0.46

0.48

Co
he

n
ka

pp
a

Dataset without missing values

C4.5
AdaBoost
GradientBoosting
GAM
FURIA

(d) Without missing values, using high-level fea-
tures

Figure C.2: Evolution of the Cohen’s kappa metric on a 5-fold cross-
validation for different dataset sizes.

C.2 Higgs

This simulated data [Adam-Bourdarios et al., 2014] is publicly available on the Open
Data platform of CERN1, and was the subject of a Kaggle challenge2 in 2014.

1opendata.cern.ch/record/328
2kaggle.com/c/higgs-boson

opendata.cern.ch/record/328
kaggle.com/c/higgs-boson

254 Appendix C. Experimental datasets

Table C.2: Overview of the different processes present in the Higgs
dataset. hτ denotes a hadronic τ and lτ a leptonic τ .

Signal H → hτ + lτ → h ν + lep ν ν

Background W → hτ + lτ → h ν + lep ν ν
t t→ lep+ hτ → lep+ h ν
W → lep+ hτ → lep+ h ν

Physics problem

At CERN, two protons collide head-on with each other and Higgs particles are notably
produced out of the collisions. The objective of the dataset is to detect Higgs bosons
decaying into two τ -particles. One of the τs (leptonic τ) subsequently decays into one
lepton (electron or muon) and two neutrinos, and the other τ (hadronic τ) creates
hadronic jets and one neutrino. Three other processes form the background:

• The first background process involves the decay of a Z boson instead of a Higgs
boson. Identically to the Higgs boson, the Z boson can decay into two τ leptons:
one leptonic τ decaying into one lepton and two neutrinos and one hadronic τ
decaying into hadrons and one neutrino.

• The second background process comes from two top quarks (noted t). They
decay into a lepton and a hadronic τ (producing hadrons and one neutrino).

• The third background process consists in the decay of a W boson into a lepton
and a hadronic τ , similarly to the second background process.

All of these processes are summarized in Table C.2. The main difficulty comes from
the fact that neutrinos cannot be measured in the detectors. Only the “missing mo-
mentum” can be computed, namely the direction and energy of the sum of the missed
neutrinos, based on energy and momentum conservation in the detector. Only events
comprising only one lepton (electron or muon) and one hadronic τ are retained for
the dataset.

Available features

The public dataset comprises 17 “primitive” features and 13 “derived” features. The
latter include manually designed high-level features that involve multiple particles.
Because the objective of this part is to perform automatic feature construction, these
derived features are removed in the used dataset, keeping only the 17 primitive fea-
tures. These primitive features include: the transverse momentum pT , the polar angle
θ and the azimuthal angle φ for the reconstructed hadronic τ , the lepton, the leading
jet (i.e. the jet with the largest transverse momentum), the subleading jet (i.e. with
the second largest momentum). In addition, the energy and φ angle of the missing
momentum are included, as well as the total transverse energy in the detector, the
number of jets, and the scalar sum of the transverse momentum of the jets.

Grammar

The grammar for the Higgs dataset, displayed on Figure C.3, is quite similar to the one
of the CLAS12 dataset, since the same kind of input variables are present: energies in
GeV and angles in radians. Since we are using the dataset as provided by CERN, we
do not add redundant variables such as the Cartesian coordinates or the three-vector.

C.2. Higgs 255

<s t a r t > : := <E> | <E2> | <A> | <F>
<E> : := <E> + <E> | <E> − <E> | <E> × <F> | <E> ÷ <F>

| s q r t (<E2>) | <termE>
<E2> : := <E2> + <E2> | <E2> − <E2> | <E2> × <F> | <E2> ÷ <F>

| <E> × <E> | squa r e (<E>) | <termE2>
<A> ::= <A> + <A> | <A> − <A> | <A> × <F> | <A> ÷ <F> | <termA>
<F> : := <F> + <F> | <F> − <F> | <F> × <F> | <F> ÷ <F>

| <E> ÷ <E> | <E2> ÷ <E2> | <A> ÷ <A> | s q r t (<F>) | squa r e (<F>)
| cos (<A>) | s i n (<A>) | tan(<A>) | <termF>

Figure C.3: Grammar used for the Higgs dataset. E stands for a 1D
momentum or energy in GeV, E2 for a squared momentum or energy in
GeV2, A for an angle in radians, F for a unitless real number. <termX>
means a terminal of type X, namely a base feature or a constant.

The transition matrix (Table C.3) is also similar to the one of the CLAS12 dataset.

Table C.3: Transition matrix for the Higgs dataset. The probabilities
are displayed for the next possible operations (as columns) given the
previous operation (as row). Operations that are not listed as rows
have a uniform transition probability distribution. Operations that are
not listed as columns for a given previous operation cannot be selected
as next operation (probability 0). The notations are the same than in

the grammar (Figure C.3).

Return type: {E: 0.5, A: 0.2, F: 0.1}.
E + E E - E E × F E ÷ F sqrt(E2)

E + E 0.1 0.1 0.1 0.1 0.6
E - E 0.225 0.225 0.25 0.2 0.1

E + E E - E E × F E ÷ F

square(E) 0.8 0.1 0.07 0.03

E2 + E2 E2 - E2 square(E) E × E

E2 + E2 0.4 0.15 0.4 0.05
E2 - E2 0.2 0.07 0.7 0.03
sqrt(E2) 0.7 0.25 0 0.05

E + E E - E E × F E ÷ F sqrt(E2)

E × F 0.15 0.15 0.35 0.3 0.05
E ÷ F 0.15 0.15 0.35 0.3 0.05

F + F F - F F × F square(F) cos(A) sin(A) tan(A)

E × F 0.025 0.025 0.025 0.025 0.375 0.375 0.15
E ÷ F 0.025 0.025 0.025 0.025 0.1 0.1 0.7

Size of the dataset

The dataset consists of more than 800000 events including about 280000 signal events.
Only 100000 events are kept for the experiments with the same ratio between the two
classes (34% of signal events).

256 Appendix C. Experimental datasets

C.3 τ → 3µ

One of the research projects of the Large Hadron Collider beauty (LHCb) experiment
at CERN is to try to observe the decay of the τ− particle into three muons [LHCb
collaboration, 2015]. The problem also led to a Kaggle challenge in 20153.

Physics problem

The studied physics process is the decay of a τ− into three muons: τ− → µ+µ−µ−.
This decay is not supposed to happen according to the Standard Model: the lepton
flavor is not conserved. An observation of such an event would mean a violation of
the latter and consequently a sign of new physics. The particularity of this dataset is
that background events are taken from real data measured at LHCb, so a wide variety
of processes are present. Signal events are simulated to complete the dataset.

Available features

38 features from the original dataset are kept for the feature construction study. These
features include geometrical information about the muons, such as their transverse
momentum pT and polar angle θ, but also their impact parameter, isolation variables,
etc. Unfortunately, the designers of this dataset do not provide the azimuthal angles
φ, which prevents the construction of several high-level variables that are yet relevant.

Grammar

The grammar for the τ → 3µ dataset (displayed on Figure C.4) is quite different from
the ones of CLAS12 and Higgs since it involves distances in addition to energies and
angles.

<s t a r t > : := <E> | <E2> | <A> | <F>
<E> : := <E> + <E> | <E> − <E> | <E> × <F> | <E> ÷ <F>

| s q r t (<E2>) | <termE>
<E2> : := <E2> + <E2> | <E2> − <E2> | <E2> × <F> | <E2> ÷ <F>

| <E> × <E> | squa r e (<E>) | <termE2>
<A> ::= <A> + <A> | <A> − <A> | <A> × <F> | <A> ÷ <F> | <termA>
<F> : := <F> + <F> | <F> − <F> | <F> × <F> | <F> ÷ <F>

| <E> ÷ <E> | <E2> ÷ <E2> | <A> ÷ <A> | s q r t (<F>) | squa r e (<F>)
| cos (<A>) | s i n (<A>) | tan(<A>) | <termF>

Figure C.4: Grammar used for the τ → 3µ dataset. E stands for a 1D
momentum or energy in GeV, E2 for a squared momentum or energy
in GeV2, A for an angle in radians, D for a distance in centimeters,
F for a unitless real number. <termX> means a terminal of type X,

namely a base feature or a constant.

Size of the dataset

The dataset comprises more than 67500 events including about 40000 signal events.
It should be noted that the dataset originally comes with an agreement dataset and
a correlation dataset, to ensure a few constraints are respected for the further physics
analysis: for instance, the learning algorithm should not learn the difference between

3kaggle.com/c/flavours-of-physics

kaggle.com/c/flavours-of-physics

C.4. MAGIC 257

simulated and real events but rather the difference between signal and background
events. The two additional datasets are not used in the following studies.

C.4 MAGIC

This dataset comes from the UCI (University of California at Irvine) machine learning
repository [Dua and Graff, 2017].

Physics problem

The Major Atmospheric Gamma-ray Imaging Cherenkov (MAGIC) Telescope indi-
rectly observes gamma rays from their interaction with the Earth’s atmosphere. Elec-
tronic showers are produced by the entry of gamma particles in the atmosphere, and
are seen from the ground by the MAGIC telescope. The objective is to recognize from
the projection of the shower onto the telescope surface whether this shower originates
from a primary gamma source (signal event) or from cosmic rays (background).

Available features and size of the dataset

The 10 numerical features of the dataset describe the geometry of the reconstructed el-
lipse that has been seen in a simulated telescope. 19020 events are available, including
65% of signal gamma events.

No grammar is used for this dataset (therefore, the feature construction performed in
part II is unconstrained) since we are not expert of the physics behind this experiment.

C.5 Summary

Table C.4 summarizes the characteristics of the presented datasets.

Table C.4: Characteristics of the datasets used for the experiments.
The balance degree is the normalized entropy of the label vector.

Name Size Features Balance degree

Higgs 100000 17 0.93
CLAS12 25000 / 14730 35 1.00 / 0.96
τµ3 67553 38 0.96
MAGIC 19020 10 0.94

259

Appendix D

Model hyperparameters

The following hyperparameters are used in all experiments.

C4.5

• the minimum number of instances per leaf is 2;

• the minimal information gain to divide a node is 10−4;

• no post-pruning is performed, because our implementation did not match the
one of Weka.

Fuzzy C4.5 std In addition to the C4.5 parameters, the α parameter to multiply
the standard deviation of the attribute to determine the width of the fuzzy transition
is set to α = 0.125659549 (10% of the Gaussian distribution).

Fuzzy C4.5 Fibo In addition to the C4.5 parameters, the Fibonacci search of the
width β of the fuzzy transition is performed with 5 iterations.

CART The minimum number of instances per leaf is 2.

AdaBoost The individual classifiers are the CART detailed above with maximal
depth 3. 50 classifiers constitute the tree ensemble. There is not shrinkage of the
classifiers (namely the learning rate is 1). The boosting uses class probabilities.

GradientBoosting 50 classifiers constitute the tree ensemble, the individuals being
CART regressors of maximal depth 3. The criterion for the CART regressors is the
mean squared error. The global loss is the logistic regression loss, with learning rate
0.1.

FURIA The minimum number of instances per split is 2. Two optimizations steps
are performed using three folds.

GAM The baselines are established with the backfitting algorithm and one shape
function per input feature. For FCGAM, the boosting algorithm described in 6.2
is used. For splines, the used technique to fit the shape functions is REML. The
functions are B-splines with 20 knots. For neural network, a fully-connected network
of two layers of size 100 with rectified linear unit as activation is used to fit the shape
functions. The optimization is made with an Adam optimizer with β1 = 0.9 and

260 Appendix D. Model hyperparameters

β2 = 0.999 for maximum 200 epochs. The default regularization is 0.0001 but is
tuned in 6.2.

261

Appendix E

Additional experiments on
embedded feature construction in
tree-based models

E.1 Fuzzy C4.5: std version

Table E.1: Cohen’s kappa score with different feature construction
methods embedded into a fuzzy C4.5: std version. The number of
built features leading to the best scores for GP and downgraded GP

is specified in parentheses.

CLAS12 Higgs

Baseline (without feature
construction)

0.342 ± 0.022 0.394 ± 0.004

MC 0.422 ± 0.023 0.413 ± 0.028

Downgraded GP 0.482 ± 0.019 (100) 0.467 ± 0.016 (100)
GP 0.498 ± 0.016 (100) 0.478 ± 0.015 (100)

τ → 3µ MAGIC

Baseline (without feature
construction)

0.542 ± 0.004 0.675 ± 0.011

MC 0.536 ± 0.018 0.655 ± 0.024

Downgraded GP 0.553 ± 0.017 (100) 0.678 ± 0.017 (100)
GP 0.537 ± 0.032 (15) 0.660 ± 0.027 (100)

262 Appendix E. Additional experiments on embedded feature construction in
tree-based models

CLAS12

0 5 10 15 20 25
Nmax

0.35

0.40

0.45

0.50
Co

he
n'

s k
ap

pa

GP

Fuzzy C4.5 std
Fuzzy C4.5 fibo

0 5 10 15 20 25
Nmax

0.35

0.40

0.45

0.50

Co
he

n'
s k

ap
pa

Downgraded GP

Higgs

0 5 10 15 20 25
Nmax

0.30

0.35

0.40

0.45

0.50

Co
he

n'
s k

ap
pa

GP

Fuzzy C4.5 std
Fuzzy C4.5 fibo

0 5 10 15 20 25
Nmax

0.35

0.40

0.45

0.50

Co
he

n'
s k

ap
pa

Downgraded GP

τ → 3µ

0 5 10 15 20 25
Nmax

0.45

0.50

0.55

Co
he

n'
s k

ap
pa

GP

Fuzzy C4.5 std
Fuzzy C4.5 fibo

0 5 10 15 20 25
Nmax

0.425
0.450
0.475
0.500
0.525
0.550
0.575

Co
he

n'
s k

ap
pa

Downgraded GP

MAGIC

0 5 10 15 20 25
Nmax

0.5

0.6

0.7

Co
he

n'
s k

ap
pa

GP

Fuzzy C4.5 std
Fuzzy C4.5 fibo

0 5 10 15 20 25
Nmax

0.55

0.60

0.65

0.70

Co
he

n'
s k

ap
pa

Downgraded GP

Figure E.1: Evolution of the Cohen’s kappa score with the number
of built features in fuzzy C4.5 std and Fibo. The markers on the right

indicate the score obtained when building 100 features.

E.2. Fuzzy C4.5: Fibo version 263

E.2 Fuzzy C4.5: Fibo version

Table E.2: Cohen’s kappa score with different feature construction
methods embedded into a fuzzy C4.5: Fibo version. The number of
built features leading to the best scores for GP and downgraded GP

is specified in parentheses.

CLAS12 Higgs

Baseline (without feature
construction)

0.346 ± 0.015 0.400 ± 0.003

MC 0.423 ± 0.018 0.453 ± 0.019

Downgraded GP 0.475 ± 0.019 (100) 0.490 ± 0.013 (100)
GP 0.500 ± 0.023 (15) 0.508 ± 0.011 (100)

τ → 3µ MAGIC

Baseline (without feature
construction)

0.545 ± 0.004 0.673 ± 0.012

MC 0.548 ± 0.008 0.703 ± 0.011

Downgraded GP 0.551 ± 0.006 (25) 0.707 ± 0.012 (100)
GP 0.577 ± 0.008 (15) 0.721 ± 0.012 (100)

E.3 CART

Table E.3: Cohen’s kappa score with different feature construction
methods embedded into CART. The number of built features leading
to the best scores for GP and downgraded GP is specified in paren-

theses.

CLAS12 Higgs

Baseline (without feature
construction)

0.243 ± 0.016 0.276 ± 0.005

MC 0.281 ± 0.022 0.317 ± 0.016

Downgraded GP 0.368 ± 0.017 (25) 0.346 ± 0.081 (100)
GP 0.437 ± 0.044 (100) 0.357 ± 0.036 (20)

τ → 3µ MAGIC

Baseline (without feature
construction)

0.432 ± 0.007 0.598 ± 0.011

MC 0.444 ± 0.008 0.605 ± 0.016

Downgraded GP 0.459 ± 0.031 (25) 0.634 ± 0.030 (100)
GP 0.481 ± 0.024 (100) 0.627 ± 0.041 (20)

264 Appendix E. Additional experiments on embedded feature construction in
tree-based models

CLAS12

0 5 10 15 20 25
Nmax

0.25

0.30

0.35

0.40

0.45
Co

he
n'

s k
ap

pa

GP

0 5 10 15 20 25
Nmax

0.25

0.30

0.35

0.40

Co
he

n'
s k

ap
pa

Downgraded GP

Higgs

0 5 10 15 20 25
Nmax

0.25

0.30

0.35

0.40

Co
he

n'
s k

ap
pa

GP

0 5 10 15 20 25
Nmax

0.25

0.30

0.35

0.40

Co
he

n'
s k

ap
pa

Downgraded GP

τ → 3µ

0 5 10 15 20 25
Nmax

0.44

0.46

0.48

0.50

Co
he

n'
s k

ap
pa

GP

0 5 10 15 20 25
Nmax

0.40

0.42

0.44

0.46

0.48

Co
he

n'
s k

ap
pa

Downgraded GP

MAGIC

0 5 10 15 20 25
Nmax

0.58

0.60

0.62

0.64

0.66

Co
he

n'
s k

ap
pa

GP

0 5 10 15 20 25
Nmax

0.56

0.58

0.60

0.62

0.64

0.66

Co
he

n'
s k

ap
pa

Downgraded GP

Figure E.2: Evolution of the Cohen’s kappa score with the number
of built features in CART. The red marker on the right indicates the

score obtained when building 100 features.

E.4. AdaBoost 265

E.4 AdaBoost

For Higgs and τ → 3µ, no more than 50 features are built (1 per tree) for AdaBoost
and GradientBoosting with the GP. The downgraded GP can build up to 350 features
(7 per tree, i.e. the maximum) for all datasets.

Table E.4: Cohen’s kappa score with different feature construction
methods embedded into AdaBoost. The number of built features lead-
ing to the best scores for GP and downgraded GP is specified in paren-

theses.

CLAS12 Higgs

Baseline (without feature
construction)

0.333 ± 0.019 0.450 ± 0.014

MC 0.368 ± 0.011 0.483 ± 0.006

Downgraded GP 0.440 ± 0.014 (50) 0.526 ± 0.008 (350)
GP 0.447 ± 0.015 (50) 0.523 ± 0.008 (50)

τ → 3µ MAGIC

Baseline (without feature
construction)

0.643 ± 0.005 0.683 ± 0.012

MC 0.648 ± 0.006 0.700 ± 0.013

Downgraded GP 0.657 ± 0.007 (25) 0.720 ± 0.014 (5)
GP 0.667 ± 0.007 (50) 0.729 ± 0.012 (50)

E.5 GradientBoosting

Table E.5: Cohen’s kappa score with different feature construction
methods embedded into GradientBoosting. The number of built fea-
tures leading to the best scores for GP and downgraded GP is specified

in parentheses.

CLAS12 Higgs

Baseline (without feature
construction)

0.302 ± 0.012 0.387 ± 0.004

MC 0.407 ± 0.010 0.434 ± 0.005

Downgraded GP 0.499 ± 0.010 (350) 0.467 ± 0.062 (350)
GP 0.482 ± 0.032 (350) 0.394 ± 0.009 (5)

τ → 3µ MAGIC

Baseline (without feature
construction)

0.582 ± 0.006 0.686 ± 0.014

MC 0.607 ± 0.006 0.711 ± 0.015

Downgraded GP 0.598 ± 0.010 (50) 0.713 ± 0.014 (350)
GP 0.590 ± 0.009 (5) 0.685 ± 0.013 (3)

266 Appendix E. Additional experiments on embedded feature construction in
tree-based models

CLAS12

0 1 2 5 25 50 150 350
Nmax

0.30

0.35

0.40

0.45

0.50

Co
he

n'
s k

ap
pa

GP
AdaBoost
GradientBoosting

0 1 2 5 25 50 150 350
Nmax

0.30

0.35

0.40

0.45

0.50

Co
he

n'
s k

ap
pa

Downgraded GP

Higgs

0 1 2 5 25 50
Nmax

0.2

0.3

0.4

0.5

Co
he

n'
s k

ap
pa

GP

AdaBoost
GradientBoosting

0 1 2 5 25 50 150 350
Nmax

0.375

0.400

0.425

0.450

0.475

0.500

0.525
Co

he
n'

s k
ap

pa

Downgraded GP

τ → 3µ

0 1 2 5 25 50
Nmax

0.45

0.50

0.55

0.60

0.65

Co
he

n'
s k

ap
pa

GP

AdaBoost
GradientBoosting

0 1 2 5 25 50 150 350
Nmax

0.525

0.550

0.575

0.600

0.625

0.650

Co
he

n'
s k

ap
pa

Downgraded GP

MAGIC

0 1 2 5 25 50 150 350
Nmax

0.55

0.60

0.65

0.70

0.75

Co
he

n'
s k

ap
pa

GP

AdaBoost
GradientBoosting

0 1 2 5 25 50 150 350
Nmax

0.66

0.68

0.70

0.72

0.74

Co
he

n'
s k

ap
pa

Downgraded GP

Figure E.3: Evolution of the Cohen’s kappa score with the number
of built features in AdaBoost and GradientBoosting.

267

Appendix F

Additional experiments on domain
adaptation

F.1 Experiments with smeared simulated data with flat
distributions

The training set comprises π0 production events simulated with a flat distribution
over the CLAS12 phase space. The validation set comprises 20% of such events, and
the test set both DVCS and π0 production events simulated with a flat distribution.

Hyperparameters have been tuned with the method detailed in 7.3.1:

• the regularization parameter of optimal transport is set to 0.1;

• FA MMD-net: 4 layers, batch size 512;

• FA WGAN-GP: 4 layers for both the generator and discriminator, batch size
256;

• additive MMD-net: 4 layers, batch size 512;

• additive WGAN-GP: 4 layers for both the generator and discriminator, batch
size 512;

• additive FA MMD-net: 5 layers, batch size 512;

• additive FAWGAN-GP: 5 layers for both the generator and discriminator, batch
size 512;

• additive random FA MMD-net: 5 layers, batch size 512;

• additive random FA WGAN-GP: 7 layers for both the generator and discrimi-
nator, batch size 512.

Table F.1 presents the KS distances on the validation set.

Table F.2 presents the KS distances and area under the absolute difference of ROC
curves (AUD) when the learnt mapping is applied on the test set generated with flat
distributions.

The MMD-net seems to be a simpler model, whatever the variant, which does not nec-
essarily need additional features to get good results. Indeed, the MMD distance used
as loss function naturally considers the correlations between variables. On the oppo-
site, the WGAN-GP seems to require more help to achieve its maximal performance,
but obtains better results in the end.

268 Appendix F. Additional experiments on domain adaptation

Table F.1: Results on the validation set for flat distributions (π0

production events only).

KSFuzzy C4.5 KSFCGAM min
(
r, 1
r

)
Baseline 0.019 0.031

Normalization 0.023 0.026 -0.80
CORAL 0.040 0.084 0.40

Optimal transport 0.017 0.026 0.40

FA MMD-net 0.097 0.052 0.27
FA WGAN-GP 0.105 0.040 0.11
Additive MMD-net 0.018 0.025 0.17
Additive WGAN-GP 0.019 0.031 0
Additive FA MMD-net 0.019 0.029 0
Additive FA WGAN-GP 0.008 0.021 0.91
Additive random FA MMD-net 0.019 0.027 0
Additive random FA WGAN-GP 0.007 0.019 0.92

F.2 Experiments with smeared simulated data with cross-
sections

The training dataset consists of exclusive π0 production events simulated with cross-
sections. The validation set comprises 20% of such events. The test set is formed with
DVCS and π0 production events in equal amounts, simulated with cross-sections.

Hyperparameters with this training set are:

• the regularization parameter of optimal transport is set to 0.1;

• FA MMD-net: 4 layers, batch size 256;

• FA WGAN-GP: 8 layers for both the generator and discriminator, batch size
512;

• additive MMD-net: 4 layers, batch size 512;

• additive WGAN-GP: 6 layers for both the generator and discriminator, batch
size 256;

• additive FA MMD-net: 6 layers, batch size 256;

• additive FAWGAN-GP: 7 layers for both the generator and discriminator, batch
size 256;

• additive random FA MMD-net: 4 layers, batch size 256;

• additive random FA WGAN-GP: 7 layers for both the generator and discrimi-
nator, batch size 256.

Table F.3 presents the KS distances on the validation set.

Table F.4 presents the KS distances and AUD metrics when the learnt mapping is
applied on the test set generated with cross-sections.

F.2. Experiments with smeared simulated data with cross-sections 269

Table F.2: Results on the test set generated with flat distributions
(DVCS and π0 production events).

KSFuzzy C4.5 KSFCGAM

Baseline 0.104 0.047

Normalization 0.061 0.023
CORAL 0.050 0.090

Optimal transport 0.049 0.036

FA MMD-net 0.031 0.019
FA WGAN-GP 0.114 0.167
Additive MMD-net 0.047 0.021
Additive WGAN-GP 0.040 0.079
Additive FA MMD-net 0.062 0.024
Additive FA WGAN-GP 0.016 0.023
Additive random FA MMD-net 0.058 0.019
Additive random FA WGAN-GP 0.067 0.015

AUDFuzzy C4.5 AUDFCGAM

Baseline 0.070 0.043

Normalization 0.049 0.034
CORAL 0.022 0.010

Optimal transport 0.021 0.033

FA MMD-net 0.008 0.024
FA WGAN-GP 0.071 0.022
Additive MMD-net 0.040 0.033
Additive WGAN-GP 0.011 0.006
Additive FA MMD-net 0.048 0.036
Additive FA WGAN-GP 0.009 0.012
Additive random FA MMD-net 0.045 0.035
Additive random FA WGAN-GP 0.008 0.007

Table F.5 presents the KS distances and AUD metrics when the learnt mapping is
applied on the reduced test set.

270 Appendix F. Additional experiments on domain adaptation

Table F.3: Results on the validation set for cross-sections distribu-
tions (π0 production events only).

KSFuzzy C4.5 KSFCGAM min
(
r, 1
r

)
Baseline 0.041 0.089

Normalization 0.067 0.038 -0.51
CORAL 0.369 0.392 0.92

Optimal transport 0.046 0.087 -0.4

FA MMD-net 0.041 0.028 0
FA WGAN-GP 0.041 0.043 0
Additive MMD-net 0.035 0.032 0.11
Additive WGAN-GP 0.013 0.026 0.44
Additive FA MMD-net 0.017 0.028 0.39
Additive FA WGAN-GP 0.020 0.029 0.35
Additive random FA MMD-net 0.022 0.017 0.26
Additive random FA WGAN-GP 0.018 0.029 0.38

F.2. Experiments with smeared simulated data with cross-sections 271

Table F.4: Results on the test set generated with cross-sections
(DVCS and π0 production events).

KSFuzzy C4.5 KSFCGAM

Baseline 0.090 0.047

Normalization 0.046 0.185
CORAL 0.143 0.187

Optimal transport 0.062 0.057

FA MMD-net 0.040 0.032
FA WGAN-GP 0.113 0.206
Additive MMD-net 0.114 0.046
Additive WGAN-GP 0.172 0.131
Additive FA MMD-net 0.025 0.049
Additive FA WGAN-GP 0.138 0.141
Additive random FA MMD-net 0.024 0.036
Additive random FA WGAN-GP 0.096 0.058

AUDFuzzy C4.5 AUDFCGAM

Baseline 0.040 0.028

Normalization 0.017 0.009
CORAL 0.097 0.029

Optimal transport 0.036 0.049

FA MMD-net 0.023 0.014
FA WGAN-GP 0.114 0.056
Additive MMD-net 0.053 0.011
Additive WGAN-GP 0.100 0.054
Additive FA MMD-net 0.011 0.009
Additive FA WGAN-GP 0.085 0.056
Additive random FA MMD-net 0.007 0.010
Additive random FA WGAN-GP 0.040 0.014

272 Appendix F. Additional experiments on domain adaptation

Table F.5: Results on the reduced test set (DVCS and π0 production
events).

KSFuzzy C4.5 KSFCGAM

Baseline 0.080 0.043

Normalization 0.032 0.124
CORAL 0.167 0.213

Optimal transport 0.058 0.056

FA MMD-net 0.028 0.018
FA WGAN-GP 0.069 0.097
Additive MMD-net 0.040 0.037
Additive WGAN-GP 0.136 0.140
Additive FA MMD-net 0.024 0.044
Additive FA WGAN-GP 0.088 0.098
Additive random FA MMD-net 0.015 0.014
Additive random FA WGAN-GP 0.063 0.068

AUDFuzzy C4.5 AUDFCGAM

Baseline 0.038 0.035

Normalization 0.017 0.011
CORAL 0.095 0.035

Optimal transport 0.023 0.043

FA MMD-net 0.015 0.019
FA WGAN-GP 0.048 0.021
Additive MMD-net 0.010 0.012
Additive WGAN-GP 0.093 0.054
Additive FA MMD-net 0.012 0.015
Additive FA WGAN-GP 0.062 0.044
Additive random FA MMD-net 0.013 0.016
Additive random FA WGAN-GP 0.030 0.013

273

Appendix G

Complete interpretability survey
and responses

The two parts of the interpretability survey discussed in chapter 8 are concatenated
starting from next page. Then, the GAM model the FURIA model and the neural
network referenced to as a link are displayed. The responses are displayed just after.

1.

Using machine learning in experimental physics

2.

Une seule réponse possible par ligne.

We would like to apply machine learning algorithms to isolate the deeply virtual Compton scattering events: an electron beam e interacts with a proton target p at rest. The final state is composed
of the scattered electron e', the recoil proton p' as well as a multi-GeV gamma-photon.

The main source of background is the exclusive production of Pi0 which has the same final state as DVCS except that the photon is replaced by a Pi0-meson with an energy as high as the photon
in DVCS. The latter immediately decays into two photons and its energy is randomly shared between them: Some decays produce photons with almost same energy while others produce a pair
with a multi-GeV photon and only a few MeV photon.

Last but not least, the analysis considers events with a third photon gamma_3 in the final state, if any from background.

We developed an algorithm to build automatically high-level variables, such as a momentum balance or a missing mass, from the particle's three-momenta. Then, interpretable machine learning
algorithms are trained using these high-level variables. The next sections have as objective to evaluate both the interpretability of these built variables and the interpretability of the machine
learning models themselves.

Evaluation of
high-level
variables

Below are several high-level variables. The majority of them have been designed by a machine learning algorithm with varying settings. For each group, could you
rate the presented variables according to your ability to understand what they mean and why they are considered discriminative for the event selection problem?

You will probably find that some of the presented variables are really really weird, it is normal: we compare different algorithms. The separating potential of the
variables does not count here, only their understandability according to your perception.

Interpretability survey
Thank you for accepting to answer this survey. The objective is to evaluate the interpretability of machine learning models developed at CEA Saclay for the analysis of
CLAS12 data.

The survey is divided in two parts, sent separately by email. The first part of this questionnaire should take about 30 minutes to complete.
*Obligatoire

First, please provide us a "keyword" (for instance: your birth town, name of your dog, first name of your grandmother...) that will be used to
correlate the two parts of the survey: *

Which degree of transparency would you estimate necessary for each of these tasks? *

No need for any explanation as long as
the method is working well

The method should be sufficiently
transparent to be validated

Complete understanding of the method is far more
important than performance

Tracking

Particle identification

Event selection

Smearing simulation
to imitate data

Tracking

Particle identification

Event selection

Smearing simulation
to imitate data

Base features from which the high-level variables are built. Energies and momenta are expressed in GeV and won't exceed 10.6 GeV (the incoming
beam energy). Angles are expressed in radians. Up to three photons are considered (only one or two exist in case of DVCS or Pi0 events, but a third
photon can come from background or from electron radiation). We rank the three photons from the most likely to be a DVCS event to the least likely,
based on the missing mass ep->epγX.

3.

Une seule réponse possible par ligne.

4.

How would you rate these 8 variables, from poorly understandable (1) to highly understandable (5)? Do not hesitate to use the full range of
ratings. *

Poorly understandable 2 3 4 Highly understandable

Variable 1

Variable 2

Variable 3

Variable 4

Variable 5

Variable 6

Variable 7

Variable 8

Variable 1

Variable 2

Variable 3

Variable 4

Variable 5

Variable 6

Variable 7

Variable 8

Do you have any additional comments?

5.

Une seule réponse possible par ligne.

6.

Evaluation of a
parametric
model

This part aims at evaluating the interpretability of a model called a GAM (generalized additive model). A classification GAM produces a single output ŷ between 0
and 1 to classify events, 0 being signal and 1 contamination. The model consists in a sum of univariate smooth functions as displayed below.

The sum F(X) is linked to the output ŷ by a sigmoid function: the higher the value of F(X), the closer ŷ gets to 1, and conversely. The variables x_i can be momenta components or high-level
variables such as an energy balance. The f_i functions are smooth functions determined throughout a training on simulation data.

At this link: https://tinyurl.com/y47fuyql (link to a PDF file) is a GAM trained on CLAS12 simulation data. It comprises 5 terms. The higher the return value, the higher the probability to have a
background event. Conversely, the closest the return value is to 0, the higher the probability to have a DVCS event. We placed on the plots the values that will be useful to answer next question.

How would you rate these 8 variables, from poorly understandable (1) to highly understandable (5)? Do not hesitate to use the full range of
ratings. *

Poorly understandable 2 3 4 Highly understandable

Variable 1

Variable 2

Variable 3

Variable 4

Variable 5

Variable 6

Variable 7

Variable 8

Variable 1

Variable 2

Variable 3

Variable 4

Variable 5

Variable 6

Variable 7

Variable 8

Do you have any additional comments?

7.

Une seule réponse possible.

Signal event (DVCS) (i.e. ŷ close to 0)

Background event (Pi0) (i.e. ŷ close to 1)

I don't know

8.

Une seule réponse possible.

Term 1 (f1(x1))

Term 2 (f2(x2))

Term 3 (f3(x3))

Term 4 (f4(x4))

Term 5 (f5(x5))

I don't know

9.

Une seule réponse possible.

That was a random guess

25% sure

50% sure

75% sure

100% sure

10.

Une seule réponse possible.

Not at all, I cannot imagine how to validate such a model

1 2 3 4 5

Completely transparent, easy validation

11.

For instance, how would an event with the following characteristics be classified by the GAM (i.e. ŷ is closer to 1 (Pi0) or 0 (DVCS))? (Necessary
high-level variables computed from these values are printed directly on the GAM plots in the PDF file) *

Which term would you delete in order for this specific example to be classified differently? *

How confident are you in your answers? *

Do you think this model is sufficiently transparent for the analysis to be easily validated? By validation, we mean a retro-engineering of the
decision process regarding the classification of events to understand the performances of the algorithm in a given region of the phase space. *

Do you have any comments on this model?

1.

As a reminder, we would like to apply machine learning algorithms to isolate the deeply virtual Compton scattering events: an electron beam e interacts with a proton target p at rest. The final
state is composed of the scattered electron e', the recoil proton p' as well as a multi-GeV gamma-photon.

The main source of background is the exclusive production of Pi0 which has the same final state as DVCS except that the photon is replaced by a Pi0-meson with an energy as high as the photon
in DVCS. The latter immediately decays into two photons and its energy is randomly shared between them: Some decays produce photons with almost same energy while others produce a pair
with a multi-GeV photon and only a few MeV photon.

Last but not least, the analysis considers events with a third photon gamma_3 in the final state, if any from background.

We developed an algorithm to build automatically high-level variables, such as a momentum balance or a missing mass, from the particle's three-momenta. Then, interpretable machine learning
algorithms are trained using these high-level variables. The next sections have as objective to evaluate both the interpretability of these built variables and the interpretability of the machine
learning models themselves.

Evaluation of
high-level
variables

Below are several high-level variables. The majority of them have been designed by a machine learning algorithm with varying settings. For each group, could you
rate the presented variables according to your ability to understand what they mean and why they are considered discriminative for the event selection problem?

You will probably find that some of the presented variables are really really weird, it is normal: we compare different algorithms. The separating potential of the
variables does not count here, only their understandability according to your perception.

Base features from which the high-level variables are built. Energies and momenta are expressed in GeV and won't exceed 10.6 GeV (the incoming
beam energy). Angles are expressed in radians. Up to three photons are considered (only one or two exist in case of DVCS or Pi0 events, but a third
photon can come from background or from electron radiation). We rank the three photons from the most likely to be a DVCS event to the least likely,
based on the missing mass ep->epγX.

Interpretability survey
Thank you for accepting to answer the second part of this survey.

As a reminder, the objective is to evaluate the interpretability of machine learning models developed at CEA Saclay for the analysis of CLAS12 data.

This second part of the questionnaire should take about 30 minutes to complete.
*Obligatoire

First, could you remind us your "keyword" that you entered in the first part of the survey? (for instance: your birth town, name of your dog, first
name of your grandmother...) *

2.

Une seule réponse possible par ligne.

How would you rate these 8 variables, from poorly understandable (1) to highly understandable (5)? Do not hesitate to use the full range of
ratings. *

Poorly understandable 2 3 4 Highly understandable

Variable 1

Variable 2

Variable 3

Variable 4

Variable 5

Variable 6

Variable 7

Variable 8

Variable 1

Variable 2

Variable 3

Variable 4

Variable 5

Variable 6

Variable 7

Variable 8

3.

Evaluation
of a rule-
based
model

This part aims at evaluating the interpretability of a rule-based model called FURIA. A rule base consists of a set of rules. More specifically, a FURIA rule base consists
in two parts, one for each class (DVCS, Pi0). To evaluate how a given example is classified, one must consider the two parts separately. For each part (i.e. class), one
must add the confidence values of each rule that is validated by the example (i.e. the rule covers the given example). Therefore, a "score" is obtained for each class
being the sum of the confidence values of the triggered rules. The predicted class is the one obtaining the maximal score.

At this link: https://tinyurl.com/y6a8wof9 (link to a PDF file) is a FURIA model trained on CLAS12 simulation data. It comprises 15 rules optimized on training data. We
placed under the rules the values that will be useful to answer next question.

4.

Une seule réponse possible.

Signal event (DVCS)

Background event (Pi0)

I don't know

5.

Une seule réponse possible.

Rule 1

Rule 2

Rule 3

Rule 4

Rule 5

Rule 6

Rule 7

Rule 8

Rule 9

Rule 10

Rule 11

Rule 12

Rule 13

Rule 14

Rule 15

I don't know

Do you have any additional comments?

For instance, how would an event with the following characteristics be classified by the FURIA model? (Necessary high-level variables computed
from these values are printed directly under the FURIA rules in the PDF file) *

Which rule would you delete in order for this event to be classified differently? *

6.

Une seule réponse possible.

That was a random guess

25% sure

50% sure

75% sure

100% sure

7.

Une seule réponse possible.

Not at all, I cannot imagine how to validate such a model

1 2 3 4 5

Completely transparent, easy validation

8.

Evaluation
of a
neural
network

This part aims now at evaluating a neural network. A neural network consists in non-linear operations on the inputs.

A network has been trained on CLAS12 simulation data and is available at this link: https://tinyurl.com/y2sbps64 (link to a PDF file). It comprises 1281 weights in total
that have been optimized on training data. From these weights are extracted the relative importances of the different input variables (displayed on the right side in the
PDF). This reflects the variables that impact the most the classification depending on their values (color from blue to red). A negative SHAP value means a negative
effect on the output (more likely a Pi0 event), while a positive SHAP value pushes towards the output being a DVCS event.

No other information is available about the network. Next to the feature importance study are values that will be useful for the next question.

9.

Une seule réponse possible.

Signal event (DVCS)

Background event (Pi0)

I don't know

How confident are you in your answers? *

Do you think this model is sufficiently transparent for the analysis to be easily validated? By validation, we mean a retro-engineering of the
decision process regarding the classification of events to understand the performances of the algorithm in a given region of the phase space. *

Do you have any comments on this model?

For instance, how would an event with the following characteristics be classified by the neural network? (Necessary variables are printed directly
on the right side of the PDF file, along with corresponding colors) *

10.

Une seule réponse possible.

That was a random guess

25% sure

50% sure

75% sure

100% sure

11.

Une seule réponse possible.

Not at all, I cannot imagine how to validate such a model

1 2 3 4 5

Completely transparent, easy validation

12.

Comparison between
different models

In this part, you will be asked to subjectively compare four methods for event selection. The first three are the GAM model, the FURIA model and
the neural network of the previous parts.

Model A: GAM
Available at this link: https://tinyurl.com/y47fuyql (link to a PDF file)

Model B: FURIA
Available at this link: https://tinyurl.com/y6a8wof9 (link to a PDF file)

Model C: neural network
Available at this link: https://tinyurl.com/y2sbps64 (link to a PDF file)

Model D: cuts
The fourth model is a list of cuts that a physicist would use for event selection:

Below is a chart representing the performances of the different models on a simulation dataset. In y-axis is the selection efficiency (i.e. the proportion of DVCS events actually retained by the
event selection process). In x-axis is the Pi0 contamination (i.e. proportion of Pi0 events in the selected subset of events). Note that the machine learning models permit to fine-tune a posteriori
the balance between the statistic and the contamination. However, FURIA has a limited flexibility.
Model D (cuts) retrieved 23% of signal events and its selected sample comprises 16% of Pi0 contamination.
Finally, it should be noted that a Pi0 subtraction technique should be able to remove the remaining contamination provided it does not exceed around 30% of the selected sample.

How confident are you in your answer? *

Do you think this model is sufficiently transparent for the analysis to be easily validated? By validation, we mean a retro-engineering of the
decision process regarding the classification of events to understand the performances of the algorithm in a given region of the phase space. *

Do you have any comments on this model?

13.

Une seule réponse possible par ligne.

14.

Questions about you

Now, please imagine for each model how you would validate it: try to predict how each model would perform on real data with different noise
characteristics (different cross sections or additional sources) and/or different resolutions compared to the simulation used for training.
Considering on the one hand the robustness and ease of validation of the different models, and on the other hand the performances displayed
above, which model would you recommend to a PhD student or a post-doctoral fellow to perform an analysis? By this question, we would like to
evaluate your personal tradeoff between performance and complexity to elaborate an associated validation procedure. *

The model I would prefer to use Second model Third model The model I dislike the most

Model A (GAM)

Model B (FURIA)

Model C (neural network)

Model D (cuts)

Model A (GAM)

Model B (FURIA)

Model C (neural network)

Model D (cuts)

Do you have any additional comments?

15.

Une seule réponse possible.

Autre :

PhD student

Post-doc

Staff scientist

Professor

16.

Une seule réponse possible.

24 or less

25 to 34

35 to 49

50 to 64

65 or more

17.

Plusieurs réponses possibles.

Nuclear physics

Hadronic physics

Particle physics

18.

Une seule réponse possible.

I am a frequent user of machine learning techniques

I am curious of these techniques or had once a student who used these techniques

I do not know anything about machine learning

19.

Une seule réponse possible.

I do not expect machine learning to change dramatically the reach of our experiments

It can mostly improve the low-level analysis: tracking efficiency, particle identification, shower reconstruction, ...

Having the full reconstruction-analysis chain with machine learning tools will improve significantly the physics output

20.

Une seule réponse possible.

Daily

When there is a complex task too long to be done by a graduate student

I no longer practice programming

21.

You are...

What is your age?

What is (are) your field(s) of expertise?

How knowledgeable are you about machine learning/artificial intelligence?

What are your expectations of applying machine learning techniques in physics?

How often do you practice programming?

What is your preferred programming language?

22.

Ce contenu n'est ni rédigé, ni cautionné par Google.

Thank you for answering this survey! You can leave us your email if you are willing to deepen the discussion later.

 Forms

Appendix G. Complete interpretability survey and responses 287

GAM

F
(X

)
=

0.
0
01

+

7
8

9
1
0

1
1

1
2

1
3

z

1
.5

1
.0

0
.5

0
.0

0
.5

1
.0

f(z)

g
e
t_

z(
p
_e

 +
 p

_g
1
 +

 p
_p

)

-0
.6

10
.3

+

0
1
0

2
0

3
0

4
0

5
0

6
0

7
0

z

0
.0

0
.5

1
.0

1
.5

f(z)a
n
g
le

(p
_g

1
,
p
_g

2
)

+
 a

n
g
le

(p
_g

2
,
p
_g

1
)

+
 a

n
g
le

(p
_g

1
 +

 p
_g

2
,
p
_g

2
)

z

f(z)

18

1.
7

+

1
0

8
6

4
2

0
z

1
.5

0

1
.2

5

1
.0

0

0
.7

5

0
.5

0

0
.2

5

0
.0

0

0
.2

5

0
.5

0

f(z)

2
*p

T
_g

1
 -
 n

o
rm

(-
p
_e

in
 +

 p
_g

1
)

z

-5
.5

-0
.2
0

+

0
1

2
3

4
z

0
.6

0
.4

0
.2

0
.0

0
.2

0
.4

0
.6

f(z)

n
or

m
(p

_e
 -
 p

_e
in

 +
 p

_g
1
 +

 p
_p

)

z

0.
2 0.
3

+

5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

z

2
.0

1
.5

1
.0

0
.5

0
.0

0
.5

1
.0

f(z)

a
n
g
le

(p
_g

1
 -
 p

_g
2
,
p
_g

2
)

+
 a

n
g
le

(p
_g

1
 -
 p

_g
2
,
-p

_e
 +

 p
_g

2
)

z

0.
2

14
3

288 Appendix G. Complete interpretability survey and responses

FURIA base

2.5

2.5

2.5

2.5

-0.3

106

1.3

1.3

1.3

1.3

1.3

1.3

28

5.0

1.0

13

108

108

107 -0.3 -0.3

0.2

0.6 1.0

0.8

0.8

107 1.0

-0.3

106

106

106

2.5

2.5

2.5 5.0

5.0 5.0

5.0 5.0

5.0 5.0

2.5

2.5

106
Rule 1:

Rule 2:

Rule 3:

Rule 4:

Rule 5:

Rule 6:

Rule 7:

Rule 8:

Rule 9:

Rule 10:

Rule 11:

Rule 12:

Rule 13:

Rule 14:

Rule 15:

2.5

2.5

2.5

2.5

-0.3

106

1.3

1.3

1.3

1.3

1.3

1.3

28

5.0

1.0

13

108

108

107 -0.3 -0.3

0.2

0.6 1.0

0.8

0.8

107 1.0

-0.3

106

106

106

2.5

2.5

2.5 5.0

5.0 5.0

5.0 5.0

5.0 5.0

2.5

2.5

106
Rule 1:

Rule 2:

Rule 3:

Rule 4:

Rule 5:

Rule 6:

Rule 7:

Rule 8:

Rule 9:

Rule 10:

Rule 11:

Rule 12:

Rule 13:

Rule 14:

Rule 15:

D
V

C
S

 r
ul

es
P

i0
 r

ul
es

Neural network

Input Layer ∈ ℝ³⁰ Hidden Layer ∈ ℝ²⁰ Hidden Layer ∈ ℝ³⁰ Output Layer ∈ ℝ¹

0.2 0.1 0.0 0.1 0.2 0.3
SHAP value (impact on model output)

py_p

pz_e

theta_g3

px_p

phi_g3

theta_g1

px_g1

theta_g2

pT_p

px_e

pz_g2

theta_e

phi_p

phi_g2

phi_e

phi_g1

pT_g1

pz_p

theta_p

pz_g1

Low

High

Fe
a
tu

re
 v

a
lu

e

py_p = 2.0

pz_e = 5.0

theta_g3 = 143

px_p = 0.6

phi_g3 = 63

theta_g1 = 28

px_g1 = -0.3

theta_g2 = 29

pT_p = 2.1

px_e = -0.3

pz_g2 = 0.8

theta_e = 12

phi_p = 73

phi_g2 = -117

phi_e = 107

phi_g1 = -103

pT_g1 = 1.3

pz_p = 2.8

theta_p = 37

pz_g1 = 2.5

Part 1

Using machine learning in experimental physics

Evaluation of high-level variables

Do you have any additional comments?
10 answers

Consider recasting the variables in invariant form for applicability to EIC

I would think invariant mass of two photons would be useful too in distinguishing pi0 vs DVCS.

No

These variable has some physics meaning

May be with oral explanations I could understand more variables

In variable 1, what is the meaning of the angle between TWICE the momentum vector of the

electron and one of the gammas?

What is the gamma_3?

I can't quite understand why the first variable's middle term is angle(p^gamma2, 2*p^e). Is the

coefficient of p^2, "2", necessary?

It is highly unclear how the reader's vector algebra proficiency is relevant at all in how the

machine learning algorithm is supposed to work. I always thought that the promise of ML is to let

the computer find out features and combinations thereof that might escape a human. The fact

that a variable makes or does not make sense or has an immediate physical interpretation

(again, for humans) should not be a reason for preventing a ML algorithm from using it. That said

this reviewer is highly skeptical of variables that combine several/many individually measured

features, especially as there could/are correlations between these that might, or might not be

fully taken into account and/or might be underestimated.

The understandability seems almost binary to me: either I understand what the variable is, and

then it's absolutely clear, or I kind of see what the expression is doing but I don't see exactly why.

Do you have any additional comments?
6 answers

in Variable 6, when calculating angle why instead of p_e, the 2p_e is used? the result should be

the same right?

No

those variable has no physics meaning at all, just a mathematical variable

Why we need such variables? of course, we can invent whatever we want. If you explain the

purpose of these variables, I can answer. Without this, I am completely confused

See above comment. One would also want to add that QE (quantification of error) in ML is

relatively straightforward only in linear regression cases AND when only random uncertainties

are present. Most of the work envisioned here does not fall in that category.

Variable 1 here is the same as variable 6 in the block above (and variable 1 is the same as

variable 6 in the block above).

Evaluation of a parametric model

Do you have any comments on this model?
11 answers

I think that the correlation between the variables Xi should be studied- I believe that this is

already done. It is hardly possible to validate the model without undertanding the correlation

between the variables, understanding the variable is improtant and not essential, but in

separating signal/background, it is improtenter to understand correlations between different

variables

pi0 vs dvcs separation is one of the most straight-forward aspects of DVMP analysis. Harder

topics are tracking and pid. Are you using this as a test case, since we have confidence in the

"classic" approach, or is this intended as a major advance in DVCS analysis?

How the functions f1(x1), f2(x2) etc are normalized?, i.e do they have a certain integral?

in some x_i there is p_in in the formulae, but if I am not mistaken, p_in is zero, therefore
redundant in the formulae (and slightly misleading).
I was expecting that the x_i were a subset of the variables shown in the previous page

too little information

X5 seems to be strange; not sure if it adds sensitivity.

I was not able to understand it completely.

il aurait été bon de rappeler l'energie du faisceau pour aider et la notation dans le fichier GAM est

incorrecte (vect(p_in) est en fait vect(e_in)).

The most discriminant term (f2) is one of the less "explanable" to me...
GAMs do not produce really transparent results even though they are optimal, wrt to a certain
training.

The danger to me would be the bias introduced by the training of this model which makes some
variable more discriminant than others for a specific training set. This can be called a systematic
error...

This seems to me less trustworthy than a classical analysis where this bias is more controlled, or
at least understandable.

Moreover how to put the frontier between a signal and background event ? Is 0.5 the best choice
? What is the shape of the probability distribution for a set of known signal events, (and
background events), is the separation completely clear (or figure of merit ?)

While this reviewer appreciates the intent of this survey, the way the questions are formulated is

somewhat problematic. The algorithm described at the top of this page is a regression

(summing f1, f2, ..., plugging into the chosen activation function, sigmoid in this case (why not

tanh? softsign? or any other choice). Then the reviewer is asked to turn this regression into a

classification and pass judgement whether the data points to a DVCS or a background event.

While it is straightforward to find out that the 1.7 term is the one that influences the most the

output of the sigmoid (and thus its presence/absence will modify the regression output the

most) LACKING a threshold value for the classification means that the output is PURE

guesswork. One would (wrongfully) assume that the threshold would be halfway between 0 and

1 (so 0.5) thus possibly changing the classification by removing the second term. However, that

threshold might as well be 0.9 (again, we are not told!), in which case the second does not make

a difference in the classification. Thus, the model is not completely described and asking

reviewers to pass judgement on it is not very constructive.

Not really, but this exercise was fun! And an excellent way of explaining how this ML method

works

Part 2

Evaluation of high-level variables

Do you have any additional comments?
8 answers

the expressions are clear, the physical meaning is not clear sometimes, but I can understand the

idea that those variables might have a good separation power based on whether the event is

signal or background!

What is the meaning of a cosine of a momentum?

trigonometric functions acting on non-pure numbers are meaningless

No

Not familiar enough to judge the understanding of the variables.

Why you are asking 90% of your questions? What do you want?

"Understandable" and "interpret-able" from the physics standpoint are, in this reviewer's mind,

two totally different terms. The fact that one knows how to manipulate elements of an abstract

algebra (like, say, 4 vectors), does not mean that any/all operations one can carry out with said

objects have direct/simple physics interpretation. As noted earlier, this (in)ability of interpreting

particular combinations should not deter one from using them in a ML program.

I think I'm missing something -- all of these seem really obscure, except the simple momentum

balance. Also, cosine of a momentum? That seems odd...

Evaluation of a rule-based model

Do you have any comments on this model?
7 answers

it is transparent, it is clear that the set of rules are built from training the algorithm, however, as

before, I believe that the thing that is missing to validate the model is a study of the correlation

betweenthe variables, using two variables that are highly correlated in your algorithm would bias

the outcome !

I presume the c-values are confidence values, but no information was given on how the c-values

are computed. The event scored equally on the dvcs and pi0 scales so I have no idea how to use,

let alone validate the model.

No

More black box like than the first model

Poorly explained model

1) How are determined the numbered values indicated in the condition of the rules ? (and the
score ?)
Would it be interesting to have distributions instead of raw numbers ? (a smooth real valued
function (score) taking the z-momentum balance as parameter ?)

2) How are considered the correlations between rules ? Can one simply sums the output of 2
correlated rules ?
Would it be interesting to have a smooth score function taking all the variables and constructing
a score out of them ?

3) The conditions inside one rule can be correlated, and to me, can be called "cuts". Is this
conceptually really better than a usual "cut'and'count" analysis ?

4) I guess the main goal is to find the structure of the signal (or background) inside a phase
space region, and try to discriminate it via a simple real valued function (score)
(To integrate non linear correlation laying inside data, would it be interesting to apply a manifold
learning algorithm to understand the structure of signal for instance, and put a notion of distance
for one event to this manifold structure ? but would it be interpretable....)

5) Why only 5 rules for signal and 10 for pi0 ?

interesting point: "rules" are easily understood and with clear interpretation, their combination is

a bit more involved if done "by hand" (though a program that knows how to do joint probability is

relatively easy to implement).

Evaluation of a neural network

Do you have any comments on this model?
8 answers
It is not clear what it means "relative importance"
Why theta_g3 is grey ?

No

Not enough explication given

I can not understand why you conduct such survey

With the file MAROUEN, maybe the event is more blue than red, but VERY DIFFICULT to conclude.

You cannot convince colleagues without presenting efficiency and purity and changing the initial

sample (degrading resolution or adding other type of background).

I did not get the model ; To me the pdf seems really ill-posed...what is a shap value ?

In the pdf, next to "shap value" is written "impact on model output" , this is ambiguous and can be
understood as the importance of a variable in the classification (but it is not, this is for the color I
guess ?...)

So one should look on the variables with red dots because they are more important in the
classification. OK

Now why do we need the values of the observables ? is it the shap value ? should we sum them
weighted with the color ?

I guess then most of the red variables are positive, so positive shap ? dvcs event ?

I would tend not to trust a model I do not understand the output :)

“When I use a word, it means just what I choose it to mean — neither more nor less." (Lewis

Carroll). If one is interested in obtaining precise answers then one should start by asking well

formulated questions: In this case there are clearly NOT 1281 "weights" as the question implies

but rather 1200 weights and 81 thresholds or biases. Furthermore, the absolute values of the

input features is not that informative as one does (should anyway!) need to scale the input

variables. That scaling (min/max, normalization, other?) is not specified. Not at all clear what the

middle panel in the plot is supposed to represent. One suspects that it is the distribution of each

feature (normalized maybe?). Is this the distribution of the training or of the testing sample (or

both, or neither?). A more informative set of numbers would have been the actual weights of the

synapses between neurons (thickness of the line in the LHS plot, maybe?).

I'm not totally sure that I'm interpreting the information correctly. Also, the colours are not

enough to tell how far along the SHAP scale each variable is. But it does give an overall feel..

Comparison between different models

Do you have any additional comments?
11 answers

I think that there is a bias in the study, comparing different models should be when te models are

trained using the same input variables, it seems that for the NN you used a different set of

variables; same goes for the other two models. so how to tell whether the degradation in the

performance or the imrpvement is due to choice of variables or choice of technology?

The photon angle cut (last cut in model D) seems more of a kinematic cut (exclude regions of

high BH contribution, low CLAS12 acceptance, and high background) rather than a signal vs pi0

rejection. Therefore I think it is rejecting events that have nothing to do with dvcs vs pi0 and is

biasing the comparison with ML. I ranked the Model B worst, because there seems no chance of

comparing it with Model D. Also, by your criterion of pi0 subtraction by MC, Model B is unusable.

In order to validate any of A, B, or C, model D will be developed to some extent on simulated

events. Thus, model D will be available to apply and to validate whichever of A, B, or C is chosen.

It says that you can accommodate up to 30% pion contamination. That seems to indicate you

can obtain approx. 2.5 times the number of events using A, B, or C, or a reduction of about 1.5 in

the statistical uncertainty. The heart of this question is whether or not A, B, or C is introducing a

systematic bias of that size or greater? To some extent Model D is used to estimate this, and

some extent, the ability to validate the procedure by "understanding" the variables on which

models A, B, or C use does this.

For the "cuts" model you give only one point, i.e. a specific set of cuts. But in principle, one can
study the signal and background fraction when varying the cuts.
I rate worst FURIA, because it looks the less easy to train and run

No

The NN is the best working model, but 1) it's a completely black box 2) I didn't understand your

explanation 3) people not familiar with them, dislike them

Sorry, I can not see any sense of such survey

To be convince by a NN I would like to see the impact on efficiency and purity if the sample is

changed (this is life, we do not know the starting case!)

To me, all the methods are far more complicated to implement than a usual "cuts" analysis. Furia
provides interesting improvements to be considered.

Although the neural network is the most efficient I cannot imagine its behaviour when
introducing noise and smearing... They can be perfect for other tasks than data selection
though...

Moreover, the data selection is not sufficient by itself. At the end of the extraction of some
physics (cross section I guess in this case), the acceptances plays a major role in the correction
on the resulting events ; namely it corrects for all the geometrical leakage of detection with
respect to the MC generation by computing the ratio "detected&selected" / generated.
Acceptances correct many aspects of an analysis, from geometrical inefficiencies to
reconstruction errors/bias, and of course event selection. The question would be what is the
improvement in the acceptance when using a classical "cuts" analysis or machine learning
techniques (neural networks or furia, or gam, or whatever) ?

A validation procedure can be a comparison with the litterature on a previously measured cross
section for instance. As long as the errors are well evaluated (and they depend on acceptances
!), why not using even a neural network if they provide consistent results and better precision....

Not particularly clear what is represented on the x axis. It is pretty clear (hopefully) that the

vertical represents the proportion of the DVCS events a particular model finds. The horizontal,

however, is not clear: does a value of 0.1 on the horizontal means that, on top of good DVCS

events the model mis-identified pi0 events which amount to 10% of the selected sample or a

value of 0.1 means that the model picked up 10% of the pi0 events in the original simulation? In

either case it would have been way more informative if one were told what is the ratio of DVCS to

pi0 events in the simulation. For Model D it would have been informative to vary the size of the

cuts to get a dependence rather than a single point. One suspects that with very generous cuts

one will pick up all DVCS events while not incurring (at least not according to the plot) more than

50% pi0 background. Last note: statistical error on a background subtracted distribution is not

equal to the uncertainty of a pure sample of the same size.

GAM is easy to understand and very transparent and seems robust. It performs second best in

the region just below 30% of pi0 contamination, where you maximise your DVCS signal but can

still subtract pi0. FURIA is also easy to understand, but seems to be a set of fancy

probability-weighted cuts and though it performs slightly better for lower pi0 contamination, it

seems to be only applicable to just above 20%. I feel somehow more uneasy relying on it. Neutral

Networks clearly show the best performance, but, based purely on the info in this survey, I don't

feel I am confident enough understanding how to use the information.This can be fixed with a

more in-depth study, though, so I might change my preference. For a PhD student or a postdoc

just starting out, GAM might be a clearer starting point. Good old-fashioned cuts suck, of course.

Questions about you

Thank you for answering this survey! You can leave us your email if you are willing to
deepen the discussion later.
8 answers
(We prefer not to share the emails of the respondents that agreed to provide them to us)

305

Appendix H

Asymmetries using additional
models

This appendix lists the asymmetry plots obtained with different event selection tech-
niques:

• fuzzy C4.5 with momentum corrections;

• fuzzy C4.5 of depth 3 with momentum corrections;

• FCGAM with momentum corrections;

• FCGAM of 5 terms with momentum corrections;

• FURIA with momentum corrections;

• cuts with momentum corrections;

• neural network with momentum corrections;

• fuzzy C4.5 without momentum corrections;

• FCGAM without momentum corrections;

• FURIA without momentum corrections;

• transferred fuzzy C4.5;

• retrained fuzzy C4.5;

• transferred FCGAM;

• retrained FCGAM;

306 Appendix H. Asymmetries using additional models

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

1,
 th

re
sh

ol
d=

0.
60

52
12

 se
le

ct
ed

 e
ve

nt
s

0.
6%

 c
on

ta
m

in
at

io
n

A=
0.

25
7

±
0.

03
1

B=
0.

47
0

±
0.

17
8

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

2,
 th

re
sh

ol
d=

0.
74

55
88

 se
le

ct
ed

 e
ve

nt
s

9.
1%

 c
on

ta
m

in
at

io
n

A=
0.

23
7

±
0.

03
0

B=
-0

.2
30

 ±
 0

.1
88

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

3,
 th

re
sh

ol
d=

0.
69

15
29

3
se

le
ct

ed
 e

ve
nt

s
32

.0
%

 c
on

ta
m

in
at

io
n

A=
0.

18
4

±
0.

02
8

B=
-0

.4
72

 ±
 0

.1
44

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

13
, t

hr
es

ho
ld

=0
.6

1

93
18

 se
le

ct
ed

 e
ve

nt
s

0.
4%

 c
on

ta
m

in
at

io
n

A=
0.

19
7

±
0.

03
2

B=
0.

21
5

±
0.

26
3

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

14
, t

hr
es

ho
ld

=0
.6

0

11
30

2
se

le
ct

ed
 e

ve
nt

s
2.

2%
 c

on
ta

m
in

at
io

n
A=

0.
20

3
±

0.
02

2
B=

0.
13

8
±

0.
18

8
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

15
, t

hr
es

ho
ld

=0
.8

0

58
83

 se
le

ct
ed

 e
ve

nt
s

14
.3

%
 c

on
ta

m
in

at
io

n
A=

0.
26

9
±

0.
03

0
B=

-0
.2

15
 ±

 0
.1

79

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

4,
 th

re
sh

ol
d=

0.
68

51
96

 se
le

ct
ed

 e
ve

nt
s

0.
9%

 c
on

ta
m

in
at

io
n

A=
0.

20
0

±
0.

04
7

B=
-0

.0
65

 ±
 0

.3
50

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

5,
 th

re
sh

ol
d=

0.
60

65
69

 se
le

ct
ed

 e
ve

nt
s

12
.9

%
 c

on
ta

m
in

at
io

n
A=

0.
20

4
±

0.
03

4
B=

-0
.1

96
 ±

 0
.2

15
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

6,
 th

re
sh

ol
d=

0.
65

10
46

9
se

le
ct

ed
 e

ve
nt

s
47

.6
%

 c
on

ta
m

in
at

io
n

A=
0.

16
5

±
0.

04
4

B=
-0

.5
86

 ±
 0

.1
83

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

16
, t

hr
es

ho
ld

=0
.6

0

10
77

8
se

le
ct

ed
 e

ve
nt

s
0.

6%
 c

on
ta

m
in

at
io

n
A=

0.
26

5
±

0.
02

9
B=

-0
.0

34
 ±

 0
.1

64
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

17
, t

hr
es

ho
ld

=0
.6

0

13
97

2
se

le
ct

ed
 e

ve
nt

s
3.

4%
 c

on
ta

m
in

at
io

n
A=

0.
25

5
±

0.
02

0
B=

0.
00

9
±

0.
12

8
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

18
, t

hr
es

ho
ld

=0
.8

4

86
32

 se
le

ct
ed

 e
ve

nt
s

25
.6

%
 c

on
ta

m
in

at
io

n
A=

0.
28

9
±

0.
02

8
B=

0.
11

3
±

0.
18

3

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

7,
 th

re
sh

ol
d=

0.
01

50
31

 se
le

ct
ed

 e
ve

nt
s

5.
0%

 c
on

ta
m

in
at

io
n

A=
0.

11
8

±
0.

04
1

B=
-0

.5
83

 ±
 0

.2
78

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

8,
 th

re
sh

ol
d=

0.
81

47
87

 se
le

ct
ed

 e
ve

nt
s

14
.9

%
 c

on
ta

m
in

at
io

n
A=

0.
19

9
±

0.
04

9
B=

-0
.3

35
 ±

 0
.2

50
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

9,
 th

re
sh

ol
d=

0.
88

21
20

 se
le

ct
ed

 e
ve

nt
s

44
.6

%
 c

on
ta

m
in

at
io

n
A=

0.
16

1
±

0.
07

9
B=

0.
82

5
±

0.
14

3
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

19
, t

hr
es

ho
ld

=0
.6

0

82
83

 se
le

ct
ed

 e
ve

nt
s

1.
4%

 c
on

ta
m

in
at

io
n

A=
0.

12
6

±
0.

02
4

B=
-0

.6
75

 ±
 0

.1
18

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

20
, t

hr
es

ho
ld

=0
.6

0

11
61

0
se

le
ct

ed
 e

ve
nt

s
6.

1%
 c

on
ta

m
in

at
io

n
A=

0.
17

5
±

0.
02

7
B=

-0
.3

72
 ±

 0
.1

52
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

21
, t

hr
es

ho
ld

=0
.7

2

10
65

6
se

le
ct

ed
 e

ve
nt

s
38

.7
%

 c
on

ta
m

in
at

io
n

A=
0.

21
7

±
0.

03
5

B=
-0

.3
61

 ±
 0

.1
83

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

10
, t

hr
es

ho
ld

=0
.6

6

52
09

 se
le

ct
ed

 e
ve

nt
s

8.
3%

 c
on

ta
m

in
at

io
n

A=
0.

04
9

±
0.

03
1

B=
-0

.7
57

 ±
 0

.2
45

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

11
, t

hr
es

ho
ld

=0
.8

5

34
32

 se
le

ct
ed

 e
ve

nt
s

32
.3

%
 c

on
ta

m
in

at
io

n
A=

0.
02

6
±

0.
06

5
B=

-0
.4

97
 ±

 2
.1

72
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

12
, t

hr
es

ho
ld

=0
.6

5

64
15

 se
le

ct
ed

 e
ve

nt
s

56
.5

%
 c

on
ta

m
in

at
io

n
A=

0.
08

9
±

0.
05

8
B=

-0
.3

94
 ±

 0
.8

31
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

22
, t

hr
es

ho
ld

=0
.6

0

85
64

 se
le

ct
ed

 e
ve

nt
s

6.
6%

 c
on

ta
m

in
at

io
n

A=
0.

13
0

±
0.

02
8

B=
-0

.1
04

 ±
 0

.3
29

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

23
, t

hr
es

ho
ld

=0
.6

0

82
49

 se
le

ct
ed

 e
ve

nt
s

18
.4

%
 c

on
ta

m
in

at
io

n
A=

0.
01

3
±

0.
02

4
B=

-0
.8

92
 ±

 0
.3

42
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

24
, t

hr
es

ho
ld

=0
.7

6

11
40

1
se

le
ct

ed
 e

ve
nt

s
50

.9
%

 c
on

ta
m

in
at

io
n

A=
0.

09
3

±
0.

03
4

B=
0.

85
9

±
0.

10
0

Figure H.1: Fuzzy C4.5 with momentum corrections.

Appendix H. Asymmetries using additional models 307

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

1,
 th

re
sh

ol
d=

0.
65

45
26

 se
le

ct
ed

 e
ve

nt
s

0.
4%

 c
on

ta
m

in
at

io
n

A=
0.

29
1

±
0.

03
4

B=
0.

62
2

±
0.

13
0

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

2,
 th

re
sh

ol
d=

0.
66

55
04

 se
le

ct
ed

 e
ve

nt
s

9.
5%

 c
on

ta
m

in
at

io
n

A=
0.

22
5

±
0.

03
2

B=
-0

.3
28

 ±
 0

.1
80

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

3,
 th

re
sh

ol
d=

0.
66

14
26

3
se

le
ct

ed
 e

ve
nt

s
33

.7
%

 c
on

ta
m

in
at

io
n

A=
0.

19
9

±
0.

03
0

B=
-0

.3
56

 ±
 0

.1
76

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

13
, t

hr
es

ho
ld

=0
.6

0

82
31

 se
le

ct
ed

 e
ve

nt
s

0.
3%

 c
on

ta
m

in
at

io
n

A=
0.

23
2

±
0.

03
5

B=
0.

31
3

±
0.

24
9

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

14
, t

hr
es

ho
ld

=0
.6

0

92
83

 se
le

ct
ed

 e
ve

nt
s

1.
6%

 c
on

ta
m

in
at

io
n

A=
0.

22
5

±
0.

02
5

B=
0.

36
4

±
0.

18
3

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

15
, t

hr
es

ho
ld

=0
.6

6

67
55

 se
le

ct
ed

 e
ve

nt
s

15
.5

%
 c

on
ta

m
in

at
io

n
A=

0.
27

9
±

0.
02

8
B=

-0
.1

70
 ±

 0
.1

67

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

4,
 th

re
sh

ol
d=

0.
73

48
47

 se
le

ct
ed

 e
ve

nt
s

0.
8%

 c
on

ta
m

in
at

io
n

A=
0.

17
2

±
0.

05
5

B=
-0

.3
65

 ±
 0

.3
63

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

5,
 th

re
sh

ol
d=

0.
66

54
43

 se
le

ct
ed

 e
ve

nt
s

12
.4

%
 c

on
ta

m
in

at
io

n
A=

0.
19

6
±

0.
03

8
B=

-0
.2

21
 ±

 0
.2

40
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

6,
 th

re
sh

ol
d=

0.
66

94
89

 se
le

ct
ed

 e
ve

nt
s

49
.1

%
 c

on
ta

m
in

at
io

n
A=

0.
15

4
±

0.
04

7
B=

-0
.6

34
 ±

 0
.1

81
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

16
, t

hr
es

ho
ld

=0
.6

2

98
29

 se
le

ct
ed

 e
ve

nt
s

0.
4%

 c
on

ta
m

in
at

io
n

A=
0.

29
2

±
0.

03
0

B=
0.

12
0

±
0.

16
4

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

17
, t

hr
es

ho
ld

=0
.6

1

11
88

0
se

le
ct

ed
 e

ve
nt

s
2.

6%
 c

on
ta

m
in

at
io

n
A=

0.
25

8
±

0.
02

4
B=

-0
.0

29
 ±

 0
.1

42
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

18
, t

hr
es

ho
ld

=0
.6

6

11
00

7
se

le
ct

ed
 e

ve
nt

s
28

.9
%

 c
on

ta
m

in
at

io
n

A=
0.

25
7

±
0.

02
6

B=
0.

14
9

±
0.

18
5

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

7,
 th

re
sh

ol
d=

0.
01

50
31

 se
le

ct
ed

 e
ve

nt
s

5.
0%

 c
on

ta
m

in
at

io
n

A=
0.

11
8

±
0.

04
1

B=
-0

.5
83

 ±
 0

.2
78

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

8,
 th

re
sh

ol
d=

0.
67

54
66

 se
le

ct
ed

 e
ve

nt
s

16
.4

%
 c

on
ta

m
in

at
io

n
A=

0.
17

5
±

0.
04

9
B=

-0
.4

05
 ±

 0
.2

48
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

9,
 th

re
sh

ol
d=

0.
66

57
93

 se
le

ct
ed

 e
ve

nt
s

56
.4

%
 c

on
ta

m
in

at
io

n
A=

0.
17

9
±

0.
06

9
B=

-0
.4

89
 ±

 0
.3

91
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

19
, t

hr
es

ho
ld

=0
.6

5

71
70

 se
le

ct
ed

 e
ve

nt
s

1.
0%

 c
on

ta
m

in
at

io
n

A=
0.

12
0

±
0.

02
4

B=
-0

.7
09

 ±
 0

.1
09

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

20
, t

hr
es

ho
ld

=0
.6

0

92
21

 se
le

ct
ed

 e
ve

nt
s

4.
5%

 c
on

ta
m

in
at

io
n

A=
0.

19
7

±
0.

03
3

B=
-0

.3
83

 ±
 0

.1
55

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

21
, t

hr
es

ho
ld

=0
.6

6

91
96

 se
le

ct
ed

 e
ve

nt
s

39
.3

%
 c

on
ta

m
in

at
io

n
A=

0.
21

0
±

0.
03

9
B=

-0
.3

84
 ±

 0
.1

97

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

10
, t

hr
es

ho
ld

=0
.6

0

37
89

 se
le

ct
ed

 e
ve

nt
s

6.
3%

 c
on

ta
m

in
at

io
n

A=
0.

12
5

±
0.

04
6

B=
0.

17
9

±
0.

64
5

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

11
, t

hr
es

ho
ld

=0
.6

6

48
89

 se
le

ct
ed

 e
ve

nt
s

34
.0

%
 c

on
ta

m
in

at
io

n
A=

0.
03

1
±

0.
05

3
B=

-0
.4

75
 ±

 1
.5

82
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

12
, t

hr
es

ho
ld

=0
.6

6

49
51

 se
le

ct
ed

 e
ve

nt
s

58
.6

%
 c

on
ta

m
in

at
io

n
A=

0.
04

4
±

0.
07

1
B=

-0
.6

10
 ±

 1
.2

87
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

22
, t

hr
es

ho
ld

=0
.6

2

59
12

 se
le

ct
ed

 e
ve

nt
s

4.
6%

 c
on

ta
m

in
at

io
n

A=
0.

08
8

±
0.

03
4

B=
-0

.6
25

 ±
 0

.2
34

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

23
, t

hr
es

ho
ld

=0
.6

0

47
46

 se
le

ct
ed

 e
ve

nt
s

15
.4

%
 c

on
ta

m
in

at
io

n
A=

0.
01

0
±

0.
02

9
B=

-0
.9

54
 ±

 0
.2

91
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

24
, t

hr
es

ho
ld

=0
.6

6

10
34

5
se

le
ct

ed
 e

ve
nt

s
50

.7
%

 c
on

ta
m

in
at

io
n

A=
0.

06
2

±
0.

03
3

B=
0.

89
3

±
0.

11
6

Figure H.2: Fuzzy C4.5 of depth 3 with momentum corrections.

308 Appendix H. Asymmetries using additional models

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

1,
 th

re
sh

ol
d=

0.
60

51
78

 se
le

ct
ed

 e
ve

nt
s

0.
6%

 c
on

ta
m

in
at

io
n

A=
0.

26
6

±
0.

03
2

B=
0.

42
5

±
0.

19
2

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

2,
 th

re
sh

ol
d=

0.
65

66
48

 se
le

ct
ed

 e
ve

nt
s

9.
1%

 c
on

ta
m

in
at

io
n

A=
0.

25
0

±
0.

02
7

B=
-0

.1
91

 ±
 0

.1
69

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

3,
 th

re
sh

ol
d=

0.
60

15
74

3
se

le
ct

ed
 e

ve
nt

s
30

.3
%

 c
on

ta
m

in
at

io
n

A=
0.

18
5

±
0.

02
7

B=
-0

.4
81

 ±
 0

.1
35

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

13
, t

hr
es

ho
ld

=0
.6

0

93
46

 se
le

ct
ed

 e
ve

nt
s

0.
4%

 c
on

ta
m

in
at

io
n

A=
0.

19
9

±
0.

03
1

B=
0.

24
2

±
0.

25
4

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

14
, t

hr
es

ho
ld

=0
.6

0

11
18

6
se

le
ct

ed
 e

ve
nt

s
2.

2%
 c

on
ta

m
in

at
io

n
A=

0.
21

2
±

0.
02

2
B=

0.
21

0
±

0.
18

3
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

15
, t

hr
es

ho
ld

=0
.6

6

88
53

 se
le

ct
ed

 e
ve

nt
s

14
.7

%
 c

on
ta

m
in

at
io

n
A=

0.
23

5
±

0.
02

4
B=

-0
.1

52
 ±

 0
.1

74

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

4,
 th

re
sh

ol
d=

0.
69

52
85

 se
le

ct
ed

 e
ve

nt
s

0.
9%

 c
on

ta
m

in
at

io
n

A=
0.

20
0

±
0.

04
6

B=
-0

.0
65

 ±
 0

.3
44

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

5,
 th

re
sh

ol
d=

0.
62

64
34

 se
le

ct
ed

 e
ve

nt
s

12
.4

%
 c

on
ta

m
in

at
io

n
A=

0.
19

7
±

0.
03

4
B=

-0
.2

38
 ±

 0
.2

14
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

6,
 th

re
sh

ol
d=

0.
60

96
57

 se
le

ct
ed

 e
ve

nt
s

43
.7

%
 c

on
ta

m
in

at
io

n
A=

0.
16

6
±

0.
04

1
B=

-0
.4

59
 ±

 0
.2

36
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

16
, t

hr
es

ho
ld

=0
.6

1

10
93

7
se

le
ct

ed
 e

ve
nt

s
0.

6%
 c

on
ta

m
in

at
io

n
A=

0.
25

8
±

0.
03

0
B=

-0
.0

69
 ±

 0
.1

67
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

17
, t

hr
es

ho
ld

=0
.6

0

14
25

2
se

le
ct

ed
 e

ve
nt

s
3.

4%
 c

on
ta

m
in

at
io

n
A=

0.
25

6
±

0.
02

0
B=

0.
05

6
±

0.
12

8
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

18
, t

hr
es

ho
ld

=0
.6

4

13
63

1
se

le
ct

ed
 e

ve
nt

s
27

.2
%

 c
on

ta
m

in
at

io
n

A=
0.

25
1

±
0.

02
2

B=
0.

08
2

±
0.

16
5

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

7,
 th

re
sh

ol
d=

0.
01

50
31

 se
le

ct
ed

 e
ve

nt
s

5.
0%

 c
on

ta
m

in
at

io
n

A=
0.

11
8

±
0.

04
1

B=
-0

.5
83

 ±
 0

.2
78

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

8,
 th

re
sh

ol
d=

0.
72

61
27

 se
le

ct
ed

 e
ve

nt
s

15
.4

%
 c

on
ta

m
in

at
io

n
A=

0.
17

7
±

0.
04

3
B=

-0
.3

79
 ±

 0
.2

35
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

9,
 th

re
sh

ol
d=

0.
66

53
70

 se
le

ct
ed

 e
ve

nt
s

50
.2

%
 c

on
ta

m
in

at
io

n
A=

0.
18

6
±

0.
06

1
B=

-0
.4

64
 ±

 0
.3

59
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

19
, t

hr
es

ho
ld

=0
.6

1

84
77

 se
le

ct
ed

 e
ve

nt
s

1.
5%

 c
on

ta
m

in
at

io
n

A=
0.

12
8

±
0.

02
4

B=
-0

.6
75

 ±
 0

.1
15

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

20
, t

hr
es

ho
ld

=0
.6

0

11
94

4
se

le
ct

ed
 e

ve
nt

s
6.

2%
 c

on
ta

m
in

at
io

n
A=

0.
17

9
±

0.
02

7
B=

-0
.3

90
 ±

 0
.1

43
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

21
, t

hr
es

ho
ld

=0
.6

0

12
37

4
se

le
ct

ed
 e

ve
nt

s
38

.4
%

 c
on

ta
m

in
at

io
n

A=
0.

22
1

±
0.

03
1

B=
-0

.2
51

 ±
 0

.1
92

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

10
, t

hr
es

ho
ld

=0
.6

0

55
74

 se
le

ct
ed

 e
ve

nt
s

9.
0%

 c
on

ta
m

in
at

io
n

A=
0.

11
6

±
0.

03
8

B=
0.

01
9

±
0.

55
1

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

11
, t

hr
es

ho
ld

=0
.7

2

56
81

 se
le

ct
ed

 e
ve

nt
s

30
.4

%
 c

on
ta

m
in

at
io

n
A=

0.
03

4
±

0.
04

5
B=

-0
.4

58
 ±

 1
.3

26
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

12
, t

hr
es

ho
ld

=0
.6

1

60
92

 se
le

ct
ed

 e
ve

nt
s

52
.7

%
 c

on
ta

m
in

at
io

n
A=

0.
07

1
±

0.
05

5
B=

-0
.5

66
 ±

 0
.7

30
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

22
, t

hr
es

ho
ld

=0
.6

0

89
10

 se
le

ct
ed

 e
ve

nt
s

7.
0%

 c
on

ta
m

in
at

io
n

A=
0.

10
8

±
0.

03
0

B=
-0

.3
15

 ±
 0

.3
26

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

23
, t

hr
es

ho
ld

=0
.6

0

83
55

 se
le

ct
ed

 e
ve

nt
s

18
.6

%
 c

on
ta

m
in

at
io

n
A=

0.
02

9
±

0.
03

1
B=

-0
.6

57
 ±

 0
.5

70
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

24
, t

hr
es

ho
ld

=0
.6

4

14
01

3
se

le
ct

ed
 e

ve
nt

s
47

.0
%

 c
on

ta
m

in
at

io
n

A=
0.

09
2

±
0.

03
1

B=
0.

70
4

±
0.

22
2

Figure H.3: FCGAM with momentum corrections.

Appendix H. Asymmetries using additional models 309

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

1,
 th

re
sh

ol
d=

0.
61

52
29

 se
le

ct
ed

 e
ve

nt
s

0.
6%

 c
on

ta
m

in
at

io
n

A=
0.

26
7

±
0.

03
1

B=
0.

51
9

±
0.

16
0

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

2,
 th

re
sh

ol
d=

0.
60

68
28

 se
le

ct
ed

 e
ve

nt
s

9.
7%

 c
on

ta
m

in
at

io
n

A=
0.

25
0

±
0.

02
7

B=
-0

.1
71

 ±
 0

.1
70

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

3,
 th

re
sh

ol
d=

0.
60

16
61

8
se

le
ct

ed
 e

ve
nt

s
33

.2
%

 c
on

ta
m

in
at

io
n

A=
0.

18
3

±
0.

02
8

B=
-0

.5
12

 ±
 0

.1
28

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

13
, t

hr
es

ho
ld

=0
.6

0

94
25

 se
le

ct
ed

 e
ve

nt
s

0.
4%

 c
on

ta
m

in
at

io
n

A=
0.

20
0

±
0.

03
1

B=
0.

26
0

±
0.

25
5

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

14
, t

hr
es

ho
ld

=0
.6

0

11
00

4
se

le
ct

ed
 e

ve
nt

s
2.

2%
 c

on
ta

m
in

at
io

n
A=

0.
21

2
±

0.
02

2
B=

0.
25

3
±

0.
18

3
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

15
, t

hr
es

ho
ld

=0
.6

0

92
79

 se
le

ct
ed

 e
ve

nt
s

16
.0

%
 c

on
ta

m
in

at
io

n
A=

0.
24

7
±

0.
02

3
B=

-0
.0

94
 ±

 0
.1

69

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

4,
 th

re
sh

ol
d=

0.
87

45
27

 se
le

ct
ed

 e
ve

nt
s

0.
7%

 c
on

ta
m

in
at

io
n

A=
0.

12
8

±
0.

03
6

B=
-0

.6
41

 ±
 0

.1
97

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

5,
 th

re
sh

ol
d=

0.
60

64
07

 se
le

ct
ed

 e
ve

nt
s

13
.3

%
 c

on
ta

m
in

at
io

n
A=

0.
20

1
±

0.
03

5
B=

-0
.2

48
 ±

 0
.2

12
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

6,
 th

re
sh

ol
d=

0.
68

94
34

 se
le

ct
ed

 e
ve

nt
s

45
.4

%
 c

on
ta

m
in

at
io

n
A=

0.
14

3
±

0.
04

4
B=

-0
.5

97
 ±

 0
.2

04
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

16
, t

hr
es

ho
ld

=0
.6

0

10
97

7
se

le
ct

ed
 e

ve
nt

s
0.

7%
 c

on
ta

m
in

at
io

n
A=

0.
26

5
±

0.
02

9
B=

-0
.0

28
 ±

 0
.1

62
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

17
, t

hr
es

ho
ld

=0
.6

0

14
00

7
se

le
ct

ed
 e

ve
nt

s
3.

4%
 c

on
ta

m
in

at
io

n
A=

0.
25

8
±

0.
02

0
B=

0.
04

0
±

0.
12

9
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

18
, t

hr
es

ho
ld

=0
.6

1

13
94

4
se

le
ct

ed
 e

ve
nt

s
29

.5
%

 c
on

ta
m

in
at

io
n

A=
0.

25
3

±
0.

02
3

B=
0.

09
0

±
0.

16
7

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

7,
 th

re
sh

ol
d=

0.
01

50
31

 se
le

ct
ed

 e
ve

nt
s

5.
0%

 c
on

ta
m

in
at

io
n

A=
0.

11
8

±
0.

04
1

B=
-0

.5
83

 ±
 0

.2
78

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

8,
 th

re
sh

ol
d=

0.
73

56
03

 se
le

ct
ed

 e
ve

nt
s

15
.8

%
 c

on
ta

m
in

at
io

n
A=

0.
19

2
±

0.
04

5
B=

-0
.3

82
 ±

 0
.2

25
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

9,
 th

re
sh

ol
d=

0.
77

43
66

 se
le

ct
ed

 e
ve

nt
s

51
.8

%
 c

on
ta

m
in

at
io

n
A=

0.
19

2
±

0.
07

0
B=

-0
.5

17
 ±

 0
.3

61
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

19
, t

hr
es

ho
ld

=0
.6

4

81
45

 se
le

ct
ed

 e
ve

nt
s

1.
4%

 c
on

ta
m

in
at

io
n

A=
0.

12
2

±
0.

02
3

B=
-0

.7
09

 ±
 0

.1
02

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

20
, t

hr
es

ho
ld

=0
.6

1

11
17

7
se

le
ct

ed
 e

ve
nt

s
5.

8%
 c

on
ta

m
in

at
io

n
A=

0.
18

1
±

0.
02

8
B=

-0
.4

10
 ±

 0
.1

42
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

21
, t

hr
es

ho
ld

=0
.6

0

12
04

8
se

le
ct

ed
 e

ve
nt

s
40

.9
%

 c
on

ta
m

in
at

io
n

A=
0.

22
3

±
0.

03
5

B=
-0

.3
96

 ±
 0

.1
65

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

10
, t

hr
es

ho
ld

=0
.6

0

49
04

 se
le

ct
ed

 e
ve

nt
s

7.
9%

 c
on

ta
m

in
at

io
n

A=
0.

13
8

±
0.

03
8

B=
0.

14
8

±
0.

49
8

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

11
, t

hr
es

ho
ld

=0
.6

0

61
94

 se
le

ct
ed

 e
ve

nt
s

33
.8

%
 c

on
ta

m
in

at
io

n
A=

0.
06

4
±

0.
04

5
B=

-0
.1

66
 ±

 1
.0

75
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

12
, t

hr
es

ho
ld

=0
.7

5

40
24

 se
le

ct
ed

 e
ve

nt
s

55
.0

%
 c

on
ta

m
in

at
io

n
A=

0.
04

3
±

0.
05

6
B=

-0
.8

04
 ±

 0
.5

23
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

22
, t

hr
es

ho
ld

=0
.6

0

79
80

 se
le

ct
ed

 e
ve

nt
s

6.
1%

 c
on

ta
m

in
at

io
n

A=
0.

11
9

±
0.

03
0

B=
-0

.1
21

 ±
 0

.3
76

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

23
, t

hr
es

ho
ld

=0
.6

0

67
42

 se
le

ct
ed

 e
ve

nt
s

17
.8

%
 c

on
ta

m
in

at
io

n
A=

0.
05

4
±

0.
03

8
B=

-0
.4

32
 ±

 0
.6

61
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

24
, t

hr
es

ho
ld

=0
.6

1

13
86

5
se

le
ct

ed
 e

ve
nt

s
51

.6
%

 c
on

ta
m

in
at

io
n

A=
0.

05
8

±
0.

03
0

B=
-0

.8
21

 ±
 0

.1
56

Figure H.4: FCGAM of 5 terms with momentum corrections.

310 Appendix H. Asymmetries using additional models

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

1,
 th

re
sh

ol
d=

0.
99

58
94

 se
le

ct
ed

 e
ve

nt
s

0.
9%

 c
on

ta
m

in
at

io
n

A=
0.

22
0

±
0.

03
3

B=
0.

24
4

±
0.

26
2

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

2,
 th

re
sh

ol
d=

0.
99

81
48

 se
le

ct
ed

 e
ve

nt
s

12
.1

%
 c

on
ta

m
in

at
io

n
A=

0.
21

5
±

0.
02

5
B=

-0
.2

43
 ±

 0
.1

75
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

3,
 th

re
sh

ol
d=

0.
99

20
21

1
se

le
ct

ed
 e

ve
nt

s
37

.6
%

 c
on

ta
m

in
at

io
n

A=
0.

15
0

±
0.

02
5

B=
-0

.5
83

 ±
 0

.1
23

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

13
, t

hr
es

ho
ld

=0
.9

9

10
22

2
se

le
ct

ed
 e

ve
nt

s
0.

7%
 c

on
ta

m
in

at
io

n
A=

0.
19

0
±

0.
03

1
B=

0.
18

9
±

0.
26

2
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

14
, t

hr
es

ho
ld

=0
.9

9

12
57

9
se

le
ct

ed
 e

ve
nt

s
3.

8%
 c

on
ta

m
in

at
io

n
A=

0.
21

1
±

0.
02

0
B=

0.
13

6
±

0.
17

5
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

15
, t

hr
es

ho
ld

=0
.9

9

11
91

8
se

le
ct

ed
 e

ve
nt

s
20

.2
%

 c
on

ta
m

in
at

io
n

A=
0.

22
7

±
0.

02
1

B=
-0

.1
27

 ±
 0

.1
67

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

4,
 th

re
sh

ol
d=

0.
99

59
67

 se
le

ct
ed

 e
ve

nt
s

1.
9%

 c
on

ta
m

in
at

io
n

A=
0.

19
0

±
0.

04
3

B=
-0

.1
10

 ±
 0

.3
27

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

5,
 th

re
sh

ol
d=

0.
99

73
12

 se
le

ct
ed

 e
ve

nt
s

15
.9

%
 c

on
ta

m
in

at
io

n
A=

0.
22

1
±

0.
03

3
B=

-0
.1

20
 ±

 0
.2

08
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

6,
 th

re
sh

ol
d=

0.
99

13
48

3
se

le
ct

ed
 e

ve
nt

s
52

.5
%

 c
on

ta
m

in
at

io
n

A=
0.

16
7

±
0.

04
2

B=
-0

.4
93

 ±
 0

.2
20

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

16
, t

hr
es

ho
ld

=0
.9

9

11
75

1
se

le
ct

ed
 e

ve
nt

s
1.

2%
 c

on
ta

m
in

at
io

n
A=

0.
26

5
±

0.
02

6
B=

0.
00

8
±

0.
15

1
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

17
, t

hr
es

ho
ld

=0
.9

9

15
64

9
se

le
ct

ed
 e

ve
nt

s
5.

6%
 c

on
ta

m
in

at
io

n
A=

0.
25

5
±

0.
02

0
B=

-0
.0

21
 ±

 0
.1

22
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

18
, t

hr
es

ho
ld

=0
.9

9

17
78

6
se

le
ct

ed
 e

ve
nt

s
33

.4
%

 c
on

ta
m

in
at

io
n

A=
0.

24
3

±
0.

02
1

B=
0.

10
5

±
0.

16
1

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

7,
 th

re
sh

ol
d=

0.
99

49
33

 se
le

ct
ed

 e
ve

nt
s

4.
1%

 c
on

ta
m

in
at

io
n

A=
0.

11
3

±
0.

03
8

B=
-0

.6
16

 ±
 0

.2
53

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

8,
 th

re
sh

ol
d=

0.
99

84
10

 se
le

ct
ed

 e
ve

nt
s

20
.0

%
 c

on
ta

m
in

at
io

n
A=

0.
14

7
±

0.
04

0
B=

-0
.4

55
 ±

 0
.2

23
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

9,
 th

re
sh

ol
d=

0.
99

84
48

 se
le

ct
ed

 e
ve

nt
s

60
.3

%
 c

on
ta

m
in

at
io

n
A=

0.
14

0
±

0.
06

1
B=

-0
.6

87
 ±

 0
.2

59
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

19
, t

hr
es

ho
ld

=0
.9

9

93
62

 se
le

ct
ed

 e
ve

nt
s

2.
6%

 c
on

ta
m

in
at

io
n

A=
0.

19
9

±
0.

03
1

B=
-0

.2
19

 ±
 0

.2
06

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

20
, t

hr
es

ho
ld

=0
.9

9

13
68

6
se

le
ct

ed
 e

ve
nt

s
9.

3%
 c

on
ta

m
in

at
io

n
A=

0.
19

0
±

0.
02

5
B=

-0
.3

37
 ±

 0
.1

40
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

21
, t

hr
es

ho
ld

=0
.9

9

15
56

3
se

le
ct

ed
 e

ve
nt

s
44

.0
%

 c
on

ta
m

in
at

io
n

A=
0.

20
6

±
0.

03
2

B=
-0

.4
09

 ±
 0

.1
62

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

10
, t

hr
es

ho
ld

=0
.9

9

63
56

 se
le

ct
ed

 e
ve

nt
s

11
.3

%
 c

on
ta

m
in

at
io

n
A=

0.
09

5
±

0.
04

0
B=

-0
.4

36
 ±

 0
.3

95
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

11
, t

hr
es

ho
ld

=0
.9

9

79
77

 se
le

ct
ed

 e
ve

nt
s

34
.5

%
 c

on
ta

m
in

at
io

n
A=

0.
04

1
±

0.
03

5
B=

-0
.7

02
 ±

 0
.4

29
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

12
, t

hr
es

ho
ld

=0
.9

9

77
33

 se
le

ct
ed

 e
ve

nt
s

65
.5

%
 c

on
ta

m
in

at
io

n
A=

0.
07

3
±

0.
06

9
B=

-0
.5

16
 ±

 0
.9

06
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

22
, t

hr
es

ho
ld

=0
.9

9

10
08

5
se

le
ct

ed
 e

ve
nt

s
9.

6%
 c

on
ta

m
in

at
io

n
A=

0.
12

9
±

0.
02

5
B=

0.
02

3
±

0.
32

3
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

23
, t

hr
es

ho
ld

=0
.9

9

95
42

 se
le

ct
ed

 e
ve

nt
s

22
.4

%
 c

on
ta

m
in

at
io

n
A=

0.
05

7
±

0.
03

2
B=

-0
.2

55
 ±

 0
.7

22
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

24
, t

hr
es

ho
ld

=0
.9

9

19
10

0
se

le
ct

ed
 e

ve
nt

s
54

.3
%

 c
on

ta
m

in
at

io
n

A=
0.

10
0

±
0.

03
2

B=
0.

65
7

±
0.

23
8

Figure H.5: FURIA with momentum corrections.

Appendix H. Asymmetries using additional models 311

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

1

46
73

 se
le

ct
ed

 e
ve

nt
s

0.
5%

 c
on

ta
m

in
at

io
n

A=
0.

28
8

±
0.

03
3

B=
0.

55
9

±
0.

14
6

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

2

54
34

 se
le

ct
ed

 e
ve

nt
s

10
.4

%
 c

on
ta

m
in

at
io

n
A=

0.
25

0
±

0.
03

3
B=

-0
.3

08
 ±

 0
.1

70
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

3

11
51

7
se

le
ct

ed
 e

ve
nt

s
33

.6
%

 c
on

ta
m

in
at

io
n

A=
0.

25
4

±
0.

03
7

B=
-0

.3
30

 ±
 0

.1
67

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

13

84
80

 se
le

ct
ed

 e
ve

nt
s

0.
5%

 c
on

ta
m

in
at

io
n

A=
0.

20
9

±
0.

03
9

B=
0.

10
3

±
0.

29
1

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

14

96
87

 se
le

ct
ed

 e
ve

nt
s

2.
2%

 c
on

ta
m

in
at

io
n

A=
0.

23
2

±
0.

02
4

B=
0.

27
0

±
0.

18
5

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

15

69
67

 se
le

ct
ed

 e
ve

nt
s

16
.1

%
 c

on
ta

m
in

at
io

n
A=

0.
30

6
±

0.
02

9
B=

-0
.1

45
 ±

 0
.1

58

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

4

51
79

 se
le

ct
ed

 e
ve

nt
s

1.
4%

 c
on

ta
m

in
at

io
n

A=
0.

20
3

±
0.

04
7

B=
-0

.0
66

 ±
 0

.3
44

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

5

53
89

 se
le

ct
ed

 e
ve

nt
s

13
.9

%
 c

on
ta

m
in

at
io

n
A=

0.
21

8
±

0.
04

0
B=

-0
.2

28
 ±

 0
.2

20
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

6

66
60

 se
le

ct
ed

 e
ve

nt
s

49
.4

%
 c

on
ta

m
in

at
io

n
A=

0.
16

9
±

0.
05

9
B=

-0
.4

90
 ±

 0
.2

93
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

16

10
29

6
se

le
ct

ed
 e

ve
nt

s
0.

9%
 c

on
ta

m
in

at
io

n
A=

0.
28

0
±

0.
02

8
B=

0.
07

2
±

0.
15

5
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

17

12
45

9
se

le
ct

ed
 e

ve
nt

s
3.

8%
 c

on
ta

m
in

at
io

n
A=

0.
26

1
±

0.
02

3
B=

-0
.0

29
 ±

 0
.1

34
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

18

10
34

2
se

le
ct

ed
 e

ve
nt

s
29

.3
%

 c
on

ta
m

in
at

io
n

A=
0.

30
3

±
0.

02
7

B=
0.

10
3

±
0.

16
8

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

7

38
51

 se
le

ct
ed

 e
ve

nt
s

3.
2%

 c
on

ta
m

in
at

io
n

A=
0.

11
0

±
0.

03
2

B=
-0

.7
24

 ±
 0

.1
63

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

8

52
52

 se
le

ct
ed

 e
ve

nt
s

16
.4

%
 c

on
ta

m
in

at
io

n
A=

0.
21

6
±

0.
05

0
B=

-0
.3

02
 ±

 0
.2

40
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

9

35
06

 se
le

ct
ed

 e
ve

nt
s

58
.6

%
 c

on
ta

m
in

at
io

n
A=

0.
06

8
±

0.
05

9
B=

-0
.9

56
 ±

 0
.0

91
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

19

74
59

 se
le

ct
ed

 e
ve

nt
s

1.
9%

 c
on

ta
m

in
at

io
n

A=
0.

17
1

±
0.

03
2

B=
-0

.5
39

 ±
 0

.1
61

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

20

92
11

 se
le

ct
ed

 e
ve

nt
s

6.
1%

 c
on

ta
m

in
at

io
n

A=
0.

23
4

±
0.

03
0

B=
-0

.2
30

 ±
 0

.1
59

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

21

77
79

 se
le

ct
ed

 e
ve

nt
s

40
.5

%
 c

on
ta

m
in

at
io

n
A=

0.
25

5
±

0.
04

0
B=

-0
.0

68
 ±

 0
.2

56

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

10

34
07

 se
le

ct
ed

 e
ve

nt
s

7.
2%

 c
on

ta
m

in
at

io
n

A=
0.

08
0

±
0.

03
9

B=
-0

.7
37

 ±
 0

.2
04

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

11

31
22

 se
le

ct
ed

 e
ve

nt
s

35
.3

%
 c

on
ta

m
in

at
io

n
A=

0.
06

3
±

0.
06

4
B=

-0
.6

91
 ±

 0
.4

88
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

12

22
70

 se
le

ct
ed

 e
ve

nt
s

65
.9

%
 c

on
ta

m
in

at
io

n
A=

0.
08

9
±

0.
12

2
B=

-0
.4

12
 ±

 1
.4

06
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

22

54
33

 se
le

ct
ed

 e
ve

nt
s

5.
9%

 c
on

ta
m

in
at

io
n

A=
0.

11
7

±
0.

03
9

B=
-0

.4
43

 ±
 0

.3
17

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

23

38
12

 se
le

ct
ed

 e
ve

nt
s

18
.3

%
 c

on
ta

m
in

at
io

n
A=

0.
03

5
±

0.
05

4
B=

-0
.5

72
 ±

 0
.9

91
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

24

73
02

 se
le

ct
ed

 e
ve

nt
s

56
.5

%
 c

on
ta

m
in

at
io

n
A=

0.
11

9
±

0.
05

7
B=

-0
.7

07
 ±

 0
.2

17

Figure H.6: Cuts with momentum corrections.

312 Appendix H. Asymmetries using additional models

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

1,
 th

re
sh

ol
d=

0.
61

55
22

 se
le

ct
ed

 e
ve

nt
s

0.
6%

 c
on

ta
m

in
at

io
n

A=
0.

26
2

±
0.

03
1

B=
0.

47
2

±
0.

17
8

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

2,
 th

re
sh

ol
d=

0.
70

62
87

 se
le

ct
ed

 e
ve

nt
s

8.
5%

 c
on

ta
m

in
at

io
n

A=
0.

24
9

±
0.

02
9

B=
-0

.2
50

 ±
 0

.1
64

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

3,
 th

re
sh

ol
d=

0.
60

15
45

0
se

le
ct

ed
 e

ve
nt

s
30

.9
%

 c
on

ta
m

in
at

io
n

A=
0.

17
7

±
0.

02
8

B=
-0

.4
73

 ±
 0

.1
48

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

13
, t

hr
es

ho
ld

=0
.6

0

98
54

 se
le

ct
ed

 e
ve

nt
s

0.
5%

 c
on

ta
m

in
at

io
n

A=
0.

19
7

±
0.

03
2

B=
0.

20
7

±
0.

26
6

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

14
, t

hr
es

ho
ld

=0
.6

0

11
45

0
se

le
ct

ed
 e

ve
nt

s
2.

5%
 c

on
ta

m
in

at
io

n
A=

0.
21

6
±

0.
02

2
B=

0.
23

2
±

0.
17

8
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

15
, t

hr
es

ho
ld

=0
.7

0

87
16

 se
le

ct
ed

 e
ve

nt
s

14
.9

%
 c

on
ta

m
in

at
io

n
A=

0.
25

6
±

0.
02

3
B=

-0
.0

03
 ±

 0
.1

73

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

4,
 th

re
sh

ol
d=

0.
86

43
73

 se
le

ct
ed

 e
ve

nt
s

0.
6%

 c
on

ta
m

in
at

io
n

A=
0.

13
8

±
0.

04
6

B=
-0

.5
42

 ±
 0

.2
86

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

5,
 th

re
sh

ol
d=

0.
60

65
49

 se
le

ct
ed

 e
ve

nt
s

12
.7

%
 c

on
ta

m
in

at
io

n
A=

0.
20

1
±

0.
03

4
B=

-0
.1

88
 ±

 0
.2

21
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

6,
 th

re
sh

ol
d=

0.
63

84
84

 se
le

ct
ed

 e
ve

nt
s

42
.8

%
 c

on
ta

m
in

at
io

n
A=

0.
20

7
±

0.
04

1
B=

-0
.2

89
 ±

 0
.2

59
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

16
, t

hr
es

ho
ld

=0
.6

4

11
14

7
se

le
ct

ed
 e

ve
nt

s
0.

7%
 c

on
ta

m
in

at
io

n
A=

0.
27

4
±

0.
02

8
B=

0.
02

3
±

0.
15

5
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

17
, t

hr
es

ho
ld

=0
.6

0

14
45

6
se

le
ct

ed
 e

ve
nt

s
3.

5%
 c

on
ta

m
in

at
io

n
A=

0.
26

0
±

0.
02

0
B=

-0
.0

19
 ±

 0
.1

24
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

18
, t

hr
es

ho
ld

=0
.7

0

12
42

3
se

le
ct

ed
 e

ve
nt

s
26

.5
%

 c
on

ta
m

in
at

io
n

A=
0.

24
7

±
0.

02
3

B=
0.

17
0

±
0.

17
3

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

7,
 th

re
sh

ol
d=

0.
01

50
31

 se
le

ct
ed

 e
ve

nt
s

5.
0%

 c
on

ta
m

in
at

io
n

A=
0.

11
8

±
0.

04
1

B=
-0

.5
83

 ±
 0

.2
78

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

8,
 th

re
sh

ol
d=

0.
73

57
99

 se
le

ct
ed

 e
ve

nt
s

14
.1

%
 c

on
ta

m
in

at
io

n
A=

0.
19

3
±

0.
04

4
B=

-0
.3

96
 ±

 0
.2

14
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

9,
 th

re
sh

ol
d=

0.
68

43
51

 se
le

ct
ed

 e
ve

nt
s

47
.5

%
 c

on
ta

m
in

at
io

n
A=

0.
15

9
±

0.
06

3
B=

-0
.4

82
 ±

 0
.4

22
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

19
, t

hr
es

ho
ld

=0
.6

0

86
13

 se
le

ct
ed

 e
ve

nt
s

1.
6%

 c
on

ta
m

in
at

io
n

A=
0.

14
0

±
0.

02
7

B=
-0

.6
08

 ±
 0

.1
41

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

20
, t

hr
es

ho
ld

=0
.6

0

11
91

2
se

le
ct

ed
 e

ve
nt

s
6.

4%
 c

on
ta

m
in

at
io

n
A=

0.
20

0
±

0.
02

7
B=

-0
.3

61
 ±

 0
.1

36
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

21
, t

hr
es

ho
ld

=0
.7

3

94
25

 se
le

ct
ed

 e
ve

nt
s

36
.0

%
 c

on
ta

m
in

at
io

n
A=

0.
25

5
±

0.
03

6
B=

-0
.2

35
 ±

 0
.1

90

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

10
, t

hr
es

ho
ld

=0
.6

0

53
65

 se
le

ct
ed

 e
ve

nt
s

9.
1%

 c
on

ta
m

in
at

io
n

A=
0.

13
4

±
0.

04
2

B=
-0

.0
42

 ±
 0

.4
95

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

11
, t

hr
es

ho
ld

=0
.6

2

64
60

 se
le

ct
ed

 e
ve

nt
s

32
.7

%
 c

on
ta

m
in

at
io

n
A=

0.
06

1
±

0.
04

6
B=

-0
.3

42
 ±

 0
.9

04
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

12
, t

hr
es

ho
ld

=0
.8

1

18
05

 se
le

ct
ed

 e
ve

nt
s

40
.7

%
 c

on
ta

m
in

at
io

n
A=

0.
09

3
±

0.
07

4
B=

-0
.6

83
 ±

 0
.5

73
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

22
, t

hr
es

ho
ld

=0
.6

5

82
16

 se
le

ct
ed

 e
ve

nt
s

6.
6%

 c
on

ta
m

in
at

io
n

A=
0.

14
4

±
0.

02
5

B=
0.

23
6

±
0.

30
5

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

23
, t

hr
es

ho
ld

=0
.6

1

75
01

 se
le

ct
ed

 e
ve

nt
s

18
.9

%
 c

on
ta

m
in

at
io

n
A=

0.
06

5
±

0.
03

0
B=

0.
26

7
±

0.
81

7
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

24
, t

hr
es

ho
ld

=0
.6

7

12
22

2
se

le
ct

ed
 e

ve
nt

s
49

.4
%

 c
on

ta
m

in
at

io
n

A=
0.

09
5

±
0.

03
6

B=
-0

.6
89

 ±
 0

.2
00

Figure H.7: Neural network with momentum corrections.

Appendix H. Asymmetries using additional models 313

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

1,
 th

re
sh

ol
d=

0.
60

39
08

 se
le

ct
ed

 e
ve

nt
s

0.
7%

 c
on

ta
m

in
at

io
n

A=
0.

27
2

±
0.

03
5

B=
0.

39
5

±
0.

20
3

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

2,
 th

re
sh

ol
d=

0.
71

53
08

 se
le

ct
ed

 e
ve

nt
s

8.
8%

 c
on

ta
m

in
at

io
n

A=
0.

24
7

±
0.

03
0

B=
-0

.1
80

 ±
 0

.1
93

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

3,
 th

re
sh

ol
d=

0.
64

14
95

6
se

le
ct

ed
 e

ve
nt

s
32

.4
%

 c
on

ta
m

in
at

io
n

A=
0.

19
3

±
0.

02
9

B=
-0

.4
64

 ±
 0

.1
42

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

13
, t

hr
es

ho
ld

=0
.6

0

71
03

 se
le

ct
ed

 e
ve

nt
s

0.
4%

 c
on

ta
m

in
at

io
n

A=
0.

19
4

±
0.

03
3

B=
0.

21
6

±
0.

27
8

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

14
, t

hr
es

ho
ld

=0
.6

0

98
16

 se
le

ct
ed

 e
ve

nt
s

2.
3%

 c
on

ta
m

in
at

io
n

A=
0.

19
5

±
0.

02
3

B=
0.

04
8

±
0.

20
4

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

15
, t

hr
es

ho
ld

=0
.7

6

63
81

 se
le

ct
ed

 e
ve

nt
s

14
.1

%
 c

on
ta

m
in

at
io

n
A=

0.
22

3
±

0.
02

9
B=

-0
.3

90
 ±

 0
.1

66

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

4,
 th

re
sh

ol
d=

0.
60

43
14

 se
le

ct
ed

 e
ve

nt
s

1.
0%

 c
on

ta
m

in
at

io
n

A=
0.

15
6

±
0.

05
2

B=
-0

.4
20

 ±
 0

.3
49

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

5,
 th

re
sh

ol
d=

0.
60

57
94

 se
le

ct
ed

 e
ve

nt
s

13
.0

%
 c

on
ta

m
in

at
io

n
A=

0.
20

7
±

0.
03

4
B=

-0
.1

26
 ±

 0
.2

39
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

6,
 th

re
sh

ol
d=

0.
66

97
99

 se
le

ct
ed

 e
ve

nt
s

47
.8

%
 c

on
ta

m
in

at
io

n
A=

0.
13

9
±

0.
04

6
B=

-0
.6

37
 ±

 0
.1

93
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

16
, t

hr
es

ho
ld

=0
.6

0

85
66

 se
le

ct
ed

 e
ve

nt
s

0.
6%

 c
on

ta
m

in
at

io
n

A=
0.

27
3

±
0.

02
9

B=
0.

07
1

±
0.

16
3

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

17
, t

hr
es

ho
ld

=0
.6

0

11
58

1
se

le
ct

ed
 e

ve
nt

s
3.

5%
 c

on
ta

m
in

at
io

n
A=

0.
25

8
±

0.
02

2
B=

-0
.0

54
 ±

 0
.1

33
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

18
, t

hr
es

ho
ld

=0
.7

3

10
51

4
se

le
ct

ed
 e

ve
nt

s
27

.8
%

 c
on

ta
m

in
at

io
n

A=
0.

25
7

±
0.

02
5

B=
0.

03
1

±
0.

18
3

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

7,
 th

re
sh

ol
d=

0.
01

50
31

 se
le

ct
ed

 e
ve

nt
s

5.
0%

 c
on

ta
m

in
at

io
n

A=
0.

11
8

±
0.

04
1

B=
-0

.5
84

 ±
 0

.2
78

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

8,
 th

re
sh

ol
d=

0.
78

47
26

 se
le

ct
ed

 e
ve

nt
s

15
.9

%
 c

on
ta

m
in

at
io

n
A=

0.
18

2
±

0.
04

9
B=

-0
.3

85
 ±

 0
.2

56
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

9,
 th

re
sh

ol
d=

0.
87

24
94

 se
le

ct
ed

 e
ve

nt
s

46
.4

%
 c

on
ta

m
in

at
io

n
A=

0.
21

5
±

0.
08

1
B=

-0
.3

76
 ±

 0
.4

80
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

19
, t

hr
es

ho
ld

=0
.6

2

62
63

 se
le

ct
ed

 e
ve

nt
s

1.
4%

 c
on

ta
m

in
at

io
n

A=
0.

09
7

±
0.

02
3

B=
-0

.7
84

 ±
 0

.0
92

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

20
, t

hr
es

ho
ld

=0
.6

0

95
53

 se
le

ct
ed

 e
ve

nt
s

6.
4%

 c
on

ta
m

in
at

io
n

A=
0.

16
4

±
0.

02
9

B=
-0

.4
71

 ±
 0

.1
47

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

21
, t

hr
es

ho
ld

=0
.7

4

88
16

 se
le

ct
ed

 e
ve

nt
s

38
.5

%
 c

on
ta

m
in

at
io

n
A=

0.
23

0
±

0.
03

8
B=

-0
.4

25
 ±

 0
.1

70

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

10
, t

hr
es

ho
ld

=0
.6

0

46
40

 se
le

ct
ed

 e
ve

nt
s

9.
0%

 c
on

ta
m

in
at

io
n

A=
0.

09
4

±
0.

03
6

B=
0.

31
7

±
0.

63
9

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

11
, t

hr
es

ho
ld

=0
.8

1

34
54

 se
le

ct
ed

 e
ve

nt
s

32
.2

%
 c

on
ta

m
in

at
io

n
A=

0.
05

5
±

0.
06

6
B=

-0
.2

51
 ±

 1
.5

73
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

12
, t

hr
es

ho
ld

=0
.6

6

61
07

 se
le

ct
ed

 e
ve

nt
s

56
.5

%
 c

on
ta

m
in

at
io

n
A=

0.
09

1
±

0.
05

7
B=

-0
.2

73
 ±

 0
.9

23
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

22
, t

hr
es

ho
ld

=0
.6

2

70
45

 se
le

ct
ed

 e
ve

nt
s

6.
9%

 c
on

ta
m

in
at

io
n

A=
0.

12
4

±
0.

03
0

B=
-0

.1
67

 ±
 0

.3
58

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

23
, t

hr
es

ho
ld

=0
.9

0

79
8

se
le

ct
ed

 e
ve

nt
s

19
.5

%
 c

on
ta

m
in

at
io

n
A=

0.
06

6
±

0.
08

5
B=

-0
.4

15
 ±

 1
.6

46
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

24
, t

hr
es

ho
ld

=0
.7

6

10
12

8
se

le
ct

ed
 e

ve
nt

s
51

.2
%

 c
on

ta
m

in
at

io
n

A=
0.

11
7

±
0.

03
7

B=
0.

80
1

±
0.

12
8

Figure H.8: Fuzzy C4.5 without momentum corrections.

314 Appendix H. Asymmetries using additional models

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

1,
 th

re
sh

ol
d=

0.
60

42
84

 se
le

ct
ed

 e
ve

nt
s

0.
6%

 c
on

ta
m

in
at

io
n

A=
0.

26
9

±
0.

03
4

B=
0.

45
6

±
0.

18
8

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

2,
 th

re
sh

ol
d=

0.
60

65
28

 se
le

ct
ed

 e
ve

nt
s

9.
1%

 c
on

ta
m

in
at

io
n

A=
0.

24
2

±
0.

02
8

B=
-0

.2
52

 ±
 0

.1
66

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

3,
 th

re
sh

ol
d=

0.
61

14
52

8
se

le
ct

ed
 e

ve
nt

s
29

.5
%

 c
on

ta
m

in
at

io
n

A=
0.

20
3

±
0.

02
9

B=
-0

.4
24

 ±
 0

.1
45

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

13
, t

hr
es

ho
ld

=0
.6

0

77
20

 se
le

ct
ed

 e
ve

nt
s

0.
4%

 c
on

ta
m

in
at

io
n

A=
0.

19
7

±
0.

03
3

B=
0.

24
5

±
0.

26
9

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

14
, t

hr
es

ho
ld

=0
.6

0

10
09

8
se

le
ct

ed
 e

ve
nt

s
2.

1%
 c

on
ta

m
in

at
io

n
A=

0.
22

5
±

0.
02

3
B=

0.
15

0
±

0.
18

2
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

15
, t

hr
es

ho
ld

=0
.6

0

88
59

 se
le

ct
ed

 e
ve

nt
s

14
.9

%
 c

on
ta

m
in

at
io

n
A=

0.
24

1
±

0.
02

3
B=

-0
.0

84
 ±

 0
.1

76

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

4,
 th

re
sh

ol
d=

0.
60

49
25

 se
le

ct
ed

 e
ve

nt
s

1.
0%

 c
on

ta
m

in
at

io
n

A=
0.

18
4

±
0.

05
1

B=
-0

.2
26

 ±
 0

.3
65

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

5,
 th

re
sh

ol
d=

0.
60

60
27

 se
le

ct
ed

 e
ve

nt
s

12
.2

%
 c

on
ta

m
in

at
io

n
A=

0.
21

2
±

0.
03

4
B=

-0
.1

64
 ±

 0
.2

20
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

6,
 th

re
sh

ol
d=

0.
60

91
31

 se
le

ct
ed

 e
ve

nt
s

43
.3

%
 c

on
ta

m
in

at
io

n
A=

0.
15

9
±

0.
04

2
B=

-0
.4

87
 ±

 0
.2

36
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

16
, t

hr
es

ho
ld

=0
.6

0

97
87

 se
le

ct
ed

 e
ve

nt
s

0.
6%

 c
on

ta
m

in
at

io
n

A=
0.

26
6

±
0.

02
8

B=
0.

04
3

±
0.

16
5

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

17
, t

hr
es

ho
ld

=0
.6

0

12
95

7
se

le
ct

ed
 e

ve
nt

s
3.

3%
 c

on
ta

m
in

at
io

n
A=

0.
25

9
±

0.
02

1
B=

-0
.0

48
 ±

 0
.1

28
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

18
, t

hr
es

ho
ld

=0
.6

1

12
95

5
se

le
ct

ed
 e

ve
nt

s
26

.8
%

 c
on

ta
m

in
at

io
n

A=
0.

25
7

±
0.

02
2

B=
0.

13
7

±
0.

16
2

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

7,
 th

re
sh

ol
d=

0.
01

50
31

 se
le

ct
ed

 e
ve

nt
s

5.
0%

 c
on

ta
m

in
at

io
n

A=
0.

11
8

±
0.

04
1

B=
-0

.5
84

 ±
 0

.2
78

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

8,
 th

re
sh

ol
d=

0.
61

66
46

 se
le

ct
ed

 e
ve

nt
s

15
.9

%
 c

on
ta

m
in

at
io

n
A=

0.
15

2
±

0.
04

2
B=

-0
.4

68
 ±

 0
.2

26
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

9,
 th

re
sh

ol
d=

0.
73

42
28

 se
le

ct
ed

 e
ve

nt
s

48
.3

%
 c

on
ta

m
in

at
io

n
A=

0.
18

1
±

0.
06

7
B=

-0
.4

53
 ±

 0
.4

05
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

19
, t

hr
es

ho
ld

=0
.6

1

75
43

 se
le

ct
ed

 e
ve

nt
s

1.
3%

 c
on

ta
m

in
at

io
n

A=
0.

13
7

±
0.

02
8

B=
-0

.6
35

 ±
 0

.1
37

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

20
, t

hr
es

ho
ld

=0
.6

0

10
88

2
se

le
ct

ed
 e

ve
nt

s
6.

0%
 c

on
ta

m
in

at
io

n
A=

0.
17

0
±

0.
02

8
B=

-0
.4

67
 ±

 0
.1

35
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

21
, t

hr
es

ho
ld

=0
.6

0

11
31

5
se

le
ct

ed
 e

ve
nt

s
37

.3
%

 c
on

ta
m

in
at

io
n

A=
0.

22
8

±
0.

03
2

B=
-0

.2
97

 ±
 0

.1
83

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

10
, t

hr
es

ho
ld

=0
.6

1

50
88

 se
le

ct
ed

 e
ve

nt
s

8.
7%

 c
on

ta
m

in
at

io
n

A=
0.

10
5

±
0.

03
7

B=
0.

14
7

±
0.

62
1

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

11
, t

hr
es

ho
ld

=0
.6

5

62
25

 se
le

ct
ed

 e
ve

nt
s

29
.8

%
 c

on
ta

m
in

at
io

n
A=

0.
05

5
±

0.
04

0
B=

-0
.5

67
 ±

 0
.5

83
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

12
, t

hr
es

ho
ld

=0
.6

1

58
56

 se
le

ct
ed

 e
ve

nt
s

52
.8

%
 c

on
ta

m
in

at
io

n
A=

0.
07

0
±

0.
05

6
B=

-0
.5

98
 ±

 0
.6

95
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

22
, t

hr
es

ho
ld

=0
.6

0

81
63

 se
le

ct
ed

 e
ve

nt
s

6.
9%

 c
on

ta
m

in
at

io
n

A=
0.

11
8

±
0.

03
0

B=
-0

.2
89

 ±
 0

.3
20

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

23
, t

hr
es

ho
ld

=0
.6

9

62
34

 se
le

ct
ed

 e
ve

nt
s

16
.7

%
 c

on
ta

m
in

at
io

n
A=

0.
03

1
±

0.
03

0
B=

-0
.7

90
 ±

 0
.3

15
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

24
, t

hr
es

ho
ld

=0
.6

1

13
90

7
se

le
ct

ed
 e

ve
nt

s
46

.8
%

 c
on

ta
m

in
at

io
n

A=
0.

09
6

±
0.

03
1

B=
0.

72
6

±
0.

19
0

Figure H.9: FCGAM without momentum corrections.

Appendix H. Asymmetries using additional models 315

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

1,
 th

re
sh

ol
d=

0.
99

58
92

 se
le

ct
ed

 e
ve

nt
s

0.
9%

 c
on

ta
m

in
at

io
n

A=
0.

21
7

±
0.

03
5

B=
0.

19
9

±
0.

27
6

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

2,
 th

re
sh

ol
d=

0.
99

79
20

 se
le

ct
ed

 e
ve

nt
s

11
.6

%
 c

on
ta

m
in

at
io

n
A=

0.
22

3
±

0.
02

5
B=

-0
.2

18
 ±

 0
.1

74
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

3,
 th

re
sh

ol
d=

0.
99

19
37

9
se

le
ct

ed
 e

ve
nt

s
37

.2
%

 c
on

ta
m

in
at

io
n

A=
0.

16
5

±
0.

02
7

B=
-0

.5
30

 ±
 0

.1
33

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

13
, t

hr
es

ho
ld

=0
.9

9

10
22

3
se

le
ct

ed
 e

ve
nt

s
0.

8%
 c

on
ta

m
in

at
io

n
A=

0.
19

0
±

0.
03

1
B=

0.
19

2
±

0.
26

1
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

14
, t

hr
es

ho
ld

=0
.9

9

12
54

7
se

le
ct

ed
 e

ve
nt

s
3.

7%
 c

on
ta

m
in

at
io

n
A=

0.
21

2
±

0.
02

0
B=

0.
13

6
±

0.
17

4
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

15
, t

hr
es

ho
ld

=0
.9

9

11
59

5
se

le
ct

ed
 e

ve
nt

s
19

.4
%

 c
on

ta
m

in
at

io
n

A=
0.

23
2

±
0.

02
1

B=
-0

.0
98

 ±
 0

.1
67

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

4,
 th

re
sh

ol
d=

0.
99

59
65

 se
le

ct
ed

 e
ve

nt
s

1.
9%

 c
on

ta
m

in
at

io
n

A=
0.

17
9

±
0.

04
6

B=
-0

.1
94

 ±
 0

.3
49

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

5,
 th

re
sh

ol
d=

0.
99

71
29

 se
le

ct
ed

 e
ve

nt
s

15
.1

%
 c

on
ta

m
in

at
io

n
A=

0.
20

9
±

0.
03

3
B=

-0
.1

52
 ±

 0
.2

16
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

6,
 th

re
sh

ol
d=

0.
99

12
95

6
se

le
ct

ed
 e

ve
nt

s
52

.6
%

 c
on

ta
m

in
at

io
n

A=
0.

16
8

±
0.

04
3

B=
-0

.4
59

 ±
 0

.2
38

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

16
, t

hr
es

ho
ld

=0
.9

9

11
75

0
se

le
ct

ed
 e

ve
nt

s
1.

2%
 c

on
ta

m
in

at
io

n
A=

0.
26

5
±

0.
02

6
B=

0.
01

2
±

0.
15

1
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

17
, t

hr
es

ho
ld

=0
.9

9

15
61

4
se

le
ct

ed
 e

ve
nt

s
5.

5%
 c

on
ta

m
in

at
io

n
A=

0.
25

6
±

0.
01

9
B=

-0
.0

12
 ±

 0
.1

22
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

18
, t

hr
es

ho
ld

=0
.9

9

17
15

1
se

le
ct

ed
 e

ve
nt

s
32

.0
%

 c
on

ta
m

in
at

io
n

A=
0.

24
7

±
0.

02
1

B=
0.

14
0

±
0.

15
6

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

7,
 th

re
sh

ol
d=

0.
99

49
26

 se
le

ct
ed

 e
ve

nt
s

4.
0%

 c
on

ta
m

in
at

io
n

A=
0.

11
9

±
0.

04
1

B=
-0

.5
78

 ±
 0

.2
84

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

8,
 th

re
sh

ol
d=

0.
99

81
65

 se
le

ct
ed

 e
ve

nt
s

19
.1

%
 c

on
ta

m
in

at
io

n
A=

0.
14

4
±

0.
04

0
B=

-0
.4

61
 ±

 0
.2

26
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

9,
 th

re
sh

ol
d=

0.
99

81
65

 se
le

ct
ed

 e
ve

nt
s

60
.0

%
 c

on
ta

m
in

at
io

n
A=

0.
12

1
±

0.
06

0
B=

-0
.7

28
 ±

 0
.2

51
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

19
, t

hr
es

ho
ld

=0
.9

9

93
59

 se
le

ct
ed

 e
ve

nt
s

2.
6%

 c
on

ta
m

in
at

io
n

A=
0.

20
0

±
0.

03
0

B=
-0

.2
06

 ±
 0

.2
05

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

20
, t

hr
es

ho
ld

=0
.9

9

13
62

1
se

le
ct

ed
 e

ve
nt

s
9.

0%
 c

on
ta

m
in

at
io

n
A=

0.
19

0
±

0.
02

5
B=

-0
.3

35
 ±

 0
.1

40
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

21
, t

hr
es

ho
ld

=0
.9

9

14
89

7
se

le
ct

ed
 e

ve
nt

s
42

.8
%

 c
on

ta
m

in
at

io
n

A=
0.

20
5

±
0.

03
2

B=
-0

.3
95

 ±
 0

.1
67

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

10
, t

hr
es

ho
ld

=0
.9

9

63
09

 se
le

ct
ed

 e
ve

nt
s

11
.0

%
 c

on
ta

m
in

at
io

n
A=

0.
09

1
±

0.
03

9
B=

-0
.4

68
 ±

 0
.3

79
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

11
, t

hr
es

ho
ld

=0
.9

9

76
26

 se
le

ct
ed

 e
ve

nt
s

33
.3

%
 c

on
ta

m
in

at
io

n
A=

0.
04

6
±

0.
03

8
B=

-0
.6

18
 ±

 0
.5

44
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

12
, t

hr
es

ho
ld

=0
.9

9

75
56

 se
le

ct
ed

 e
ve

nt
s

65
.4

%
 c

on
ta

m
in

at
io

n
A=

0.
08

8
±

0.
06

9
B=

-0
.4

44
 ±

 0
.8

52
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

22
, t

hr
es

ho
ld

=0
.9

9

10
05

6
se

le
ct

ed
 e

ve
nt

s
9.

5%
 c

on
ta

m
in

at
io

n
A=

0.
13

0
±

0.
02

5
B=

0.
02

8
±

0.
32

2
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

23
, t

hr
es

ho
ld

=0
.9

9

93
79

 se
le

ct
ed

 e
ve

nt
s

21
.8

%
 c

on
ta

m
in

at
io

n
A=

0.
05

2
±

0.
03

3
B=

-0
.3

29
 ±

 0
.7

17
0

50
10

0
15

0
20

0
25

0
30

0
35

0

0.
4

0.
2

0.
0

0.
2

0.
4

Bi
n

24
, t

hr
es

ho
ld

=0
.9

9

18
30

7
se

le
ct

ed
 e

ve
nt

s
53

.4
%

 c
on

ta
m

in
at

io
n

A=
0.

09
9

±
0.

03
1

B=
0.

75
6

±
0.

15
7

Figure H.10: FURIA without momentum corrections.

316 Appendix H. Asymmetries using additional models

0 50 100 150 200 250 300 350

0.4

0.2

0.0

0.2

0.4 Bin 2, threshold=0.76

5990 selected events
10.0% contamination
A=0.235 ± 0.030
B=-0.275 ± 0.177

0 50 100 150 200 250 300 350

0.4

0.2

0.0

0.2

0.4 Bin 3, threshold=0.72

14621 selected events
32.7% contamination
A=0.203 ± 0.030
B=-0.435 ± 0.148

0 50 100 150 200 250 300 350

0.4

0.2

0.0

0.2

0.4 Bin 5, threshold=0.60

6255 selected events
14.1% contamination
A=0.214 ± 0.035
B=-0.218 ± 0.208

0 50 100 150 200 250 300 350

0.4

0.2

0.0

0.2

0.4 Bin 6, threshold=0.60

10521 selected events
48.7% contamination
A=0.172 ± 0.045
B=-0.579 ± 0.183

0 50 100 150 200 250 300 350

0.4

0.2

0.0

0.2

0.4 Bin 8, threshold=0.82

5747 selected events
16.9% contamination
A=0.166 ± 0.047
B=-0.376 ± 0.267

0 50 100 150 200 250 300 350

0.4

0.2

0.0

0.2

0.4 Bin 9, threshold=0.79

5187 selected events
53.9% contamination
A=0.179 ± 0.066
B=-0.591 ± 0.306

0 50 100 150 200 250 300 350

0.4

0.2

0.0

0.2

0.4 Bin 11, threshold=0.80

5045 selected events
35.2% contamination
A=0.030 ± 0.055
B=-0.522 ± 1.496

0 50 100 150 200 250 300 350

0.4

0.2

0.0

0.2

0.4 Bin 12, threshold=0.71

4990 selected events
54.2% contamination
A=0.090 ± 0.065
B=-0.606 ± 0.586

Figure H.11: Transferred fuzzy C4.5.

Appendix H. Asymmetries using additional models 317

0 50 100 150 200 250 300 350

0.4

0.2

0.0

0.2

0.4 Bin 2, threshold=0.62

5695 selected events
8.5% contamination
A=0.272 ± 0.030
B=-0.277 ± 0.154

0 50 100 150 200 250 300 350

0.4

0.2

0.0

0.2

0.4 Bin 3, threshold=0.60

14301 selected events
33.3% contamination
A=0.229 ± 0.031
B=-0.419 ± 0.138

0 50 100 150 200 250 300 350

0.4

0.2

0.0

0.2

0.4 Bin 5, threshold=0.63

6165 selected events
14.6% contamination
A=0.202 ± 0.036
B=-0.194 ± 0.229

0 50 100 150 200 250 300 350

0.4

0.2

0.0

0.2

0.4 Bin 6, threshold=0.70

9723 selected events
49.6% contamination
A=0.160 ± 0.049
B=-0.606 ± 0.190

0 50 100 150 200 250 300 350

0.4

0.2

0.0

0.2

0.4 Bin 8, threshold=0.84

5006 selected events
20.5% contamination
A=0.172 ± 0.047
B=-0.448 ± 0.247

0 50 100 150 200 250 300 350

0.4

0.2

0.0

0.2

0.4 Bin 9, threshold=0.86

3768 selected events
49.9% contamination
A=0.226 ± 0.073
B=-0.483 ± 0.358

0 50 100 150 200 250 300 350

0.4

0.2

0.0

0.2

0.4 Bin 11, threshold=0.81

4568 selected events
36.9% contamination
A=0.050 ± 0.056
B=-0.523 ± 0.997

0 50 100 150 200 250 300 350

0.4

0.2

0.0

0.2

0.4 Bin 12, threshold=0.85

3077 selected events
54.5% contamination
A=0.059 ± 0.076
B=-0.671 ± 0.968

Figure H.12: Retrained fuzzy C4.5.

318 Appendix H. Asymmetries using additional models

0 50 100 150 200 250 300 350

0.4

0.2

0.0

0.2

0.4 Bin 2, threshold=0.90

3594 selected events
6.0% contamination
A=0.310 ± 0.035
B=-0.196 ± 0.178

0 50 100 150 200 250 300 350

0.4

0.2

0.0

0.2

0.4 Bin 3, threshold=0.96

2346 selected events
13.4% contamination
A=0.324 ± 0.068
B=-0.298 ± 0.242

0 50 100 150 200 250 300 350

0.4

0.2

0.0

0.2

0.4 Bin 5, threshold=0.60

6074 selected events
14.7% contamination
A=0.215 ± 0.035
B=-0.213 ± 0.213

0 50 100 150 200 250 300 350

0.4

0.2

0.0

0.2

0.4 Bin 6, threshold=0.97

621 selected events
17.6% contamination
A=0.063 ± 0.114
B=-0.573 ± 1.317

0 50 100 150 200 250 300 350

0.4

0.2

0.0

0.2

0.4 Bin 8, threshold=0.91

2355 selected events
17.2% contamination
A=0.187 ± 0.056
B=-0.556 ± 0.260

0 50 100 150 200 250 300 350

0.4

0.2

0.0

0.2

0.4 Bin 9, threshold=0.97

349 selected events
16.7% contamination
A=0.111 ± 0.123
B=-0.797 ± 0.861

0 50 100 150 200 250 300 350

0.4

0.2

0.0

0.2

0.4 Bin 11, threshold=0.95

1220 selected events
29.9% contamination
A=0.024 ± 0.071
B=0.847 ± 0.842

0 50 100 150 200 250 300 350

0.4

0.2

0.0

0.2

0.4 Bin 12, threshold=0.98

381 selected events
14.3% contamination
A=0.090 ± 0.079
B=-0.960 ± 0.144

Figure H.13: Transferred FCGAM.

Appendix H. Asymmetries using additional models 319

0 50 100 150 200 250 300 350

0.4

0.2

0.0

0.2

0.4 Bin 2, threshold=0.95

2569 selected events
5.1% contamination
A=0.290 ± 0.042
B=-0.307 ± 0.199

0 50 100 150 200 250 300 350

0.4

0.2

0.0

0.2

0.4 Bin 3, threshold=0.91

6263 selected events
19.0% contamination
A=0.277 ± 0.041
B=-0.285 ± 0.184

0 50 100 150 200 250 300 350

0.4

0.2

0.0

0.2

0.4 Bin 5, threshold=0.63

5047 selected events
17.1% contamination
A=0.202 ± 0.036
B=-0.095 ± 0.289

0 50 100 150 200 250 300 350

0.4

0.2

0.0

0.2

0.4 Bin 6, threshold=0.92

3737 selected events
33.9% contamination
A=0.192 ± 0.057
B=-0.294 ± 0.363

0 50 100 150 200 250 300 350

0.4

0.2

0.0

0.2

0.4 Bin 8, threshold=0.98

551 selected events
13.5% contamination
A=0.211 ± 0.106
B=-0.693 ± 0.554

0 50 100 150 200 250 300 350

0.4

0.2

0.0

0.2

0.4 Bin 9, threshold=0.96

864 selected events
38.7% contamination
A=0.285 ± 0.104
B=0.766 ± 0.153

0 50 100 150 200 250 300 350

0.4

0.2

0.0

0.2

0.4 Bin 11, threshold=0.97

763 selected events
23.8% contamination
A=0.026 ± 0.043
B=-0.990 ± 0.318

0 50 100 150 200 250 300 350

0.4

0.2

0.0

0.2

0.4 Bin 12, threshold=0.95

848 selected events
42.0% contamination
A=0.021 ± 0.086
B=0.990 ± 0.269

Figure H.14: Retrained FCGAM.

321

Appendix I

Résumé en français

Le reste du manuscrit ayant été rédigé en anglais, cette annexe contient un résumé en
français de chacun des chapitres. Le but de cette thèse est d’analyser des données de
physique expérimentale issues de l’expérience CLAS12, aux États-Unis, en utilisant
des outils de machine learning interprétable. En effet, nous espérons ainsi améliorer les
techniques d’analyse classiques en physique tout en restant capables de comprendre
le modèle de machine learning utilisé et d’analyser les connaissances extraites des
données. Cette thèse est le résultat d’une collaboration entre deux instituts du CEA :
le LIST pour les problèmes liés au machine learning, et l’Irfu pour les aspects de
physique expérimentale.

Partie I : Contexte et positionnement

Chapitre 1 : L’étude de la structure du proton à CLAS12

Les atomes sont les constituants élémentaires de la matière de notre univers. Ces
atomes sont eux-mêmes composés d’un noyau de charge positive et d’électrons, qui
sont des particules élémentaires de charge négative. Les protons et neutrons qui con-
stituent le noyau ne sont eux pas élémentaires mais formés de quarks et gluons, liés
entre eux par l’interaction forte. Le modèle standard de la physique des particules
décrit l’ensemble des particules élémentaires (par exemple l’électron, les quarks et les
gluons) et leurs interactions (par exemple l’interaction forte et l’interaction électro-
magnétique). L’interaction forte a pour particularité que ses propriétés interdisent
l’existence de quarks libres à grande distance, ces derniers étant nécessairement con-
finés dans des hadrons, par exemple un proton ou un neutron. Les équations de la
théorie sous-jacente de l’interaction forte deviennent très difficilement calculables à
l’échelle d’un proton ou d’un neutron.

Pour pallier cette difficulté de calcul, des expériences de physique permettent d’accéder
à des fonctions de structure décrivant l’agencement des partons (i.e. quarks et gluons)
dans le proton ou dans le neutron (ici nous nous concentrons sur le cas du proton).
Notamment, les distributions de partons généralisées (GPD) sont des fonctions de
structure qui donnent accès aux corrélations entre les positions dans le plan trans-
verse et les impulsions longitudinales des partons dans le proton. On peut accéder
expérimentalement à ces GPD grâce à des processus tels que la diffusion Compton
profondément virtuelle (DVCS), illustrée en Figure I.1. Les GPD sont liées à la po-
larisation de l’électron incident. Ainsi, mesurer la différence d’événements DVCS à
polarisation positive ou négative (l’asymétrie de spin du faisceau) permet d’extraire
des composantes des GPD.

322 Appendix I. Résumé en français

q

x+ ξ x− ξ

p

e−

p′

e−

γ

Figure I.1: Diagramme de Feynman de la diffusion Compton pro-
fondément virtuelle. q est l’impulsion du photon virtuel émis par
l’électron, x l’impulsion longitudinale moyenne portée par le quark
interagissant avec ce photon virtuel, ξ le transfert d’impulsion longi-

tudinale.

L’expérience CLAS12 au laboratoire Jefferson a entre autres pour but de détecter
des événements DVCS et d’en mesurer des observables physiques liées aux GPD. Un
faisceau d’électrons porté à 10,6 GeV est envoyé sur une cible fixe de protons. Le
détecteur CLAS12 a pour but de détecter les particules issues des collisions électron-
proton.

Une méthode de sélection d’événements doit être conçue afin d’isoler les événements
DVCS des autres processus qui constituent un bruit de fond. Classiquement, les
physiciens utilisent des variables qui vérifient la conservation de l’impulsion. Par
exemple, la masse manquante au carré ep → epγX devrait être proche de 0 pour un
événement DVCS car aucune autre particule n’a été produite :

M2
ep→epγX = ‖pe,in + pp,in − pe,out − pp,out − pγ,out‖2 (I.1)

avec pe,in, pp,in, pe,out, pp,out, pγ,out l’impulsion de respectivement l’électron, le proton
d’entrée, et l’électron, proton et photon de sortie. Grâce à cette sélection d’événements,
l’asymétrie DVCS peut être calculée. L’objectif de cette thèse est d’améliorer l’étape
de sélection d’événements avec des outils de machine learning interprétable. En assur-
ant l’interprétabilité des modèles utilisés, la validation de l’analyse par les pairs pour
publication est facilitée, et nous espérons idéalement pouvoir analyser les connais-
sances extraites des données par le modèle pour améliorer les techniques existantes de
sélection d’événements.

Chapitre 2 : Machine learning interprétable

L’interprétabilité en machine learning est un sujet d’intérêt grandissant dans la littéra-
ture ces dix dernières années. L’interprétabilité en machine learning se définit comme
« la capacité à expliquer ou à présenter en termes compréhensibles à un humain ». En
particulier, l’évaluation de l’interprétabilité d’un modèle est complexe. S’il existe des
critères objectifs d’interprétabilité tels que la complexité du modèle, une étude plus
complète sollicitant des humains doit être conduite pour parfaire l’évaluation, notam-
ment dans le cadre d’applications précises. Parmi les techniques d’interprétation de
modèles de machine learning, on trouve d’une part les techniques d’explication a pos-
teriori d’un modèle opaque, et d’autre part les modèles intrinsèquement transparents,
qui ne nécessitent pas de plus amples explications.

Appendix I. Résumé en français 323

Dans ce chapitre, nous nous concentrons sur trois familles principales de modèles
transparents :

• Les arbres de décisions sont des modèles utilisés à la fois pour la classification et
la régression. Leurs feuilles contiennent l’information pour calculer la prédiction,
alors que leurs nœuds comprennent les conditions sur les attributs pour diriger
vers un des nœuds fils. Les arbres de décision peuvent être catégoriels (ID3
notamment) ou numériques (par exemple CART et C4.5) selon la nature des
données qu’ils peuvent prendre en compte et leur façon de les diviser ;

• Les bases de règles contiennent une liste ordonnée ou non de règles sous la forme
SI conditions ALORS conclusion. Elles sont majoritairement utilisées pour la
classification ;

• Les modèles additifs généralisés (GAM) sont des modèles statistiques dérivés
des modèles linéaires généralisés et des modèles additifs. Ils s’écrivent comme
la somme de fonctions d’une variable :

g(ỹ) = β0 +
∑
j

fj(xj) (I.2)

avec g une fonction de lien (une sigmoïde inverse pour la classification), ỹ la
variable prédite, β0 une constante à inférer, fj les fonctions à inférer, xj les
attributs. Un GAM est illustré sur la Figure I.2.

75 50 25 0 25 50 75

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.6 0.5 0.4 0.3 0.2 0.1
3

2

1

0

1

2

3

90 100 110 120 130

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Figure I.2: Un GAM comprenant trois termes.

Les deux premières familles de modèles admettent des variantes floues : au lieu de con-
sidérer les tests sur les variables de manière booléenne, on attribue à chaque instance
un degré d’appartenance à une prémisse, une règle ou à un nœud ou une branche d’un
arbre.

L’inconvénient des modèles transparents par rapport à d’autres modèles plus opaque
est souvent leur moindre performance de classification. C’est pourquoi cette thèse
cherche notamment à combler cette lacune.

Chapitre 3 : Simulation CLAS12 et premiers résultats avec
des modèles transparents

L’entraînement de modèles de machine learning nécessite des données labellisées. Nous
utilisons le logiciel de simulation de CLAS12, dans lequel nous injectons des événe-
ments DVCS et des événements de production de π0, le principal processus constituant
le bruit de fond. En utilisant FURIA, un algorithme d’induction d’une base de règles

324 Appendix I. Résumé en français

floue, sur deux jeux de données générés différemment, nous découvrons qu’il est im-
portant de générer des données non biaisées par rapport aux sections efficaces. Dans le
cas contraire, le modèle apprend à séparer les processus en utilisant leurs distributions
dans l’espace de phase au lieu de raisonner sur des lois physiques de conservation.

Dans la suite de la thèse, nous considérerons plusieurs modèles en particulier : un
arbre C4.5 et deux variantes floues, deux ensembles d’arbres (AdaBoost et Gradient-
Boosting), une base de règles floue induite par FURIA, et un GAM. Les résultats de
premiers tests sur les données simulées indiquent que les arbres C4.5 flous et le GAM
seraient a priori les meilleurs modèles en termes de performances de classification.

Partie II : Machine learning interprétable grâce à la con-
struction de variables

Chapitre 4 : État de l’art des méthodes de construction de
variables

La performance des algorithmes de machine learning dépend largement des attributs
fournis en entrée. C’est en particulier le cas des algorithmes les moins complexes,
ce qui concerne donc souvent les algorithmes d’induction des modèles transparents
auxquels cette thèse s’intéresse. Pour compenser cette limitation, la construction
automatique de variables permet de concevoir une nouvelle représentation des données,
plus pertinente vis à vis de la tâche de classification ou de régression considérée. Nous
nous concentrons ici sur la construction explicite de variables à l’aide d’opérateurs
notamment numériques (+, −, log, etc.).

Les algorithmes de construction de variables se distinguent notamment par leur méth-
ode d’évaluation des variables candidates:

• les méthodes filtre calculent un score pour chaque variable candidate indépen-
damment d’un quelconque algorithme d’apprentissage, par exemple avec le gain
d’information, ou la corrélation avec la variable cible ;

• les méthodes dites « wrapper » utilisent le score de prédiction d’un algorithme
d’apprentissage pour évaluer les variables candidates ;

• les méthodes intégrées combinent la phase de sélection et construction de vari-
ables avec l’apprentissage en lui-même : ces méthodes sont très spécifiques à
l’algorithme d’apprentissage considéré.

Les techniques de construction de variables se divisent en deux grandes catégories.
Historiquement, les premiers travaux sur la construction de variables utilisent des
méthodes à base d’arbres pour explorer l’espace de recherche. Le principe est de
générer itérativement de nouvelles variables en combinant celles de l’étape précédente
avec de nouveaux opérateurs. Une autre classe de méthodes utilise les algorithmes évo-
lutionnaires. Le principe est de faire évoluer une population d’individus qui encodent
les variables candidates dans leurs gènes. Deux familles d’algorithmes évolutionnaires
sont utilisées pour la construction automatique de variables : l’intelligence distribuée
et la programmation génétique, cette dernière étant de loin la plus représentée dans
la littérature. En programmation génétique, les individus sont sous forme d’arbre où
les nœuds sont des opérateurs et les feuilles les attributs initiaux.

Appendix I. Résumé en français 325

Chapitre 5 : Construction de variables interprétables en
tant que méthode en amont

Dans ce chapitre, nous proposons une méthode pour contraindre l’algorithme classique
de programmation génétique de sorte à obtenir des variables construites qui respectent
les unités physiques des attributs initiaux et qui ont un sens physique.

D’une part, nous utilisons une grammaire pour contraindre l’évolution de l’algorithme
de programmation génétique. Ici, une grammaire non contextuelle est définie pour
des applications en physique des hautes énergies, qui liste les opérations autorisées
(par exemple additionner deux énergies est autorisé, au contraire de la soustraction
d’un angle et d’une impulsion). D’autre part, une matrice de transition définit la
distribution de probabilités du choix d’un opérateur à la suite d’un autre. Cette
matrice permet de guider la recherche de variables vers des variables qui ressemblent
à des variables usuelles utilisées par les physiciens. Par exemple, une racine carrée
est souvent suivie d’une somme de carrés (norme d’une impulsion en physique pour
vérifier les lois de conservation).

Lors d’expérimentations sur trois jeux de données de physique des hautes énergies, le
gain d’information, le score de classification de CART et celui de FURIA sont suc-
cessivement utilisés comme fonctions de fitness pour l’évolution de la programmation
génétique. Dans tous les cas, une augmentation significative du score de classification
est obtenue sur les trois jeux de données considérés, jusqu’à 60% en utilisant FURIA.
La programmation génétique contrainte (avec la grammaire et la matrice de transi-
tion) permet également d’avoir un meilleur score par rapport à l’algorithme de base de
programmation génétique. Enfin, nous avons discuté de l’interprétabilité des variables
produites avec des arguments physiques : les caractéristiques de ces variables ont pu
être reliées la plupart du temps à une explication physique, qu’elle soit liée aux lois de
conservation ou à des considérations géométriques. Par exemple, une des variables les
plus fréquemment construites pour CLAS12 est la somme des composantes en z des
impulsions des trois particules de sortie du DVCS : pez + ppz + pγ1z , ce qui correspond
à la conservation des impulsions sur l’axe z.

Chapitre 6 : Construction de variables interprétables inté-
grée

Dans le chapitre précédent, la construction de variables était réalisée en amont de
l’induction du modèle de classification. En utilisant des fonctions de fitness telles que
le score de CART ou FURIA, le temps de calcul devient rapidement très important.
Dans ce chapitre, nous proposons d’intégrer l’algorithme de construction de variables
contraint avec la grammaire et la matrice de transition dans l’induction des modèles.

Dans un premier temps, nous intégrons la construction de variables dans les algo-
rithmes d’induction d’arbres de décision et de bases de règles. L’idée est d’utiliser le
critère de sélection de l’attribut et de son seuil à chaque nœud de l’arbre ou à chaque
prémisse de règle comme fonction de fitness pour l’algorithme de programmation géné-
tique. Pour C4.5, il s’agit du gain d’information. Nous pouvons soit construire une
variable à chaque nœud de l’arbre ou chaque prémisse de chaque règle, soit nous limiter
aux premiers Nmax nœuds en partant de la racine ou aux premières Nmax prémisses
de chaque règle constituant la base. Des expérimentations ont été réalisées sur quatre
jeux de données de physique des hautes énergies, intégrant la construction de variables

326 Appendix I. Résumé en français

en particulier dans C4.5 et FURIA, mais également dans les versions floues de C4.5,
dans CART, et dans AdaBoost et GradientBoosting. Dans tous les cas, nous obser-
vons une amélioration significative du score de classification par rapport au modèle
de base sans construction de variables. Comme illustré en Figure I.3 pour C4.5 et
FURIA, l’augmentation de ce score en fonction du nombre de variables construites
atteint un plateau après un certain seuil sur Nmax, ce qui semble démontrer qu’on
peut améliorer la performance de classification de tels modèles tout en limitant leur
complexité, ce qui est un argument en faveur de leur facilité d’interprétation.

Figure I.3: Évolution de la précision de classification obtenue par
des modèles C4.5 et FURIA sur les données de simulation CLAS12 en
fonction du nombre de variables construites pendant leur induction.

Dans un second temps, nous avons intégré la construction de variables dans les GAM.
Contrairement aux arbres de décision et bases de règles, il n’existe pas de critère
de sélection des attributs les plus pertinents dans les GAM. Ainsi, nous proposons
une méthode d’induction des GAM basée sur le principe de gradient boosting : les
termes sont ajoutés un à un de sorte à minimiser les résidus à chaque étape. Pour
chaque terme, une variable est construite avec l’algorithme de programmation géné-
tique avec pour fonction de fitness le score de classification d’un arbre de décision
réduit à quatre feuilles (profondeur de 2). D’autre part, nous introduisons dans ce
chapitre une contrainte additionnelle sur les fonctions des termes du GAM de sorte à
renforcer l’interprétabilité et le pouvoir de généralisation. En effet, les variables dis-
criminantes en physique ont souvent une relation bitonique par rapport à la variable
cible : une masse manquante présente un pic à zéro ou à la masse de la particule
manquante. Ainsi, nous proposons une définition et une méthode d’évaluation du
degré de bitonicité d’une variable. Ensuite, nous proposons une méthode pour con-
traindre la construction de variables et/ou l’induction des fonctions des termes du
GAM à produire des résultats bitoniques. L’application des contraintes de bitonicité
permet d’améliorer l’interprétabilité tout en n’impactant pas significativement le score
de classification.

Appendix I. Résumé en français 327

Partie III : De la simulation à l’analyse des données réelles
de CLAS12

Chapitre 7 : Transfert des modèles aux données réelles

Ce chapitre a pour but de traiter les différences de distributions existantes entre les
données simulées et les données réelles de CLAS12. Pour fonctionner de manière opti-
male, les modèles de machine learning entraînés sur les données simulées doivent être
adaptés aux données réelles. À CLAS12, plusieurs sources d’erreurs sur les distribu-
tions existent, incluant les incertitudes sur les sections efficaces, sur les résolutions des
détecteurs, et sur la géométrie globale. Ne disposant pas d’un échantillon labellisé
représentatif des données réelles, nous nous concentrons sur l’adaptation de domaine
plutôt que sur l’apprentissage par transfert.

Il existe de nombreuses approches d’adaptation de domaine dans la littérature. On
s’intéresse en particulier aux méthodes qui cherchent à établir une transformation
entre les domaines source et cible. Parmi ces méthodes, le transport optimal et
l’apprentissage profond sont deux approches plébiscitées.

La flexibilité que permet l’apprentissage profond nous pousse à adopter cette approche
pour l’adaptation de domaine. Notamment, les modèles génératifs adversariaux sont
de bons candidats. Une transformation est apprise pour chaque particule (électron,
proton, photons), et un discriminateur permet de vérifier si l’ensemble est compatible
avec les distributions réelles.

On utilise les événements de production π0 exclusifs, faciles à simuler d’une part et
à isoler dans les données d’autre part, comme références pour apprendre la trans-
formation. Les expériences sur des données simulées indépendamment des sections
efficaces permettent de valider la pertinence de l’approche proposée. Sur des données
avec sections efficaces, nous remarquons que la généralisation aux événements DVCS
notamment est perfectible. En effet, les événements de production π0 utilisés ne cou-
vrent qu’une partie limitée de l’espace de phases. Une méthodologie est proposée
dans les perspectives du chapitre pour surmonter cette limitation. Les modèles de
machine learning transparents peuvent ensuite être transférés aux données simulées
transformées.

Chapitre 8 : Évaluation de l’interprétabilité par des physi-
ciens expérimentaux

Une évaluation complète de l’interprétabilité d’un modèle nécessite de recueillir l’avis
des utilisateurs finaux, ici des physiciens expérimentaux. Nous avons conçu un sondage
à destination des physiciens afin d’évaluer différents aspects des modèles proposés :
la compréhension des variables construites automatiquement par la programmation
génétique, l’interprétabilité des modèles eux-mêmes (GAM, FURIA), et une compara-
ison globale de plusieurs approches pour la sélection d’événements. 6 bêta-testeurs
puis 25 physiciens des collaborations CLAS12, Hall A et COMPASS ont répondu au
sondage.

Les résultats concernant les variables automatiquement construites montrent que les
contraintes ajoutées à l’algorithme de programmation génétique permettent de signi-
ficativement augmenter l’interprétabilité des variables construites. Nous n’observons

328 Appendix I. Résumé en français

pas de différence significative entre les variables construites en amont ou intégrées
à l’induction des modèles, ni entre les variables construites automatiquement et les
variables usuelles utilisées par les physiciens pour la sélection d’événements.

L’interprétabilité de trois modèles de machine learning a été évaluée : un GAM, une
base induite par l’algorithme FURIA, et un réseau de neurones. La compréhension du
fonctionnement des modèles par les répondants a d’abord été mesurée : le GAM et la
base induite par FURIA ont été globalement bien compris. Un score de transparence
a été demandé en complément : le GAM et FURIA obtiennent un score semblable,
supérieur au score obtenu par le réseau de neurones.

Enfin, les répondants ont été sollicités pour classer quatre modèles entre eux pour la
sélection d’événements : un GAM, une base induite par FURIA, un réseau de neurones
et un ensemble de coupures utilisées par les physiciens. Le GAM obtient le meilleur
rang en moyenne, et est souvent classé deuxième derrière soit le réseau de neurones
soit l’ensemble de coupures. Les GAM semblent donc constituer un bon compromis
entre interprétabilité et performance, satisfaisant la majorité des physiciens.

Chapitre 9 : Analyse des données DVCS de CLAS12

Ce dernier chapitre détaille l’application des modèles élaborés jusqu’ici aux données
réelles de CLAS12. Des corrections d’impulsions sont appliquées pour corriger les
différences majeures de distributions entre les données simulées et réelles. Une poignée
de modèles est sélectionnée pour l’analyse : un GAM, un arbre C4.5 flou, une base
induite par FURIA. Nous nous assurons de la bonne suppression notamment des
événements de production η dans les données CLAS12 présélectionnées.

Une méthode de soustraction des événements de production π0 permet d’estimer la
proportion de ces événements dans les données sélectionnées. La Figure I.4 illustre la
distribution des valeurs de sortie du GAM pour l’ensemble des données présélection-
nées et pour la contamination π0.

0.0 0.2 0.4 0.6 0.8 1.0
0

10000

20000

FCGAM (16 terms)

All events
0 contamination

Figure I.4: Distribution des valeurs prédites par le GAM pour les
données présélectionnées, et contamination π0 estimée.

Le but est ensuite de choisir le seuil de coupure sur la sortie du GAM. Ce seuil est
choisi de façon à minimiser l’erreur statistique sur l’asymétrie, l’observable physique
qui nous intéresse. Nous obtenons par exemple la courbe d’asymétrie en fonction de
la variable cinématique φ en Figure I.5 pour les bins cinématiques 2, 3 et 17.

Enfin, nous avons comparé cinq approches pour la sélection d’événements à CLAS12 :
le GAM, la base induite par FURIA, l’arbre C4.5 flou, un réseau de neurones et
un ensemble de coupures, en termes d’erreur statistique sur l’asymétrie. Le GAM
surpasse le réseau de neurones dans la majorité des bins cinématiques. Cela conclut

Appendix I. Résumé en français 329

Figure I.5: Asymétries dans les bins 2, 3 et 17 en fonction du
paramètre cinématique φ, calculées en utilisant le GAM.

positivement notre analyse puisque l’on a élevé les performances du GAM, grâce à la
construction de variables et à la bitonicité, au niveau du réseau de neurones considéré.
Dans le même temps nous avons conservé voire amélioré l’interprétabilité du GAM,
qualité dont ne dispose pas le réseau de neurones. De plus, le GAM permet de
sélectionner 24% d’événements DVCS supplémentaires par rapport à l’ensemble de
coupures classiquement utilisées par les physiciens, ce qui confirme la pertinence des
modèles de machine learning pour améliorer l’analyse.

Titre: Machine learning interprétable pour l’analyse de données à CLAS12

Mots clés: Apprentissage automatique, Analyse de données, Physique hadronique

Résumé: L’intelligence artificielle rencontre
un succès indéniable dans de nombreuses appli-
cations, surtout depuis l’essor de l’apprentissage
profond. Cependant, certaines de ces applica-
tions nécessitent une étude et une validation du
raisonnement du modèle induit. C’est le cas en
physique expérimentale : les performances des
modèles sur les données réelles doivent être con-
nues et maîtrisées, et leur raisonnement expliqué
afin de permettre une validation par les pairs.
Dans le cas particulier de l’expérience CLAS12
au Jefferson Laboratory, un faisceau d’électrons
est envoyé sur une cible de protons afin d’en son-

der la structure interne. Pour pouvoir accéder à
certaines fonctions de structure du proton, un
sous-ensemble des données récoltées doit être
isolé correspondant à une réaction exclusive :
la diffusion Compton profondément virtuelle.
C’est sur la sélection de ces événements que
porte cette thèse. Pour améliorer les techniques
classiques d’analyse en physique, une approche
utilisant des modèles de machine learning intrin-
sèquement interprétables, dits également trans-
parents, est proposée. De cette façon, le fonc-
tionnement du modèle peut être plus facilement
compris et les erreurs de sélection maîtrisées et
minimisées.

Title: Interpretable machine learning for CLAS12 data analysis

Keywords: Machine learning, Data analysis, Hadronic physics

Abstract: Artificial intelligence is used mas-
sively in numerous applications, especially since
the rise of deep learning techniques. How-
ever, some of these applications require a careful
study and validation of the inducted model func-
tioning. Considering experimental physics, the
performances of the models on real data must
be known and controlled, and their functioning
explained to enable a validation via peer review.
In the particular case of the CLAS12 experiment
at Jefferson Laboratory, an electron beam is sent

onto a proton target to probe its inner structure.
To access certain structure functions of the pro-
ton, a subset of the collected data must be se-
lected corresponding to an exclusive interaction:
deeply virtual Compton scattering. This thesis
focuses on this event selection. To improve the
classical physics analysis, an approach exploit-
ing intrinsically interpretable machine learning
models, also called transparent models, is pro-
posed. In this way, the functioning of the model
is understood more easily and the selection er-
rors are minimized and controlled.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

	Remerciements / Acknowledgements
	List of Abbreviations
	Introduction
	I Context and positioning
	Study of the proton structure at CLAS12
	Introduction to particle physics
	Generalized parton distributions
	CLAS12 experiment
	Methodology for DVCS analysis

	Interpretable machine learning
	Interpretability: a general introduction
	Common intrinsically interpretable machine learning models
	Conclusion

	CLAS12 simulation and baselines using transparent models
	Monte Carlo simulation of DVCS and Pi0 production events
	Baselines using transparent models
	Proposed approach

	II Interpretable machine learning through feature construction
	State of the art of feature construction
	Tree-based feature construction algorithms
	Evolutionary-based feature construction algorithms
	Embedded feature construction

	Interpretable feature construction as a prior method
	Constrained feature construction algorithm
	Experiments on prior feature construction
	Conclusion and perspectives

	Interpretable embedded feature construction
	Embedded feature construction in tree-based and sequential covering algorithms
	Boosting feature construction in generalized additive models
	Conclusion and perspectives

	III From simulation to real CLAS12 data analysis
	Model transfer to real data
	State of the art of domain adaptation
	Domain adaptation of the particles momenta
	Experiments
	Conclusion and perspectives

	Interpretability evaluation by experimental physicists
	Survey form
	Results and discussion
	Conclusion

	Analysis of DVCS data from CLAS12
	DVCS event selection in CLAS12 data
	Pi0 subtraction and asymmetry computation
	Optimal selection threshold and asymmetry computation
	Comparisons with other techniques
	Conclusion and perspectives

	Conclusion
	Publications and talks
	Bibliography
	Introduction to fuzzy logic
	Principle and operators
	Reasoning with fuzzy logic
	Fuzzy expert systems
	Handling imprecisions
	Advantages of fuzzy logic in machine learning

	Exploiting data imprecisions
	Background on the use of imprecisions in transparent models
	Adaptation of crisp and fuzzy C4.5 algorithms to imprecise data
	Adaptation of FURIA to imprecise data
	Computation of CLAS12 imprecisions
	Experiments
	Discussion

	Experimental datasets
	CLAS12
	Higgs
	Tau -> 3 mu
	MAGIC
	Summary

	Model hyperparameters
	Additional experiments on embedded feature construction in tree-based models
	Fuzzy C4.5: std version
	Fuzzy C4.5: Fibo version
	CART
	AdaBoost
	GradientBoosting

	Additional experiments on domain adaptation
	Experiments with smeared simulated data with flat distributions
	Experiments with smeared simulated data with cross-sections

	Complete interpretability survey and responses
	Asymmetries using additional models
	Résumé en français

