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R E S U M É

L’optimisation parcimonieuse est cruciale dans la société d’aujourd’hui,
car elle est utilisée dans de nombreux domaines, tels que le débruitage,
la compression, l’apprentissage et la sélection de caractéristiques. Cepen-
dant, obtenir une bonne solution parcimonieuse d’un signal est un
défi de calcul.

Cette thèse se concentre sur l’optimisation d’un terme des moin-
dres carrés en norme `2 sous une contrainte de k-parcimonie sur la
solution exprimée avec la pseudo-norme `0 (le problème `2 − `0 con-
traint). Nous étudions également la somme de la fonction de perte
des moindres carrés et d’un terme de pénalité `0 (le problème `2 − `0
pénalisé). Les deux problèmes sont non convexes, non continus et
NP-durs. Nous proposons trois nouvelles approches d’optimisation
parcimonieuse.

Nous présentons d’abord une relaxation continue du problème con-
traint et présentons une méthode pour minimiser la relaxation pro-
posée. Deuxièmement, nous reformulons la pseudo-norme `0 comme
un problème de minimisation convexe. Ceci est fait en introduisant
une variable auxiliaire, et nous présentons une reformulation exacte
du problème contraint (CoBic) et pénalisé (PeBic). Enfin, nous présen-
tons une méthode pour minimiser le produit du terme de fidélité des
données et du terme de régularisation. Ce dernier est un travail de
recherche en cours.

Nous appliquons les trois premières méthodes proposées (relax-
ation, CoBic et PeBic) à la microscopie par molécule unique. Les ré-
sultats des algorithmes proposés sont à l’état de l’art des méthodes
basées sur la grille. De plus, fixer la constante de contrainte de parci-
monie est généralement plus intuitif que fixer le paramètre de pénal-
ité, ce qui rend l’approche contrainte attractive pour les applications.

Mots clés: Traitement d’images, Problème inverse, Parcimonie
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A B S T R A C T

Sparse optimization is crucial in today’s society, as this is used in
multiple domains, such as denoising, compression, machine learn-
ing. Sparse optimization is also vital in single-molecule localization
microscopy, a microscopy method widely used in biology. However,
obtaining a good sparse solution of a signal is computationally chal-
lenging.

This thesis focuses on sparse optimization in the form of mini-
mizing the least square loss function under a k-sparse constraint
with an `0 pseudo-norm (the constrained `2 − `0 problem). We also
study the sum of the least square loss function and an `0 penalty
term (the penalized `2 − `0 problem). Both problems are non-convex,
non-continuous, and NP-hard. We propose three new approaches to
sparse optimization.

We present first a continuous relaxation of the constrained problem
and present a method to minimize the proposed relaxation. Secondly,
we reformulate the `0 pseudo-norm as a convex minimization prob-
lem. This is done by introducing an auxiliary variable, and we present
an exact biconvex reformulation of the constrained (CoBic) and penal-
ized (PeBic) problems. Finally, we present a method to minimize the
product of the data fidelity term and the regularization term. The
latter is still an ongoing research work.

We apply the three proposed methods (relaxation, CoBic, and Pe-
Bic) to single-molecule localization microscopy and compare them
with other commonly used algorithms in sparse optimization. The
proposed algorithms’ results are as good as the state-of-the-art in grid-
based methods. Furthermore, fixing the sparsity constraint constant
is usually more intuitive than fixing the penalty parameter, making
the constraint approach attractive for applications.

Keywords: Image processing, sparse optimization, inverse problem,
regularization, super-resolution
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Part I

C O N S T R A I N E D ` 2 − ` 0 O P T I M I Z AT I O N

"Numquam ponenda est pluralitas sine necessitate"

—William of Ockham
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1.1 introduction to inverse problems

MRI-scanners, CT-scanners, modern telescopes microscopes, and many
other instruments, solve inverse problems. They have in common
that they cannot always observe the object of interest directly. A CT-
scanner does not directly observe a patient’s brain but measures the
intensity of multiple X-rays taken from different perspectives around
the head. With the measurements and solving an inverse problem,
the CT-scanner can generate an image. Digital telescopes also use in-
verse problems to obtain clear and precise images. In acquiring an
astronomical photo, the object of interest is both far away and does
not emit much light. Therefore the sensor will be sensitive to light
pollution, and the acquisition contains most likely noise. Removing
noise is an inherent difficulty in inverse problems.

Even though the study and applications of inverse problems are
relatively new, they have been present for a long since ancient Greece
[Luc94; Ber60]: Aristotle solved the inverse problem of the form of a
3D object when projected on to a 2D surface. The object he studied
was the earth, and the observation was the shadow the earth cast dur-
ing lunar eclipses. He concluded that the earth must have a spherical
shape.
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Let us define the forward and the inverse problems mathematically.
Let say we have a function F ∈ L(X, Y), where X and Y are some space.
We can write the equation as:

d = F(x). (1.1)

The forward problem is to find d ∈ Y for a given x ∈ X. The inverse
problem is to find x given d. In the case of CT-tomography, d is the set
of measurements of the X-ray intensity, F is the function that models
the intensity after an X-ray has passed through an object, and x is a
slice of the brain.
F can model countless applications. Another well-known inverse

problem is deblurring, where d is a blurred image, F is a blurring
operator (more on this operator later), and x is the "clean" image.

The data the sensors capture are discrete. The sensors may be a
CCD image sensor where each pixel detects a signal proportional to
light intensity. Moreover, even though we live in a continuous world,
we observe the CDD sensor’s images on a screen made up of pixels.
Thus we reconstruct often in the discrete setting. Furthermore, many
inverse model applications use a function F, which can be linearized
in the discrete setting. In a discrete setting, we can now write the
model as

d = Ax (1.2)

where A is a matrix in RM×N which performs as the linear function
F, x ∈ RN and d ∈ RM.

The world we live in is far from perfect, and so are the sensors that
capture the data. Noise is introduced. Thus a more fitting acquisition
model is

d = Ax+ η (1.3)

where η ∈ RN is some small additive noise. Depending on the appli-
cation, the noise can follow different statistics such as Gaussian, or it
does not even need to be additive, like Poisson noise. Furthermore,
the noise can be a mix of different statistics.

To obtain x, we search to maximize the likelihood to recover x,
given the data d. This likelihood is equal to the conditional probabil-
ity of d knowing x, denoted P(d|x). Supposing η to be additive white
Gaussian noise, to maximize the likelihood is equivalent to minimize
the following term:

arg min
x∈RN

1

2
‖Ax− d‖22. (1.4)

The above term is referred to as the data fidelity term or the `2-
term.
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In the case of Poisson noise, we have to minimize

arg min
x∈RN

∑
i

[(Ax+ η)i − di ln((Ax+ η)i)] . (1.5)

In many cases, the `2 data fidelity term (1.4) is used, mostly because
it is easy to analyze and has an intuitive form.

1.1.1 Ill-posed problems

Hadamard presented in 1902 the term well-posed problems. They
have the three following properties:

• a solution exists,

• the solution is unique,

• the solution’s behavior changes continuously with the initial
conditions.

The term "well-posed" was meant to guide researches to make good
mathematical models for forward-problems. Unfortunately, most in-
verse problems are ill-posed. In the presence of noise, the behavior of
the solution explodes. This can be shown quite easily. The optimality
condition for problem (1.4) is

0 = ∇
(
1

2
‖Ax̂− d‖2

)
⇔

0 = ATAx̂−ATd⇔ x̂ = (ATA)−1ATd.

Replacing d with (1.3), and we obtain

x̂ = (ATA)−1AT (Ax̂exact + η)↔ x̂ = x̂exact + (ATA)−1ATη

If A have small non-zero singular values, the inversion of ATA will
lead to an explosion of noise such that x̂ will be far from x̂exact.

1.1.2 Regularization

The solution of (1.4) is not acceptable in the presence of noise as the
problem is most likely ill-posed. A priori information of the signal
is used to avoid this problem, i.e., we impose a priori some proper-
ties on the sought solution. A great example of a priori information
is total variation [AV94], which is used in denoising. Total variation
is designed to promote smoothness in the image while preserving
edges. This is natural in images. Just look out of the window; there
is a sharp edge between the window frame and the blue sky, and
the blue sky is smooth. Total variation was quite revolutionary at the
time, as average filters were mostly used in denoising, but these filters
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smoothened the edges. With time, variations of TV regularizations
has been proposed and is still used in many denoising algorithms
[Pad+20].

With the a priori information, denoted R(x) : RN → R, an opti-
mization problem can be written as one of these three

arg min
x∈RN

1

2
‖Ax− d‖22 s.t. R(x) 6 k, (1.6)

arg min
x∈RN

R(x) s.t. ‖Ax− d‖22 6 ε, (1.7)

arg min
x∈RN

1

2
‖Ax− d‖22 + λR(x). (1.8)

The choice of which form of minimization depends on the knowledge
of the problem. The minimization problem (1.6) can be used if we
have information on the boundedness, k, of the a priori information.
Examples of this are presented later in this thesis.

(1.7) can be used when the user has information on the noise level,
η, such that ε ≈ η. The most common one is the regularization
method (1.8), as the λ ∈ R>0 serves as a weight between the data
fidelity term and the a priori information R(x).

The choice of the regularization term depends on the application
and should represent properties of the wished-for reconstructed sig-
nal.

1.2 problem formulation

Sparse optimization is to reconstruct a signal with few non-zero com-
ponents from an acquired observation. A natural way of choosing a
way of measuring sparsity is by using the `0-pseudo-norm , which
will, by abuse of terminology, referred to as the `0-norm:

‖x‖0 = #{xi, i = 1, · · ·N : xi 6= 0} (1.9)

with #S defined as the cardinality of S. The `0-norm is only a pseudo-
norm as it is invariant by multiplication, i.e., λ 6= 0, ‖λx‖0 = ‖x‖0.

Following the previous section, we can write sparse optimization
as one of the three following ways:

arg min
x∈RN

Gk(x) :=
1

2
‖Ax− d‖22 s.t. ‖x‖0 6 k (1.10)

arg min
x∈RN

‖x‖0 s.t. ‖Ax− d‖22 6 ε (1.11)

arg min
x∈RN

G`0(x) :=
1

2
‖Ax− d‖22 + λ‖x‖0 (1.12)
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We refer problem (1.10) to as the constrained `2− `0 optimization prob-
lem. The problem (1.12) is referred to as the penalized `2− `0 problem,
and (1.11) is referred to as the constrained `0− `2 problem. The differ-
ent minimization problems can be applied depending on the knowl-
edge of the data the user has beforehand. If the user has an idea of
the solution’s sparsity, then the constrained `2 − `0 formulation may
be preferable to use. However, if the user has information on the level
of noise the data has been corrupted by, then the constrained `0 − `2
formulation is advantageous. Lastly, if the user has no information
about the solution’s sparsity, neither the noise, then the penalized
`2 − `0 formulation is preferable.

Due to the combinatorial nature of the `0-norm, the problems are
non-convex. Thus, it is important to note that these three problems
are similar, but not equivalent [Nik16].

The global minimum of (1.12) (respectively (1.10) ) could be cal-
culated as follows: For each possible combination of support of x
(respectively, such that the cardinal of the support is less or equal
than k), noted ω, we can minimize 12‖Aωxω−d‖2 and take the mini-
mum. However, it is expensive to investigate all the possible supports,
as the number of calculations to do is 2N for the penalized problem
(
∑N
i=0

(
N
i

)
= 2N). In the constrained `2 − `0 case, supposing that the

global minimum has an exact k-support, the possible number of sup-
ports to test is

(
N
k

)
. This could be calculated in small numerical exam-

ples, but in the second part of this thesis, we are working on images
going up to 512× 512. Say that k = 3, then the number of possible
supports to search for are 3 × 1015. Furthermore, k is much larger
in the applications, and this method is not possible with standard
computers.

The main focus of the thesis is centered around the constrained
problem.

1.3 applications of sparse optimization

Sparse optimization is found in many applications and in this section,
we introduce problems where efficient sparse optimization is needed.

1.3.1 Sparse deconvolution

The acquisition model for a standard deconvolution problem is as
follows

d = h ∗ x+ η,

where h is the impulse response of the system, η is the noise, and d
the observed signal. x is the signal we want to reconstruct.

For some acquisitions, the user knows the solution to be sparse, i.e.,
the observed signal is a result of convolution to a few "spikes." Ap-
plications to this can be found everywhere. In geophysics, the spikes
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are reflectivity, which indicates the transit of geological layers. A vi-
brational source is located at the surface and sends a wave down in
the earth. Sensors observe waves reflected from the ground at dif-
ferent layers, which can be modeled as convolution with the source
wavelet and the reflectivity [Men13].

Ultrasonic nondestructive evaluation in nuclear reactors uses sparse
deconvolution to estimate the reactor’s pressure tube life. Hydrogen
can shorten the tubes’ life, and a method to do so is to measure the
percentage of a particular molecule in the tube. An ultrasonic pulse
propagates in the material, and the echos captured by the sensors are
from internal flaws [OSK94]. This can be modeled as a sparse opti-
mization problem when we suppose that the internal flaws are a few
"spikes."

In applications described above, we can use a regularization term
that promotes sparsity, such as the `0-norm. Furthermore, assuming
Gaussian noise, this can be described as sparse regularization prob-
lem such as (1.10), (1.11) or (1.12).

1.3.2 Dictionary learning

A sparse representation of a signal is to represent a "full" signal
with few components. The search for sparse representations of sig-
nals grew as the data captured grew and grew. A signal with few
components uses less space when stored, and thus sparse representa-
tion was initially inspired by data compression. What more, noise is
by nature random, and sparse representation of something random
is problematic. Thus a sparse representation of a signal can be used
to denoising as well. Sparse signals are more prone to interpretation
since only a few atoms contribute to the full signal. There are many
methods to obtain sparse representations of signals, as using the Haar
transformation [Haa10].

More recent methods search for a dictionary D ∈ RM×N, such that
a full signal d can be represented by Dx. where x is a sparse signal.
The method is called dictionary learning. Using a learned dictionary
in opposition to predefined dictionaries, such as wavelets, is more
efficient in signal processing, such as denoising [EA06].

Dictionary learning aims to find sparse representations for a set of
signals and the minimization problem can be written as

min
D,x
‖Dx− d‖2 + R(x),

where R is a regularization term that promotes sparsity, such as pe-
nalized (R(x) = λ‖x‖0) or constrained (R(x) = χ‖·‖06k).

In order to perform the above minimization, alternating methods
may be applied [Xu+17]. Alternating methods consist of minimizing
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first with respect to one variable while fixing the other, then minimiz-
ing the other variable. Thus one step of the minimization is

min
x
‖Dx− d‖2 + R(x).

Thus efficient sparse optimization is needed.
Dictionary learning can be applied to many image processing prob-

lems such as denoising, inpainting [She+09], and classification and
face recognition [Xu+17].

1.3.3 And much more!

In the previous two sections, we have seen two classical optimization
problems that apply to a large scale of problems. That is only a small
part of possible applications where sparse optimization is needed. In
this thesis, we limit the applications to Single-Molecule localization
microscopy, which is deconvolution and upsampling problem, see
Chapter 5.

1.4 state of the art

Sparse optimization is a rapidly growing area of research. This section
tries to give a small overview of existing methods and advances to
solve these problems.

This section is divided into subsections, each for the different meth-
ods of optimization. We start with the well known `1-relaxation and
introduce other relaxations and reformulations. We end the chapter
by presenting algorithms designed to minimize the initial problems.

1.4.1 Relaxations

The `0-norm is non-convex and non-continuous. Thus it is interesting
to replace the norm by another function.

1.4.1.1 `1-relaxation

A natural choice is the `1-norm, which is both convex and continuous.
In fact, the `1-norm is the convex envelope of the `0-norm when re-
stricted to the unit ball. The `1-relaxation was first introduced in the
article [CD94] and is named Basis Pursuit (BP), but the `1-relaxation
has a long history of promoting sparsity. Instead of finding a mini-
mum of the following problem

min
x
‖x‖0 s. t. Ax = d, (1.13)

they propose to solve the relaxed form

min
x
‖x‖1 s. t. Ax = d. (1.14)
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Simplex methods from linear programming, such as [CDS01], can
solve problem (1.14).

The above problem does not take into account noise, and BP De-
Noising (BPDN) [CDS01], and Least Absolute Shrinkage And Selec-
tion Operator (LASSO) [Tib96] propose algorithms to take noise into
account. Thus the problem formulations are

min
x
‖x‖1 s. t. ‖Ax− d‖ 6 η, (1.15)

and

min
x

1

2
‖Ax− d‖2 + λ‖x‖1. (1.16)

There is an extensive literature concerning equivalence between the
minimizer of the `1-and the `0 problem. Among others, the Restricted
Isometry Property (RIP) is used as a criterion.

Definition 1.1. Let A be an M ×N matrix and let 1 6 k 6 N be an
integer. Suppose that there exists a constant δs ∈ (0, 1) such that, for every
M× k submatrix Ak of A and for every k-dimensional vector y

(1− δk)‖y‖22 6 ‖Aky‖22 6 (1+ δk)‖y‖22.

Then, the matrix A is said to satisfy the k-restricted isometry property
with the Restricted Isometry Constant (RIC) δk, δk being the smallest value
that satisfies the above inequalities.

If A verifies RIP of order 2k with constant δ2k < 1, then `0 problem
has a unique k-sparse solution. Furthermore, in [Can+08], if δ2k <√
2− 1 then the minimum of the `1-relaxation is the same as the min-

imum of the initial function. This holds for the noiseless (1.14) and in
the case with noise (1.15) and (1.16).

The RIP condition is hard to verify since it is needed to test all
submatrices Ak, and other definitions such as Spark [DE03], Null
Space Condition [CDD09], and Coherence has been used. This is very
much used in Compressed Sensing, a topic we do not go further into
in this thesis, but there are excellent source material on the subject,
see for example [Dav+12]

The Forward-Backward Splitting (FBS) algorithm [CW05] is suitable
to solve the penalized problem (1.16). The algorithm uses the proxi-
mal operator.

Definition 1.2. The proximal operator of a function g is defined as

prox g
γ
(y) = arg min

x

g(x) +
γ

2
‖x− y‖22 (1.17)

The FBS is designed to work on problems on the form

x̂ ∈ arg min
x

J(x) := f(x) + g(x) (1.18)
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where f is a differential function, ∇f is L-Lipschitz, and the proximal
operator of g can be calculated.

The algorithm for solving problems of the form (1.18) is as follows:

Algorithm 1 : Forward-Backward Splitting
Input :
γ ∈ [L/2,+∞[ ;

x0 ∈ RN;

Repeat :
x(p+1) ∈ prox g

γ
(x(p) − 1

γ∇f(x
(p))) ;

Until : Convergence

Output : x(p+1)

In the penalized case, we have that f(x) = 1
2‖Ax− d‖

2 and g(x) =
λ‖x‖1 The proximal operator of the `1-norm is the shrinkage operator
(also known as soft thresholding) defined as

proxλ‖·‖1(y)i =


yi − λ if yi > λ

yi + λ if yi 6 −λ

0 if yi ∈ [−λ, λ].

Accelerations of the above algorithm have been proposed, such as
the Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) [BT09].

We have seen that `1-relaxation has the same minimizer as the ini-
tial problem under certain conditions. However, if these strict condi-
tions are not verified, we have no assurance of the equivalence. Fur-
thermore, contrary to the `0-norm, the `1 norm penalizes large coeffi-
cients. Adaptive methods of the penalized problem were introduced
in [CWB08; Zou06] to increase the accuracy of the `1-minimization.

They propose
‖x‖0 ≈

∑
i

wi|xi|,

where wi adapts from xi, and is inversely proportional to xi. For
example, the algorithm presented in [CWB08] adapts for each step
of its algorithm wi such that w(p+1)

i = 1

|x
(p)
i |+δ

, (p) being the pth

iteration of the algorithm, and δ a small constant. Thus elements with
a large magnitude will be less penalized.

Similarly, but with another approach, [ZK10; Hug+17], rewrites the
`0-norm as

‖x‖0 =
∑
i

x2i
x2i
≈
x2i
x̃i
2
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where x̃i is an approximation of xi. Thus the problem can be written
as

1

2
‖Ax− d‖2 +

∑
i

wix
2
i ,

where wi is updated at each iteration.
Most of the research seems to focuse on the penalized `2− `1 or the

constrained `1 − `2 problem.

1.4.1.2 Non-convex relaxations

Non-convex regularizers avoids penalizing the magnitude x, such as
the `1-norm does. The idea is to use a function that is "similar" to the
`0-norm. Many regularizers are separable, i.e.,

R(x) :=
∑
i

φ(xi). (1.19)

There exist non-separable regularizers, which are presented later
in this section. First, the capped-`1 penalty does not penalize large
values by using

φ(xi) = λmin(θ|x|, 1),

and the method is still used with success [Wan+19].
The `p-pseudo-norm, with 0 < p < 1, was studied in [Cha07;

CXY10], first with the observation matrix A verifying the RIP con-
dition, and later more generally. Under certain conditions, using the
RIP condition, this relaxation is exact [Cha07]. We refer the `p pseudo-
norm, by abuse of terminology, as the `p-norm. The penalty term is

R(x) = ‖x‖pp =
∑
i

|xi|
p.

The authors state that the `p-norm can be seen as intermediate be-
tween the `0-norm and the `1-norm as the `0-norm can be written
as

‖x‖0 =
∑
i

xi 6=0

|xi|
0.

More generally, [FL01] introduced some conditions to define what
a "good" relaxation of the `0-norm is. First of all, a regularizer should
be unbiased in order not to penalize large values. Secondly, the regu-
larizer should promote sparsity, with a thresholding rule to set small
values to zero. At last, they state that a regularizer should be continu-
ous to avoid instability. They proposed the Smoothly clipped absolute
deviation [FL01].

In the same idea, [Cho+13] studied regularizers that approach the
`0-norm asymptotically. The relaxations are on the form

R(δ; x) =
∑
i

φ(δ; xi),
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where
lim
δ→0
δ>0

φ(δ; x) = |x|0.

There are many examples of relaxations in this form. In the article
they give, among other, the example of Truncated quadratic potential
[Vek00]:

φ(δ, x) = min(
x2

2δ2
, 1).

Their main results state that a minimizer of the initial problem G`0
can be approximated by choosing a small enough δ.

An important relaxation that is also a source of inspiration for
this thesis is the Continuous Exact `0 (CEL0) penalty, introduced in
[SBFA15]. The authors calculate, using the Legendre transformation,
the convex envelope of the penalized `2 − `0 function in one dimen-
sion.

G`0(x) =
1

2
(ax− d)2 + λ‖x‖0

The convex envelope of the above equation is

G∗∗`0 =
1

2
(ax− d)2 + λ−

(
max

{√
λ−

|a||x|√
2

, 0
})2

.

To expand a higher dimension, the authors suppose that ATA is a
diagonal matrix and calculates the initial problem’s convex envelope.
Since ATA is a diagonal matrix, the problem becomes a sum of one-
dimensional problems. For A ∈ RM×N and x ∈ RN, he obtains:

G∗∗`0 =
1

2
‖Ax− d‖2 +

N∑
i=1

φ(‖ai‖, λ; xi)

where ‖ai‖2 is the `2 norm of the ith column of the matrix A and

φ(‖ai‖, λ; xi) = λ−
‖ai‖2

2

(
|xi|−

√
2λ

‖ai‖

)2
1
|xi|6

√
2λ
‖ai‖

. (1.20)

They define the penalty term

ΦCEL0(A, λ; x) =
N∑
i=1

φ(‖ai‖, λ; xi). (1.21)

Further, they assume that A is not necessarily orthogonal, and de-
fine GCEL0.

GCEL0(x) =
1

2
‖Ax− d‖2 +ΦCEL0(A, λ; x). (1.22)

The authors propose to minimize GCEL0 rather than G`0 . The func-
tion GCEL0 is not convex, but continuous. They prove three important
properties concerning the connection between the minimizers of the
GCEL0 and G`0 .
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• The global minimizers of GCEL0 contains the global minimizers
of G`0 .

• From each minimizers (global or local) of GCEL0 one can iden-
tify a minimiser (global or local) of G`0 .

• Some local minimizers of G`0 are not local minimizers of GCEL0.

GCEL0 can eliminate some local minimizers while preserving the
global ones. Furthermore, GCEL0 is continuous while G`0 is not. Thus,
minimizing GCEL0 may lead to better results than G`0 .

Following their work, [SBFA17] gives strong conditions for relax-
ations of the `0-norm for the penalized formulation. The authors were
interested in exact relaxations. For a relaxation to be exact, it has to
verify the two following conditions

• The relaxation has the same global minimizers as the initial
function.

• The relaxation does not add any local minimizers to the prob-
lem.

As seen, the `1-norm is an exact relaxation, but only under strict
assumptions on A. In [SBFA17], they work without any assumptions
on A.

The authors prove that relaxations such as Capped-`1 conserve the
global minimizers for certain choices of θ, but it does not verify the
second condition of exactness. The same holds for SCAD. The well-
known Minimax Concave Penalty (MCP) [Zha+10] verifies the two
conditions if the parameters are chosen correctly.

To end this section, we give an example of non-separable relaxation.
These are relaxations that cannot be written as (1.19). [Sel17] proposes
a non-convex regularization, Generalized Minimax-Concave (GMC)
Penalty. The penalty is based on the Generalized Huber function, de-
fined below.

Definition 1.3. Let B ∈ RM×N. The Generalized Huber function SB :

RN → R is defined as

SB(x) = inf
v∈RN

‖v‖1 +
1

2
‖B(x− v)‖22

The GMC penalty is defined as

ΨB(x) = ‖x‖1 − SB(x)

The author proposes the following cost function

1

2
‖Ax− d‖2 + λΨB(x).

They show that when B is chosen such that λBTB � ATA, then the
above cost function is convex.

It is important to note that we are not aware of any non-convex
relaxations of the constrained `2 − `0 problem (1.10).
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1.4.2 Reformulations

In this section, we choose to include Difference of Convex (DC) pro-
gramming. This could be seen as a method of minimizing approxima-
tions of the `0-norm, but it has strong connections to reformulations
of the `0-norm as well. The idea is to write an approximation or a
relaxation of the `0-norm as the difference of two convex functions.
In [LT+15], they study the exactness of the relaxations.

The authors of [GTT18] propose to rewrite the k-sparse constraint
as a difference of two convex functions. They states the equivalence
between ‖x‖0 6 k and ‖x‖1− |||x|||k = 0. ||| · |||k is defined as

∑k
i=1 |x

↓
i |,

where x↓ is such that |x↓1| > |x
↓
2| > . . . |x

↓
N|. Further, the authors relax

the constraints, and proposes to minimize the following expression
using DC methods:

1

2
‖Ax− d‖22 + ρ(‖x‖1 − |||x|||k). (1.23)

They prove that the algorithm converges to a critical point of the
initial constrained `2 − `0 function (1.10) as long as ρ > ‖ATd‖2 +
3
2LC, with L being the L-Lipschitz gradient of the `2 data fidelity term,
and C is a value that bounds, by the `2-norm, the optimal argument
x̂ of (1.23) ∀ρ.

In the article [Asp03], they reformulated the `0-norm by introduc-
ing an auxiliary variable. The author proposes:

‖x‖0 = min
v

∑
i

vi s.t. (vi − 1)xi = 0 and vi > 0 ∀i.

They suggest to use the above formulation to solve the constrained
`0 − `2 problem (1.11). In the same idea, [Bou+16] reformulates the
constrained problem as a Mixed Integer Problem (MIP). They propose
to use the reformulation for the all three formulations (1.10), (1.11),
and (1.12). The authors suppose that the solution x̂ to the problem
can be bounded in the infinity norm by M.

‖x‖0 6 k⇔



∃b ∈ {0, 1}N

s.t∑N
i bi 6 k

−Mb 6 x 6MB.

Furthermore, they use an algorithm that finds a global minimum.
However, the algorithm is limited to small problems; when, x ∈ RN,
N ≈ 100, the algorithm may use more than 1000 seconds to find the
solution.

Other methods offer different reformulations of the `0-norm. The
work of Liu and Bi [BLP14; LBP18] focuses on a reformulation of
`0-norm on the following form:

‖x‖0 = min
06v6e

< e, e− v > s.t. < v, |x| >= 0, (1.24)



16 introduction to sparse optimization

where 0 6 v 6 e is a component-wise comparison, and |x| is the vector
x ∈ RN where the absolute value is applied to each component. This
reformulation is similar to one proposed later by [YG16]:

‖x‖0 = min
−16u61
u∈RN

‖u‖1 s.t ‖x‖1 =< u, x > . (1.25)

Let u = e− v, and use Eq. (1.24):

‖x‖0 = min
06u61

< e,u > s.t. < e− u, |x| >= 0 (1.26)

⇔ ‖x‖0 = min
06u61

∑
ui s.t. ‖x‖1− < u, |x| >= 0 (1.27)

We observe that (1.25) is similar but not equivalent to the one above.
However, [BLP14; LBP18] focus mainly on the following minimiza-
tion problem

min
x
‖x‖0 s.t. ‖Ax− d‖ 6 δ.

Note that their data fidelity term is not squared, compared to the
problem (1.11).

1.4.3 Algorithms

We have in the previous sections presented different methods to facil-
itate solving the initial `0-problems (1.10), (1.11), and (1.12) by relax-
ing or reformulating them. However, some algorithms minimize the
initial problem. We enumerate some of it below.

The Iterative Hard Thresholding (IHT) was first introduced in [BD08].
It is an algorithm that, under the assumption that ‖A‖2 < 1, con-
verges to a critical point. The algorithm can be viewed as an FBS (
see Algorithm 1), with a step size γ = 1. The FBS algorithm’s con-
vergence was later ensured for a non-convex function J that satisfies
the Kurdyka-Łojasiewicz (K-L) property, see [ABS13]. The steps size γ
should be in γ ∈ [L,+∞[ where L is the Lipschitz constant of ∇f.

Definition 1.4. A locally Lipshitz function f : RN → R satisfies the
Kurdyka-Łojasiewicz inequality at x∗ ∈ RN iff there exists 0 < η < ∞,
a neighborhood U of x∗, and a concave function κ : [0,η] → [0,+∞[ such
that

1. κ(0) = 0,

2. κ is of class C1 on ]0,η[,

3. κ ′ > 0 on ]0,η[,

4. For every x ∈ U with f(x∗) < f(x) < f(x∗) + η we have

κ ′(f(x) − f(x∗))dist(0,∂L(f(x)) > 1
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The ∂L denotes the limiting-subdifferential [Mor06]. Further note
that a large number of functions satisfy the K-L property, including
‖x‖0 and χ‖·‖06k(x) [ABS13].

The hard thresholding is simply the proximal operator of the regu-
larization term. In the case of the penalized formulation, the proximal
operator is defined as

proxλ‖·‖0(y)i =


0 if |yi| <

√
2λ

{0,yi} if |yi| =
√
2λ

yi else.

In the constrained case, the proximal operator is

prox↓χ‖·‖06k
(y) =

y↓i if i 6 k

0 else.
(1.28)

The operator x↓ sort the elements from their magnitude, i.e., |x↓1| >
|x
↓
2| > · · · > |x

↓
k|. Thus, the proximal operator keeps only the k largest

elements by their magnitude.
Several greedy algorithms are designed to obtain sparse solutions.

The idea behind greedy algorithms is to start with a zero initialization,
and for each iteration, add an element to x just until a convergence
criterium. A generic algorithm is shown in Algorithm 2.

Algorithm 2 : Standard Greedy algorithm
Input :
A ∈ RM×N, d ∈ RM ;

x(0) ∈ 0N, R(0) = d;

Repeat :
Choose a subset i; i ∈ Res(A,R(p))
Merge the support: ω(p+1) = NewSupport(ω(p),A, i)
Update x(p+1) = newX(A,ω(p), x(p))
Update residue:
R(p+1) = NewResidue(R(p),A, x(p+1),ω(p+1))

Until : Convergence

Output : xn

The Matching Pursuit (MP) algorithm was proposed in [MZ93]. The
algorithm is designed to choose one support, i, at each iteration. The
support is chosen to minimize the residual, where the residual is
defined as R(p) = d−Ax(p).

Let A be normalized, i.e., ‖ai‖ = 1, then we search for an index i,
such that the following problem has the smallest value:

min
β
‖R(p) −βAi‖2
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First, we observe that for a given i, β must be equal to < ATi ,R >.
Then, by developing the above expression, we have

‖R(p)‖2− < ATi ,R >

Thus, we search i such that < ATi ,R > is maximal. x is updated by
x(p+1) = x(p)+ < ATi ,R > ei. The algorithm convergences either
when the residual is sufficiently small or when the sparsity constraint
is saturated.

The Orthogonal Matching Pursuit (OMP) [PRK93] is identical in the
choice of support; however, x and the residual is updated differently.
Given at iteration p+ 1, we note ω(p+1) the support obtained after
p + 1 iterations. Contrary to MP which only adds one value to the
vector x, OMP additionally optimizes the value of xω based on the
data fidelity term. That yields

xp+1 ∈ arg min ‖Ax− d‖2 s.t. xi = 0 ∀i /∈ ω.

The residual is updated R(p+1) = d−Ax(p+1).
Another cornerstone of sparse greedy algorithms is the Orthogonal

Least Squares (OLS) [CBL89]. The algorithm differs from MP and OMP

in the choice of support. While MP and OMP choose the support from
the residual, OLS searches for the component that decreases the data
fidelity term.

i ∈ arg min
j

‖Aω⋃{j} xω
⋃
{j} − d‖2

where ω is the support found in previous iterations. Even though
methods exist to make the above minimization problem less costly, it
is still computational expensive compared to MP and OMP.

Based on these three methods, MP, OMP, and OLS, many new and
more advanced methods have been introduced. Without going into
too many details, there are methods to select and deselect compo-
nents, such as the Single Best Replacement (SBR) [Sou+11]. This algo-
rithm can minimize the penalized `2 − `0 problem, and at each itera-
tion, it updates the support by either adding or subtracting a compo-
nent. Further studies of minimizing the penalized problem have been
done, which includes finding the optimal lambda [Sou+15]. Methods,
adding a non-negative constraint, have been studied, see [Ngu+19],
and references therein.

At last, it must be noted that countless other methods exist to solve
sparse problems. For more in-depth reviews, see [Zha+15; Mar+18;
Sou16].

1.5 contribution

This thesis focuses on the constrained `2 − `0 minimization

min
x
Gk(x) =

1

2
‖Ax− d‖2 + χ‖·‖06k(x).
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We have presented in the previous section, the state of the art in
different approaches to sparse optimization. However, it seems that
the relaxation literature is more focused on the penalized problem:

G`0(x) =
1

2
‖Ax− d‖2 + λ‖x‖0.

Inspired by recent developments in sparse optimization, we pro-
pose in Chapter 2, to study a continuous relaxation of the constrained
problem:

min
x
GQ(x) =

1

2
‖Ax− d‖2 +Q(x),

whereQ : RN → R>0, and is defined in (2.11). To our knowledge, this
is the first time an explicit form of a relaxation of the constrained for-
mulation is proposed. GQ has many favorable properties, and most
importantly, a minimizer of GQ that satisfies the sparsity constraint
is a minimizer of Gk.

We present the proximal operator of the new regularizer. Thus,
standard minimization schemes such as FBS can be applied.

Numerically, we are not sure to always converge towards a solution
that satisfies the sparsity constraint. Thus, we implement a "Fail-Safe"
strategy into the algorithm. The algorithm always converges to a so-
lution of the initial problem.

In chapter 3, we propose an exact reformulation of the constrained
and penalized formulation, by introducing an auxiliary variable. We
obtain a biconvex expression. We name the two methods Constrained
Biconvex method (CoBic) and Penalized Biconvex method (PeBic). We
show that they can be defined as

Gρ(x,u) =
1

2
‖Ax− d‖2 + I(u) + χ·>0(x) + ρ(‖x‖1− < x,u >).

where I(u) is a convex function defined in (3.6) for CoBic and (3.7)
for PeBic. Compared to the methods introduced in Section 1.4.2, we
have tighter results concerning the formulation’s exactness. To com-
pute the solution we use an homotopy continuation algorithm. The
algorithm is easy to implement as it is built on already well-known
minimization problems.

Finally, in Chapter 4, we study the multiplicative criterion; more
specifically, we search to minimize

J(x) =
1

2
‖Ax− d‖2R(x),

where R(x) is a regularization term that promotes sparsity. Based on
the optimality conditions of the problem, we show that the numerical
minimization of J(x) can be realized by minimizing the following
additive functional

1

2
‖Ax− d‖2 + ‖Λ√βx‖

2,
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where Λ√β is a diagonal matrix with
√
β on the diagonal. βi is a

parameter that is updated at each iteration, and thus the method can
be viewed as an algorithm with an adaptive penalization parameter.
The approach is interesting as, in theory, it could be parameter-free.
This is a work in progress.

We apply the methods to Single Molecule Localization microscopy
(SMLM). This is a deconvolution and upsampling problem. We first
create simulated data to compare and show the advantage of mini-
mizing GQ, CoBic, and PeBic compared to minimizing the constrained
or penalized formulation directly. We further apply the methods to
data from the 2013 ISBI SMLM challenge, and compare the methods.
Not only do the methods perform as well as other state-of-the-art
methods in `2 − `0 minimization, but the sparsity constraint in GQ
and CoBic may be easier to adjust than the penalizing parameter λ.
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In this chapter, we present a continuous relaxation of the constrained
`2 − `0 problem. The inspiration for our work is the CEL0 relaxation,
presented in Section 1.4.1.2. This work aims to investigate if an equiv-
alent relaxation of the constrained problem can be constructed. Will
the relaxation conserve the global minima, such as the CEL0 method
does? We answer the question in this chapter.

Following the CEL0 method, we compute the convex envelope of
the constrained `2 − `0 problem when the observation matrix A is or-
thogonal. We obtain a relaxation function Q(x), and we use this as a
continuous relaxation of the `0 constraint. We investigate the proper-
ties of the new functional, named GQ, by calculating the generalized
subgradient and give numerical examples in two dimensions. We cal-
culate the proximal operator of Q, and show that classical minimiza-
tion schemes, such as Forward-Backward splitting methods, can be
applied. The chapter is based on the article [BBFA20a].

First, in this chapter, we assume that the columns of A are normal-
ized.

Proposition 2.1. We can suppose that ‖ai‖2 = 1, ∀ i without loss of
generality.

Proof. The proof is based on the fact that `0-norm is invariant to a mul-
tiplication factor. Let Λ‖ai‖ and Λ 1

‖ai‖
be diagonal matrices with the

norm of ai (respectively 1/||ai||) on its diagonal, and let z = Λ‖ai‖x,
then ‖Λ 1

‖ai‖
z‖0 = ‖z‖0 = ‖x‖0, and thus

arg min
x

1

2
‖Ax−d‖22+χ‖·‖06k(x) = Λ 1

‖ai‖
arg min

z

1

2
‖Anz−d‖22+χ‖·‖06k(z)

21



22 a continuous relaxation of the constrained `2 − `0 problem

where An is a matrix deduced from Awhere the norm of the columns
are 1.

2.1 the convex envelope of the constrained problem

when A is orthogonal

In this section, we are interested in the case where A is an orthogonal
matrix, i.e. < aj,ai >= 0, ∀ i 6= j. In contrast to the penalized `2 − `0
problem (1.12), Gk (1.10) with A orthogonal is not separable. Thus the
computation of the convex envelope in theN dimensional case cannot
be reduced to the sum of N one dimensional cases (as in the case of
CEL0 described in section 1.4.1.2). The constrained `2 − `0 problem
(1.10) can be written as

Gk(x) =
1

2
‖Ax− d‖2 + χ‖·‖06k(x) (2.1)

where χ is the indicator function defined in Notations. Before calcu-
lating the convex envelope, some preliminary results are needed.

Proposition 2.2. Let x ∈ RN. There exists Tk(x) ∈ N such that 0 <
Tk(x) 6 k and

|x
↓
k−Tk(x)+1

| 6
1

Tk(x)

N∑
i=k−Tk(x)+1

|x
↓
i | 6 |x

↓
k−Tk(x)

| (2.2)

where the left inequality is strict if Tk(x) 6= 1, and where x0 = +∞. Fur-
thermore, Tk(x) is defined as the smallest integer that verifies the double
inequality.

The proof of existence is given in the Appendix A.1. We will also
use the Legendre-Fenchel transformation which is essential in the
calculation of the convex envelope.

Definition 2.1. The Legendre-Fenchel transformation of a function f :

RN → R∪ {+∞} is defined as

f∗(u∗) = sup
u∈RN

< u,u∗ > −f(u).

The biconjugate of a function, that is applying the Legendre-Fenchel trans-
formation twice, is the convex envelope of the function.

Following [SBFA15], we present the convex envelope of Gk (2.1)
when A is orthogonal.

Theorem 2.3. Let A ∈ RM×N be such that ATA = I. The convex envelope
of Gk(x) is

G∗∗k (x) =
1

2
‖Ax− d‖22 +Q(x) (2.3)
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where

Q(x) = −
1

2

N∑
i=k−Tk(x)+1

x
↓2
i +

1

2Tk(x)

 N∑
i=k−Tk(x)+1

|x
↓
i |

2 (2.4)

and where Tk(x) is defined as in Proposition 2.2.

Proof. Since ATA = I, the function Gk (2.1) can be rewritten as

Gk(x) = χ‖·‖06k
(x) +

1

2
‖d− b‖22 +

1

2
‖x− z‖22 (2.5)

where b = AATd and z = ATd. This reformulation allows us to de-
compose the data-fitting term into a sum of 1-dimensional functions.
We apply the Legendre transformation on the functional (2.5):

G∗k(y) = sup
x∈RN

< x,y > −χ‖·‖06k
(x) −

1

2
‖d− b‖22 −

1

2
‖x− z‖22 .

We leave out the terms that are not depending on x.

G∗k(y) = −
1

2
‖d− b‖22 +

(
sup
x∈RN

< x,y > −χ‖·‖06k
(x) −

1

2
‖x− z‖22

)
.

Writing differently the expression inside the supremum we get

G∗k(y) = −
1

2
‖d− b‖22+(

sup
x∈RN

−χ‖·‖06k
(x) −

1

2
‖x− (z+ y)‖22 +

1

2
‖z+ y‖22 −

1

2
‖z‖22

)
.

We develop further

G∗k(y) = −
1

2
‖d− b‖22−

1

2
‖z‖22 +

1

2
‖z+ y‖22+(

sup
x∈RN

−χ‖·‖06k
(x) −

1

2
‖x− (z+ y)‖22

)
.

The supremum is reached when xi = (z+ y)↓i , i 6 k, and xi = 0,
∀i > k. The Legendre transformation of Gk is therefore

G∗k(y) = −
1

2
‖d− b‖22 −

1

2
‖z‖22 +

1

2

k∑
i=1

(z+ y)↓2i .

To obtain the convex envelope of the function Gk, we compute the
Legendre transformation of G∗k.

G∗∗k (x) = sup
y

< x,y > +
1

2
‖d− b‖22 +

1

2
‖z‖22 −

1

2

k∑
i=1

(z+ y)↓2i .
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We add and subtract 12‖x‖
2 and < x, z > in order to obtain an expres-

sion that is easier to work with.

G∗∗k (x) = sup
y

< x,y >+
1

2
‖d− b‖22 +

1

2
‖z‖22 +

1

2
‖x‖2 − 1

2
‖x‖2

+ < x, z > − < x, z > −
1

2

k∑
i=1

(z+ y)↓2i

= sup
y

< x, z+y > +
1

2
‖d− b‖22

+
1

2
‖x− z‖22 −

1

2
‖x‖2 − 1

2

k∑
i=1

(z+ y)↓2i .

Noticing that 12 ‖d− b‖
2
2 +

1
2‖x− z‖

2
2 = 1

2‖Ax− d‖
2
2, using the no-

tation w = z+ y, and given the definition of w↓, this is equivalent to

G∗∗k (x) =
1

2
‖Ax−d‖22−

1

2
‖x‖2+ sup

w∈RN

< x,w > −
1

2

k∑
i=1

w
↓2
i . (2.6)

The above supremum problem can be solved by using Lemma 2.4,
which is presented after this proof. This yields

G∗∗k (x) =
1

2
‖Ax− d‖22 −

1

2

N∑
i=k−Tk(x)+1

x
↓2
i

+
1

2Tk(x)

 N∑
i=k−Tk(x)+1

|x
↓
i |

2 . (2.7)

The following Lemma is necessary in the proof of the convex enve-
lope.

Lemma 2.4. Let x ∈ RN. Consider the following supremum problem

sup
y∈RN

−
1

2

k∑
i=1

y
↓2
i + < y, x > . (2.8)

This problem is concave and the value of the supremum problem (2.8) is

1

2

k−Tk(x)∑
i=1

x
↓2
i +

1

2Tk(x)

 N∑
i=k−Tk(x)+1

|x
↓
i |

2 .

Tk(x) is defined in Proposition 2.2. The supremum argument is given by

y = P(x)
−1
ŷ
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where ŷ is

ŷj(x) =



sign(x↓j )
1

Tk(x)

∑N
i=k−Tk(x)+1

|x
↓
i | if k > j > k− Tk(x) + 1

or if j > k and x↓j 6= 0

[−1, 1] 1
Tk(x)

∑N
i=k−Tk(x)+1

|x
↓
i | if j > k and x↓j = 0

x
↓
j if j < k− Tk(x) + 1.

(2.9)

The proof can be found in Appendix A.2.

Remark 2.1. ŷ is such that ŷ = ŷ↓.

The expression of the convex envelope (2.3) may be hard to grasp
since the expression is on a non-closed form. To understand better
Q(x) we have the following properties.

Property 2.1. Q(x) : RN → [0,∞[.

Proof. Let us show thatQ(x) > 0, ∀x. We use equation (2.4) as starting
point.

Q(x) = −
1

2

N∑
i=k−Tk(x)+1

x
↓2
i +

1

2Tk(x)

 N∑
i=k−Tk(x)+1

|x
↓
i |

2

> −
1

2
|x
↓
k−Tk(x)+1

|

N∑
i=k−Tk(x)+1

|x
↓
i |+

1

2Tk(x)

 N∑
i=k−Tk(x)+1

|x
↓
i |

2

> −
1

2
|x
↓
k−Tk(x)+1

|

N∑
i=k−Tk(x)+1

|x
↓
i |+

1

2
|x
↓
k−Tk(x)+1

|

N∑
i=k−Tk(x)+1

|x
↓
i |

= 0.

We used the fact that |x
↓
k−Tk(x)+1

| > |x
↓
i |, ∀i > k− Tk(x) + 1 for the

first inequality. For the second inequality, we used the inequality in
the definition of Tk(x) (see Proposition 2.2) to go from the second to
third line. Note that for Tk(x) > 1 the last inequality is strict.

Property 2.2. The function Q(x) is continuous on RN.

Proof. By definition we have that G∗∗k (x) = 1
2‖Ax− d‖

2 +Q(x) when
A is orthogonal, and G∗∗k is lower semi-continuous, and continuous in
the interior of its domain. From [RW09, Corollary 3.47] for coercive
functions, dom(co(f)) = co(dom(f)), where co is the convex enve-
lope of a function and dom is the domain of the function. First, Gk
is coercive when A is orthogonal since we have ‖Ax‖2 = (Ax)TAx =

xTATAx = ‖x‖2. G∗∗k is continuous on RN. Since dom(Gk) is made
up of all different supports where ‖x‖0 6 k, so its convex envelope is
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RN. Thus dom(G∗∗k ) = RN, and G∗∗k is continuous on RN. Moreover,
Q(x) = G∗∗k (x) − 1

2‖Ax−d‖
2, so Q(x) is the difference between a con-

tinuous function and a continuous function, and is independent of A,
and thus continuous.

Property 2.3. Let ‖x‖0 6 k. Then Tk(x) as defined in Proposition 2.2 is
such that Tk(x) = 1. The inverse it not necessarily true.

Proof. From Proposition 2.2 we know that Tk(x) satisfies

|x
↓
k−Tk(x)+1

| 6
1

Tk(x)

N∑
i=k−Tk(x)+1

|x
↓
i | 6 |x

↓
k−Tk(x)

|.

First, note that for all x such that ‖x‖0 6 k, we have ∀j > k, x↓j = 0,
and in this case the inequalities are clearly satisfied for Tk(x) = 1.
Furthermore, Tk(x) is defined as the smallest possible integer, and
thus Tk(x) = 1.

An example to prove the inverse is not true: Let x = (6, 3, 2, 1)T . Let
k = 2, then

N∑
i=k

|x
↓
i | = 6 6 |x

↓
k−1| = 6.

Tk(x) = 1 but the constraint ‖x‖0 6 2 is clearly not satisfied.

Property 2.4. Q(x) = 0 if and only if ‖x‖0 6 k.

Proof. From Property 2.1, Q(x) > 0 and the inequality is strict if
Tk(x) > 1. Thus, it suffices to investigate Tk(x) = 1. In that case,
the expression of Q(x) (2.4) can be written as:

Q(x) =

N∑
j=k+1

j−1∑
i=k

|x
↓
i ||x
↓
j |

which is equal to 0 only if at least ∀j, j > k, x↓j = 0.

In the next section, we will investigate the use of Q(x) when A is
not orthogonal.

2.2 a new relaxation

From now on, we suppose A ∈ RM×N with A not necessarily orthog-
onal.

We are interested in a continuous relaxation of Gk defined as

Gk =
1

2
‖Ax− d‖2 + χ‖·‖06k(x).

Following the CEL0 approach, we propose the following relaxation of
Gk:

GQ(x) =
1

2
‖Ax− d‖2 +Q(x) (2.10)
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with

Q(x) = −
1

2

N∑
i=k−Tk(x)+1

x
↓2
i +

1

2Tk(x)

 N∑
i=k−Tk(x)+1

|x
↓
i |

2 (2.11)

where Tk(x) is the function defined in Proposition 2.2:

|x
↓
k−Tk(x)+1

| 6
1

Tk(x)

N∑
i=k−Tk(x)+1

|x
↓
i | 6 |x

↓
k−Tk(x)

| (2.12)

where, by definition, the left inequality in (2.12) is strict if Tk(x) > 1.
Remark that, from its definition (see Eq. (2.6)), Q(x) can be written

as

Q(x) = −
1

2

N∑
i=1

x2i + sup
w∈RN

−
1

2

k∑
i=1

w
↓
i

2
+ < w, x > . (2.13)

Note that the properties of Q(x) proved in Section 2.1 are valid for
any A.

The exactness of a relaxation means that the relaxation has the same
global minimizers as the initial function. Furthermore, it does not add
any minimizers that are not minimizers of the initial function. The
CEL0 relaxation [SBFA15] is an exact relaxation of the penalized func-
tional (1.12). The proposed relaxation GQ of the constraint functional
Gk (2.1) is not exact as a counterexample later in this chapter shows.
We can prove, however, some partial results.

Remark 2.2. From Property 2.4, we haveQ(x) = 0 ∀ x such that ‖x‖0 6 k.
Thus GQ(x) = Gk(x) ∀ x such that ‖x‖0 6 k.

Theorem 2.5. Let x̂ be a local (respectively global) minimizer of GQ. If
‖x̂‖0 6 k, then x̂ is a local (respectively global) minimizer of Gk.

Proof. Let S := {x : ‖x‖0 6 k}. Let x̂ be a local minimizer of GQ,
such that ‖x̂‖0 6 k and let N (x̂,γ) denote the γ-neighborhood of x̂.
By contradiction assume that ∃x̄ ∈ N (x̂,γ)

⋃
S s.t. Gk(x̄) < Gk(x̂).

From Remark 2.2, GQ(x̄) = Gk(x̄) and GQ(x̂) = Gk(x̂), which means
∃x̄ ∈ N (x̂,γ)∪S s.t.GQ(x̄) < GQ(x̂) which is a contradiction since x̂
is a minimizer of GQ. The same reasoning can be applied in the case
of global minimizers.

Thus, if a minimizer of the relaxed functional satisfies the sparsity
constraint, then it is a minimizer of the initial problem. Furthermore,
the relaxation is a mix of absolute values and squares and promotes
therefore sparsity.

Further note that we could have applied the quadratic envelope
[Car19] to obtain the relaxation Q. The quadratic envelope can be
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defined as applying twice the Sυ transformation on a function f. The
Sυ transformation is defined as:

Sυ(f)(y) := sup
x

−f(x) −
υ

2
‖x− y‖2.

If we apply the quadratic envelope to the constrained `0 indicator
function, we obtain υQ. Further, the author proposes to either choose
υI ≺ ATA, where I is the identity matrix, or υI � ATA. It is impor-
tant to note that if we have a υ such that υI 6� ATA, does not mean
that υI ≺ ATA. When υ is such that υI � ATA the relaxation is exact.
However, numerically, we found this condition far too strong, and
it did not perform better than minimizing the initial hard constraint
function Gk (2.1). For a normalized matrix A, Q can be found by
taking υ = 1 in Sυ(Sυ(χ‖·‖06k)). However, we do not have necessarily
I � ATA. Nevertheless we show in this chapter, some exact relaxation
properties for GQ.

Furthermore, what is hidden in our proposed method is the fact
that each column of A is normalized. Without this assumption, each
element xi would be weighted by ‖ai‖2, which is finer than multiply-
ing the same constant to the whole the regularization term. Again, we
can compare with the CEL0 relaxation. When applying the quadratic
envelope to the `0 penalization term, we obtain CEL0, but instead of
‖ai‖2 in the expression, there is a υ.

However, we are obliged to normalize A to calculate the proximal
operator of the regularization term.

2.2.1 The subgradient

In this section, we calculate the subgradient of GQ. Since GQ is nei-
ther smooth nor convex, we cannot calculate the gradient nor the sub-
gradient in the sense of convex analysis. We calculate the generalized
subgradient (or Clarke subgradient). The obtained expression shows
the difficulties to give optimal necessary conditions for the relaxation.

To calculate the generalized subgradient, we must first prove that
Q(x) is locally Lipschitz.

Definition 2.2. A function f : RN → R is locally Lipschitz at point x if

∃(L, ε),∀(y,y ′) ∈ N (x, ε)2, |f(y) − f(y ′)| 6 L‖y− y ′‖

where L ∈ R>0, and N (x, ε) is a ε neighborhood of x.

Lemma 2.6. Q(x) is locally Lipschitz, ∀x ∈ RN.

Proof. First, it is well-known that the supremum of locally Lipschitz
functions is locally Lipschitz. Let us use the definition of Q(x) from

(2.13). The function defined as x → supw−12
∑k
i=1w

↓
i

2
+ < w, x > is
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locally Lipschitz since ∀i the functions x → −12
∑k
i=1w

↓
i

2
+ < w, x >

are locally Lipschitz. Furthermore, the sum of two locally Lipschitz
functions is locally Lipschitz.

Since Q(x) is locally Lipschitz, we can search for the generalized
subgradient, denoted ∂.

Definition 2.3. The generalized subgradient [Cla90] of a function f : RN →
R (which is locally Lipschitz) is defined by

∂f(x) := {ξ ∈ RN : f0(x, v) >< v, ξ >,∀v ∈ RN}

where f0(x, v) is the generalized directional derivative in the direction v,

f0(x, v) = lim sup
y→x
η↓0

f(y+ ηv) − f(y)

η
.

Theorem 2.7. Let x ∈ RN, and let Tk(x) be as defined in Proposition 2.2.
The subgradient of GQ(x) is

∂GQ(x) = A
∗(Ax− d) − x+ y(x) (2.14)

where y(x) is the argument where the supremum is reached in Lemma 2.4.

Proof. GQ is sum of three functions, supw−12
∑k
i=1w

↓
i

2
+ < w, x >,

1
2‖Ax− d‖

2 and −12‖x‖
2. From [Cla90, Proposition 2.3.3 and Corol-

lary 1] and since the two last functions are differentiable, we can
write the generalized subgradient of GQ as the sum of the gradient
of the two last functions and the generalized subgradient of the first,
i.e.

∂GQ = ∇[1
2
‖A ·−d‖2](x) −∇[1

2
‖ · ‖2](x)

+ ∂[ sup
w∈RN

−
1

2

k∑
i=1

w
↓
i

2
+ < w, · >](x). (2.15)

Thus, the difficulty is to calculate ∂[supw−12
∑k
i=1w

↓
i

2
+ < w, · >](x).

From [MN13, Theorem 2.93], the subgradient of the supremum
is the convex envelop of the subgradients where the supremum is

reached. We define g(w, x) = −12
∑k
i=1w

↓
i

2
+ < w, x >. The subgra-

dient of g with respect to x is ∂(g(w, ·))(x) = w. Now, we need to

find the supremum in supw−12
∑k
i=1w

↓
i

2
+ < w, x >. From Lemma

2.4, we know that the supremum is reached at y(x), given in (2.9). We
insert y(x) into (2.15) and this concludes the proof.
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2.2.2 Numerical examples

In order to obtain a clearer view of what is gained with the proposed
relaxation, we study two numerical examples in two dimensions. We
set k = 1 and the initial problem is

Gk(x) :=
1

2
‖Ax− d‖2 + χ‖·‖061(x).

In two dimensions, finding the minimum ofGk=1 is a simple problem
to solve. The solution is either when the first component, x̂1 is 0, or
when the second component x̂2 = 0, or both. For k = 1, we have
necessarily that T(x) = 1, and the relaxed formulation is then

GQ(x) =
1

2
‖Ax− d‖2 + |x1||x2|.

We consider first two cases where A ∈ R2×2 is an orthogonal matrix.

A =

(
1 2

−2 1

)
Λ1/‖ai‖ and d =

(
2

1

)
(2.16)

A =

(
1 0

0 1

)
and d =

(
1

1

)
(2.17)

where Λ1/‖ai‖ is a diagonal matrix with 1
‖ai‖ on its diagonal, and

‖ai‖ is the norm of the ith column of A. Figure 2.1 presents the con-
tour lines of Gk and GQ. The red semi-transparency layer over the
contour line of the Gk represents the infinite value, and the blue semi-
transparency layer over the relaxation highlights the axes. The green
line in the lower level right figure represents the global minima. The
Figure 2.1 presents the initial and the convex envelope of the initial
problem. We observe that the relaxations are convex, and example
2.16 has one global minimum. Example 2.17 shows when the global
minima are on a line. The two extremums of the line are on the axis,
and are the global minima of the intial function.

In the two following cases A ∈ R2×2 is not orthogonal.

A =

(
3 2

1 3

)
Λ1/‖ai‖ and d =

(
1

2

)
(2.18)

A =

(
−3 −2

1 3

)
Λ1/‖ai‖ and d =

(
1

2

)
(2.19)

The figures (2.2) show the advantages of using GQ as relaxation. The
relaxation is continuous, and in Example (2.18), the relaxation is exact.
This can be observed in the upper row in Fig. 2.2. Example (2.19) gives
an example when the relaxation is not exact. In the lower row of Fig.
2.2 we observe the effect of the relaxation, as it is a product of the
absolute value of x1 and x2. The global minima for the relaxation in
this case is situated in (−0.086, 1.0912) and the two minima for Gk
are (−0.3162, 0) and (0, 1.094).
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Figure 2.1: Top: Level lines of the function Gk and GQ for the example (2.16).
Bottom: Level lines of the function Gk and GQ for the example
(2.17).

2.3 algorithms to deal with the relaxation

In this section, we present an algorithm to use for the minimization
of GQ. The analysis of the relaxation shows that it promotes spar-
sity. The function GQ is non-convex and non-smooth, but in compar-
ison to the initial function Gk, GQ is continuous. During the thesis,
we had two main difficulties concerning the numerical aspects of the
minimization: First, the calculation of the proximal operator ofQ. Sec-
ondly, a non-negativity constraint is used in many image processing
applications, so the algorithm must minimize the functional plus a
non-negativity constraint.

Both problems were solved. To calculate the proximal operator of
Q, we had to normalize the columns of A, and use Proposition 2.9.
Furthermore, the proximal operator of the sum of Q and the non-
negativity constraint remains unknown. To avoid this problem, we
use a penalty term of negative values, defined as

dist2R>0
(x) := infy>0

1

2
‖x− y‖2

Finally, we use an acceleration of the FBS algorithm (see Algorithm
(1)), the Nonmonotone Accelerated Proximal gradient algorithm (nmAPG)
algorithm [LL15], which is used in the numerical experiences of this
thesis (see Appendix A.4 for the steps of the algorithm)1. The algo-

1 Note that we searched for algorithms that can minimize the sum of GQ and the non-
negativity constraint. Alternative methods such as SDMM [CP11; FBD10; SST10]
and inexact proximal methods [Gu+18; Bon+17] were studied, but they are not used
in numerical applications, due to the computational time. One could also imple-
ment a subgradient method by using gradient bundle methods (see [Bur+18] for
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Figure 2.2: Top: Level lines of the function Gk and GQ for the example (2.18).
Bottom: Level lines of the function Gk and GQ for the example
(2.19).

rithm is proved to converge when the cost function satisfies the K-L

property.
We split the GQ into f and g.

f(x) :=
1

2
‖Ax− d‖2 +αdist2R>0

(x)

g(x) := Q(x),

where α ∈ R>0. To use nmAPG, we need the gradient of f(x), and the
proximal operator of Q(x), which is presented in this section.

Lemma 2.8. GQ satisfies the K-Ł property.

Proof. 12‖Ax− d‖
2 is semi-algebraic. Using the definition of Q(x) in

(2.13) we can prove that Q(x) is semi-algebraic. ‖x‖22 is semi-algebraic.
Since

k∑
i=1

x
↓2
i = sup

y

g(x,y) := −χ‖·‖06k
(y) −

1

2
‖x− y‖2

and g(x,y) is semi-algebraic [BST14], then
∑k
i=1 x

↓2
i is semi-algebraic.

Thus, f(x,y) := −
∑k
i=1 y

↓2
i + < x,y > is semi-algebraic, and the

supremum as well. We can conclude that Q(x) is semi-algebraic, and
thus GQ satisfies the K-L property.

Remark 2.3. Since GQ does not always have a minimum that corresponds
to the k-sparsity, we can add a "fail-safe" strategy to ensure that the algo-
rithm always converges to a solution that satisfies the sparsity constraint.

an overview) or classical subgradient methods. However, there are no convergence
guarantees for the latter.
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A simple projection of the minimum obtained from GQ to the constraint
‖x‖0 6 k using the proximal of the constraint (see (1.28) ) and then
the calculation of the optimal intensity for the given support would suf-
fice. In mathematical terms, let ω be the support found after a projection
on to the k-sparse space. Then, we can minimize 1

2‖Aωxω − d‖2. Since
Aω ∈ RM×#ω, and #ω < M, the problem is overdetermined and easily
solved.

The expression of Q(x) in (2.4) is not on a closed-form expression
because of the function Tk(x) and calculating the proximal operator
directly from this expression is difficult. The following proposition
facilitates the calculation of proxQ. The proposition is inspired by
[Car16, Proposition 3.3], and the proof is available in Appendix A.3.

Proposition 2.9. Let γ > 1 and z = prox
−(γ−1γ )

∑N
i=k+1(·)↓2

(y). We have

proxQ
γ
(y) =

γy− z

γ− 1
. (2.20)

Thus, it suffices to calculate the proximal operator of

ζ(x) := −(
γ− 1

γ
)

N∑
i=k+1

x
↓2
i .

This is done in Lemma A.7 in the Appendix A.3. The following theo-
rem presents the proximal operator of Q

Theorem 2.10. The proximal operator of Q for γ > 1 is such that

proxQ
γ
(y)↓yi =


γy
↓
i−sign(y↓i )max(|y↓i |,τ)

γ−1 if i 6 k
γy
↓
i−sign(y↓i )min(τ,γ|y↓i |)

γ−1 if i > k

or, equivalently

proxQ
γ
(y)↓yi =


y
↓
i if i 6 k∗

γy
↓
i−sign(y↓i )τ
γ−1 if k∗ < i < k∗∗

0 if k∗∗ 6 i.

where k∗ is the first index such that τ > |y
↓
i | and k∗∗ is the first index such

that γ|y↓i | < τ. τ is a value in the interval [|y↓k|,γ|y
↓
k+1|], and is defined as

τ =
γ
∑
i∈n1 |y

↓
i |+ γ

∑
i∈n2 |y

↓
i |

γ#n1 + #n2
(2.21)

where n1 and n2 are two groups of indices such that ∀ i ∈ n1,y↓i < τ and
∀ i ∈ n2, τ 6 γ|y

↓
i | for an #n1 and #n2 are the sizes of n1 and n2. To go

from proxQ
γ
(y)↓y to proxQ

γ
(y) we apply the inverse permutation that sort y

to y↓.
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Proof. The result is direct by applying Proposition 2.9 and Lemma
A.7 which present the proximal operator of proxζ(y), the latter is
presented in Appendix A.3.

Note that the proximal operator of Q is only a relaxation of the
proximal operator of ‖x‖0 6 k, which keeps the k largest values of
x. Further note that the search for τ can be done iteratively by sort-
ing in descending order all values of y↓i i 6 k and γy↓i i > k that are
(with respect to their absolute value) in the interval [|y↓k|,γ|y

↓
k+1|]. The

elements in the interval are sorted, and denoted pi. n1,n2 must calcu-
lated for each interval [pi+1,pi]. The search is over if τ is ∈ [pi+1,pi].

The codes to compute the proximal operator and the cost function
are available online:
https://github.com/abechens/SMLM-Constraint-Relaxation

2.3.1 Numerical examples of the proximal operator

The proximal operator of Q may not be easy to grasp. The main diffi-
culty is to find tau. It is on a non-closed form, so this section gives a
step-by-step explanation of the proximal operator.

We start with a vector y ∈ R11 already sorted by its magnitude, i.e.,
y = y↓.

y = (8, 7.5, 7, 6.5, 6, 5.5, 5, 4.5, 4, 3.5, 3)T

We let γ be 1.5, and k = 6. From Theorem 2.10, we know that τ is
situated in [|y↓k|,γ|y

↓
k+1|], and we define w ∈ R11:

wi =

yi if i 6 k

γyi else
⇔ (2.22)

w = (8, 7.5, 7, 6.5, 6, 5.5, 7.5, 6.75, 6, 5.25, 4.5)T .

We refer to w as the unconstrained minimizers, as w would be the prox-
imal operator of (γ−1γ )

∑N
i=k+1(xi)

↓2 if we did not have that x↓ is the
vector x sorted.

The w is plotted in Fig. 2.3, where the horizontal axis is the coordi-
nate index of the vectors. The right plot highlights in gray the area in
which we search for τ, as stipulated in Theorem 2.10, i.e., τ ∈ [5.5, 7.5].
τ is calculated for each element interval. For example, to determine
if τ is in the interval [6.75, 7], we identify the elements of y that are
less than 7 for i 6 k, and the elements of γy larger than 6.75 for i > k.
This yields n1 and n2, respectively. We apply the formula (2.21) from
Theorem 2.10.

τ = γ
6.5+ 6+ 5.5+ 5

3γ+ 1
≈ 6.27

Since τ = 6.27 /∈ [6.75, 7], it is not the optimal value we search.

https://github.com/abechens/SMLM-Constraint-Relaxation
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Figure 2.3: Left: The plot of the unconstrained minimizers, w. Right: The
interval in which we search τ is highlighted in grey.

The left plot of Fig. 2.4 presents values of τ for each possible inter-
val. Note that τ must be in the predefined interval. In the plot, only
the value 6.30 corresponds to that criteria, since the interval is [6, 6.5].
In the right figure is the τ plotted. The arrows emphasize the projec-
tion of each element. The calculation of the τ is simply a minimization
of a specific cost-of-projection.

Figure 2.4: Left: The value of τ for each interval. Right: τ plotted and projec-
tion.

Finally, we have the proxζ(y), and, by applying Proposition 2.9
we have the proximal operator of Q. Both visible in Fig. 2.5. The
right figure compares the hard threshold with the proximal of the
relaxation Q. The proximal operator is, in fact, a relaxation, as it does
not enforce k-sparsity, but still penalizes the smallest components.
This may play a role in not getting stuck in a local minimum too fast
when using the FBS algorithm.

Note that the hard threshold operator is not unique. If the kth and
the k + 1th largest element of y are equal, then the hard threshold
chooses either the kth or the k+ 1th element. In this example we have
γ = 1.2, k = 6 and

y = (8, 7.5, 7, 6.5, 6, 6, 6, 6, 6, 5.5, 5, 4.5, 4, 3.5)T .
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Figure 2.5: Left: The proxζ(y). Right: The proximal operator of Q ( blue),
initial vector y (black) and the hard threshold (red).

Note that the hard threshold of y could be:

proxχ‖·‖06k
γ

(y) =



(8, 7.5, 7, 6.5, 6, 6, 0, 0, 0, 0, 0, 0, 0, 0)T , or

(8, 7.5, 7, 6.5, 0, 6, 6, 0, 0, 0, 0, 0, 0, 0)T , or

(8, 7.5, 7, 6.5, 0, 0, 6, 6, 0, 0, 0, 0, 0, 0)T , or

(8, 7.5, 7, 6.5, 6, 0, 6, 0, 0, 0, 0, 0, 0, 0)T , or

(8, 7.5, 7, 6.5, 6, 0, 0, 6, 0, 0, 0, 0, 0, 0)T .

The proximal operator of Q does not have this behaviour, and treats
identical entries identically. This is shown in the following figures.
Figure 2.6 plots the unconstrained minimizers, w and the value τ.
Figure 2.7 shows the proxζ(y) and the proximal operator of Q. Both
visible in Fig. 2.5. The right figure plots the hard threshold and the
proximal operator of Q. We observe that the hard threshold keeps
only the k-largest, and the computer chooses afterwards by lexico-
graphical order. The proximal operator of Q does treat however these
element equally.

Figure 2.6: Left: The unconstrained minimizers,w. Right: The unconstrained
minimizers, w, and τ.

As seen, the Hard thresholding acts differently than the relaxation.
The effect of this can be shown in a small numerical example. We use
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Figure 2.7: Left: The proxζ(y). Right: The proximal operator of Q ( blue),
initial vector y (black) and the hard threshold (red).

the same example as found in section 2.2.2, with A and d as in (2.18).
We use the algorithm nmAPG to minimize GQ and initial function
Gk. In Fig. 2.8, each step of the minimization is plotted over the level

Figure 2.8: Left: The minimization of the initial function Gk. Right: The min-
imization of GQ.

lines. The black diamond spots are the initial and finish points. Both
algorithms converge to a minimum, but only the relaxation converges
to the global minimum. It can be observed that the C-IHT takes a step
towards the global minima, but the hard threshold projects the step
towards the closest axis. In this case, this leads to the local minima.

2.4 conclusion

We have investigated in this chapter a continuous relaxation of the
constrained `2− `0 problem. We compute the convex hull of Gk when
A is orthogonal. We further propose to use the same relaxation for
any A and name this relaxation GQ. This is the same procedure as the
authors used to obtain CEL0 [SBFA15]. The question that has driven
us has been answered, the proposed relaxation, GQ, is not exact for
every observation matrix A. However, it promotes sparsity and is con-
tinuous. We propose an algorithm to minimize the relaxed function.
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We further add a "fail-safe" which ensures convergence to a critical
point of the initial functional.
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This chapter introduces CoBic and PeBic, two new methods to min-
imize the constrained and penalized problem. An ArXiv article in-
spired us, and we resume the article in the introduction. After intro-
ducing the inspiration, we start with the reformulation of the `0-norm,
which is introduced into the constrained and penalized problem. The
problems are then relaxed. We name this CoBic and PeBic. In Section
3.2.1, we prove the exactness of the reformulations and propose an
algorithm to minimize the functionals.

3.1 inspiration

The results in [YG16] seemed promising. The authors study problems
of the form

min f(x) s.t. ‖Bx‖0 6 k, (3.1)

where f(x) is a convex and L-Lipschitz, and B ∈ RM×N, and rank(B) =
M. Note that B can be the identity matrix. The authors proposes a
reformulation of the `0-norm, see Eq. (3.4). They introduce the refor-
mulation into problem (3.1), and further relax the problem such that
the final problem is

min
x,u

f(x) + χ‖·‖16k
(u) + χ

−16·61(u) + ρ(‖Bx‖1− < Bx,u >). (3.2)

They claim to prove the exactness of the reconstruction for ρ > L
σm(B) ,

where L is the Lipschitz constant of the function f, and σm(B) is the

39
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smallest singular value of B. However, in the case of `2 − `0 mini-
mization the proposed method cannot be used as the `2-data fidelity
term is not L-Lipschitz continuous, but gradient L-Lipschitz continu-
ous. Other reformulation methods exist such as Liu and Bi [BLP14],
and they study a reformulation of `0-norm on the following form:

‖x‖0 = min
06v6e

< e, e− v > s.t. < v, |x| >= 0. (3.3)

However, they do not apply their reformulation to the constrained
`2 − `0 problem. They study the reformulation with the data fidelity
term 1

2‖Ax− d‖. Note that it is not squared.
We choose to study the reformulation proposed by [YG16], since

they apply their reformulations to the constrained `2 − `0 problem
(1.10) with good results. However, the constrained `2− `0 formulation
does not verify their hypothesis. We concluded that further study of
the reformulation was possible and were inspired to adapt this work
to encompass the `2-data fidelity term.

3.2 exact biconvex formulation of the `2 − `0 problems

In this section, we focus on a reformulation of the `0-norm. [YG16]
first introduced this formulation where they rewrite the `0-norm as
convex minimization problem by adding an auxiliary variable. We
can write the `0-norm of any x ∈ RN as

‖x‖0 = min
−16u61
u∈RN

‖u‖1 s.t ‖x‖1 =< u, x > . (3.4)

Even though the introduction of the auxiliary variable u increases
the dimension of the problem, the non-convex and non-continuous
`0-norm can now be written as a convex and continuous minimization
problem. In this chapter, we study the `2 − `0 constrained and penal-
ized problems using the reformulation of the `0-norm. We also add
a non-negativity constraint to the x variable as it is usually used as
a priori in imaging problems. We can get an unified notation for the
constrained and penalized forms

min
x,u

1

2
‖Ax− d‖2 + I(u) + χ·>0(x) s.t. ‖x‖1 =< x,u >, (3.5)

where I(u) is, in the case of the constrained problem (1.10):

I(u) =

0 if ‖u‖1 6 k and ∀ i, −1 6 ui 6 1∞ otherwise.
(3.6)
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For the penalized problem (1.12):

I(u) =

λ‖u‖1 if ∀ i, −1 6 ui 6 1∞ otherwise.
(3.7)

We note S = {(x,u); ‖x‖1 =< x,u >}, and we define the functional G
as

G(x,u) =
1

2
‖Ax− d‖2 + I(u) + χ·>0(x) + χS

(x,u). (3.8)

The functional (3.8) is continuous and biconvex with respect to
(x,u): the functional G(x,u) in (3.8) is convex with respect to x while
u is fixed, and conversely. However, globally, it is still non-convex
due to of the space S. We can relax this constraint by introducing a
penalty term, ρ(‖x‖1− < x,u >), which is based on the method of
Lagrange Multipliers.

We define the Lagrangian cost function Gρ(x,u) : RN ×RN → R

as

Gρ(x,u) =
1

2
‖Ax−d‖2+ I(u) + χ·>0(x) + ρ(‖x‖1− < x,u >). (3.9)

In this chapter, we are interested in exact reformulation methods.
This means that any minimizer of (3.9) must be also a minimizer of
(3.8) and conversely. We show that for ρ > σ(A)‖d‖, with σ(A) the
largest singular value of A, Gρ(x,u) is exact.

3.2.1 Theoretical results

The theoretical results of this section have been published in [BBFA20b].
In this section we present the theoretical foundation of our work.

Theorem 3.1 and 3.4 show that minimizing (3.9) is equivalent in terms
of minimizers as minimizing (3.8), given ρ is large enough.

This theorem differs from [LBP18, Corollary 3.2] as their ρ may be
arbitrarily large in contrast to this work where ρ can be calculated
precisely. Furthermore, they work with a slightly different reformu-
lation of the `0-norm and not explicitly with the problem (5.3) since
they assume their loss-function to be locally Lipschitzian.

Similarly, the DC method proposed in [GTT18] (presented in Sec-
tion 1.4.2), proves that the algorithm converges to a critical point of
the initial function as long as ρ > ‖ATd‖2 + 3

2LC, with L being the
L-Lipschitz gradient, and C is a value that bounds the optimal argu-
ment ‖x̂‖2 of (1.23) ∀ρ. Thus, even though they do not introduces an
auxiliary variable, we recognize the idea of introducing a reformula-
tion of the k-sparsity constraint and further relax the reformulation
by introducing it as a penalty term. A drawback in their work is that
ρ must be chosen arbitrarily large as C is unknown.
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Theorem 3.1 (Constrained form). Assume that ρ > σ(A)‖d‖2, and A is
full rank. Let Gρ and G be defined respectively in (3.9) and (3.8) with I(u)
defined by (3.6). We have:

1. If (xρ,uρ) is a local (respectively global) minimizer ofGρ, then (xρ,uρ)
is a local (respectively global) minimizer of G.

2. If (x̂, û) is a global minimizer of G, then (x̂, û) is a global minimizer
of Gρ.

Two lemmas are needed in order to proof Theorem 3.1. The com-
plete proofs of these lemmas require three other lemmas (Lemma B.2,
Lemma B.5, and Lemma B.6) stated in the Appendix B.

Lemma 3.2. Let ρ > σ(A)‖d‖2. Let (xρ,uρ) be a local or global minimizer
of Gρ(x,u) := 1

2‖Ax−d‖
2+ I(u) + ρ(‖x‖1− < x,u >) with I(u) defined

as in (3.6) or (3.7). Let ω = {i ∈ {1, . . . ,N}; (uρ)i = 0}. Then (xρ)i =

0 ∀i ∈ ω.

Proof. Let J denote the set of indices: J = {1, . . . ,N}\ω. If (xρ,uρ) is a
local or global minimizer of Gρ then ∀(x,u) ∈ N((xρ,uρ),γ), where
N((xρ,uρ),γ) denotes a neighborhood of (xρ,uρ) of size γ, we have

1

2
‖Axρ − d‖2 + χ·>0(xρ) + I(uρ) + ρ(‖xρ‖1− < xρ,uρ >) 6

1

2
‖Ax− d‖2 + χ·>0(x) + I(u) + ρ(‖x‖1− < x,u >).

By choosing u = uρ and x = x̃ with x̃J = (xρ)J and x̃ω = xω, with
(xω, (uρ)ω) ∈ N(((xρ)ω, (uρ)ω),γ), we have

1

2
‖Axρ − d‖2 + χ·>0(xρ)+ρ‖(xρ)ω‖1 6

1

2
‖Ax̃− d‖2 + χ·>0(x̃) + ρ‖xω‖1.

(3.10)

We want to show that (xρ)ω is zero. We have

‖Ax− d‖2 = ‖Ax‖2 + ‖d‖2 − 2 < Ax,d >

=
∑
i

(Ax)2i + ‖d‖2 − 2
∑
i

xi(A
Td)i

=
∑
i

(∑
j∈J

Aijxj)
2 + (

∑
j∈ω

Aijxj)
2

+ ‖d‖2−

2

[∑
i∈J

xi(A
Td)i +

∑
i∈ω

xi(A
Td)i

]
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Using the above decomposition simplifies (3.10), and we have ∀ xω:

1

2

∑
i

∑
j∈ω

Aij(xρ)j

2 −∑
i∈ω

(xρ)i(A
Td)i + ρ‖(xρ)ω‖1 + χ·>0(xρ)

6
1

2

∑
i

∑
j∈ω

Aijxj

2 −∑
i∈ω

xi(A
Td)i + ρ‖xω‖1 + χ·>0(xω).

Thus (xρ)ω is a solution of

arg min
xω

1

2

∑
i

∑
j∈ω

Aijxj

2 −∑
i∈ω

xi(A
Td)i + ρ‖xω‖1 + χ·>0(xω),

or, equivalently solution of

arg min
xω

1

2
‖Aωxω − d‖2 + ρ‖xω‖1 + χ·>0(xω) (3.11)

where Aω is the P × #ω submatrix of A composed by the columns
indexed byω ofA. With Lemma B.2 , we have that σ(A) > σ(Aω) and
if ρ > σ(A)‖d‖2 we can apply Lemma B.5 with w a vector composed
of ρ. We conclude that (xρ)ω = 0.

Lemma 3.3. If ρ > σ(A)‖d‖2, let (xρ,uρ) be a local or global minimizer
of

arg min
x,u

1

2
‖Ax− d‖2 + χ·>0(x) + ρ(‖x‖1− < x,u >) + I(u),

with I(u) defined as in (3.6), that is, the constrained form. Then

‖xρ‖1− < xρ,uρ >= 0.

Proof. From Lemma B.6 (see Appendix B), we have that (uρ)i(xρ)i =
|(xρ)i|∀ i ∈ J, and (uρ)i = 0 ∀i ∈ ω. It suffices to prove (xρ)i = 0 ∀i ∈
ω. For that we use Lemma 3.2 and conclude that (xρ)ω = 0.

With the two above lemmas, we can prove Theorem 3.1.

Proof. We start by proving the first part of the theorem. Let (xρ,uρ)
be a local minimizer of Gρ, with I(u) on the constrained form, that is,
defined as in (3.6). Let S = {(x,u); ‖x‖1 =< x,u >}. If ρ > σ(A)‖d‖2
then, from Lemma 3.3,

(xρ,uρ) verifies ‖xρ‖1 =< xρ,uρ > .

Furthermore, from the definition of a minimizer, we have

Gρ(xρ,uρ) 6 Gρ(x,u) ∀(x,u) ∈ N((xρ,uρ),γ),
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and so we have

Gρ(xρ,uρ) 6 Gρ(x,u) ∀(x,u) ∈ N((xρ,uρ),γ)∩ S.

Since ∀(x,u) ∈ S,Gρ(x,u) = G(xρ,uρ), we have

G(xρ,uρ) 6 G(x,u) ∀(x,u) ∈ N((xρ,uρ),γ)∩ S (3.12)

By the definition, (xρ,uρ) is also a local minimizer of G.
Now we prove part 2 of Theorem 3.1.
Let (x̂, û) be a global minimizer of G. We necessarily have ‖x̂‖1 =<

x̂, û >. First, we show that

Gρ(x̂, û) 6 minGρ(x,u).

This can be shown by contradiction. Assume the opposite, and denote
(xρ,uρ) a global minimizer of Gρ. We then have

Gρ(x̂, û) > minGρ(x,u) = Gρ(xρ,uρ). (3.13)

Lemma 3.3 shows that ‖xρ‖1 =< xρ,uρ >, soGρ(xρ,uρ) = G(xρ,uρ)
and we have

G(x̂, û) = Gρ(x̂, û) > minGρ(x,u) = Gρ(xρ,uρ) = G(xρ,uρ),

and more precisely, G(x̂, û) > G(xρ,uρ) which is not possible, since
(x̂, û) is a global minimizer of G.

We therefore have shown that Gρ(x̂, û) 6 minGρ(x,u), and we
have

Gρ(x̂, û) 6 minGρ(x,u) 6 Gρ(x,u) ∀(x,u).

(x̂, û) is thus a global minimizer of Gρ.

Theorem 3.4 (Penalized form). Assume that ρ > σ(A)‖d‖2, and A is
full rank. Let Gρ and G be defined respectively in (3.9) and (3.8) with I(u)
defined in (3.7). We have:

1. If (xρ,uρ) is a local (respectively global) minimizer ofGρ, then we can
construct (xρ, ũρ) which is a local (respectively global) minimizer of
G.

2. If (x̂, û) is a global minimizer of G, then (x̂, û) is a global minimizer
of Gρ.

For the proof, we need two lemmas, Lemma 3.2 which is already
presented and the following lemma.

Lemma 3.5. Let (xρ,uρ) be a local or a global minimizer of Gρ for the
penalized form (I(u) defined by (3.7)). If ρ > σ(A)‖d‖2 then ∀ i such that
(uρ)i = 0 we have (xρ)i = 0
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Proof. From Lemma B.7 (see Appendix B), we have that (uρ)i = 0 iff
(xρ)i ∈ (−λρ , λρ). We denote ω the set of indices where uρ = 0, and
we can apply Lemma 3.2, and conclude that (xρ)ω = 0.

Remark 3.1. If ρ > σ(A)‖d‖2, note that the cost function Gρ with mini-
mizers (xρ,uρ) is constant on |(xρ)i| =

λ
ρ and |(uρ)i| ∈ [0, 1].

Remark 3.2. In the case of the penalized form, the minimizers (xρ,uρ) of
Gρ with ρ > σ(A)‖d‖2 may be such that < xρ,uρ >6= ‖xρ‖1. This may
only happen if |(xρ)i| = λ

ρ .

Remark 3.3. If ρ > σ(A)‖d‖2. From Remark 3.1, from a minimizer (xρ,uρ)
of Gρ, we can construct a minimiser (xρ, ũρ) of Gρ such that ‖xρ‖1 =

< xρ, ũρ >. This can be done by denoting Z, the set of indices such that
0 < |(uρ)i| < 1. If Z is non-empty, we have < xρ,uρ >6= ‖xρ‖1. From
Remark 3.2, |(xρ)i| = λ

ρ∀i ∈ Z. Take ũρi = sign(xi) ∀i ∈ Z and
ũρi = (uρ)i ∀i /∈ Z, then < xρ, ũρ >= ‖xρ‖1. Furthermore, (xρ, ũρ)
is a minimizer of Gρ according to Remark 3.1 and the fact that Gρ(xρ,u) is
convex with respect to u.

With Lemma 3.5 and the above remarks, we can prove Theorem
3.4.

Proof. We start by proving the first part of the theorem. Given (xρ,uρ)
a local or global minimizer of Gρ, with I(u) on the penalized form,
that is, defined as in (3.6). Let S denote the space where ‖x‖1 =

< x,u >. If ρ > σ(A)‖d‖2 then, from Remark 3.3, we can construct
(xρ, ũρ) such that

(xρ, ũρ) verifies ‖xρ‖1 =< xρ, ũρ > .

Furthermore, from the definition of a minimizer, we have

Gρ(xρ, ũρ) 6 Gρ(x,u) ∀(x,u) ∈ N((xρ, ũρ),γ)

and so we get

Gρ(xρ, ũρ) 6 Gρ(x,u) ∀(x,u) ∈ N((xρ, ũρ),γ)∩ S

Since ∀(x,u) ∈ S,Gρ(x,u) = G(xρ,uρ), we obtain

G(xρ, ũρ) 6 G(x,u) ∀(x,u) ∈ N((xρ, ũρ),γ)∩ S (3.14)

Then, (xρ, ũρ) is also a local minimizer of G.
The second part of Theorem 3.4 can be proved as in the proof of

Theorem 3.1.
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3.3 minimization of the proposed method

The minimization algorithm for Gρ is presented in this section. We re-
fer to the constrained biconvex algorithm by CoBic and to the penalized
biconvex algorithm by PeBic.

The main body of the algorithm depends on two particularities
of Gρ; Gρ is convex when ρ = 0, and the non-convexity of Gρ is
due to the coupling term < x,u >. These two properties inspire the
idea of an homotopy continuation algorithm for minimizing Gρ(x,u).
The minimization is initialized with a small ρ(0) and (x(0),u(0)) as
zero vector. We minimizes Gρ(0)(x

(0),u(0)) and the result is denoted
(x(1),u(1)). The penalty parameter ρ increases at each iteration. For a
given iteration, p, we minimize Gρ(p)(x

(p),u(p)), with (x(p),u(p)) the
solution of arg minGρ(p−1)(x

(p−1),u(p−1)). This method will hope-
fully give a proper initialization for the final minimization, which is
when ρ > σ(A)‖d‖. The second attractive property of functional Gρ is
the bi-convexity. Alternating minimization is therefore suitable. With
this in mind, and following [YG16], we propose the following algo-
rithm.

3.3.1 Algorithm

Algorithm 3 : Biconvex minimization
Input :
ρ(0) small ;

Initialization :
x(0) = 0 ∈ RN; u(0) = 0 ∈ RN; p = 0;

Repeat :
Solve problem Gρ(p)

{x(p+1),u(p+1)} ∈ arg minGρ(p)(x
(p),u(p)) (3.15)

Update the penalty parameter:

ρ(p+1) = min(σ(A)‖d‖2, 2ρ(p)) (3.16)

Until : ρ(p+1) = σ(A)‖d‖2
Output : x(p+1)

The Proximal Alternating Minimization (PAM) algorithm [Att+10]
minimizes (3.15). The algorithm ensures convergence to a critical point,
and thus Algorithm 3 converges to a critical point. 1

1 Note that minimization by block ( also known as Gauss-Seidel minimization) is
not suited as for each step, the minimum should be unique. Furthermore, Proximal
alternating linearized minimization [BST14] is not suited, as the functional Gρ(x,u)
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The PAM minimizes functions of the form

L(x,u) = f(x) + g(u) + Y(x,u) (3.17)

In our case, we have, f(x) = 1
2‖Ax−d‖

2+ρ‖x‖1+χ·>0(x), g(u) = I(u)
and Y(x,u) = −ρ < x,u >. PAM has the following outline

Repeat

x(s+1) ∈ arg minx
{
Gρ(x,u(s)) + 1

2c(s)
‖x− x(s)‖22

}
u(s+1) ∈ arg minu

{
Gρ(x

(s+1),u) + 1
2b(s) ‖u− u(s)‖22

}
Until convergence

(3.18)

c(s) and b(s) add strict convexity to each block, and c(s),b(s) are
bounded from below and above. In this work, we fix c(s) = b(s) = 104.
In the following section we develop minimization schemes for (3.18)
in the case of the constrained (I(u) defined by (3.6)) and respectively
the penalized (I(u) defined by (3.7)) problem. Recall that arg minGρ
is defined as

arg min
x,u

1

2
‖Ax− d‖2 + I(u) + ρ(‖x‖1− < x,u >) + χ·>0(x) (3.19)

where I(u) is defined by (3.6) or (3.7).

3.3.2 Minimization with respect to x

The minimization with respect to x using PAM is

x(s+1) ∈ arg min
x∈RN

1

2
‖Ax− d‖2+ρ(‖x‖1− < x,u(s) >)

+
1

2c(s)
‖x− x(s)‖22 + χ·>0(x)

which can be rewritten as

x(s+1) ∈ arg min
x∈RN

1

2
‖Ax− d‖2+ 1

2c(s)
‖x− (x(s)+

ρc(s)u(s))‖2 + ρ‖x‖1 + χ·>0(x)

We apply the FISTA algorithm [BT09] to solve the above problem.
This algorithm is designed to work with functionals on the form of
F(x) = f(x) + g(x) where f is a smooth convex function with a Lips-
chitz continuous gradient L(f). g is a continuous convex function and
possibly non-smooth. In our case we have

does not meet all the hypotheses. Further note that ADMM [Boy+11] is not suitable
as the algorithm supposes a linear relation between the variables x and u.
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f(x) =
1

2
‖Ax− d‖2 + 1

2c(s)
‖x− (x(s) + ρc(s)u(s))‖2 (3.20)

g(x) = ρ‖x‖1 + χ·>0(x) (3.21)

which verify the conditions to apply FISTA. The proximal operator of
g(x) is the soft thresholding with positivity constraint

prox g
L(f)

(x) =

xi −
ρ
L(f) if xi >

ρ
L(f)

0 if xi 6
ρ
L(f)

3.3.3 Minimization with respect to u

We study how to find a solution to the convex minimization problem

u(s+1) = arg min
u∈RN

1

2b(s)
‖u− u(s)‖22 − ρ < x(s+1),u > +I(u)

The above problem can be written as

u(s+1) = arg min
u∈RN

1

2b(s)
‖u− (u(s) + ρb(s)x(s+1))‖2 + I(u) (3.22)

and to simplify, we denote z = u(s) + ρb(s)x(s+1). In the next two
paragraphs, we study the above problem for I(u) defined by (3.6) or
(3.7).

Firstly, we work with the constrained biconvex formulation of Gρ,
CoBic. I(u) is thus defined by (3.6). The minimization problem (3.22)
can be written as

u(s+1) = arg min
u∈RN

1

2
‖u− z‖2 s.t. ‖u‖1 6 k and ∀ i, −1 6 ui 6 1

The minimizer of arg minu
1
2‖u− z‖2 is reached for u = z, and we

can write
u(s+1) = sign(z) arg min

u

1

2
‖u− |z|‖2.

Furthermore, since the ‖ · ‖1 is invariant with respect to the sign,
we can write the minimization problem as

|u(s+1)| = arg min
u∈RN

1

2
‖u− |z|‖2 s.t. ‖u‖1 6 k and ∀ i, 0 6 ui 6 1

and then u(s+1) = sign(z)|u(s+1)|. The above minimization problem
is a variant of the well-known knapsack problem and can be solved
using a classical minimization scheme such as [Ste04] :

|u(s+1)| = arg min
u∈RN

1

2
< u,u > − < u, |z| >

s.t.

(∑
i

ui

)
6 k

and ∀ i, 0 6 ui 6 1
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Secondly, we work with the penalized formulation of Gρ, PeBic,
with I(u) on the penalized form (3.7). We write the problem as

u(s+1) = arg min
u∈RN

λ‖u‖1 +
1

2b(s)
‖u− z‖2 + χ

−16·61(u).

The solution is reached for

(u(s+1))i =



1 if zi ∈ [1+ λb(s),∞)

zi − λb
(s) if zi ∈ (λb(s), 1+ λb(s))

0 if zi ∈ λb(s)[−1, 1]

zi + λb
(s) if zi ∈ (−1− λb(s),−λb(s))

−1 if zi ∈ (−∞,−1− λb(s)]

.

The proof is given in Appendix B.

3.3.4 Small numerical examples

In this section, we test the proposed algorithms in a small dimension
to better understand them. Let A ∈ R2×2 and d ∈ R2

A =

(
1 2

2 1

)
Λ1/‖ai‖ and d =

(
1

1.5

)
(3.23)

where Λ1/‖ai‖ is a diagonal matrix with 1
‖ai‖ on its diagonal, and

‖ai‖ is the norm of the ith column of A. Note that each column does
not need to be normalized, such as in the previous chapter. ρ(0) =

0.02, and x and u are initialized in zero.

Figure 3.1: Minimization using CoBic

In Fig. 3.1, each step when ρ is updated is plotted over the level
lines. The black diamond spots are the initial and finish points. CoBic
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converges to the global minimum. Note that at the first iteration, CoBic

converges towards the global minimum of the data fidelity term, and
only when ρ grows, the algorithm converges to a sparse solution. Fig-

Figure 3.2: Minimization using PeBic. From left to right, top to bottom λ =

0.001, λ = 0.1, λ = 0.5 and λ = 1

ure 3.2 shows the minimization using PeBic for four different values of
λ. For all λ, except when λ = 1, the algorithm converges to the global
minimum. The PeBic has the same behaviour as CoBic. The algorithm
converges to the minimum of the data fidelity term when ρ is small.
When ρ increases, we observe that the algorithm converges towards
something more sparse, and this despite it being already in a local
minimum.

3.4 conclusion

In this chapter, we have presented a reformulation of the `2 − `0 con-
strained and penalized problems. We have proved in Theorem 3.1 and
Theorem 3.4 the exactness of the reformulations, that is, we can from
a minimizer of the reformulation obtain a minimizer of the initial
problem. Furthermore, both reformulations are biconvex. Using two
central properties of the reformulation, we derive a general algorithm
in order to minimize the constrained or the penalized reformulation.
This algorithm is easy to implement as each step can be decomposed
to well-studied problems. In Chapter 5, we apply the algorithms to
Single-Molecule localization microscopy.
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This chapter includes an ongoing research project. It does not focus
on minimizing the constrained formulation, nor the penalized one,
but a new formulation. This method is somewhat less intuitive than
the standard approaches but has compelling reasons for its use. Most
importantly, the method is, in theory, parameter-free! As the thesis’s
goal is to develop sparse minimization schemes with easy-to-choose-
parameters, this method should be the holy grail. However, there is
no such thing as a free lunch, and finally, no such thing as parameter-
free sparse optimization.

To start the chapter, we introduce the formulation and gives the
arguments to convince the reader of its favorable properties. We pro-
pose a minimization algorithm to deal with the new cost function.
We finish this chapter by giving some plots of the cost function and
discuss the function.

4.1 introduction

Let us at first forget sparse optimization for this section, and we go
back to the standard formulation of inverse problems. As presented
in the introduction of this thesis, Section 1.1.2, inverse problems are
often on the form:

G(x) = f(x) + λR(x). (4.1)

In the introduction of this thesis, f(x) is defined as the `2 data fidelity
term but here it can be any loss function. R(x) is a regularization term.
The idea of adding a regularization term is an old one. In the article
[Abu+04; ADS17], the authors propose to minimize:

J(x) := f(x)R(x). (4.2)

The idea is not as intuitive as the standard formulation. Inevitably,
minimizing G(x) (4.1) yields an argument that minimizes the sum of
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the data fidelity term and the regularization. The multiplicative is not
so much different. The solution will be an argument that minimizes
both functions, or either. It is clear that an argument x̂ such that f(x̂) =
0 or R(x̂) = 0 is a global minimum of J (4.2). So, quite unusual, we are
mostly interested in the local minima of the J(x). Otherwise, it would
suffice to minimize either f(x) or R(x) alone.

Furthermore, the goal is to study the multiplicative formulation,
and from this, be inspired to develop an adaptive minimization algo-
rithm, such as in the [ADS17].

However, to really understand why this formulation is of interest,
we develop the expression in the next section.

4.2 the optimal condition

In one dimension, the initial function we want to minimize is

J(s) = f(s)R(s). (4.3)

Assume that both f and R are differential. The optimality condition
is J ′(ŝ) = 0, which yields, assuming R(ŝ) 6= 0,

J ′(ŝ) = f ′(ŝ)R(ŝ) + f(ŝ)R ′(ŝ) = R(ŝ)[f ′(ŝ) +
f(ŝ)

R(ŝ)
R ′(ŝ)] = 0. (4.4)

Let

α(ŝ) =
f(ŝ)

R(ŝ)
, (4.5)

then, if R(ŝ) 6= 0,

J ′(ŝ) = 0⇔ f ′(ŝ) +α(ŝ)R ′(ŝ) = 0. (4.6)

With this formulation, and supposing λ = α(ŝ), the optimality condi-
tion is identical to the one of (4.1). Thus in one dimension, we propose
the following minimization scheme:

s(0) ∈ R,α(0) = α(s(0))

Repeat:

s(p+1) ∈ arg mins f(s) +α
(p)R(s)

α(p+1) = α(s(p+1))

Until convergence

(4.7)

The algorithm can be viewed as a minimization of (4.1), where λ is
updated at each minimization. However, instead of having a fixed λ
chosen a priori, we have α(s), an adaptive regularization parameter.
This feature is the primary advantage because it eliminates the need
to choose lambda.
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4.3 adaption to sparse optimization

Let us go back to sparse optimization. More precisely, let f be the
`2 data fidelity term and R a sparsity term. The `0-norm may not be
appealing as it is not continuous.

A possible candidate is the CEL0 function, which has been presented
earlier in Section 1.4.1.2. However, the function is dependent on λ,
which could be set to 1 to avoid having a parameter. The tight results
that CEL0 has concerning minimizers are only valid for the standard
additive formulation. Furthermore, CEL0 is not differential in 0. This
will be dealt with later.

Let φCEL0(s) be as defined in (1.20):

φCEL0(s) = 1−
a2

2

(
|s|−

√
2λ

a

)2
1
|s|6

√
2
a

(4.8)

We want to study a function with a similar shape as the CEL0 function,
but with a parameter to approach the `0-norm, thus we investigate
also φε, defined in (4.9):

φε(s) = 1−
1

ε2
(|s|− ε)2 1|s|6ε. (4.9)

Let us first study:

JCEL0(s) = f(s)φCEL0(s). (4.10)

Assume ŝ 6= 0, as φCEL0 is not differential in 0, then we search

J ′CEL0(ŝ) = 0.

We can expand the above expression such as in Section 4.2, and we
have

f ′(ŝ) +α(ŝ)φ ′CEL0(ŝ) = 0 (4.11)

where

α(ŝ) =
f(ŝ)

φCEL0(ŝ)
. (4.12)

Furthermore,

φ ′CEL0(s) =

sign(s)
√
2a− a2s if 0 < |s| 6

√
2
a

0 if |s| >
√
2
a .

(4.13)

Inserting (4.13) into (4.11), and we get

J ′CEL0(ŝ) =

f ′(ŝ) +α(
√
2a
|ŝ| − a2)ŝ if 0 < |ŝ| 6

√
2
a

f ′(ŝ) + 0 if |ŝ| >
√
2
a .

(4.14)
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We introduce

β(s) =


f(s)

φCEL0(s)
(
√
2a
|s| − a2) if 0 < |s| 6

√
2
a

0 if |s| >
√
2
a .

(4.15)

We have assumed ŝ 6= 0. We further assume that f(s) 6= 0. From (4.15),
we observe that lims→0 = +∞, and we define β(0) = +∞. We can
then define the optimality condition, assuming ŝ 6= 0, of JCEL0 as

f ′(ŝ) +β(ŝ)ŝ = 0 (4.16)

which is equivalent of minimizing f(s)+ 1
2β(ŝ)s

2. As β(ŝ) depends on
the solution, a minimization scheme such as (4.7) could be proposed.
Once again, there is no need to choose the regularization parameters,
as this is updated for each iteration.

Similarly, with φε (4.9), we can define our cost function Jε:

Jε(s) = f(s)φε(s). (4.17)

We can use the same procedure as for JCEL0, and we define

β(s) =


f(s)
φε(s)

2
ε(
1
|s| −

1
ε) if 0 < |s| 6 ε

0 if |s| > ε

+∞ else.

(4.18)

We propose to minimize Jε by trying to solve

f ′(ŝ) +β(ŝ)ŝ = 0

using a minimization scheme such as (4.7).

4.4 n-dimensions and algorithm

In N-dimensions, the formulation does not change much. Both pro-
posed relaxations are separable relaxations, and thus the adaptation
to N-dimension is evident. Furthermore, we fix f(x) = 1

2‖Ax− d‖
2.

We search to minimize

J(x) =
1

2
‖Ax− d‖2

(
N∑
i

φ(xi)

)
(4.19)

where φ is either φε or φCEL0. Using the optimality conditions, such
as in (4.16), we search the following optimality conditions:

∇(1
2
‖Ax̂− d‖2) +Λβ(x̂)x̂ = 0, (4.20)
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where Λ is a diagonal matrix with β(x) on its diagonal. Each compo-
nent of β is defined as

βi(xi) =


1
2‖Ax−d‖

2∑N
i φ(xi)

(
√
2a

|xi|
− a2) if 0 < |xi| 6

√
2
a

0 if |xi| >
√
2
a

+∞ else,

(4.21)

or

βi(xi) =


1
2‖Ax−d‖

2∑N
i φ(xi)

2
ε(

1
|xi|

− 1
ε) if 0 < |xi| 6 ε

0 if |xi| > ε

+∞ else,

(4.22)

depending on the function φ.
Given (4.20), we search to minimize, for a fixed β,

min
x
Jm(x,β) :=

1

2
‖Ax− d‖2 + 1

2
‖Λ√βix‖

2 (4.23)

where Λ√βi is a diagonal matrix with
√
βi is on the diagonal. We

propose the following algorithm.

Algorithm 4 : Multiplicative functional
Input :

(x(0),β(0)) ∈ RN ×RN ;

Repeat :
Solve the following problem:

x(p+1) ∈ arg min
x

Jm(x,β(p)) (4.24)

Update β(p+1) in either (4.21) or (4.22).

Until : Convergence

Output : x(p+1)

There are many methods to minimize (4.24). For example, we can
use the gradient step algorithm, with step size smaller than 1

L , where
L is the gradient Lipschitz constant of Jm(x,β(p)) (4.23). In this case
L > ‖A‖2 + ‖Λ√

β
(p)
i

‖2, where ‖Λ√
β

(p)
i

‖2 is the squared of the largest

value on the diagonal. A problem arises when some xi = 0, as then,
β(xi) = +∞, and the Lipschitz gradient constant is +∞. To avoid this
problem, we define β̃(x) = β(|x|+ δ), with β defined as in (4.21) or
(4.22), where δ ≈ 10−10.
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(a) Jε=1 (b) Jε=0.4

(c) Jε=0.1 (d) JCEL0

Figure 4.1: Top: Level lines of the cost function Jε, with to the left, ε = 1 and
to the right, ε = 0.4. Bottom: Left: Jε, with ε = 0.1. Right: JCEL0

4.5 numerical examples

In this section, we plot the level lines of the cost function, J (4.19),
using either the φε and the φCEL0. These numerical examples show
why φε may be better to use.

A =

(
3 2

1 3

)
Λ1/‖ai‖ and d =

(
1

2

)
(4.25)

The level lines of each of the cost functions (see Fig. 4.1) show the
global and local minima. As mentioned, the global minima are sit-
uated in the point that minimizes the `2 data fidelity term and in
(0, 0)T as R((0, 0)T ) = 0. In the case of CEL0, there is only one local
minimum. This happens for φε, with ε equal to 1, and this can be
observed in Fig. 4.1d and 4.1a. If ε is smaller than 0.5, then there are
two local minima. It is only when we are close to the axis that the
regularization function, with a small ε, impacts the cost function, see
Fig. 4.1b and 4.1c. Thus, a natural question and a problem is the issue
of how to chose ε.

Furthermore, let us look at how a minimization algorithm act when
minimizing the function Jε. If the initial point is in a point such that
the regularization function is not active, then we will obtain the mini-
mum of the cost function. Why? When the regularization function is
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not active, it is constant to 1, and b = 0 in that case. Thus β, defined in
(4.21) or (4.22) is equal to 0. The first iteration of the algorithm (4.24)
minimizes the sum of the `2 data fitting term and the square norm
of the Hadamard product of x and alpha, see (4.23). Since β = 0,
we minimize only the data fitting term in the first iteration, and the
minimizer is a global minimizer of the multiplicative term.

As we can observe in Fig. 4.2, the choice of starting point is crucial.
If we are at a point with a value larger than ε, the corresponding β
will be zero. To avoid this, we must make sure that the starting point
has values smaller than ε. However, we cannot be too close to zero, as
this is a global minimum. This is clear in 2-dimensions, but it remains
to study closer how the algorithm behaves in N-dimensions.

4.6 conclusion

There is no such thing as free lunch and no such thing as a parameter-
free sparse optimization algorithm. We have studied the minimiza-
tion of the product of the data fidelity term and a sparsity term. From
this, we propose an algorithm where we have an adaptive regulariza-
tion parameter. This is interesting, seeing that choosing a regulariza-
tion term is often very time-consuming.

We have seen that the algorithm, in 2-dimensions, depends on the
choice of regularization term as well as the initialization. The multi-
plication minimization is an ongoing research area, and the results
are too preliminary to include in the application part of the thesis.
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Figure 4.2: Left column: The cost function Jε=0.4, and the convergence of
the algorithm depending on the initial position. Right column:
The cost function of (4.23), with the β defined from the initial
point.



Part II

A P P L I C AT I O N

"Mathematics is applied by everyone except applied
mathematicians"

—[Wil09]
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In this chapter, we give an introduction to SMLM. We start with an
overview of classical microscopy and the advances leading to SMLM.
We introduce SMLM and the challenges appearing in this microscopy
method. We present a method to model the acquisition system, and
we show that this is a sparse optimization problem. We introduce
the evaluation tool, and perform numerical experiments of the meth-
ods proposed in Chapter 2 and Chapter 3, and compare them to other
`2− `0 based algorithms. We first compare the methods on a small nu-
merical example. Further, we compare the algorithms with the state
of the art of 2D SMLM grid-based algorithms on two datasets from the
ISBI 2013 SMLM challenge [Sag+15]. A more recent challenge was
launched in 2016 [Sag+19]. We decided to use the 2013 challenge as
the data are denser in the 2013 challenge (220 fluorophores per acqui-
sition in 2013 compared to 12 in the 2016 challenge). Furthermore, the
2D data in the 2016 challenge contains observations where some ele-
ments are far from the focal plane1. Thus the image formation model
presented in Section 5.3 is not optimized for this image acquisition
method. The algorithms are coded on MATLAB2019 with a computer

1 The data in 2016 has a sample depth of 1.5 micrometers compared to the data from
2013, with a sample depth of 300 nm.
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running on Linux, with CPU INTEL core i7-3920XM, except Deep-
STORM that was launched on a computer running on Linux, with
CPU Intel Xeon E5-2687WV3.

The codes for PeBic, CoBic and the minimization of GQ, as well as
an example, can be found on
https://github.com/abechens/CoBic-and-PeBic-SMLM/ and
https://github.com/abechens/SMLM-Constraint-Relaxation.

5.1 introduction

Microscopes generate magnified images. They have been used since
the late 17th century and have been crucial in understanding the
world around us. The constant wish to better explain the mysteries of
life demands for more and more efficient microscopes. In microscopy,
efficiency may have multiple meanings. The most prominent one is
the resolution. Lord Rayleigh defined in 1896 resolution as the short-
est distance between two specimens such that an observer can distin-
guish them as separate entities. The definition is built on the work
of George Biddell Airy and Ernst Abbe. Airy is, among other things,
known for the Airy disk. He first wrote about the phenomenon in
a journal for astronomy, but the same phenomenon arrives in mi-
croscopy as well. The Airy disk is a diffraction problem where instead
of observing one small point light source, we observe a pattern, or an
Airy disk, see Fig. 5.1.

Figure 5.1: The Airy disk for two points emitting light, with different dis-
tances between them. Source [Com14].

Ernst Abbe developed the equation of the diffraction in 1873, which
gives the diffraction limit of a microscope in the lateral plane. The
limit is given as

dmin ≈
λ

2NA
(5.1)

where λ is the wavelength of the light and NA is the numerical
aperture of the optical system [LLL10]. Using the diffraction limit,
Rayleigh defined more precisely the resolution as

rmin ≈ 0.61
λ

NA
. (5.2)

Figure 5.2 illustrates this resolution limit.

https://github.com/abechens/CoBic-and-PeBic-SMLM/
https://github.com/abechens/SMLM-Constraint-Relaxation
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Figure 5.2: Resolution and the Rayleigh criterion. Point sources can be re-
solved if the are separated by more than the Rayleigh criterion
(5.2). 2

If we use the visible blue light at around 500 nm, with a numerical
aperture of 1.3, the Rayleigh resolution is 235nm.

This limit poses a problem for scientists as this is not sufficient
when observing small biological structures, such as proteins and viruses,
see Fig. 5.3. An electron microscope uses electrons instead of the visi-
ble light and reaches a resolution up to 0.2nm. However, the samples
must be pretreated and fixed, and in-vivo imaging (images of living
structures) is then impossible.

Several methods bypass the resolution limit, such as Stimulated
Emission Depletion (STED) [KH99], Structured Illumination Microscopy
(SIM) [Gus00], Super-Resolution Radial Fluctuations (SRRF) [Gus+16],
and Single-Molecule Localization Microscopy (SMLM) [HGM06; Bet+06;
RBZ06]. See [Sch+19; ML19] for a recent overview of these and other
methods. They have in common that they are based on fluorescence
microscopy. In contrast to traditional microscopy methods, which use
light to illuminate the sample, fluorescence microscopy collects the
light in another wavelength range than the excitation. Fluorophores
are, by definition, molecules that emit light after excitation by light
(contrary to, for example, bioluminescence and chemiluminescence).
The fluorophores absorb some of the energy and reach an unstable
level. Thus the fluorophore will release some of this energy as light.
It is important to note that not all the energy absorbed is emitted by
the fluorophore. Thus it is possible to distinguish between the light

2 Reprinted from Fluorescence Microscopy , 1, Jennifer A. Thorley, Jeremy Pike,Joshua
Z. Rappoport (Editors: Anda Cornea P. Michael Conn), Chapter 14 Super-resolution
Microscopy A Comparison of Commercially Available Options , 199-212, 2020, with
permission from Elsevier
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Figure 5.3: The limits of classical light microscopy. Source [Mic16]

emitted by the fluorophore and the illumination light source. A sen-
sor captures the emitted light from the fluorophores.

Furthermore, SMLM uses photoswitchable fluorophores. These are
fluorophores that can be controlled to be in a bright and dark state
using a laser.

Many subjects of interest for biologists and doctors are not by na-
ture fluorescent. Thus they "dye" the subject with fluorophores, i.e.,
insert the fluorophores artificially. This can be done by, for example,
using immunofluorescence, which uses fluorescent antibodies that
binds itself to the protein.

In this thesis, we focus on SMLM.

5.2 single-molecule localization microscopy

Single-Molecule localization microscopy is an acquisition method that
allows to obtain images with a higher resolution than the diffraction
limit. 20 nm resolution is reported on SMLM when it was first intro-
duced in [HGM06; Bet+06; RBZ06] under the names Fluorescence
photoactivation localization microscopy (FPALM), Photoactivated Lo-
calization Microscopy (PALM), Stochastic Optical Reconstruction Mi-
croscopy (STORM). The methods can be used to observe fine structures.
The work was rewarded the Nobel Prize in Chemistry in 2014.

The idea behind SMLM is quite simple. Let say we only observe one
fluorophore in the microscope, and the observation is without noise.
We can then precisely localize the fluorophore despite the airy disk by
assuming it to be in the disk’s center. Now, imagine we observe only
a few fluorophores in the microscopes, and that they distributed far
from each other. As long as the distance is greater than the Rayleigh
criterium, the localization is not too tricky (assuming no noise). To
take advantage of the "easy" localization when observing only a few
molecules, SMLM uses photoactivatable fluorophores. This allows one
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Figure 5.4: The principles of SMLM. Instead of all the fluorophores emit light
at the same time (Diffraction limited image), only sparse subsets
emit light (Single molecule image stack), and the fluorophores
are precisely localized (Localization). The sum of all the local-
izations creates one super-resolved image (Super-resolved recon-
struction). Source: [Hei20]

.

to activate a sparse subsample of the fluorophores using a weak ac-
tivation light, acquire an observation, and then "turn the previous
active fluorophores off" afterward. In practice, the fluorophores emit
light until photobleaching. After that, the fluorophore is permanently
unable to emit light. Then SMLM repeats this procedure until a suffi-
cient number of fluorophores have been activated. Thus, each obser-
vation is a result of only a few fluorophores, and precise localization
is possible. An SMLM image is the sum of all the precisely located
fluorophores and obtains super-resolution. Note that classical fluo-
rescence microscopy illuminates all the fluorophores simultaneously.
See Figure 5.4 for a graphical example. However, acquiring all the
low-density images takes time, and the sample may move during this
time. Thus the temporal resolution of the image may be inadequate.
High-density acquisitions reduce the total acquisition time and in-
crease temporal resolution. However, now, the fluorophores may be
too close to each other, and thus efficient localization algorithms are
needed.

5.2.1 State of the Art

The ISBI 2013 [Sag+15] and 2016 [Sag+19] SMLM challenges address
the localization problem in SMLM. The 2013 challenge focused on 2D
reconstruction and images, while the 2016 SMLM challenge focus on
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both 3D and 2D reconstruction. Both challenges receive a large num-
ber of algorithms, and the results are compared to different datasets.
The state of the art of 2D localization algorithms presented here is a
summary of what can be found in [Sag+19].

Figure 5.5: Center of gravity local-
ization method. Adapted
from [Wu+20]

There are many possibilities
to solve the localization prob-
lem, and some algorithms pri-
oritize fast computational time
with a loss of precision. These
methods localize spots in the
observed image and fit specific
shapes (templates, PSF) on these
spots [Tak+18], or find the cen-
ter of mass in the spot [Hen+10],
see Fig. 5.5.

More sophisticated algorithms,
but also more computational
costly, test the likeness between

the spot and a sum of different Gaussians on each spot [BSZ12].
Another approach consists of modeling the localization problem

as an inverse problem with a sparsity term. These methods can be
divided into two groups: Grid methods and grid-less methods. The
grid methods require a fine grid to obtain a sufficient precision, but
at the cost of computational time. Grid-less algorithms do not have
this problem, but the observation model is non-linear. See [BSR17;
Min+14]. With a grid, this observation model is linear. Some algo-
rithms of the inverse problem approach are SMLM-CEL0 and L1H

[GSBF17; Bab+13].
Finally, deep-learning methods are emerging as well, with promis-

ing results [STM19; Boy+18; Neh+18].
In this thesis, we focus on grid-based methods. In the following

section, we describe how the localization problem can be formulated
as a sparse optimization problem.

5.3 mathematical model

5.3.1 The image formation model

Let d ∈ RM×M be an image acquisition. We suppose that only a small
number of fluorophores have contributed to this image. We want to
localize the fluorophores on a finer grid x ∈ RML×ML, where L is the
refinement factor. The goal is to reconstruct x from d. To do so, we
need to model the acquisition process.

The fluorophores are observed through an optical system, and thus
we observe diffraction discs (Airy disks) instead of the fine position
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Figure 5.6: The image formation model. The fluorophores are on the fine
grid X, convolved with the PSF, and downsampled. We assume
additive noise.

of the fluorophores. This is modeled by a convolution with the Point
Spread Function (PSF) of the microscope. We suppose the PSF to be
a Gaussian kernel:

PSF(z,y) = I exp
(
−
z2 + y2

2σ2

)
where I is a normalization factor. Furthermore, a sensor captures the
observation with a resolution inferior to the fine grid. We model this
as an operator that sums pixel groups of L× L. The result is an ob-
servation of size M×M. Finally, this observation is affected by noise
η, which is assumed to be a mix of Poisson noise and Gaussian noise.
We simplify the noise assumptions and consider only additive white
Gaussian noise.

The convolution operation is either noted h?x, h being the convolu-
tion kernel, or noted H : RML×ML → RML×ML. The downsampling
operator is noted noted RL : RML×ML → RM×M. Thus, the model
can be written, in terms of linear algebra, as

d = Ax+ η

where A ∈ RM
2×(ML)2 is the matrix that performs a convolution and

downsampling. The image formation model is graphically explained
in Fig. 5.6.

Note that the sensor that captures the signal follows the Shannon-
Nyquist theorem. Most sensors have pixels of size 100 nm times 100

nm. The Rayleigh criterium gives the lowest possible resolution of
light microscopy around 250 to 200 nm. Following Shannon-Nyquist,
to correctly reconstruct the signal, it must be sampled with half the
wavelength, thus around 100 nm.

5.3.2 Formulation of the inverse problem

With the assumption of Gaussian noise we can write the recovering
of x as

arg min
x

1

2
‖Ax− d‖22.

However, A is a matrix with more columns than lines, and thus the
problem is underdetermined and ill-posed. Some a priori knowledge
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of x is needed to correctly localize the fluorophores. The first hypoth-
esis is that only a few fluorophores are excited and emit light. Thus
the solution should be sparse. We can use the `0-norm to enforce spar-
sity. The second hypothesis is that the fluorophores emit light, and
we wish to reconstruct the intensity, which is positive. We add, there-
fore, that the solution should be non-negative. This yields that we can
search a solution x̂ as

x̂ ∈ arg min
x

Gk+(x) :=
1

2
‖Ax− d‖22 + χ·>0(x) s.t. ‖x‖0 6 k (5.3)

x̂ ∈ arg min
x

G`0+(x) :=
1

2
‖Ax− d‖22 + λ‖x‖0 + χ·>0(x) (5.4)

where χ
X

is the indicator function, and χ·>0(x) enforces the positivity
constraint. We use also the following function

dist2R>0
(x) := infy>0

1

2
‖x− y‖2

to promote positivity when the hard constraint is not possible to im-
plement. We do however, continue the same notation (Gk+):

x̂ ∈ arg min
x

Gk+(x) :=
1

2
‖Ax−d‖22+dist2R>0

(x) s.t. ‖x‖0 6 k. (5.5)

As seen in the introduction of the thesis, Section 1.2, the problems dif-
fer in the regularization. The constrained problem reconstruct at max-
imum k non-zero components. The regularized problem reconstructs
a sparse solution, and the number of non-zero elements depends on
the regularization parameter λ and the acquisition d. In an ideal case,
where the fluorophores are sufficiently separated, one fluorophore
would represent a non-zero component in x. Thus the parameter k
represents the maximum number of fluorophores to reconstruct for
each acquisition. Indeed, in practice, this is not the case since we work
mainly with high-density acquisitions, and multiple fluorophores can
be situated in one pixel, even on the fine grid. Thus the parameter k
will represent the number of distinguishable fluorophores in the recon-
struction.

5.4 quantitative performance assessment

Most signal-processing researchers are familiar with classical eval-
uation methods such as Peak Signal-to-Noise ratio (PSNR), Mean
squared error (MSE), and structural similarity index measure (SSIM).
However, we use the Jaccard index to perform the numerical eval-
uation of the reconstructions. The Jaccard index evaluates the local-
ization of the reconstructed fluorophores (see [Sag+15]). It is defined
using correctly reconstructed (CR)-, false negatives (FN)- and false
positives (FP) fluorophores. An FP is when we reconstruct a fluo-
rophore that should not be there, and an FN is when we do not re-
construct a fluorophore where it should be. The Jaccard index is the



5.5 single image performance 69

ratio between the CR fluorophores and the sum of CR-, FN- and FP
fluorophores. A perfect reconstruction yields an index of 100, and the
lower the index, the poorer the reconstruction.

Jac =
CR

CR+ FP+ FN
× 100. (5.6)

Furthermore, the Jaccard index includes an error tolerance,∆ , such
that a reconstructed fluorophore does not have to be at the exact cor-
rect position, but in a small neighborhood, see Fig. 5.7. Methods such
as MSE and PSNR compare pixel with pixel. Thus, a fluorophore sit-
uated in a pixel close to the ground truth will have the same error as
one fluorophore far from the ground truth. Furthermore, when using

Figure 5.7: A graphic example of evaluation. The blue arrow shows how
a reconstructed fluorophore is linked to the ground truth (T),
represented as a black square. The figure also shows the use of
the error parameter, ∆.

the Jaccard index, the number of reconstructed fluorophores should
be equal.

5.5 single image performance

In this section, we are interested in how well the proposed algorithms
can successfully reconstruct one image. We construct an image arti-
ficially with 213 of fluorophores randomly scattered on a 256× 256
grid, where each square measures 25× 25 nm. The observed image is
64× 64-pixel image, where each pixel measures 100× 100 nm, with a
simulated Gaussian PSF with an FWHM of 258.21nm. Note that we
use these parameters as this is representative of the simulated 2D-ISBI
data presented in the next section. The 100 observations are then cre-
ated by applying different realizations of Poisson noise to the same
image.

The methods are compared to four methods; the CEL0 [GSBF17],
Constrained Iterative Hard Thresholding (C-IHT), Penalized Iterative
Hard Thresholding (P-IHT) [CW05] and the `1-relaxation. The algo-
rithms used, as well as the best initialization obtained is listed in
Table 1 for the constrained-based methods, and 2 for the penalized-
based methods.

3 Note that we use this algorithm for the small numerical example, in order to compare
Gk and GQ fairly. For the ISBI data, the FBS algorithm is applied.
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Figure 5.8: Example of the simulated dataset. The number of fluorophores
is 213. To the left: Ground truth. To the right: One of the 100

observations.

Table 1: The different constrained based methods with the algorithms and
initializations used.

Method GQ CoBic C-IHT

Algorithm nmAPG Algorithm 3 nmAPG3

Initialization 0 ∈ RN×N ρ(0) = 0.1 0 ∈ RN×N

x = u = 0 ∈ RN×N

Table 2: The different penalized-based methods with the algorithms and ini-
tializations used.

Method PeBic P-IHT CEL0 `1

Algorithm Algorithm 3 FBS IRL1 FISTA

[Och+15]

initialization ρ(0) = 0.1 ATd ATd ATd

x = u = 0 ∈ RN×N
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We use the IRL1 algorithm [Och+15] to minimize CEL0, the ex-
act relaxation [SBFA15] of the penalized formulation (5.4). The `1-
relaxation is minimized using FISTA.

The algorithms are compared with their initial function to demon-
strate the advantages of each proposed method. Thus GQ and CoBic

are compared to C-IHT, and PeBic is compared mainly with P-IHT, but
also CEL0 and `1-relaxation.

The P-IHT, `1-relaxation, and PeBic have the trade-off parameter λ to
choose. GQ, CoBic, and the C-IHT algorithm use the sparsity parameter
k. This parameter ensures that the algorithm does not reconstruct
more than k non-zero elements in the solution.

We compare the methods using both the `2 data fidelity term and
the Jaccard index.

We want the algorithms to reconstruct the image as good as possi-
ble, knowing there are 213 fluorophores present.

Thus, to properly compare the minimization methods, we chose λ
such that the average number of reconstructed pixels corresponds to
the number of fluorophores in the image.

The comparison using only the `2 data fidelity may be unfavorable
to the penalized methods, as they minimize the sum of the `2 data fi-
delity term and a regularization term. Furthermore, they are designed
to be used when no prior knowledge of the sparsity is known.

As previously stated, choosing a λ is through a test- and fail- strat-
egy, so we test if for a given λwe will obtain a sparse solution. To give
an example: here we tested λ first equal to 1, 0.1, 0.01, 0.02, and 0.015

for the first observation, then we test the λ on the ten first observa-
tions. From these tests λ was adjusted to 0.025. In all, it took around
1 hour to find a proper λ. For CoBic, GQ and C-IHT, we set simply the
parameter k equal to 213.

5.5.1 Results

In this part, we show the obtained results. The results of the 100 im-
age reconstructions are presented with boxplots. The red mark in the
box is the median of the reconstruction result of the 100 noisy, blurred,
and downsampled images. The upper (respectively lower) part of the
box indicates the 75th (25th) percentiles median. An outlier is repre-
sented as a red +.

In Fig. 5.9, we compare the results of GQ, CoBic, and C-IHT using
the data fidelity term. We can observe that both GQ and CoBic have
lower values than C-IHT. Thus they are more efficient in solving the
initial problem. Furthermore, CoBic has a median value of 0.99, which
is lower than that of GQ, 1.55. In comparison, C-IHT has 2.74 as a
median value. It may seem that CoBic is far superior in resolving the
constrained problem. That said, the algorithm does not always satu-
rate the constraint. Among the 100 reconstructions, three of the re-
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Figure 5.9: Comparison of the constrained-based algorithms: GQ, CoBic, and
C-IHT. The y-axis represent the value 12‖Ax− d‖

2. The lower, the
better.

construction contain only 212 fluorophores, and not 213. This may be
counter-intuitive at first, but there is a possible reason. The algorithm
has either converged to a possible saddle point or a critical point,
in which it is not possible to add a positive pixel. This happens as
well in the reconstruction of the ISBI 2013 simulated data on a larger
scale, see section 5.6.3. Note that the data fidelity value of the three
reconstructions that reconstructed 212 non-zero pixels instead of 213

non-zero pixels are less than the median value of CoBic presented in
the Fig. 5.9.

Furthermore, we compare the penalized-based methods using only
the data fidelity term. As explained in the previous section, we choose
a λ such that the methods reconstruct on average 213 fluorophores.
Figure 5.10 shows clearly the difficulties P-IHT has, as the values are
far superior to those of PeBic and CEL0. The figure also shows that the
`1-relaxation may not be an efficient relaxation of the `0-norm in this
case. We are not assured of obtaining the global minima of the initial
problem since the observation matrix does not satisfy the RIP condi-
tions. Due to the poor reconstruction of the P-IHT and `1-relaxation,
we add a plot of only PeBic and CEL0 in Fig. 5.11. Both methods per-
form as good as the constrained based methods GQ and CoBic, with
a median value of 1.04 for PeBic and 1.10 for CEL0. Furthermore, as
expected, the variance of PeBic is slightly more significant than CoBic.
CEL0 has a variance equal to the one of CoBic.

In Single-Molecule localization microscopy, the most important as-
pect is the precise positioning of the fluorophores. Thus the Jaccard
index is a convenient performance measurement. The boxplot for the
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Figure 5.10: Comparison of the penalized-based algorithms: PeBic, CEL0,
P-IHT and `1-relaxation. The y-axis represent the value 12‖Ax−
d‖2. The lower, the better.

Figure 5.11: Comparison of the penalized-based algorithms: PeBic, and CEL0.
The y-axis represent the value 12‖Ax−d‖

2. The lower, the better.
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Figure 5.12: Comparison of the algorithms. The y-axis represent Jaccard in-
dex with a margin of error of 0nm. The higher, the better.

Figure 5.13: Comparison of the algorithms. The y-axis represent Jaccard in-
dex with a margin of error of 25nm. The higher, the better.

Jaccard index is plotted in Fig. 5.12 and Fig. 5.13. A perfect recon-
struction yields a Jaccard index of 100.

In Fig. 5.12, we set the margin of error, δ, equal to 0. This means that
we see how many fluorophores we reconstruct perfectly. We observe
that CoBic, PeBic, and CEL0 stand out compared to the other methods.
The intuition would be that a low data fidelity value would yield
a good reconstruction. However, P-IHT yields a better reconstruction
than C-IHT, even though C-IHT reconstructs better with respect to the
data fidelity term. We discuss this discrepancy later in this section.

With a margin of error of 25nm, we can see the same tendencies as
in the former, see Fig. 5.13.

Even though the proposed methods reconstruct quite precisely the
213 fluorophores, we are also interested in how the methods behave
when demanding to reconstruct less than 213 fluorophores. The rea-
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Figure 5.14: Comparison of the constrained-based algorithms: GQ, CoBic,
and C-IHT. The y-axis represent the value 12‖Ax−d‖

2. The lower,
the better.

son for this is more apparent in the section of the ISBI 2013 data and
is discussed there, see Section 5.6.2. In any case, to know precisely the
sparsity of a solution is rare, and the natural question is to ask what
happens if we underestimate the total number of fluorophores.

The algorithms reconstruct now 150 non-zero element in each im-
age. The results are significantly different for one algorithm. See Fig.
5.14. CoBic, which obtained the best reconstruction concerning the
data fidelity term, perform significantly worse. It obtains higher val-
ues than both GQ and C-IHT. PeBic has a similar change, as observed
in Fig. 5.15, but in a less degree. GQ reconstructs significantly better
than CoBic and C-IHT.

Surprisingly, the algorithms CoBic and PeBic have both a Jaccard in-
dex higher than the other methods, see Fig. 5.16 and Fig. 5.17. A pos-
sible explanation for this discrepancy is that the methods converge
to local minima, which correspond to good placements of the fluo-
rophores. However, methods, such as GQ, CEL0, may find solutions
that are better concerning the data fidelity term, but not to the place-
ment.

The following example demonstrates the problem well. Two flu-
orophores are placed on a distance of 80nm from each other. The
captured signal can be observed in Fig. 5.18. We want to locate only one
fluorophore precisely. If we reconstructed an image, should we place
the fluorophore in the middle of both fluorophores? Or should we
place it correctly on one of the two fluorophores positions? In terms
of the cost of the data fidelity term, the choice is in the middle ( cost
for placing a non-zero pixel in the middle: 0.26 vs. cost for placing
a non-zero pixel in one of the two perfect places: 0.94). However, in
terms of the Jaccard index, choosing one correct place is better. Finally,
this is a discussion without a final answer. As a mathematician, we
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Figure 5.15: Comparison of the penalized-based algorithms: PeBic, CEL0,
P-IHT and `1-relaxation. The y-axis represent the value 12‖Ax−
d‖2. The lower, the better.

Figure 5.16: Comparison of the algorithms. The y-axis represent Jaccard in-
dex with a margin of error of 0nm. The higher, the better.
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Figure 5.17: Comparison of the algorithms. The y-axis represent Jaccard in-
dex with a margin of error of 25nm. The higher, the better.

would prefer to minimize the cost function. As for reconstructing flu-
orophores, having one correct position is better than reconstructing a
fluorophore in the wrong position.

5.6 isbi simulated data

We compare CoBic, PeBic, and GQ with the same four algorithms in
the previous section; the CEL0, `1-relaxation, and C-IHT and P-IHT.
We also compare them to a deep-learning algorithm, Deep-STORM
[Neh+18], and we use the public codes of Deep-STORM [She18]. The
Deep-STORM is a deep learning algorithm. To teach the algorithm,
the user needs to create proper simulated images that represent the
dataset. This requires the knowledge of the density, the PSF, as well
as an estimation of the noise level.

5.6.1 The observations

The first dataset contains simulated acquisitions, making it possi-
ble to evaluate the reconstruction quantitatively. The ISBI simulated
dataset represents eight tubes of 30 nm diameter. The acquisitions
are captured with a 64 × 64- pixels sensor where each pixel is of
size 100× 100 nm2. The Point Spread Function (PSF) is modeled by
a Gaussian function where the Full Width at Half Maximum (FWHM)
is 258.21 nm. In total, there are 81 049 fluorophores on a total of 361

images. Figure 5.19 (a), (b) and (c) show three of the 361 acquisitions
of the simulated dataset, and we apply the localization algorithms
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Figure 5.18: A simulated observation where two fluorophores are placed on
a distance of 80nm from each other.

to each acquisition. We add the 361 localization results together to
obtain one super-resolved image.

Figure 5.19 (d) shows the ground truth on an image of 265 times
265-pixels. Figure 5.19 (e) represents the sum of all the acquisitions,
which gives an idea of the image resolution if conventional fluores-
cence microscopy was used. Highlighted in red and green are cases
that show the limit of traditional microscopy. Since the fluorophores
are too close in these parts, it is impossible to distinguish the tubes
from each other.

5.6.2 The choice of parameters

We localize the fluorophores on a fine grid of 256× 256 pixel image,
where the size of each pixel is 25nm × 25nm. Mathematically, this
is equivalent to reconstruct x ∈ RML×ML from an acquisition d ∈
RM×M, where M = 64 and L = 4. Note that L could be larger, but
this introduces a greater number of local minima, and the results
might be worse. See Table 6 in Appendix C for a small comparison
using CoBic. The center of the pixel is used to estimate the precise
position of the fluorophore.

Before showing the results of the reconstruction, a discussion is
needed. As shown in the previous section, the algorithms do not man-
age to reconstruct perfectly the exact number of fluorophores. There
are some false positives. In one image, this may not be too apparent.
In the simulated dataset, we have more than 350 reconstructions to
perform. The reconstructed images presented are the sum of all the



5.6 isbi simulated data 79

Figure 5.19: Top: (a) 1
st, (b) 200

th and (c) 361
th frame of the simulated high

density data. Bottom: (d) Ground truth and (e) the sum of all
acquisitions.

reconstructions. Thus the number of False Positives is multiplied by
the number of images in the dataset. In the final image, the False
Positives looks like noise.

To avoid too many false positives, we could underestimate the num-
ber of fluorophores in each image. This increases the number of false
negatives in each reconstruction, and hopefully decreases the number
of False Positives. Thus the final image will appear with less "noise,"
as False Negatives are fluorophores that are not reconstructed.

In order to observe the reconstruction, we normalize the image af-
ter summing all the reconstruction. Thus the brightest points indicate
strong intensity, and dark spots indicate a low intensity.

First, we set k equal to the average number of fluorophores for each
acquisition, which is around 220, known from the ground truth. As
discussed, we test cases lower than this. After testing each method
for different cases, we have decided to compare the reconstruction
for further three cases. The algorithms reconstruct 90, 99, and 140

fluorophores on average. 99 corresponds to the best reconstruction
for CoBic and PeBic, and 140 corresponds to the best reconstruction for
CEL0 and GQ. Once again, we test 90 to compare the methods when
we have a number lower than the best of the other methods.

In order to obtain the best results for CoBic and PeBic, we set ρ(0) = 1
for a reconstruction of 89 and 99 fluorophores. For the reconstruction
of 140, we set ρ(0) = 0.1. We change the initialization as CoBic does
not reconstruct more than 99 fluorophores on average, even when
choosing k much larger.
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For the other methods, we use the best initialization presented in
Table 1 and Table 2.

5.6.3 Results

The ground truth and the sum of the 361 acquisitions can be observed
Fig. 5.19(d) and Fig. 5.19(e).

We present first the results when we reconstruct 220 fluorophores
on average. Note that we present the results of Deep-STORM with the
results for 99 fluorophores, later in the section. Further note that it is
not possible to chose the sparsity of the solution of Deep-STORM.

The Jaccard index is presented in Table 3. The reconstructed images
can be observed in Fig. 5.20 and Fig. 5.21. In each image, the lower
half shows each non-zero pixel as a bright spot.

Table 3: The Jaccard index obtained for an reconstruction of 220 non zero
pixels on average.

Jaccard index (%) for 220 non-zero pixels on average

Method/Tolerance 50nm 100nm 150nm

C-IHT 19.3 37.1 47.0

P-IHT 23.2 49.6 55.9

CEL0 22.4 41.1 49.0

CoBic 19.8 47.1 60.6

PeBic 18.8 41.2 52.2

GQ 30.7 38.4 39.5

`1-relaxation 33.3 56.7 67.0

The `1-relaxation performs best in terms of the Jaccard index for
all error tolerances. Apart from GQ, the other algorithms have a sig-
nificantly lower index. Once the tolerance increases, the difference be-
tween GQ and `1-relaxation increases as well, while the difference be-
tween P-IHT and `1-relaxation decreases. The reason can be observed
in Fig. 5.20 and Fig. 5.21. `1-relaxation and P-IHT reconstruct mostly
on the tubulins, the CEL0 and GQ localize fluorophores both on and
far from the tubulins. C-IHT, PeBic, and CoBic localize the fluorophores
close to the tubulins, making them look thicker than in reality. How-
ever, they localize fewer fluorophores far from the ground truth. We
remark that while the other methods’ Jaccard index grows rapidly
as the tolerance increases, GQ’s index stagnates. This means that the
fluorophores we observe on the tubulins are reconstructed with high
precision, and the rest are reconstructed far from the tubulins. Thus,
even when all non-zero pixels are visible, we can easily distinguish
the tubulins. This is not the case for the `1-relaxation, as observed in
the green part in Fig. 5.21b. Most of the methods localize fluorophores
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(a) C-IHT (b) CoBic

(c) GQ

Figure 5.20: Reconstructed images from the simulated ISBI dataset, 220 non-
zero pixels on average. Constrained-based algorithms. In the
bottom part, each non-zero pixel is white.

far from the tubulins, which must be due to the observations’ back-
ground noise.

We further remark that both C-IHT and P-IHT struggle to distinguish
two tubulins when they are closed. This is highlighted in the red part.

The results when we reconstruct less fluorophores are presented
in Fig. 5.22 and Fig. 5.23 with a reconstruction of 99 non-zero pixels
on average. C-IHT and P-IHT do not manage to distinguish between
two tubes when they are close (see the red case in Fig. 5.22a and
Fig. 5.23a) compared to the other algorithms. GQ and CoBic performs
better than C-IHT, and GQ sligtly better, which can be observed in
the highlighted red part in Fig. 5.22. PeBic perform quite well, but not
as well as the state-of-the-art CEL0 in penalized `2 − `0 minimization.
The Deep-STORM algorithm seems to reconstruct the fluorophores
best visually.

The Jaccard index is shown in Table 4 for a reconstruction of, on
average, 90 non-zero pixels, 99 non-zero pixels, and 140 non-zero pix-
els. The case of 90 non-zero pixels demonstrates the algorithms’ per-
formance with a k chosen, which is not optimal for any algorithm.
k = 140 is optimal for GQ and CEL0, and k = 99 is optimal for CoBic

and PeBic. We observe the low Jaccard index of the IHT constrained al-
gorithm compared to CoBic. GQ performs better or equivalent to CEL0.
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(a) P-IHT (b) `1-relaxation

(c) CEL0 (d) PeBic

Figure 5.21: Reconstructed images from the simulated ISBI dataset, 220 non-
zero pixels on average. Penalized-based algorithms. In the bot-
tom part, each non-zero pixel is white.

Furthermore, GQ performs better than any of the constrained formu-
lation algorithms (CoBic and C-IHT). The Deep-STORM algorithm re-
construct images with an average of 44264 non-zero pixels. Thus, due
to the high number of non-zero pixels, the calculation of the Jaccard
index is too demanding, but the index would be close to 0. Most of
the non-zero pixels have a low intensity, with higher intensity on the
tubulins, which is why we observe in Fig. 5.22d a good reconstruc-
tion. We could fix a threshold and let all the pixels with an intensity
less than the threshold be zero. However, this would not be fair to the
other methods as the same operation could be performed on them.

5.6.3.1 Time

Table 5 shows the average computational time for one image acqui-
sition from the simulated dataset. The Deep-STORM is fast and out-
performs the other methods in speed. The other algorithms have not
been optimized with respect to speed, and could possibly be acceler-
ated by parallel computing and GPU computing.

However, the calibration time, the time to find the best parameters,
is something that cannot be measured by a computer. The advantage
of the non-deep-learning methods is that we can fine-tune the pa-
rameters by testing them on a few images. This is not possible with
Deep-STORM as each change of parameters needs a different training
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(a) C-IHT (b) CoBic

(c) GQ (d) Deep-STORM

Figure 5.22: Reconstructed images from the simulated ISBI dataset, 99 non-
zero pixels on average. (a)-(c) are algorithms based on the con-
strained formulation. (d) Deep-STORM is an deep-learning al-
gorithm.



84 single-molecule localization microscopy

(a) P-IHT (b) `1-relaxation

(c) CEL0 (d) PeBic

Figure 5.23: Reconstructed images from the simulated ISBI dataset, 99 non-
zero pixels on average. The algorithms are based on the penal-
ized formulation.
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Table 4: The Jaccard index obtained for an reconstruction of 90, 99 and 140

non zero pixels on average.

Jaccard index (%) for 90 | 99 |140 non-zero pixels on average

Method/Tolerance 50nm 100nm 150nm

C-IHT 20.2|21.3|22.0 35.0|37.8|42.2 38.9|42.9|51.0

P-IHT 10.4|13.1|12.7 20.9|31.2|28.1 23.7|35.7|32.3

CEL0 26.7|29.3|32.7 37.7|41.3|46.9 38.8|42.4|49.2

CoBic 23.9|25.2|21.4 36.3|40.0 |47.0 38.2|43.2|57.4

PeBic 23.3|25.0|16.3 35.0|39.3|34.2 36.9|42.2|46.4

GQ 27.3|29.5|32.5 37.4|41.9|42.5 39.5|43.5|44.0

`1-relaxation 20.1|22.4|27.5 33.5|37.7|47.3 37.5|42.4|54.1

Deep-STORM × × ×

Table 5: Average reconstruction time for one image acquisition.

Average reconstruction time

Method C-IHT P-IHT CEL0 CoBic PeBic GQ `1 D.STORM

Time (s) 67 88 105 87 83 84 49 < <1

set which must be simulated and then the deep neural network must
be trained. The total training time is around 2 hours. In contrast to
a maximum of 15 minutes if we test the parameters of another algo-
rithm on 7-10 images. Furthermore, the C-IHT, CoBic and GQ have k
as the main parameter. The parameter is quite easy to choose and to
adjust from testing. The λ for the penalized formulations is trickier to
regulate as it is not possible to know how much to change it to obtain
the wished-for result.

5.7 results of the real dataset

We compare the algorithms on a high-density dataset of tubulins pro-
vided from the 2013 ISBI SMLM challenge. The dataset contains 500

acquisitions of 128× 128 pixels, and each pixel is of size 100× 100
nm2. The FWHM has been estimated to be 351.8 nm in [Cha14] by
averaging many fitted PSF on observed single molecules in the given
dataset. We localize the fluorophores on a 512× 512 pixel grid. Each
pixel is of size 25× 25 nm2. Figure 5.24 presents 3 acquisitions and
the sum of all acquisitions.

We do not have any beforehand knowledge of the solution. The
parameters, k or λ, are optimized for each method, based on two cri-
teria. The solution should show evident structures such as the tubes
on the right side of the image while distinguishing close tubes. P-IHT

is an example where this trade-off was difficult to choose. For CoBic
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(a) (b)

(c) (d)

Figure 5.24: (a) 1st, (b) 250th and (c) 500th frame of the real high density
data. (d) the sum of all acquisitions.
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(a) C-IHT (b) CoBic

(c) GQ (d) Deep-STORM

Figure 5.25: Reconstructed images from the real ISBI dataset. (a)-(c) are algo-
rithms based on the constrained formulation. (d) Deep-STORM
is an deep-learning algorithm.

and GQ, we set k = 140. Figure 5.25 and Figure 5.26 present the re-
construction. The results are coherent with the obtained results of the
simulated dataset. The IHT algorithms reconstruct not as good as the
other algorithms, and the penalized version seems worse than the
constrained version. The reconstructions obtained by the other algo-
rithms (CoBic, PeBic, CEL0, GQ and Deep-STORM) are equivalent, with
the Deep-STORM algorithm slightly better.

5.8 conclusion

In this chapter, we have applied the proposed methods to Single
Molecule Localization Microscopy. The methods are compared to state
of the art in 2D grid methods.

We have first compared each method on one simulated image with
100 different noise simulations, where the SNR is around 20 dB. CoBic

obtains the lowest data fidelity value and highest Jaccard index when
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(a) P-IHT (b) `1-relaxation

(c) CEL0 (d) PeBic

Figure 5.26: Reconstructed images from the real ISBI dataset. The algorithms
are based on the penalized formulation.
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reconstructing the exact number of fluorophores in the image. How-
ever, when reducing the number of fluorophores, the method is as
good as the C-IHT in terms of the data fidelity term. However, in
terms of the Jaccard index, CoBic performs better than C-IHT. GQ is
consistent regardless of the number of fluorophores and always out-
performs the C-IHT, the function it relaxes. PeBic outperforms P-IHT

and the `1-relaxation.
The proposed methods are applied to simulated ISBI data. Here,

the `1-relaxation obtains a high Jaccard index when reconstructing a
high number of fluorophores. However, the resolution is not as good,
and we reduce the number. Then, GQ obtains a higher Jaccard index.
CoBic and PeBic obtain good results compared to their initial functions,
C-IHT and P-IHT. The reconstruction of the real dataset confirms the
excellent localization precision of the proposed methods.
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C O N C L U S I O N

This thesis has investigated `2 − `0 minimization. The main focus has
been on the constrained formulation. The constrained `2 − `0 may be
more intuitive to use than the penalized, as the sparsity constraint
may be directly linked to the model. We have seen this in Single-
Molecule Localization microscopy, where a non-zero pixel represents
a visible fluorophore. In other applications, such as feature selection,
the sparsity constraint signify the maximum number of features to
use in the model. We have presented two methods to solve the con-
strained `2− `0 method and one method to solve the penalized `2− `0
method. We have also proposed a multiplicative method, which is still
a work-in-progress.

We have applied the methods to SMLM, where we observe the
efficient localization abilities of the methods. Furthermore, we can see
how much easier it is to use the constrained formulation compared
to the penalized formulation.

the continuous relaxation of the sparsity constraint :
Chapter 2 present a non-convex continuous relaxation of the `2 − `0
constrained problem. An explicit form is, to our knowledge, the first
of its kind. The relaxation term was obtained by calculating the con-
vex envelope of the initial function Gk with an orthogonal observa-
tion matrix. We were inspired by CEL0 relaxation, which has robust
results. However, the calculation was significantly more difficult as
the sparsity constraint is not separable. Several properties of the pro-
posed relaxation are proven in the chapter. Most importantly, all min-
imizers of the relaxed function that satisfies the sparsity constraint
are minimizers of the initial function. However, we can not guaran-
tee that all minimizers satisfy the sparsity constraint. Numerically,
to avoid this, we introduce a fail-safe method. Nevertheless, in the
application of Single-Molecule Localization Microscopy, the fail-safe
is never activated. Thus the algorithm converges always towards a
minimizer of the initial problem.

Furthermore, we present an algorithm to minimize the relaxed
function, using the proposed regularizer’s proximal operator. We ob-
serve that this is a relaxation of the hard threshold.

A further study of the relaxed function and its subgradient would
be interesting. We want to give certain conditions on the observa-
tion matrix, A, and the observation, d, such that the relaxation is ex-
act. However, the direct study of the subgradient in two dimensions
proved to be cumbersome. Furthermore, if we converge numerically

93
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towards a point that does not satisfy the constraint, what can we say
about this point? Small numerical examples have given few answers,
except that it is not sufficient to project directly to the nearest space
that satisfies the constraint to obtain the initial function’s global min-
imum.

In two dimensions, we have also observed that we obtain a line
of global minimizers if A and d are chosen in a specific way. If we
converge towards such a point in N-dimensions, what kind of tools
can we put in place to "follow" the line and obtain a global minimizer
that satisfies the constraint?

In the numerical part, we have seen that using the penalization of
negative numbers sufficed to reconstruct only non-negative elements.
This may not be the case in all applications. We want to calculate the
proximal operator of the regularization and the positivity constraint.

cobic and pebic : Chapter 3 presented CoBic and PeBic, two meth-
ods to minimize the constrained and penalized `2− `0 problem. Based
on a pre-print, we were inspired to adapt their method using an
`2 data fidelity term. The reformulation of the `0-norm yields a bi-
convex cost function. This is interesting as we can apply alternating
minimization schemes. Each step of the proposed algorithm can be
written as a known minimization problem. Thus efficient and already
existing algorithms can be applied.

In chapter 5, we compare directly CoBic and PeBic with their initial
functions. Both methods obtain significantly better results in terms of
data fidelity and in terms of the Jaccard index than C-IHT and P-IHT

when we know the exact number to reconstruct, as seen in Section
5.5.1. However, CoBic is not better than the C-IHT if we reconstruct
less. PeBic performs better than the P-IHT in terms of the `2 data
fidelity term.

There are several ideas to explore concerning the reformulation.
Both PeBic and CoBic have been proven to be exact when we have a
positivity constraint. It would be interesting to prove this without the
positivity constraint. This should not be a too big challenge.

Furthermore, CoBic converges sometimes to points that do not satu-
rate the sparsity constraint. Is this a saddle point or a local minimum,
in which we cannot add a positive element? If this is a saddle point,
how can we "restart" the algorithm in an intelligent way to converge
towards a minimum?

From the numerical results, we can clearly see that reformulating
the `0-norm is preferable compared to using the `0-norm. It would
be interesting if we could introduce the reformulation into other data
fidelity terms, such as the Poisson data fidelity term, and see if we
could prove the exactness of the method, especially when SMLM is
mostly corrupted by Poisson noise.
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multiplication : Chapter 4 introduces a multiplicative formula-
tion for sparse optimization. We have seen how this can be translated
as `2 − R minimization using an adaptive regularization parameter.
This is an ongoing field of research, and at the moment, there are
many perspectives. First, we have not applied the method to SMLM
as the minimization is very long. This is because of the step size that
goes towards infinity very fast. Thus, a further study of the algo-
rithms adapted to minimize the cost function is essential. Another
aspect of further research is the choice of regularization parameters.
Is the proposed function φε the best, or could we find a better one?
There are many exciting research paths to follow on this subject.

—————————





Part IV

A P P E N D I X





A
A P P E N D I X A

a.1 preliminary results for lemma 2 .4

Proposition (Reminder) ∀x ∈ RN, ∃ Tk(x) ∈ {1, 2, . . . ,k − 1,k} such
that

|x
↓
k−Tk(x)+1

| 6
1

Tk(x)

N∑
i=k−Tk(x)+1

|x
↓
i | 6 |x

↓
k−Tk(x)

|. (A.1)

Proof. First, we suppose that (A.1) is not true for j ∈ {1, 2, . . . ,k− 1},
i.e., either

|x
↓
k−j+1| >

1

j

N∑
i=k−j+1

|x
↓
i |, (A.2)

or

1

j

N∑
i=k−j+1

|x
↓
i | > |x

↓
k−j|, (A.3)

or both. We prove by recurrence that if (A.1) is not true ∀j ∈ {1, 2, . . . ,k−
1}, then (A.2) is false, and (A.3) is true. We investigate the case j = 1:

N∑
i=k

|x
↓
i | = |x

↓
k|+

N∑
i=k+1

|x
↓
i | > |x

↓
k|. (A.4)

The above inequality is obvious, and we can conclude that for j = 1,
(A.2) is false, and thus (A.3) must be true, i.e.,

N∑
i=k

|x
↓
i | > |x

↓
k−1|. (A.5)

We suppose that for some j ∈ {1, 2, . . . ,k− 1}, (A.2) is false and (A.3)
is true, and we investigate j+ 1.

1

j+ 1

N∑
i=k−j

|x
↓
i | =

1

j+ 1

|x
↓
k−j|+

j

j

N∑
i=k−j+1

|x
↓
i |


>

1

j+ 1

(
|x
↓
k−j|+ j|x

↓
k−j|

)
= |x

↓
k−j+1|. (A.6)

We get (A.6) since we have supposed (A.3) is true for j. Thus, by
recurrence, we can conclude that (A.2) is false, and (A.3) is true ∀j ∈
{1, 2, . . . ,k− 1}.
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Now, we investigate j = k:

1

k

N∑
i=1

|x
↓
i | =

1

k

(
|x
↓
1|+

k− 1

k− 1

N∑
i=2

|x
↓
i |

)

>
1

k

(
|x
↓
1|+ (k− 1)|x↓1|

)
= |x

↓
1|. (A.7)

We use the fact that (A.3) is true for j = k − 1 to obtain the above
inequality. Thus (A.2) is false. By definition x↓0 = +∞, and thus (A.3)
is also false. Thus Tk(x) = k verifies the double inequality in (A.1).

To conclude: Either Tk(x) = k, or there exists j ∈ {1, 2, . . . ,k − 1}
such that Tk(x) = j.

Definition A.1. Let P(x) ∈ RN×N the permutation matrix such that
P(x)x = x↓. The space D(x) is defined as:

D(x) = {b;P(x)b = b↓}.

z ∈ D(x) means < z, x >=< z↓, x↓ >.

Remark A.1. D(x) = D(|x|), since we have |x↓| = |x|↓.

Proposition A.1. Let (a,b) ∈ RN>0 ×RN>0. Then∑
i

aibi 6
∑
i

a
↓
ib
↓
i

and the inequality is strict if b /∈ D(a).

Proof. [Sim05, Lemma 1.8] proves it without proving the strict in-
equality.

We assume that a is not on the form a = t(1, 1 . . . , 1)T , i.e., there ex-
ists i 6= j, ai 6= aj. Moreover, for simplicity, without loss of generality,
we suppose a = a↓. We write

N∑
i

aibi = aN

N∑
i=1

bi + (aN−1 − aN)

N−1∑
i=1

bi + · · ·+ (a1 − a2)b1.

As it is obvious that ∀ j = 1, . . . N

j∑
i=1

bi 6
j∑
i=1

b
↓
i , (A.8)

and since aj−1 − aj > 0 ∀ j, we get

N∑
i=1

aibi 6
N∑
i=1

aib
↓
i =

N∑
i=1

a
↓
ib
↓
i (A.9)

The goal of Proposition A.1 is to show that the inequality in (A.9) is
strict if b /∈ D(a).
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First, we can remark if b /∈ D(a), then there exists j0 ∈ {2, 3, . . . ,N}

such
j0−1∑
i=1

bi <

j0−1∑
i=1

b
↓
i . (A.10)

By contradiction, if (A.10) is not true, we have ∀ j ∈ {2, 3, . . . ,N}

j−1∑
1=1

b
↓
i 6

j−1∑
1=1

bi,

and with (A.8), we get

j−1∑
1=1

b
↓
i =

j−1∑
1=1

bi. (A.11)

From (A.11), we easily obtain ∀ j,

bj = b
↓
j ,

which means b↓ = b, i.e., b ∈ D(a), which contradicts the hypothesis
b /∈ D(a). So there exists j0 such that (A.10) is true, and if aj0−1 6= aj0

(aj0−1 − aj0)

j0−1∑
i=1

bi < (aj0−1 − aj0)

j0−1∑
i=1

b
↓
i ,

which, with (A.8), implies

N∑
i=1

aibi <

N∑
i=1

aib
↓
i .

It remains to examine the case where aj0−1 = aj0 . In this case we
claim there exists j1 ∈ {1, . . . , j0−2} or {j0, . . . ,N} such that

j1∑
i=1

bi <

j1∑
i=1

b
↓
i or

j1∑
i=j0

bi <

j1∑
i=j0

b
↓
i . (A.12)

If not, with the same proof as before we get

b
↓
i = bi i ∈ {1, . . . , j0 − 2}∪ {j0 + 1, . . . ,N},

i.e., we have 

b
↓
1

b
↓
2
...

b
↓
j0−2

x
↓
1

x
↓
2

b
↓
j0+1

...

b
↓
N



=



b1

b2
...

bj0−2

x1

x2

bj0+1
...

bN


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where (x1, x2) = (bj0−1,bj0) or (bj0 ,bj0−1). The order does not mat-
ter since aj0−1 = aj0 . This implies that b ∈ D(a), which contradicts
the hypothesis. So (A.12) is true and we get for example

(aj1−1 − aj1)

j1−1∑
i=1

bi < (aj1−1 − aj1)

j1−1∑
i=1

b
↓
i ,

and if aj1−1 − aj1 6= 0 we deduce∑
i

aibi <
∑
i

aib
↓
i . (A.13)

If aj1−1 = aj1 we repeat the same argument and proof as above, and
we are sure to find an index jw such that ajw−1 − ajw 6= 0 since we
have supposed that a 6= t(1, 1, . . . , 1)T . Therefore (A.13) is always true
which concludes the proof.

Proposition A.2 ([TTG17]). g(x) : RN → R defined as g(x) = 1
2

∑k
i=1 x

↓2
i ,

is convex. Furthermore, note that g(|x|) = g(x).

Lemma A.3. Let f1(z, x) ∈ RN ×RN → R be defined as

f1(z, x) := −
1

2

k∑
i=1

z
↓2
i + < z↓, x↓ > .

Let us consider the concave problem

sup
z∈RN>0

f1(z, |x|). (A.14)

Problem (A.14) has the following optimal arguments

arg sup
z∈RN>0

f1(z, |x|) = {z;∃P ∈ RN×N a permutation matrix s.t. Pz = ẑ},

(A.15)

where ẑ is defined as

ẑj =



1
Tk(x)

∑N
i=k−Tk(x)+1

|x
↓
i | if k > j > k− Tk(x) + 1

or if j > k and x↓j 6= 0[
0, 1
Tk(x)

∑N
i=k−Tk(x)+1

|x
↓
i |
]

if j > k and x↓j = 0

|x
↓
j | if j < k− Tk(x) + 1.

(A.16)

We can remark that ẑ = ẑ↓, and Tk(x) is defined in Proposition 2.2. The
value of the supremum problem is

1

2

k−Tk(x)∑
i=1

x
↓2
i +

1

2Tk(x)

 N∑
i=k−Tk(x)+1

|x
↓
i |

2 . (A.17)
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Proof. Problem (A.14) can be written as

sup
z∈RN>0

k∑
i=1

|x
↓
i |z
↓
i −

1

2

k∑
i=1

z
↓2
i +

N∑
i=k+1

|x
↓
i |z
↓
i . (A.18)

We remark that finding the supremum for z↓i , i > k reduces to find
the supremum of the following term, knowing that z↓i is upper bounded
by z↓i−1:

N∑
i=k+1

|x
↓
i |z
↓
i . (A.19)

Let z↓k be a constant. The sum in (A.19) is non-negative and increasing
with respect to z↓j and the supremum is obtained when z↓j reaches

its upper bound, i.e z↓j = z
↓
j−1 ∀j > k and |x

↓
j | 6= 0. By recursion,

z
↓
j = z

↓
k ∀j > k and |x

↓
j | 6= 0. When ∃ j > k, |x↓j | = 0, we observe that z↓j

is multiplied with zero, and can take on every value between its lower
bound and upper bound, which is between 0 and z↓k. Then, obviously,
the supremum arguments for (A.19) is

z
↓
i

= z↓k if |x↓i | 6= 0

∈ [0, z↓k] if |x↓i | = 0
(A.20)

Further, from (A.18), we observe that for i < k, the optimal argument
is

z
↓
i = max(|x↓i |, z

↓
i+1). (A.21)

By recursion, we can write this as

z
↓
i = max(|x↓i |, z

↓
k). (A.22)

It remains to find the value of z↓k.
Inserting (A.20) and (A.22) into (A.18), and we obtain:

sup
z
↓
k

k∑
i=1

|x
↓
i |max(|x↓i |, z

↓
k)−

1

2

k∑
i=1

max(|x↓i |, z
↓
k)
2+

N∑
i=k+1

|x
↓
i |z
↓
k. (A.23)

To treat the term max(|x↓i |, z
↓
k), we introduce j∗(k) = supj{j : z

↓
k 6

|x
↓
j |} , i.e., j∗(k) is the largest index such that |x

↓
j∗(k)| > z

↓
k, and we

define x↓0 = +∞. Therefore, (A.23) rewrites as

sup
z
↓
k

j∗(k)∑
i=1

|x
↓
i |
2 −

1

2

j∗(k)∑
i=1

|x
↓
i |
2 +

k∑
i=j∗(k)+1

|x
↓
i |z
↓
k

−
1

2

k∑
i=j∗(k)+1

z
↓2
k +

N∑
i=k+1

|x
↓
i |z
↓
k. (A.24)
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(A.24) is a concave problem, and the optimiality conditions yields

−

k∑
i=j∗(k)+1

z
↓
k +

N∑
j∗(k)+1

|x
↓
i | = 0. (A.25)

We define
∑k
i=j∗(k)+1 1 = S. Then j∗(k) = k− S and

z
↓
k =

1

S

N∑
k−S+1

|x
↓
i |. (A.26)

Furthermore, since j∗(k) = k− S was the largest index such that
|xk−S| > z

↓
k > |xk−S+1|. This translates to

|x
↓
k−S| >

1

S

N∑
k−S+1

|x
↓
i | > |x

↓
k−S+1|,

which implies S = Tk(x) (see Proposition 2.2). Note that if j∗(k) = k

(which is the same to say Tk(x) = 1), then the right part of the above
inequality is not strict.

Now, assume |x
↓
j∗(k)| = z

↓
k. Then, the max function can both take z↓k

or |x↓
j∗(k)|. If it is the latter, than the expression above is correct. In the

former case max(|x↓
j∗(k)|, z

↓
k) = z

↓
k. We obtain

z
↓
k =

1

Tk(x) + 1

N∑
k−Tk(x)

|x
↓
i |. (A.27)

Furthermore, we use the fact that |x↓
j∗(k)| = z

↓
k and j∗(k) = k− Tk(x),

and develop (A.27) as,

z
↓
k =

1

Tk(x) + 1

xk−Tk(x) + N∑
k−Tk(x)+1

|x
↓
i |

 (A.28)

(Tk(x) + 1)z
↓
k = z↓k +

N∑
k−Tk(x)+1

|x
↓
i | (A.29)

Tk(x)z
↓
k =

N∑
k−Tk(x)+1

|x
↓
i | (A.30)

z
↓
k = (A.26) (A.31)

The unique value of z↓k is given by (A.26).

Lemma A.4. Let x ∈ RN and f2(y, x) ∈ RN ×RN → R, defined as

f2(y, x) = −
1

2

k∑
i=1

y
↓2
i + < y, x >
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The following concave supremum problem

sup
y∈RN

f2(y, x) (A.32)

is equivalent to

sup
z∈RN>0

f2(z, |x|). (A.33)

The arguments are such that ŷ↓i = sign∗(x↓ẑi )ẑ↓i .

Proof. Let ẑ ∈ RN>0 be the argument of the supremum in (A.33), ŷ
be such that ŷi = sign(xi) ẑi, and note that f2(y, x) = −g(y)+

< y, x > with g defined as in Proposition A.2 in Appendix A.1. First,
f2(y, x) is a concave function in y (see Proposition A.2). Furthermore,
f2(y, x) is such that −f2(y, x) is coercive in y. Thus a supremum exists.
Further note that g(ŷ) = g(|ŷ|) = g(ẑ). Then the following sequence
of equalities/inequalities completes the proof:

(A.33) = sup
z∈RN>0

f2(z, |x|) = −g(ẑ) +

N∑
i=1

ẑi|xi|

= −g(ẑ) +

N∑
i=1

sign(xi)ẑixi = −g(ŷ) +

N∑
i=1

ŷixi

6 (A.32) = sup
y∈RN

f2(y, x) 6
<y,x>6<|y|,|x|>

sup
y∈RN

f2(|y|, |x|)

= sup
z∈RN>0

f2(z, |x|) = (A.33)

a.2 proof of lemma 2 .4

Proof. Note that a similar problem has been studied in [ACO17]. They
do however work with low-rank approximation, therefore they did
not have the problem of how to permute x since they work with
matrices. First, let D(x) be as defined in Definition A.1.

We are interested in
sup
y∈RN

f2(y, x),

and its arguments, with f2 defined in Lemma A.4. From this lemma,
we know that we can rather study

sup
z∈RN>0

f2(z, |x|).

Furthermore, from Lemma A.3, we know the expression of
supz∈RN>0

f1(z, |x|) and its arguments. We want to show that
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supz∈RN>0
f2(z, |x|) = supz∈RN>0

f1(z, |x|), and to find a connection be-
tween the arguments of f2 and f1.

First, note that

sup
z∈RN>0

f2(z, |x|) > sup
z∈RN>0∈D(x)

f2(z, |x|). (A.34)

From [Sim05, Lemma 1.8] and Proposition A.1, we have that ∀(y, x) ∈
RN>0 ×RN>0:

< y, x >6< y↓, x↓ >,

and the inequality is strict if y /∈ D(x), and thus

sup
z∈RN>0

f2(z, |x|) 6 sup
z∈RN>0

f1(z, |x|). (A.35)

Note that we have D(|x|) = D(x), then ∀z ∈ D(x), f2(z, |x|) = f1(z, |x|)
and:

sup
z∈RN>0∈D(x)

f2(z, |x|) = sup
z∈RN>0

N∑
i=1

z
↓
i |x
↓
i |−

1

2

k∑
i=1

z
↓2
i = sup

z∈RN>0

f1(z, |x|).

(A.36)

Using inequalities (A.34) and (A.35) and connecting them to (A.36),
we obtain

sup
z∈RN>0

f1(z, |x|) = sup
z∈RN>0∈D(x)

f2(z, |x|) 6 sup
z∈RN>0

f2(z, |x|) 6 sup
z∈RN>0

f1(z, |x|).

f2(z, |x|) is upper and lower bounded by the same value, thus we have

sup
z∈RN>0

f2(z, |x|) = sup
z∈RN>0

f1(z, |x|) (A.37)

The supz∈RN>0
f1(z, |x|) is known from Lemma A.3:

sup
z∈RN>0

f1(z, |x|) =
1

2

k−Tk(x)∑
i=1

x
↓2
i +

1

2Tk(x)

 N∑
i=k−Tk(x)+1

|x
↓
i |

2
(A.38)

with the optimal arguments:

arg sup
z∈RN>0

f1(z, |x|) = {z; ∃P ∈ RN×N a permutation matrix s.t. Pz = ẑ},

(A.39)

where ẑ is such that:

ẑj =



1
Tk(x)

∑N
i=k−Tk(x)+1

|x
↓
i | if k > j > k− Tk(x) + 1

or if j > k and x↓j 6= 0[
0, 1
Tk(x)

∑N
i=k−Tk(x)+1

|x
↓
i |
]

if j > k and |x
↓
j | = 0

|x
↓
j | if j < k− Tk(x) + 1.

(A.40)
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Now we are interested in the optimal arguments of f2. Let P(x) be
such that P(x)x = x↓. We define z∗ = P(x)

−1
ẑ. Evidently, P(x)z∗ = ẑ,

and since ẑ is sorted by its absolute value, P(x)z∗ = z∗↓, and thus
z∗ ∈ D(x). Furthermore, from Lemma A.3, z∗ is a optimal argument
of f1.

We have then f2(z∗, |x|) = f1(z∗, |x|) = supz∈RN>0
f1(z, |x|). z∗ is there-

fore an optimal argument of f2 since (A.37) shows the equality be-
tween the supremum value of f1 and f2.

We have shown that there exists ẑ ∈ arg supz∈RN>0
f1(z, |x|), from

which we can construct z∗ ∈ D(x), an optimal argument of f2. Now,
by contradiction, we show that all optimal arguments of f2 are in
D(x). Assume ẑ = arg supz∈RN>0

f2(z, |x|) and that ẑ /∈ D(x). We can

construct z∗, such that z∗↓ = ẑ↓, and z∗ ∈ D(x). We have then

f2(z
∗, |x|) − f2(ẑ, |x|) = −

1

2

k∑
i

z
∗↓2
i + < z∗, |x| >

+
1

2

k∑
i

ẑ
↓2
i − < ẑ, |x| >

=< z∗, |x| > − < ẑ, |x| >

=< z∗↓, |x↓| > − < ẑ, |x| >> 0.

The last equality is due to z∗ ∈ D(x), and the last inequality is from
Proposition A.1. Thus ẑ is not an optimal argument for f2, and all
optimal arguments of f2 must be in D(x).

Furthermore, thus it suffices to study supz∈RN>0∈D(z) f2(z, |x|), and
from (A.36), we can rather study f1, and construct all supremum ar-
guments of f2 from f1.

arg sup
z∈RN>0

f2(z, |x|) = P(x)
−1
ẑ (A.41)

where ẑ is defined in (A.40).

a.3 calculation of proximal operator of ζ(x)

As preliminary results, we state and prove the following proposition
and lemmas 2.9, A.5 and A.6.

Proposition (reminder)
Let γ > 1 and z = prox

−(γ−1γ )
∑N
i=k+1(·)↓2

(y). We have

proxQ
γ
(y) =

γy− z

γ− 1
. (A.42)

Proof. By definition we have

proxQ
γ
(y) = arg min

x

Q(x) +
γ

2
‖x− y‖2
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Inserting the definition of Q(x) from (2.13), we obtain

proxQ
γ
(y) = arg min

x

−
1

2
‖x‖2

+ sup
w

< x,w > −
1

2

k∑
i=1

w
↓2
i +

γ

2
‖x− y‖2

This is equal to

arg min
x

sup
w

< x,w > −
1

2

k∑
i=1

w
↓2
i +

γ− 1

2
‖x− γ

γ− 1
y‖2

= prox
(γ−1) supw<·,w>− 1

2

∑k
i=1w

↓2(
γ

γ− 1
y).

Using now Moreau’s decomposition [BC+11, Theoreme 14.3(ii)], we
have

proxQ
γ
(y) =

γ

γ− 1
y−

1

γ− 1
prox((γ−1) supw<·,w>− 1

2

∑k
i=1w

↓2)
∗(γy).

First, note that(
(γ− 1) sup

w

< ·,w > −
1

2

k∑
i=1

w↓2

)∗
(x) = (γ− 1)

1

2

k∑
i=1

x
↓2
i

since 1
2

∑k
i=1 x

↓2
i is convex (See Proposition A.2 ), and f∗∗ = f if f a

convex and lower semi continuous function. Thus

proxQ
γ
(y) =

γ

γ− 1
y−

1

γ− 1
prox((γ−1) 12

∑k
i=1 ·

↓2
i )

(γy).

Using the definition of the proximal, we aim to rewrite the proximal
above.

prox((γ−1) 12
∑k
i=1 ·

↓2
i )

(γy) = arg min
x

1

2

k∑
i=1

x
↓2
i +

1

2(γ− 1)
‖x− γy‖2.

Further expanding and removing the part when y is not influencing
yields that

arg min
x

1

2

k∑
i=1

x
↓2
i +

1

2(γ− 1)
‖x‖2 − γ

γ− 1
< x,y >

= arg min
x

1

2

k∑
i=1

x
↓2
i +

1

2(γ− 1)
‖x‖2 + γ

2(γ− 1)
‖x‖2

−
γ

2(γ− 1)
‖x‖2 − γ

γ− 1
< x,y >

= arg min
x

−
1

2

N∑
i=k+1

x
↓2
i +

γ

2(γ− 1)
‖x− y‖2

= prox
(γ−1γ )− 1

2

∑N
i=k+1 ·

↓2
i
(y).



A.3 calculation of proximal operator of ζ(x) 109

We have thus

proxQ
γ
(y) =

γ

γ− 1
y−

1

γ− 1
prox

(γ−1γ )− 1
2

∑N
i=k+1 ·

↓2
i
(y). (A.43)

Lemma A.5. Let j : R → R be a strictly convex and coercive function, let
w = arg mint j(t), and let us suppose that j is symmetric with respect to
its minimum, i.e. j(w− t) = j(w+ t) ∀t ∈ R. The problem

z = arg min
b6|t|6a

j(t)

with a and b positive, has the following solution

z =


w if b 6 |w| 6 a

sign∗(w)a if |w| > a

sign∗(w)b if |w| 6 b.

Proof. Since j is symmetric with respect to its minimum j(w+ t1) 6
j(w+ t2) ∀|t1| 6 |t2|. Assume that 0 < w 6 b. We can write j(b) =

j(w + α), α > 0 and j(−b) = j(w + β),β < 0. Since w > 0 then
|α| < |β| and thus the minimum is reached with z = b on the interval
[b,a]. Similar reasoning can be used to prove the other cases.

Lemma A.6. Let gi : R → R , i ∈ [1..N] be strictly convex and co-
ercive. Let w = (w1,w2, . . . wN)T = arg minti

∑
gi(ti), i.e., wi =

arg minti gi(ti). Assume that |w1| > |w2| > · · · > |wk| and |wk+1| >
|wk+2| > · · · > |wN|. Let gi be symmetric with respect to its minimum.
Consider the following problem

arg min
|t1|>···>|tN|

N∑
i

gi(ti). (A.44)

The optimal solution is

ti(τ) =

sign∗(wi)max(|wi|, τ) if 1 6 i 6 k

sign∗(wi)min(|wi|, τ) if i > k
(A.45)

where τ ∈ R is in [min(|wk|, |wk+1|), max(|wk|, |wk+1|)] and is the value
that minimizes

∑
gi(ti(τ)).

Proof. Note that this proof is inspired by [LO16, Theorem 2], with
some modifications. First, if |wk| > |wk+1|, then w satisfies the con-
straints in Problem (A.44), and thus w is the optimal solution. If
|wk| < |wk+1| we must search a little more. In both cases we can,
since each gi is convex and symmetric with respect to its minimum,
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apply Lemma A.5 for ti, and the choices can be limited to the follow-
ing choices:

ti =


wi if |ti−1| > |wi| > |ti+1|

sign∗(wi)|ti+1| if |wi| < |ti+1|

sign∗(wi)|ti−1| if |wi| > |ti−1|

(A.46)

This can be rewritten in a shorter form, at first in the case where i 6 k.

ti = sign(wi)∗max (|wi|, |ti+1|). (A.47)

This can be proved by recursion. In the case of i = 1,w1 is the optimal
argument if |w1| > |t2|, otherwise sign∗(w1)|t2| is optimal. Therefore
t1 = sign∗(w1)max(|w1|, |t2|). Assume that this is true for the i-th
index.

ti+1 =


wi+1 if |ti| > |wi+1| > |ti+2| and i+ 1 6 k

sign∗(wi+1)|ti+2| if |wi+1| < |ti+2| and i+ 1 6 k

sign∗(wi+1)|ti| if |wi+1| > |ti| and i+ 1 6 k.
(A.48)

But ti = sign∗(wi)max(|wi|, |ti+1|), which yields |ti| > |wi| > |wi+1|

and thus the third case of (A.48) can be ignored.

Now assume for an i 6 k that ti 6= wi. This implies that

|ti| = |ti+1| > |wi|.

Since wi is non increasing for i 6 k, the following inequality |ti+1| >

|wi+1| is true. Furthermore, |ti+1| = max(|wi+1|, |ti+2|) = |ti+2|. By
recursion, we have

|ti| = |ti+1| = |ti+2| = · · · = |tk|.

To facilitate the notations, |tk| = τ. The lemma is proved by inserting
τ instead of |ti+1| and |tk| into equation (A.47)

When i > k, a similar proof of recursion gives:

ti = sign∗(wi)min(|tk|, |wi|). (A.49)

and by adopting the notation τ, we finish the proof.

Remark A.2. Note that if w, defined in Lemma A.6 is such that |wk| >
|wk+1|, then w is solution of (A.44).
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Lemma A.7. Let y ∈ RN. Define ζ : RN → R as
ζ(x) := −(γ−1γ )

∑N
i=k+1(xi)

↓2. The proximal operator of ζ is such that

proxζ(·)(y)
↓y =

sign(y↓i )max (|y↓i |, τ) if i 6 k

sign(y↓i )min(τ, |γy↓i |) if i > k.
(A.50)

If |y↓k| < γ|y
↓
k+1| then τ is a value in the interval [|y↓k|,γ|y

↓
k+1|], and is

defined as

τ =
γ
∑
i∈n1 |y

↓
i |+ γ

∑
i∈n2 |y

↓
i |

γ#n1 + #n2
(A.51)

where n1 and n2 are two groups of indices such that ∀ i ∈ n1,y↓i < τ and
∀ i ∈ n2, τ 6 γ|y

↓
i | for an #n1 and #n2 are the sizes of n1 and n2. To

go from proxζ(·)(y)
↓y to proxζ(·)(y) we apply the inverse permutation that

sort y to y↓.

Note that we search

prox
−(γ−1γ )

∑N
i=k+1(·)↓2

(y) = arg min
x

−
1

2

N∑
i=k+1

x
↓2
i +

γ

2(γ− 1)
‖x− y‖22

We define two functions, l1 : RN ×RN → R and l2 : RN ×RN →
R.

l1(z,a) =
γ

2(γ− 1)

N∑
i

(zi − ai)
2 −

1

2

N∑
i=k+1

z
↓2
i (A.52)

l2(z,a) =
γ

2(γ− 1)

N∑
i

(z↓i − |a
↓
i |)
2 −

1

2

N∑
i=k+1

z
↓2
i . (A.53)

As in Lemma 2.4, we can create relations between l1(z, |a|) and l2(z, |z|),
where l2 can be solved using Lemma A.6.
We omit the proof as it is similar to the one of Lemma 2.4.
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a.4 detailed algorithm

Algorithm 5 : Nonmonotone APG
Initialization :
z(1) = x(1) = x(0), t(1) = 1, t(0) = 0,η ∈ [0, 1), δ > 0, c(1) =
F(x(1)),q(1) = 1,αx < 1

L ,αy < 1
L

Repeat :

y(p) = x(p) +
t(p−1)

t(p)
(z(p) − x(p)) +

t(p−1) − 1

t(p)
(x(p) − x(p−1))

z(p+1) = proxαxg(y
(p) −αy∇f(y(p)))

if F(z(p+1)) 6 c(p) − δ‖z(p+1) − y(p)‖2 then:

x(p+1) = z(p+1)

else:

v(p+1) = proxαxg(x
(p) −αy∇f(x(p)))

x(p+1) =

z(p+1) if F(z(p+1)) 6 F(v(p+1))

v(p+1) otherwise

end if.

t(p+1) =

√
4(t(p))2 + 1+ 1

2

q(p+1) = ηq(p) + 1

c(p+1) =
ηq(p)c(p) + F(x(p+1))

q(p+1)

Until : Convergence

The convergence of the algorithm is ensured for a non convex func-
tion F which satisfies the K-Łcondition, see [LL15].
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b.1 additional proofs for the biconvex reformulation

Lemma B.1. Let B ∈ RN×l be a semi-orthogonal matrix, that is, a non-
square matrix composed of orthonormal columns. Then, BTB is the identity
matrix in Rl×l.

Lemma B.2. LetA ∈ RP×N, let ai denote the ith column ofA. Definingω
to be a set of indices, ω ⊆ {1, . . . ,N}. Let the restriction of A to the columns
indexed by the elements of ω be denoted as Aω = (aω[1], . . . ,aω[#ω]) ∈
RP×#ω. Then ‖Aω‖ 6 ‖A‖.

Proof. Aω can be written as the product of matrix A and a matrix
B. We define the vector ei ∈ RP, the unitary vector which has zeros
everywhere except for the i-th place. The matrix B ∈ RN×#ω can be
constructed with ei ∀i ∈ ω. The matrix B is thus a semi-orthonormal
matrix. The spectral norm of the matrix B is 1, as BTB is the identity
matrix (from Lemma B.1). We overbound Aω as

‖Aω‖ = ‖AB‖ 6 ‖A‖‖B‖ = ‖A‖ (B.1)

Lemma B.3. [Pshenichnyi-Rockafellar lemma][Zal02, Theorem 2.9.1] As-
sume g is a proper lower semi-continuous convex function. Let C be a convex
set, such that int(C)∩ dom(g) 6= ∅. Then

x̂ = arg min
x∈C

g(x)⇔ 0 ∈ ∂g(x̂) +NC(x̂)

where NC is the normal cone of the convex set C.

Lemma B.4. Given the minimization problem

arg min
x

1

2
‖Ax− d‖2+ < w, |x| > (B.2)

where A ∈ RP×N is a full rank matrix and w a non-negative vector. |x| is a
vector which contains the absolute value of each component of x. Let x̂ be a
solution of problem (B.2). Then ‖Ax̂− d‖2 is bounded independently of w
and

‖Ax̂− d‖ 6 ‖d‖ (B.3)

113
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Proof. Let x̂ be the solution of arg minx
1
2‖Ax− d‖

2+ < w, |x| >, then
we have ∀x ∈ RN

1

2
‖Ax̂− d‖2+ < w, |x̂| >6

1

2
‖Ax− d‖2+ < w, |x| > . (B.4)

In particular, by choosing x = 0 we have:

1

2
‖Ax̂− d‖2+ < w, |x̂| >6

1

2
‖d‖2. (B.5)

Since w is a non-negative vector, the term < w, |x̂| > is always non-
negative; therefore we have

1

2
‖Ax̂− d‖2 6 1

2
‖d‖2

and so
‖Ax̂− d‖ 6 ‖d‖.

Lemma B.5. Let f(x) = 1
2‖Ax− d‖

2
2+ < w, |x| > +χ·>0(x), A be a full

rank matrix and w is a non-negative vector. We have the following result:
If wi > σ(A)‖d‖2 then the optimal solution of the following optimization
problem:

x̂ = arg min
x

f(x) (B.6)

is achieved with x̂i = 0.

Proof. We start by proving that σ(A)‖d‖2 >
∣∣(AT (Ax̂− d))

i

∣∣. Remark
that Lemma B.4 is valid for problem (B.6), from which we have

σ(A)‖d‖2 > σ(A)‖Ax̂− d‖2
> ‖AT‖‖Ax̂− d‖2
> ‖AT (Ax̂− d)‖2
> ‖AT (Ax̂− d)‖∞
> |
(
AT (Ax̂− d)

)
i
| ∀i ∈ {1, . . . ,N}

Then, by choosing, for all i ∈ [1..N], wi > σ(A)‖d‖2, we are sure
that wi >

∣∣(AT (Ax̂− d))
i

∣∣.
From the Pshenichnyi-Rockafellar lemma, a necessary and suffi-

cient condition for x̂ is a minimizer of f on C is that

0 ∈ ∂f(x̂) +NC(x̂)

In our case C is the RN>0 and f(x) = 1
2‖Ax−d‖

2+ < w, |x| >. We have
that ∂f(x) = ∂(12‖Ax− d‖

2) + ∂(< w, |x| >) as f(x) is a sum of two
convex functions, where the intersection of the domains is non empty
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(see [HBLC17, Corollary 16.38]).

The optimal condition is therefore

0 ∈ AT (Ax̂− d) + ∂ < w, |x̂| > +NRN>0
(x̂)

where

(∂ < w, |x̂| >)i


= wi if x̂i > 0

= −wi if x̂i < 0

∈ [−wi,wi] if x̂i = 0

and

(NRN>0
(x̂))i

= 0 if x̂i > 0

∈ (−∞, 0] if x̂i = 0

For x̂i we have the following optimal condition

−AT (Ax̂− d)i

= wi if x̂i > 0

∈ [−wi,wi] + (−∞, 0] if x̂i = 0

If wi > σ(A)‖d‖2, then |AT (Ax̂− d)i| < wi and x̂i cannot be strictly
positive, furthermore x̂i cannot be strictly negative since we work in
the non-negative space. Therefore x̂i = 0.

Lemma B.6. Let (xρ,uρ) be a local minimizer of Gρ defined in (3.9), with I
on the constrained form, that is, defined as in (3.6). Let Gxρ(u) =

1
2‖Axρ−

d‖2 + I(u) + ρ(‖xρ‖1− < xρ,u >). We denote O the indexes of the k
largest values of {i = 1...N, |(xρ)i|}.Q := {i|(xρ)i > 0}, and S := {j|(xρ)j <

0}. Moreover, define D := O∩Q, L := O∩ S and W := {1, 2...,N}\{D∪ L}.
If #(D ∪ L) = k, that is, ‖xρ‖0 > k, then the minimum of Gxρ(u) will be
reached with uρ such that

(uρ)i


= 1 if i ∈ D

= −1 if i ∈ L

= 0 if i ∈W

(B.7)

If #(D∪ L) < k, that is, ‖xρ‖0 < k, then

(uρ)i


= 1 if i ∈ D

= −1 if i ∈ L

∈ [−1, 1] if i ∈W

(B.8)

such that
∑
i∈W |ui| 6 k− #(D∪ L).



116 appendix b

Proof. The minimization of Gxρ(u) can be viewed as a problem of
minimizing − < xρ,u > +χ

−16·61(u) + χ‖·‖16k
(u) by using the defini-

tion of I(u). The results are obvious.

Lemma B.7. Let (xρ,uρ) be a local minimizer of Gρ defined in (3.9), with
I on the penalized form defined as in (3.7). Let Gxρ(u) =

1
2‖Axρ − d‖

2 +

I(u)+ρ(‖xρ‖1− < xρ,u >). The minimum ofGxρ(u) will be reached with
a uρ such that

(uρ)i



= 1 iff (xρ)i ∈ [λρ ,+∞)

= 0 iff (xρ)i ∈ λρ [−1, 1]

= −1 iff (xρ)i ∈ (−∞,−λρ ]

∈ (0, 1) iff (xρ)i = λ
ρ

∈ (−1, 0) iff (xρ)i = −λρ

(B.9)

Proof. The proof of the necessary condition:
We start by writing the optimal conditions of Gxρ(u).

0 ∈ −ρxρ +N−16·61(uρ) +


λ if (uρ)i > 0

−λ if (uρ)i < 0

[−λ, λ] if (uρ)i = 0

(B.10)

We split the study of (B.10) in five cases.

• If (uρ)i = 1

0 ∈ −ρ(xρ)i +N−16·61((uρ)i) + λ⇔ (xρ)i ∈
[0,∞) + λ

ρ

Thus, (uρ)i = 1⇒ (xρ)i ∈ [λρ ,+∞)

• If 0 < (uρ)i < 1

0 ∈ −ρ(xρ)i +N−16·61((uρ)i) + λ⇔ (xρ)i =
λ

ρ

Thus 0 < (uρ)i < 1⇒ (xρ)i =
λ
ρ

• If (uρ)i = 0

0 ∈ −ρ(xρ)i +N−16·61((uρ)i) + [−λ, λ]⇔ (xρ)i ∈
λ

ρ
[−1, 1]

Thus (uρ)i = 0⇒ (xρ)i ∈ λρ [−1, 1]

• If −1 < (uρ)i < 0

0 ∈ −ρ(xρ)i +N−16·61((uρ)i) − λ⇔ (xρ)i = −
λ

ρ

Thus −1 < (uρ)i < 0⇒ (xρ)i = −λρ



B.1 additional proofs for the biconvex reformulation 117

• If (uρ)i = −1

0 ∈ −ρ(xρ)i +N−16·61((uρ)i) − λ⇔ (xρ)i ∈
(−∞, 0] − λ

ρ

Thus, uρ = −1⇒ (xρ)i ∈ (−∞,−λρ ]

The proof of sufficient condition:
We can prove the reverse statement. Rewrite (xρ)i = β

ρ , for some
β ∈ R. We have then, from the optimal conditions (B.10) that

0 ∈ −ρ
β

ρ
+N−16·61(uρ) +


λ if (uρ)i > 0

−λ if (uρ)i < 0

[−λ, λ] if (uρ)i = 0

(B.11)

0 ∈ [−β+ λ,+∞) if (uρ)i = 1 (B.12)

0 ∈ −β+ λ if 0 < (uρ)i < 1 (B.13)

0 ∈ [−λ−β, λ−β] if (uρ)i = 0 (B.14)

0 ∈ −β− λ if −1 < (uρ)i < 0 (B.15)

0 ∈ (−∞,−(β+ λ)] if (uρ)i = −1 (B.16)

Assuming β > λ, then only (B.12) is possible. If β = λ, then (B.12),
(B.13) (B.14) are possible. If 0 6 β < λ, then only (B.14) is possible. If
−λ < β < 0, then only (B.14) is possible. If β = −λ, then (B.14), (B.15)
and (B.16) are possible. If β < −λ, then only (B.16) is possible.

This finishes the proof.

Lemma B.8. [YG16, Lemma 1] For any x ∈ RN

‖x‖0 = min
−16u61

‖u‖1 s.t ‖x‖1 =< u, x > (B.17)

Proof. We consider first the problem

min
−16u61

‖u‖1 s.t. |xi| = uixi ∀i (B.18)

The equality constraint |xi| = uixi and −1 6 ui 6 1 yields that û,
solution of (B.18), is

ûi


= 1 if xi > 0

= −1 if xi < 0

∈ [−1, 1] if xi = 0.

(B.19)

As we minimize ‖u‖1, if xi = 0 then ûi = 0. Thus, we have that
‖û‖1 = ‖x‖0. Furthermore, since u ∈ [−1, 1], we have |xi|−uixi > 0 ∀i.
So the constraint |xi| = xiui ∀ i is equivalent to

∑
i |xi| =

∑
i xiui

which is exactly ‖x‖1 =< x,u >.
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Proposition B.9. The solution u(s+1) of

arg min
u

λ‖u‖1 +
1

2b(s)
‖u− z‖2 + χ

−16·61(u) (B.20)

is reached for

(u(s+1))i =



1 if zi ∈ [1+ λb(s),∞)

zi − λb
(s) if zi ∈ (λb(s), 1+ λb(s))

0 if zi ∈ λb(s)[−1, 1]

zi + λb
(s) if zi ∈ (−1− λb(s),−λb(s))

−1 if zi ∈ (−∞,−1− λb(s)]

Proof. A closed form expression can be found by calculating the sub-
gradient for the problem (B.20) with respect to u. The subgradient of
the box constraint χ

−16·61 is 0 if |ui| < 1, [0,∞) if ui = 1 and (−∞, 0]
if ui = −1. We obtain the following optimal conditions:

0 ∈



λ+ [0,∞) + 1
b(s) (u

(s+1)
i − zi) if u(s+1)i = 1

λ+ 1
b(s) (u

(s+1)
i − zi) if 1 > u(s+1)i > 0

λ[−1, 1] − 1
b(s) (zi) if u(s+1)i = 0

−λ+ 1
b(s) (u

(s+1)
i − zi) if − 1 < u

(s+1)
i < 0

−λ+ (−∞, 0] + 1
b(s) (u

(s+1)
i − zi) if u(s+1)i = −1

and the optimal solution uρ is

(u
(s+1)
ρ )i =



1 if zi ∈ [1+ λb(s),∞)

zi − λb
(s) if zi ∈ (λb(s), 1+ λb(s))

0 if zi ∈ λb(s)[−1, 1]

zi + λb
(s) if zi ∈ (−1− λb(s),−λb(s))

−1 if zi ∈ (−∞,−1− λb(s)].
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A P P E N D I X C

Table 6: Jaccard index for CoBic with L=8 and L=4 for acquisition 1, 200 and
361, with 99 non-zero pixels. Note that the Jaccard index is higher
for L=4 then in the results presented in Table 4 when considering
only these samples.

Tolerance 50 100 150 200

Jaccard index L=8 30.2 47.3 51.3 52.7

Jaccard index L=4 33.5 53.2 57.4 58.0
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